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Abstract

Cell phones are excellent candidates for speech recog-
nition due to their sometimes cumbersome interface.
However, few applications of speech recognition exist,
especially for Java ME enabled cell phones. This dearth
of speech recognition applications is unfortunate, since
there exist several hundred millions Java ME enabled
cell phones in the world, making the market and need
for such applications huge. This case study investigates
the feasibility of embedded, speaker independent speech
recognition of connected digits on modern Java ME en-
abled cell phones. The developed system is, through
a series of optimizations, capable of recognizing con-
nected digits in about 11 times real time. Unfortu-
nately, this performance is not nearly adequate to make
the system practically usable in real world mobile ap-
plications that deal with user interaction.

1 Introduction

Speech recognition and cell phones at first sight seem to
be the perfect match: the sometimes limited interface
of cell phones could benefit greatly from being comple-
mented with a speech based alternative. Such an in-
terface could provide a more intuitive way of accessing
some of the cell phone’s functionalities, such as dialing
and SMS-texting, as well as being a safer alternative
in situations where the use of cell phones may be dan-
gerous, for instance when driving a car.

The benefits of a speech interface are particularly
prominent for people with difficulties interfacing with
cell phones in the normal way, such as disabled and
elderly people. For these people, speech based mobile
applications can considerably ease the day-to-day life.

However, despite the many possible applications for
speech recognition on cell phones, relatively few solu-
tions actually exist. This is especially true for speech
recognition applications developed for the Java ME
platform. The main reason for this is the limited re-
sources that Java ME enabled devices offer when it

comes to memory and CPU performance.
This is an unfortunate situation since figures show

that there are several hundred million Java ME enabled
cell phones in the world [1, 2, 3], making the market
and need for speech recognition software for Java ME
very large.

In this case study I try to remedy the lack of mobile
speech recognition solutions for the Java ME platform
by investigating whether embedded, speaker indepen-
dent speech recognition of connected digits is practi-
cally possible on today’s high end cell phones.

2 Problem Definition

When developing applications for Java ME enabled
cell phones, memory size and computation speed are
two severely limiting factors. Since speech recogni-
tion is fairly resource heavy, both regarding memory
and CPU, developing speech recognition applications
for the Java ME platform can be a challenging task.

Possible solutions to this problem are to use simpler,
speaker dependent techniques or to use a distributed
approach where a remote back-end performs the main
part of the speech recognition. Neither of these solu-
tions are optimal, however.

Speaker dependent systems force the user to train
the speech recognizer before using it. Although this
process may be acceptable in some cases, it is still an
additional effort that ideally should be avoided. Ad-
ditionally, speaker dependent systems that use sim-
pler techniques suitable for the low resources available
on cell phones, such as Dynamic Time Warping, often
have difficulties in handling variance in speech, for in-
stance if the user is ill or has a temporarily changed
voice for other reasons.

Distributed speech recognition systems must send
data over a network connection to the back-end. This
can be costly for the user who in most cases has to pay
for transferring data over the network. If the network
connection for any reason goes down, the system is not
usable, leading to a less robust system.
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A better solution is a speaker independent, embed-
ded solution where all work is carried out on the cell
phone. An embedded solution does not require data
to be sent over the network and is therefore more ro-
bust than a distributed system. Furthermore, since no
data needs to be sent, there is no additional, unwanted
cost for the user. Speaker independent systems, for ex-
ample those based on hidden Markov models, need no
training; they can be used by different users out of the
box.

In this light, the main research question in this
case study is: is embedded, speaker independent speech
recognition of connected digits feasible on today’s high
end Java ME enabled cell phones? This question in
turn leads to two sub questions:

1. Is the cell phone’s available memory sufficient?

2. Is the cell phone’s processor performance suffi-
cient?

Other research questions, for example regarding the
quality of the audio captured by the cell phone’s mi-
crophone, falls outside the scope of this study.

3 Background and Related Work

3.1 Speech Recognition

Speech recognition is the process of converting human
speech into a textual representation of that speech.
Speech recognition is performed in two main steps: fea-
ture extraction and decoding.[15]

In the feature extraction step, incoming audio data
is analyzed and parameterized into acoustic features,
normally mel frequency cepstral coefficients. These fea-
tures are extracted by applying several techniques, such
as fast Fourier transform and discrete cosine transform,
to the audio data.[15, 11]

During the decoding phase the extracted acoustic
features are scored against trained data and the most
probable result is chosen [15].

Today, the most common method of decoding is us-
ing hidden Markov models, first introduced by Baker
[8]. Phonemes are represented as hidden Markov mod-
els and these models are combined to form a search
graph. When decoding, a search, often a beam search,
is performed through the search graph and the most
probable path is presented as the solution.[22, 23, 15,
29]

Another approach to decoding is Dynamic Time
Warping, introduced by Itakura [14]. Reference acous-
tic feature profiles are extracted for each word in the
desired vocabulary. In the decoding phase, the in-
put speech’s acoustic features are compared to each

of the stored references using a dynamic programming
algorithm and the one most similar is chosen as the
result.[9, 15, 23, 18, 24]

Dynamic Time Warping normally uses less resources
than hidden Markov model based solutions [17, 5], but
is outperformed by hidden Markov models when it
comes to more complex tasks, such as continuous and
connected speech recognition. Hidden Markov models
also performs better than Dynamic Time Warping at
speaker independent speech recognition.[17, 20]

A third, less common, method of decoding is us-
ing neural networks, where a neural network is used
to classify acoustic features. The neural network can
then be searched to find the best solution based on the
inputted acoustic features.[27]

Speech recognition can be either speaker dependent
or speaker independent. Speaker dependent systems
need to be trained for each user whereas speaker in-
dependent systems can handle users that they are not
specifically trained for.[15, 6]

Additionally, speech recognition systems can be di-
vided into continuous, connected and isolated-word
systems. Continuous systems allow the spoken words
to run together naturally whereas connected systems
needs a minimal pause between words. In isolated-word
systems each word must be preceded and followed by
a significant pause.[15, 6]

The performance of speech recognition systems is of-
ten determined by two measurements: word error rate
and real time factor [15, 29].

Word error rate is calculated in this way:

insertions + substitutions + deletions

total numbers of words in correct sentence
∗100

The number of insertions, substitutions and dele-
tions necessary to transform the solution given by the
speech recognizer into the correct reference string are
added together, and the sum is divided by the number
of words in the reference string. The lower the word
error rate, the better the accuracy of the speech recog-
nition system.[15]

The real time factor is derived in this manner:

process time

total length of input

The time required to perform the speech recognition
is divided with the length of the input audio. A lower
value indicates better run time performance.[29]
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3.2 Speech Recognition on Java ME
Enabled Cell Phones

There are three main approaches to speech recognition
on mobile devices [30]:

1. Embedded (client-based)
Both feature extraction and decoding are per-
formed on the device

2. Network (server-based)
The audio data is sent over the network to a back-
end that performs both feature extraction and de-
coding

3. Distributed (client-server)
The work is divided between the mobile device and
a back-end. Usually the acoustic features are ex-
tracted on the device and sent over the network
to a more powerful back-end which carries out the
decoding

Due to the memory and CPU limitations developers
face when developing for the Java ME platform, and
due to the fact that speech recognition solutions are
fairly resource hungry, there exist few speech recogni-
tion software solutions for Java ME. However, some do
exist.

Zaykovskiy and Schmitt have developed a Java ME
based front end for feature extraction suitable for use
in distributed speech recognition solutions [25].

Vlingo Mobile, a Cambridge based company,
launched their network based solution in 2007 [19, 4].

Tellme., a Microsoft owned company, develops an-
other network based solution, called simply Tellme [28].

There is ongoing work towards providing a speech
recognition API for Java ME enabled cell phones, the
JSR-113 Java Speech API [21, 10]. If and when this
API is adopted by cell phone manufacturers, embed-
ded speech recognition should become easier to imple-
ment and a proliferation of solutions should occur. At
this time, however, few, if any, consumer cell phones
implement this standard [10].

4 Methodology

In this research project a case study is carried out in
which a system is developed for handling the task of
embedded, speaker independent speech recognition of
connected digits.

4.1 Baseline System

Sphinx-4 [29], an open source, hidden Markov model
based speech recognition system written in Java, was

chosen as a base for the development. The Sphinx-
4 system was trained with the TIDIGITS corpus [13],
a spoken corpus of 326 persons, each pronouncing 77
digits sequences. When testing Sphinx-4, it was run
on a computer equipped with a Pentium M 1.6 GHz
processor and 2 GB of RAM.

The target platform for the system was a Sony Er-
icsson K810i, running version JP-7 of Java ME. This
phone is a fairly new model and can be considered high
end.

Since Sphinx-4 has been developed for the Java SE
platform, it had to be converted to fit the target plat-
form, Java ME. The two main issues necessary to ad-
dress during the conversion were syntax and memory
consumption.

Since Java ME only offers a subset of Java SE’s
functionality, many constructs in Java SE code had
to be converted or rewritten. Examples include anno-
tations, generics, collections and certain input streams
and readers. In addition, a number of mathematical
functions, most notably the natural logarithm, is not
available in Java ME. Since Sphinx-4 uses logarithms
extensively, the implementation of this function can
have a profound impact on the performance of the sys-
tem when running on the target platform.

A challenging part of the conversion was to reduce
the memory consumption to a level where the sys-
tem was runnable on the target platform. When run-
ning Java SE applications on standard computers, pro-
grams have access to several hundred megabytes of
heap space. In contrast, the K810i offers a maximum
heap space of approximately 9 megabytes. By using
the float data type instead of double for the largest
data arrays and by optimizing the code in other ways,
the system became runnable on the target platform.
Another helpful factor was the aggressiveness of the
garbage collection on the target platform.

4.2 Optimizations

After the initial conversion, which resulted in a system
able to run on the target platform, several optimization
techniques were applied. Since memory optimizations
had already been used and proved successful, mak-
ing the application able to run with the limited mem-
ory available, further optimization efforts were concen-
trated on decreasing the run time of the system.

The accuracy of the beam search was adjusted by
tuning the absolute and relative beam widths. These
parameters control how aggressively paths are pruned
during the search. A more aggressive pruning leads to
faster run times but reduces the accuracy of the system
[15]. Care was taken to find the best trade-off between
run time performance and word error rate.
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During calculation of probabilities, Sphinx-4 con-
verts all values into the log domain. Unfortunately,
the log operation is fairly computation heavy, espe-
cially on cell phones that lack a dedicated floating point
unit. In order to reduce the time spent in log calcu-
lation, Köhler et al. suggest an approximation of the
logarithm value by using a less complex and simplified
logarithm function [16]. They also show one method
of doing this approximation which, however, was not
used in this system. Instead, log values were approx-
imated with the following simplification (presented in
Java code) [7]:

public static double log(double value) {

double x = (Double.doubleToLongBits(value) >> 32);

return (x - 1072632447) / 1512775;

}

Since this approximation could introduce some inac-
curacies, it might have a detrimental effect on the word
error rate. This is of course also dependent on the im-
plementation of the logarithm in the baseline system
on the target platform. Recall that the Java ME plat-
form does not provide a natural logarithm function,
this must consequently be implemented from scratch.

When allocating, the system reads float values for
the probability density functions, the means and vari-
ances used to model acoustic probabilities, into data
structures. The Java method used to read float val-
ues, readFloat(), is very inefficient compared to the
method used for reading bytes, read(). Each call to
readFloat() was therefore replaced with a call to read()

and a conversion from the resulting bytes to a float:

Float.intBitsToFloat((0xff & byte4) |

((0xff & byte3) << 8 ) |

((0xff & byte2) << 16) |

((0xff & byte1) << 24))

The data used by the probability density functions,
the means and variances, must be transformed [15] be-
fore being used in the probability calculations. These
calculations were performed beforehand to reduce the
allocating time of the system.

The K810i does not have a dedicated floating point
unit, i.e. there is no hardware support for floating point
arithmetic. This could lead to a severe performance
handicap for the system on the target platform. In or-
der to fully understand this performance penalty, tests
were performed comparing arithmetic operations with
floating point types and integer types.

Profiling showed that most of the time spent in fea-
ture extraction was spent in the fast Fourier trans-
form phase. The fast Fourier transform uses floating

point operations extensively and this imposes substan-
tial performance problems on the target platform. In
light of this and in light of the result of the arithmetic
tests of floating point and integer types, the fast Fourier
transform was converted into fixed point representa-
tion. The format used was Q18.13, i.e. 18 bits for the
integer part, also called the range, and 13 bits for the
decimal part, the precision.

Similar to the fast Fourier transform, the evaluation
of probability functions in the decoding phase, essen-
tially the scoring mechanism of the speech recognition
process, also relies heavily on floating point operations
when comparing the incoming features to the trained
data. To speed up this process, the scoring mecha-
nism was translated into fixed point, something that
has been tried with good results by Köhler et al. [16].
The format used was the same as in the fixed point ver-
sion of the fast Fourier transform, i.e. Q18.13. In order
to avoid the computation cost of scaling the training
data from floating point to fixed point representation
at run time, the data was scaled and precomputed be-
forehand.

All optimizations were tested independently from
each other to enable easier comparison of the various
techniques. As a last step, all optimizations were com-
bined to see the total gain in performance.

4.3 Data Collection and Analysis

The following data was collected to investigate the re-
search questions:

1. Run time performance
Allocating time and real time factor were mea-
sured

2. Memory consumption
Memory consumption was collected with a profil-
ing tool

3. Distribution of processing time
The percentages of the recognizing time spent in
feature extraction and decoding were measured

4. Accuracy
Accuracy was measured by calculating the word
error rate

The original Sphinx-4 system and the new system
were tested with 100 sequences of 13 digits spoken by
two speakers, one male and one female. None of the
speakers are native English speakers, a fact that po-
tentially could affect the measured word error rate (the
accuracy) of the systems.

The collected data was evaluated to see if the per-
formance of the new system is acceptable, i.e. if the
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system is practically usable. During this evaluation,
the performance of the new system was compared to
the performance of the original Sphinx-4 system.

5 Results

The following sections show the results of the original
Sphinx-4 system, the baseline system and the results
of the various optimizations.

5.1 Original Sphinx-4 system

The performance of the original Sphinx-4 system is
shown in table 1. The absolute beam width was set
to -1, which means unlimited size of the active list,
and the relative beam width was set to 1E-90.

Sphinx-4 performance

allocating time 451 ms
real time factor 0.12
word error rate 1.000%
peak heap usage 39 MB
part in feature extraction 63%
part in decoding 37%

Table 1: Sphinx-4 performance

Sphinx-4 recognizes audio more than eight times
faster than real time, making it suitable for use in ap-
plications that interact with the user in real time.

Memory consumption is fairly high, especially when
taking the heap space available on the target platform
into consideration.

The word error rate is slightly higher than ex-
pected when compared to the numbers achieved by
the Sphinx-4 team [29]. This may be due to the non-
nativeness of the test speakers, since the system has
been trained with native American speakers. Another
reason can be that different values are used for some of
the configuration parameters.

5.2 Baseline System

The performance of the developed baseline system is
shown in table 2.

Baseline system performance

allocating time 57257 ms (57.3 s)
real time factor 20.50
word error rate 0.769%
peak heap usage 4.2 MB
part in feature extraction 49%
part in decoding 51%

Table 2: Baseline system performance

Surprisingly, the word error rate is slightly lower
than in the original Sphinx-4 system. The cause for
this is not clear, the differing implementations of vari-
ous mathematical functions, such as the natural loga-
rithm, may be the culprits. Another possible explana-
tion is that some configuration parameters may have
been inadvertently changed during the porting to the
target platform. In any case, the accuracy has not suf-
fered from the translation from Java SE to Java ME.

The real time factor and the allocating time show
dramatic increases compared to the original Sphinx-4
system, nearly 171 and 127 times respectively. Both
these increases are expected taking the difference in
computing power and the absence of hardware support
for floating point operations on the cell phone into ac-
count.

The memory consumption is well within the limits
of the target platform and has decreased more than 9
times compared to the original system. This decrease
can be attributed to the attempts to optimize the mem-
ory consumption as well as to the implementation of
garbage collection on the target platform, which is far
more aggressive than on the source platform.

5.3 Log Approximation

The performance of the system when approximating
the natural logarithm is presented in table 3.

Log approximation performance

allocating time 38544 ms (38.5 s)
real time factor 18.42
word error rate 0.615%
peak heap usage 4.2 MB
part in feature extraction 52%
part in decoding 48%

Table 3: Log approximation performance

Contrary to what was expected, the word error rate
is actually lower than in the baseline system. This
shows a potential accuracy problem with the logarithm
implementation used in the baseline system. The ap-
proximated logarithm function seems to produce more
accurate results, leading to a lower word error rate.

The real time factor is improved by about 10%, a
fairly significant improvement. The decrease in allo-
cating time is nearly 19 seconds, which shows that the
logarithm function is used extensively during the allo-
cating phase.

Memory consumption is identical to the baseline sys-
tem, as expected.
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5.4 Beam Width Tuning

In order to find absolute and relative beam widths that
represent a good compromise between performance and
accuracy, several absolute and relative beam widths
were tested to see their impact on the word error rate
and the real time factor.

Table 4 shows different absolute beam widths and
the resulting word error rate (wer) and real time factor
(rtf). The relative beam width was set to 1E-90 (same
value as in the baseline system), in all tests.

Absolute beam width tuning

beam width wer rtf
25 0.769% 18.10
20 2.000% 17.26
15 5.154% 16.38
10 17.769% 15.40

Table 4: Absolute beam width tuning

At absolute beam widths of 10 and lower, the word
error rate degenerates rapidly. Higher values result in
word error rates that could be acceptable depending
on the needs of the system under development. For
this system, an absolute beam width of 20 was cho-
sen as it strikes a good balance between accuracy and
performance.

Table 5 presents various values of the relative beam
width and the corresponding word error rate and real
time factor. The absolute beam was set to unlimited
size (-1) throughout.

Relative beam width tuning

beam width wer rtf
1E-85 1.000% 19.70
1E-70 2.769% 17.94
1E-50 7.923% 14.77
1E-48 10.308% 14.23
1E-45 100% - (not calculated)

Table 5: Relative beam width tuning

Values up to 1E-48 are usable depending on the de-
mands on the word error rate. Higher values result
in total failure in speech recognition. For this system
1E-70 was chosen as a sensible trade-off.

Table 6 shows the result of combining the selected
beam widths, 20 for absolute and 1E-70 for relative.

Absolute + relative beam width tuning performance

allocating time 57090 ms (57.1 s)
real time factor 16.63
word error rate 4.385%
peak heap usage 4.2 MB
part in feature extraction 64%
part in decoding 36%

Table 6: Absolute + relative beam width tuning per-
formance

The real time factor shows a decrease of 19% com-
pared to the baseline system. This, however, comes
at a degeneration in word error rate, from 0.769% to
4.385%, an increase of 470%.

5.5 Precomputing Means and Variances
and Read Float Optimization

The optimizations concerning precomputing values for
the probability functions, the means and variances, and
optimization of the reading of float values were devel-
oped together and are therefore benchmarked together.
The result is shown in table 7.

Precomputing means and variances +
read float optimization performance

allocating time 37457 ms (37.5 s)
real time factor 20.6
word error rate 0.769%
peak heap usage 4.2 MB
part in feature extraction 52%
part in decoding 48%

Table 7: Precomputing means and variances + read
float optimization performance

As expected, the only value that differs from the
baseline system is the allocating time. It shows an
improvement of nearly 20 seconds, a decrease of al-
most 35%. All other changes are minor and can be
attributed to normal variance.

5.6 Arithmetic Performance

Table 8 shows the result of comparing arithmetic op-
erations using floating point types and integer types.
Each operation was computed 10000000 times and the
average of 10 tests was calculated. In the case of in-
teger and long multiplications, the time necessary to
shift the result back into the right format (Q18.13) is
included. In these tests a shift of 13 was used, other
shifts may produce other results.
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Arithmetic performance of float, integer and long

operation float integer long
multiplication 5813.9 ms 882.4 ms 4206.0 ms

division 10619.9 ms 861.6 ms 7589.2 ms
addition 5944.3 ms 878.4 ms 2152.0 ms

subtraction 6455.9 ms 883.6 ms 2118.4 ms
Table 8: Arithmetic performance of float, integer and
long

The figures show that integer arithmetic has a sub-
stantial performance advantage on the target platform
when compared to floating point arithmetic. Integers
are more than 6 times faster at multiplication, more
than 12 times faster at division and roughly 7 times
faster at subtraction and addition.

Arithmetic with the long data type is also faster
than floating point arithmetic. The performance gain
is, however, nowhere near the one achieved with inte-
gers. This is especially true when it comes to multi-
plication and division, where the performance gap to
floating point is not very significant. This is problem-
atic since, when doing multiplications in fixed point,
the operands must be cast to longs to avoid overflows.
The consequence of this is that a large part of the antic-
ipated performance benefit from switching from float-
ing point to fixed point representation may vanish if
many multiplication operations are performed.

5.7 Fixed Point Fast Fourier Transform

The performance of the system when using a fixed
point version of the fast Fourier transform is presented
in table 9.

Fixed point FFT performance

allocating time 57238 ms (57.2 s)
real time factor 17.05
word error rate 0.769%
peak heap usage 4.2 MB
part in feature extraction 40%
part in decoding 60%

Table 9: Fixed point FFT performance

Compared to the baseline system, the real time fac-
tor is improved by almost 17%. This figure could have
been higher, but the necessity to cast the operands
of every multiplication to longs hurts performance, as
shown in 5.6. Scaling of the fixed point values back
into floating point values also consumes some of the
gain, as does the need to scale the incoming acoustic
features into fixed point.

Although there is inevitably some rounding errors
introduced when using a fixed point representation, the
word error rate has not degraded compared to the word
error rate of the baseline system.

5.8 Fixed Point Scoring

Table 10 shows the performance of the system using
fixed point evaluation of the probability functions, i.e.
fixed point scoring.

Fixed point scoring performance

allocating time 23112 ms (23.1 s)
real time factor 19.60
word error rate 0.769%
peak heap usage 4.2 MB
part in feature extraction 51%
part in decoding 49%

Table 10: Fixed point scoring performance

The real time factor is only improved by 4%, signifi-
cantly less than anticipated. The reasons are the same
as for the fixed point fast Fourier transform: the scal-
ing of values from and to floating point representation
and the casting of integers to longs in order to avoid
overflows when performing multiplications.

The allocating time is about 34 seconds shorter than
in the baseline system. This is due to the time saved
when precomputing the values used in the probability
functions and due to that integers can be read more
efficiently from files than floats.

Despite the rounding errors inherent in fixed point
arithmetic, the use of fixed point values has not affected
the word error rate, it remains unchanged from the
baseline system’s.

5.9 Optimizations Combined

The system’s performance with all optimizations de-
scribed in the preceding sections combined is shown in
table 11.

Optimizations combined performance

allocating time 19544 ms (19.5 s)
real time factor 11.17
word error rate 3.769%
peak heap usage 4.2 MB
part in feature extraction 61%
part in decoding 39%
Table 11: Optimizations combined performance
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The final system improves the real time factor with
almost 46%. This performance gain results in a word
error rate of 3.769%, almost 5 times worse than in the
baseline system. Compared to the result from the beam
width tuning, presented in 5.4, the word error rate is
slightly better, due to the effect of the approximated
logarithm, as observed in 5.3

The allocating time is nearly 38 seconds shorter
compared to the baseline system, an improvement of
almost 66%.

As expected, the memory consumption remains un-
changed. There was no motivation to lower the heap
usage since the current consumption lies well within
the capabilities of the target platform. All the opti-
mizations regarding memory were applied during the
conversion from Java SE to Java ME, which shows
when comparing the memory consumptions of the base-
line system to the memory consumption of the original
Sphinx-4 system.

The part spent in feature extraction has increased
from 49% to 61%, indicating that most of the perfor-
mance gain is due to a more efficient decoding phase.

6 Discussion

This case study shows that it is possible to perform
embedded, speaker independent speech recognition of
connected digits on a Java ME enabled cell phone. Un-
fortunately, the performance is not close to being ad-
equate for use in mobile applications where response
time is critical, i.e. almost all applications dealing with
user interaction.

The available heap space on the target platform was
initially regarded as the main obstacle in developing the
system. However, thanks to successful memory opti-
mizations and thanks to the aggressive implementation
of garbage collection on the target platform, it proved
to be a smaller problem than anticipated. Granted,
a significant amount of work and time was necessary
to reduce the memory consumption to an acceptable
level, but in the end the system’s heap space usage was
well below what is available on the target cell phone.

The main challenge instead became to reduce the
real time factor to an acceptable level, thus optimiza-
tion techniques were chosen that addresses the run time
performance of the system.

Of these optimizations, the tuning of the relative
and absolute beam widths, i.e. the tuning of the be-
haviour of the beam search, turned out to be most ef-
fective. Depending on the tolerance for errors, signifi-
cant performance gains are possible through aggressive
choices of beam widths. As the results in 5.4 show,
by accepting a word error rate of about 10-15%, sig-
nificantly larger time savings are possible than in the

current system, since the selected beam widths were
chosen to maintain a fairly high accuracy.

The performance gain achieved from approximat-
ing the logarithm values was expected, since the new
logarithm function is less complex than the one used
in the baseline system. The decrease in word error
rate, however, was not expected. It suggests that the
baseline version, which had to be implemented from
scratch since Java ME does not provide a natural loga-
rithm operation, is not optimal and could be replaced
by a more accurate version. However, further develop-
ing resources are better spent on finding an even more
efficient and accurate approximation of the logarithm
function.

The conversion to fixed point representation of the
fast Fourier transform and the scoring did not result in
the speed-up that was anticipated. As noted in 5.7 and
5.8, this is due to the necessity to cast the operands in
multiplications to longs and due to the scaling from
and to fixed point representation. Both result in op-
erations with bad performance on the target platform.
This performance penalty can be alleviated by using
fixed point representation throughout the entire sys-
tem, thereby removing the need to scale most of the
values.

To make the system practically usable, more opti-
mizations need to be applied. Some of the possible
future optimizations are presented in section 8.

7 Conclusion

This case study resulted in a system that is capable of
embedded, speaker independent speech recognition of
connected digits on a Java ME enabled cell phone, the
Sony Ericsson K810i.

Sphinx-4, an open source speech recognition system,
was modified to run on the target platform, Java ME.
This was achieved by converting the syntax and opti-
mizing the memory consumption of the system in order
to make it fit into the more restricting Java ME mould.

The memory consumption of the system was not
as problematic as first anticipated. The final system’s
peak memory usage, approximately 4 megabytes, lies
well within the boundaries of the target platform.

The resulting baseline system recognizes spoken dig-
its in approximately 20 times real time. Through a
series of optimizations, including approximation of the
logarithm function and tuning of the beam search, the
real time factor was lowered by almost 46%, resulting
in a real time factor of around 11. This performance
gain came at the cost of reduced accuracy: the word
error rate increased from 0.769% to 3.769%, a deterio-
ration of almost 400%.
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Despite the considerable performance gain stem-
ming from the various optimizations, the performance
of the final, optimized system is not adequate for use
in real world mobile applications, where users demand
a fast response time.

8 Further Work

There are several known optimizations that could po-
tentially result in additional speed-ups of the system.
These were however outside the scope of this study,
mostly due to time constraints. A summary of some of
these optimizations is given below.

Since speech audio consists of real valued data, the
imaginary part of each value is set to 0 when used in
the fast Fourier transform. Therefore, the symmetry
properties of the fast Fourier transform algorithm can
be exploited [26], effectively reducing the N-point fast
Fourier transform into an N/2-point transform. This
can lead to performance gains of up to 50% for the fast
Fourier transform phase.

In this study, only the fast Fourier transform and
the scoring part of the system were ported to fixed
point representation. By implementing the rest of the
system’s components in fixed point, further gains in
run time performance should be possible, probably at
the cost of reduced accuracy.

The number of acoustic features can be minimized
by using early feature vector reduction [16]. The in-
coming acoustic feature vectors are merged by taking
their arithmetic mean, thereby reducing the number of
vectors to decode.

The decoding phase can be sped up by using the
bucket box intersection technique [12, 16]. However,
the performance gain comes at the price of lower accu-
racy and increased memory consumption.

One obvious augmentation of the current system
that does not fall into the realm of optimization would
be to incorporate the cell phone’s microphone by feed-
ing the speech recognizer speech data directly from it.
However, to do this a cell phone is needed capable of
recording sound in a uncompressed, raw format, such
as the WAV-format. The cell phone used in this study,
the Sony Ericsson K810i, only supports sound record-
ings in the AMR-format, which is a compressed format,
rendering it useless for speech recognition purposes.

References

[1] Sun in telecom. Press kit, Sun Microsys-
tems, March 2005. [Online] Available: http:
//www.sun.com/aboutsun/media/presskits/ctia2005/
Sun Telecom External V2.pdf.

[2] Sun microsystems celebrates first decade of java
technology innovation at the world’s premier java
developer conference, javaone 2005. Press re-
lease, Sun Microsystems, June 2005. [Online]
Available: http://www.sun.com/smi/Press/sunflash/
2005-06/sunflash.20050627.9.xml.

[3] Java technology at-a-glance. Press kit, Sun Mi-
crosystems, November 2006. [Online] Available:
http://www.sun.com/aboutsun/media/presskits/
2006-1113/Java aag 100306.pdf.

[4] Revolutionizing voice ui for mobile: Vlingo uncon-
strained speech recognition. White paper, Vlingo Mo-
bile, August 2007.

[5] W.H. Abdulla, D. Chow, and G. Sin. Cross-words ref-
erence template for dtw-based speech recognition sys-
tems. In Proceedings of TENCON 2003: Conference
on Convergent Technologies for Asia-Pacific Region,
volume 4, pages 1576–1579, Bangalore, India, October
2003.

[6] M.M. Ahmed and A.M.B. Ahmed. Review and chal-
lenges in speech recognition. In Proceedings of ICCAS
2005: International Conference on Control, Automa-
tion and Systems, Kintex, Gyeonggi-Do, Korea, June
2005.

[7] M. Ankerl. Optimized pow() approximation
for java and c / c++, October 2007. [On-
line] Available: http://martin.ankerl.com/2007/10/
04/optimized-pow-approximation-for-java-and-c-c/.

[8] J.K. Baker. Stochastic modeling for automatic speech
understanding. In A. Waibel and K.-F. Lee, editors,
Readings in speech recognition, pages 297–307. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA,
1990.

[9] R. Bellman. Dynamic Programming. Princeton Uni-
versity Press, Princeton, NJ, USA, 1957.

[10] Conversay. Conversay :: Speed, accuracy, safety, value,
2007. [Online] Available: http://www.conversay.com/
Technology/JSAPI2/tabid/55/Default.aspx.

[11] S.B. Davis and P. Mermelstein. Comparison of para-
metric representations for monosyllabic word recogni-
tion in continuously spoken sentences. IEEE Trans-
actions on Acoustics, Speech, and Signal Processing,
28(4):357–366, August 1980.

[12] J. Fritsch and I. Rogina. The bucket box intersec-
tion (bbi) algorithm for fast approximative evalua-
tion of diagonal mixture gaussians. In Proceedings
of ICASSP ’96: IEEE International Conference On
Acoustics, Speech And Signal Processing 1996, pages
837–840, Atlanta, GA, USA, May 1996.

[13] Texas Instruments. Texas instruments-developed stu-
dio quality speaker-independent connected-digit cor-
pus (tidigits). NIST Speech Discs, February 1991. 4-
1.1–4-3.1 (3 discs).

9

http://www.sun.com/aboutsun/media/presskits/ctia2005/Sun_Telecom_External_V2.pdf
http://www.sun.com/aboutsun/media/presskits/ctia2005/Sun_Telecom_External_V2.pdf
http://www.sun.com/aboutsun/media/presskits/ctia2005/Sun_Telecom_External_V2.pdf
http://www.sun.com/smi/Press/sunflash/2005-06/sunflash.20050627.9.xml
http://www.sun.com/smi/Press/sunflash/2005-06/sunflash.20050627.9.xml
http://www.sun.com/aboutsun/media/presskits/2006-1113/Java_aag_100306.pdf
http://www.sun.com/aboutsun/media/presskits/2006-1113/Java_aag_100306.pdf
http://martin.ankerl.com/2007/10/04/optimized-pow-approximation-for-java-and-c-c/
http://martin.ankerl.com/2007/10/04/optimized-pow-approximation-for-java-and-c-c/
http://www.conversay.com/Technology/JSAPI2/tabid/55/Default.aspx
http://www.conversay.com/Technology/JSAPI2/tabid/55/Default.aspx


[14] F. Itakura. Minimum prediction residual principle ap-
plied to speech recognition. IEEE Transactions on
Acoustics, Speech, and Signal Processing, 23(1):67–72,
February 1975.

[15] D. Jurafsky and J.H. Martin. Speech and language pro-
cessing : an introduction to natural language process-
ing, computational linguistics, and speech recognition.
Prentice Hall, Upper Saddle River, NJ, USA, 2000.
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