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Preface

Despite what people believe, the process for receiving a PhD is quite simple: you come
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papers, but he has also been very supportive and incredibly patient. He opened his home

to me and I really enjoyed having lunch or dinner with him and his family, Fia and Femke,

whenever I was in Stockholm. I truly believe that without his help I would have never

been able to complete this thesis. I really hope that we will be in touch for the years to

come and we will continue working together.

While Mark was my official advisor, I was really lucky to have a number of prominent

game theorists around me, who in many instances acted like informal advisors and I owe

them a great deal of grace for that.

Martin Dufwenberg has been visiting Göteborg University on a regular basis during

the last three years. During these visits he spent so much time reading my papers and

talking about them. Martin’s help has been really invaluable in every aspect and I feel

truly lucky to have met him.
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When I decided to have an external thesis advisor, it seemed as if I was taking a huge

risk. Olof Johansson-Stenman, the vice-head of our department and director of the PhD

program was the one who supported my decision from the beginning to the end. He acted

as my internal advisor the entire time, he was the one I would go and talk whenever a

problem of academic nature popped up and for that I honestly feel the need to thank

him.

The third chapter of this thesis is based on a paper that I wrote jointly with Olivier

Gossner. I met Olivier in the annual game theory conference organized by the State

University of New York at Stony Brook and we decided to work together towards article.

I feel really lucky to have worked with him since he is widely considered as one of the

greatest game theorists of his generation. During our collaboration I learned a lot on how

to do research for that I would like to thank Olivier.

David Ahn was appointed my thesis advisor during the time I spent in the University

of California, Berkeley. Usually this kind of appointments do not mean much: you meet

once in the beginning of the academic year and never again. However, that was not the

case this time. David really made me feel part of the department. His door was always

open to me and I owe him a lot for that.

During my stay at Berkeley I met many amazing people. The one person I would like

to specially mention is Amanda Friedenberg, who happened to be visiting Berkeley at the

same time as me. Amanda is one of the few people who are interested in game theoretic

models of epistemology. Since she is considered as one of the brightest new theorists I feel

lucky to have worked together with her. I would really like to thank Amanda for the fact

that she spent so much time talking with me about research issues, and also for having

invited me to visit her home department at the Olin Business School, at the Washington

University in St. Louis.

I would like to thank everybody who took time out of their work to read chapters

of this thesis and give very useful comments which ultimately helped me improve the

quality of the thesis. I would like to start by thanking Geir Asheim, who accepted to

act as the main opponent in my dissertation defense and the members of my PhD com-

mittee, Jörgen Weibull, Martin Dufwenberg and Jeff Steif. I would also like to specially

thank Andrés Perea, who acted as the discussant in the final seminar of my PhD the-
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sis. The points brought up by David Ahn, Alpaslan Akay, Giacomo Bonanno, Martin

Dufwenberg, Amanda Friedenberg, John Geanakoplos, Aviad Heifetz, Barton Lipman,

Lucie Menager, Andrew Postlewaite, Fernando Vega-Redondo, Dov Samet, Bill Sandholm,

Jörgen Weibull, the seminar attendants at UC Berkeley, Göteborg University, Maastricht

University, Cardiff Business School and the participants in the 16th and 17th International

Conference on Game Theory at the State University of New York in Stony Brook, the

6th Conference for Research in Economic Theory and Econometrics (CRETE) in Naxos,

Greece, the Conference in Honor of Vernon Smith at the University of Arizona in Tucson

and the 3rd Royal Economic Society PhD meeting at UC London have been of great help.

Their contribution has been really important and is greatly appreciated.

An integral part of my graduates studies has been the courses I attended during the

first two years of the program. I believe that without this coursework I would not have

been able to complete my dissertation. For that I am really grateful to my teachers: Jörgen

Weibull, Mark Voorneveld, Olof Johansson-Stenman, Fredrik Carlsson, Peter Martinson,

Douglas Hibbs, Lennart Flood, Lennart Hjalmarsson, Ola Olsson, Renato Aguilar, Kata-

rina Nordblom, Ali Tasiran, Roger Wahlberg, Henry Olsson, Bo Sandelin, Karl-Markus

Modén, Hong Wu and Steffen Jørgenssen.

I would like to gratefully acknowledge the help of the administration staff for their

contribution to the completion of this thesis. I would like to particularly thank Eva-Lena

Neth-Johansson, who was the first person I would go to whenever I faced a practical

problem. If Eva-Lena does not work, nothing works in our department. I would also

like to thank Eva Jonasson, Elizabeth Földi, Katarina Renström Jeanette Saldjoughi,
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the Olin Business School at Washington University in St. Louis for making my life easier

during my stay there.
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me take courses offered in their PhD program. Finally, I would like to mention that part

of this thesis was written in the Doma cafe in New York City, the Free Speech cafe in

the University of California at Berkeley and the Nöller espressobar in Göteborg, which
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Abstract

This thesis has two parts, one consisting of three independent papers in epistemology

(Chapters 1-3) and another one consisting of a single paper in evolutionary game theory

(Chapter 4):

(1) “Knowing who speaks when: A note on communication, common knowledge and con-

sensus” (together with Mark Voorneveld)

We study a model of pairwise communication in a finite population of Bayesian

agents. We show that, if the individuals update only according to the signal they

actually hear, and they do not take into account all the hypothetical signals they

could have received, a consensus is not necessarily reached. We show that a consen-

sus is achieved for a class of protocols satisfying “information exchange”: if agent

A talks to agent B infinitely often, agent B also gets infinitely many opportunities

to talk back. Finally, we show that a commonly known consensus is reached in

arbitrary protocols, if the communication structure is commonly known.

(2) “Aggregate information, common knowledge and agreeing not to bet”

I consider gambles that take place even if some – but not all – people agree to

participate. I show that the bet cannot take place if it is commonly known how

many individuals are willing to participate.

(3) “Testing rationality on primitive knowledge” (together with Olivier Gossner)

The main difficulty in testing negative introspection is the infinite cardinality of

the set of propositions. We show that, under positive conditions, negative intro-

spection holds if and only if it holds for primitive propositions, and is therefore
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easily testable. When knowledge arises from a semantic model, we show that, fur-

ther, negative introspection on primitive propositions is equivalent to partitional

information structures. In this case, partitional information structures are easily

testable.

(4) “The target projection dynamic” (together with Mark Voorneveld)

We study a model of learning in normal form games. The dynamic is given a

microeconomic foundation in terms of myopic optimization under control costs

due to a certain status-quo bias. We establish a number of desirable properties of

the dynamic: existence, uniqueness, and continuity of solution trajectories, Nash

stationarity, positive correlation with payoffs, and innovation. Sufficient conditions

are provided under which strictly dominated strategies are wiped out. Finally, some

stability results are provided for special classes of games.

Keywords: Common knowledge, communication, consensus, betting, primitive proposi-

tions, negative introspection, information partition, projection, learning.

JEL Codes: C72, D80, D81, D82, D83, D84, D89.
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Part I

Epistemology





1

Knowing who speaks when: A note on

communication, common knowledge and consensus

1.1 Introduction

Aumann (1976) showed in his seminal paper that if two people have the same prior, and

their posteriors for an event are common knowledge, then these posteriors are identical.

Geanakoplos and Polemarchakis (1982) put this result in a dynamic framework by show-

ing that if they communicate their posteriors back and forth, they will eventually agree

on a common probability assessment. Cave (1983) and Bacharach (1985) independently

generalized these results to finite populations and arbitrary signal functions, in place of

posterior probabilities. Their setting has been the stepping stone for further development

of models of communication in populations with Bayesian agents. The main aim of this

literature is to study the conditions for reaching a consensus in groups of people through

different communication mechanisms.

All the previous models assume that communication takes place through public an-

nouncement of the signals, which is quite restrictive. Parikh and Krasucki (1990) relaxed

this assumption by introducing a model of pairwise private communication. They showed

that under some connectedness assumption on the structure of the communication proto-

col (fairness), i.e., if everybody talks to everybody – directly or indirectly – consensus will

be reached. A number of subsequent papers studied consensus in environments with pair-

wise communication, under different assumptions about the signal functions, the protocol

structure and information structure (see Krasucki, 1996; Heifetz, 1996; Koessler, 2001;

Houy and Menager, 2007).
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A common assumption in all models with pairwise communication is that when an

individual receives a signal she does not condition only on what she hears, but she takes

into account all different hypothetical scenarios that could have occurred, had the sender of

the signal acted differently. Thus, the recipient implicitly processes much more information

than the one embodied in the actual signal.

In the present paper we relax this assumption. Instead we suppose that whenever an

individual receives a signal, she conditions on what she hears, and not on all contingent

scenarios. That is, individuals take into account only the actual signals, and not the

hypothetical ones. As we show, taking into account only the actual signals does not suffice

for consensus when the population communicates through an arbitrary fair protocol. A

partial result can be established instead: if individuals update their information given

only the actual signals and the communication protocol satisfies information exchange,

i.e., if i cannot talk to j without hearing from j, then a consensus is reached.

In the second part of the paper we provide sufficient conditions for consensus through

an arbitrary fair protocol. Assume that the structure of the protocol is commonly known.

In this a case, individuals who do not participate in the conversation (third parties) learn

something from their knowledge about the structure of the protocol. The information that

third parties receive is summarized in the set of states that are consistent with the idea

of the sender having talked to the receiver. That is, third parties rule out the signals that

the receiver could not have heard, and condition on the rest. Clearly, since the true signal

cannot be ruled out, third parties condition on a larger set, implying that what they learn

– from their knowledge about the protocol – is less informative than the actual signal that

the receiver hears. Then, we show that consensus will be achieved if communication takes

place according to any fair protocol. This follows from the fact that common knowledge

of the protocol, induces common knowledge of the signals.

The previous result is quite surprising since not everybody hears the signals, and not

everybody can see that everybody hears the signal, and so on, as it would happen with

public announcement of the signals. To see this consider the following example, due to

Heifetz (1996). Alice, Bob and Carol sit in a circle. Alice observes the outcome of tossing

a fair coin, and whispers it in Bob’s ear. When Carol sees Alice talking to Bob, she does

not know what she has told him, but she knows that they have spoken. In such a structure
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common knowledge is not a natural consequence of the announcement, and therefore the

result is not obvious.

1.2 Notation and preliminaries

1.2.1 Information and knowledge

Consider a probability space (Ω,F , P) and a finite population N = {1, ..., n}. The measure

P determines the common prior beliefs of the individuals in the population about every

event E ∈ F . Every individual is endowed with a finite information partition Ii ⊆ F .

Let Ii(ω) ∈ Ii contain the states that i cannot distinguish from ω. In other words Ii(ω)

denotes i’s private information at ω. We say that i satisfies non-delusion if she does not

rule out the true state of the world, i.e., if ω ∈ Ii(ω) for all ω ∈ Ω. Throughout the paper

we assume non-delusion.

Let J = ∨n
i=1Ii, and M = ∧n

i=1Ii denote the join (coarsest common refinement), and

the meet (finest common coarsening) of the information partitions respectively. Similarly

to Geanakoplos and Polemarchakis (1982), we assume1 that P[J ] > 0 for every J ∈ J .

We define knowledge as usual, i.e., we say that i knows some E ∈ F at ω if Ii(ω) ⊆ E.

The event E is commonly known at ω if M(ω) ⊆ E, where M(ω) denotes the member

of the meet M that contains ω.

1.2.2 Signals

Let A be a non-empty set of actions. A signal (action) function fi : Ω → A determines

what signal agent i transmits at every ω ∈ Ω. We assume that an individual i transmits the

same signal at every state of her information set, i.e., fi(ω
′) = fi(ω) for every ω′ ∈ Ii(ω)

and every ω ∈ Ω. Individual i’s signal is commonly known at some state ω, if M(ω) ⊆ Ri,

where

Ri = {ω′ ∈ Ω : fi(ω
′) = fi(ω)}. (1.1)

Consensus has been reached at some state ω if all individuals transmit the same signal

while being at ω, i.e., if fi(ω) = fj(ω) for all i, j ∈ N .

1 Brandenburger and Dekel (1987) relax this assumption.
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Let the working partition (Heifetz, 1996; Krasucki, 1996) be the coarsening Pi of Ii

defined as follows: two arbitrary states ω, ω′ ∈ Ω lie in the same element of Pi if and only

if fi(ω) = fi(ω
′). In other words, Pi is the collection of individual i’s equivalent classes of

messages. By definition, Ri ∈ Pi. Let Pi(ω) denote the element of Pi that contains the

state ω.

Let σ(J ) be the σ-algebra generated by J . Agents in the population are like-minded

if there is a function f : σ(J ) → A, called the virtual signal function, such that fi(ω) =

f(Ii(ω)) for every i ∈ N and ω ∈ Ω. A function f satisfies union consistency2 (Cave,

1983) if for all disjoint J1, J2 ∈ σ(J ) with f(J1) = f(J2), it holds that f(J1∪J2) = f(J1).

Henceforth, we assume that f is real-valued. If the signals are posterior beliefs about some

event E, the function fi can be rewritten as fi(ω) = P[E|Ii(ω)]. Parikh and Krasucki

(1990) considered the following stronger version of union consistency: a signal function

f : σ(J ) → R satisfies convexity, if for all non-empty, disjoint J1, J2 ∈ σ(J ) there is

some α ∈ (0, 1) such that f(J1 ∪ J2) = αf(J1) + (1− α)f(J2).

1.2.3 Communication protocol

Let N be a population of like-minded individuals. Every individual i ∈ N is endowed with

an F -measurable information partition I1
i at time t = 1, i.e., before any communication

takes place. At every t ∈ N a sender st privately announces her signal to a recipient rt,

who updates her information to It+1
rt

according to some refining mechanism. Individu-

als j 6= rt do not receive any signals and consequently do not revise their information.

Communication then proceeds to the next stage t + 1. The communication pattern, i.e.,

who talks to whom at each period is determined by the sequence {(st, rt)}t∈N in N ×N ,

referred to as the protocol.

The protocol induces a graph on N with a directed edge from i to j, if i talks to j

infinitely often, i.e., if there are infinitely many t ∈ N with (st, rt) = (i, j). Parikh and

Krasucki (1990) called a protocol fair if the graph of directed edges is strongly connected,

i.e., if there is a path of directed edges which starts from some individual, passes from all

the vertexes (individuals), returning to its origin. In other words, a protocol is fair if for

all distinct i, j ∈ N , there is a path from i to j and back.

2 Bacharach (1985) used the term sure-thing principle for the same property.
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A protocol satisfies information exchange if for all distinct i, j ∈ N with a directed

edge from i to j, there is a directed edge from j to i (Krasucki, 1996).

1.3 Actual and hypothetical signals

Parikh and Krasucki (1990) were the first ones to study the conditions under which a

population reaches a consensus through pairwise communication. They showed that if the

protocol is fair and the signals convex, a consensus will be eventually achieved3. Krasucki

(1996) consequently proved that this result can be generalized to union consistent signals,

for a special class of protocols, i.e., those which satisfy information exchange.

However, if we take a closer look at the mechanism that the recipients use when they

update their information, we will see that they actually take into account not only the

actual signal transmitted by the sender, but all hypothetical scenarios that could have

occurred, had st sent some other signal. In other words, the receiver implicitly considers

what would have happened, had the sender said something else and then refines her

partition accordingly. Then she repeats this process for every possible signal.

Formally, the information partitions are refined as follows at time t:

It+1
j =

It
j if j 6= rt,

It
j ∨ P t

st
if j = rt.

(1.2)

The receiver scans in his mind the entire state space, and at every state ω′ ∈ Ω she

conditions on the message f t
st
(ω′) that would have been announced by the sender, had

the true state been ω′. This mechanism was introduced4 by Parikh and Krasucki (1990),

and was adopted by all subsequent papers in the literature (Parikh, 1996; Heifetz, 1996;

Koessler, 2001; Houy and Menager, 2007).

Though one can find examples involving communication where the agents can contem-

plate where the signals come from, and therefore run all the hypothetical scenarios in their

mind, this is not always the case. Quite often the recipient gets to improve her information

3 It can be shown actually that, contrary to what they argue, this consensus will be commonly known.
4 Parikh and Krasucki (1990) actually use a slightly different recursive definition of the updating process, which

however can be easily shown that it is equivalent to (1.2). The recursive version of (1.2) was also used by

Koessler (2001), and Houy and Menager (2007).
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by taking into account only the actual signal, rather than all possible contingencies. In

this case the refining mechanism at time t becomes

It+1
j =

It
j if j 6= rt,

It
j ∨Rt

st
if j = rt,

(1.3)

where Rt
st

= {Rt
st
, (Rt

st
)c}. Clearly when the individuals refine their partitions according

to (1.3) they process less information than when they use (1.2), since Rt
st

is coarser than

P t
st
. Therefore, any result assuming (1.3) instead of (1.2) is stronger.

Finally, refining according to (1.3) implies that the individuals actually communicate,

i.e., st says something to rt at time t and rt updates her information given what she

has heard. Using (1.2) on the other hand, implies hypothetical communication. That is,

rt learns that st is about to talk to her at time t, takes a look at It
st

and updates her

information, before even having heard the signal f t
st
(ω).

The first natural question that arises at this point is whether the existing results

can be generalized to cases where the individuals refine according to (1.3). The general

answer is negative: in a finite population of Bayesian agents, communication according to

a fair protocol, and information refinement according to (1.3) do not suffice for common

knowledge of the signals, or even consensus.

Example 1.1. Consider a population of three individuals with information partitions as

in Figure 1.1. Let the convex signal function assign to any non-empty J ∈ σ(J ) the

number

f(J) =
1

#J

∑
ω∈J

f({ω}), (1.4)

with f({ω1}) = f({ω2}) = 2, f({ω3}) = f({ω4}) = 3, f({ω5}) = f({ω6}) = 1, and

suppose that they refine their partitions according to Equation (1.3). Let the true state

be ω1, and consider the fair protocol: 1 talks to 2, who talks to 3, who talks to 1, and so on.

Before they start communicating there is no consensus as f1(ω1) = f3(ω1) = 2 6= 5/2 =

f2(ω1). When 1 says “2”, 2 does not learn anything since R1 = Ω is σ(I2)-measurable, and

therefore does not refine I1. Similarly, 3 does not refine I3 since R2 = {ω1, ..., ω4} ∈ σ(I3),

and 1 does refine I1 since R3 = {ω1, ..., ω4} ∈ σ(I1). Therefore, they will never reach a

consensus.
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Fig. 1.1. Updating given the actual signal does not lead to consensus.

Though a general result cannot be established, we can show that there is a class of fair

protocols which lead to consensus even when the individuals update their information

given the actual signals, i.e., when they refine their partitions according to (1.3). The

protocols that we restrict our attention to, are those which satisfy information exchange

(Krasucki, 1996).

Proposition 1.2. Consider a population of like-minded individuals who refine their in-

formation given the actual signal, i.e., as in Equation (1.3). If the signal function is union

consistent, and the protocol is fair and satisfies information exchange, a consensus will be

reached.

The previous proposition generalizes the one proven by Krasucki (1996), who showed

that a consensus is achieved in fair protocols that satisfy information exchange whenever

the individuals update their information given all the hypothetical signals, i.e., whenever

they refine their partitions according to (1.2). In the next section we provide sufficient

conditions for consensus when communication takes place according to an arbitrary fair

protocol.

1.4 Common knowledge of the protocol and consensus

As we have already mentioned above, when communication is private, the only agent who

updates is the recipient of the signal. However, when 1 talks to 2 privately, it does not

mean that 3 does not know that this conversation has taken place. It might be the case



10 1 Communication, common knowledge and consensus

that 3 does not know what 1 has said, but knows that something has been said. That is,

one has to distinguish between knowing that something has been said and knowing what

this “something” is.

In this section we focus on the first case when the structure of the protocol is commonly

known, i.e., when it is commonly known who talks to whom at every period. Recall the

example presented in the introduction (Heifetz, 1996): when Alice whispers something in

Bob’s ear, Carol is present, and therefore the fact that they – Alice and Bob – have talked

is commonly known. It would not be the case, had Carol had her eyes shut. In this case,

not even the fact that they had talked would have been known.

Suppose that the structure of the protocol is commonly known in the population at

every period in time. In this case one can explicitly assume that the third party (Carol)

can make some inference about the signal that the sender (Alice) has sent to the recipient

(Bob), and then condition on the set of signals that do not contradict her observations.

Recall Example 1.1: When 2 talks to 3, 1 (the third party) considers as possible the states

that induce a σ(I3)-measurable signal transmitted by 2. That is, the signal sent by 2

(the sender) must be consistent (measurable) with the information partition of 3 (the

recipient) after the communication has taken place. In this specific example it is easy to

see that 1 does not learn anything as all signals that could have been sent by 2 are σ(I3)-

measurable: if 2 said “5/2” then 3 would condition with respect to {ω1, ..., ω4} which is

σ(I3)-measurable, whilst if 2 said “1” then 3 would condition on {ω5, ω6} which is also

σ(I3)-measurable. Therefore, any signal would have been consistent with 3’s partition,

and therefore 1 the third party conditions on Ω. Thus, she does not learn anything from

knowing that 2 has talked to 3.

Formally, if the protocol is commonly known third parties, i.e., individuals other than

the sender and the receiver consider as possible all those signals that are consistent with

the revised information partition of the recipient, i.e., all elements of P t
st

that are σ(It+1
rt

)-

measurable. That is, knowing the structure of the protocol, i.e., knowing that st talked

to rt at time t, allows third parties to condition on

St
st

= {ω ∈ Ω : P t
st
(ω) ∈ σ(It+1

rt
)}. (1.5)
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It is straightforward that Rt
st
⊆ St

st
, i.e., third parties receive and process less information

than the receiver. In addition, the true signal is never ruled out by anyone. This follows

from the fact that the true signal is what has actually been said by st, and therefore it is

necessarily measurable with respect to the recipient’s partition.

Using this knowledge, every j ∈ N refines her information partition at time t according

to the rule

It+1
j =

It
j ∨ St

st
if j 6= rt,

It
j ∨Rt

st
if j = rt,

(1.6)

where St
st

= {St
st
, (St

st
)c}. This refining mechanism implies that individuals make use of

their knowledge about the structure of the protocol.

Notice that when the partitions are refined according to (1.6), the receiver still refines

according to the actual signals. Third parties receive some aggregate information about the

actual signal, which of course is less informative than the actual signal. This assumption

reflects the idea that since they do not hear the actual signal, they do not learn as much

as the receiver. However, they condition on what they learn, and not on all the possible

things that they could have learned under all different hypothetical scenarios. Thus, they

also update according to actual and not hypothetical information.

Note also that we require common knowledge of the protocol, in order everybody to

know that third parties have refined their information due their knowledge of the protocol,

and everybody to know that everybody knows that third parties have refined, and so on.

Then we can actually provide a general consensus result for all fair protocols.

Proposition 1.3. Consider a population of like-minded individuals, who communicate

the value of a convex function according to some fair protocol. If the protocol is commonly

known, i.e., if agents refine their information according to (1.6), a commonly known

consensus will be achieved.

Remember Example 1.1, and assume updating as in (1.6). When individual 1 hears 3’s

signal, she does not refine her information. Individual 2, on the other hand, infers that the

only signal that 1 could have heard is “2”: the other signals, “1” and “3”, would have led

1 to refine her partition. Exploiting this information, 2 refines her information partition.
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If everybody updates according to (1.6), it is easy to verify that eventually they will agree

on the commonly known signal “2”.

Appendix

Proof of Proposition 1.2. For all t ∈ N and all i ∈ N : It+1
i ⊆ σ(J ) is weakly finer

than It
i ⊆ σ(J ). As σ(J ) is finite, there is a T ∈ N after which no refinement occurs: for

each i ∈ N there is a partition I∗i such that It
i = I∗i for all t > T . Hence, for each i ∈ N

there is a set R∗
i ⊆ Ω such that Rt

i = R∗
i for all t > T . Let i, j ∈ N be connected. By

fairness and information exchange, there are t, t′ > T with st = rt′ = i and rt = st′ = j.

Since no refinement occurs after T , it follows that R∗
i ∈ σ(I∗j ). Moreover, R∗

i ∈ σ(I∗i )

by definition. Hence R∗
i ∈ σ(I∗i ) ∩ σ(I∗j ) = σ(I∗i ∧ I∗j ). Let ω ∈ Ω be the true state. As

ω ∈ R∗
i and R∗

i ∈ σ(I∗i ∧ I∗j ), non-delusion implies that the element (I∗i ∧ I∗j )(ω) of the

partition I∗i ∧I∗j containing ω satisfies (I∗i ∧ I∗j )(ω) ⊆ R∗
i . Similarly, (I∗i ∧ I∗j )(ω) ⊆ R∗

j , so

(I∗i ∧ I∗j )(ω) ⊆ R∗
i ∩R∗

j ,

i.e., the signals of i and j satisfy pairwise common knowledge at ω. From Cave (1983) and

Bacharach (1985), it follows that the signals that i and j transmit must be the same. As

this holds for all connected pairs and the protocol is fair, it follows that all agents have

the same signal, i.e., there is consensus. QED.

Proof of Proposition 1.3. Step 0 Similarly to Proposition 1.2, there is T > 0 such

that It
i = I∗i for every t > T , and every i ∈ N .

Step 1 Since the protocol is fair, there is a path of directed edges which starts from 1,

passes from every individual (possibly more than once), and returns to 1. Let the finite

sequence of individuals {p1, ..., pm} ∈ Nm, with m ≥ n + 1, determine this path:

• p1 = pm = 1,

• for every j = 1, ...,m− 1 there is a directed edge from pj to pj+1 which belongs to the

path, i.e., there are infinitely many t > T such that st = pj and rt = pj+1.

Let t1 > T be such that st1 = p1 = 1 and rt1 = p2. Let now t2 be the smallest t > t1, such

that st2 = p2 and rt2 = p3. In general, let tj be the smallest t > tj−1 , such that stj = pi
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and rtj = pj+1. For simplicity and without loss of generality let m − 1 = n, i.e., every

individual appearing only once in the path. Let also for notation simplicity pi = i for all

i = 1, ...,m − 1. Clearly (because of Step 0), the information partition of i at ti is given

by I∗i for every i ∈ N .

Step 2 Consider an arbitrary i ∈ N . By definition, Si = {ω′ ∈ Ω : Pi(ω
′) ∈ σ(I∗i+1)} is

σ(I∗i+1)-measurable. Since the structure of the protocol is known and no individual refines

after T , it follows from (1.6) that Si ∈ σ(I∗j ) for every j ∈ N \ {i + 1}. Thus,

Si ∈ ∩j∈Nσ(I∗j ) = σ(∧j∈NI∗j ) = σ(M∗),

which (given non-delusion) implies that M∗(ω) ⊆ Si. Hence, Pi(ω
′) ∈ σ(I∗i+1), for every

ω′ ∈ M∗(ω). In addition, since M∗(ω) ∈ σ(I∗i+1), it follows that

Pi(ω
′) ∩M∗(ω) ∈ σ(I∗i+1),

for every ω′ ∈ M∗(ω).

Step 3 Let

ω0
1 ∈ arg min

ω′∈M∗(ω)
f(P1(ω

′) ∩M∗(ω)).

It follows from Step 2 that P1(ω
0
1) ∩ M∗(ω) ∈ σ(I∗2 ). Hence, there is a finite collection

F (ω0
1) = {ω1

2, ..., ω
J2
2 } ⊆ P1(ω

0
1) ∩M∗(ω) such that

• I∗2 (ωj
2) ∈ I∗2 , for all j = 1, ..., J2,

• I∗2 (ωj
2) ∩ I∗2 (ωk

2), for all j 6= k, and

• P1(ω
0
1) ∩M∗(ω) = I∗2 (ω1

2) ∪ · · · ∪ I∗2 (ωJ2
2 ).

Let

ω0
2 ∈ arg min

ω′∈F (ω0
1)

f(I∗2 (ω′)) = arg min
ω′∈F (ω0

1)
f(P2(ω

′)) = arg min
ω′∈F (ω0

1)
f(P2(ω

′) ∩M∗(ω)).

We iteratively define ω0
i for every i = 2, ...,m.

Step 4 We consider the following (exhaustive and mutually exclusive) cases:

(I) for some i ∈ {2, ...,m}, there are ωj
i , ω

k
i ∈ F (ω0

i−1) such that f(I∗i (ωj
i )) 6= f(I∗i (ωk

i )),

and

(II) for all i ∈ {2, ...,m}, and for all ωj
i , ω

k
i ∈ F (ω0

i−1), f(I∗i (ωj
i )) = f(I∗i (ωk

i )).
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First we show that (I) cannot occur. It follows from convexity and from Step 3 that

f(Pi−1(ω
0
i−1) ∩M∗(ω)) =

Ji∑
j=1

αjf(I∗i (ωj
i ))

≥ min
ω′∈F (ω0

i−1)
f(I∗i (ω′))

= f(I∗i (ω0
i ))

= f(Pi(ω
0
i ) ∩M∗(ω)),

with the (strict) inequality holding if and only if i is such that there are ωj
i , ω

k
i ∈ F (ω0

i−1)

such that f(I∗i (ωj
i )) 6= f(I∗i (ωk

i )). However, if there is some i = 2, ..,m that satisfies (I),

then

f(P1(ω
0
1)) > f(Pm(ω0

m)),

which is a contradiction, since p1 = pm, and ω0
m ∈ M∗(ω). Hence, case (II) necessarily

occurs.

In case (II), by definition, Pi(ω
j
i ) = Pi(ω

k
i ) for all ωj

i , ω
k
i ∈ F (ω0

i−1). Hence, Pi(ω
j
i ) =

Pi(ω
0
i ) for every ωj

i ∈ F (ω0
i−1), implying that

Pi−1(ω
0
i−1) ∩M∗(ω) ⊆ Pi(ω

0
i ) ∩M∗(ω),

for every i = 2, ...,m. It follows that Pi(ω
0
i ) ∩M∗(ω) = P ∗ for all i ∈ N . It follows then

(from Step 2) that

P ∗ ∈ ∩i∈Nσ(I∗i ) = σ(∧i∈NI∗i ) = σ(M∗).

Given non-delusion, everybody’s signal is commonly known. It follows then from Cave

(1983) and Bacharach (1985) that the signals have converged to a commonly known

consensus. QED.



2

Aggregate information, common knowledge and

agreeing not to bet

2.1 Introduction

Aumann (1976) was the first one to formalize the concept of common knowledge. In

his seminal paper he showed that if two people with a common prior have commonly

known posterior probability assessments about an event, these probabilities are identical.

Geanakoplos and Polemarchakis (1982) introduced the problem into a dynamic frame-

work, by showing that if two individuals communicate their probability assessments back

and forth and update accordingly, they will eventually agree on a common posterior prob-

ability.

Sebenius and Geanakoplos (1983) extended Aumann’s result to expectations, by prov-

ing that if two people’s expectations about a random variable are commonly known, then

they are necessarily equal. A number of generalizations appeared in the literature ever

since (Nielsen et al., 1990; Nielsen, 1995; Hanson, 1998; Hanson, 2002). A direct applica-

tion of this proposition is the famous no-bet theorem, which states that two risk-averse

individuals with a common prior will never agree to participate in a gamble, if their will-

ingness to bet is commonly known. Milgrom and Stokey (1980) had already addressed

this problem, by showing that common knowledge precludes trading among risk-averse

agents in an uncertain environment.

This note extends the no-bet theorem to cases where the gamble can take place even

if not everybody is willing to participate. Consider for instance a soccer game between

A and B, and suppose that Alice predicts that A will win, Bob predicts that B will win,

while Carol predicts a draw. In order to participate in the bet, they have to pay a one-
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dollar entry fee and the one who predicts correctly takes it all. If however Carol refuses

to participate in the gamble, while Ann and Bob accept, the bet can still take place, with

the prize being equal to 2, instead of 3 dollars now. The only difference is that if a draw

occurs nobody will win the prize and they will receive their entry fees back.

There is an important feature in this type of bets. The willingness to participate

depends, not only on the private information, but also on who you are playing against.

In the previous example, suppose that Alice believes that the probability of a draw is

higher than A’s victory. Then, if Carol had stayed in the bet, Alice would have rejected

participation. The reason why she accepts to gamble against Bob’s pick is that she believes

that the probability of B winning is lower than the probability of A winning.

What is not very clear from the previous analysis is the answer to the following question:

what would Ann do if she knew that one more person was willing to gamble but she did not

know who? In this case, she would form beliefs given her private information about who

the other player was and she would maximize her expected payoff in a Bayesian manner.

However, if she knew that everybody knew how many people were willing to participate,

her beliefs about who the other player was would depend on what she believed about the

other two people’s beliefs, and so on.

In this note I show that the bet will not take place if the number of people who

are willing to participate is commonly known. This result is quite surprising, since the

expected payoff, and therefore the decision about whether to participate or not depends on

the identity of the other participants. However, for the bet not to take place it is sufficient

to have common knowledge of the aggregate behavior (how many people participate),

instead of the individual behavior (who are the other participants).

This result can be easily extended to negative-sum bets. Consider for instance a lottery

where the prize depends on the number of participants, but not on who participates. In

this case, if nobody has bought the winning coupon, the participants do not receive their

entry fee back. Then it is straightforward that common knowledge of the number of

participants precludes the bet.
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2.2 Knowing how many players participate and agreeing not to

bet

2.2.1 Information and knowledge

Consider a finite state space Ω, and a population N = {1, ..., n}. The measure π de-

termines the (common) prior beliefs of the individuals in the population over Ω and is

assumed to assign positive probability to every state: π(ω) > 0 for every ω ∈ Ω. Every

individual is endowed with an information partition Pi over Ω. The set Pi(ω) ∈ Pi

contains the states that i cannot distinguish from ω, with ω itself being one of those.

Let J = ∨n
i=1Pi, and M = ∧n

i=1Pi denote the join (coarsest common refinement), and

the meet (finest common coarsening) of the information partitions respectively. We define

knowledge as usual, i.e., we say that i knows some B ⊆ Ω at ω whenever Pi(ω) ⊆ B.

The event B is commonly known if M(ω) ⊆ B, where M(ω) denotes the member of

M that contains ω.

2.2.2 Gambles with limited participation

We define a gamble that allows for limited participation as a partition G = {G1, ..., Gn}
of Ω, where Gi denotes the set of states where i wins. Participating in the gamble has a

fixed cost (entry fee), which for simplicity and without loss of generality is normalized to

1 unit. Let Ai = {0, 1} denote i’s action space: i plays 1 when she is willing to participate

in the bet and 0 when she is not. Let the action function ai : Ω → Ai determine

the action that player i undertakes at every state ω. A natural assumption is that ai is

σ(Pi)-measurable, i.e., ai(ω
′) = ai(ω) for all ω′ ∈ Pi(ω), implying that i knows what she

is doing. Let

S(ω) = {i ∈ N : ai(ω) = 1} ⊆ N (2.1)

denote the set of people who agree to participate while being at ω, and s(ω) the cardinality

of S(ω). If i ∈ S(ω) wins the bet, she receives s(ω) units – 1 from each participant. If on

the other hand j /∈ S(ω) wins, no units are transfered among the participants. Formally,

i’s payoff at ω, depends on S(ω), i.e., on who participates at this state, and is equal to

Ui(ω) = (s(ω)1{ω∈Gi} − 1{ω∈∪j∈S(ω)Gj})1{i∈S(ω)}, (2.2)
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where 1{·} denotes the indicator function. If i does not participate in the bet, i.e., if

i /∈ S(ω), her payoff is equal to 0. If i on the other hand participates, i.e., if i ∈ S(ω), her

payoff is equal to s(ω)− 1 if she wins, −1 if another participant wins and 0 if the winner

has chosen not to participate.

Player i’s expected payoff at ω is equal to

E[Ui|Pi(ω)] =
∑

ω′∈Pi(ω)

π(ω′|Pi(ω))
(
s(ω′)π(Gi|ω′)−

∑
j∈S(ω′)

π(Gj|ω′)
)
, (2.3)

when i participates in the bet, and 0 otherwise. Let Ri be the set of states where i’s

expected payoff is strictly positive:

Ri = {ω ∈ Ω : E[Ui|Pi(ω)] > 0}. (2.4)

Then we say that i is risk-averse at ω whenever the following condition holds: ω ∈ Ri

if and only if i ∈ S(ω). In other words, a risk-averse individual gambles if and only if her

expected payoff is strictly positive. We assume that all individuals are risk-averse at every

ω ∈ Ω.

2.2.3 Main result

It is commonly known at ω that s individuals participate, if s(ω′) = s for every ω′ ∈ M(ω).

Clearly, common knowledge of how many people participate is weaker than common

knowledge of who participates. If s is commonly known, i does not necessarily know who

she is playing against at ω. If on the other hand S is commonly known, then S(ω′) = S

for all ω′ ∈ M(ω), and it is straightforward that no bet can take place (it follows from

Sebenius and Geanakoplos, 1983). The following result states that it suffices to require

common knowledge of s – instead of S – for the bet not to take place.

Theorem 2.1. Consider a gamble that allows for limited participation and suppose that

all individuals are risk-averse at every state. Then no bet can take place, if it is commonly

known how many agents are willing to accept the bet.

This result is quite surprising since the payoff at ω depends on S(ω), rather than s(ω).

Therefore, it is not obvious that common knowledge of s precludes the bet from taking

place.
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It is straightforward to extend this result to negative sum bets, where the payoff de-

pends on the number of participants but not on who participates:

Ûi(ω) = (s(ω)1{ω∈Gi} − 1)1{i∈S(ω)}.

In this case, if i participates, she has to pay the 1 unit entrance fee, even if the winner

decides to stay out. Clearly, Ûi(ω) ≤ Ui(ω) for all ω ∈ Ω, and therefore i participates less

often than she would do in a zero-sum bet, as the one analyzed above. It can be shown

then that a bet that allows for limited participation cannot take place if s is commonly

known. Formally, the proof is identical to Step 2 of the proof of Theorem 2.1.

Appendix

Proof of Theorem 2.1. Step 1 It follows from common knowledge that s(ω) = s for

every ω ∈ M(ω0), where ω0 denotes the actual state. It follows from risk-aversion that i

participates at ω ∈ M(ω0) if and only if

E[Ui|Pi(ω)] = sπ(Gi|Pi(ω))−
∑

ω′∈Pi(ω)

π(ω′|Pi(ω))
∑

j∈S(ω′)

π(Gj|ω′) > 0. (2.5)

Let W be the set of states where the winner is willing to participate, i.e., W ⊆ Ω is the set

of states that satisfy the following condition: if ω ∈ Gi, then i ∈ S(ω). Then, we rewrite

(2.5) as follows:

E[Ui|Pi(ω)] = E[Ui|Pi(ω)∩W ]π(Pi(ω)∩W )+E[Ui|Pi(ω)∩W c]π(Pi(ω)∩W c) > 0. (2.6)

Notice that everybody’s expected payoff is equal to 0 when the winner does not participate.

Hence, E[Ui|Pi(ω) ∩W c] = 0, implying that

E[Ui|Pi(ω)] = E[Ui|Pi(ω) ∩W ]π(Pi(ω) ∩W ) > 0. (2.7)

Thus i participates at ω if and only if π(Pi(ω)∩W ) > 0 and E[Ui|Pi(ω)∩W ] > 0, which

given Equation (2.5), is equivalent to

sπ(Gi|Pi(ω) ∩W )−
∑

ω′∈Pi(ω)∩W

π(ω′|Pi(ω) ∩W )
∑

j∈S(ω′)

π(Gj|ω′) > 0. (2.8)
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Since, ω′ ∈ W it follows that there is one k ∈ S(ω′) such that ω′ ∈ Gk. Hence,∑
j∈S(ω′) π(Gj|ω′) = 1 for every ω′ ∈ Pi(ω) ∩ W . Therefore, for every ω ∈ M(ω0), i

participates if and only if

sπ(Gi|Pi(ω) ∩W ) > 1. (2.9)

Step 2 If s = 1, the proof is straightforward, since Ui(ω) ≤ 0 for every i ∈ N and for all

ω ∈ M(ω0) and therefore no i participates.

Suppose now that s ≥ 2. It follows from (2.7) and (2.9) that

sπ(Gi|Pi(ω) ∩W )π(Pi(ω) ∩W |M(ω0) ∩W ) > π(Pi(ω) ∩W |M(ω0) ∩W ), (2.10)

for all ω ∈ Ri ∩M(ω0). Obviously, Ri ∩M(ω0) is σ(Pi)-measurable. It follows then from

summing over Ri ∩M(ω0) that

s
∑

Pi⊆Ri∩M(ω0)

π(Gi|Pi ∩W )π(Pi ∩W |M(ω0) ∩W ) >
∑

Pi⊆Ri∩M(ω0)

π(Pi ∩W |M(ω0) ∩W ).

(2.11)

Since Ri ∩M(ω0) ⊆ M(ω0) it follows that

s
∑

Pi⊆M(ω0)

π(Gi|Pi∩W )π(Pi∩W |M(ω0)∩W ) ≥ s
∑

Pi⊆M(ω0)

π(Gi|Pi∩W )π(Pi∩W |M(ω0)∩W ).

(2.12)

It follows then from (2.11) and (2.12) that

sπ(Gi|M(ω0) ∩W ) > π(Ri ∩W |M(ω0) ∩W ). (2.13)

It is straightforward that

π(Ri ∩W |M(ω0) ∩W ) = π(Ri|M(ω0) ∩W ) =
∑
ω∈Ri

π(ω|M(ω0) ∩W ). (2.14)

Then it follows from (2.13) and (2.14) that

sπ(Gi|M(ω0) ∩W ) >
∑
ω∈Ri

π(ω|M(ω0) ∩W ). (2.15)

Summing over the individuals entails

s
∑
i∈N

π(Gi|M(ω0) ∩W ) >
∑
i∈N

∑
ω∈Ri

π(ω|M(ω0) ∩W ), (2.16)



2.2 Knowing how many players participate 21

which in turn yields the contradiction s > s, since (i) all winners participate in M(ω0)∩W

implying that
∑

i∈N π(Gi|M(ω0) ∩W ) = 1, and (ii) at every ω ∈ M(ω0) ∩W ⊆ M(ω0)

exactly s individuals participate. Hence, the probability π(ω|M(ω0)∩W ) appears s times

in the sum. In addition, all states ω ∈ M(ω0)∩W ⊆ M(ω0) appear in the sum, implying

that it is equal to s, which completes the proof. QED.





3

Testing rationality on primitive knowledge

3.1 Introduction

One of the central components of modern economics is the consideration that agents

are limited in their means to access and treat information. The “bounded rationality”

literature, which specifically addresses this issue, dates back to Simon (1955), and has

surged in the last decades (Aumann, 1997; Lipman, 1995). Rationality and its lack thereof

can be observed both in the agents’ decisions, and their information processing. Failures

of rationality in the information processing are more fundamental than in decision taking,

since non-rational information processing entails non-rational decision making, whilst the

converse is not necessarily true.

Hintikka (1962), Aumann (1976) and Geanakoplos (1989) introduced a semantic model

of information structures that represent the information processing of both perfectly, and

non-perfectly rational agents respectively (see also Brandenburger et al., 1992; and Dekel

et al., 1998). It is commonly argued that the possibility correspondence of a perfectly

rational agent has to be partitional, since the agent can exclude all the states with different

information, and no others. Hence, rational agents should exhibit partitional possibility

correspondences, and non-partitional possibility correspondences should be taken as a

sign of irrationality (see, e.g, chapter 3 of Rubinstein, 1998).

An important question is whether one can test whether an agent’s possibility cor-

respondences is partitional or not. Recall that, by definition, an agent’s information is

partitional if, when the agent being in state ω considers the state ω′ as possible, the same

agent being at ω′ would also consider ω as possible. Testing this is problematic, since it
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requires to observe the agent’s knowledge in both states ω and ω′. Hence, the semantic

model provides no direct way of testing whether an agent processes information rationally,

or not.

Kripke (1963), Bacharach (1985) and Samet (1990) introduced a syntactic model of

knowledge in the form of a system of propositional calculus. A syntactic model explicitly

describes the set of propositions known by the agent at each state.

A syntactic model of knowledge defines a semantic model in a natural way: the states

the agent believes as possible are the states in which all the known propositions are true.

A semantic model also defines a syntactic model: the known propositions are supersets of

the set of states considered as possible. Because they allow for a variety of propositions

and more elaborate state spaces, syntactic models are a more general framework than

semantic ones.

In syntactic models, Bacharach (1985), and Samet (1990) independently showed that

whenever the agent’s knowledge satisfies the basic axioms of 1) knowledge, 2) positive

introspection, and 3) negative introspection, the induced possibility correspondence is

partitional. The axiom of knowledge says that if the agent knows some proposition, then

this proposition is true. Under positive introspection, if the agent knows a proposition,

then she also knows that she knows this proposition. Negative introspection says that if

the agent does not know a proposition, she knows that she does not know it. Both the

knowledge and positive introspection axioms are based on positive knowledge. On the

other hand, negative introspection is based on knowledge of oneself’s ignorance.

We adopt the commonly accepted view that the knowledge and positive introspection

axioms are rather non-problematic, and can be assumed if necessary. On the other hand,

the negative introspection axiom is more controversial (Geanakoplos, 1989; Lipman, 1995),

and should be accepted or rejected based on a combination of empirical evidence and

logical implications.

Unlike partitional possibility correspondences in the semantic model, the axioms of

knowledge, positive introspection and negative introspection are defined state by state.

Therefore, observation of the agent’s knowledge in particular states is enough to test

whether these axioms are satisfied are not. Hence, syntactic models provide an appropriate

framework in which the agent’s information processing abilities can be tested.
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The main difficulty arising from testing negative introspection is the infinite cardinality

of the set of propositions. Indeed, every primitive proposition (fact) generates a sequence of

epistemic (modal) propositions. We introduce an axiom of positive negation under which,

if a proposition is known, it is known that its negation is not known. Positive negation,

like knowledge and positive introspection, is based on positive knowledge by the agent,

and is defined state by state. Our main result, Theorem 3.5, shows that under knowledge,

positive introspection, and positive negation, negative introspection holds if and only if

it holds for the primitive propositions. Hence, negative introspection is testable, and is

sufficient for partitional information structures.

It is particularly interesting to look at the implications of our theorem when knowledge

in the syntactic model stems from a semantic model, a condition that we call semantic

knowledge. This is the natural setup to consider when the semantic model forms a com-

plete description of the agent’s knowledge: propositions known in the syntactic model are

the ones arising from the semantic model.

We show in Proposition 3.9 that positive negation is implied by semantic knowledge.

Furthermore, in this framework, partitional information and negative introspection are

known to be equivalent. It follows that testing partitional information structures is equiv-

alent to testing negative introspection, which is in turn equivalent to testing negative

introspection for the primitive propositions.

To summarize our results, observation of primitive knowledge is enough to test nega-

tive introspection under positive negation, and is enough to test partitional information

structures when knowledge comes from a semantic model. We find the latter particularly

striking, as partitional information structures is a property defined on the information

structure as a whole and for the whole set of propositions, and yet, it can be tested 1)

separately on each state and 2) through knowledge of primitive propositions only.

3.2 Knowledge

We recall the standard model of propositional calculus to model knowledge (Kripke, 1963;

Bacharach, 1985; Samet, 1990). Let Φ be the countable set of propositions, which de-
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scribe the relevant characteristics of the environment. The mappings κ : Φ → Φ and

¬ : Φ → Φ stand for the propositions “the agent knows φ”, and “not φ” respectively.

Let Ω0 denote the set of all mappings ω : Φ → {0, 1} that satisfy complementarity:

ω(φ) = 1 if and only if ω(¬φ) = 0, for every φ ∈ Φ. We say that a proposition φ is true at

a state ω ∈ Ω0, and we write φ ∈ ω, if and only if ω(φ) = 1. Alternatively, a state ω ∈ Ω0

can be identified by the set {φ ∈ Φ : ω(φ) = 1}, i.e., by the propositions that are true in

this state. The ken (set of known propositions) at a state ω is defined as follows:

K(ω) = {φ ∈ Φ : κφ ∈ ω}. (3.1)

Now consider a subset Ω ⊂ Ω0. A state ω′ ∈ Ω is considered as possible while being

at ω ∈ Ω if every known proposition at ω is true at ω′. That is, the possibility corre-

spondence P : Ω → 2Ω, maps every state ω to the set of states considered as possible

by the agent while being at ω:

P (ω) = {ω′ ∈ Ω : K(ω) ⊆ ω′}. (3.2)

A possibility correspondence is called partitional whenever P (ω) = P (ω′) for every

ω′ ∈ P (ω), and every ω ∈ Ω.

The three fundamental axioms of propositional calculus are:

(K1) if κφ ∈ ω then φ ∈ ω (axiom of knowledge),

(K2) if κφ ∈ ω then κκφ ∈ ω (positive introspection),

(K3) if ¬κφ ∈ ω then κ¬κφ ∈ ω (negative introspection).

Samet (1990) defines the following state spaces:

Ω1: the set of states that satisfy (K1),

Ω2: the set of states that satisfy (K1), (K2),

Ω3: the set of states that satisfy (K1), (K2), and (K3),

and proves the following result:

Proposition 3.1 (Samet, 1990). If Ω ⊆ Ω3, the possibility correspondence P is parti-

tional.
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The previous proposition follows from the fact that for Ω ⊆ Ω3, ω′ ∈ P (ω) if and only

if K(ω) = K(ω′), also proven by Samet (1990). In other words, (K1) − (K3) imply that

the possibility correspondence is such that the states considered as possible at ω are those

that yield exactly the same knowledge as ω.

3.3 Primitive propositions and negative introspection

Proposition 3.1 provides a way to test for partitional information structures, since (K1)−
(K3) can be tested state by state. Still, if one wishes to do this, it is necessary to check (K3)

for every φ ∈ Φ at every state ω. This would be practically impossible due to the infinite

cardinality of Φ. Let Φ0 ⊂ Φ denote the (finite) non-empty set of primitive propositions,

which are not derived from some other proposition with the use of the knowledge operator

κ. These propositions, which are also called atomic or non-epistemic or non-modal, refer to

natural events (facts). Aumann (1999) defines the primitive propositions as substantive

happenings that are not described in terms of people knowing something. Bacharach

(1985), Samet (1990), Modica and Rustichini (1999), Hart et al. (1996) and Halpern

(2001) also discuss the distinction between primitive and epistemic propositions.

For some φ ∈ Φ, let B0(φ) = {φ,¬φ}, and define inductively:

Bn(φ) = {κφ′,¬κφ′|φ′ ∈ Bn−1(φ)}. (3.3)

We call B(φ) =
⋃

n≥0 Bn(φ) the set of propositions generated by φ. Obviously, the set

of all propositions is given by the union of all primitive and all epistemic propositions,

i.e., Φ =
⋃

φ∈Φ0
B(φ). The cardinality of Φ is (at least countably) infinite, implying that

testing whether (K3) holds by observing every unknown proposition would be practically

impossible. We propose an alternative way to figure out whether negative introspection

holds or not, by only looking at the primitive propositions. Such a task is easier, not only

in terms of the cardinality of the propositions to be tested, but also in terms of complexity,

since articulating high order epistemic propositions can be rather complicated.

The most disputed among the three basic axioms is negative introspection. Geanakoplos

(1989) and Lipman (1995) note that negative introspection is a less realistic assumption

than the other axioms (K1) and (K2), since negative introspection requires the agent
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to notice events that have not occurred. In general, whilst (K1) and (K2) are based on

reasoning through knowledge, (K3) assumes that the agent makes inference based on lack

of knowledge. We introduce the following axiom:

(K4) if κφ ∈ ω then κ¬κ¬φ ∈ ω (positive negation),

which implies that if a proposition is known, then it is also known that its negation is not

known. The axiom (K4) relies on inference that can be drawn by the agent using positive

knowledge (as opposed to (K3)). We compare (K4) with the following mild axiom of

inference (Modica and Rustichini, 1994):

(KI) if φ ∈ ω implies φ′ ∈ ω, then κφ ∈ ω also implies κφ′ ∈ ω (axiom of inference).

Proposition 3.2. If Ω ⊆ Ω2 satisfies (KI), then Ω ⊆ Ω4.

Proof. We first show that κφ implies ¬κ¬φ: If κφ and κ¬φ simultaneously hold, then

(K1) implies both φ and ¬φ, which is a contradiction because of complementarity. Assume

κφ. We have κκφ by (K2) and ¬κ¬φ by complementarity, so (KI) yields κ¬κ¬φ, which

is the desired conclusion. QED.

That is, if the agent is able to make simple deductions of the form of (KI), then

her knowledge satisfies (K4). We consider (K4) to be a mild requirement on the agent’s

knowledge.

We define the state space

Ω4: the set of states that satisfy (K1), (K2), and (K4).

Proposition 3.3. Ω3 ⊆ Ω4.

Proof. Given complementarity and (K1), if κφ ∈ ω, then ¬κ¬φ ∈ ω, and therefore (K4)

follows directly from (K3). QED.

Notice that the converse does not hold, i.e., (K4) does not imply (K3). Thus, Ω ⊆ Ω4

isn’t sufficient for the agent’s knowledge to be partitional, as shown by the following

example:
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Example 3.4. Consider the state of complete ignorance ω0 at which nothing is known:

¬κφ ∈ ω0, for every φ. Observe that ω0 ∈ Ω4 since (K1), (K2) and (K4) are based on

positive knowledge (they require some implications whenever κφ is true). Now consider

any state ω1 ∈ Ω4 at which it is known that some φ is known (κκφ for some φ). Let Ω

be any state space that contains ω0 and ω1. Since nothing is known at ω0, K(ω0) = ∅,
and P (ω0) = Ω. On the other hand, κφ ∈ K(ω1), so that ω0 6∈ P (ω1). Therefore, P is not

partitional.

That is, some additional condition is required to ensure that the agent’s knowledge is

partitional. Assuming Ω ⊆ Ω4, our main result below offers a practical way to test for

partitional information, by observing the (finitely many, and easy to articulate) primitive

propositions.

Theorem 3.5. Consider Ω ⊆ Ω4. Then negative introspection holds at every state for

every proposition if and only if it holds for all primitive propositions.

Proof. It follows from Lemma 3.11 (see in the Appendix) that all states with κφ ∈ ω

contain all φ′ ∈ B(φ) with an even number of negations, and all states with κ¬φ ∈ ω′

contain all φ′ ∈ B(φ) with an odd number of negations. In order for negative introspection

to be violated, the state must contain propositions with both even and odd number of

negations. When κ¬κφ ∈ ω and κ¬κ¬φ ∈ ω, then we consider φ′ = ¬κφ, and φ′′ = ¬κ¬φ

separately, and from the previous argument (K3) holds at ω, which proves the theorem.

QED.

Theorem 3.5 shows that it suffices to look at whether negative introspection holds for

the primitive, rather than for all, propositions. Using this theorem, and the Bacharach-

Samet result, we can corroborate that P is partitional just by fulfilling a much less de-

manding set of conditions than required by Proposition 3.1:

Corollary 3.6. Consider Ω ⊆ Ω4, if negative introspection holds for every primitive

proposition, then P is partitional.
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3.4 Primitive propositions in semantic models of knowledge

While in syntactic models knowledge of each proposition is embodied in every state, in

semantic models knowledge stems from a possibility correspondence P : Ω → 2Ω. An

event E ⊆ Ω is known at ω, and we write ω ∈ KE, whenever P (ω) ⊆ E (Hintikka, 1962;

Aumann, 1976; Geanakoplos, 1989). That is, an event is known whenever it occurs at

every contingency considered as possible. Starting from a syntactic model, and for any

proposition φ ∈ Φ consider the event that φ is true:

Eφ = {ω ∈ Ω : φ ∈ ω}. (3.4)

The following result relates knowledge in syntactic and semantic models.

Proposition 3.7. Consider Ω ⊆ Ω0. If κφ ∈ ω, then ω ∈ KEφ.

Proof. Let φ ∈ K(ω). It follows from K(ω) ⊆ ω′ that φ ∈ ω′, for every ω′ ∈ P (ω). Hence

P (ω) ⊆ Eφ. QED.

Note however that the converse of Proposition 3.7 does not hold in general. Consider

for instance the following example:

Example 3.8. Consider the state space Ω ⊆ Ω4:

ω1 = {φ, κφ,¬κ¬φ, κκφ, κ¬κ¬φ, ...},

ω2 = {¬φ,¬κφ, κ¬φ, κ¬κφ, κκ¬φ, ...},

ω3 = {φ,¬κφ,¬κ¬φ,¬κ¬κφ,¬κ¬κ¬φ, κ¬κ¬κφ, κ¬κ¬κ¬φ, ...},

ω4 = {¬φ,¬κφ,¬κ¬φ,¬κ¬κφ,¬κ¬κ¬φ, κ¬κ¬κφ, κ¬κ¬κ¬φ, ...}.

We have P (ω1) = {ω1}, P (ω2) = {ω2}, and P (ω3) = P (ω4) = {ω3, ω4}, so knowledge is

partitional. However, the proposition ¬κφ is not known at ω3 according to the syntactic

definition of knowledge (¬κ¬κφ ∈ ω3), although it is known according to the semantic

one (P (ω3) ⊆ E¬κφ = {ω2, ω3, ω4}). In other words, although it is not known that φ is

not known in the syntactic model, it is known that φ is not known in the corresponding

semantic model.
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Note that in the previous example, (K3) is violated for both φ and ¬φ at ω3 and ω4:

the agent does not know that she does not know φ, or ¬φ. The possibility correspondence

is partitional despite the fact that negative introspection does not hold. This is relevant

to us, since our ultimate goal is to test for partitional possibility correspondences, and

testing for negative introspection is a potential way to achieve this goal.

If the converse to Proposition 3.7 is satisfied, then knowledge in the syntactic and

semantic models coincide. We introduce the following axiom of semantic knowledge:

(KE) if ω ∈ KEφ, then κφ ∈ ω (semantic knowledge).

Under semantic knowledge, the agent’s possibility correspondence is partitional if and

only if negative introspection holds at every state (see Theorem 5.14 p. 177 in Chellas,

1980; or Battigalli and Bonanno, 1999). In this case, testing for negative introspection is

therefore equivalent to testing for partitional possibility correspondences.

Furthermore, under semantic knowledge, positive negation is always satisfied:

Proposition 3.9. Consider Ω ⊆ Ω2, and let (KE) hold in Ω. Then Ω ⊆ Ω4.

Proof. Consider κφ ∈ ω. Then it follows from Proposition 3.7 that ω ∈ KEφ, implying

that P (ω) ⊆ Eφ. It follows from Samet (1990) that P (ω′) ⊆ P (ω), for every ω′ ∈ P (ω),

implying that ω′ ∈ KEφ, for every ω′ ∈ P (ω). Thus ω′ ∈ \K \ Eφ, for every ω′ ∈ P (ω).

Hence ω ∈ K \K \ Eφ. Finally it is follows from (KE) that K \K \ Eφ = Eκ¬κ¬φ, which

concludes the proof. QED.

It follows from Theorem 3.5 and Proposition 3.9 that, under semantic knowledge, the

agent’s possibility correspondence is partitional if and only if negative introspection holds

for primitive propositions.

Corollary 3.10. Consider Ω ⊆ Ω2, and assume semantic knowledge. Then P is parti-

tional if and only if negative introspection holds for every primitive proposition.

Proof. We know that P is partitional if and only if: (A1) KEφ ⊆ Eφ, (A2) KEφ ⊆
KKEφ, and (A3) \KEφ ⊆ K \ KEφ, for every φ ∈ Φ. It follows from KEφ = Eκφ and

\KEφ = E¬κφ that (Ai) is equivalent to (Ki) for every i = 1, 2, 3. Then the proof follows

directly from Proposition 3.9. QED.
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Starting from a semantic model, the axiom of semantic knowledge is a natural assump-

tion, as it only requires the agent to form in the syntactic model the same inferences as

those arising from the semantic model. However, Proposition 3.10 shows that semantic

knowledge has a striking implication.

Indeed, partitional knowledge is by nature a semantic property. As such, it requires

observation of the entire state space in order to be verified or rejected. However, when

knowledge arises from a semantic model, partitional knowledge can be broken down to a

state by state property, which requires conditions on the agent’s knowledge on primitive

propositions only. We conclude that, in these models, the agent’s rational information

processing is an easily testable assumption.

Appendix

Lemma 3.11. Consider Ω ⊆ Ω4, and let φ ∈ K(ω). Then φ′ ∈ B(φ) belongs to ω if and

only if φ′ contains an even number of negations.

Proof. Every proposition in Bn(φ) contains n knowledge operators κ and one proposition

φ. Then, every φ′ ∈ Bn(φ) can be fully identified by a finite sequence of n + 1 variables,

where i-th variable takes value 1 if there is a negation in front of the i-th knowledge

operator, and 0 otherwise.

Let Be
n(φ) denote the subset of Bn(φ) that contains an even number of negations and

Bo
n(φ) := Bn(φ)\Be

n(φ) subset of Bn(φ) that contains an odd number of negations. There

is a bijection between Be
n(φ) and Bo

n(φ), implying that their cardinality is the same. This

follows from the fact that for every φ′ ∈ Be
n(φ) a unique φ′′ ∈ Bo

n(φ) is obtained by simply

changing the (n + 1)-th coordinate and vice versa.

It follows then by induction that if Ω ⊆ Ω4 and κφ ∈ ω, then Be
n(φ) ⊆ ω, which implies

that Be
n(φ) = ω, thus completing the proof. QED.
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The target projection dynamic

4.1 Introduction

The most well-known and extensively used solution concept in noncooperative game the-

ory is the Nash equilibrium. The question how players may reach such equilibria is studied

in a branch of game theory employing dynamic models of learning and strategic adjust-

ment. The main dynamic processes in the theory of strategic form games include the repli-

cator dynamic (Taylor and Jonker, 1978), the best-response dynamic (Gilboa and Matsui,

1991), and the Brown-Nash-von Neumann (BNN) dynamic (Brown and von Neumann,

1950). Sandholm (2005) introduced a definition for well-behaved evolutionary dynamics

through a number of desiderata (see Theorem 4.6 for precise definitions):

Existence, uniqueness, and continuity of solutions to the specified dy-

namic process,

Nash stationarity: the stationary points of the process coincide with the game’s

Nash equilibria,

positive correlation: roughly speaking, the probability of “good” strategies

increases, that of “bad” strategies decreases.

He showed that – unlike the replicator and the best-response dynamics – the family of

BNN or excess-payoff dynamics is well-behaved.

In the present paper we analyze the target projection dynamic that was mentioned only

briefly in the same paper by Sandholm (2005, pp. 166–167). Our main results include the

following:
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Although the dynamic has a certain geometric appeal, Sandholm (2005, p. 167) wrote:

“Unfortunately, we do not know of an appealing way of deriving this dynamic from a model

of individual choice”. This is remedied in Proposition 4.5, which provides a microeconomic

foundation for the target projection dynamic. Following the control cost approach (Van

Damme, 1991; Mattsson and Weibull, 2002; Voorneveld, 2006), we show that it models

rational behavior in a setting where the players have to exert some effort/incur costs to

deviate from incumbent strategies. In other words: the target projection dynamic is a

best-response dynamic under a certain status-quo bias.

The fact that the players face control costs makes their adjustment process slower. This

makes sense, since they are averse – to some extent – to deviations from their current

behavior. However, despite the fact that their learning mechanism is quite conservative,

the target projection dynamic is well-behaved in the sense described above. It also satisfies

an additional property:

Innovation: if some population has not yet reached a stationary state and has

unused best responses, part of the population switches to it.

This is established in Theorem 4.6. These properties imply (Hofbauer and Sandholm,

2007) that there are games where strictly dominated strategies survive under the target

projection dynamic. Nevertheless, we show that strictly dominated strategies are wiped

out if the “gap” between the dominated and dominant strategy is sufficiently large (Propo-

sition 4.7) or if there are only two pure strategies (Proposition 4.8).

Like most other dynamics, the target projection dynamic belongs to family of un-

coupled dynamics, where the behavior of one player is independent of payoffs to other

players. Therefore, the process cannot converge to Nash equilibrium in all games (Hart

and Mas-Colell, 2003). Nevertheless, some special cases can be established:

• sufficiently close to interior Nash equilibria of zero-sum games, the (standard Eu-

clidean) distance to such an equilibrium remains constant (Corollary 4.12),

• strict Nash equilibria are asymptotically stable (Proposition 4.13),

• as are evolutionarily stable strategies (Maynard Smith, 1982) if they are interior (Corol-

lary 4.14) or the game is 2× 2 (Proposition 4.15).
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The first two points rely on the analysis of stable games in Hofbauer and Sandholm

(2008). The fact that in certain cases the target projection dynamic coincides with the

projection dynamic, which was introduced to games and extensively studied by Lahkar

and Sandholm (2008) and Sandholm et al. (2008); see Proposition 4.9.

4.2 Notation and preliminaries

4.2.1 Learning in normal form games

Consider a finite normal form game G = (N, (Ai)i∈N , (ui)i∈N) defined as usual: N =

{1, ..., n} is the set of players, Ai = {a1
i , ..., a

Ji
i } is player i’s finite set of actions (pure

strategies) with ai being the typical element of Ai, and ui : A → R is i’s payoff function,

where A = ×i∈NAi is the game’s action space. Consider i’s set of mixed strategies ∆i :=

{αi ∈ RJi
+ :

∑Ji

j=1 αj
i = 1}, with typical element αi = (α1

i , ..., α
Ji
i ), and let αj

i denote

the probability that αi assigns to aj
i . We say that αi is completely mixed if αj

i > 0

for all j = 1, ..., Ji. With slight abuse of notation we write α = (αi, α−i), where α−i =

(α1, ..., αi−1, αi+1, ..., αn). We define the expected payoff ui : ∆ → R as usual, where

∆ := ×i∈N∆i. Then, we rewrite i’s expected payoff as follows: ui(α) = 〈αi, Ui(α)〉, where

〈x, y〉 :=
∑m

i=1 xiyi denotes the usual inner product of two vectors x, y ∈ Rm, and Ui(α) =

(U1
i (α), ..., UJi

i (α)) is the vector of expected payoffs to player i’s pure strategies given that

everybody else plays according to α, i.e., U j
i (α) = ui(a

j
i , α−i).

We say that αi is a best response to α if 〈αi, Ui(α)〉 ≥ 〈βi, Ui(α)〉 for all βi ∈ ∆i. If αi

is a best response to α for every i ∈ N then α is a Nash equilibrium. If the inequality

is strict for every i ∈ N then α is called strict Nash equilibrium. Obviously, strict

equilibria appear only in pure strategies.

We say that an aj
i (weakly) dominates ak

i , if U j
i (α) ≥ Uk

i (α) for all α ∈ ∆ and it

holds with strict inequality for at least one α. If the inequality is strict for every α ∈ ∆

we say that aj
i strictly dominates ak

i .

Consider the standard framework of learning in normal form games (Börgers and Sarin,

1997; Fudenberg and Levine, 1998; Hopkins, 2002). There is a population of individuals.

Every individual repeatedly participates in G against other individuals, always holding

the same role, i.e., always being the same i ∈ N . The way the individuals are matched
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can vary according to the model: they play against the same opponents at every period

(single-matching) or they are randomly matched with individuals playing the other roles

(random-matching). At all periods every player i chooses a mixed strategy αi ∈ ∆i. After

having observed the own payoff and (usually) the strategy profile α ∈ ∆, every i ∈ N

adjusts the own strategy according to some updating rule α̇i, which typically puts higher

weight on more profitable strategies and less weight on the ones that entail lower payoff.

The adjustment rule describes the mechanism through which players learn how to play

in the future, given their current observations, i.e., α̇ = f(α). Dynamic processes that

do not depend on the payoff earned by the other players are called uncoupled dynamics

(Hart and Mas-Colell, 2003).

4.2.2 Projections

This subsection contains some results on projections. In particular, Proposition 4.1 es-

tablishes a link between maximizing a linear function and certain projection problems.

Proposition 4.2 gives a simple expression for projection onto the unit simplex. The proofs

are in the Appendix.

As we have already mentioned, let 〈x, y〉 =
∑m

i=1 xiyi denote the usual inner product of

two vectors x, y ∈ Rm. Let ‖ · ‖ denote the standard Euclidean norm, i.e., ‖x‖ = 〈x, x〉1/2.

For z ∈ R, let [z]+ := max{z, 0}.

Proposition 4.1. Let C ⊆ Rn be nonempty and convex, a ∈ Rn, c ∈ C and k > 0.

(i) The following two claims are equivalent:

(a) c solves maxx∈C 〈a, x〉
(b) c solves maxx∈C 〈a, x〉 − 1

k
‖x− c‖2.

(ii) The problem in (b) reduces to a projection problem:

arg max
x∈C

〈a, x〉 − 1

k
‖x− c‖2 = arg min

x∈C
‖x− c− k

2
a‖2. (4.1)

The following proposition characterizes projection on a unit simplex.

Proposition 4.2. Let P : Rn → ∆n denote the projection on the (n − 1)-dimensional

unit simplex ∆n with respect to the standard Euclidean distance.
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(i) P is Lipschitz continuous.

(ii) For every x ∈ Rn the projection on ∆n can be rewritten as follows

P (x) = ([x1 + λ(x)]+, . . . , [xn + λ(x)]+), (4.2)

where λ(x) ∈ R is the unique solution to
∑n

i=1[xi + λ(x)]+ = 1.

Remark 4.3. Proposition 4.2(ii) immediately implies that for all x ∈ Rn and i, j ∈
{1, . . . , n}: if xi − xj ≥ 1, then Pj(x) = 0.

4.3 The target projection dynamic

The target projection dynamic, the dynamic process governing the learning mechanism

that we study in this paper, was mentioned briefly in the concluding section of Sandholm

(2005, pp. 166-167). It was originally defined in the framework of congestion networks by

Friesz et al. (1994).

Definition 4.4. Consider a normal form game (N, (Ai)i∈N , (Ui)i∈N). The target pro-

jection dynamic (TPD) is defined, for each i ∈ N , by the differential equation

α̇i = P∆i
[αi + Ui(α)]− αi, (4.3)

where P∆i
denotes the projection on ∆i with respect to the usual Euclidean distance.

The basic idea is simple and standard for most dynamic processes in game theory.

The payoffs associated with the different actions determine the direction in which their

weights are changed by reinforcing the better actions and decreasing the weight of worse

ones. Of course, simply running in the direction of the payoff vector Ui(α) might take

you outside the strategy simplex, but Proposition 4.2(ii) assures that projection onto the

strategy simplex does not affect the order of the coordinates.

The simplest dynamic embodying this idea is the best-response dynamic (Gilboa and

Matsui, 1991): players place higher weight to their best responses according to

α̇i = BRi(α)− αi, (4.4)
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where BRi(α) = arg maxβi∈∆i
〈βi, Ui(α)〉. In fact, Equation (4.4) is a differential inclusion,

rather than a differential equation, since BRi(α) need not be a singleton. In any case, as

it becomes obvious from Equation (4.4), players do not switch to – but towards – their

best responses. That is, the best-response dynamic involves inertia which precludes them

from switching directly to their best response.

The next proposition indicates that the TPD is essentially a best-response dynamic,

albeit under a bounded rationality assumption, involving the introduction of a certain

status-quo bias. We follow the control cost approach, which since its introduction by

Van Damme (1991) in the study of equilibrium refinements has proved to be a versatile

way of providing microeconomic foundations for a variety of models of strategic behavior

(Hofbauer and Sandholm, 2002; Mattsson and Weibull, 2002; Voorneveld, 2006). It does

so by showing that such behavior is rational for decision makers who have to make some

effort (incur costs) to implement their strategic choices. One intuitive way of modeling

status-quo bias by player i could be as follows. Suppose that deviation from the current αi

is costly/requires effort in the sense that by switching to a strategy βi, player i incurs a cost

of 1
2
||βi−αi||2: staying at the current mixed strategy is costless, whereas large deviations,

i.e., strategies further away from the current one in terms of Euclidean distance, incur

larger costs. Taking such costs into account changes the optimization problem to

max
βi∈∆i

〈βi, Ui(α)〉 − 1

2
||βi − αi||2. (4.5)

Let Bi(α) ∈ ∆i denote player i’s (unique due to strict concavity of the goal func-

tion) best response against α, i.e., the unique solution to problem (4.5). Subject to these

assumptions, we can now formulate the TPD as a best response dynamic:

Proposition 4.5. Let (N, (Ai)i∈N , (Ui)i∈N) be a normal form game. The TPD is the best

response dynamic for the control cost problem in (4.5), i.e., for each i ∈ N :

α̇i = P∆i
[αi + Ui(α−i)]− αi = Bi(α)− αi. (4.6)

Proof. By definition,

P∆i
[αi + Ui(α)] = arg min

βi∈∆i

‖βi − αi − Ui(α)‖2, (4.7)

so we need to establish that



4.3 The target projection dynamic 41

arg min
βi∈∆i

‖βi − αi − Ui(α)‖2 = arg max
βi∈∆i

〈βi, Ui(α)〉 − 1

2
‖βi − αi‖2,

which follows from Proposition 4.1(ii) for C = ∆i, x = βi, c = αi, a = Ui(α) and k = 2.

QED.

Proposition 4.5 shows that the TPD is subject to two types. Firstly, it preserves the

inertia that all best-response dynamics exhibit, i.e., the players do not switch to any of

their best responses, but they place higher weight to them, thus shifting their behavior

towards them. Secondly, players dislike moving away from their current strategies. The

fact that they are averse to changing their current behavior makes the TPD a conservative

rule of adjustment, and learning becomes slow.

As pointed out to us by Bill Sandholm, the TPD actually belongs to a larger family of

dynamics, characterized by the degree of aversion towards shifting away from the current

strategy. Consider the parametric dynamic

α̇i = P∆i
[αi +

k

2
Ui(α)]− αi, (4.8)

where k > 0. Larger k induces (a) higher weight placed on the strategic component of

the adjustment process, i.e., on moving towards the best response, and (b) lower weight

to the cost incurred by changing the current behavior. This becomes clearer by looking at

Proposition 4.1(ii): increasing k leads to lower control costs, since the weight placed on

these costs by the perturbed payoff function is equal to 1
k
. The TPD arises when k = 2.

When k →∞ the control cost becomes arbitrarily small and (4.8) converges to a (unique

and Lipschitz continuous) solution trajectory of the best-response dynamic (see Theorem

4.6 in the following section). On the other hand, the lower k the more conservative the

players become, since they start placing more weight on their aversion towards change.

In the limit (k → 0), the players never change their actual strategy and stick forever to

it. In the present paper we focus on the TPD (k = 2), but it is worth mentioning that

all our results hold for every k > 0, since (4.8) corresponds to the TPD for a different

game. That is, the parametric family of TPD in (4.8), no matter how conservative rules of

adjustment it imposes, has a series of nice properties as shown in the following sections.

The fact that the TPD is interpreted as a best-response dynamic with control costs does

not imply that the dynamic is susceptible to the extensive literature on (perturbed) best
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response dynamics (Gilboa and Matsui, 1991; Hofbauer and Sandholm, 2002; Fudenberg

and Levine, 1998): Our status-quo bias models control costs arising due to deviations from

the current state, while the usual approaches use control cost functions which:

• are independent of the current state: they define costs in terms of deviations from a

fixed strategy, often uniform randomization (close your eyes and pick an action) as in

Mattsson and Weibull (2002), and Voorneveld (2006),

• are often required to be steep near the boundary of the strategy space, as in Hofbauer

and Sandholm (2002).

4.3.1 General properties

Theorem 4.6 states that the target projection dynamic satisfies a number of desirable

properties of “nice” evolutionary dynamics. Indeed, Sandholm (2005) calls a dynamic

well-behaved if it satisfies the first three properties of Theorem 4.6.

Theorem 4.6. Let (N, (Ai)i∈N , (Ui)i∈N) be a normal form game. The TPD satisfies the

following properties:

Nash stationarity: The stationary points of the TPD and the game’s Nash equilibria

coincide.

Basic solvability: For every initial state, a solution to the TPD exists, is unique, Lip-

schitz continuous in the initial state, and remains inside ∆ at all times.

Positive correlation: Growth rates are positively correlated with payoffs: for each i ∈
N , if α̇i 6= 0, then 〈α̇i, Ui(α)〉 > 0.

Innovation: If some player is not at a stationary state and has an unused best response,

then a positive probability is assigned to it. Formally, for each α ∈ ∆ and i ∈ N , if

α̇i 6= 0, but there is an action aj
i ∈ Ai with U j

i (α) = maxk∈{1,...,Ji} Uk
i (α) and αj

i = 0,

then α̇j
i > 0.

Proof. Nash stationarity: Let α ∈ ∆. By Proposition 4.1, Proposition 4.5, and (4.3),

the following chain of equivalences holds:

α is a Nash equilibrium ⇔ ∀i ∈ N : αi ∈ arg max
βi∈∆i

〈βi, Ui(α)〉
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⇔ ∀i ∈ N : αi ∈ arg max
βi∈∆i

〈βi, Ui(α)〉 − 1

2
‖βi − αi‖2

⇔ ∀i ∈ N : αi = P∆i
[αi + Ui(α)]

⇔ ∀i ∈ N : α̇i = 0.

Basic solvability: The target projection dynamic (4.3) is Lipschitz continuous. Let

i ∈ N . By assumption, the payoff Ui is Lipschitz continuous, say with expansion factor

C > 0. By Proposition 4.2, the projection is Lipschitz continuous with expansion factor

1. Using the triangle inequality, it follows for each α, β ∈ ∆ that

‖P [αi + Ui(α)]− αi − P [βi + Ui(β)] + βi‖ ≤ ‖P [αi + Ui(α)]− P [βi + Ui(β)]‖+ ‖αi − βi‖

≤ ‖αi + Ui(α)− βi − Ui(β)‖+ ‖αi − βi‖

≤ ‖Ui(α)− Ui(β)‖+ 2‖αi − βi‖

≤ (C + 2)‖αi − βi‖,

establishing Lipschitz continuity of the vector field in (4.3). Since P∆i
maps onto ∆i, it

follows that
∑Ji

j=1 α̇j
i = 0. Moreover, if αj

i = 0, then α̇j
i ≥ 0. This makes ∆ forward-

invariant. Together, these properties imply (Hirsch and Smale, 1974, Ch. 8) that for every

initial state, a solution exists, is unique, Lipschitz continuous in the initial state, and

remains in ∆ at all times.

Positive correlation: Let α ∈ ∆ and i ∈ N . Suppose α̇i = P∆i
[αi + Ui(α)]− αi 6= 0.

Let βi = P∆i
[αi + Ui(α)] 6= αi. Then, using Proposition 4.5, one obtains:

〈βi, Ui(α)〉 > 〈βi, Ui(α)〉 − 1

2
‖αi − βi‖2

≥ 〈αi, Ui(α)〉 − 1

2
‖αi − αi‖2

= 〈αi, Ui(α)〉,

So 〈α̇i, Ui(α)〉 = 〈βi − αi, Ui(α)〉 > 0.

Innovation: Assume that the premises of the innovation property hold, but that α̇j
i ≤ 0.

We derive a contradiction. By Proposition 4.2 there is a λ ∈ R such that

P∆i
[αi + Ui(α)] = ([α1

i + U1
i (α) + λ]+, . . . , [αJi

i + UJi
i (α) + λ]+).

By assumption, action j is unused (αj
i = 0) and α̇j

i ≤ 0, so
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0 ≥ α̇j
i = [αj

i + U j
i (α) + λ]+ − αj

i = [U j
i (α) + λ]+ ≥ 0,

i.e., α̇j
i = 0 and U j

i (α)+λ ≤ 0. But action j is a best response: U j
i (α) = maxk∈{1,...,Ji} Uk

i (α).

Consequently, for every action k ∈ {1, . . . , Ji}:

α̇k
i = [αk

i + Uk
i (α) + λ]+ − αk

i ≤ [αk
i + U j

i (α) + λ]+ − αk
i ≤ [αk

i + 0]+ − αk
i = 0.

Since
∑Ji

k=1 α̇k
i = 0, this implies that α̇k

i = 0 for all k ∈ {1, . . . , Ji}, in contradiction with

the assumption that α̇i 6= 0. QED.

4.3.2 Strict domination: mind the gap

Berger and Hofbauer (2006) show that under the Brown-von Neumann-Nash (BNN) dy-

namic, introduced in Brown and von Neumann (1950), there are games where a strictly

dominated strategy survives. Hofbauer and Sandholm (2007) generalize this example: for

each evolutionary dynamic satisfying the properties in Theorem 4.6 –actually, they restrict

attention to single-population games– it is possible to construct a game with a strictly

dominated strategy that survives along solutions of most initial states.

As their result applies to our TPD, it is of interest to investigate whether there are

additional conditions under which such “bad” actions are wiped out. The next result

shows that this is the case if one action strictly dominates another and the “gap” between

them is sufficiently large.

Proposition 4.7. Let (N, (Ai)i∈N , (Ui)i∈N) be a normal form game and let i ∈ N . Sup-

pose there are actions k, ` ∈ {1, . . . , Ji} such that Uk
i − U `

i ≥ 2, i.e., action k strictly

dominates action `, and the gap between the payoffs is at least two. Then the probability

α`
i converges to zero in the TPD.

Proof. We show that the differential equation for the probability α`
i of action ` is given

by α̇`
i = −α`

i , because then α`
i(t) = α`

i(0)e
−t → 0 as t → ∞. Let α ∈ ∆. By (4.3), it

suffices to show that the `-th coordinate of the projection P∆i
[αi + Ui(α)] is zero. By

Proposition 4.2(ii), there is a λ ∈ R such that its `-th and k-th coordinate can be written

as [α`
i + U `

i (α) + λ]+ and [αk
i + Uk

i (α) + λ]+. Suppose, contrary to what we want to prove,

that [α`
i + U `

i (α) + λ]+ > 0. Then
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[αk
i + Uk

i (α) + λ]+ − [α`
i + U `

i (α) + λ]+ ≥ αk
i − α`

i + Uk
i (α)− U `

i (α) (4.9)

≥ αk
i − α`

i + 2

≥ 1,

since the difference between probabilities is bounded in absolute value by one. However,

since [α`
i +U `

i (α)+λ]+ > 0, the left-hand side of (4.9) is smaller than one, a contradiction.

QED.

Also if a player has only two actions to choose from, and one of them is strictly

dominated, then it is eventually eliminated:

Proposition 4.8. Let (N, (Ai)i∈N , (Ui)i∈N) be a normal form game and let i ∈ N . If

Ai = {a1
i , a

2
i }, and a1

i strictly dominates a2
i , the probability assigned to a2

i converges to

zero in the TPD.

Proof. Let α ∈ ∆. By Proposition 4.2, there is a λ(α) ∈ R such that the target projection

dynamic for each of the two actions j = 1, 2 of population i can be rewritten as

α̇j
i = [αj

i + U j
i (α) + λ(α)]+ − αj

i (4.10)

Then [α1
i + U1

i (α) + λ(α)]+ > 0. Suppose, to the contrary, that

α1
i + U1

i (α) + λ(α) ≤ 0.

Since we project the two-dimensional vector onto the simplex, this implies

[α2
i + U2

i (α) + λ(α)]+ = α2
i + U2

i (α) + λ(α) = 1.

Combining these two expressions gives

α2
i − α1

i ≥ 1 + U1
i (α)− U2

i (α) > 1,

a contradiction, since the left-hand side is at most one. By continuity of the payoffs on

the compact set ∆ and strict domination, there is an ε > 0 such that U1
i (α)− U2

i (α) > ε

for each α ∈ ∆.
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Distinguish two cases. First, if [α2
i + U2

i (α) + λ(α)]+ = 0, then α̇2
i = −α2

i , so the

probability α2
i decreases at an exponential rate. Second, if [α2

i + U2
i (α) + λ(α)]+ > 0,

combine this with the facts that [α1
i +U1

i (α)+λ(α)]+ > 0 and that these two numbers add

up to one, to deduce that λ(α) = −1
2
(U1

i (α) + U2
i (α)). So α̇2

i = 1
2
(U2

i (α)−U1
i (α)) < −1

2
ε,

i.e., the probability α2
i decreases at a rate bounded away from zero. Hence, along any

solution trajectory, the probability α2
i of the dominated action converges to zero. QED.

4.3.3 The projection dynamic and the target projection dynamic

The projection dynamic was first developed by Nagurney and Zang (1997) as part of the

transportation literature, and was later introduced to game theory by Sandholm (2006),

Lahkar and Sandholm (2008), and Sandholm et al. (2008). Let Ti = {βi ∈ RJi :
∑Ji

j=1 βj
i =

0} be the tangent space of ∆i. Every zi ∈ Ti describes a motion between two points in

∆i. The tangent cone of ∆i at some strategy αi ∈ ∆i is the set of feasible motions from

αi towards some other strategy in ∆i, i.e., Ti(α) = {βi ∈ Ti : αj
i = 0 ⇒ βj

i ≥ 0}. Then,

the projection dynamic system is defined as follows

α̇i = PTi(α)[Ui(α)], (4.11)

The following proposition shows that the projection dynamic and the target projection

dynamic coincide at α if α is completely mixed and the target projection is orthogonal to

the motion it causes.

Proposition 4.9. Let (N, (Ai)i∈N , (Ui)i∈N) be a normal form game. If α ∈ int(∆) and

〈α̇i, Ui(α)− α̇i〉 = 0, with α̇ as in (4.3), the TPD coincides with the projection dynamic.

proof. By definition the TPD solves, for all i ∈ N, the following optimization problem:

min
βi∈∆i

‖βi − αi − Ui(α)‖2, s.t.

Ji∑
j=1

βj
i = 1 and βj

i ≥ 0 for all j = 1, ..., Ji.

It follows from the Karush-Kuhn-Tucker conditions that there are ν ∈ R and µj ≥ 0 such

that for all j = 1, ..., Ji

βj
i − αj

i − U j
i (α) + ν − µj = 0, (4.12)

µjβ
j
i = 0.
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Summing (4.12) for all j, solving with respect to ν and substituting back yields

βj
i − αj

i − U j
i (α) +

1

Ji

Ji∑
j=1

U j
i (α)− µj +

1

Ji

Ji∑
j=1

µj = 0. (4.13)

We multiply by βj
i , sum for all j and use the complementary slackness condition (µjβ

j
i =

0):
Ji∑

j=1

(
βj

i

2 − αj
iβ

j
i − βj

i U
j
i (α)

)
+

1

Ji

Ji∑
j=1

U j
i (α) +

1

Ji

Ji∑
j=1

µj = 0. (4.14)

We multiply now (4.13) by αj
i and sum for all j:

Ji∑
j=1

(
αj

iβ
j
i − αj

i

2 − αj
iU

j
i (α)

)
+

1

Ji

Ji∑
j=1

U j
i (α)−

Ji∑
j=1

µjα
j
i +

1

Ji

Ji∑
j=1

µj = 0. (4.15)

Now subtract (4.14) from (4.15) to find

〈βi − αi, βi − αi − Ui(α)〉 =

Ji∑
j=1

µjα
j
i .

As βi = P∆i
[αi + Ui(α)], the orthogonality assumption implies that 〈βi − αi, βi − αi −

Ui(α)〉 = 0. As µjα
j
i ≥ 0 for all j = 1, ..., Ji and α ∈ int(∆), it follows that µj = 0 for all

pure strategies j = 1, ..., Ji. Then, it follows from Proposition 4.2(ii) that the projection

can be rewritten as

P∆i
[αi + Ui(α)] = ([α1

i + U1
i (α) + λ]+, ..., [αJi

i + UJi
i (α) + λ]+),

with αj
i +U j

i (α)+λ ≥ 0 for all j, since µj = 0. Hence, λ = − 1
Ji

∑Ji

j=1 U j
i (α), which implies

that for every i ∈ N and every j ∈ Ji the TPD becomes

α̇j
i = U j

i (α)− 1

Ji

Ji∑
k=1

Uk
i (α).

The previous formula is the projection dynamic for all completely mixed strategies (Sand-

holm et al., 2008), which proves the proposition. QED.

Corollary 4.10. Let (N, (Ai)i∈N , (Ui)i∈N) be a normal form game and let α be a com-

pletely mixed Nash equilibrium. Then, there is a neighborhood O of α such that the pro-

jection dynamic and the target projection dynamic coincide for all β ∈ O.

Proof. It follows directly from Proposition 4.9 and continuity in O. QED.
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4.4 Special classes of games

In this section we study the properties of the TPD in some special classes of games.

4.4.1 Stable games

Sandholm et al. (2008) prove a number of stability results for potential and stable games

under the projection dynamic. Stable games (Hofbauer and Sandholm, 2008) are a family

of normal form games characterized by the following condition:

〈αi − βi, Ui(α)− Ui(β)〉 ≤ 0, (4.16)

for every αi, βi ∈ ∆i and for all i ∈ N . The game is null (strictly) stable if (4.16) holds

with equality (strict inequality).

Proposition 4.11. Let (N, (Ai)i∈N , (Ui)i∈N) be a normal form game and let α be a com-

pletely mixed Nash equilibrium.

(i) If the game is stable then α is Lyapunov stable under the TPD.

(ii) If the game is strictly stable then α is asymptotically stable under the TPD.

(iii) If the game null stable then there is a neighborhood of α where the squared Euclidean

distance to α, i.e., the function β 7→ ‖β − α‖2, defines a constant of motion under the

TPD.

Proof. By Corollary 4.10, there is a neighborhood O of α where the projection dynamic

agrees with the target projection dynamic for all players. Let ε > 0 be such that

Oε := {β ∈ ∆ : ‖β − α‖2 ≤ ε} ⊆ O.

Sandholm et al. (2008) show that in the three cases of our proposition the function

L : ∆ → R with L(β) := ‖β − α‖2 is (i) a Lyapunov function, (ii) a strict Lyapunov

function, and (iii) defines a constant motion around α under the projection dynamic.

Since Oε ⊆ O, every trajectory starting in Oε will remain in it forever under the projection

dynamic, and therefore under the target projection dynamic, completing the proof.QED.
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4.4.2 Zero-sum games

A very interesting and widely explored class of games is the zero-sum games. We say

that a normal form game is zero-sum if
∑

i∈N ui(a) = 0 for every a ∈ A. Hofbauer and

Sandholm (2008) establish that zero-sum games are null stable. By Proposition 4.11(iii),

every trajectory of the TPD that gets sufficiently close to a completely mixed equilibrium

in two-players zero-sum games forms a closed cyclical orbit around it.

Corollary 4.12. Let (N, (Ai)i∈N , (Ui)i∈N) be a two-player normal form zero-sum game.

If α is a completely mixed Nash equilibrium, there is a neighborhood O of α on which the

the TPD forms a constant of motion around α.

That is, if β0 ∈ O and β belongs to the trajectory of the (unique) solution of (4.3) with

initial value β0, then ‖β−α‖ = ‖β0−α‖. Typical examples include the matching pennies

and the rock-paper-scissors games.

4.4.3 Games with strict Nash equilibria

Recall that in finite strategic games a Nash equilibrium is strict if each player chooses the

unique best reply, i.e., α ∈ ∆ is a strict Nash equilibrium if 〈αi, Ui(α)〉 > 〈βi, Ui(α)〉 for all

β ∈ ∆ and all i ∈ N . Consequently, strict Nash equilibria are equilibria in pure strategies.

This follows from the fact that a mixed strategy αi is a best response to α if and only if

all actions assigned positive probability by αi are best responses to α, implying that i is

indifferent between these actions, and therefore the necessary and sufficient condition for

the strict equilibrium is violated.

Proposition 4.13. Let (N, (Ai)i∈N , (Ui)i∈N) be a normal form game. If α is a strict Nash

equilibrium, it is asymptotically stable under the TPD.

Proof. Let α be a strict Nash equilibrium. Since α must be in pure strategies, without

loss of generality, each i ∈ N plays his first action: αi = a1
i . By definition, for each

i ∈ N and j ∈ {2, . . . , Ji}: U1
i (α) > U j

i (α), so that (α1
i + U1

i (α)) − (αj
i + U j

i (α)) =

1 + U1
i (α) − U j

i (α) > 1. By continuity, there is a neighborhood O of α such that for all

β ∈ O, i ∈ N , and j ∈ {2, . . . , Ji}:
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(β1
i + U1

i (β))− (βj
i + U j

i (β)) ≥ 1.

For all β ∈ O and i ∈ N , Remark 4.3 implies that P∆i
(βi + Ui(β)) = αi; so β̇i = αi − βi.

Hence, the function L : O → R with L(β) :=
∑

i∈N ‖βi − αi‖2 is a Lyapunov function: It

is non-negative, zero only at α, and if β ∈ O \ {α}:

L̇ = 2
∑
i∈N

〈βi − αi, β̇i〉 = 2
∑
i∈N

〈βi − αi, αi − βi〉 = −2
∑
i∈N

‖βi − αi‖2 < 0.

Given the existence of the Lyapunov function L, the equilibrium α is asymptotically stable

(Hirsch and Smale, 1974, Ch. 9). QED.

4.4.4 Games with evolutionarily stable strategies

We focus on symmetric two-player normal form games. A two player game is called sym-

metric if A1 = A2 = A and u1(a1, a2) = u2(a1, a2) = u(a1, a2) for all a1, a2 ∈ A. We

say that (α, α) is an evolutionarily stable strategy (ESS) of a symmetric two-player

normal form game (Maynard Smith, 1982; Weibull, 1995; Fudenberg and Levine, 1998) if

for all β 6= α:

(a) 〈α, U(α)〉 > 〈β, U(α)〉, or

(b) 〈α, U(α)〉 = 〈β, U(α)〉 and 〈α, U(β)〉 > 〈β, U(β)〉.

That is, a strategy is evolutionarily stable if it is robust to behavioral mutations: small

mutations receive a strictly lower post-entry payoff than the incumbent strategy. ESS is a

refinement of Nash equilibrium, so all ESS are rest points of every dynamic that satisfies

Nash stationarity. Since the definition of evolutionary stability is conceptually based on the

idea that the mutants eventually assimilate to the original population, one would expect

ESS to attract trajectories that get sufficiently close to them under dynamic processes

of myopic adjustment. Taylor and Jonker (1978), and Hofbauer et al. (1979) show that

every ESS is asymptotically stable under the replicator dynamic. However, a similar result

cannot be established for the TPD. Instead we provide some partial stability results.

Games with a completely mixed evolutionary stable strategy are striclty stable (Hof-

bauer and Sandholm, 2008). Proposition 4.11(ii) thus implies:
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Corollary 4.14. Let (N, (Ai)i∈N , (Ui)i∈N) be a symmetric two-player normal form game

and let α be a completely mixed ESS. Then, it is asymptotically stable in the TPD.

If in addition we restrict players to choose between only two actions we can extend the

previous result to all ESS:

Proposition 4.15. Let (N, (Ai)i∈N , (Ui)i∈N) be a symmetric 2 × 2 normal form game

and let α be an ESS. Then, it is asymptotically stable in the TPD.

Proof. For convenience, denote the strategy space by ∆ = {β ∈ R2
+ : β1 + β2 = 1}.

Let A = {a1, a2} and let α ∈ ∆ be an ESS. If α = (α1, α2) is completely mixed, apply

Corollary 4.14. If not, assume without loss of generality that α = e1, where e1 = (1, 0),

i.e., the pure strategy a1 is an ESS.

If U1(e1) > U2(e1) then it follows from convexity of the payoffs that

〈e1, U(e1)〉 = U1(e1) > β1U1(e1) + β2U2(e1) = 〈β, U(e1)〉,

for all β = (β1, β2) ∈ ∆. Hence, from Proposition 4.13 it follows that e1 is asymptotically

stable in the TPD.

Suppose now that U1(e1) = U2(e1). Since e1 is an ESS, it is also a Nash equilibrium,

and therefore due to Theorem 4.6 it is a rest point. This implies that P∆[ei
1 +Ui(e1)] = ei

1,

which yields P∆[1 + U1(e1)] = 1 > 0 for i = 1. It follows from continuity that there is a

neighborhood O of e1 such that P∆[β1+U1(β)] > 0 for all β ∈ O. From Proposition 4.2(ii)

it follows that there is λ(β) ∈ R such that P∆[β1 + U1(β)] = [β1 + U1(β) + λ(β)]+ > 0,

implying that P∆[β1 + U1(β)] = β1 + U1(β) + λ(β), for all β ∈ O. Hence,

β̇1 = U1(β) + λ(β), (4.17)

for all β ∈ O. Now, we consider two cases:

Case 1: Let [β2 +U2(β)+λ(β)]+ > 0, which implies again due to Proposition 4.2(ii) that

λ(β) = −1
2
(U1(β) + U2(β)). Hence, it follows from Equation (4.17) that

β̇1 = U1(β)− 1

2
(U1(β) + U2(β))

=
1

2
(U1(β)− U2(β))

=
1

2
β1

(
〈e1, U1(e1)〉 − 〈e2, U2(e1)〉

)
+

1

2
β2

(
〈e1, U1(e2)〉 − 〈e2, U2(e2)〉

)
=

1

2
β2

(
〈e1, U1(e2)〉 − 〈e2, U2(e2)〉

)
> 0, (4.18)
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where e2 = (0, 1) denotes the pure strategy a2.

Case 2: Let [β2 +U2(β)+λ(β)]+ = 0, which implies again due to Proposition 4.2(ii) that

λ(β) = 1− β1 − U1(β). Substituting into Equation (4.17) yields

β̇1 = 1− β1 > 0. (4.19)

Consider now L(β) = 1−β1 for β ∈ O, which is a Lyapunov function: it is non-negative,

equal to zero only at e1, and for all β ∈ O \ {e1}

L̇ = −β̇1 < 0,

which follows from (4.18) and (4.19) and completes the proof. QED.

Appendix

Proof of Proposition 4.1. (i) [(a) ⇒ (b)] Assume (a) holds. Since ‖c − c‖ = 0, it

follows, for each x ∈ C, that

〈a, c〉 − 1

k
‖c− c‖2 = 〈a, c〉 ≥ 〈a, x〉 ≥ 〈a, x〉 − 1

k
‖x− c‖2,

so (b) holds.

[(b) ⇒ (a)] Assume (b) holds. Let x ∈ C and λ ∈ (0, 1). By convexity, λx + (1− λ)c ∈ C.

Since ‖c− c‖ = 0, it follows that

〈a, c〉 ≥ 〈a, λx + (1− λ)c〉 − 1

k
‖(λx + (1− λ)c)− c‖2

= λ〈a, x〉+ (1− λ)〈a, c〉 − λ2

k
‖x− c‖2.

Rearrange terms and divide by λ > 0 to obtain that 〈a, c〉 ≥ 〈a, x〉 − λ
k
‖x − c‖2. Since

λ ∈ (0, 1) is arbitrary, let λ approach zero to establish (a).

(ii) Maximizing the function x 7→ 〈a, x〉 − 1
k
‖x − c‖2 is equivalent with minimizing x 7→

1
k
‖x− c‖2−〈a, x〉. It therefore suffices to show that the latter function is a positive affine

transformation of x 7→ ‖x− c− k
2
a‖2. Using the linearity and symmetry properties of the

inner product, we find
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‖x− c− k

2
a‖2 = 〈x− c− k

2
a, x− c− k

2
a〉

= 〈x− c, x− c〉 − 2〈k
2
a, x〉+ 2〈c, k

2
a〉+ 〈k

2
a,

k

2
a〉

= ‖x− c‖2 − k〈a, x〉+ k〈c, a〉+
k2

4
‖a‖,

which completes the proof, since the final two terms are independent of x, and ‖x− c‖2−
k〈a, x〉 is a simple rescaling of 1

k
‖x− c‖2 − 〈a, x〉. QED.

Proof of Proposition 4.2. (i) Recall from the Projection Theorem (see, for instance,

Luenberger, 1969, p. 69) that for every z ∈ Rn, P (z) is characterized by 〈z − P (z), w −
P (z)〉 ≤ 0 for all w ∈ ∆n. In particular, for all x, y ∈ Rn:

〈x− P (x), P (y)− P (x)〉 ≤ 0 and 〈y − P (y), P (x)− P (y)〉 ≤ 0.

Write 〈y − P (y), P (x)− P (y)〉 = 〈P (y)− y, P (y)− P (x)〉, add the two inequalities, and

use Cauchy-Schwarz to establish

0 ≥ 〈x− P (x) + P (y)− y, P (y)− P (x)〉

= ‖P (y)− P (x)‖2 − 〈y − x, P (y)− P (x)〉

≥ ‖P (y)− P (x)‖2 − ‖y − x‖ ‖P (y)− P (x)‖.

Conclude that ‖P (y) − P (x)‖ ≤ ‖y − x‖, i.e., P is Lipschitz continuous with expansion

factor 1.

(ii) Let x ∈ Rn. The function T : R → R defined for each λ ∈ R by T (λ) =
∑n

i=1[xi +

λ]+ is the composition of continuous functions and therefore continuous itself. Let m =

max{x1, . . . , xn}. Then T (λ) = 0 for all λ ∈ (−∞,−m] and T is strictly increasing on

[−m,∞), with T (λ) → ∞ as λ → ∞. By the Intermediate Value Theorem, there is a

unique λ(x) ∈ [−m,∞) such that T (λ(x)) = 1.

By definition, P (x) is the unique solution to miny∈∆n

1
2

∑n
i=1(yi−xi)

2. This is a convex

quadratic optimization problem with linear constraints, so the Karush-Kuhn-Tucker con-

ditions are necessary and sufficient to characterize the minimum location: y∗ ∈ ∆n solves

the problem if and only if there exist Lagrange multipliers µi ≥ 0 associated with the in-

equality constraints yi ≥ 0 and ν ∈ R associated with the equality constraint
∑n

i=1 yi = 1

such that for each i = 1, . . . , n:
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y∗i − xi − µi + ν = 0, (4.20)

µiy
∗
i = 0. (4.21)

Condition (4.20) is the first order condition obtained from differentiating the Lagrangian

(y, µ1, . . . , µn, ν) 7→ 1

2

n∑
i=1

(yi − xi)
2 −

n∑
i=1

µiyi + ν

(
n∑

i=1

yi − 1

)

with respect to yi and condition (4.21) is the complementary slackness condition. It is now

easy to see that y∗ := ([x1 + λ(x)]+, . . . , [xn + λ(x)]+) solves the minimization problem:

set µi = 0 if [xi + λ(x)]+ > 0, µi = −xi − λ(x) ≥ 0 if [xi + λ(x)]+ ≤ 0, and ν = −λ(x).

Substitution in (4.20) and (4.21) shows that these necessary and sufficient conditions are

satisfied. QED.
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