
Serenity: A Case Study in Developing Sustainable
Information Systems

Pontus Andersson
andpon@ituniv.se

IT University of Göteborg
Software Engineering and Management

Göteborg, Sweden

David Birath
birath@ituniv.se

Patrik Willard
willard@ituniv.se

Abstract—The Internet has made a huge impact on the way
we, as humans, communicate. During the last decade a series of
new communication mediums have emerged and communication
protocols have come and gone. This puts new requirements on
the development process and architecture of the communication
platforms, operated by communities, in order to pro-actively
ensure support for future communication protocols.

Even further, additional requirements are added when the
software itself will be maintained by a community.

In this thesis we explore the world of Free/Libre and Open
Source Software in a case study of the Serenity Information
System. We present our suggestions of usable design-principles
and our process in developing a sustainable information system.

I. INTRODUCTION

The proliferation of the Internet in the last two decades have
given rise to several new communication protocols which sup-
plement older ones, e.g. E-mail and Bulletin Board Systems.
With this wide-spread availability and use of the Internet, the
concept of “virtual teams” has emerged. Virtual teams can
be defined as groups of collaborating individuals to whom
geographical location and differences in time-zones are of little
consequence, as there are communication mediums where time
and synchronicity isn’t an issue.

Without the boundaries of space and time there are some
obvious benefits to virtual teams compared to “face-to-face”
teams, but at the same time this necessitates a good commu-
nication infrastructure in order to function effectively.

Agarwal and Maruping use the media synchronicity theory
to show how different communication mediums have differing
sets of strengths and weaknesses[1]. This theory has come true
on the Internet as well, due to the growing plethora of digital
communication protocols. An optimized virtual team is thusly
a team which has grasped the importance of using various
communication protocols and created a framework supporting
these.

This puts new requirements on the development process and
architecture of modern web platforms. Fielding and Taylor
state that “Even if it were possible to build a software system
that perfectly matches the requirements of its users, those
requirements will change over time, just as society changes

over time”[2]. As the Internet will continue to evolve, new
communication protocols are sure to be developed, and mod-
ern communication platforms should have the feature to adapt
and include new protocols, incorporated in the core design.

For this thesis we approached the Free Software Foundation
Europe (FSFE) as we knew, from a previous study[3], that the
organization maintained a virtual community, and also that
they were experiencing issues in communication which was
beginning to diversely affect them.

The FSFE is an organization consisting of several virtual
teams which produce a large amount of data using several dif-
ferent protocols. This in turn has resulted in an inconsistency
in data storage, poor structure and an overload of information.

The current platform used by the FSFE was deemed too
complex for the organization to extend, a new modern web
platform needed to be developed. The spirit of those experi-
ences was embodied by Henrik Sandklef (FSFE) stating: “it
is important that the software is structured and well written,
modular since we need to maintain our installation and be able
to add features later on.” In this thesis we describe the research
and development that has gone into the creation of the Serenity
Information System, a platform which could potentially evolve
and become a sustainable replacement. In addition to this
we also explore possible methods for developing sustainable
software.

II. LITERATURE REVIEW

A. Sustainability

When discussing sustainability and IT, one often refers to
the so called “green IT”. Going in to this thesis, however, our
understanding of the term sustainability was that of a product’s
ability to present an evolving life-cycle in the face of changing
requirements or technologies.

For the Free Software Foundation Europe, hosting several
virtual teams, sustainable software add yet another aspect. The
software in itself should help the community to stay active and
attract new members.

Sustainability as we will approach it is therefore a mixture
of properties ranging from communally revitalizing, to archi-
tecturally extendable. Based on the various definitions of the

term it can be difficult to find related research which directly
fit our definition.

1) Architecture: From an architectural view, sustainability,
as we define it, is not unheard of. An example is the case study
of the Nightingale system conducted by Bass et al[4] who
concluded that “The system had to be maintainable, config-
urable and extensible to support new markets (e.g., managing
doctors’ offices), new customer requirements, changes in state
laws and regulations, and the needs of the different regions
and cultures.”

Several softwares handle this issue by offering a solid
foundation which users then modify on a per installation basis.
One such system is the Eclipse IDE1 which has, since it was
released under an open source license in 2001, adapted well
to the introduction of new technologies and languages. This
is due primarily to the architecture which allows Eclipse to
be extended through plugins and thus handle new languages
and development concepts, earning the reputation of being
one of the best development tools on the market[5]. Although
unproven, it stands to reason that this modularity gives Eclipse
a huge competitive edge.

2) Free and Open Source Software: As the possibilities
with, and popularity of, Eclipse increase, so does the commu-
nity which supports it, making Eclipse a sustainable system,
not only from a technical point of view but also from a
communal view.

In 1999 Raymond wrote “The Cathedral and the
Bazaar”[6] thereby defining the Bazaar model, which outlines
ways for a community-driven development effort. A few years
later, when it had gained real traction and come into interest,
research related to the subject, such as community-based end-
user involvement[7] began to spring up.

From a business point-of-view the decision to release
Eclipse under an open source license goes hand-in-hand with
what Holmström concludes: “Traditionally, the conception of
software development and maintenance is that of tedious and
time-consuming processes. Thus, the opportunity to have parts
of development outsourced to customers is indeed attempt-
ing[sic]”[7].

More evident in organizations than companies, communities
play an important role in free software and open source initia-
tives. Although it isn’t unheard of for communities to spring
up around companies (e.g. Blizzard Entertainment and the
MMORPG2 World of Warcraft, or SuSE and their community
based variant OpenSuSE) the majority of communities are for
the most part not customers, but volunteers contributing with
their spare time.

B. Design Principles

Extensible platforms takes on a life of their own post-
installation, as each individual installation will evolve along-
side its own community and their specific requirements. This
can easily be verified by observing the difference in features

1http://www.eclipse.org/
2Massively multiplayer online role-playing game

that organizations, which use the same technical solution, offer
their members. Examples of such solutions would include
Drupal3 and WordPress4.

In light of this, modularity and flexibility should be key
features in the architecture, but important as well is to have a
plan for how to handle such evolution, in order to not fragment
the community (software users) by breaking compatibility
between versions.

In the initial phase of development we identified five
interesting principles that could serve us as developers by
reducing the development time, and also make the product
more maintainable:

• ORM (Object-Relational Mapping)
is a programming technique for converting data between
incompatible type systems in relational databases and
object-oriented programming languages. This creates, in
effect, a “virtual object database” which can be used from
within the programming language[8]

• DRY (Don’t Repeat Yourself)
is a principle with clear benefits which ties well into
maintainability, as there is less of a risk to introduce
inconsistencies in the source code. The objective is to
eliminate knowledge duplication, not by reuse, but by
having only one source for each distinct piece of knowl-
edge, and let all other components derive their knowledge
from that one source[9]

• CBSE (Component Based Software Engineering)
is a way to build systems by using functional or logical
components. The components communicate through well-
defined interfaces, and as long as these interfaces are hon-
ored, components may be replaced to provide additional
or enhanced functionality without affecting the other
components in the system[10]. This method increase re-
usability as you do not have to rewrite common functions
which has already been developed in other systems.
This method therefor shortens the development time and
may reduce the overall cost normally associated with
development. Weyuker highlights some potential risks
which will be discussed further in section V

• 4GL (Fourth Generation Programming Languages)
while not practices in themselves, can enhance and re-
inforce other practices. We also deemed it interesting to
observe whether the use of a 4GL would provide any
significant advantages, as compared to “the usual” web-
programmings languages (e.g. PHP5)

• Tracer Bullet development
is a discipline, most commonly used in iterative devel-
opment, that focus on writing small “proof-of-concept”
features which can be refactored into a more functional
state if the bullet “hits its mark”. This practice can be
extremely useful in the initial stages of development of
a new component or feature

3http://www.drupal.org/
4http://www.wordpress.org/
5http://www.php.net/

C. Communication
Sillencea and Baberb explores how the concept of “Commu-

nity Technology”, when combined with other communication
media, can be used to enhance the experience of the members
in a community[11]. They conducted an experiment which
incorporated text-messaging into the communication medium
flora. The experiment resulted in increased activity within the
community, which also increased the test group’s interest in
the soccer world cup of 2002, the event which the community
centered around. The study mixed broadcast type mediums
(e.g. web-sites) with what have traditionally been considered a
point-to-point, individual and private medium (text-messages).
One of the ways this was used bears a resemblance to how
the US and Russia used to communicate with their missile
submarines[12]. In practice a message is sent out through
a medium which, with near total guarantee, will reach the
recipient. This message cannot carry much information due
to technical or physical constraints, so the purpose of this
message is simply to alert the recipient that there is a real
message awaiting transmission. It is then up to the recipient
to get in contact with the sender.

It can be concluded that the principle behind this type of
communication is applicable in several different fields, and
probably several more, yet to have been discovered.

Though Sillencea and Baberb’s conclusions only revolves
around how traditional media could be improved if it was
more integrated, it is likely that the same argument is true
for modern communication forms as there exists a correlation
between their research and the media synchronicity theory[1].

D. Information Overload
Information overload, though not a primary aspect of this

thesis, has shown to be an important issue for the FSFE. It
was thus a priority for us to research this field in order to,
at the very least, provide a solution which does not increase
information overload within the organization.

Information overload has been researched since 1970[13],
[14] and even though several methods and techniques have
been developed to mitigate the problem, the effects of the
problem has increased. The research firm Basex[13] estimated
the cost of unnecessary interruptions and related recovery time
to a total of $650 billion in the U.S. alone.

Information overload affects not only businesses but also
society as a whole, because with increasing overload comes
stress, which not only leads to poor decision making but can
also lead to mental breakdowns, with months of rehabilitation
as a resulting factor[15], [16].

People become bogged down with information because:
• the sheer amount of information can be overwhelming
• the information is not always presented in an organized

manner
• the information may not be relevant
• the information is in some cases given a false urgency
Speier and Price suggests that “The use of aggregate data

minimizes the effects of information overload on a decision

maker” but also warns that “[aggregate data] may not provide
a decision maker all the details he or she would like to
have”[17].

While their study focus on the temporal perspective of
information (urgency or how fresh/stale the data is) which
is an important component in both communication and de-
cision making, the idea of aggregating information remains
valid even without the time aspect, if the aggregation source
can provide means to make the information clearer or more
accessible.

Summarized data may reduce information overload, but may
at the same time “decrease overall decision quality as the
information selected and processed is not as precise as the
detailed information”[17], which indicates that summarized
information might not be the most advantageous approach.

These considerations proved to be important aspects to
recognize and consider when deciding on the overall design
and orientation of the system.

III. RESEARCH APPROACH

The aim of this paper was initially to study if centralized
aggregation and data filtering could have a positive impact
on information overload. Over the course of the study, how-
ever, the focus began to shift towards a more general study
about how to develop sustainable community-driven web-
applications.

As we had been involved in a previous study[3] regard-
ing the Free Software Foundation Europe we felt a strong
incentive to continue in the footsteps of that study, as we
already possessed a great deal of domain-knowledge about
the organization.

A. Subject Proposal Screening

Although we felt, as previously mentioned, a strong in-
centive to further study the FSFE the screening process was
necessary in order to evaluate if there existed a research
problem which could provide enough worth as a scientific and
practical contribution, and which also affected the organiza-
tion. Through the pre-study we had concluded that there was a
gap in communication between the members, as the members
tended to have a preferred communications protocol, rather
than using the protocol best suited for any particular situation.
In a perfect world the media synchronicity theory would reign
supreme but that is almost never the case, and it would be
presumptuous of us to try to change the members’ opinions.
The next best thing would be an attempt to develop a system
which would bridge the gap.

A concern which arose was how to manage the risk of
information overload as this system would have the potential
to flood all the virtual teams of the foundation with all the
information being sent, relevant or not. We then realized that
this subject could be abstracted, to not focus solely on an
application for the FSFE, but as a more general attempt at a
practical solution. To solve the problem, our proposition was
to aggregate the information at a central “hub” and categorize
it. This would make it easy to search through the information,

filter it, and thus distribute it to members based on these
categories.

B. Domain Knowledge Collection

With the subject of the thesis shaping up we set out to
research the problem domain and visualize what had already
been studied. The findings of this research are presented in
greater detail in section II.

Knowing what our subject was, and what related research
existed, we were almost ready to begin, there was just the
question of what research methodology to use standing in our
way. The iterative nature of the action research methodology,
among other things, made it seem ideal for our purposes, as we
would at the same time develop a new system. The four phases
of action research (Plan, Act, Observe and Reflect) could
be mapped to the iterative phases of development (Design,
Implementation, (User) Testing and Feedback).

C. Design and Implementation

We decided that the most appropriate development process
was to be an agile one. This was based on the fact that we did
not have a clearly stated requirement specification from the
FSFE and we felt the need to give the “customer” a central
role in the development of the system.

1) Customer involvement: During the development, meet-
ings were held on a weekly basis with representatives from the
FSFE. During these meetings we assessed the overall project
progress, demonstrated the current state of the system and
discussed upcoming features. As this system will later be
maintained by the community, it was important that we not
only discussed functionality and usability but also covered
the architecture from a maintenance point of view. We also
gave their suggestions much consideration, drawing upon their
previous experiences, to produce a better system.

In addition to these meetings, a live version based on
a nightly build, which allowed end-users of the system to
familiarize themselves with the user interface and the new
concepts, was released.

2) Implementation: The development of Serenity followed,
in most aspects, an iterative and incremental development
process. The idea is to produce the system in minor iterations
which is then released to the client. Usage of this method has
decreased the resources spend in post-delivery maintenance
significantly[10] and is often used in project, such as this,
where a complete list of requirements are not known at the
launch of the project.

The use of a incremental process served the project well as
we had insight into the needs of the Free Software Foundation
but there existed no formal requirements specification. We
therefor decided to use the concept of tracer bullets[9] in
conjunction with close “customer” involvement, in order to
create proof-of-concept functionality which could then be
demonstrated to the representatives. If they liked the feature, it
was further evaluated and implemented. Features which turned
out not to be in their interest was left out.

Serenity, as a system, is further described in section IV.

Fig. 1. Illustration of the iterative development process

D. Thesis Subject Revisited

Over the course of the study we began to ask ourselves
questions more related to the design and development of
systems maintained by, but also sustaining, a community of
people. What additional requirements are placed upon com-
munal software? How do you develop software with communal
qualities, such that it becomes a tool for sustaining the
community?

As Serenity had come to take shape we could focus fully on
what qualities it needed, and already had, due to the feedback
from the representatives from the FSFE, and how this could
affect a community using it.

With the re-orientation of the subject we also came to realize
that the research method we had selected did no longer serve
its purpose, and in a meeting with a shadow consultant6 it
was suggested that the case study method might prove to be
a better choice.

There are a lot of critics condemning the use of case
studies, and even proponents of the method recognize that
there are some potential difficulties which might not always
be considered or appreciated by the users of the method[18].
There are however others, who feel that much of the criticism
against case studies is unwarranted, or at least exaggerated[19],
[20]. Nevertheless, the criticism has not gone unnoticed and
has been applied to our best efforts in this study.

Due to the suggestion and after great thought, considering
both drawbacks and advantages of the case study methodology
it became evident that change was the only way forward.

We have during our study maintained a close communica-
tion with the FSFE representatives which has given us insight
in their needs and hopes, and their reactions towards Serenity.
From the pre-study[3] we had also a considerable amount of
quantitative data in the form of answers from a questionnaire
about the information infrastructure present during that study.

E. Evaluation and Reflections

As an ongoing process during this study, and the meetings
held, we have devoted much thought to what the “customer”
has given in terms if feedback and continuously weighed this
into our efforts both to develop a better software, but to also

6a consultant who, at the request of a colleague, by means of a series
of discussions, helps assess that colleague’s diagnosis, tactics, or role in a
specific assignment

analyze what was being said, and what the meaning behind
it was. Sessions with the shadow consultant also gave rise
to a third, neutral, perspective. We realized the importance
of this action as Flyvbjerg concludes that there are critics
claiming that case studies “contains a bias toward verification,
that is, a tendency to confirm the researcher’s preconceived
notions.”[19], and by enlisting a shadow consultant we could
get an unbiased voice telling us if we had gone astray.

The quantitative data we had collected previously directed
our actions as to what should be done, by giving us an
understanding in how the members of the FSFE work, but
also what they liked and disliked. Since the publication of
our previous study, it has circulated through the FSFE and
the general opinion about our conclusions are that it is a
“disheartening read, as it is so true.”

As there is no suitable way of measuring a user or client’s
“happiness” with a software, we observed the reactions of the
representatives from the FSFE and conducted interviews to
derive an interpretation about what their thoughts and feelings
about the system were. This qualitative data was used to
evaluate how well the system matched the “requirements” of
the FSFE.

IV. THE SYSTEM

A. Problem Domain

From our previous study[3] concerning the Free Software
Foundation Europe, it was concluded that the organization
was having issues regarding communication. Information is
distributed in an unstructured manner, which causes a general
confusion within the community. Our study found the follow-
ing points to be the primary factors for this:

• Various information is distributed through different com-
munication mediums

• The website is unstructured, in terms of finding relevant
information

• The lack of clear guidelines on how and where informa-
tion should be distributed

As the study states, and which the FSFE agrees on, is that
the organization needs to remove their current platform, since
it was deemed too complex for the organization to extend and
adapt to their specific needs. The FSFE want a new system
to be developed, which is maintainable and sustainable, in
order to “resurrect” the community, as well as to attract new
members.

On the market today, there are a variety of information-
scraping systems designed to increase the efficiency of com-
munication by merging several different data sources into one,
e.g., PlanetPlanet7. However, one shortcoming of the existing
systems is that their primary focus is information gathering,
thus offering limited or no functionality to differentiate in-
formation with respect to urgency or individual preference.
Another common shortcoming prominent in these systems is
that they are designed with a specific information distribution
technology in mind, and are thus limited with respect to

7http://www.planetplanet.org/

adaptability of, and interoperability with, other technologies.
This presents a clear disadvantage from a sustainability and
maintainability perspective.

B. Concept

To alleviate this problem, the authors propose a technical
solution which would collect information from sources varying
not only in location, but also in format and protocol. The
information would then be organized, filtered, and possibly
prioritized, before being presented to the user.

There are several ways of organizing information, the most
common being to sort it based on existing metadata[21] such
as publication date, topic and author. Neither of these sorting
options provide the flexibility to allow users an intuitive way
of selecting sets of information based on the information itself,
i.e., the content.

The most promising solution to this seems to be adding
more metadata, in the form of a keyword based summary. This
solution too has its own set of problems as was concluded by
Paulillo and Penumarthy[22].

The information passed through various protocols is already
“earmarked” with various forms of metadata such as “recipi-
ent”, “sender” etc. As most of this metadata is in a protocol-
specific format, the system must be able to understand the
various formats, and reformat information from one format
into another.

C. Serenity Information System

As the goal of this study was to create a first version,
we did not only design, but also implemented a system to
test the proposition through empirical tests. This system, the
Serenity Information System, is designed to extract data from
several computer-mediated communication protocols. In order
to achieve this, while still remaining flexible and “future-
proof”, all data are handled by custom built plugins each
handling a specific format and or protocol. The benefits of this
design is that all plugins are self-contained making debugging
and development simpler.

When information is retrieved, the content is scanned for
keywords from which metadata are derived and attached to the
content. This technique is commonly known as tagging. Pao-
lillo and Penumarthy describes tags as “a form of metadata,
or data which label other data for the purpose of organization
and access”[22]. This phase is handled automatically, but for
convenience, this should also be possible to manage manually
in the future, if the accuracy or relevance of the tags with
respect to the tagged content is too low.

The decision to use tagging is based on the observed
phenomenon and recent popularity in various prominent web-
based applications such as StumbleUpon8, WordPress9 and
YouTube10. It would seem that humans have a natural pre-
disposition towards summarizing context into keywords, al-

8http://www.stumbleupon.com/
9http://www.wordpress.com/
10http://www.youtube.com/

though, each individual is likely to have differing definitions
for each keyword.

There are a couple of drawbacks with tagging, “neither
users nor system can be sure in any specific instance if a
particular tag refers to any specific type of information”
and “because the tag vocabulary is not ’controlled’ or stan-
dardized, the categorization produced is informal, and not
guaranteed to be the same from one person to the next”[22].

The second drawback is completely avoided in Serenity as
only the system operators are able to add tags. This will likely
inconvenience users who have their own definitions of what
specific keywords mean, but this would be a temporary hurdle
until the users have acquainted themselves with the “new”
definitions. The benefits of this is however a homogeneous and
universal definition, making all similar content related through
the same tags.

Finally, the data can be individually distributed by matching
the content to another set of tags chosen by the user from a
list specified by the system operators. These tags are stored
in a user’s profile, which also, as a possible future feature,
could be determined from a query string at the end of a URL
requesting the service.

Having the ability to store settings in user profiles, creates
a potential for the system to allow distribution of access-
restricted information only to authorized members.

Naturally, since the system can gather information from
different formats and protocols, Serenity also has the possibil-
ity to distribute information in various formats and protocols,
e.g, through an RSS-feed, e-mail digest, or via the main web
frontend.

In the distribution process, it is of great importance to help
the user sort out information which is relevant for him or her.
In order to achieve this, information entries which matches
the tags specified in the user’s profile gets prioritized, and
also weighed in terms of number of “hits” in different tags
(fig. 2).

Fig. 2. Normal distribution vs. Serenity Information System

D. Serenity in Detail

As the following section tends to go into a deeper technical
level, non-technical people can safely skip this.

The Serenity Information System consists of two major
components: a backend and a frontend. The backend is meant
to be run at all times collecting information from differ-
ent sources. Consequently, it runs in the background, as a

daemon11, which means that it is independent of any direct
interaction.

The backend works much like an operating system’s kernel
scheduler, allocating time and processing power for each
plugin to execute their operations. The actual plugins does not
necessarily need to be limited to a predefined set of tasks. The
specification of what a plugin can do, and not do, is purposely
“relaxed”, in order to allow a flexible behaviour of the system,
which will, first and foremost, make future requirements easy
to adapt into the system, and secondly, it also lowers the
complexity of the system.

The system is developed using Python12 as programming
language for both the frontend and backend. The frontend, i.e.,
the web frontend, which is the main interface for Serenity, is
developed with Django13, a web framework for Python. The
reasons for the choice of Python and Django are many:

• Performance wise, compared to other similar platforms,
like Ruby and Ruby on Rails, and PHP, Python and
Django has an advantage

• Python is generally accepted, and there exist a multitude
of resources to support the development process

• The people behind Django have a great developing phi-
losophy (DRY)

• Both Python and Django have the characteristics to en-
courage one to develop using good practices and writing
maintainable code

Django is an extremely versatile framework. It has an
Object-Relational Mapper (ORM), which handles a relational
database through data models. This enables the code to be
very dynamic and intuitive. It also removes the need for any
SQL to be written by hand, although, it is still possible for
exceptional cases.

Since the Serenity frontend will always have a way to
display information from various protocols and formats, it is
of great convenience to let the frontend hold the one and
only true representation of the data models. By doing this,
and with the possibility to access Django’s models outside
of the project workspace, the backend receives the ability to
utilize Django’s ORM, which means that the DRY principle
is followed. As a consequence, this creates an immediate
dependency between the backend and the frontend, which
from other design principles’ point of views can be seen as
a “defect”. Although, for this case, with the advantages this
choice gives to the system, we feel it is still motivated.

The currently existing plugins for the system, which handles
a certain communication protocol, are RSS and IMAP. On the
backend side those plugins’ responsibility and purpose is to
handle information gathering for their corresponding protocol
and structure.

The engine which controls the plugins on the backend has
fault tolerant characteristics regarding the execution of the
plugins. This means that, when a plugin fails to operate, the

11a computer program which runs in the background
12http://www.python.org/
13http://www.djangoproject.com/

Fig. 3. Architechural overview of Serenity

engine will automatically disable the plugin from executing
any further operations until the backend is reloaded. Conse-
quently, an e-mail could be sent to notify the administrator, and
the rest of the plugins can safely continue to operate normally
without any disturbance.

The backend also provides automatic tagging functionality,
which the information gathering plugins is intended to use
in order to associate tags with the content retrieved. The
tagging procedure works by scanning the provided content and
matching the keywords that exist in the system, and then map
the keywords to the associated tags.

In the frontend, plugins are, in Django terminology, “appli-
cations”. Each plugin have their own model of an information
entry that corresponds to its format’s fields. There is also a way
to map the plugin’s entry model to a generic entry model. This
model shares the most common fields amongst the different
formats. By having a generic model, it is possible to mix all
information entries without having the need to take knowing
of which plugin they came from.

Fig. 4. Screenshot of Serenity’s web frontend

V. DISCUSSION

Communication using the Internet is increasing using more
and more protocols. Organizations communicating primarily
through the Internet run the risk of not reaching every member,
as a consequence of everyone having their own favorite
protocol. We approached the Free Software Foundation Europe
as we in a previous study had learned that they where

experiencing exactly these kind of problems. While easily
solvable by setting up a well-defined communication strategy
and more or less require members to follow it, in voluntary
organizations such as the FSFE this may or may not be
practical or applicable.

Through our early conversations with the FSFE we learned
that one of their primary interests was of a system which
could provide an improvement in the communication within
the organization, but also, and maybe more importantly, spark
a revitalization of the community by increasing the activity of
their members.

Our approach to accommodating these aspects was to de-
velop a platform which would utilize many of the present-day
communication protocols, designing it to be easily adaptable
to future changes in requirements. Further maintenance, i.e.
post-deployment, would be left in the hands of the community
as it would be impossible to foresee how the system will be
utilized in the future.

A. Developing for a community

When developing for a community it can be important to
let every member have his or her say in the project, which can
quickly become very time-consuming.

We considered the use of tracer bullets to alleviate this
problem, and found it extremely useful in the development
of communal software, as the developer does not run the risk
of spending countless hours developing a feature that won’t
make it into the system. By using the concept of tracer bullets,
creating small proof-of-concepts, one can demonstrate these to
the community, and then, if the feature is considered to benefit
the system, be refactored and properly implemented.

Tracer bullets could be used in many aspects, not only
code-wise but also in the appearance of paper mock-ups to
demonstrate certain functionality. We also believe that this
particular method should be used in any project where the
requirements of the final product is unclear.

We believe that the use of an agile approach, which focused
more on internal communication than extensive documenta-
tion, served this project well. However it is important to state
that this methodology may not be suitable for all projects as
there is a risk that this will decrease the quality and traceability
in large scale projects.

During this study, while doing research on the communal
aspects of development, we came to realize that there is at least
one hurdle which may turn volunteers away from working on
a project, namely the selection of tools and languages used in
the development. The easiest way to lower this hurdle is to
chose common and popular technologies which a majority of
potential contributers are familiar with.

In the case of Serenity it would be prudent to have an on-
going discussion, with the members, about the definition and
meaning of the keywords used by Serenity to classify and
filter information, to ensure that the keywords stay relevant
with respect to the content being organized.

Finally, for a sustainable system an aspect of high im-
portance, is that the user interface is user-friendly, bordering

simplistic, so that even less technical members may take an
active part in it, contributing in whatever means they can, such
as feeding the Serenity with sources of information which add
value to the community as a whole.

B. Design Principles

As we had not developed any similar software before, with
requirements in sustainability or this level of flexibility, we
recognized that it would be a good idea to look over our
“tools” in order to have the best tools for the job.

The use of the web-framework Django, which has built-in
support for object-relational mapping, has turned out to be
a very successful choice. Django has proven to be a solid
framework which in our case shortened the development time.
Another benefit, as the DRY principle permeates through the
entirety of the framework, is that the risk of duplication errors
is dramatically reduced.

From a developer’s perspective, Django is an extremely
easy framework to work with. This is important since the
code will be maintained by a community whoms knowledge
in software engineering is unknown. Most of the common
tasks, which usually needs to be handled manually, are done
automatically, such as database queries, user authentication
and the creation of an administrative interface. In fact, it was
not until we reached the point of combining several different
multi-relational entities that we actually had to write custom
SQL queries ourselves. It is however unclear whether this
is a hard limitation of Django, or of our understanding and
expertise with the framework that forced us to do so.

One of the truly outstanding features of Django, is the thor-
oughly ingrained use of the DRY principle. Having “models”
of the data structures which are to be used in the project, that
Django then on its own converts to appropriate entities in the
database is invaluable.

In total, 480 man hours was spent on the development of
the system. What makes this extraordinary is that none of us
had more than a sliver of basic knowledge in Python, and
had done no development in Django at all, and Serenity, after
roughly one month of coding, is a functional system.

The development time was kept short much due to Django
and the thoroughly ingrained use of the DRY principle. Object-
Relation Mapping is another incredibly powerful feature which
simplified the interactions with the database to a degree where
we seldom thought about it.

The general availability of already implemented functional-
ity, and the ability to import any standard Python library goes
to show just how well thought through Django is, and how
well the DRY principle can work, when done properly.

We are particularly proud of the architecture of Serenity as
we feel that is has the basic concepts for not only creating
an active community around it but also the ability to over-
come major changes in communication protocols and concepts
through plugins. Henrik Sandklef states that the software meets
the expectations of the FSFE and that Serenity has the potential
to replace their current platform. The migration to Serenity
will be discussed on the 29th of May 2008 in Brussels.

C. The Availability of Source Code

It is a common practice among modular systems to make
use of, or offer the ability incorporate, third-party software
as components in order to add needed functionality to the
product. There are however problems to take into consider-
ation before making the decision to use such a component.
Weyuker observes that “The first and most obvious problem
is the almost certain lack of source code, precluding any
modifications for either debugging or extensions”[23]. This
lack of source code make debugging cumbersome at best, and
nearly impossible at worst, due to the lack of insight in the
inner workings of the component. This has to be included in
the risk-assessment for every project wishing to make use of
such components.

As we discovered, a precondition to modifying a reused
component, in the purpose of improving it, for use in commu-
nity driven, sustainable, systems is access and right to carry
out modifications on the source code. This in order to fit the
component to the needs of the community. We did indeed
find components which Serenity is based on, that we needed
to modification in order to fulfill our requirements. Without
the availability of the source code, this would not be possible
and we would have to spend crucial time in developing our
own components instead. We therefor strongly believe that
the community must be in control of the software as their
requirements change over time and the system is forced to
evolve or be abandoned. This does not necessary mean that
the code must be released under a free license but at least
that the source is owned by the community and available for
anyone, within the community, who wish to contribute.

D. Future Research and Applications

It would be most interesting to see how the tagging system
could evolve using artificial intelligence to automatically add
and adjust the tags for the content. Another study could
be conducted about the effects of Serenity with respect to
information overload. As Serenity will be released under a
Free Software license, we welcome any further studies, and
use, of Serenity.

We envision that Serenity could operate and expand into
areas where this type of application might not dominate the
market, such as company intranets.

For example, Serenity could be used as a perfect tool for
stock exchange and business analysis. With the appropriate
sources, such as from business institutes and stock exchanges,
a user could be notified about changes in the market which are
relevant to him, in other words, changes which match the tags
he has subscribed to. Combined with the techniques used in
the world cup study[11] he could also be alerted about severe
swings where immediate actions are required, thus reducing
the risk of loosing major investments. This presupposes that
someone will write an appropriate plugin to do the job.

Another field could be news-serving or tracking several
software development projects.

VI. CONCLUSION

In this study we set out to do a case study on how to
develop a system which is maintainable and sustainable in a
community. By reflecting on the process, and the system being
designed we intended to draw conclusions of the important
aspects which exists when developing such a system.

Our research is based on practical experiments including an
iterative design process combined with continuous meetings
with a representative from the Free Software Foundation
Europe.

To avoid the possibility of using our reflections to prove
our thesis we made use of a shadow consultant who ensured
that we stayed on course throughout the study. Based on these
sessions we discovered several existing design concepts which,
when combined created a valuable method for developing web
based information systems.

From an architectural point of view we have combined
several known concepts and rapidly created a foundation
which the community can easily build upon and extend as
they see fit.

Django has proven to be an extremely useful and valuable
framework for developing, maintaining web-based software,
and incredibly easy to pick up without any prior knowledge
of the framework. We feel that Django is an exceptional
alternative for creating software destined to be maintained by
a community. Paired with the tracer bullet technique, the two
create a sum greater than its parts.

We believe that Django should be seen as a “role-model” for
other frameworks and libraries, and thus be developed in the
same “spirit”. Much of the reason for Django’s superiority lies
in its use of powerful technical solutions and design principles
such as ORM and DRY. We urge all who would consider
themselves developers to study these in depth, and to try them
out alongside other development techniques such as the tracer
bullet.

We thus contribute by outlining development concepts and
architectural design which has proven useful in the develop-
ment of a sustainable community-driven system.

ACKNOWLEDGMENT

We would like to thank our supervisor, and primary contact
with the Free Software Foundation Europe, Henrik Sandklef
for all the help and support, and Carl Magnus Olsson at the
IT-University of Göteborg for the feedback and insight during
the writing of this thesis. We would also like to thank the
Django development team for their exceptional work.

REFERENCES

[1] Likoebe M. Maruping and Ritu Agarwal. Managing team interpersonal
processes through technology: A task–technology fit perspective. Jour-
nal of Applied Psychology, 2004.

[2] Roy T. Fielding and Richard N. Taylor. Principled design of the modern
web architecture. 2002.

[3] Adriana Aires Rastén, Pontus Andersson, David Birath, Shahzeb Iqbal,
Shane Kakau, Mattias Lingdell, and Patrik Willard. Suggestions for
improving the Free Software Foundation Europe. 2007.

[4] Len Bass, Paul Clemens, and Rick Kazman. Software Architecture in
Practice, Second Edition. Addison-Wesley, November 2007.

[5] Peter Larsson. Eclipse vinner bland utvecklingsverktygen.
http://www.idg.se/2.1085/1.163259, May 2008.

[6] Eric S. Raymond. The Cathedral and the Bazaar. O’Reilly Media,
1999.

[7] Helena Holmström. Community-based customer involvement for improv-
ing packaged software development. Gothenburg Studies in Informatics,
Göteborg University, November 2004.

[8] Wikipedia: Object-relational mapping.
http://en.wikipedia.org/wiki/Object-relational mapping, May 2008.

[9] Andrew Hunt and David Thomas. The Pragmatic Programmer: From
Journeyman to Master. Addison-Wesley Professional, 1999.

[10] Ian Sommerville. Software Engineering, Seventh Edition. Addison-
Wesley, Pearson, 2004.

[11] E. Sillencea and C. Baberb. Integrated digital communities: combining
web-based interaction with text messaging to develop a system for
encouraging group communication and competition. 2003.

[12] Wikipedia: Communication with submarines.
http://en.wikipedia.org/wiki/Communication with submarines
#Extremely low frequency, May 2008.

[13] Wikipedia: Information overload.
http://en.wikipedia.org/wiki/Information overload#Psychological Effects,
March 2008.

[14] Alvin Toffler. Future Shock. Random House, 1970.
[15] Francis Heylighen. Change and information overload: negative effects.

http://pespmc1.vub.ac.be/CHINNEG.html, March 2008.
[16] Infogineering. Understanding information overload.

http://www.infogineering.net/articles/understanding-information-
overload.htm, March 2008.

[17] Cheri Speier and Michael F. Price. Using aggregated data under time
pressure: A mechanism for coping with information overload. 1998.

[18] G Walsham. Interpretive case studies in is research: nature and method.
1995.

[19] Bent Flyvbjerg. Five misunderstandings about case-study research.
Qualitative Inquiry, Volume 12 Number 2, April 2006.

[20] Robert K. Yin. Case Study Research: Design and Methods, Third
Edition, Applied Social Research Methods Series. SAGE, 2002.

[21] Wikipedia: Metadata. http://en.wikipedia.org/wiki/Metadata, May 2008.
[22] John C. Paolillo and Shashikant Penumarthy. The social structure of

tagging internet video on del.icio.us. 2007.
[23] Elaine J. Weyuker. Testing component-based software: A cautionary

tale. 1998.

