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SUMMARY 
The detection of a change from a constant level to a monotonically increasing (or 
decreasing) regression is of special interest for the detection of outbreaks of, for 
example, epidemics. A maximum likelihood ratio statistic for the sequential 
surveillance of an “outbreak” situation is derived. The method is semiparametric in 
the sense that the regression model is nonparametric while the distribution belongs to 
the regular exponential family. The method is evaluated with respect to timeliness 
and predicted value in a simulation study that imitates the influenza outbreaks in 
Sweden. To illustrate its performance, the method is applied to Swedish influenza 
data for six years. The advantage of this semiparametric surveillance method, which 
does not rely on an estimated baseline, is illustrated by a Monte Carlo study. The 
proposed method is successively accumulating the information. Such accumulation is 
not made by the commonly used approach where the current observation is compared 
to a baseline. The advantage of information accumulation is illustrated. 
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1. INTRODUCTION 

An outbreak of an epidemic disease should be detected as soon as possible after the 
onset. On-line monitoring of incidences can help detect the yearly outbreaks of 
influenza as well as new diseases, such as SARS and avian flu, and effects of 
bioterrorism. We will illustrate the methodology of outbreak surveillance by using 
influenza data from Sweden. An early detection of the onset of the outbreak is useful 
in order for health authorities to act timely. 
  In order to develop a system for quick and safe detection, the methodology of 
statistical surveillance can be used. A process is observed, and the cumulated 
information is continually evaluated in order to detect a change in an underlying 
process. For a review and discussion of prospective statistical surveillance in public 
health, see Sonesson and Bock, (2003). In industrial surveillance, control charts have 
been in use since 1930. However, the situation in public health surveillance requires 
other evaluations of how the aims are met. Woodall and others, (2008) have stressed 
the gains of cross-fertilisation. Surveillance systems for detecting outbreaks should 
have known properties concerning detection ability, risks of false alarms and 
predictive value, as described in Section 4.   
 Various approaches have been suggested for public health surveillance. Sometimes 
the spatial pattern is important and the surveillance is focused on detecting a spatial 
clustering of adverse health events, as discussed for example by Besag and Diggle, 
(1977), Kulldorff, (1997), Diggle and others, (2004), Lawson and Rodeiro, (2004), 
Sonesson, (2007) and Tibshirani and Wang, (2008). However, in some situations, 
such as the case of influenza in Sweden, the outbreak pattern is not characterised by 
simple clustering, Bock and Pettersson, (2006). Even though spatial patterns are very 
important, we will not deal with this issue in this paper. Instead, we concentrate on 
the detection of an increased incidence. A combination of spatial issues and an 
increased incidence was treated for example by Diggle and others, (1999). It might be 
useful to combine our surveillance statistic with a spatial approach. However, this is 
not done here. 
 Most methods suggested for detecting an increased incidence are based on some 
parametric model for the process. The most commonly used method to detect an 
increased incidence is to compare each observed incidence value with a baseline. A 
signal is given as soon as one observation exceeds a threshold, usually a 95% 
prediction interval (see for example Stroup and others, (1988)). The effect of 
misspecifying the baseline due to estimation errors will be examined in Section 6. 
There are also more advanced parametric models for the incidence during the 
outbreak. The cyclic regression function by Serfling, (1963) has frequently been used 
for seasonal diseases like influenza. It was used by Le Strat and Carrat, (1999), who 
applied a Hidden Markov Model (HMM) to model the switch between two different 
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states (non-epidemic and epidemic), where the switch occurs at an unknown time. 
The conditional mean for the process, given the state, was modelled by the Serfling 
model. The estimated periodicity of the disease was the same as that of the season 
(one year), so the effects cannot be separated. Sebastiani and others, (2006) base the 
surveillance on the comparison between an advanced model (based on data from 
previous years) for the “average” curve and the observations from the current season. 
By such comparisons, an alarm will be given if the disease starts unusually early in 
the current season, but not if the start is average or late. This will tell us whether the 
current season is extraordinary in comparison to an average season. However, here 
the aim is to detect the onset of an outbreak as early as possible.  
 In Andersson and others, (2007) and Bock and others, (2007) it is concluded that 
methods in which the expected non-epidemic value is modelled by a parametric 
function are not suitable for the surveillance of influenza incidence, since the 
parameters, describing the size, shape and onset time of the outbreak, vary much from 
year to year. Thus, we suggest a nonparametric model for the change in incidence at 
the onset of the outbreak.  
 A simple but reasonable model for the expected value of the incidence at the 
outbreak is that the expected value is constant at first and then, after the onset of the 
outbreak, monotonically increasing for some time. If there are seasonal effects or 
other disturbing covariates, the residuals from a model including these characteristics 
may be relevant for the surveillance. Most of the problems in on-line surveillance are 
the same for several diseases and also for applications other than medical ones, but 
here we have chosen the case of influenza outbreaks in order to be specific. In Section 
2 the model and the semiparametric maximum likelihood estimation by Frisén and 
others, (2007a), which we will utilise for the surveillance method in Section 3.4, are 
described.  
 Baron, (2000) suggested a nonparametric method for the detection of a 
stochastically larger distribution. When working with detecting the onset of an 
influenza outbreak, Baron, (2002) stated that his nonparametric method would give a 
too long delay, and therefore he preferred a parametric method. The method we 
propose here is something in-between, since it is nonparametric but utilises 
monotonicity. 
 In many papers monotone gradual changes are discussed. For example, Fried and 
Imhoff, (2004) stated that the detection of a monotonic trend from a constant baseline 
is important in medical applications. They suggested a retrospective test for a flexible 
monotonic trend and applied this to moving windows. Chang and Fricker, (1999) 
treated the problem of detecting when the expected value exceeds a threshold, given 
that the trend is monotonic. Chang and Fricker derived a repeated likelihood ratio test 
for solving this problem, which is different from detecting when a monotonic trend 
starts.. 
 Some surveillance methods are in fact using repeated hypothesis testing. Earlier 
surveillance methods are often variants of the Shewhart method, which is described in 
Section 3.5, in the sense that information is not aggregated. This is not always an 
efficient method. Serfling, (1963) and Quenel and others, (1994) suggested that there 
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should be an alarm as soon as there are two consecutive observations beyond the 
limit. A more fruitful approach could be the use of a surveillance method that gives 
optimal weights to the observations. Optimal aggregation of the sequentially obtained 
observations is essential. This will be demonstrated in Section 6. 
 In Section 3, we describe methods of surveillance with an emphasis on likelihood 
based methods, since the optimality properties of these are well known (Frisén, 
2003). For our outbreak detection, we need a system for detecting a change from a 
constant level to an increasing function. Here we suggest and evaluate a surveillance 
method based on the maximum likelihood ratio for two states. We assume that the 
distribution belongs to the exponential family. Details are given for the normal and 
Poisson distributions. The state before the outbreak is characterised by a constant (but 
unknown) expected incidence. The state at the onset of the outbreak is characterised 
by a monotonically increasing expected incidence, but neither the shape nor the 
values of the increasing function are specified. Since the surveillance method is 
nonparametric with respect to the regression but parametric with respect to the 
distribution, it is semiparametric.  
 When an outbreak occurs quick and safe detection is essential. The onset should be 
detected with minimal delay, but at the same time, false alarms should be rare in 
order to ensure that the alarm has a high predictive value. Evaluation metrics are 
discussed in Section 4. The semiparametric method is applied to Swedish data in 
Section 5, where also a simulation study describes the properties of the method for 
this situation. In Section 6 we compare the commonly used Shewhart approach to our 
method, which accumulates information by combining likelihood expressions. 
Conclusions are made in Section 7. 

2. MODELS AND SPECIFICATIONS 

In Andersson and others, (2007), Swedish influenza data from six seasons (1999–
2006) were analysed, and it was concluded that several of the characteristics of the 
yearly influenza cycle varied considerably from year to year. The baseline varies and 
is hard to estimate due to lack of data. This makes it difficult to describe the non-
epidemic period by the same parametric function. The peak time varies, as do the 
outbreak time and the shape of the outbreak. All this makes it difficult to describe the 
epidemic period by a parametric function. Therefore, we suggest a nonparametric 
approach based on monotonicity restrictions (the outbreak regression). 
 We monitor the process X and at time t we observe x(t). The decision time is 
denoted by s. At each decision time s we use the available observations xs = {x(1), ..., 
x(s)} to discriminate between two states. The state D before the outbreak is 
characterised by a constant (but unknown) expected incidence. The state C at the 
onset of the outbreak is characterised by a monotonically increasing expected 
incidence. Let τ be the unknown time of the onset of the outbreak. Thus, at τ = j the 
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expected value μ changes from a constant (baseline) level to an increasing process. 
This case corresponds to state Cj, j = 1, 2, ..., s. We have { 1 2 ... }C C C Cs= ∪ ∪  or 
equivalently C = {τ≤s}. The state with the constant baseline is denoted D, where 
D={τ>s}. The states can be expressed by the expected value of the incidence, μ(t), as: 
 
   State D: μ(1) = μ(2) = ... = μ(s)  
  State C1: μ(1) ≤ μ(2) ≤ ... ≤ μ(s)  (2.1) 
   State C2: μ(1) < μ(2) ≤ ... ≤ μ(s)  
  State Cj: μ(1) = ... = μ(j-1) < μ(j) ≤ ... ≤ μ(s) for j > 2, 
 
where j is the first time when we have an increased expected value. For both j = 1 and 
j = 2 the curve is increasing. 
 The situation where the regression is constant at first and then monotonically 
increasing will be called “outbreak regression”. In many situations, the “normal”, or 
“in-control”, state can be described by a constant regression, and then, at a possibly 
unknown time, the process changes to an increasing regression. Apart from matters of 
public health, this can also be of interest when investigating whether data deviate 
from a specified econometric model by analysing whether the residuals are increasing 
after the change point. The opposite situation (the regression is first constant and then 
monotonically decreasing) can be treated in the same way but will not be discussed 
here. 
 There are several suggestions for nonparametric estimation. For example Gill and 
Baron, (2004) suggest a highly general nonparametric estimation method for 
monotonic functions. Most nonparametric methods are based on some kind of 
smoothing and least squares. Although these are excellent for graphics, which give 
good insights, maximum likelihood estimations have advantages for some purposes. 
For tests on monotonicity properties, there are methods based on kernel estimates 
(Bowman and others, 1998) and on likelihood ratios (Andersson and Frisén, 2002). In 
likelihood based surveillance, we need maximum likelihood estimators. (Frisén, 
1986) gave the maximum likelihood estimator for a unimodal regression 
(monotonically increasing and then monotonically decreasing, or vice versa). Here we 
will use the maximum likelihood estimate for the outbreak regression situation. This 
estimator is presented in Frisén and others, (2007a) for the family of regular 
exponential distributions which includes both the normal and Poisson distributions. 

3. LIKELIHOOD BASED SURVEILLANCE 

Some characteristics separate a surveillance situation from a hypothesis testing 
situation. In hypothesis testing, we use the sample data to perform one test to judge 
whether we can reject the null hypothesis or not. In surveillance, we take repeated 
decisions to determine whether the process is in state D or if it has changed to state C. 
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The specifications of states D and C change with the decision time s, since D = {τ > 
s} and C = {τ ≤ s}. Generally, the aim of a surveillance system is to, at each decision 
time s, discriminate between two states; “the change has occurred” (state C) and “the 
change has not occurred” (state D). A surveillance system consists of an alarm 
statistic and an alarm limit. 

3.1. The full likelihood ratio method 

Shiryaev, (1963) showed that, for discriminating between the two events C={τ ≤ s} 
and D={τ > s}, the full likelihood ratio between C and D is optimal in the sense that 
the method gives a minimal expected delay for a fixed false alarm probability. The 
methods considered here are all based on the likelihood ratio.  
  The full likelihood ratio method gives an alarm for the first time s at which  
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where f is the likelihood function, xs = {x(1), x(2), ..., x(s)} and        ks=k/(1-
k)⋅(P(D(s))/P(C(s)). For the situation where P(C) = 1-P(D), it was shown by Frisén 
and de Maré, (1991) that the likelihood ratio is equivalent to the posterior probability 
for surveillance  
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 The definition of the event C is important. A very general situation is that we want 
to discriminate between “the change time is in the future”, i.e. D = {τ>s}, and “the 
change has occurred”, i.e. C={τ ≤ s}. The event C is composite, C = {{τ=1}, 
{τ=2},..., {τ=s}}. The partial likelihood ratio for one of these components is 
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The full likelihood ratio is based on all s partial likelihood ratios 
 
   1 2 sw L(s,1) w L(s,2) ... w L(s,s)⋅ + ⋅ + + ⋅ ,  
 
where wj = P(τ = j)/P(τ ≤ s). 
 The important change in the outbreak situation is a change in the expected value, 
μ, which depends on τ and is expressed as 
 



 7

   
D

Cj

(t),   t
(t) 

(t), t ,   j

⎧μ < τ⎪μ = ⎨
μ ≥ τ τ =⎪⎩

  

 
If a parametric approach had been used, then μ might be specified as  
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where μ0, β0 and β1 are known constants.  
  If X follows a normal distribution, the full likelihood ratio method has the 
following alarm rule: 
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and for a Poisson distribution, the alarm statistic can be written as: 
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3.2. The Shiryaev Roberts approach of the likelihood ratio method 

When the intensity of the change, P(τ = j⏐τ ≥ j), tends to zero, the full likelihood ratio 
method (LR, see (3.1)) tends to the method suggested by Shiryaev, (1963) and 
Roberts, (1966). This method gives an alarm when  
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exceeds a constant alarm limit. This approach can also be motivated by a non-
informative density for τ. 
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3.3. The maximum likelihood ratio approach 

The generalised likelihood ratio (GLR) surveillance method by Lai, (1995) uses the 
maximum likelihood estimator of the value after the change.  
 For a situation that is somewhat related to outbreak detection, namely turning point 
detection, Frisén, (2000) suggested a surveillance method based on nonparametric 
estimation without any parametric assumptions, only the natural order restrictions that 
are present at a turning point. The method is based on the maximum likelihood ratio 
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max ( )

s

s
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where the likelihood expressions are maximised by using the maximum likelihood 
estimators. This approach was found useful for example in Andersson, (2002, 2004), 
Andersson and others, (2005) and Bock and others, (2007). 
 

3.4. Semiparametric outbreak detection 

For the outbreak situation studied in this paper we use a maximum likelihood ratio 
method, and we base the method on detection of the violation of order restrictions, 
see Section 2. If no outbreak has occurred, we have that the observations (or 
residuals) belong to state D where μ(1) = μ(2) = ... = μ(s). At an onset of the outbreak 
at time j, we have state Cj: μ(1) = μ(2) = ... = μ(j-1) < μ(j) ≤ ...≤ μ(s). The maximum 
likelihood estimates Dμ̂  and Cjμ̂  are given in Frisén and others, (2007a) for the 
exponential family. If we were interested in the specific value τ = j we could use  
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However, here we are interested in onsets at any time up to the decision time s, so 
that C = {τ≤s}. Since all other states Cj, j ≥ 2 are on the border of C1, we have that  
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which is our suggested alarm statistic. We will subsequently use a constant alarm 
limit in the surveillance method. This corresponds to a non-informative density for 
the change point, as in the Shiryaev-Roberts approach. 
 In the present context, this approach has similarities with the CUSUM approach, 
which is expressed using likelihood ratios in Frisén, (2003). For the CUSUM 
approach, the alarm statistic is the maximum likelihood ratio with respect to τ, 
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The expression above has similarities with the suggested statistic in (3.3), which can 
also be written as 
 

   
max ( )
max ( )

s

s

f x C
f x D

 = 
{1,2,..., }

max ( )
max

max ( )
s

j s
s

f x Cj
f x D=

⎡ ⎤
⎢ ⎥
⎣ ⎦

,  

 
since in our case 
 
   1

{1,2,..., }
ˆmax [max ( )]  max ( 1)  ( ; )C

s s sj s
f x Cj f x C f x μ μ

=
= = = . 

 
The full likelihood ratio method is optimal with respect to the expected delay 
(Shiryaev, 1963), and the CUSUM method is minimax optimal (Moustakides, 1986). 
However, when the models are not fully known and maximal likelihood expressions 
are used , as in (3.3), we cannot prove optimality. Instead, we have to examine 
whether the use of approaches, which are similar to the optimal ones, results in 
methods with good properties.  
 For the outbreak detection situation and the normal distribution, the method is 
denoted by OutbreakN, and the maximum likelihood alarm statistic (3.3) becomes 
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The normal distribution may be of interest (as an approximation) for diseases with a 
high baseline incidence. In most public health applications, however, the Poisson 
distribution is of special interest. Here the method is denoted by OutbreakP, and the 
alarm statistic is 
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The time of alarm, tA, is the first time when the Outbreak statistic exceeds a constant 
alarm limit. 
 It is not possible to base the Outbreak statistic on a single observation. Since the 
maximum likelihood method uses the ordering of the data, no alarm can be given 
when we have only one observation, x(1). Thus, the first decision is taken when we 
have two observations, x(1) and x(2). 
 The semiparametric Outbreak methods will be compared to the Shewhart method 
described in the next section. 
 

3.5. The Shewhart method 

In 1931, a method later known as “the Shewhart method” was presented (Shewhart, 
1931). Originally, it was presented for the purpose of industrial quality control. The 
method is very simple and still the most commonly used in surveillance. Detailed 
descriptions are found in many textbooks, for example Wetherill and Brown, (1991) 
and Ryan, (2000).  
  The Shewhart method is often described in terms of a deviation from a known 
baseline μD. An alarm is called the first time s that 
 
   (x(s)-μD) > k,  (3.6) 
 
where k is the alarm limit which is often chosen as 3*σ, where σ is the standard 
deviation.  
 The Shewhart method can also be seen as a special case of the full likelihood ratio 
method (Frisén, 2003, 2007). In a situation where we want to detect a change that has 
occurred at the current time point, we would specify C as {τ = s}. In a situation where 
we have independent normal observations and a shift in the mean, the full likelihood 
ratio in (3.1) would be reduced to the Shewhart method as in (3.6), see Frisén and de 
Maré, (1991). A generalised Shewhart method could be expressed with the alarm 
criteria 
 
   L(s,s) > G,  
  
where G is a constant. This means that the Shewhart method gives the minimum 
expected delay in the situation where we want immediate detection. We also have 
minimal error probabilities for each decision time s Frisén and de Maré, (1991). The 
Shewhart method is the limit of several advanced surveillance methods when these 
are optimised for a large shift, see Frisén and Wessman, (1999), Frisén, (2007). When 
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we expect a large change at the current time point, the Shewhart method is suitable 
and will have the best detection ability.  
 Even though very advanced modelling is sometimes used, the (generalised) 
Shewhart approach of not accumulating information over time is by far the most 
common also in public health surveillance. Examples of methods which are well 
developed and well recognised include those by Farrington and Andrews, (2004), 
Stern and Lightfoot, (1999) and most methods for spatial surveillance.  
 In Section 6 the semiparametric OutbreakN method is compared to the Shewhart 
method.  

4. EVALUATION MEASURES 

In hypothesis testing, we usually evaluate performance by power for a fixed size. In 
diagnostic tests, we often use specificity and sensitivity. In this outbreak detection 
situation, it may also seem safe to use such well-established metrics. Simple metrics 
are also required by medical authorities who have to handle the information in this 
new area, and there currently are many suggestions of simple metrics for surveillance. 
However, simple solutions to complex problems are not always useful. In 
surveillance we need measures that involve time, since timeliness is important and 
since the properties of a surveillance method often change with time (cf. Frisén, 1992 
and Frisén, 2003). 
 Quick detection and few false alarms are desired properties of methods for 
surveillance. The time of the alarm, tA, should come soon after the time of the change 
(τ) – but not before.  
 The false alarm frequency is here measured by the Average Run Length when no 
change has occurred. We have 
 
   ARL0 = E[tA|D],  
 
which is the most commonly used false alarm measure in surveillance.  
 The delay of an alarm is most often measured by ARL1, which is the average run 
length until the detection of a change at τ = 1 (i.e. a change that occurs right at the 
start of the surveillance). Here we do not want to restrict the evaluation to τ = 1, since 
we are interested in changes which can occur at any time. Thus, we use the more 
general measure of the conditional expected delay, CED.  
 
   CED(t) = A AE[t t , t]− ≥ =τ τ τ , 
 
 For most methods, the CED(t) will converge to a constant value when τ tends to 
infinity. This value is the Steady state Average Delay Time, SADT. It is, in a sense, 
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the opposite of ARL1 since only very large values of τ are considered. SADT has been 
advocated for example by Srivastava and Wu, (1993). 
 When judging which method is best, it matters much if the evaluation is made for 
early changes or for late ones, as illustrated by the results in Sego and others, (2008). 
Compared to earlier authors, they came to the opposite conclusion about which 
method is the best. They used SADT, which evaluates the performance at late 
changes, while earlier papers have used ARL, which evaluates the performance at 
early changes.  
 Sometimes the time available for rescue actions is limited. The Probability of 
Successful Detection, suggested by Frisén, (1992), measures the probability of 
detection with a delay time no longer than a constant d  
 
   PSD(d, t) = A AP(t d t , t)τ τ τ− ≤ ≥ = .  
 
It may be useful to describe the ability to detect the change within a certain time limit, 
and PSD can be calculated for different time limits d. This has been done for example 
by Marshall and others, (2004) and Buckeridge and others, (2005). 
  The predictive value is a well-established measure in epidemiology. In 
surveillance, however, we need a variant that also incorporates time. If a method calls 
an alarm, it is important to know whether this alarm is a strong indication of a change 
or just a weak one. The difference in surveillance, as compared to situations involving 
only one decision, is that we can get an alarm at any time point, and therefore we 
need a measure of the predictive value at each of them. In order to judge the trust in 
an alarm at time t, it is necessary to consider the balance between the risk of false 
alarms, the detection ability and the probability of a change for that time point. If τ is 
regarded as a random variable, this can be done by the following predictive value of 
an alarm, which was suggested by Frisén, (1992):  
 

  PV(t) = P(C|tA = t) = 

t

A
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t

A A
i 1
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P(t t i) P( i) P(t t t) P( t)

=

=

= = ⋅ =

= = ⋅ = + = > ⋅ >

∑

∑

τ τ

τ τ τ τ
. 

 
 In Section 5.1, the results from a simulation study on the properties of the 
OutbreakP method are presented. In addition, the OutbreakP method is applied to 
Swedish influenza data. In Section 6 we use the measures to compare different 
methods. 
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5. DETECTION OF THE INFLUENZA OUTBREAK 

Epidemics, such as influenza, are for several reasons very costly to society and it is 
therefore of great value to monitor the epidemic period in order to allocate medical 
resources. Great emphasis should be put on the timeliness of a surveillance method. 
In this section, the properties of the OutbreakP method are presented, first by the 
results from a simulation study and then by the application of the method to observed 
Swedish influenza data.  

5.1. Simulation study to determine the properties of the semiparametric method 

In this study, the OutbreakP method (3.5) was applied to data generated from a model 
that mimics the Swedish LDI data. In all simulation studies in this paper there are at 
least 1,000,000 replicates. Observations on X(t) were generated from two different 
distributions, depending on whether t<τ (state D) or t≥τ (state C), and we generated 
the data according to the structure described in (3.2). A Poisson distribution for X was 
suggested in Andersson and others, (2007) for the onset phase, and the model used 
was  
 

   0Poi( ), t
X(t) ~

Poi( (t)), t
μ < τ⎧

⎨ μ ≥ τ⎩
  

 
where Poi(*) refers to the Poisson distribution. The level at the constant phase, μ0, 
was roughly estimated to μ0 = 1 from Swedish LDI data for eight years. The 
exponential curve μ(t) = exp(β0 + β1(t-τ+1) for the increasing phase was suggested in 
Andersson and others, (2007). The parameters, β0 and β1, were estimated to β0 = -
0.26 and β1 = 0.826 from Swedish LDI data from the season 2003-2004, which was 
not extreme in any sense but “typical”. The curve of the expected value is illustrated 
in Figure 1. 
 The properties of the method were determined in the simulation study and are 
illustrated in the figures below. The predicted value depends on whether the disease 
appears commonly or rarely (i.e. on the intensity of the outbreaks, the distribution of 
τ). Knowledge of the exact distribution of τ is seldom available, but since the 
predicted value contains very important information, we will nevertheless try to give 
a rough indicator. Here a constant intensity was used. This might not be the most 
probable density, but in order to detect outbreaks which occur at an unusual time we 
did not want to include information on which week is the most common for the onset. 
The level of the intensity was roughly estimated from all available historical data to 
be ν = 0.1. In Figure 2, the PV curve is given both for ν = 0.1 and for a lower 
intensity, ν = 0.05, which weakens the PV. The alarm limit was chosen to 5,000 in 
order to give the method a high PV curve (higher than 0.99, so that alarms can be 
trusted. Since it is not possible for the OutbreakP method to signal an alarm at the 
first time point, no predicted value was calculated for tA = 1. 
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Figure 1. The expected value µ(t) of the incidence, using the model that mimics LDI. 
The model is here exemplified for the time τ=5 of the onset of the outbreak. 
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Figure 2. Predictive value (PV) as a function of the time of alarm, tA, for the 
OutbreakP method. 
 
A high alarm limit will result in few false alarms and a high predicted value. The 
drawback is a long delay before detection. The conditional expected delay, CED, and 
the probability of a successful detection, PSD, as discussed in Section 4, are given in 
Figures 3 and 4. 
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Figure 3. Conditional expected delay (CED) as a function of the outbreak time, τ, for 
the OutbreakP method.  
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Figure 4. Probability of successful detection (PSD) within d time units from the onset, 
τ, as a function of τ for the OutbreakP method. 
 
The method and alarm limit used in the simulation study were considered potentially 
useful for practical application since the predictive value was high.  
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5.2. Application of the OutbreakP method to Swedish LDI data 

The OutbreakP method was applied to Swedish LDI data for six years. The alarm 
limit was the same as in the simulation study presented in Section 5.1, which means 
that, for a typical influenza season, the OutbreakP method has the properties (PV, 
CED, PSD) described in that section.   
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Figure 5. Swedish LDI data for six years. The scale is chosen in order to set focus on 
the low values at the onset. Thus, the peaks for most years cannot be seen. The arrows 
mark the time of alarm using the OutbreakP method.  
 
 Figure 5 demonstrates that the new method has potential. The alarms come at time 
points that seem natural. However, this does not mean that the statistical method is 
unnecessary and that a subjective judgement would work just as well. When studying 
the graphs above we make a retrospective judgement, whereas the OutbreakP method 
works prospectively. Making prospective judgements is much more difficult since 
less information is available at the decision time. In a real situation we would work 
prospectively, getting a new observation each week and aiming at an alarm as soon as 
we had enough evidence for an outbreak. In an experiment, reported in Frisén and 
others, (2007b), it was demonstrated that the statistical method worked better than 
subjective judgements.  
 Figure 6 also illustrates the OutbreakP method applied to the six influenza seasons. 
Here we present both the observed incidence and the alarm statistic used to produce 
the alarms in Figure 5. Figure 6 shows that the alarm statistic captures the pattern of 
an increasing incidence and thus gives early information about the onset of the 
outbreak. 
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Figure 6. The OutbreakP method applied to Swedish LDI data for the latest six 
seasons (01-02 to 06-07). The left axis and the solid line correspond to the number of 
LDI cases. The right axis and the dotted curve correspond to the alarm statistic. 

6. COMPARISONS BETWEEN METHODS 

Above we illustrated the OutbreakP method by giving both the observed incidence 
and the alarm statistic. It should be remembered that the Shewhart method uses only 
the latest observation. Thus, the Shewhart alarm statistic has the same pattern as the 
observations themselves in Figure 6. As we can see, the alarm statistic of the 
OutbreakP method captures the pattern of an increasing incidence also when the 
incidence is low. This may serve as an illustration of the drawback of the Shewhart 
method, which only evaluates each time point without accumulating the information 
about the pattern.  
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  The Shewhart approach of judging each time separately and not accumulating the 
information is frequently used. Thus, it is important to compare this approach to our 
method where the information is accumulated. Many methods are advanced in terms 
of seasonal adjustment or background variables. However, we will concentrate on the 
accumulation effect by comparing the approaches when applied to simple models. 
Usually, the residuals from a complex model are used in this simple way. The further 
comparison between the parametric Shewhart method and the semiparametric 
outbreak detection method is made by a simulation study of a simple situation, which 
agrees rather well with Swedish ILI data.  
 We will now compare the OutbreakN method, see (3.4), to the Shewhart method. 
The aim is to make the comparison more focused. In both OutbreakN and the 
Shewhart method, we need the variance σ2, which is not necessary in OutbreakP. For 
the Shewhart method, (3.6), we furthermore need the knowledge of the baseline 
value, μ0. The nonparametric OutbreakN method and the Shewhart method are 
compared with special concern about the effect of uncertainty of the baseline.  
 Observations are generated according to the following model  
 

  0N( ; ), t
X(t) ~

N( (t); ), t
μ σ < τ⎧

⎨ μ σ ≥ τ⎩
 

 
where μ(t) = exp(β0 + β1(t-τ+1) and μ0 = 20, β0 = 2.67 and β1 = 0.68 and σ2 = 100. 
This curve was estimated in Frisén and others, (2007b) for the incidence of the 
number of influenza-like cases (ILI) during the winter 2003-2004. The normal 
distribution with a constant variance is chosen in order to illustrate important 
principal differences between methods rather than to give information about Swedish 
influenza. The sentinel system in Sweden still has the disadvantage of a low reporting 
tendency in the beginning and end of the influenza season as well as during holidays, 
see Andersson and others, (2007) and Andersson and others, (2008). However, 
progress is made in this area. With the data we have,   the estimates of parameters 
resembling ILI data. are not as good as we would have whished. 
  For comparability, the alarm limits were chosen to give all methods the same value 
(27.4) of E[tA|D], where D is the nonepidemic state. Thus, the expected run length, 
given that there is no outbreak, is intended to be the same.  
 An important difference between the OutbreakN method and the Shewhart method 
is the requirement of a known baseline for the Shewhart method. We will study the 
effect of an estimation error of the baseline, but first the baseline value is assumed to 
be exactly known in the Shewhart method.  
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 Exact knowledge of the baseline provides important information, and one could 
expect the Shewhart method to have much better properties than the nonparametric 
method, which does not utilize such knowledge. However, if the baseline in the 
model (µD in (3.6)) is estimated the situation is different. For Swedish data four or 
five weeks each year could be used for estimation, giving us at total of 25 
observations. If the true model is the same as above, then the estimates (20+4 = 24 
and 20–4 = 16) are both rather probable since they are both within 95% of the 
frequency distribution of the estimator.  
  We first discuss the properties of the OutbreakP method and the Shewhart method 
with a known baseline (μD=20), see Figures 7–9. The Shewhart method with a correct 
baseline has a better CED and PSD when the constant phase is short. However, the 
PV for Shewhart is worse except for very late alarms. This can be explained by the 
generally bad PV-property of the Shewhart method (Frisén, 2003) and by the fact that 
this method does not accumulate the information (see Fig 6).  
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Figure 7. Conditional expected delay, CED(τ), for the methods OutbreakN and 
Shewhart, where the Shewhart method is compared for two different possible 
estimates of the baseline.  
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Figure 8. Probability of successful detection within 1 time unit (PSD for d=1) as a 
function of the time, τ, of the onset of the outbreak.  
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Figure 9. Predictive value, PV, as a function of the time of alarm, tA.  
 
 
 We now turn to the wrongly specified Shewhart method. When the baseline is 
overestimated (μD = 24 used in the Shewhart method instead of μD = 20), the CED is 
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longer than for the correct baseline and hardly more satisfactory than that of the 
nonparametric method. When the baseline is underestimated (μD = 16 used instead of 
μD = 20), the PV is very low and considerably weaker than that of the nonparametric 
method. Thus, uncertainty about the baseline will mean that the properties of the 
method are highly uncertain. Our investigation confirms the results by Albers and 
Kallenberg, (2004) that very large sample sizes for the baseline are necessary in order 
to obtain reliable properties (in their case ARL).  
 Here we studied misspecifications, which have to be considered because of the 
stochastic variation. In many applications, however, also other errors than the 
stochastic ones have to be considered. In surveillance systems monitoring a large 
number of diseases baseline estimation will certainly prove problematic in some 
cases, and then the nonparametric method can be an alternative. The worst 
consequence of using a poorly estimated baseline might be that one does not know 
the properties but has to prepare for the least favourable results in each of the graphs 
here – that is, both an unsatisfactory predicted value and an unsatisfactory delay. 

7. DISCUSSION 

To detect the onset of an outbreak is important. Often, the information about the 
baseline is limited. Thus, it can be of value to have access to a method which does not 
require knowledge about the baseline but is focused on the increasing incidence at an 
outbreak. A semiparametric maximum likelihood ratio surveillance method was 
derived for the regular exponential family and described in detail with reference to 
the normal and Poisson distributions. Its properties, such as the delay and the 
predicted value, were determined by a simulation study where data of a similar 
pattern as the Swedish influenza data were generated. The method was also applied to 
influenza data from six seasons with satisfactory results.  
 Since many methods suggested for outbreak detection are based on the Shewhart 
approach where the residuals from some model are evaluated for each time point, we 
also made a special study of the effect of information accumulation, as in the 
suggested method. If the baseline is exactly known, then the Shewhart method (which 
uses this) performs better than the nonparametric method (which does not). The 
difference is large for the first time points, when little information is available from 
the data, but diminishes quickly. Even slight errors in the estimation of the baseline, 
used in the Shewhart method, have a large effect on the properties. For an 
overestimated baseline, the nonparametric method has better detection ability, and for 
an underestimated baseline, it has a higher predicted value. The worst consequence of 
using a poorly estimated baseline might be that one does not know the properties, 
which makes it difficult to interpret an alarm. 
 The comparison between the Shewhart and nonparametric methods was focused 
on the effect of an estimated baseline and the accumulation of information, while 
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other elements were kept as equal as possible. The common approach of giving an 
alarm when the incidence passes a fixed limit is the Shewhart method for a fixed 
variance. At the onset of an outbreak, however, a constant variance may not be a 
realistic assumption. The possibility to choose for example the Poisson distribution in 
the likelihood expression is an advantage, because of the small variance at the onset.  
 We derived a method which did not utilise any information about when it would 
be probable that the outbreak occurred. The likelihood principle makes it possible to 
include such knowledge. However, we chose a non-informative approach in this 
paper, since it may be valuable to detect outbreaks which occur at an unexpected 
time. 
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