

Master thesis in Applied Information Technology

REPORT NO. 2008:013

ISSN: 1651-4769

Department of Applied Information Technology

An Experiment Evaluating Architectures of

Software Measurement Systems

EVGENY V. SIDENKO

IT University of Göteborg

Chalmers University of Technology and University of Gothenburg

Göteborg, Sweden 2008

An experiment evaluating architectures of software measurement systems

Master thesis

EVGENY VLADIMIROVICH SIDENKO

© EVGENY VLADIMIROVICH SIDENKO, 2008

Report no 2008:013

ISSN: 1651-4769

Department of Applied Information Technology

IT University of Göteborg

Göteborg University and Chalmers University of Technology

P O Box 8718

SE – 402 75 Göteborg

Sweden

Telephone + 46 (0)31-772 4895

Göteborg, Sweden 2008

ABSTRACT
A software measurement process helps to collect data in order to

evaluate a software product on a continuous basis. However, the

process can take a considerable amount of time. Project

managers are faced with a decision how many measurements they

can get in a certain amount of time, i.e. performance of a

software measurement tool. This thesis describes a controlled

experiment in academia that was aimed at evaluating

performance of a software measurement tool. The results show

how the architecture of a measurement system affects its

performance. Finally, we can use several architectural strategies

described in the thesis to minimize decrease in performance.

Keywords
Software Metrics, Software Measurement Process, Quality

Management, Software Architecture

1. INTRODUCTION
A software development company in the telecom domain should

provide competitive products to customers. The main challenges

in the domain are high software quality, cost optimization in

dynamic business environment and acceleration of software

development [1]. From another point of view, increasing demands

for reliability and new services cause constant increases in the

software complexity. In general, software projects are becoming

larger and more complex. Companies should use effective

development and management tools in order to achieve the goals

described above. A unit of a global software/hardware

development company from the Gothenburg region, later on

referred as the company, designed and implemented their

proprietary software measurement systems for project planning

and monitoring purposes. The implementation of software

measurement standards in software applications were investigated

from perspectives of different technologies in [2] and [3]. The

performance and maintainability perspectives of the software

measurement systems have not been investigated in the context of

software architecture.

The master thesis is a part of a software measurement project at

the company. The thesis describes the software measurement

standards and addresses the questions of performance of software

measurement systems at the company.

From a number of interviews with a stakeholder we have found

that the company will structure the measurements and files for the

software measurement system. Software architects are faced with

two decisions: a single file that has as many measurements as

possible or a bundle of measurement files that have one or small

amount of measurements inside. Following these architectural

decisions we have addressed the following research question in

this thesis:

RQ1 How is the performance of a measurement system affected

by the number of files and measurements used?

The research question was posed in the context of the software

architecture of software measurement systems at the company.

Since project managers use the variant number of measurements

and measurement files in the software measurement system, we

divided this research question into two sub-questions:

RQ1.1 How will the increased number of measurements in the

single file affect the system performance?

RQ1.2 How will the increased number of files affect the system

performance?

The structure of the paper is as follows. First, in Section 2 this

thesis describes relevant literature such as measurement standards

and state-of-the-art of software architecture. Next, in Section 3 we

present a measurement information model defined by the

International Organization for Standardization (ISO). Afterwards,

in Section 4 we describe the research method we used in the

thesis. The experiment design is described in Section 5.

Additionally, Section 6 describes the results of the experiment

and Section 7 discusses the results. Finally, Section 8 presents

conclusions.

2. RELATED WORK
Software architecture was defined by several sources. In this

thesis we use Fowler’s definition [4]: “Software architecture is the

highest-level breakdown of a system into its parts that is hard to

change late in the project”. Sommerville [5] supplements this

definition as “styles covering the overall system organization,

decomposition and control”.

Software metrics have been analyzed in different contexts in a

theoretical way by Basili [6], Allen [7] and Pfanzagl [8], where

the authors discuss and analyze software metrics as an instrument

for evaluation and estimation in software development process.

Therefore, project managers can use these instruments in their

software projects in order to build a high quality software product.

Woodside [9] investigated the performance changes that occur

when a small-size system is scaled up. The experiment design in

this thesis uses the experiences described by Woodside [9].

The experiment presented in this thesis follows an approach

similar to other studies in software engineering and architecture.

For example, Liu [10] evaluates the performance based on its

architecture and technology analysis. Similar to our experiment, it

is an evaluation of the performance changes that occur in the

software systems with different software architectures.

Basili [11] evaluates measurements in the software development

process and how the measurements help to monitor the quality of

the final product. The question of the quality of software process

was recognized by the International Organization for

Standardization (ISO). The organization published a set of related

standards. We use these standards as a reference architecture of

measurement systems in this thesis.

Following the international standards, Marzullo and Xexeo [3]

described a project assessment and tracking tool. The latter is

based on automation of software measurement process for project

managers. Additionally, Johansson et al. [2] described the

software measurements system at the company based on the

standard ISO/IEC 15939:2002 [12].

The papers above describe how different data sources can be

integrated together and how visualize the results. However, the

papers [2], [3] do not cover performance perspective of the

software measurements systems. Following the research question

of software measurements system at the company, we conducted

a study in order to measure the performance of the software

measurements system under an increased number of

measurements and measurement files.

2.1 Software measurement
The area of software engineering is related to other disciplines.

The Institute of Electrical and Electronics Engineers (IEEE)

described professional development activities of software

engineers in the “Guide of the Software Engineering Body of

Knowledge” [13]. Following this guide, a successful software

engineer should have knowledge in eight related disciplines.

Figure 1. Disciplines related to the Software Engineering [14].

Each related discipline is depicted in Figure 1. Three of them,

namely, project management, quality management and systems

engineering have related standards described below.

2.2 Project management
According to the Project Management Institute [15], a project

management is the application of knowledge, skills, tools, and

techniques to project activities in order to meet project

requirements. The IEEE has recognized the importance of project

management and published the standard adopted for the Software

Engineering discipline – IEEE Standard 1490:2003 [16]. The

IEEE 1490:2003 standard requires an experience in project

management, i.e. managers are responsible to choose what

process is appropriate for any given project [17].

2.3 Quality management
An international standard in quality management, ISO 9001 is not

aimed at software development, but specifies general principles

that can be applied for different industries that design, develop

and maintain products. The quality assurance procedures are

documented in quality manual that defines the quality process in

an organization. The manual is used to develop a quality plan for

every project. However, the standard does not define the quality

processes in a company. Sommerville [5] argues that the standard

is not concerned with ensuring that the processes reflect the best

practice, but gives the definition of processes to be used.

2.4 Software engineering
The two organizations most relevant to software engineering, the

International Electrotechnical Commission (IEC) and the

International Organization for Standardization (ISO), formed a

Joint Technical Committee (JTC). The latter published the

standard of the processes used across the entire life cycle of

software – ISO/IEC 12207.0 [18]. Although many researches

spoke of the need for quantitative measurement of software

processes, measurement was not yet widely described in the

standard [14].

In 1991, ISO has published the standard on the terminology for

the quality characteristics for software products – ISO/IEC 9126

[19]. It presents a common lexicon and guidance for:

1. Quality models – ISO/IEC 9126-1 [20];

2. External metrics – ISO/IEC TR 9126-2 [21];

3. Internal metrics – ISO/IEC TR 9126-3 [22];

4. Quality in use metrics – ISO/IEC TR 9126-4 [23].

ISO has now recognized a need for further improvement, as a

result of changes in the field of information technology [24].

Finally, in 2002 JTC produced the fundamental standard in

software measurement field: ISO/IEC 15939:2002. The latter

complements the ISO/IEC 12207.0, ISO/IEC 9126 standards and

owes much from Goal-Quality-Metric framework [6].

2.5 Goal Question Metric framework
GQM approach is a mechanism for defining and interpreting

operational, measurable goals [25]. It is based on the assumption

that measurement process should be a goal-oriented that helps to

decide what to measure. The GQM approach implies that the

process is defined from the top to the bottom and has a

hierarchical structure. The top of the structure is a goal. The latter

is refined in set of questions that result into metrics (Figure 2).

Figure 2. GQM framework, adapted from [26].

2.6 Life cycle process
Shewhart [27] described a life cycle process as a four step newer

ending cycle (Figure 3). Since the cycle has no end, it can be

considered as a model for continuous improvement.

ISO adapted the life cycle process for software quality

improvement in ISO/IEC 12207.0. Whereas the standard ISO/IEC

15939:2002 supplements ISO/IEC 12207.0, it uses the process

depicted in Figure 4.

Figure 3. Plan-Do-Check-Act cycle, adapted from [27].

The life cycle process is a set of activities and tasks. Moreover,

ISO defines a process for defining measures appropriate to the

information needs of a particular project [14]. Figure 4 discloses

the relationships of the activities and depicts the process in the

form of “Plan-Do-Check-Act” (PDCA) cycle.

Figure 4.The life cycle process, adapted from [13].

The activities (ovals) form a never ending cycle for improvement.

The activity “Establish Process Infrastructure” involves the

following actions: gaining management commitment, identifying

resources, and designating responsibilities. The objective point of

the “Planning” activity is to identify the business goals.

Afterwards, an improvement plan can be established. The

objective of the “Process Implementation” activity is the plan,

that includes tool deployment and staff training [14]. The

“Process Evaluation” activity is a set of actions in order to adjust

the plans. The last element in the figure is the “Process

Experience Base” rectangle. This is a repository of the best

practices from improvement activities.

3. MEASUREMENT INFORMATION

MODEL
A measurement information model ISO/IEC 15939:2002 [12]

depicted in Figure 5 provides a framework for the software

measurement system at the company. Firstly, the model specifies

a conceptual model, where the process of the measurement is

driven by an information need. The information need is what the

stakeholder of the measurement system wants to know [2]. A

stakeholder is an individual or an organization that sponsors

measurements and provides data or is a user of the measurement

results [12]. Taking into the account the information needs, we

can form a measurement plan, where measurement is a set of

operations in order to determine the value of the measured entity

[12]. The measurement plan helps us to answer the following

questions: (a) what to measure, (b) where the objects to be

measured are, (c) how to measure these objects, (d) to where

results must be delivered and (e) when measures might be done

[28]. The plan should be provided by measurement tools in order

to collect and present data to the stakeholders. Section 3 covers

the measurement system at the company, whereas in this section

we describe the standard ISO/IEC 15939:2002, a basement for the

software measurements tool.

The standard ISO/IEC 15939:2002 describes the measurement

process. The first step in the measurement process is a choice of

the information needs. Based on the information needs, we can

form the problem domain and choose the set of entities to

measure, such as a software project or a development process.

Each entity has one or several attributes, i.e. time and cost. The

standard ISO/IEC 15939:2002 defines an attribute as a property

or characteristic of an entity that can be distinguished

quantitatively or qualitatively by human or automated means [29].

Hence, using a scale and a measurement unit, we could assign a

value for each attribute and establish a base measure.

Consequently, we obtain a base measure (BM) which is a result

of quantification of an attribute.

Figure 5. The measurement information model ISO/IEC

15939:2002, adapted from [14].

Moreover, we can create mathematical formulas and establish

high-level measures. The formula is specified in the ISO/IEC

15939:2002 standard as a measurement function. Each

measurement function is a calculation, where an input is several

base measures and the result of the calculation is a derived

measure (DM).

Finally, we use a quantitative interpretation in order to present the

results of the measurement to the stakeholders. The interpretation

is based on decision criteria where intervals of values are defined.

Based on the discrete value from a derived measure and decision

criteria, an indicator can be calculated. An indicator is a visual

interpretation of results to the user. For instance, first interval of

values set a “low level” indicator, the second interval establishes

an “acceptable level” indicator, whereas the third interval assigns

a “high level” indicator. The “low level” indicator shows a bad

result, whereas the “high level” indicator stands for a good result.

3.1 Defect report example
The text below provides a defect report example suggested by

Johansson et al. [2]. The defect report example is based on the

ISO/IEC 15939:2002 software measurement model and the

measurement process defined above. The measurement process is

driven by an information need of software quality. A stakeholder

is interested in a proportion between development and debugging

costs. If the error recovery cost exceeds a threshold, the project

needs to take an action. Table 1 presents concepts of the example

adapted from [2].

The measurement process is driven by stakeholders. The

stakeholders in the example are project managers, who are

interested in the cost of defect reports. The entity and measurable

concept in the example are the budget deviation, whereas

attributes are: a number of defect reports, the average cost of the

single defect report and budget of the project. The attributes are

chosen by experienced developers of the measurement system at

the company. We converted the attributes to the quantitative

values in order to used the values in mathematical calculations.

Further, we use multiple quantitative values in calculations for an

acquisition of derived measures. The measurement function in the

example is a percentage of defects in the project. Finally,

applying an analysis model the following indicators are collected

from the derived measures:

• a green indicator - for values of derived measures below

1%;

• a yellow indicator - for values in the interval between

1% and 3%;

• a red indicator - for the remaining data [2].

Table 1. A defect reports measurement system [2]

Concept Definition

Information

Need

How much is the cost of defect reports

related to the project budget?

Measurable

Concept

Budget deviation (budget is fixed,

project cost on the other hand is

dynamic)

Entity Budget deviation

Attributes 1. The project related defect reports

2. Cost of one defect report in the project

3. Budget of the project

Measurement

Method

1. Count total number of defect reports

2. Calculate the number of hours per

defect report based on data from

previous projects [cost]

3. State the budget of the project (no

need to calculate, it’s only a number)

Base measures 1. NoD – Number of Defects

2. DC – Defect Cost

3. PB – Project Budget

Measurement

Function

((NoD times DC) divided by PB) in

percent

Indicator Red/Yellow/Green

Interpretation 1. Red indicator: Situation is critical.

An action is necessary.

2. Yellow indicator: “Moderate”

actions are necessary to avoid

budget overrun and time plan

delays.

3. Green indicator: The situation is in

accordance with a plan. No action is

necessary.

The example demonstrates that indicators could be concerned

with several measurements. The measurements should be

carefully selected with project managers in order to reach a high

accuracy in estimations.

From the example above we could conclude that the measurement

process answers the stakeholder’s question related to the cost of

the defect reports. For instance, if the cost is higher than planned,

the indicator would inform project managers about budget

problems in the project. As a result, the project managers could

take an action on the early stage in order to remain within a

budget.

4. RESEARCH METHOD
In this section we describe the research method we used. Research

strategies for the master thesis are an exploratory single case

study and an off-site experiment.

The case in the case study is measurement files that are used in

the software measurement process. In the case study we use an

assumption that the software measurement system at the company

uses multiple files in the measurement process.

We use several sources in the data collection process:

documentary information, physical artifacts and hand-written

notes from meetings with a stakeholder.

Documentary information is based on the published paper form

Johansson et al. [2]. The paper described the current software

measurement systems at the company.

Another important component of the case study is the physical

artifact. It is a prototype of a software measurement system. The

prototype has the same functionality and is built on the same

principles as the measurement systems used at the company. The

compiled code has been prepared specially for the master thesis.

Finally, notes were collected from a number of meetings with the

stakeholder. The notes are a result of the investigator’s interview.

Every note is a handwritten list with a summary from the meeting.

Afterwards, the notes were assembled in the diary. The notes

helped to pose the study question. This strategy gave an important

feedback from the stakeholders and formed future steps in the

research.

Several sources estimated performance of software systems.

According to a set of experiments performed by Woodside [9],

increased workload results in a drop of system performance. We

executed an experiment with a prototype system in order to verify

it.

5. EXPERIMENT DESIGN
In this chapter, we present a description of the experiment in the

laboratory environment. According to Wohlin [30], the objective

of the experiment is a manipulation of one or more variables in

order to control all other variables. Section 5.1 covers the design

of the experiment. Sections 5.2 and 5.3 cover independent and

dependent variables accordingly. Section 5.4 describes how the

experiment was performed. Section 5.5 describes hypothesis in

the experiment. Section 5.6 covers measurement instruments we

used in the experiments. Additionally, Section 5.7 describes

measurement objects. Section 5.8 presents treatments in the

experiment. Section 5.9 covers methods of statistical data

analysis. Finally, Section 5.10 describes an experimental setup.

5.1 Definition of the experiment
The objective of the experimental study is the differences in the

system performance for different system configurations (Section

5.4). In order to support the improvement in the best possible

way, it is important to know what system performance we could

expect. Hence, the experiment is motivated by a need to

understand how the software measurement system could be scaled

in the future.

In the laboratory experiment we increased the number of

measurements and measurement files. Afterwards, we measured

performance of the software measurement system for:

• a growing number of measurements in the single file;

• a growing number of measurement files.

Analyzing the results of the experiment, we can conclude if the

increased number of measurements and measurement files affects

the system performance.

We defined the goal of the experiment in compliance with

Goal/Question/Metric template [31]. According to this template,

we summarized the experiment in the following way: “The goal is

to analyze a prototype of software measurement systems for the

purpose of evaluation with respect to its performance from the

point of view of software architect in the context of software

architecture”.

The experiment was done off-line at IT University because the

company infrastructure is closed for the experiments. Moreover,

using industry professionals at the industry is impossible in the

current master thesis. We expect that the result of the experiment

will demonstrate the prototype performance of the software

measurement system. The prototype has the same core

functionality and is build on the same principles as the software

measurement systems at the company, which makes the general

results valid to industrial contexts.

5.2 Independent variables
The independent variables are those that I can control in the

experiment [30]. The independent variables are the following:

ni – the number of indicators

fi – the number of files in which the indicators are defined

ndm – number of derived measures

fdm – the number of files in which the derived measures are

defined

nbm – number of base measures

fbm – the number of files in which the base measures are defined

5.3 Dependent variables
Dependent variable is one that we want to study to see the effect

of changes in the independent variables [30]. The dependent

variable for the experiment is calculation time (CT).

5.4 Description of the experiment
The stakeholder emphasized the importance of CT for the

growing number of measurements and measurement files. From

the interview with a stakeholder we agreed on two sections of the

experiment.

First section

In the first section of the experiment, we measured calculation

time for a growing number of measurements in a single file.

Measurements in the experiment are base measures (BMs) and

derived measures (DMs). Base measures are obtained in

accordance with the measurement information model described in

Section 3. Derived measures are calculated based on

mathematical formulas where arguments are base measures. An

experimental model is described in Figure 6. The figure shows

that we have a fixed number of Base measures in this section of

the experiment. Each base measure is a value imported from

Dovico database [32] which is not in the figure. Having all base

measures we can calculate derived measures with help of

formulas described in Table 3. Additionally, from Table 3 we can

see that each formula has all base measures as its arguments, i.e.

in the calculation process the software measurement system

should retrieve data from all base measures. Hence, we assume

that an increase in the number of derived measures and the

number of indicators affects calculation time.

Figure 6. The experimental model for the first section of the

experiment.

Second section

Afterwards, we started the second section of the experiment

where we estimated calculation time for a growing number of

measurement files. Figure 7 describe the experimental model for

the second section of the experiment.

Indicators

Derived
Measures

Base
Measures

ni = 0 … 20

ndm = 1 … 20

nbm = 20

Figure 7. The experimental model for the second

section of the experiment.

In the first step of the experiment we made 20 files with base

measures. Each file has a single base measure.

In the second step of our experiment we produced 100 files with

derived measures. Each file with derived measures has a single

derive measure. Moreover, each derived measure is calculated

based on 20 base measures. Table 3 shows calculation formulas

for the first 20 derived measures.

In the third step of our experiment we built 100 files with

indicators where the first file has only one indicator. The last file

with indicators has all 100 indicators.

Finally, in the fourth step of our experiment we estimated

calculation time for each file with indicators.

Since we have a direct dependence between a number of

indicators and a number of derived measurement files, the first

file with an indicator opens only a single file with derived

measures. However, the last file with indicators opens 100 files

with derived measures. Therefore, from the second section of the

experiment we can measure how the number of files affects CT.

5.5 Hypothesis
A null hypothesis, H0: Mean time for calculations is the same for

all configurations. We divided this hypothesis in three sub-

questions:

H0A: µ1 = µ 2 = ... = µ 100, i.e. mean calculation time is the same

for different number of files.

Where µ 1… µ 100 are mean calculation time for treatment 1 to

100.

H0B: µ 101 =… = µ 140, i.e. mean calculation time is the same for

different number of measures.

Where µ 101 … µ 140 are mean calculation time for treatment

101 to 140.

H0C: µ 141 = … = µ 160, i.e. mean calculation time is the same

for different number of indicators.

Where µ 141 … µ 160 are mean calculation time for treatment

141 to 160.

H1A: µ 1 ≠ µ 2 ≠ ... ≠ µ 100, i.e. mean calculation time varies for

different number of files.

Where µ 1… µ 100 are mean calculation time for treatment 1 to

100.

H1B: µ 101 ≠… ≠ µ 140, i.e. mean calculation time varies for

different number of measures.

Where µ 101 … µ 140 are mean calculation time for treatment

101 to 140.

H1C: µ 141 ≠ … ≠ µ 160, i.e. mean calculation time varies for

different number of indicators.

Where µ 141 … µ 160 are mean calculation time for treatment

141 to 160.

5.6 Measurement instruments
Calculation time has been calculated with help of Visual Basic for

Applications. Figure 8 shows a fragment of the worksheet with

different configurations. Each row presents CT of the single

configuration. We calculated CT five times for each

configuration. Afterwards, mean time is calculated based on ten

measurements (T1, … , T10) for the first section of the

experiment and five measurements (T1, … , T5) for the second

section of the experiment.

5.7 Measurement objects
The following measurement objects are specified in the current

experiment:

• A base measure is an amount of hours specified for the task.

The data are derived from Dovico Timesheet database [32].

Dovico Timesheet is a project management application.

Managers can control tasks assigned for projects, time of

each task and expense of projects with Dovico Timesheet

application. Dovico Timesheet is based on MSSQL database.

Figure 9 presents a screenshot of the database. We use the

standard Excel data integration, an active link, in order to

build a real-time automated data synchronization between

Excel tables and MSSQL database. Table 2 shows all base

measures we used in the experiment from Dovico Timesheet

database.

Table 2. The base measures from Dovico Timesheet database

Number ID Value

BM1 DataEntry 22

BM2 Specifications 21

BM3 ConceptPlans 21

BM4 InitialDesign 22

BM5 WebMeeting 7

BM6 Email 7

BM7 Teaching 5

BM8 Installation 13

BM9 Development 10

BM10 Filing 24

BM11 Phone 10

BM12 PM 2

BM13 SickTime 32

BM14 Vacation 80

BM15 Implementation 8

BM16 Surveying 16

BM17 GraphicDesign 15

BM18 ProcessValidation 64

BM19 Research 7

BM20 Assessment 15

• A derived measure is calculated with help of mathematical

formula in MS Excel. Table 3 describes all 20 derived

measures and their mathematical formulas.

Table 3. The derived measures and formulas

ID Formula

DataEntryRate (BM1/(BM1+...BM20))*100

SpecRate (BM2/(BM1+...BM20))*100

ConceptPlansRate (BM3/(BM1+...BM20))*100

InitialDesignRate (BM4/(BM1+...BM20))*100

WebMeetingRate (BM5/(BM1+...BM20))*100

EmailRate (BM6/(BM1+...BM20))*100

TeachingRate (BM7/(BM1+...BM20))*100

InstallationRate (BM8/(BM1+...BM20))*100

DevelopmentRate (BM9/(BM1+...BM20))*100

FilingRate (BM10/(BM1+...BM20))*100

PhoneRate (BM11/(BM1+...BM20))*100

PMRate (BM12/(BM1+...BM20))*100

SickTimeRate (BM13/(BM1+...BM20))*100

VacationRate (BM14/(BM1+...BM20))*100

ImplementationRate (BM15/(BM1+...BM20))*100

SurveyingRate (BM16/(BM1+...BM20))*100

GraphicDesignRate (BM17/(BM1+...BM20))*100

ProcessValidationRate (BM18/(BM1+...BM20))*100

ResearchRate (BM19/(BM1+...BM20))*100

AssessmentRate (BM20/(BM1+...BM20))*100

An indicator is a color visualization of a derived measure. Each

indicator is corresponded to the single derived measure and

calculated based on the Table 4.

Table 4. The calculation table for indicators (analysis model)

Color Lower bound Upper bound

Red 5 10

Yellow 3 5

Green 1 3

White 10 100

Black -100 -10

Orange -1 0

Magenta -5 -1

Cyan -10 -5

Figure 9. A screenshot from Dovico Timesheet.

5.8 Treatments
We use the following treatments in the experiment:

• the number of base measures = 1…20;

• the number of derived measures = 1…20;

• the number of indicators = 0…100;

• the number of files with base measures = 1…20;

• the number of files with derived measures = 1… 100;

• the number of files with indicators = 0…100.

Appendix A presents the subset of tested combinations in the first

section of the experiment. In order to minimize an experimental

error, each experiment setting has been measured ten times for

statistical accuracy.

Afterwards, we measured calculation time with an increased

number of measurement files, see Section 5.3. Appendix B

demonstrates the subset of tested combinations in the second

section of the experiment. We measured calculation time for each

experiment setting five times in the second section of the

experiment. The results of the trial are described in Appendix C.

5.9 Methods of data analysis
In the first section of the experiment we measured each system

configuration ten times and calculated the arithmetic mean as:

∑
=

=

10

1

*
10

1

i

ixx

In the second section of the experiment we measured each system

configuration five times and calculated the arithmetic mean as:

∑
=

=

5

1

*
5

1

i

ixx

Additionally, we use analysis of variance method (ANOVA) [33]

and SPSS tool [34].

5.10 Experimental setup
The following hardware configuration is used during the

experiment:

CPU: Intel Core Duo 1.6 GHz;

RAM: 2 GB;

From a task manager we measured the CPU load on the

experiment system.

Base CPU load (average over 10 minutes): 5%; measured when

the system is idle;

Peak CPU load (peak over 10 minutes): 20%; measured when the

system is idle;

The system CPU utilization under the experiment in the peak is

40%.

Figure 8. A screenshot with results in MS Excel.

6. RESULTS
For the first section of the experiment we show the dependency

between variables: calculation time vs. number of derived

measures/indicators.

Time vs. derived measures
Figure 10 shows how calculation time depends on the number of

derived measures. Additionally, Table 5 shows minimal, maximal

and mean value for each measurement. From Figure 10 and Table

5, we could see that calculation time grows from 9 seconds for a

single derived measure up to 12 seconds for twenty derived

measures. Hence, whereas the number of derived measures is

increased by 2000%, calculation time is enhanced by 33%.

Table 5. Minimum, maximum and mean values

Number of

DMs

Min value Max value Mean value

1 00:09 00:11 00:09

2 00:09 00:13 00:11

3 00:10 00:15 00:11

4 00:10 00:11 00:10

5 00:11 00:15 00:13

6 00:12 00:17 00:14

7 00:11 00:18 00:13

8 00:10 00:12 00:11

9 00:11 00:13 00:12

10 00:11 00:12 00:11

11 00:11 00:16 00:13

12 00:11 00:12 00:11

13 00:11 00:12 00:12

14 00:11 00:12 00:11

15 00:11 00:14 00:12

16 00:11 00:13 00:12

17 00:11 00:13 00:12

18 00:11 00:13 00:12

19 00:11 00:14 00:12

20 00:11 00:17 00:12

The results of Anova test (Table 6) show that we can reject the

H0B hypothesis.

Table 6. Anova test for time vs. number of derived measures

Variable df F Significance

level

H0B accepted

Number of

derived

measures

19 6.234 p<0.0001 No

Time vs. indicators
The second section of the experiment shows how calculation time

depends on a number of indicators. Table 7 shows minimal,

maximum and mean values for each measurement. As we

mentioned earlier, each measurement of calculation time was

done by 10 times. Figure 11 shows that calculation time grows

from 13 seconds for a single indicator up to 18 seconds for 20

indicators.

Figure 11. The dependence between the number of indicators

and CT.

The figure shows that since the number of indicators in the single

file is increased by 2000%, calculation time went up by 38%.

Table 7. Minimum, maximum and mean values

Number of indicators Min value Max value Mean value

1 00:11 00:15 00:13

2 00:13 00:17 00:15

3 00:14 00:15 00:14

4 00:14 00:15 00:14

5 00:14 00:15 00:14

6 00:14 00:16 00:15

7 00:14 00:17 00:15

8 00:14 00:15 00:14

9 00:14 00:16 00:15

10 00:14 00:17 00:15

11 00:14 00:16 00:15

12 00:14 00:17 00:16

13 00:15 00:16 00:16

14 00:15 00:17 00:16

15 00:15 00:16 00:16

16 00:14 00:17 00:16

17 00:15 00:17 00:16

18 00:15 00:19 00:17

19 00:17 00:19 00:18

20 00:12 00:18 00:14

Figure 10. The dependence between the number of

derived measures and CT.

The results of Anova test (Table 8) show that we can reject the

H0C hypothesis.

Table 8. Anova test for time vs. number of indicators

Variable df F Significance

level

H0C

accepted

Number of

indicators

19 19.248 p<0.0001 No

6.1 Second section of the experiment
We present the results of the second section of the experiment in

the Figure 12. From the figure, we can see that a growing number

of files with base measures results in the growth of calculation

time by 938% as specified in Table 9.

Table 9. Deviation of CT in the second section of the

experiment, subset of data with a step = 10 files

Number of

files

Min value Max value Mean value

1 00:14 00:21 00:16

10 00:20 00:24 00:22

20 00:20 00:22 00:22

30 00:40 00:44 00:43

40 00:44 01:08 00:53

50 01:00 01:03 01:01

60 01:09 01:17 01:12

70 01:28 02:36 01:52

80 01:25 01:39 01:33

90 01:38 02:10 01:48

100 02:25 02:30 02:27

The results of the Anova test (Table 10) show that p<0.0001. It

means that we can reject the H0A hypothesis.

Table 10. Anova test for the second section of the

experiment

Variable df F Significance

level

H0A

accepted

Number

of files

99 86.141 p<0.0001 No

7. DISCUSSION
The consequences of a poor system performance can be very

severe. In terms of the software measurement system, it can result

in a growth of calculation time. In this section we discuss factors

that affect the system performance.

A common approach in handling enterprise domain logic is to

split the domain layer in several layers [4]. Layering is the

organization of the software into separate functional components

that interacts in sequential and hierarchical way [35]. Breaking

down a system into layers has a number of benefits:

• it is easy to understand a single layer without knowing

much about the other layers;

• it helps to minimize dependencies between layers [4].

Although layering increased maintainability of the system, it is

necessary to mention that extra layers can harm the performance

[4].

Besides the benefits in term of maintainability that layering

brings, additional layers could imply an increase in the number of

files. From the experiment we can see that an increase in the

number of files declines the performance. Consequently, we can

conclude that a growth of layers declines the performance.

Furthermore, it is important to distinguish layering from

separating the domain logic across multiple physical tiers. Dyson

[36] emphasized that multiple physical tiers will slow down the

Figure 12. The dependence between the number of files and CT.

communication and, as a result, it significantly affects the overall

system performance. The results of our experiment support this

statement. From the experiment we can see that an increased

number of files decreases the performance. Since additional tiers

increase the number of files, we conclude that the additional tiers

reduce the performance.

Finally, since the number of measures grows, we should mention

the limitations that Microsoft Excel has [37]. From Table 11 we

can conclude that the number of files that MS Excel can operate

are limited. In order to avoid Microsoft Excel limitations, we can

use external database management systems. However, from our

experience with external databases, such as Dovico Timesheet

[32] and SDMetrics [38], we observe that any external database

decreased the performance.

Table 11. Microsoft Excel limitations [37]

Issue Limit

Open workbooks, sheets on

workbook, linked sheets

Limited by available

Random Access Memory

(RAM)

Worksheet size 1048576 rows by 16384

columns

Column width 256 characters

Total number of characters

that a cell can contain

32767 characters

Number precision 15 digits

Length of formula contents 8,192 characters

Arguments in a function 255

Nested level of functions 64

8. CONCLUSIONS AND FUTURE WORK
The thesis presents the experiment conducted in the academia.

The result of the experiment aimed at evaluating the dependence

of calculation time from the number of measurements and

measurement files. From the experiment covered in the thesis we

can conclude that measurements have a moderate effect on

performance. The most significant factor is the number of files.

Thus, we can conclude that the number of measurement files has

the major effect on the overall system performance.

While we could suppose that the number of measurement files

could be infinite in the experiment, it should be apparent that MS

Excel has limitations (Table 11). In fact, the number of files

depends on available Random Access Memory. Consequently, the

number of files cannot be infinite in the software measurement

system.

In order to support the current conclusions, further research

should include an industrial case study from maintainability and

performance perspectives in the specific IT environment at the

company.

8. ACKNOWLEDGMENTS
I would like to thank my supervisor, Miroslaw Staron, for his

guidance and encouragement through the duration of my master

thesis project. I am very grateful to the members of Department of

Applied Information Technology at IT University of Göteborg.

Finally, I would like to extend thanks to my fellow students from

Software Engineering and Management program, who provided

me with friendly and supporting environment.

9. BIBLIOGRAPHY
1. Nambisan, S. and D. Wilemon, Software

Development and New Product Development:

Potentials for Cross-Domain Knowledge Sharing,

in IEEE Transactions on Engineering

Management. 2000.

2. Johansson, L., W. Meding, and M. Staron,

Quantifying and visualizing metrics dependencies

at Ericsson: a case study. 2006.

3. Marzullo F.P., X.G.B., A Qualitative Study on

PATT - A Project Assessment and Tracking Tool.

2003, Federal University of Rio de Janeiro: Rio de

Janeiro, Brazil.

4. Fowler M., R.D., Foemmel M., Hieatt E., Mee R.,

and Stafford R., Patterns of enterprise

application architecture. 2002, Boston: Addison-

Wesley.

5. Sommerville, Software Engineering. 7 ed. 2004,

Boston: Addisson-Wesley Publishers.

6. Basili, V., A Methodology for Collecting Valid

Software Engineering Data. IEEE Transactions on

Software Engineering, 1984.

7. Allen, M., Introduction to Measurement Theory.

2001: Waveland Pr Inc.

8. Pfanzagl, J., Theory of Measurement. 2nd ed.

Physica-Verl. 1971.

9. Woodside, C. and C. Schramm, Scalability and

Performance Experiments Using Synthetic

Distributed Server Systems. 1996, Carleton

University: Ottawa.

10. Liu, J., Performance and Scalability Measurement

of COTS EJB Technology. 2002, University of

Sydney: Sydney, Australia.

11. Basili, V., Evaluating and Comparing Software

Metrics in the Software Engineering Laboratory.

1981, University of maryland: Maryland.

12. ISO, ISO/IEC 15939. Information Technology -

Software Measurement Process. 2000, Geneva:

International Organization for Standardization.

13. Abran A., M.J., Guide to the Software

Engineering Body of Knowledge. 2004, Los

Alamitos: IEEE Computer Society Press.

14. Moore, J.W., The Road Map to Software

Engineering: A Standards-Based Guide. 2006,

New Jersey: John Wiley & Sons, Inc.

15. PMI, Guide to the Project Management Body of

Knowledge. 2000: Newport Square.

16. ISO, ISO/IEC 1490:2003. 2003, Geneva:

International Organization for Standardization.

17. IEEE, IEEE Guide Adoption of PMI Standard - A

Guide to the Project Management Body of

Knowledge. 2004.

18. ISO, ISO/IEC 12207 - Information Technology –

Software Life Cycle Processes. 1995, Geneva.

19. ISO, ISO/IEC IS 9126, Software Product

Evaluation – Quality Characteristics and

Guidelines for Their Use. 1991, Geneva:

International Organization for Standardization.

20. ISO, ISO/IEC 9126-1, Software Engineering –

Product Quality – Part 1: Quality model. 2001,

Geneva: International Organization for

Standardization.

21. ISO, ISO/IEC TR 9126-2, Software Engineering –

Product Quality - Part 2: External Metrics. 2003,

Geneva: International Organization for

Standardization.

22. ISO, ISO/IEC TR 9126-3, Software Engineering –

Product Quality - Part 3: Internal Metrics. 2003,

Geneva: International Organization for

Standardization.

23. ISO, ISO/IEC TR 9126-4, Software Engineering –

Product Quality – Part 4: Quality in Use Metrics.

2004, Geneva: International Organization for

Standardization.

24. Azuma, M., SQuaRE: The next Generation of

ISO/IEC 9126 and 14598 International Standards

Series on Software Product Quality, in

Proceedings of the European Software Control

and Metrics Conference. 2001: London.

25. Basili V., R.H., The TAME project: Towards

improvement –oriented software environments.

IEEE Transactions on Software Engineering,

1988.

26. Basili V., R.H., The Goal Question Metric

Approach, in Department of Computer Science.

1994, University Of Maryland.

27. Shewhart, W., Statistical Method from the

Viewpoint of Quality Control. 1939, New York:

Dover.

28. I. Caballero, E.V., A Data Quality Measurement

Information Model Based on ISO/IEC 15939.

2006.

29. ISO, ISO/IEC 15939. Information Technology -

Software Measurement Process. 2002, Geneva:

International Organization for Standardization.

30. Wohlin, C. and P. Runeson, Experimentation in

Software Engineering: An Introduction. 2000,

Boston: Kluwer Academic Publishers.

31. Solingen, R.v., The Goal/Question/Metric

Method: A practical Guide for Quality

Improvement and Software Development, ed. M.-

H. International. 1999.

32. Dovico. Dovico Timesheet. [cited 2008 2008-02-

12]; Dovico Timesheet]. Available from:

www.dovico.com.

33. Wilcox, R., Applying Contemporary Statistical

Techniques, ed. U.o.S. California. 2002, Southern

California: Academic Press.

34. SPSS. SPSS for Windows. 2008 [cited 2008-04-

14]; Available from: www.spss.com.

35. TechTarget. Search Software Quality. [cited

2008 05.16]; Available from:

http://searchsoftwarequality.techtarget.com/sDefin

ition.

36. Dyson, P. and A. Longshaw, Architecting

Enterprise Solutions: Patterns for High-

Capability Internet-based Systems. 2004: John

Wiley & Sons.

37. Microsoft. Microsoft Office Online. 2008 [cited

2008 02.20]; Available from:

http://office.microsoft.com/en-

us/excel/HP100738491033.aspx?pid=CH1010306

21033.

38. SDMetrics. The Software Design Metrics tool for

the UML. [cited 2008 03.05]; Available from:

http://www.sdmetrics.com/.

APPENDIX A. TREATMENTS – THE FIRST SECTION OF THE EXPERIMENT

The treatment

ID

The number of

base measures

The number of

derived measures

The number of

indicators

The number of

files

1 20 1 0 1

2 20 2 0 1

3 20 3 0 1

4 20 4 0 1

5 20 5 0 1

6 20 6 0 1

7 20 7 0 1

8 20 8 0 1

9 20 9 0 1

10 20 10 0 1

11 20 11 0 1

12 20 12 0 1

13 20 13 0 1

14 20 14 0 1

15 20 15 0 1

16 20 16 0 1

17 20 17 0 1

18 20 18 0 1

19 20 19 0 1

20 20 20 0 1

21 20 1 1 1

22 20 2 2 1

23 20 3 3 1

24 20 4 4 1

25 20 5 5 1

26 20 6 6 1

27 20 7 7 1

28 20 8 8 1

29 20 9 9 1

30 20 10 10 1

31 20 11 11 1

32 20 12 12 1

33 20 13 13 1

34 20 14 14 1

35 20 15 15 1

36 20 16 16 1

37 20 17 17 1

38 20 18 18 1

39 20 19 19 1

40 20 20 20 1

APPENDIX B. RESULTS, THE FIRST SECTION OF THE EXPERIMENT

The treatment

ID

The number of

base measures

The number of

derived

measures

The number of

indicators

The number of

files
Mean calculation time

1 20 1 0 1 00:09

2 20 2 0 1 00:11

3 20 3 0 1 00:11

4 20 4 0 1 00:10

5 20 5 0 1 00:13

6 20 6 0 1 00:14

7 20 7 0 1 00:13

8 20 8 0 1 00:11

9 20 9 0 1 00:12

10 20 10 0 1 00:11

11 20 11 0 1 00:13

12 20 12 0 1 00:11

13 20 13 0 1 00:12

14 20 14 0 1 00:11

15 20 15 0 1 00:12

16 20 16 0 1 00:12

17 20 17 0 1 00:12

18 20 18 0 1 00:12

19 20 19 0 1 00:12

20 20 20 0 1 00:12

21 20 1 1 1 00:13

22 20 2 2 1 00:15

23 20 3 3 1 00:14

24 20 4 4 1 00:14

25 20 5 5 1 00:14

26 20 6 6 1 00:15

27 20 7 7 1 00:15

28 20 8 8 1 00:14

29 20 9 9 1 00:15

30 20 10 10 1 00:15

31 20 11 11 1 00:15

32 20 12 12 1 00:16

33 20 13 13 1 00:16

34 20 14 14 1 00:16

35 20 15 15 1 00:16

36 20 16 16 1 00:16

37 20 17 17 1 00:16

38 20 18 18 1 00:17

39 20 19 19 1 00:18

40 20 20 20 1 00:14

APPENDIX C. RESULTS, THE SECOND SECTION OF THE EXPERIMENT

The treatment

ID

The number

of base

measures

The number

of derived

measures

The number

of indicators

The number

of files with

base measures

The number

of files with

derived

measures

The number

of files with

indicators

Mean

calculation

time

1 20 1 1 20 1 1 00:16

2 20 2 2 20 2 2 00:13

3 20 3 3 20 3 3 00:11

4 20 4 4 20 4 4 00:11

5 20 5 5 20 5 5 00:11

6 20 6 6 20 6 6 00:16

7 20 7 7 20 7 7 00:17

8 20 8 8 20 8 8 00:16

9 20 9 9 20 9 9 00:16

10 20 10 10 20 10 10 00:22

11 20 11 11 20 11 11 00:22

12 20 12 12 20 12 12 00:22

13 20 13 13 20 13 13 00:22

14 20 14 14 20 14 14 00:22

15 20 15 15 20 15 15 00:22

16 20 16 16 20 16 16 00:22

17 20 17 17 20 17 17 00:21

18 20 18 18 20 18 18 00:22

19 20 19 19 20 19 19 00:22

20 20 20 20 20 20 20 00:22

21 20 21 21 20 21 21 00:43

22 20 22 22 20 22 22 00:43

23 20 23 23 20 23 23 00:44

24 20 24 24 20 24 24 00:43

25 20 25 25 20 25 25 00:43

26 20 26 26 20 26 26 00:44

27 20 27 27 20 27 27 00:44

28 20 28 28 20 28 28 00:44

29 20 29 29 20 29 29 00:45

30 20 30 30 20 30 30 00:43

31 20 31 31 20 31 31 00:45

32 20 32 32 20 32 32 00:46

33 20 33 33 20 33 33 00:48

34 20 34 34 20 34 34 00:50

35 20 35 35 20 35 35 00:50

36 20 36 36 20 36 36 00:48

37 20 37 37 20 37 37 00:52

38 20 38 38 20 38 38 00:46

39 20 39 39 20 39 39 00:48

40 20 40 40 20 40 40 00:53

41 20 41 41 20 41 41 01:04

42 20 42 42 20 42 42 01:04

43 20 43 43 20 43 43 01:05

44 20 44 44 20 44 44 01:05

45 20 45 45 20 45 45 01:05

46 20 46 46 20 46 46 01:01

47 20 47 47 20 47 47 01:01

48 20 48 48 20 48 48 01:04

49 20 49 49 20 49 49 01:04

50 20 50 50 20 50 50 01:01

51 20 51 51 20 51 51 00:24

52 20 52 52 20 52 52 01:10

53 20 53 53 20 53 53 01:10

54 20 54 54 20 54 54 01:31

55 20 55 55 20 55 55 01:09

56 20 56 56 20 56 56 01:21

57 20 57 57 20 57 57 01:11

58 20 58 58 20 58 58 01:07

59 20 59 59 20 59 59 01:31

60 20 60 60 20 60 60 01:12

61 20 61 61 20 61 61 01:30

62 20 62 62 20 62 62 01:16

63 20 63 63 20 63 63 01:16

64 20 64 64 20 64 64 01:19

65 20 65 65 20 65 65 01:22

66 20 66 66 20 66 66 01:18

67 20 67 67 20 67 67 01:30

68 20 68 68 20 68 68 01:37

69 20 69 69 20 69 69 01:31

70 20 70 70 20 70 70 01:52

71 20 71 71 20 71 71 01:53

72 20 72 72 20 72 72 01:32

73 20 73 73 20 73 73 02:02

74 20 74 74 20 74 74 01:49

75 20 75 75 20 75 75 01:39

76 20 76 76 20 76 76 01:36

77 20 77 77 20 77 77 01:35

78 20 78 78 20 78 78 01:36

79 20 79 79 20 79 79 01:25

80 20 80 80 20 80 80 01:33

81 20 81 81 20 81 81 01:30

82 20 82 82 20 82 82 01:36

83 20 83 83 20 83 83 01:48

84 20 84 84 20 84 84 01:42

85 20 85 85 20 85 85 01:45

86 20 86 86 20 86 86 01:48

87 20 87 87 20 87 87 02:00

88 20 88 88 20 88 88 01:58

89 20 89 89 20 89 89 02:10

90 20 90 90 20 90 90 01:48

91 20 91 91 20 91 91 01:47

92 20 92 92 20 92 92 01:58

93 20 93 93 20 93 93 02:09

94 20 94 94 20 94 94 01:58

95 20 95 95 20 95 95 02:00

96 20 96 96 20 96 96 02:03

97 20 97 97 20 97 97 02:08

98 20 98 98 20 98 98 02:12

99 20 99 99 20 99 99 02:22

100 20 100 100 20 100 100 02:27

