
REPORT NO. xxxx/xxxx

An Intepretive Case Study in
Con�guration Management

Systems

Ulf Eliasson

Karl Johansson

Department of Applied Information Technology
IT UNIVERSITY OF GÖTEBORG

GÖTEBORG UNIVERSITY AND CHALMERS UNIVERSITY OF TECHNOLOGY
Göteborg, Sweden 2008

An Intepretive Case Study in Con�guration Man-

agement Systems

Ulf Eliasson Karl Johansson

Department of Applied Information Technology

IT University of Göteborg

Göteborg University and Chalmers University of Technology

Abstract

Several studies in the recent decade has shown that operator mistakes are the most
common cause of Internet service failures. Among these, miscon�guration is the most
common one. Several con�guration management systems exist to alleviate this problem.
However, there is little or no amount of systematic analysis of research on said systems.
Using data from �ve case studies of di�erent con�guration management systems, we an-
alyzed core di�erences and similarities in approaches to con�guration management. We
�nd that Con�guration Management Systems address either the problem of automating
installation and con�guration, or that of analyzing and verifying con�guration correct-
ness. Qualitatively we �nd that there is a relationship between these two approaches
and the maturity level of software and services.

KEYWORDS: Configuration, managability

I

Contents

1 Introduction 1

2 Related Research 3

2.1 Nix . 3
2.2 LCFG . 4
2.3 Strider . 4
2.4 Cfengine . 5

3 Research Approach 6

4 DataBuild Manager 7

4.1 System Overview . 7
4.2 Anticipated work �ow . 8
4.3 Architectural consideration . 8

5 Discussion and analysis 10

5.1 Target system modi�cation, platform independence and software instal-
lation . 10

5.2 Autonomy and veri�cation . 11
5.3 Discussion of future implication . 13

6 Conclusions 16

7 Acknowledgments 17

II

Chapter 1

Introduction

The notion of controlling the evolvement of software con�guration items have been sub-
ject for studies since the 1980's. The need to keep revision histories, have the ability to
audit the history of a con�guration item, and the organization of software components
into versioned libraries are bundled under the term Software Con�guration Manage-
ment [Dart, 1991]. At the same time as systems grow larger more complex, so does the
amount of adaptational data. Adaptational data is generally the system parameters and
associated values that determine the behavior of the system. These sets of adaptational
data, System Con�gurations, needs to be managed in the same manner Software Con-
�guration Items are [Dolstra and Hemel, 2007]. Furthermore, the European Union has
recognized the growing complexity of systems, speci�cally Service Oriented Architecture
(SOA) as an area in need of research, including automated setup and management pro-
cedures for said systems [Fitzgerald and Olsson, 2006]. Oppenheimer et al. point out in
their study from 2003 that improvement in the maintenance tools and systems used by
service operations sta� would decrease the time to diagnose and repair problems. The
results published in their article show that failure in two out of three Internet services
are caused by con�guration errors [Oppenheimer et al., 2003]. These articles show that
there is a need for further studies in this area.

At the start of the study we were contacted by Erlang Training and Consulting Ltd.
(ETC), who asked us to participate in a project where the customer had the need for
a system that performed analysis and veri�cation of system con�guration data. Even if
several commercial products handled the analysis and veri�cation of the con�guration
data, no one product contained all of the desired features. During the initial liter-
ature review, we selected four similar case studies. The LCFG system, as described
by Paul Anderson [Anderson and Scobie, 2000] is a system that automates the instal-
lation and con�guration of Unix machines. The principles of the system is centered
around a high level con�guration and policy language, in which the system adminis-
trator expresses con�guration data. Strider, described in [Wang et al., 2003], is a tool
for identifying problems in the windows registry, using state-based analysis to identify
probable causes of failure. The NixOS take on con�guration management presented
in[Dolstra and Hemel, 2007] is an operating system built around a Linux kernel. The
system implements a functional method for handling installation and con�guration of
software packages. Dolstra's and Hemel's study is strongly centered around the idea that

1

2 CHAPTER 1. INTRODUCTION

the management of program binaries and adaptational data is tightly coupled. Finally
we have reviewed the cfengine system presented in [Burgess, 2005]. This is a policy-based
agent framework that uses a stochastic view of system con�guration.

However, there was a lack of systematic analysis of shared and di�erent aspects in these
systems. Thus, from a practical perspective, the purpose of this study is to supply ETC
and their customer with the system needed. From a research perspective, however, we
will provide a systematic review of the core di�erences and similarities between �ve case
studies � one of which we developed ourselves � and analyze the problems they are aimed
at solving, as well as problems identi�ed in related studies that are not addressed by
the systems under study. We have designed our study as an interpretive case study, as
presented by Walsham in [Walsham, 1995].

Chapter 2

Related Research

The amount of related research that analyse and compare con�guration management
systems is not overwhelming, and most studies and systems seem to be centered around
systems that automate the installation and con�guration of UNIX based systems. The
following paragraphs present our review of four case studies of di�erent systems that
addresses the System Con�guration process in one or more ways.

2.1 Nix

Dolstra et al. describes the Nix con�guration management system, which is devel-
oped at the Department of Information and Computing Sciences at Utrecht University,
in [Dolstra and Hemel, 2007], and argue that other con�guration management systems
have an imperative approach to system con�guration in that they depend on and modify
the state of the system. Nix, on the other hand, uses a functional approach to con�g-
uration management. In the paper, the authors argue for having con�guration data
generated from pure functions. These functions handle the entire process of installing
and con�guring software packages, which makes it central part of the operating system.
This functional approach makes con�guration data deterministic and reproducible. In
order to provide traceability, all con�gurations are saved, and are never overwritten by
recon�gurations or re-installations. This approach also enables system roll backs.

Nix makes use of its own language for con�guring parts of the system. A con�guration
statement is called a Nix expression and provides all information Nix needs to build
and con�gure a software package. The generated installation is immutable, it will not
be altered in any way. Changes to the original con�guration statement will issue a
new build of the package, that will exist in parallel to the �rst installation, although
the system will make use of the new installation. The advantage gained from this
approach is nondestructive recon�gurations � safe rollback and tracability are at all
stages guaranteed for the system.

The Nix system requires that all software packages within the system makes use of the

3

4 CHAPTER 2. RELATED RESEARCH

Nix con�guration management. It therefore needs to control the operating system it
exists on. NixOS is a Linux based operating system developed by the creators of Nix,
which is based on Nix [NixOs, 2008]. The NixOS distribution features a number of
software packages adapted to the Nix con�guration management system.

2.2 LCFG

The LCFG system, presented in [Anderson and Scobie, 2000], is designed to manage
installation and con�guration of large sets of heterogeneous UNIX based systems. It
was originally developed at The Department of Computer Science at Edinburgh Uni-
versity for managing their network of UNIX machines. Later expansions in the use of
LCFG inside and outside of Edinburgh University forced a major update to the original
implementation and this version is commonly referred to as LCFGng.

The core in LCFG is its own con�guration language which is used for the speci�cations
of the di�erent systems that should be managed. This language is an abstraction of
the con�guration data. The decision to use an abstract language, instead of storing
the con�guration �les themselves in the system, was made to support concepts such as
relationships between data in various �les. It also helps making the system more platform
independent. The language describes what the con�guration of a system should look
like, not the steps that need to be taken to make it so.

To facilitate the handling of many systems that might share similarities and only have
few di�erences, LCFG supports inheritance between con�guration objects. Common
attributes can be described in shared �les and then have �les that only specify the
di�erences. These speci�cations are then stored in a central database. Installation of
new nodes and recon�guration of old ones is done automatically from this database
without any required manual work. This is done to support large networks of nodes
which would otherwise be impractical and time consuming to manage. Recon�guration
is triggered when the con�guration of a node changes due to speci�cation updates.

Because all application and subsystems that are managed by LCFG need to be incorpo-
rated in the con�guration system and language, additions have to be simple and straight
forward. This is solved by having an architecture that supports modules. To include
support for an application or subsystem, a module is written independently of the other
existing modules.

2.3 Strider

In [Wang et al., 2003], Wang et al. presents the Strider system. Originally designed
at Microsoft's research labs, Strider addresses analysis of the Windows registry, the
state of a Windows based system, and uses this to identify the cause of known errors.
The authors argue that Strider uses a black-box approach � rather than relying on
speci�cations of each parameter, it makes use of behavioral information to distinguish
between con�gurational and operational data.

2.4. CFENGINE 5

The theory presented in the article is based on three principles that address veri�cation
of con�gurations, and identi�cation of problem sources. State-based analysis is the �rst
step of the veri�cation process. It is the primary approach to identi�cation of the sources
of failure using mechanical and statistical methods to narrow down the state to a set
of likely candidates. Attack the mess with the mass, which compares the state that
causes the failure to one that does not, thus narrowing down the candidate set further.
�The mass� is a reference to a large installation base � the existence of several states
that do not cause the failure in question. The last step, Complexity-noise �ltering, uses
statistics to determine the frequency for which each parameter in the state is updated.
Parameters with a high update frequency are considered operational data and not part
of the system con�guration, and thus �ltered out, narrowing the candidate set down
even further.

2.4 Cfengine

Finally, the cfengine system, presented in [Burgess, 2005], is the product of an on-going
research project about distributed system con�guration management at Oslo University
College. The policies are written in its own operating system independent language and
are a description of the intended con�guration for an host [Mo�ett and Sloman, 1993].
They contain partially ordered list of tasks or operations for the agents running on the
systems to check but not the step on how to make the con�guration policy compliant.
It is the most widely used system that is covered in this study. Its policies are similar
to those of the LCFG.

Each managed system has its own agent running. It is the responsibility of that agent
to converge the system towards the intended con�guration as speci�ed in the database.
When the agent discovers that the system it is responsible for deviates from the central
policy it starts taking action in bringing the system closer to an ideal healthy state. A
main consideration behind this design is the view of a computer system as a stochastic
environment. Instead of assuming that a con�guration �le on a target system only
changes when the con�guration management system executes an action, it is believed
that a system might change unpredictably at any time.

Chapter 3

Research Approach

Our research design is based on the interpretive case study, presented by Walsham
in [Walsham, 1995]. We have adapted this method with the modi�cation that rather
than using interviews as our main source of evidence, we have studied �ve separate
case studies of con�guration management systems, one of which we have implemented
ourselves. Evidence gathered from these studies was used to determine the properties of
each system, examining how they address the problems they are designed to solve. For
this purpose, the case studies were su�cient to replace interviews.

An initial literature review was conducted, where we identi�ed key concepts in system
con�guration management. The theory gathered in this process was used as an initial
guide to design and data collection, as described by Walsham in [Walsham, 1993], and
formed our initial theoretical framework. This framework was used to select four suitable
case studies of con�guration management systems, that are part of our �eld study.
These four studies were complemented with our own case study, which was conducted in
parallel to a development project of a con�guration management system. Our roles as
participant observers in this development project enhanced our study, as it allowed us to
be involved in the requirement speci�cation and design of the system under study. The
theory gathered in the initial literature review was used to establish several aspects of
con�guration management, and the systems under study were then compared from each
of these aspects. Using theory from other studies to choose these aspects also served in
avoid choosing problems that are addressed by the system we developed ourselves, thus
countering our bias towards our own system. The evidence used in our study is gathered
from the reports and articles reviewed during the data collection phase, complemented
with our experiences as participating observers in the development of a con�guration
management system.

The articles that were selected for further studies were selected in order to cover the fol-
lowing criteria: 1. Represent systems that are covered in substantial research material.
This criterion was chosen to make sure that there was su�cient documentation to pro-
vide the evidence needed. 2. Provide features that are considered important in recent
research on system con�guration management. This criterion was chosen to make sure
our research is a relevant contribution to research on system con�guration management.

6

Chapter 4

DataBuild Manager

The �fth study included in this analysis is the Data Build Manager (DBM). It is a
system we developed for Erlang Training & Consulting Ltd (ETC).

4.1 System Overview

The purpose of DBM is to verify the correctness of system con�gurations. A central
database holds representations of revisions of con�guration �les for the target systems.
When a �le is imported into the system, it is transformed to an internal tree structure
� the con�guration tree (the reverse operation, generating con�guration �les from the
stored data, is outside the scope of the system). Each value in the imported �le is
associated with a parameter, identi�ed by its path in the con�guration tree, which may
be de�ned by system administrators, providers of the target system, or any other domain
expert.

Parameters Each value in a con�guration is associated with a formal de�nition of its
parameter. A parameter is de�ned by the following �elds:

� Description � Human readable description of the parameter

� Unit � Unit of the parameter value

� Default � Default value for the parameter

� Scope � Scope of the parameter � is the value common for all systems of this type,
or local � independent thereof

� Comments � User comments of the parameter

The system allows the user to compare the values of con�guration revisions on the same
system or between systems. This allows the user to �nd di�erences between known

7

8 CHAPTER 4. DATABUILD MANAGER

correct con�gurations with the current ones retrieved from the target systems. It also
aids an operator in spotting the changes needed to update the system in order for it to
meet a required new con�guration. It can also be used for tracking down changes that
introduced errors or instabilities to the system.

The comparisons can be done on di�erent scope levels, either comparing global param-
eters which are shared b between all systems of a certain type. A di�erences between
systems here is likely to be a con�guration error. The second option is to compare only
local parameters, parameters that are likely to be di�erent between the target systems,
and where di�erences on di�erent systems are not likely to be errors The third option
is to make comparison of all parameters, regardless of scope.

4.2 Anticipated work �ow

The expected day-to-day work with the DBM is

1. A user uses DBM to express desired changes to the con�guration of a target system,
and commits the changes to the database.

2. If needed, the user compares the parameter values that are common for all systems
of the same type as the target system to verify that the requested con�guration
changes do not result in any discrepancies.

3. The user takes steps to ensure the desired changes are carried out on the target
system. An administrator who has been provided with a copy of the con�guration
changes will carry out the task.

4. After the changes to the actual con�guration are carried out, the user imports a
con�guration statement retrieved from the target system into DBM, and veri�es
that there is no discrepancies between the desired con�guration and the actual
one.

4.3 Architectural consideration

Bass et al. introduces the concept Quality Attribute in [Bass et al., 2003]. A quality
attribute is a property of a system architecture, and is generally a requirement from a
stakeholder. In their book, Bass et al. lists tactics for architectural design, that are
aimed at achieving quality attributes. A tactic, in this setting, is a description of how a
quality can be achieved.

An important attribute of the system was extendability. ETC wanted to be able to
extend it to handle di�erent kinds of systems in the future, without rewriting any non-
system-speci�c parts. This was addressed by adopting the Modi�ability tactic Anticipate
the change in order to localize modi�cation, described in [Bass et al., 2003]. The general
idea in this tactic is to anticipate where changes may occur within the system, and set
as goal to reduce the number of modules that are directly a�ected by change.

4.3. ARCHITECTURAL CONSIDERATION 9

The resilience of the system � its ability to recover after failure � was also a requirement.
This was addressed primarily by applying the Checkpoint/rollback tactic described by
Bass et al. By letting the user make a checkpoint before critical operations it is always
possible to rollback and load the checkpoint if something breaks. This can also be
automated. Security of the data stored in the system was achieved by applying several
Security Tactics. The integrity of the users was addressed by using the Authenticate
Users and Authorize Users tactics. Each user of the system has to login before using
the system, and each user has a level of privilege that determines user rights. For example
a user with only read rights can read from the system while a user with read/write can
both read and make changes to revisions. Finally, the integrity of the con�guration
data was addressed by applying the Maintain Data Integrity tactic, making sure that
data belonging to a user can not be modi�ed by any other user (that does not have
administrative privileges).

Chapter 5

Discussion and analysis

5.1 Target system modi�cation, platform indepen-

dence and software installation

The ability to manage con�guration data for all systems in an organization or network is
important to the quality assurance of the system con�guration process [Fitzgerald and Olsson, 2006,
Oppenheimer et al., 2003]. As a result, the tool used in this process needs to either sup-
port the target system, or its extension to incorporate this support as a simple and time
e�cient task. Furthermore, the support for di�erent types of target systems should be
able to coexist within the same instance of the tool. From our analysis of the studies,
we found that:

1. As shown in Figure 1, the Nix system requires a high degree of modi�cation to
the target system. In fact it requires that the operating system itself and all
applications are installed and con�gured using Nix. The Strider system is designed
purely for Windows, and the Windows registry is its only accepted input, with no
modi�cations to the target system needed. DBM manages any con�guration for
which a parser for the target con�guration �le format is implemented, and requires
no modi�cation to the target system. DBM however lacks the ability to change an
erroneous con�guration. The two policy-based systems, LCFG and cfengine, both
require agents or daemons to be installed on the target system.

2. Both Nix and Strider are OS speci�c tools, designed speci�cally for the task of
supporting con�guration management for their respective OS, making them insuf-
�cient in a heterogenous environment. Both LCFG and cfengine are somewhat
platform independent, although both primarily focus on UNIX-like systems.

3. According to [Fisk, 1996], the process of installing and managing software packages
is an important part of system con�guration management. The same article further
expresses the need for con�guration management tools to facilitate installation
and con�guration of new machines. The deployment of a working service usually
involves the installation and con�guration of several components that the service
depends upon [Dolstra et al., 2005]. This is often a time consuming and error prone

10

5.2. AUTONOMY AND VERIFICATION 11

process, as dependencies might exist not only for speci�c software, but for speci�c
versions of that software. Two of the systems under study support installation of
software packages on remote machines: Cfengine and LCFG, one system supports
software installation on the local machine: Nix, and two does not support software
installation at all: DBM and Strider. Our �ndings from analyzing this ability in the
systems under study, is that there is a relationship between platform dependence
and the ability handle software installations, as illustrated in Figure 2.

Figure 1, in conjunction with Figure 2, shows that the systems under study provide
either platform independence, or the ability to install new software on target systems.
Furthermore, these two �gures show that the ability to install software is tightly coupled
with the need to make modi�cations to the target system. Thus, the systems that sup-
port software installation require di�erent degree of modi�cations to the target system,
which in turn con�icts with platform independency. It is possible that future research
will provide solutions to this, for instance by emulating user behavior during software
installation, instead of installing through agents, daemons or packet managers running
on the target system.

5.2 Autonomy and veri�cation

Oppenheimer et al report in [Oppenheimer et al., 2003] that at two out of the three
Internet service services analyzed in their study, operator errors were the most common
cause of failure, resulting in down-time. Out of these operator errors, con�guration errors
were the majority. Their results are supported by Zheng et al in [Zheng et al., 2007], as
illustrated in Figure 3. A substantial amount of miscon�gurations could be avoided with
an automated con�guration process � according to Zheng et al, 58% miscon�gurations in
their study were avoided when con�guration was automated [Zheng et al., 2007]. When
comparing the studies of the systems, we found that:

1. Both cfengine and LCFG are autonomous systems � any change to the central
database will be automatically carried out to all a�ected target systems. DBM,
Nix and Strider, on the other hand, all work only when invoked by a user.

2. In their study [Kycyman and Wang, 2004], Kycyman and Wang argue that pro-
phylactic monitoring of con�guration data is an important part of an self-managing
con�guration system. LCFG and Nix provide no analysis of the contents of actual
generated con�guration �les whatsoever. Cfengine provides functionality to check
�le consistency using checksums, but does not analyze the con�guration data fur-
ther. Both DBM and Strider provide analysis of target system con�guration data,
and supports comparison to reference versions to detect inconsistencies. However,
as Figure 4 illustrates, none of the autonomous systems in our study provide any
substantial veri�cation of con�guration data.

Thus, systems with a high degree of autonomy provide little or no veri�cation or analysis
of con�guration data on target systems. However, none of the studies present any
evidence of con�icts between these two properties. The reason for this is the problems
each system is aimed at solving. Cfengine, LCFG and NixOS all address installation

12 CHAPTER 5. DISCUSSION AND ANALYSIS

M
o

d
if
ic

a
ti
o

n
s
 t
o

 t
a

rg
e

t

s
y
s
te

m

Platform independence

DBM

LCFG

Nix

cfengine

Strider

Figure 1: Platform independence, and modi�cations to target systems

In
s
ta

lla
ti
o

n
 o

f
s
o

ft
w

a
re

p
a

c
k
a

g
e

s

Platform independence

DBM

LCFG

Nix

cfengine

Strider

Figure 2: Platform independence, and ability to install software packages on target
systems

5.3. DISCUSSION OF FUTURE IMPLICATION 13

Figure 3: Operator mistakes per operator category (adapted from [Zheng et al., 2007]).

primarily, and do not identify veri�cation as an aspect of con�guration management.
DBM and Strider, on the other hand, are both aimed at addressing only veri�cation.

5.3 Discussion of future implication

As systems move towards service oriented architectures, they are often distributed across
vast heterogeneous networks. This makes the process of con�guration increasingly com-
plex [Fitzgerald and Olsson, 2006]. Figure 5 illustrates the maturation of services, and
in the report, the authors argue that the Second Generation Services represent current
state-of-the-art in services. The vertical axis in this �gure, Service Composition, is de-
pendent on the service level of autonomy. Each generation of services in the �gure is
separated by a threshold that stipulates levels of:

� Quality & reliability

� Service management

� Interoperability

� Security and trust

In order to achieve the next generation, services must meet these levels. From a con-
�guration management point of view, Service management requires autonomy � the
con�guration management system must be able to automatically resolve issues. On the
other hand, the Quality & reliability aspect requires the con�guration management sys-
tem to provide analysis and veri�cation of con�guration, in order to identify problems
before they become visible to the user [Oppenheimer et al., 2003, Wang et al., 2003].

As we have shown, there is no system that currently provides both the Service manage-
ment and quality & reliability aspects while being autonomous. It is possible that future
research initiatives in con�guration management should focus on combining existing re-
search in con�guration veri�cation, like [Wang et al., 2003, Kycyman and Wang, 2004]

14 CHAPTER 5. DISCUSSION AND ANALYSIS

A
u
to
n
o
m
y

Verification

DBM

LCFG

cfengine

StriderNix

Figure 4: Illustration of autonomy and veri�cation per system

with the more matured research on autonomous con�guration of UNIX-like system
[Dolstra and Hemel, 2007, Burgess, 2005, Anderson and Scobie, 2000]. Furthermore, in
increasingly heterogenous networks [Fitzgerald and Olsson, 2006], platform independence
will likely become an sought-for property of con�guration systems, requiring further re-
search e�orts on con�guration management systems.

5.3. DISCUSSION OF FUTURE IMPLICATION 15

Figure 5: Relationship between autonomy, adaptability, and service maturity (Adapted
from [Fitzgerald and Olsson, 2006]).

Chapter 6

Conclusions

In this paper we presented the results of our comparison of �ve case studies of di�erent
con�guration management systems. In these �ve systems, we identi�ed two major cate-
gories � either they are aimed at automating the installation and con�guration process,
or at analyzing and verifying existing con�guration data in order to detect discrepancies,
and to prevent failure. However, other studies have shown that there is a need for both
these properties in con�guration management.

Based on our �ndings, we propose that future studies in the �eld of con�guration man-
agement focus on integrating these two approaches, aiming at providing both quality
and reliability, as well as service manageability.

16

Chapter 7

Acknowledgments

We would like to thank Erlang Training and Consulting Ltd. for the opportunity to
participate in the development of the DataBuild Manager, and for help with proof read-
ing, assistance in testing, and developer support. Thanks to Jan Henry Nyström for
proofreading in great detail and for useful suggestions and comments. We would also
like to help Thomas Arts for helpful points and input. Last but not least we would like
to thank Carl Magnus Olsson, our supervisor and guiding light in the world of research.

17

Bibliography

[Anderson and Scobie, 2000] Anderson, P. and Scobie, A. (2000). Large scale linux con-
�guration with LCFG. In Proceedings of the Atlanta Linux Showcase, pages 363�372,
Berkeley, CA. Usenix.

[Bass et al., 2003] Bass, L., Clements, P., and Kazman, R. (2003). Software Architecture
in Practice, Second Edition. Addison-Wesley Professional.

[Burgess, 2005] Burgess, M. (2005). A tiny overview of cfengine: Convergent mainte-
nance agent. In Proceedings of the 1st International Workshop on Multi-Agent and
Robotic Systems. MARS/ICINCO.

[Dart, 1991] Dart, S. (1991). Concepts in con�guration management systems. In Pro-
ceedings of the 3rd international workshop on Software con�guration management,
pages 1�18, New York, NY, USA. ACM.

[Dolstra et al., 2005] Dolstra, E., Bravenboer, M., and Visser, E. (2005). Service con-
�guration management. In SCM '05: Proceedings of the 12th international workshop
on Software con�guration management, pages 83�98, New York, NY, USA. ACM.

[Dolstra and Hemel, 2007] Dolstra, E. and Hemel, A. (2007). Purely functional system
con�guration management. In HOTOS'07: Proceedings of the 11th USENIX work-
shop on Hot topics in operating systems, pages 1�6, Berkeley, CA, USA. USENIX
Association.

[Fisk, 1996] Fisk, M. (1996). Automating the administration of heterogeneous lans. In
LISA '96: Proceedings of the 10th USENIX conference on System administration,
pages 181�186, Berkeley, CA, USA. USENIX Association.

[Fitzgerald and Olsson, 2006] Fitzgerald, B. and Olsson, C. M. (2006). The software and
services challenge. Technical report, Contribution to the preparation of the Technol-
ogy Pillar on "Software, Grids, Security and Dependability" of EU:s 7th Framework
Programme.

[Kycyman and Wang, 2004] Kycyman, E. and Wang, Y.-M. (2004). Discovering cor-
rectness constraints for self-management of system con�guration. In ICAC '04: Pro-
ceedings of the First International Conference on Autonomic Computing, pages 28�35,
Washington, DC, USA. IEEE Computer Society.

[Mo�ett and Sloman, 1993] Mo�ett, J. D. and Sloman, M. S. (1993). Policy hierarchies
for distributed system management. IEEE JSAC Special Issue on Network Manage-
ment, 11(9).

18

BIBLIOGRAPHY 19

[NixOs, 2008] NixOs (2008). Webpage. http://www.nixos.org/.

[Oppenheimer et al., 2003] Oppenheimer, D., Ganapathi, A., and Patterson, D. A.
(2003). Why do internet services fail, and what can be done about it? In USITS'03:
Proceedings of the 4th conference on USENIX Symposium on Internet Technologies
and Systems, pages 1�1, Berkeley, CA, USA. USENIX Association.

[Walsham, 1993] Walsham, G. (1993). Interpreting Information Systems in Organiza-
tions. John Wiley & Sons, Inc., New York, NY, USA.

[Walsham, 1995] Walsham, G. (1995). Interpretive case studies in is research: Nature
and method. European Journal of Information Systems, 4:74�81.

[Wang et al., 2003] Wang, Y.-M., Verbowski, C., Dunagan, J., Chen, Y., Wang, H. J.,
Yuan, C., and Zhang, Z. (2003). Strider: A black-box, state-based approach to change
and con�guration management and support. In LISA '03: Proceedings of the 17th
USENIX conference on System administration, pages 159�172, Berkeley, CA, USA.
USENIX Association.

[Zheng et al., 2007] Zheng, W., Bianchini, R., and Nguyen, T. D. (2007). Automatic
con�guration of internet services. In EuroSys '07: Proceedings of the 2nd ACM
SIGOPS/EuroSys European Conference on Computer Systems 2007, pages 219�229,
New York, NY, USA. ACM.

	 Introduction
	 Related Research
	 Nix
	 LCFG
	 Strider
	 Cfengine

	 Research Approach
	 DataBuild Manager
	 System Overview
	 Anticipated work flow
	 Architectural consideration

	 Discussion and analysis
	 Target system modification, platform independence and software installation
	 Autonomy and verification
	 Discussion of future implication

	 Conclusions
	 Acknowledgments

