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Abstract—Measuring Software Process Improvements is a challenge for 
software organizations. It is difficult to find a non-questionable way to show 
that improvement actually has taken place. Through process employee 
surveys it is possible to design questions and key ratios that help us 
understand current situations and trends. The telecom company Ericsson 
AB has been working with such measurements since early 2001. In this 
thesis we investigate the result of such a survey through basic statistical 
analysis. We conclude that the statistical analysis of the process employee 
survey investigated in this thesis shows strong consistency and validity of 
both survey questions and key ratios. We also conclude that we can 
strengthen the statistical validity in SPI measurements through the use of 
basic statistical analysis. In this study we suggest a set of practical steps that 
can be performed on SPI measurements in order to strengthen their 
validity. We also present an iterative process model that could be used at 
Ericsson to assure quality in their SPI measurements and improve future 
SPI measurements. 

Index Terms — Software Process Improvement, Statistical Analysis, Measurement 

INTRODUCTION 

ince the early 1990’s an increasing number of organizations has embraced the idea of Software 
Process Improvement (SPI). Today SPI work is generally accepted in the software engineering 

field as a necessity to stay competitive on the market (Dickson, G. et al. 1980; Hartog et al. 1986; 
Niederman et al. 1990; Brancheau et al. 1994-1995). The potential benefits for organizations 
successful in their SPI initiatives are huge. As reported by Herbsleb et al. (1994) the return on 
investment in SPI could potentially be as high as 500-700%. However, the failure rates in such 
initiatives are just as high, about 80% according to Zackrison and Freedman (2003). The Software 
Engineering Institute reports equally dim results with a failure rate of about 70%. It is therefore 
interesting and important to ask why so many SPI initiatives fail and consequently, the importance of 
understanding what can be done to minimize the risk of failure in future undertakings. 

S

In the software engineering field the area of software process improvement is well treaded. The 
performing of adequate measuring of such initiatives are however not as common. In order for SPI 
initiatives to be useful its effects need to be measured and analyzed. Dybå (2000) performed a large 
literature review including 55 software companies; their research shows that concern for measurement 
is one out of six key factors for successful process improvement activities. Measuring SPI work is 
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required in order to make sense of, act upon, and follow up progress. The importance of recording and 
measuring change is as crucial as it is complicated. Iversen and Ngwenyama (2006) discuss the 
complex task of measuring the effectiveness of SPI initiatives. 

In order to fully understand the effects of SPI initiatives in an organization, the need to measure 
such initiatives has been shown to be imperative. This can be done by gathering feedback and acting 
according to the result of it. The feedback data can take many different forms ranging from; interviews 
with employees affected by change, to calculating how many less lines of code a programmer writes 
with the introduction of a new set of coding conventions, to process employee surveys sent out in an 
organization to assess what the views on current processes are among the employees. The latter is just 
what the telecom company Ericsson AB has done as part of making SPI happen (Börjesson and 
Mathiassen, 2003). 

Change agents at Ericsson’s R&D unit have been actively working with processes in their SPI 
initiatives during a seven year period. As part of these initiatives they regularly conduct a process 
employee survey, currently containing twelve questions related to processes knowledge and process 
use within the organization. The results from this survey are then compiled internally by Ericsson 
change agents. Improvement areas and activities are identified, compiled, and sent out to units within 
the organization, to be acted upon in the SPI iteration that follows. This has allowed change agents 
within Ericsson to get a result that can be interpreted in terms of correlation between answers to 
survey questions and knowledge and use of processes within the organization. The suggested 
improvements and the potential gain of these improvements are, however, directly dependant on how 
the survey results are analyzed. Bryman and Cramer (1994) states that, “an awareness of quantative 
data analysis greatly enhances the ability to recognize faulty conclusions or potential biased 
manipulation of the information”. It is important not only to measure the progress of improvement 
initiatives but also to perform trustworthy analysis of measurement data. This allows for an 
organization to present results that are accepted by the people affected by the change.  

For the statistical analysis conducted in this paper of the process employee survey data we used 
several different statistical methods in SPSS1, a statistical and data management package, as well as 
SmartPLS2, a structural model based tool. With these tools we wanted to investigate the possibility of 
performing statistical analysis of SPI measurements to asses the potential of creating validity in them. 
The intention with these methods was also to address the general purpose of this research:  

Assuring quality of results from SPI measurements through statistical analysis. 

The rest of the paper is organized as follows. The next chapter describes the theoretical context for 
the study, followed by a description of the research methodology. Succeeding that, the results from the 
research is presented. Finally, we discuss and conclude the result. 

THEORETICAL CONTEXT 

Knowledge about SPI is one key factor to successful SPI initiatives and there exists a vast body of 
knowledge about Change Management and SPI in the field today3. Many of the known researchers in 
SPI literature agrees on the necessity of measuring to understand and improve practice (Humphrey, 
1989; McFeeley, 1996; Grady, 1992; 1997; Weinberg, 1993; Zahran, 1997). It has been shown that 
measuring SPI progress is an important key factor to SPI success. However, the measurements of 
change are not in them self sufficient enablers of improvement and acceptance of change. Zmud 
(1984) states that change is most likely to happen when, a need and the mean to resolve that need, co-

                                                                                 

1 SPSS 16.0.1 for Windows 
 

2 SmartPLS 2.0, release M3 for Windows 
 
3 A simple search on http://scholar.google.com returns around 76 000 articles on “Change Management” and  more than  10 000 
articles on ”Software Process Improvement” 
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exist – this is identified as the so-called “push-pull” theory. According to Börjesson and Mathiassen 
(2004) process push is performed by the SPI practitioners, and practice pull by the software engineers. 
When these inducements exist at the same time, a change is more likely to occur. 

However, if no practice pull is present, the practitioners have to be convinced to believe in the 
benefits that a change could have for them (Weinburg, 1997). One of the most respected theories in 
the domain of technology acceptance, Davis’s Technology Acceptance Model (1989) explains this: 
“When a person regards a process or a tool as being useful in his or her work, as well as easy to use, 
chances are good that the new item will be used”. One way of achieving this, is by strengthening the 
statistical validity of the SPI measurements within the organization by assessing the assessments.  

The following subsections present SPI Measurements and Basic Statistical Analysis.  

SPI MEASUREMENTS 

Measuring SPI is expensive and requires a great deal from people that usually already has a lot to do, 
argues both Humphrey (1989) and Weinberg (1993). The complex task of measuring is widely known 
in the software engineering field, and in the literature many warning flags are raised when it comes to 
measuring SPI.  

In the capability maturity model (CMM) (Paulk et al. 1995) we see that even though measurement 
is an integral part of the model, it is not until level four that the key practices area, measurement, is 
introduced. To reach this level an organization requires having measurements for productivity and 
quality for the most important software project activities across all projects as a part of an 
organizational measurement program (Paulk et al. 1995). However, not many organizations manage to 
actually reach CMM level four (SEMA, 2002). One explanation for the low success rate in the CMM 
model might be that many measurement activities in SPI focus on the end results, like increase or 
decrease in productivity, whereas SPI is a continuous iterative process. This process cannot exist 
without continuous and systematic monitoring and measurement of an organizations own processes 
(Zahran, 1997). 

Despite many of the known difficulties when it comes to measuring SPI, we can not find any 
literature that argues for a halt in measurements. On the contrary, we must not stop measuring states 
Humphrey (1989). However, DeVellis (2003) states that if a poor measure is the only one available, 
the costs of using that measure may turn out to be greater than any benefits attained. This shows the 
importance of not only measuring SPI progress, but also performing appropriate analysis of the 
measurements. Statistical analysis of SPI measurements could potentially improve their validity and 
quality. For without proper measurements and analysis, suggested actions based on SPI outcome are at 
the risk of being perceived as yet another opinion (Börjesson, 2006). Yet there exists no 
comprehensive measurement framework in the SPI literature (Iversen and Ngwenyama, 2006), which 
complicates matters when it comes to actually measuring SPI progress.  

BASIC  STATISTICAL  ANALYSIS 

There are a number of powerful tools available that can assist a researcher in performing statistical 
analysis of data. In our study we primarily used SPSS and SmartPLS. SPSS is a tool that provides a 
wide variety of statistical methods for analyzing data. We used SPSS in the initial analysis and 
SmartPLS when building, running, and validating the process model. The theories behind these 
statistical methods are presented below. 

DISTRIBUTION ANALYSIS 

Determining the distribution of a response data set is an important and common first step in many 
statistical analysis undertakings. Distribution analysis is performed in order to understand the spread 
of the population investigated, but also important since several other statistical methods are dependent 
on the type of distribution represented by the data. Normal distribution is the most common and well 
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known distribution and several other statistical methods rely on an assumption of normality.   

Normal is used to describe a symmetrical, bell-shaped curve, which has the greatest frequency of 
scores in the middle, with smaller frequencies towards the extreme (Gravetter and Wallnau, 2004).  

By using graphical methods such as histograms with normal distribution curves and normal 
quantile-quantile plots (Q-Q plot), one can get a good indication if the distribution can be assumed to 
be normal. In the normal Q-Q plot diagram the observed values of a single variable are plotted against 
the expected values if the sample were from a normal distribution. Should the points cluster around a 
reasonably straight line, the sample can be assumed to be from a normal distribution (see Fig. I). 

 

Fig. I: An example of a normal distribution presented with the graphical method, Normal Q-Q plot 

There is also a set of different numerical methods for investigating what type of distribution 
corresponds best to the data. One numerical method for testing the assumption of normality is the 
One-Sample Kolmogorov-Smirnov test (K-S test). This test assesses the normality of the distribution 
of scores where a non-significant result (Sig. value of more than 0,05) indicates normality. The K-S 
test is a powerful test for assessing normality; however, it is not fitting for large populations.  

Should the distribution of the data prove not to be well enough normal the statistical methods that 
require normal distribution are reasonably tolerant of violation of this assumption. Moreover, with a 
large enough population size, most literature states that, one can assume normality in the data sample 
when the population size >30. However, in recent research numbers such as >250 has been suggested 
as more appropriate (Marasinghe et al. 1994). So in effect, should a large enough population exist then 
an assumption of normality should not cause any major problem, this is the essence of the Central 
Limit Theorem (CTL) (Pólya, 1920; Bernstein, 1945). 

CORRELATION ANALYSIS  

For correlation analysis there are a number of different statistical analysis methods that can be used. 
How well each method fits the data set depends on the nature of the data. One such method is the 
Spearman’s rank order correlation coefficient or more commonly referred to as Spearman’s rho, and 
reported as RS. This is a nonparametric statistical method that can be used with ordinal data and that 
assumes normally distributed scores. It measures the strength of the linear relationship between two 
variables. It can assume values -1 ≤ RS ≤ 1, RS = +/-1, only if the relationship is perfectly linear does it 
assume the values 1 or -1. The sign in front indicates whether there is a positive correlation (as one 
variable increases, so too does the other) or a negative correlation (as one variable increases, the other 
decreases). Cohen (1988) recommends these threshold values for Spearman’s rho coefficient (see 
Table I). 
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Table I: Recommended threshold values for Spearman’s rho 

Weak RS =0,10 to 0,29 or RS =-0,10 to -0,29 

Medium RS =0,30 to 0,49 or RS =-0,30 to -0,49 

Strong RS =0,50 to 1,00 or RS =-0,50 to -1,00 

Correlations between items can be measured to investigate if the items are related to one and other 
and if so how strongly. A score of zero means that there is no linear correlation between the variables 
and the variables might then be unrelated. This would show that some variables chosen for analysis 
might not fulfill the intention of the measurement. 

FACTOR ANALYSIS 

Factor analysis takes a large set of variables and tries to find a way to explain these variables using a 
smaller set of factors or components. Factor analysis is not a definitive method and it is at large up to 
the researcher to decide if the proposed construct for each measurement should fit on that component 
or in fact on a different one. It does however provide some insight into what underlying factors could 
explain the measurement variables.  

Before performing a factor analysis there are two main issues to consider in determining whether 
the data is suitable for factor analysis; population size (i.e. the number of respondents in the case of a 
survey), and the strength of the relationship between the measurement variables (i.e. Spearman’s rho). 
The general perception among experts is: the larger the population the better. Tabachnick and Fidell 
(2007) suggest that “it is comforting to have at least 300 cases for factor analysis”. On the second 
issue, the strength of the relationship, Tabachnick and Fidell (2007) recommends correlation scores 
greater than 0,30. There are also two statistical methods that are of interest when determining if factor 
analysis is to be considered; Bartlett’s test for sphericity (Bartlett, 1954), and the Kaiser-Meyer-Olkin 
(KMO) measure of sampling adequacy (Kaiser, 1970; 1974). Bartlett’s test of sphericity should be 
significant (p<0,05). The KMO index ranges from 0 to 1, with 0,60 as suggested threshold value for a 
good factor analysis, Tabachnick and Fidell (2007). 

The relationships that are extracted in a factor analysis can be investigated further by building a 
model and testing it with the statistical method Partial Least Squares-regression (PLS). 

PARTIAL LEAST SQUARES (PLS) REGRESSION ANALYSIS  

PLS regression is a recent technique with the goal to predict or analyze a set of dependent variables or 
latent constructs from a set of independent variables or indicators (Chin, 1996). PLS regression suits 
survey data well as it is able to model underlying constructs even if the data should prove not to be 
normally distributed. There are a number of tools available to build a model with the components 
extracted in a factor analysis. These tools use the PLS regression for analysis. The technique models 
both the measurement model and the structural model, also referred to as outer versus inner model.  

 The measurement model involves the relationship between latent constructs (i.e. components 
extracted in the factor analysis) and their indicators (i.e. the variables analyzed in the factor analysis), 
while the structural model concerns the relationships between the latent constructs, see Fig. II.  
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Fig. II: Explanation of concepts in PLS regression analysis 

The measurement model together with the structural model will be referred to as the process model. 
The rest of this chapter presents the statistical methods and corresponding coefficients that are 
available in PLS regression analysis for explaining the consistency and validity of the Measurement 
Model and the Structural Model respectively. 

THE MEASUREMENT MODEL 

By testing the measurement model it can be determined how well the indicators explain their 
respective construct. What is tested is the reliability and internal consistency of the model. To assess 
the measurement model, a number of coefficients that can be calculated, such as: 

Loading: Loading is the correlation coefficient between latent constructs and their indicators. It is can 
be used to compute Average Variance Extracted, Composite Reliability, and Communality. The 
suggested threshold value for the Loading coefficient is 0,80 (Chin, 1995). 

Average Variance Extracted: AVE is a statistic involving the percentage error variance in a 
measure. It is used for assessing the internal consistency in the measurement model. Suggested 
threshold values for strong AVE value is a score above 0,50 (Dillon and Goldstein, 1984). 

Composite reliability: Composite reliability gives an indication to how well each of the constructs in 
the measurement model is described by their indicators. Recommended threshold is 0,70 (Chin, 1998). 
Over threshold results imply that each construct is well described by its indicators. 

Cronbach Alpha: Cronbach’s Alpha is a coefficient of reliability and consistency and it measures the 
internal consistency of the model. In other words it measures how well a set of indicators explain a 
single latent construct. Ideally the Cronbach Alpha score should be above 0,70 (DeVellis, 2003). 

Communality: Communality is the squared correlation between one indicator and its corresponding 
latent construct. It measures the capacity of the indicator to describe the related latent construct. The 
recommended threshold for communality is 0,50 (Chin, 1998). 

Convergent Validity: Convergent validity deals with examination of the degree to which the 
indicators of a latent construct converge with the constructs they are supposed to come together on. 
Factor loadings that are greater than 0,70 are considered to be a strong assessment of convergent 
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validity. In addition, the indicators should load stronger on their own latent construct than on the 
others (Trochim, 2006). 

Discriminant Validity: Discriminant validity examines the degree to which the constructs diverge 
from each other. When the square root of the AVE for each construct is greater than their correlation 
with the other constructs, this indicates that they do measure different concepts (Chin, 1998). 
Demonstrating convergent and discriminant validity has been called measure validation (Heeler and 
Ray, 1972). 

THE STRUCTURAL MODEL 

The structural model concerns the relationships between the latent constructs. Testing the structural 
model determines whether there is empirical evidence for the hypothesized relationships between the 
constructs. There are a number of coefficients that can be calculated, such as: 

Path Coefficient: Path coefficient, beta, which is equal to spearman’s rho correlation coefficient (see 
Correlation Analysis), but is used to describe the linear relationship between constructs in a structural 
model. The significance level, p, of the path coefficient can be retrieved by looking up the t-statistic in 
a t-table4. 

Significance Level: After an estimation of a coefficient, the t-statistic for that coefficient is the ratio 
of the coefficient to its standard error. That ratio can be tested against a t-table and the score 
determines which significance level the coefficient has, thereby indicating how much one can rely on 
the result obtained. 

Coefficient of Determination: To calculate how much of the variance two variables share, the 
coefficient of determination, R², can be used. This is calculated by squaring the path coefficient. For 
example, two variables that correlate beta=0,70 share 0,70*0,70=0,49, which is to say that the 
independent variable is said to explain 49 percent of the dependant variable. 

RESEARCH METHODOLOGY 

This chapter is divided into three sections explaining how the study was conducted. Design and 
Procedure explains how the research and empirical material was collected and analyzed. The second 
section, Participants, presents the participants involved in the study. Data Sources concludes the 
chapter and presents which sources of data have been used in the study. 

DESIGN AND PROCEDURE 

The research was carried out as a case study to practically investigate a particular phenomenon within 
a specific empirical context and support the investigation with theory. Yin (1984) defines the case 
study research method as “an empirical inquiry that investigates a contemporary phenomenon within 
its real-life context; when the boundaries between phenomenon and context are not clearly evident; 
and in which multiple sources of evidence are used”.  

The basis for the study was the survey results data from the employee process survey conducted in 
November 2007 at Ericsson. At the outset, a literature review was conducted in order to narrow in on 
the problem domain and formulate a research question that would contribute to the body of knowledge 
of SPI. Additional literature studies were conducted to acquire the necessary statistical knowledge. 
The statistical methods learned were then applied to the survey data, which generated a number of 
findings. These findings and the general research question was thoroughly analyzed in continuous 
participatory iterative discussions with SPI change agents and employee process survey experts at 

                                                                                 

4 One version of a t-table can be found at HyperStat Online Contents 

http://davidmlane.com/hyperstat/t_table.html
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Ericsson. The ideas from these discussions were then applied in further statistical analysis, as part of 
an iterative process. When reliable statistical findings had been extracted, a statistical expert, without 
affiliation to Ericsson, was contacted to discuss and validate the findings. In the end, the iterative 
discussions and literature material served as the basis for the conclusions drawn as to the possibility of 
assuring quality in SPI measurements within an SPI organization through statistical analysis. As an 
additional data source the author had access to Ericsson internal documentation and previous survey 
data and results. A conceptual image of the research methodology design can be seen in Fig. III. 

 

Fig. III: Conceptual design of research methodology 

PARTICIPANTS 

Involved in the research process, apart from the author, were a number of participants who contributed 
to the end results of this case study in various ways. The participants are listed in Table II. 

Table II: Participants in the case study 

# Participant Role Contribution 

1 Daniél Rocha Author of the thesis Literature review, conducting statistical analysis, writing 
thesis, organizing work procedure 

2 Anna Börjesson 
Sandberg Ericsson Supervisor 

Feedback on statistical data, constant participant in 
discussions, expert on SPI in general and Ericsson 
employee process survey in particular. Feedback in writing 
process 

3 Anders Baaz Ericsson Supervisor 
Feedback on statistical data, constant participant in 
discussions, expert on measurements in SPI in general and 
Ericsson employee process survey in particular 

4 Stefan Stark Ericsson external 
“statistical expert” Feedback on results and findings from statistical analysis 

5 
The 6369 respondents 

of the employee 
process survey 

Material that was 
statistically analyzed 

Population that served as a base for the research and who’s 
results were generalized at the end to answer the general 
research question 

6 Björn Ohlsson IT University Supervisor Feedback and support during the thesis process 

7 Lars Pareto IT University Support Contributed with literature recommendations and feedback 
on findings from statistical analysis 
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DATA SOURCES 

The employee process survey from November 2007 served as the primary data source that was 
analyzed. The results from the statistical analysis of the real world measurement data were discussed 
with Ericsson SPI change agents and statistical experts to draw conclusions as to the validity and 
reliability of the results as well as the possibility to strengthen the quality of the results from SPI 
measurements within the organization. These discussions also formed a strong base for the 
generalization of the results to a larger population. The data collected and used throughout the case 
study is summarized in Table III. 

Table III: Data sources used in the case study 

# Data sources Comments 

1 Results from employee 
processes survey 

Data set from May 2006 and November 2007 that was used in the statistical 
analysis 

2 Continuous participatory 
iterative discussions 

Provided continuous feedback on statistical analysis results as well as 
insight into Ericsson procedures and culture 

3 Literature Provided knowledge on SPI as well statistical methods that was used 

4 Internal documents at 
Ericsson 

Provided data about general view of SPI activities at Ericsson, e.g. survey 
presentation material 

5 Statistical Expert Feedback on statistical output 

6 Ericsson Change Agents Provided information on SPI activities in general and SPI initiatives at 
Ericsson in specific. Participated in the continuous iterative interviews 

THE ERICSSON MEASUREMENT CASE 

New knowledge in the SPI measurement field is constantly needed in order for SPI activities carried 
out within organizations to be successful. As part of contributing to this body of knowledge Börjesson 
et al. (2007) performed research in the area of process innovations and improvement measurement 
mechanisms. Some of the findings from this research will be presented in the sections below to give 
the reader an insight into the history of the measurement mechanism at Ericsson.  The layout of this 
chapter is as follows; first we present the background to the process model, following that the results 
from this research are presented. 

BACKGROUND TO THE PROCESS MODEL  

During a longitudal action research project between 2001 to 2006 Börjesson et al. (2007) designed 
and implemented a measurement mechanism at a department at Ericsson. In the development of the 
process model four key ratios was developed; Processment, Process Commitment, Process 
Improvement and Process Learning. Each of these four key ratios served as a descriptor for a set of 
target areas within Ericsson’s SPI work. The survey used to measure the process knowledge and use 
within Ericsson contained, at that time, ten questions. Each of these questions was in turn connected to 
one of the four key ratios as can be seen in Fig. IV below.  
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Fig. IV: View of the Process Model 

This type of process model can support an organization in focusing their SPI measurements and 
analysis of the results. Continuing the work with the process model, Enskog (2006) conducted a 
research project at Ericsson where she analyzed the results of a process employee survey sent out in 
May 2006 and validated the process model with the data from this survey. With the validation of the 
model came a stronger belief in it. Yet the model was only tested for a one design unit within Ericsson 
R&D, with 1567 respondents. This leaves some uncertainties as to the validity of the process model.  

In the process employee survey sent out in November 2007 two new questions were added, making 
a total of twelve questions. The two new questions formed a new key ratio, Process Interface. This key 
ratio is added to the process model, making a total of five key ratios (see Fig. IV). Additionally, the 
survey was this time answered by 6369 respondents. The larger number of respondents together with 
the new questions and key ratio allows for interesting analysis of the results and opens up for a good 
generalizability for several design units within Ericsson R&D. So there existed a need to perform 
sound statistical analysis on the latest results from the process employee survey.  

RESULT AND ANALYSIS 

In this section the statistical analysis of the employee process survey conducted in November 2007 are 
presented and analyzed. The section is divided into three major subsections; Survey Questions, Survey 
Key Ratios, and Partial Least Squares regression. In each of these subsections the results from the 
statistical methods performed are reported and analyzed as described in the chapter Theoretical 
Context and the section Basic Statistical Analysis. 

SURVEY QUESTIONS 

In this subsection the results from the statistical analysis methods performed on the answers to the 
questions from the survey are presented. We present the results according to the statistical analysis 
methods in the chapter Theoretical Context. 

DISTRIBUTION ANALYSIS 

We performed a normal distribution analysis on the answers to each question. The need to determine 
the distribution of the results was based on the fact that subsequent statistical methods required 
knowledge about the population’s distribution. The results from the graphical methods, histogram 
with normal curve and normal Q-Q plot can be found in Fig. V and Fig. VI respectively. These 
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diagrams both report the results from analysis of question Q11. Results from the normal distribution 
analysis of the other eleven questions can be found in Appendix A.  

 

Fig. V: Histogram of question Q11 with normal distribution curve 

 

Fig. VI : Normal Q-Q Plot of question Q11 

Through ocular inspection of the histograms presented we see that the results from answers to 
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question Q11 (the least skewed result) (see Fig. V) and question Q5 (the most skewed result) (see 
Appendix A) quite closely follows the expected normal distribution curve and could be considered 
normally distributed. Our assumption of normality is further supported by an inspection of the Normal 
Q-Q plot diagrams, where the data for question Q11 (see Fig. VI) and question Q5 (see Appendix A), 
shows good correspondence with the expected normality value. The number of respondents for each 
questions is n = 6369, therefore our assumption of distribution normality in each of the questions are 
strengthened in accordance with the central limit theorem (Pólya, 1920). The results for the other 10 
questions (see Appendix A) all fall inside the range of the results from questions Q5 and Q11 both in 
the histogram and the normal Q-Q plot and we therefore assume normality of distribution for all of the 
question. The assumption of distribution normality for the answers to the questions allows for further 
statistical tests such as correlation analysis (see Correlation Analysis in the section Basic Statistical 
Analysis). The One Sample Kolmogorov-Smirnov test was excluded as distribution test for the 
answers to the questions since the sample size is too large for a reliable result with this method. 

CORRELATION ANALYSIS 

Since we assume distribution normality in the survey questions we chose to use Spearman’s rho (RS) 
for our correlation analysis. Given that the survey data is of ordinal nature the choice of Spearman’s 
rho as the method for correlation analysis is further supported (see Correlation Analysis). The results 
from this analysis proved that all of the questions in the survey of November 2007 show a strong 
positive linear relationship among each other. The RS scores range from 0,46 to 0,84 as can be seen in 
Table IV. All but four correlations can be considered strong according to recommended threshold 
values (Cohen, 1988). These four correlations are considered of medium strength which is strong 
enough to be considered valid for further analysis. These results indicate that high scores on one 
question usually mean high scores on the other positively related questions. It also shows that there is 
no one question that asks for something that none of the other question do, i.e. all the questions target 
the area of employees views of the processes in the organization in various ways. With these strong 
correlation results of the questions the option of performing a factor analysis became available to us. 

Table IV: Spearman’s rank order correlation analysis of survey questions 

 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 

Q1 1,00 0,77 0,69 0,69 0,51 0,62 0,80 0,60 0,55 0,55 0,55 0,60 

Q2  1,00 0,71 0,73 0,50 0,66 0,69 0,63 0,58 0,59 0,60 0,65 

Q3   1,00 0,77 0,58 0,63 0,64 0,60 0,63 0,65 0,68 0,73 

Q4    1,00 0,54 0,63 0,65 0,60 0,59 0,61 0,66 0,69 

Q5     1,00 0,49 0,51 0,47 0,46 0,51 0,48 0,54 

Q6      1,00 0,59 0,63 0,64 0,63 0,57 0,60 

Q7       1,00 0,62 0,54 0,54 0,54 0,58 

Q8        1,00 0,61 0,60 0,59 0,62 

Q9         1,00 0,82 0,63 0,64 

Q10          1,00 0,64 0,67 

Q11           1,00 0,84 

Q12            1,00 



Strengthening the Validity of Software Process Improvement Measurements through Statistical Analysis      13 

FACTOR ANALYSIS 

Besides the requirement of normality there existed a number of considerations to determine if the data 
was suitable for a factor analysis (see Factor Analysis). Firsts of the population had to be large 
enough, however, with n=6369 respondents we were well above Tabachnick and Fidell’s (2007) 
recommended threshold of n>300. The second consideration that we addressed concerned the inter-
correlation among the questions, the RS score. An inspection of the correlation matrix (see Table IV) 
reveals that the scores all range between 0,46 to 0,84 which indicates that a factor analysis could be 
considered.  

To further assess if the data was suitable for a factor analysis Kaiser-Meyer-Olkin (KMO) measure 
of sampling adequacy and Bartlett’s test for sphericity (see Factor Analysis) were also of interest to 
us. As reported in Table V we had a KMO index of 0,944, well exceeding the suggested threshold 
value for a sound factor analysis of 0,60 (Tabachnick and Fidell, 2007). Moreover, Bartlett’s test of 
sphericity was significant p<0,05. Given these scores we concluded that the data was suitable for 
factor analysis. 

Table V: Results from Kaiser-Meyer-Olkin Measure of Sampling Adequacy and Bartlett's Test of Sphericity 

KMO and Bartlett’s Test 

Kaiser-Meyer-Olkin Measure of Sampling Adequacy 0,944 

Bartlett’s Test of Sphericity Significance 0,000 

Factor analysis was used both to test the new data from the survey of 2007, against previous 
discoveries, (Enskog, 2006), as well as running it with the two additional questions. This allowed us to 
analyze any potential changes in the outcome when comparing the two results. For a comparison of the 
results to be possible question Q11 and Q12 is not included in Table VI, which reports results from 
factor analysis of the first ten questions from the survey of 2007. The colored cells in the table shows 
on what component each question converges, i.e. which component each question most relates to. 

Table VI: Rotated Component Matrix – Results from factor analysis with the ten questions from 2007’s survey 

Component 

 1 2 3 4 

Q1 0,603 0,190 0,652 0,183 

Q2 0,654 0,313 0,520 0,150 

Q3 0,711 0,423 0,257 0,316 

Q4 0,760 0,358 0,285 0,238 

Q5 0,280 0,243 0,233 0,894 

Q6 0,355 0,536 0,528 0,152 

Q7 0,477 0,182 0,722 0,210 

Q8 0,148 0,491 0,722 0,210 

Q9 0,279 0,852 0,256 0,144 

Q10 0,306 0,831 0,223 0,224 

Extraction Method: Principal Component Analysis, 
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Rotation Method: Varimax with Kaiser Normalization, 
Rotation converged in 9 iterations, 
n = 6369. 

When comparing the results with previous discoveries we could confirm the results presented by 
Enskog (2006), and since the sample size has increased to our n=6369, this indicates that the choice of 
the four hidden components (the key ratios) selected for the process model was valid. In order to 
analyze how the process model was affected by the two new questions (Q11 and Q12) added in the 
survey of 2007, we conducted a second factor analysis including the new questions. In Table VII 
below, the results from the factor analysis of all twelve questions from the survey of November 2007 
can be found.  

Table VII: Rotated Component Matrix – Results from factor analysis with the twelve questions from 2007’s survey 

Component 

 1 2 3 4 5 

Q1 0,838 0,225 0,208 0,182 0,204 

Q2 0,758 0,307 0,318 0,148 0,158 

Q3 0,593 0,363 0,503 0,303 0,003 

Q4 0,656 0,303 0,489 0,228 -0,001 

Q5 0,296 0,221 0,236 0,885 0,132 

Q6 0,537 0,542 0,190 0,153 0,305 

Q7 0,770 0,192 0,197 0,194 0,330 

Q8 0,403 0,337 0,315 0,160 0,722 

Q9 0,277 0,829 0,300 0,135 0,175 

Q10 0,270 0,798 0,338 0,213 0,147 

Q11 0,272 0,310 0,820 0,141 0,227 

Q12 0,332 0,328 0,770 0,222 0,205 

Extraction Method: Principal Component Analysis, 
Rotation Method: Varimax with Kaiser Normalization, 
Rotation converged in 7 iterations, 
n = 6369. 

With the inclusion of the two new questions, Q11 and Q12, we can see a slight change in the results 
compared to the results from the factor analysis performed with ten questions. This change can also be 
seen when comparing these results with the once presented in Enskog, (2006). Some of the questions 
from 2006’s survey were changed slightly in the survey of 2007, for example, where the word feel 
was used before now the word believe is used instead. This could account for the slight displacement 
of questions Q7 and Q8 in the results. However, we can see that there are still some similarities with 
the previous results. Most importantly we can see indications that questions Q11 and Q12 loads on the 
same separate component which confirms the addition of the new key ratio Process Interface to the 
process model. 

In the continuous participatory iterative discussions (see Fig. III) we discussed the implications of 
accepting the established process model even though some of the results from the factor analysis 
might suggest a different approach. Since factor analysis is not a definitive method and the 
interpretation of the results are largely up to the researcher (see Factor Analysis). We decided that the 
best approach was to not make any changes in the existing process model on account of to the slight 
displacement of some of the scores from the factor analysis. The cause behind this decision is the 
belief from our point of view that the process model is well established and therefore has a recognition 
value in the organization and more would be lost by abandoning it than keeping it. Moreover, if the 
process model should prove not to be of sufficient quality this would be revealed in the PLS 
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regression analysis that we performed. Should there have been any doubts as to the validity and 
reliability of the model, a step back from PLS regression to factor analysis would have been 
considered.  

SURVEY KEY RATIOS 

In this subsection the results from the statistical analysis methods performed on the key ratios will be 
presented and analyzed. First we present the results from the distribution analysis, secondly the results 
from the correlation analysis. Following that the results from the PLS regression analysis. The results 
are present according to the statistical analysis methods in the chapter Theoretical Context. 

DISTRIBUTION ANALYSIS 

We performed a normal distribution analysis on the survey key ratios for 208 organizational units. The 
results from the graphical methods, histogram with normal curve and normal Q-Q plot of the key ratio 
Processment, can be found in Fig. VII and Fig. VIII respectively. 

 

Fig. VII: Histogram of  key ratio Processment with normal distribution curve 
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Fig. VIII: Normal Q-Q plot of Processment 

As for the distribution of the key ratios we have seen that the key ratio Processment, in the 
graphical analysis of distribution (see Fig. VII), quite closely follows the expected normal distribution 
curve. We can also see that the result from the Normal Q-Q plot analysis of Processment (see Fig. 
VIII) further supports the assumption of normality for this key ratio. This is true also for the other key 
ratios. The results from the normal distribution analysis of these four can be found in Appendix B. 

In order to further asses the assumed normality of the key ratios a One Sample Kolmogorov-
Smirnov test was performed, the results from the K-S test reports a non-significant result (p>0,05) 
indicating normality. We decided that the K-S test could be used to asses the distribution since our 
n=208 for the key ratios, which is not to large a sample for a sound K-S test (see Distribution 
Analysis).  The results from this test can be found in Table VIII below. 

Table VIII: Results from the One Sample Kolmogorov-Smirnov test for the five survey key ratios 

 Processment 
Process 

Commitment 
Process 

Learning 
Process 

Improvement 
Process 

Interface 

N 208 208 208 208 208 

Kolmogorov-
Smirnov Z 

0,785 0,718 0,844 0,399 0,583 

Asymp. Sig. 
(2-tailed) 

0,568 0,681 0,474 0,997 0,886 

Through the use of the graphical methods and the numerical K-S test to analyze the distribution of 
the key ratios we proven that we can assume normality in the distribution of them. 
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CORRELATION ANALYSIS 

The analysis of the correlation between the survey key ratios shows that the Spearman’s rho values all 
range between 0,64 to 0,81. A descriptive table of the results from the correlation analysis of the key 
ratios can be found in Table IX. 

Table IX: Spearman’s rank order correlation analysis of key ratios 

 Processment 
Process 

Commitment 
Process 

Learning 
Process 

Improvement 
Process 

Interface 

Processment 1,00 0,77 0,81 0,69 0,75 

Process Commitment  1,00 0,70 0,70 0,68 

Process Learning   1,00 0,64 0,65 

Process Improvement    1,00 0,70 

Process Interface     1,00 

These results indicate that high scores on one key ratio usually mean high scores on the other 
positively related key ratios. It also shows us that all of the key ratios target the same phenomenon in 
slightly various ways. This means that should the SPI organization at Ericsson target one improvement 
area, represented here by one key ratio, with SPI activities it is likely that the other areas will increase 
as well. The strong correlation results of the key ratios provided us with a first indication that they all 
belonged to the process model. However, to properly assess the process model a more thorough 
analysis was required, we therefore turned to PLS regression. 

PARTIAL LEAST SQUARES REGRESSION ANALYSIS 

With the confirmation from the factor analysis and with the addition of the new key ratio to the process 
model we turned to PLS regression analysis. This analysis would prove whether the process model was 
indeed valid and reliable and we could compare the results from this analysis with the once presented 
by Enskog (2006). First of we will present and discuss the results from the analysis of the 
measurement model, followed by the structural model. 

SmartPLS was used to test the process model with the data from the process employee survey of 
2007. With the techniques available in SmartPLS we could analyze the latent constructs, the key ratios, 
from a set of indicators, the survey questions (Chin, 1996). The PLS regression analysis was conducted 
to test the validity and reliability of both the measurement model and the structural model, results of 
which both are presented in the sections below. The scores for loading, average variance extracted, 
composite reliability, communality, cronbach alpha, path coefficients and their significance level, as 
well as the coefficient of determination were all calculated in this process. 

MEASUREMENT MODEL 

To assess the robustness and reliability of the measurement model we analyzed the scores for; average 
variance extracted, composite reliability, cronbach alpha and communality. The results from these 
coefficients are reported in Table X.  
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Table X: Results of coefficients for assessing the reliability of the measurement model 

 
Average 
Variance 
Extracted 

Composite 
Reliability 

Cronbach 
Alpha 

Communality 

Processment 0,81 0,94 0,92 0,75 

Process Commitment 0,75 0,86 0,67 0,92 

Process Learning 0,82 0,90 0,78 0,93 

Process Improvement 0,92 0,96 0,91 0,82 

Process Interface 0,93 0,96 0,92 0,81 

The results from this reliability test of the measurement model showed us that all the scores were 
well above or just around the suggested thresholds. AVE range from 0,75 to 0,93, well exceeding the 
suggested threshold of 0,50 for all constructs. The score for Composite Reliability range from 0,86 to 
0,96, also exceeding the recommended threshold value of 0,70. Inspection of Cronbach’s Alpha scores 
reveals that the scores range from 0,67 to 0,92 showing well enough scores. Finally, scores for 
Communality range from 0,75 to 0,93 exceeding threshold value of 0,50 for all key ratios. This shows 
us that the latent constructs (key ratios) are well explained by their corresponding indicators (the 
questions) and it indicates robustness and reliability in the model. 

CONVERGENT AND DISCRIMINANT VALIDITY 

We have seen that the correlations between the questions were strong (see Table IV) as well as the 
correlation among the key ratios (see Table IX). The next step was to test the measurement model for 
validity through analysis of convergent and discriminant validity. Convergent validity assess whether 
each proposed indicator to construct relationship was valid (see Table XI).  

Table XI: Test of convergent validity. Factor loadings (in Bold) and cross loadings 

 Processment 
Process 

Commitment 
Process 

Learning 
Process 

Improvement 
Process 

Interface 

Q1 0,89 0,69 0,80 0,59 0,61 

Q2 0,91 0,71 0,76 0,63 0,66 

Q3 0,90 0,73 0,71 0,69 0,75 

Q4 0,90 0,71 0,71 0,64 0,72 

Q5 0,63 0,85 0,56 0,53 0,57 

Q6 0,74 0,89 0,70 0,68 0,63 

Q7 0,79 0,66 0,92 0,58 0,60 

Q8 0,71 0,67 0,90 0,66 0,65 

Q9 0,67 0,67 0,65 0,96 0,68 

Q10 0,69 0,68 0,65 0,96 0,70 

Q11 0,71 0,64 0,64 0,68 0,96 

Q12 0,76 0,69 0,68 0,71 0,96 
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In our analysis of convergent validity, table above, we have seen that all of the indicators 
(questions) load on their own latent constructs (key ratios) with a value that exceeds 0,70, which is the 
threshold recommended by (Trochim, 2006). In addition, each question load higher on their own latent 
constructs than on the others. The analysis of convergent validity shown that each indicator is well 
correlated with the construct it is connected to. 

Given the strong correlation of key ratios (see Table IX) it is important to asses that the constructs 
are not redundant, i.e. that two constructs in the end measures the same phenomenon. Through our 
analysis of discriminant validity we examined the degree to which the constructs diverged from each 
other (see Table XII).  

Table XII: Test of discriminant validity. Inter-correlations of latent constructs 

 Processment 
Process 

Commitment 
Process 

Learning 
Process 

Improvement 
Process 

Interface 

Processment 0,899 0,791 0,829 0,709 0,763 

Process 
Commitment 

 0,868 0,732 0,705 0,689 

Process 
Learning 

  0,906 0,677 0,688 

Process 
Improvement 

   0,958 0,720 

Process 
Interface 

    0,962 

We can see that the square roots of the AVE’s (the bold figures) for each item are greater than their 
correlation with the other constructs (see Table XII), which indicates that the key ratios do in fact 
measure different concepts (see Partial Least Squares (PLS) Regression Analysis). This, in turn, 
indicates validity of the measurement model (Heeler and Ray, 1972).  

We conclude that the measurement model is robust and reliable as was suggested by Enskog 
(2006). Moreover the validity of the measurement model is strengthened through these results as the 
number of respondents of the survey has increased dramatically since the previous results were 
presented.  

STRUCTURAL MODEL 

To assess the relationships of the constructs in the structural model we used the coefficient of 
determination, R2 as well as the path coefficients and their corresponding significance score, which 
were retrieved from a t-table (see The Structural Model). We calculated the results of R2 for the 
dependant construct Processment as well as path coefficients between the independent constructs, 
Process Commitment, Process Learning, Process Improvement and Process Interface and the 
dependant construct Processment. The results from the analysis of the structural model can be found 
in Fig. IX. 
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Fig. IX: Structural model with R2 and path coefficient scores (depicts the structural model, leaving out the indicators that are 
part of the measurement model). 

Through PLS regression analysis of the structural model we can see that the loadings for the two 
new questions Q11 and Q12 exceeds the recommended threshold of 0,80 (Chin, 1995) indicating a 
strong relationship with the new key ratio Process Interface (see Table XI). We can also see that 
Process Interface is a strong determinant of Processment with a path coefficient of 0,242 indicating 
significance at the 0,01 level (see Fig. IX). This result indicates that key ratio Process Interface does in 
fact belong in the process model. 

Moreover, the results from the analysis of the structural model, without including the new key ratio 
process interface, showed us that the process model is strong, indicating that the constructs; Process 
Commitment, Process Learning, and Process Improvement are good determinants of Processment. The 
independent constructs explain 77% of the variance of Processment. This confirms the results 
presented by Enskog (2006), which reported a value of 76%. Furthermore, the number of respondents, 
n, has increased since the survey of May 2006, which enhances the validity of the model. When the 
results had been validated against previous results (Enskog, 2006) we added the two new questions and 
the new key ratio to the model. With the addition of the new questions and the new key ratio to the 
process model the four constructs; Process Commitment, Process Learning, Process Improvement, and 
Process Interface are good determinants of Processment. These constructs account for 79% of the 
variance of the dependant construct Processment (see Fig. IX). We conclude that there is consistency 
in the structural model and that the model is reliable. 

DISCUSSION 

In this chapter we discuss and reflect on the implications that this research could have on Ericsson 
based on what is reported in the chapter Result. The discussion and reflections relates back to the 
theories which are presented in the chapter Theoretical Context. The intention of the discussion is to 
present how we analyzed the outcome of the statistical methods performed and the results generated by 
them. Moreover, we intend to show how we fulfilled the general purpose of this research through the 
results that was reach in this study. The purpose of this study was:  

Assuring quality of results from SPI measurements through statistical analysis. 

The layout of this chapter is as follows; first we present our Reflections on the Statistical Analysis 
of the survey results and secondly we discuss the Implications for Practice that this study generated. 

 

R2 = 0,79 
n = 6369 

0,426** 
Processment 

0,277** 

0,242** 

0,050** 

** Indicates significance at the 0,01 level  

Path coefficient
Process 

Commitment 

Process 
Interface 

Process 
Learning 

Process 
Improvement 
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REFLECTIONS ON THE STATISTICAL ANALYSIS 

In this study we have applied a set of statistical methods (see Basic Statistical Analysis) on SPI 
measurements, in this case in the form of survey results. In this chapter we reflect on the outcome of 
the statistical analysis and the potential gain of using such methods.  

In our case we applied correlation analysis to the answers to the questions which was a vital first 
step that ensured that each of the questions actually had a relationship amongst them (see Table IV). 
As described before by using this method we could assume that none of the questions were out of 
place in the survey. Furthermore, as the number of respondents in the survey of November 2007 were 
6369, the generalizability to a several other design units within Ericsson is strong. We believe that in 
future surveys, which might include even larger parts of the organization, the correlations between the 
questions should still exist as long as the wording of the questions does not change. Therefore the need 
to perform such an analysis might decrease for Ericsson. However, as future surveys might target 
different populations within the organization than this one has, the potential changes in the results call 
for correlation analysis to be performed. Furthermore, we see the need to ensure strong relationships 
between the answers to the questions in order to created validity which is needed in succeeding 
analysis methods. This leads us to suggest that a correlation analysis should still be performed in future 
undertakings. 

Another useful statistical method that was performed during this study was the factor analysis (see 
Factor Analysis). The factor analysis showed us, with minor deviations, that the selection of the five 
key rations; Processment, Process Commitment, Process Improvement, Process Learning, and Process 
Interface, all seem to be appropriate components for describing the questions (see Table VII). With the 
statistical finding that these five key rations do in fact all have their place in the process model, the 
factor analysis in future statistical analysis of survey results would not prove as important as the one 
performed in this study, so long as no new questions or key ratios are added. However, performing a 
factor analysis provides a good indication as to how each questions in the survey loads on what 
component. Furthermore, since there were some displacements in the factor analysis results (see Factor 
Analysis), it could be interesting for Ericsson to perform a new factor analysis with future survey data 
in order to monitor this displacement. On the other hand we feel, given that factor analysis is not a 
definitive method for extracting valid components, the results from such an analysis is not to be 
considered the final verdict. 

We also wanted to asses the process model that is used within Ericsson to describe the results of the 
process survey. So we turned to PLS regression analysis (see Partial Least Squares (PLS) Regression 
Analysis). We could see that this technique has great potential, not only as a powerful statistical 
method for analyzing relationships and significance of survey results, but also as a method that outputs 
easy accessible results that, once interpreted by change agents, can be presented and understood to 
large parts of an organization. We believe that through the use of PLS regression it is possible that the 
perceived usefulness of the SPI measurements becomes apparent to a larger population, which in turn 
increases the changes of them being accepted (Davis, 1989). The perceived usefulness is however 
something that should be measured separately for any valid conclusions to be drawn from it. This will 
be discussed further in the section Implications for Practice 

We feel that the most important statistical method used to analyze the survey data in this study was 
in fact the PLS regression analysis. As mentioned in Partial Least Squares (PLS) Regression Analysis, 
the method is well suited for ordinal survey data as it does not require an assumption of normality. The 
method is however somewhat dependant on a set of statistical methods that we suggest should be 
performed first to ensure that the results from the PLS regression analysis are reliable. The steps 
reflected upon in this section are summarized in Fig. X. 
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Fig. X: Suggested steps when performing Statistical Analysis on SPI Measurements 

As for the assessment of the measurement and structural model in PLS regression analysis, there are 
a number of different software’s available on the market, but we feel that SmartPLS well enough does 
the job. We believe that by using a program such as SmartPLS facilitates the process of conducting 
such an analysis. As of today, the software SmartPLS is free of charge. It incorporates the most 
important functions in PLS regression analysis. There are a number of steps in assessing the 
measurement and structural model. Most of the values needed to asses both models are received when 
performing PLS regression analysis in SmartPLS. We believe that there are a number of important 
statistical scores that needs to be considered when evaluating the models and these are presented in the 
section Partial Least Squares (PLS) Regression Analysis. 

We feel that potential benefits from using statistical analysis on SPI measurements for an 
organization, in this case Ericsson; is a vital part in an ongoing SPI initiative. Bryman and Cramer 
(1994) stated the importance of awareness of quantitative data analysis in order to identify incorrect 
conclusions and manipulation of SPI measurement results. We have seen that the analysis performed 
resulted in a strong statistical validity and reliability of the measurements. Moreover the need to asses 
the assessments has been stated by Argyris (1982). We believe that this should be done in order to 
create confidence in the SPI organization among the employees and we suggest the use of the 
statistical methods presented in Fig. I as a good way of achieving this. However, no conclusions as to 
how these results are accepted within the organization can be drawn at this stage. The need for more 
studies where methods such as, interviews with employees, is needed to confirm the impact on the 
beliefs of the measurements before and after the application of statistical analysis.  

This set of statistical methods can be reused, which facilitates continuous systematic monitoring in 
future SPI initiatives, the benefits of which have been stated by Zahran (1997). How these statistical 
methods fit in to the SPI activities at Ericsson and how they can be used at Ericsson are further 
discussed in the section Implications for Practice. 

In future undertakings we see the need to perform an analysis on the two new questions and the 
resulting key ratio in the survey of November 2007. If we look closer at the wording of the questions, 
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we can see that they focus on input output; this indicates an interesting interaction between units. 
Where question Q11 focuses on the perceived quality of the input one receives from other units 
question Q12 focuses on the perceived quality of the output that one generates. We feel that the 
interaction on unit level and the correlation of perceived quality between one units output and the 
subsequent input that it becomes for the receiving unit would be an interesting area to focus on. We 
believe that such an analysis could potentially prove that there in fact exist inconsistencies in the two 
results in between units. With the results from such an analysis the SPI change agents at Ericsson 
would have a good insight into the different units and their own perceived strengths and weaknesses in 
the material produced as well as the other interacting units’ views on the same matter.  

 

We conclude that the set of statistical methods and tools suggested in this study can be used to 
assure the quality of the results from SPI measurements.  

 

We conclude that the statistical analysis of the process employee survey investigated in this 
thesis shows strong consistency and validity of both survey questions and key ratios. We also 
conclude that we can strengthen the statistical validity in SPI measurements through the use of 
basic statistical analysis 

IMPLICATIONS FOR PRACTICE 

There are a number of ways that the set of statistical methods presented in this paper can be 
beneficially used within Ericsson. We can see that the need to incorporate statistical analysis of SPI 
measurements in order to strengthen the statistical validity and quality of said measurements. 

The first practical contribution of this study is the potential for Ericsson to educate their SPI change 
agents to use the statistical methods suggested in this paper in future SPI initiatives. This will ensure 
the validity of the results from SPI measurements such as the survey that Ericsson conducts 
continually. We believe that educating Ericsson’s change agents in the suggested statistical methods 
should support the SPI organization in future SPI initiatives.  

The second practical contribution for Ericsson that we present in this study is the proposed four 
phase iterative SPI measurement analysis process, presented in Fig. XI. This model should be possible 
to integrate in the continuous iterative SPI activities currently conducted at Ericsson. 

 

Fig. XI: Conceptual model of the suggested four phase iterative SPI measurements process 
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The first phase in the model, Ericsson SPI Data Collection, is the one already present, where 
Ericsson’s change agents’ collects SPI measurement data in the form of a survey and the process used 
to define this. We suggest, based on the findings in this document, the second phase of our model, 
Measurement Validation in this case performed by the author in collaboration with Ericsson. In this 
phase we feel that Ericsson would benefit from performing the statistical analysis steps presented in 
Fig. X and reported in this study. In the third phase, Analysis and Interpretation of Results, the results 
from the validation in phase two should be analyzed for validity and quality as suggested in Fig. X. In 
this phase the interpretation and analysis should also be performed together with the initial conclusions 
received in the first phase by Ericsson’s change agents’, which we believe should result in an 
additional set of conclusions. The final phase of our suggested model is the, New Set of SPI Data 
Collection Methods, where the conclusions drawn in phase three affect the data collection in the 
following phase one with new methods for SPI data collection as the process comes full cycle. This 
way of working with measurements as an integrated improvement model in the continuous SPI process 
is similar to the suggested activities of the higher levels of CMM (Paulk et al. 1995). 

Thirdly, we can see three ways for Ericsson to evaluate the potential impact of performing statistical 
analysis on the SPI measurements among the employees: 

A. The idea of keeping one control group in each SPI measurement. This group would only 
perform the first phase in the suggested model (Fig. XI), Ericsson AB SPI Data Collection, 
while the other group performs all four phases in the model. The difference in the results of 
these two groups could then be used to asses if there are any significant differences in the 
perceived benefits among the two groups. 

B.  The second suggestion is a directed study, where the participants could be subjected to deeper 
qualitative interviews or questionnaires. The data gathered from this could then be used to 
investigate the impact that the statistical analysis has on the acceptance of the results among the 
employees. 

C. We believe that there is also a third option.  A mixed methods approach where methods and 
techniques presented in suggestions A and B, above, are both represented. This method is 
however somewhat more time consuming, so the need for the organization to start evaluating 
the potential ROI in such an initiative is suggested. 

This study did not set out to formulate any implications for theory. However, at the conclusion of 
the study we can see the potential of such implications being presented. Should the four phases in the 
suggested iterative SPI measurement process (see Fig. XI) be continuously followed by Ericsson and if 
there were other similar studies conducted and analyzed at other organizations, a set of theoretical 
implications could be derived. This off course requires analysis of how the employees’ beliefs in SPI 
initiatives are affected by the statistical analysis through deeper qualitative studies, as suggested above. 
This was however out of the scope of this study and therefore not further explored herein. 

 

We conclude that the four phase iterative SPI measurements process model presented could be 
used to assure quality in SPI measurements and improve future SPI measurements. 

CONCLUSIONS 

In this thesis we investigate how we can strengthen the statistical validity of SPI employee survey 
measurements at the Ericsson telecom company with help of statistical analysis. We have used basic 
statistical analysis methods such as distribution analysis, correlation analysis, factors analysis and 
partial least squares regression analysis on a process employee survey sample consisting of 12 answers 
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from 6369 individuals. We conclude that the statistical analysis of the process employee survey 
investigated in this thesis shows strong consistency and validity of both survey questions and key 
ratios, and the process model created from the two shows a strong robustness and reliability. We also 
conclude that the set of statistical methods and tools suggested in this study can be used to assure the 
quality of the results from SPI measurements. Finally we conclude that the four phase iterative SPI 
measurements process model presented could be used to assure quality in SPI measurements and 
improve future SPI measurements. 
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APPENDIX A 

In this appendix we present the remaining histograms and normal Q-Q plot of the answers to the survey questions from 
the distribution analysis. 
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APPENDIX B 

In this appendix we present the remaining histograms and normal Q-Q plot for the key ratios from the distribution 
analysis. 

  
 

  
 

 

  



Strengthening the Validity of Software Process Improvement Measurements through Statistical Analysis      33 

  
 

 
 
 

 

 

 


	INTRODUCTION
	THEORETICAL CONTEXT
	SPI MEASUREMENTS
	BASIC STATISTICAL ANALYSIS
	DISTRIBUTION ANALYSIS
	CORRELATION ANALYSIS 
	FACTOR ANALYSIS
	PARTIAL LEAST SQUARES (PLS) REGRESSION ANALYSIS 
	THE MEASUREMENT MODEL
	THE STRUCTURAL MODEL



	RESEARCH METHODOLOGY
	DESIGN AND PROCEDURE
	PARTICIPANTS
	DATA SOURCES

	THE ERICSSON MEASUREMENT CASE
	BACKGROUND TO THE PROCESS MODEL 
	RESULT AND ANALYSIS
	SURVEY QUESTIONS
	DISTRIBUTION ANALYSIS
	CORRELATION ANALYSIS
	FACTOR ANALYSIS

	SURVEY KEY RATIOS
	DISTRIBUTION ANALYSIS
	CORRELATION ANALYSIS

	PARTIAL LEAST SQUARES REGRESSION ANALYSIS
	MEASUREMENT MODEL
	CONVERGENT AND DISCRIMINANT VALIDITY

	STRUCTURAL MODEL



	DISCUSSION
	REFLECTIONS ON THE STATISTICAL ANALYSIS
	IMPLICATIONS FOR PRACTICE

	CONCLUSIONS
	ACKNOWLEDGEMENT
	REFERENCES
	APPENDIX A
	APPENDIX B

