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Secretion of bicarbonate by surface mucus cells in 

the gastric epithelium is probably important in the 

mucosal defence against acid. The aim of this study 

was to develop a method for measurement of gas­

tric bicarbonate secretion in man. The regulatory 

mechanisms in basal, vagally stimulated (sham 

feeding) and fundic distension (balloon) induced 
bicarbonate secretion have been explored. 

The investigations were performed in healthy sub­

jects and duodenal ulcer (DU) patients, the latter 

group before and/or after proximal gastric vagoto­

my (PGV). Gastric bicarbonate secretion was de­

termined by use of a gastric perfusion system and 

computerized continuous pH and PC02 record­

ings. 

Validation of the measuring system by small in­

stilled amounts of bicarbonate gave a satisfactory 

correlation between added and recovered bicar­

bonate in the recorded range of bicarbonate deter­

minations. Decreasing intragastric pH to between 3 

and 4 did not affect the measured rate of bicarbon­

ate secretion. Vagal stimulation increased gastric 

bicarbonate secretion in sixteen healthy subjects 

from 410 ± 39 (imol/h to 692 ± 67 [xmol/h (mean 

± SEM, p < 0.001). The muscarinic receptor anta­

gonist, benzilonium bromide, almost abolished the 

sham feeding response while indomethacin left it 

nearly unchanged. Nine DU patients had identical 

basal and vagally stimulated bicarbonate output as 

healthy subjects. Basal bicarbonate secretion was 

significantly increased two months after PGV, 

whereas the bicarbonate output after sham feeding 

was unaltered. In the early postoperative period, 

anticholinergics reduced the enhanced basal bicar­

bonate secretion to a preoperative level. In six heal­

thy subjects, graded fundic distension to volumes of 

150 ml, 300 ml and 600 ml, each of 60 minutes, in­

creased the bicarbonate secretion by 46 % (p < 

0.05), 28 % (NS) and 84 % (p < 0.05), respectively. 

Continuous distension with 300 ml over 2.5 hours 

increased bicarbonate secretion, the peak response 

occurred at 45 minutes and gradually declined 

thereafter. Seven DU patients investigated after 

PGV had a response to graded fundic distension 

virtually identical to that in healthy subjects. Anti­

cholinergics abolished the response to fundic dis­

tension, whereas indomethacin was without any 

significant effect. In healthy subjects, 16,16-dime-

thyl PgE, gave an about threefold greater response 

than vagal stimulation, fundic distension or carba-

chol. 

It is concluded that gastric bicarbonate secretion in 

man is activated by cholinergic vagal nerves, the re­

sponse being independent of intragastric pH above 

pH 2. There is probably an interplay of stimulatory 

and inhibitory mechanisms modulating basal and 

vagally stimulated gastric bicarbonate secretion. 

Fundic distension of the stomach stimulates bicar­

bonate secretion and the response is mediated by 

intramural neural cholinergic pathways. Vagal sti­

mulation, fundic distension and carbachol appear 

to be submaximal stimuli of bicarbonate secretion 

or else may have both stimulatory and inhibitory 

actions on human gastric bicarbonate secretion. 
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Abstract 3 

STUDIES ON GASTRIC BICARBONATE SECRETION IN MAN 

Henrik Forssell 

Department of Surgery II, Sahlgren's Hospital, 

Gothenburg University, 

S-413 45 Gothenburg, Sweden 

Secretion of bicarbonate by surface mucus cells in 

the gastric epithelium is probably important in the 

mucosal defence against acid. The aim of this study 

was to develop a method for measurement of gas­

tric bicarbonate secretion in man. The regulatory 

mechanisms in basal, vagally stimulated (sham 

feeding) and fundic distension (balloon) induced 

bicarbonate secretion have been explored. 

The investigations were performed in healthy sub­

jects and duodenal ulcer (DU) patients, the latter 

group before and/or after proximal gastric vagoto­

my (PGV). Gastric bicarbonate secretion was de­

termined by use of a gastric perfusion system and 

computerized continuous pH and PC02 record­

ings. 

Validation of the measuring system by small in­

stilled amounts of b icarbonate gave a satisfactory 

correlation between added and recovered bicar­

bonate in the recorded range of bicarbonate deter­

minations. Decreasing intragastric pH to between 3 

and 4 did not affect the measured rate of bicarbon­

ate secretion. Vagal stimulation increased gastric 

bicarbonate secretion in sixteen healthy subjects 

from 410 ± 39 [xmol/h to 692 ± 67 (xmol/h (mean 

± SEM, p < 0.001). The muscarinic receptor anta­

gonist, benzilonium bromide, almost abolished the 

sham feeding response while indomethacin left it 

nearly unchanged. Nine DU patients had identical 

basal and vagally stimulated bicarbonate output as 

healthy subjects. Basal bicarbonate secretion was 

significantly increased two months after PGV, 

whereas the bicarbonate output after sham feeding 

was unaltered. In the early postoperative period, 

anticholinergics reduced the enhanced basal bicar­

bonate secretion to a preoperative level. In six heal­

thy subjects, graded fundic distension to volumes of 

150 ml, 300 ml and 600 ml, each of 60 minutes, in­

creased the bicarbonate secretion by 46 % (p < 

0.05), 28 % (NS) and 84 % (p < 0.05), respectively. 

Continuous distension with 300 ml over 2.5 hours 

increased bicarbonate secretion, the peak response 

occurred at 45 minutes and gradually declined 

thereafter. Seven DU patients investigated after 

PGV had a response to graded fundic distension 

virtually identical to that in healthy subjects. Anti­

cholinergics abolished the response to fundic dis­

tension, whereas indomethacin was without any 

significant effect. In healthy subjects, 16,16-dime-

thyl PgE2 gave an about threefold greater response 

than vagal stimulation, fundic distension or carba-

chol. 

It is concluded that gastric bicarbonate secretion in 

man is activated by cholinergic vagal nerves, the re­

sponse being independent of intragastric pH above 

pH 2. There is probably an interplay of stimulatory 

and inhibitory mechanisms modulating basal and 

vagally stimulated gastric bicarbonate secretion. 

Fundic distension of the stomach stimulates bicar­

bonate secretion and the response is mediated by 

intramural neural cholinergic pathways. Vagal sti­

mulation, fundic distension and carbachol appear 

to be submaximal stimuli of bicarbonate secretion 

or else may have both stimulatory and inhibitory 

actions on human gastric bicarbonate secretion. 

Key words: gastric bicarbonate secretion; gastric 

secretion; gastric; bicarbonate; humans; duodenal 
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THESIS 
Thesis 7 

This thesis is based on the following papers, 

which will be referred to in the text by their 
Roman numerals: 

I Forssell H, Olbe L. Continuous com­

puterized determination of gastric bi­
carbonate secretion in man. Scand J 
Gastroenterol 1985; 20: 767-774 

II Forssell H, Stenquist B, Olbe L. Vagal 

stimulation of human gastric bicarbon­
ate secretion. Gastroenterology 1985; 
89: 581-586 

III Forssell H, Olbe L. Effect of proximal 

gastric vagotomy on basal and vagally 

stimulated gastric bicarbonate secre­
tion in duodenal ulcer patients. Scand J 

Gastroenterol (accepted for publica­

tion) 

IV Forssell H, Olbe L. Effect of fundic dis­

tension on gastric bicarbonate secre­
tion in man. Scand J Gastroenterol 

1987 (in press) 
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Mucosal defence 9 

GASTRIC MUCOSAL 
DEFENCE 
MECHANISMS 

INTRODUCTION 
The stomach has a central role in the process 
of digestion. It is a reservoir and a mill and 
its glands secrete gastric juice containing hy­
drochloric acid and pepsin. Acidification of 
food destroys many ingested micro-organ-
isms, begins the breakdown of food compo­
nents and creates optimal conditions for 
protein digestion by pepsin. The stimula­
tion of gastric secretion during digestion has 
been traditionally divided into cephalic, 
gastric and intestinal phases. During the 
cephalic phase, gastric secretion is evoked 
by stimulation of centres in the brain and 
impulses are mediated via vagus nerves. 
The gastric phase is initiated when food 
enters the stomach. The food volume stimu­
lates stretch receptors in the gastric wall and 
food constituents interact with chemore-
ceptors resulting in further stimulation of 
acid secretion. The last stage, the intestinal 
phase, begins with the emptying of food and 
digestive products into the duodenum. This 
stage modulates both the secretion of acid 
and the emptying of food. The three phases 
overlap in time and are mutually interrelat­
ed in a complex nervous and humoral inter­
play. 

Gastric juice is produced by billions of cells 
located in the glands of the mucosa. The 

parietal cells, being one predominant cell 
type, have the ability to secrete a hydro­
chloric acid solution of pH 0.8 i.e. the pro­
ton concentration of the primary gastric 
juice is about three million times greater 
than that of bloo d. The chief cells are an­
other frequently occurring cell type in the 
glands and secrete pepsinogen, which is in­
volved in the digestion of protein. 

Both acid and pepsin have proteolytic ac­
tions on living tissue and these components 
of gastric juice are a potential threa t to the 
mucosa in terms of autodigestion. 

In th e healthy stomach, there is a balance 
between aggressive factors and the protec­
tion provided by pre-epithelial, epithelial 
and subepithelial mechanisms of the muco­
sa. Secretion of mucus a nd bicarbonate by 
the surface epithelial cells constitute a mu­
cus-bicarbonate barrier which is regarded to 
be a first line of defence. Other protective 
mechanisms comprise the inherent resist­
ance of the epithelial cells to noxious stimuli 
as well as mechanisms f or rapid tissue re­
pair. The pathogenesis of peptic ulcer dis­
ease is multifactorial and far from esta­
blished as yet. Apparently, the balance be­
tween aggressive factors and protective me-
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chanisms in ulcer disease is upset in favour 
of ulcerogenesis. Possible mechanisms are 

excessive secretion of acid/pepsin, a re­
duced mucosal resistance or a combination 

of bo th. 

Superficial mucosal damage induced by e.g. 

ethanol or acetylsalicylic acid is usually fol­
lowed by increased passive diffusion of lu ­

minal hydrogen ions into the mucosa. This 
increased permeability induced by weak 

acids and some other substances was first 
recognized by Teorell (1939) and the sequ­

ence of changes in the mucosa was further 

described by Davenport (1964, 1966). In 

the experiments by Davenport on canine 
Heidenhain pouches, injury was induced by 
a variety of agents. Damage was estimated 
in terms of increased flux of sodium and po­
tassium into the gastric lumen and a loss of 
luminal hydrogen ions. Within the mucosa, 

the acid released histamine, which in­
creased the permeability of the capillaries 

and further stimulated acid secretion. This 
resulted in interstitial oedema with haemor­

rhage and an additional breakdown of the 
mucosal barrier (Davenport 1967, Daven­

port 1970). 

Knowledge of gastric mucosal protection 

has increased rapidly during recent years. 
The following mechanisms have been sug­
gested to be important and will be discussed 

in greater detail: 

* pre-epithelial protection 

- mucus gel 
- bicarbonate secretion 

* epithelial protection 

- hydrophobicity of luminal cell 

membranes 

- barrier to permeation 

- sulphydryl components 
- rapid cell turnover 

- restitution 

* subepithelial protection 

- blood flow 
- tissue acid-base balance 

PRE-EPITHELIAL PROTECTION 

Mucus gel 
The entire surface of t he gastric mucosa is 
covered by a continuous layer of mucus gel, 

which has a variable thickness of less than 
500 um (Bickel and Kauffman 1981, Kerss 
et al 1982, Allen et al 1983). Both the sur­
face mucus cells and the mucus neck cells in 
the upper part of the glands secrete mucus. 

Mucus is released predominantly by the 
process of exocytosis (Zalewsky and 
Moody 1979). The main components of 
gastric mucus are neutral glycoproteins, 

which contain sialic acid and mucopolysac­
charides. The glycoproteins, constituting 
the greater part of mucus, are of particular 
importance for their specific properties 

such as gel formation and viscosity. Native 
glycoproteins have a high molecular weight 
of about two million daltons and are formed 
by polymerization of four glycoprotein sub-

units, which are joined by disulphide 
bridges (Allen 1981). The subunit consists 
of a protein core with carbohydrate side 
chains. Each molecule of the porcine gastric 

mucus glycoprotein contains over 600 of 
these carbohydrate side chains. The most 

important sialic acid is N-acetyl neuraminic 
acid. It is located in the terminal position of 
the carbohydrate side chain and has a strong 
negative charge. The rejection of neigh-
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Mucosal defence 11 

bouring negatively charged groups of the 
glycoproteins results in molecular expan­

sion and an increase in viscosity. The most 

important feature of the glycoproteins is, 
however, the hydrophilic action of the carb­

ohydrate side chains. Water molecules are 
strongly attracted to the matrix with most of 

the molecules trapped within the interstices 
of the gel. Accordingly, about 95 % of mu­
cus consists of water. 

Mucus has several functions. It lubricates 

the mucosa and constitutes a first line of 

defence against noxious gastric contents. Of 

importance in the latter respect is the active 
secretion of bicarbonate from surface mu­

cus cells. In addition, mucus retards diffu­
sion of hydrogen ions, the rate in mucus be­
ing about four times slower than that in un­
stirred water (Williams and Turnberg 

1980). Thus the mucus gel accomplishes a 
zone of limited mixing between the gastric 
luminal contents and the relatively small 

amount of secreted bicarbonate. The exist­

ence of a pH gradient across the mucus layer 
has been shown in vitro in the stomach of 

rabbits (Williams and Turnberg 1981), frog 
(Takeuchi et al 1983) and in vivo in the rat 

(Ross et al 1981). A pH gradient has also 
been demonstrated in the human stomach, 
in vitro (Bahari et al 1982) and in vivo 

(Quigley and Turnberg 1985). 

The mucus gel has a very low permeability 
to large molecules such as pepsin, which 
should also be inactivated by the alkaline 

environment. However, pepsin continuous­
ly hydrolyzes the lumen-facing part of the 
mucus gel layer with production of m ucus 
glycoprotein subunits. These have lost 
much of their viscous and gel-forming pro­

perties. The thickness of the mucus gel is 

thus determined by the dynamic balance 

between mucus secretion and surface ero­

sions by proteolysis and mechanical des­
truction. The gel is resistant to hypertonic 

NaCl, bile, ethanol and indomethacin (Bell 
et al 1985). Mucus secretion is stimulated, 

for example, by chemical irritants, carba-
chol, prostaglandins and the hormone sec­

retin (Allen 1981). 

Another suggested property of mucus is 

facilitation of unidirectional flux of hydrog­

en ions from the gastric glands into the lu­
men. The transit of acid secreted by the par­

ietal cells appears to occur through mucus 

which is more highly sulphated (Tasman-
Jones 1985). Such mucus, with the highest 

negative charge contributed by sulphate 
and sialic acid radicals and produced espe­

cially by the mucus neck cells, should be­

have as a cation exchanger. A concentration 

gradient of sodium ions is proposed to be 
generated across the mucus layer by the 

continuous activity of a Na,K-ATPase at 
the basolateral membrane of the mucus 

cells. Sodium ions diffusing along this gra­
dient should generate a diffusion potential 

positive at the cell-facing surface of the mu­
cus gel. It is suggested that this potential 
moves hydrogen ions into the lumen and al­
so prevents backwards diffusion (Smith et al 

1985). 

Gastric mucus is also important in the repair 
of superficial damage to the mucosa. After 
damage to the surface cells, there is a rapid 
release of copious amounts of mucus and 
plasma proteins which, together with cellu­
lar debris, form a continuous coat over the 

destroyed area (Wallace and Whittle 1986). 

Acta Chir Scand 1981, suppl 540 
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This mucoid cap provides a favourable mic­

ro-environment for repair by restitution. 

Bicarbonate secretion 
Bicarbonate secretion in the stomac occurs 

by electroneutral Cl7HCO, exchange at 
the luminal cell membrane of the epithelial 

cells (Flemström and Garner 1982). The 
mucus cell contains most of mucosal cyclic 

GMP diesterase (Sung et al 1972) and car­
bonic anhydrase activity (Lönnerholm et al 

1985). Carbonic anhydrase is localized to 
the apical cytoplasm and microvillar cores 

of the gastric mucus cells (Sugai and Ito 
1980). The presence of these enzymes pro­
vides evidence that the secreted bicarbonate 
originates from the mucus cells. Acetazola-

mide, which inhibits carbonic anhydrase, 
has been shown to reduce active alkaliniza-

tion by amphibian gastric fundic mucosa 
(Flemström 1977), decrease canine gastric 

bicarbonate secretion (Kauffman and 
Steinbach 1981) and to reduce the ability of 
the mucosa to resist acid (Werther et al 

1965). 

Cyclic GMP, but not cyclic AMP, stimulates 
the alkaline secretion by gastric mucosa in 

vitro (Flemström 1977) and cholinergic sti­
mulation increases the bicarbonate secre­

tion in the canine antrum and fundus with a 
concomitant elevation in the mucosal con­

centration of cyclic GMP (Cheung and 
Newton 1979). This suggests that cyclic 

GMP may serve as an intracellular secon­
dary messenger. For each hydrogen ion sec­
reted by the parietal cell, a molecule of C02 

derived from arterial blood flow is convert­
ed to bicarbonate. The latter is released into 

gastric venous blood consequently provok­

ing an alkaline tide after stimulation of acid 

secretion (Rune 1965). The vascular ar­
rangement of the mucosa may facilitate the 

transport of the bicarbonate released by the 
parietal cells towards the bicarbonate sec­
reting cells of the surface epithelium (Gan­
non et al 1984). 

Gastric as well as duodenal bicarbonate se­
cretion has been extensively studied during 

the last 10 years both in in vitro and in vivo 

preparations of various amphibia and com­
mon laboratory mammals, and especially 
by Flemström and his coworkers. It has 
been found that bicarbonate secretion from 

mucus cells is a metabolism dependent pro­
cess rather than a passive diffusion and that 

it is stimulated and inhibited by a variety of 
physiological mechanisms and pharmaco­

logical agents (Flemström 1987). The rate 
of bicarbonate secretion from surface mu­
cus cells is below 10 % of the maximum rate 
of acid secretion in several species (Garner 
et al 1983). 

Measurements of human gastric bicarbon­

ate secretion have been accomplished by ti­
tration of b icarbonate concentration, from 
recordings of pH and PC02 and from mea­
surements of gastric juice osmolality. Gard-

ham and Hobsley (1970) estimated basal 
bicarbonate secretion to be 236 ± 48 

[xmol/h (mean ± SEM) in patients with per­
nicious anaemia. The measurement was ac­
complished by means of back-titration of 

the alkaline gastric juice with hydrochloric 
acid. Andre and coworkers (1973) used a 
glycine buffer to trap hydrogen ions and bi­
carbonate secretion was subsequently de­

termined with a titration technique in three 
steps, which included addition of HCl to the 
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gastric sample to neutralize bicarbonate, 
removal of C02 by boiling and finally back-

titration to pH 7 with NaOH. They found 
the exceedingly high bicarbonate output of 

7020 ± 840 [xmol/h. It should be noted that 
the use of the glycine buffer caused an un-

physiological pH of over 9 in the stomach. 
Furthermore, such a buffer probably traps 

tissue C02. In 1982, Rees and coworkers re­

ported a method for the measurement of 
human gastric bicarbonate secretion in 
which gastric juice was collected in 10-min 

intervals and pH and PCO, were analyzed 
in the samples. This method was based on 

techniques developed for measurements of 

bicarbonate secretion in animals (Garner 
and Flemström 1978). The bicarbonate se­
cretion was calculated using the Henderson 

- Hasselbalch's equation. Under basal con­

ditions, it amounted to 347 ± 100 [xmol/h. 
A similar method has been described by 
Johansson and collaborators (1983) who 

used a gastric instillation technique measur­
ing pH and PC02 in the recovered instillate. 

Kleist et al (1985) measured gastric bicar­
bonate concentration by using the van Slyke 

technique and found a gastric bicarbonate 
secretion value of similar magnitude as with 

the pH - PC02 technique. Another ap­
proach for assessment of human gastric bi­
carbonate secretion has been described by 
Feldman (1983) using measurement of gas­

tric juice osmolality. In healthy subjects, a 
basal gastric bicarbonate rate of 2600 ± 600 
}xmol/h was calculated. The method is 
based upon the fact that reaction between 

bicarbonate and hydrogen ions results in 
loss of osmoles and also on an assumed 
fixed relation between the osmolality of 

plasma and the osmolality of parietal and 
nonparietal secretions. Recently, both in 

vitro and human investigations have shown 

a several-fold overestimation by the osmo­

lality method compared to both the pH -
PCO, method and back-titration (Odes etal 

1987). 

Gastric bicarbonate secretion from am­

phibian mucosa and the mucosa of various 

mammals is stimulated by humoral sub­
stances such as dibuturyl cyclic GMP 

(Flemström 1977), calcium ions 
(Flemström and Garner 1980), cholecysto-
kinin (Flemström et al 1982) and several 

other gut hormones, for example, pancrea­

tic glucagon, pancreatic polypeptide and 

neurotensin (Konturek etal 1985). Gastrin 

and secretin have been found to be without 
any stimulatory effect (Flemström 1987). 

Gastrin (Feldman 1983) and secretin (Kle­
ist et al 1985) were also unable to affect gas­

tric bicarbonate output in man as was the 
case with histamine (Feldman and Schiller 

1982). Cholinergic agents, on the other 
hand, stimulated bicarbonate secretion 

(Feldman 1983). Prostaglandins are potent 

stimulants of gastric bicarbonate secretion 

(Garner and Heylings 1979) and the syn­
thetic analogue of prostaglandin E2 has 

been shown to stimulate gastric bicarbonate 
secretion in man (Johansson et al 1983, 
Feldman 1983). Gastric bicarbonate secre­
tion was increased by electrical vagal stimu­

lation in the cat (Fändriks and Delbro 1983) 
and by physiological vagal stimuli such as 

sham feeding in man (Feldman 1985). Ex­
posure to acid has been found to increase 

gastric bicarbonate output in experiments 
with bullfrog mucosa (Heylings et al 1984), 

in the canine Heidenhain pouch (Konturek 
etal 1984), in the rat by acid solutions of pH 

1 but not pH 2 (Takeuchi etal 1986) and al-
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so recently in man when intragastric pH was 

allowed to fall to 2 (Crampton etal 1986). A 
vagally induced rise in feline gastric bicar­

bonate secretion was enhanced by splanch-
nicotomy and/or ligation of the adrenal 

glands (Fändriks 1986a), indicating adren­
ergic inhibition of the cephalic stimulated 

gastric bicarbonate secretion. 

EPITHELIAL PROTECTION 
Hydrophobicity of the epithelial 
lining 

Both the surface mucus cells and the neck 
mucus cells face outermost towards the lu­
men of the stomach and constitute an ana­

tomical barrier restricting passive diffusion 
into the underlying tissue of hydrogen ions 

and of sodium and potassium ions along 
their concentration gradients into the lu­

men. This tissue barrier may also prevent 
autodigestion by pepsin. Surfactants such as 
amphoteric phospholipids have the ability 
to increase the hydrophobicity of biological 

membranes and have been identified in gas­
tric juice and on the apical cell membrane of 

the surface epithelial cells (Hills etal 1983, 
Butler etal 1983). The acid secreting part of 

the stomach in particular has a highly hy­
drophobic surface and these phospholipids 
have been suggested to resist digestion 

(Slomiany and Slomiany 1980). The sur­
factant molecule is orientated in such a way 
that two hydrocarbon chains per molecule 

form a hydrophobic exterior surface. The 
opposite hydrophilic ends face the underly­

ing cell, which is hydrophilic due to the pre­
ponderance of outward orientated hydroxyl 

and carboxyl groups in the membranes. The 

hydrophilic ends of the phospholipids are 

positively charged and form electrostatic 
bonds with the negatively charged cell 

membranes. Mucus makes a substantial 
contribution by stabilizing and replenishing 

the absorbed surfactant monolayer (Hills 

1985). 

Surfactants contribute to the surface epi­
thelial protection by preventing the water-

soluble agents in the gastric lumen from 
reaching and damaging the cells. Exposure 

of the luminal surface of the stomach to a 
high concentration of the damaging agents 

aspirin and sodium deoxycholate results in a 
rapid decrease in the hydrophobicity of the 
mucosa (Hills etal 1983). The reduction in 
surface hydrophobicity is effectively and 

dose-dependently reversed by synthetic 
analogues of prostaglandin E2 (Lichten­
berger etal 1985). Furthermore, a liposom­
al suspension of surface active phospholip­

ids significantly protected the gastric muco­
sa of rats from experimental acid induced 

gastric damage (Lichtenberger et al 1983). 

Hydrogen ion permeation 
Hydrogen ion permeation across the epi­
thelium may occur across the cell mem­

branes or through tight junctions between 
the cells. The ion permeability of the tight 
junctions determines the electrical resist­

ance of e pithelia (Powel 1981). The resist­
ance of the apical and basolateral cell mem­

branes varies little between epithelia. The 
epithelium is moderately tight in the gastric 
fundus whereas it is more leaky in the an­
trum. Permeation of hydrogen ions across 

tight junctions may occur by proton diffu-
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sion since protons can hop from one water 

molecule to another by rearrangement of 
hydrogen bonds. At neutral pH, the shunt 

paths are cation selective and relatively 
permeable to hydrogen ions. Protons and 

polyvalent cations such as Ca2+ neutralize 
the negative charges that line the pathways 

thereby changing the shunt path instead be­
ing anion selective. Thus, the negatively 

charged groups govern the permselectivity 
of the aqueos tight junctions. Consequently, 

at low pH the tissue may exclude hydrogen 

ion permeation (Powel 1981). Hydrogen 

ions may also be transported across the api­
cal cell membrane by Na+/H+ exchange 

controlled by intracellular calcium concen­
tration (Benos 1982). When the mucosal 

surface epithelium is damaged, hydrogen 
ions diffuse from the lumen into the mucosa 

and sodium and potassium ions move from 
the tissue into the lumen. This increased 

permeability can also be observed as a 
marked decrease in the transmucosal elec­

trical potential difference (PD). Acidifica­
tion may damage the cells by interference 

with their ion transport mechanisms result­
ing in a loss of volume regulation and/or by 

denaturation of vital proteins. 

Sulphydryl compounds and EGF 
in gastric mucosal protection 
Tissue ischaemia or injury produced by 
noxious agents such as ethanol may result in 
the accumulation of toxic free radicals. 
Ischaemia is followed by utilization of high 
energy compounds such as adenosine tri­
phosphate and accumulation of adenosine 

monophosphate since oxidative phospho­
rylation is reduced. The adenosine mono­

phosphate is catabolized further to hypox-
anthine, which is accumulated (Younes etal 
1984). Ischaemia also converts the enzyme 
xanthine dehydrogenase to the xanthine ox­

idase form. This enzyme requires the pres­
ence of oxygen for activity. For instance 
after rapid reperfusion, oxygen becomes 

available for the tissue and xanthine oxidase 

will act on hypoxanthine producing super­
oxide radicals (02 ), hydrogen peroxide 

(H202) and hydroxyl radicals (OH •). These 

free radicals, each containing an unpaired 
electron in its outer shell, are highly reac­

tive, potent oxidizing and/or reducing 
agents. Cell injury is presumably caused by 

the damage of various cell membranes with 
intracellular release of e.g. lysosomal en­

zymes (Itoh and Guth 1985). Nonprotein 
sulphydryl compounds have been found in 

high concentrations in the gastric epithel­

ium. The major component is reduced glu­

tathione, which is capable of b inding reac­
tive free radicals. Ethanol lowers the con­

centration of nonprotein sulphydryls in the 
gastric mucosa whereas reduced glutathi­
one induces gastric cytoprotection while in­
creasing sulphydryl levels (Szabo et al 
1981). Thus glutathione peroxidase ap­

pears to be a natural scavenger. Sulphydryl 
blocking agents prevent the cytoprotective 
action of certain prostaglandins concomi­
tant with a decrease in sulphydryl concen­

tration (Szabo et al 1981). 

Epidermal growth factor, EGF, which is a 

peptide of 53 amino acids, has been identifi­
ed in salivary glands and in duodenal Brun­

ner gland secretions. It is a powerful mitog­
en and stimulates DNA synthesis as well as 

ornithine decarboxylase activity. These ob­
servations suggest EGF to be important in 
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the process of tissue repair and growth and 
in the physiological maintenance of the gas-

troduodenal mucosa. In addition, EGF is an 
inhibitor of gastric acid secretion. It has 

been found that EGF reduces gastric in­

duced lesions at doses not inhibiting acid se­

cretion (Skov Olsen et al 1984). Approxi­
mately 10 % of the structure of EGF con­

sists of SH-containing amino acids and it 
has been suggested that at least part of the 
protective effect of EGF in the gastroduod-
enal mucosa is due to these sulphydryl 

groups (Szabo 1984). 

Gastric mucosal cell renewal 
The gastric mucosa has a very rapidly pro­

liferating epithelium. The rate of produc­
tion of new cells has obvious implications 

for mucosal protection both during steady 
state conditions and after mucosal damage. 

Cells migrate from the neck of the glands 
towards the lumen and differentiate into 

surface mucus cells. The origin most prob­
ably is undifferentiated neck cells. Other 

cells migrate down towards the depth of the 
gland and differentiate into parietal cells 
and chief cells. Human isthmus-pit cells di­
vide about once every 36 hours and the time 

taken for these cells to reach the surface of 
the mucosa varies between 48 and 96 hours 

(Wright 1984). An increase in gastric cell 
turnover may contribute to mucosal def­

ence, as damaged cells are more rapidly re­
plenished. On the other hand, chronic ad­
ministration of prostaglandins to the rat 

(Reinhart et al 1983) and humans (Tytgat et 

al 1986) induced trophic changes in the gas­

tric mucosa, especially the gastric antrum. 
The mucosa was thickened due to an in­

crease in cell size and number of all cells in 

the glands, but the trophic changes were not 
caused by an increase in cell turnover (Fich 

et al 1985). It is thus probable that prostag­
landins of E2 type retard senescence and ex­

foliation of mucosal cells, explaining the 
foveolar expansion in the presence of unal­

tered proliferation (Tytgat et al 1986). 

Mucosal repair by restitution 
After extensive damage of the surface epi­

thelial cells caused, for example, by hyper­
tonic sodium chloride solution, repair oc­

curs within a few hours (Svanes et al 1982, 
Rutten and Ito 1983). This process, called 
restitution, is unlikely to be due to a prolife­
ration of cells in the isthmus of the glands 
which instead requires several days. The 
rapid re-epithelialization is characterized by 

migration of remaining viable surface mu­
cus cells and mucus neck cells from the 

crypts to cover the damaged surface. These 
cells are squamous shaped and depleted of 
mucus granules. The first sign of restitution 
is the presence of extended thin cell pro­

cesses that begin to cover the denuded basal 
lamina. With time, a continuous epithelial 

cell layer of flattened migrated epithelial 
cells is formed. Tight junctions are restored 
and, after a longer period of restitution, the 
cells become more and more cuboidal to 

form low columnar cells containing mucus 
granules. A return of electrical parameters 
such as PD accompanies the morphological 

stages of healing. In frog gastric mucosa, the 
restitution process is associated with a con­
comitant passive flux of bicarbonate across 

the epithelium. The rate is about half that of 
basal hydrogen ion secretion in the control 
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fundic mucosa. Luminal pH below 4 inhi­

bits and high nutrient bicarbonate concen­

tration enhances epithelial restitution 
(Svanes et al 1983). Pretreatment with in-

domethacin did not increase the mucosal 

damage caused by a hypertonic sodium 

chloride solution and pretreatment with 
exogenous 16,16-dimethyl prostaglandin 

E2 did not affect the restitution process in 
any favourable way (Svanes et al 1984). In 

other studies, it was found that a largely res­
tituted rat mucosa was not damaged by re­

peated insult of 70 % ethanol when the su­
perficial mucosa was nearly completely re-

epithelialized, unless the overlying necrotic 

gelatinous cap was removed (Lacy 1985). 

SUBEPITHELIAL PROTECTION 
Mucosal blood flow 
The gastric mucosa, like all tissues, depends 
on blood flow for supply of nutrients and 

oxygen and for disposal of cellular waste 
products. Insufficient gastric blood flow is 

thus hazardous and a threat to tissue viabili­

ty. When the gastric mucosa is exposed to an 
irritant that increases hydrogen ion permea­
tion, tissue damage is greatly enhanced by a 

simultaneous decrease in mucosal blood 
flow. The exposure of canine gastric mucosa 
to sodium taurocholate and acid increased 
hydrogen ion diffusion and enhanced blood 

flow but occurred without gross damage to 
the mucosa (Ritchie 1975). However, si­
multaneous reduction in blood flow by va­

sopressin (Ritchie 1975) or by haemorrhag-
ic shock (Ritchie and Shearburn 1977) 
caused marked damage to the mucosa. Mu­
cosal blood flow is thus essential in the dis­
posal of hydrogen ions and noxious agents 

which permeate the mucosa.The ratio of 

blood flow to hydrogen ion diffusion deter­

mines the degree of the ensuing mucosal in­
jury (Cheung and Chang 1977). Measure­

ment of intramural pH of canine gastric mu­
cosa in the absence or presence of luminal 

acid during haemorrhagic shock further 
suggested that the protective function of 

mucosal blood flow is related to the disposal 
of h ydrogen ions entering the mucosa (Ki-

vilaakso et al 1978a). Intramural pH dec­
reased only slightly during reduction of mu­

cosal blood flow when luminal acid was ab­
sent. However, a much greater decrease in 

the intramural pH occurred in the presence 

of luminal acid and a particularly rapid and 

profound decrease in intramural pH was 
observed after the addition of sodium tau­

rocholate. 

Acid-base balance 
The intraglandular capillary supply of the 

stomach originates from submucosal arteri­
oles which divide into capillaries at the base 

of the glands. These capillaries pass through 
the mucosa parallel to the glands, join to a 
capillary network just beneath the surface 
mucus cells and drain into mucosal venules 

(Gannon et al 1984). The mucosal venules 
do not receive further capillary tributaries 

deeper within the mucosa. This vascular ar­
rangement ensures the maintenance of a n 
unidirectional blood flow in the mucosal ex­

change vessels. Further, it may facilitate the 
protective role of alkaline tide by transport­
ing bicarbonate from lower regions of the 

mucosal vasculature to the capillaries just 
below the surface mucus cells. In the oxyntic 

area of the stomach, the acid secretory pro-

Acia Ghir Scand 1987, suppl 540 



18 

cess utilizes carbon dioxide. For each hy­
drogen ion secreted, one ion of bicarbonate 
is released. These bicarbonate ions diffuse 
into capillaries surrounding the glands and 
are transported by blood flow to the surface 
of the mucosa. Here, bicarbonate is deliv­
ered to mucus cells, but is also available for 
neutralization of hydrogen ions which may 
have diffused'into the mucosa. The buffer­
ing capacity of tissue and blood, especially 
as related to the availability of bicarbonate 
ions to surface epithelial cells, is th us im­
portant in the protection of the gastric mu­
cosa against acid induced injury. Actively 
secreting gastric mucosa with its accompa­
nying alkaline tide of bicarbonate tolerates 
luminal acid far better than does a resting or 
inhibited mucosa (Kivilaakso et al 1978b, 
Arvidsson and Haglund 1984). 

In a rat model, parenteral administration of 
sodium bicarbonate effectively protected 
the gastric mucosa from luminal acid (Kivil­
aakso 1981). This protection depended on 
the presence of bicar bonate rather than on 
the alkalinity of the tissue induced by respir­

atory hyperventilation. Nor did other buffer 
species offer any protection. Ambient bi­
carbonate has also been shown to be im­
portant in the maintenance of gastric muco­
sal intracellular pH (Kivilaakso 1983), 
which was significa ntly higher when bicar­
bonate was present in the fluid surrounding 
isolated frog gastric mucosa than when it 
was absent. Furthermore, intracellular pH 
was higher than extracellular pH only when 
bicarbonate was present. Consequently, nu­
trient (blood) bicarbonate ions may en­
hance the ability of the mucosal cells t o 
withstand acid. 
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AIMS OF 
THE PRESENT 
INVESTIGATION 
The ability of the gastric mucosa to resist au-
todigestion is of multifactorial nature. Both 
mucus and bicarbonate are actively secreted 
by the mucus cells of the gastric mucosa and 
constitute a mucus-bicarbonate barrier, 
which is regarded as a first line of defence. 
While gastric bicarbonate secretion has be­
en extensively characterized in vi tro and in 
vivo in several mammals, the nature of this 
bicarbonate secretion has been very little 
explored in humans. The aims of the thesis 
were 

1. to develop and validate a method for 
measurement of gastric bicarbonate 
secretion in man 

2. to study the influence of vagal nerves on 
gastric bicarbonate secretion 

3. to study the effects of fundic distension 
on gastric bicarbonate secretion 

4. to study the mechanisms involved in re­
gulation of gastric bicarbonate secre­
tion by use of anticholinergics and cy-
clooxygenase inhibitors 
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MEASUREMENT OF 
BICARBONATE 
SECRETION 
Measurement of gastric bicarbonate secre­
tion in the present study was based on the 

assumption that bicarbonate appearing in 
the gastric perfusate reflected the secretion 

of bicarbonate into the mucus gel layer. 
Acid inhibition by histamine H2-receptor 
antagonists increased intragastric pH to a 
level above pH 6. At pH 6.10, i. e. at the pKa 

of carbonic acid, half of intragastric bicar­
bonate exists in the form of free bicarbonate 

ions, the rest being converted to carbon 
dioxide by the reaction of bicarbonate with 

acid. Consequently, use of a higher intra­
gastric pH of around 6.5 further decreased 
the formation of carbon dioxide and thus 

minimized the possible loss of C02 by eruc­
tation, passage through the pylorus or diffu­
sion into the gastric wall The measuring 

system contained electrodes which simul­
taneously measured pH and PC02. The 
concentration of free bicarbonate was cal­
culated according to the formula of Hen­

derson (1908) and Hasselbalch (1916). A 
proportion of free bicarbonate was always 
neutralized by hydrochloric acid with for­
mation of C02. The t1/2 for this reaction is 

about 14 seconds (Flemström and Garner 
1987). The concentration of C02 was 
added to obtain total bicarbonate concen­
tration according to the formulae: 

TOTAL BICARBONATE 

CONCENTRATION 

= [HCO3-] + [C02] 

where 

[HOT,] = S x PC02 x 10?H - PKa and 

[COJ = S X PC02 

The solubility coefficient, S, for C02 and the 
dissociation constant, pKa, for carbonic ac­

id, both depend on the solution and its 

chemical and physical properties. For ex­
ample, the solubility coefficient increases 
with decreasing temperature. At 37 °C, 

0.033 mmol per mm Hg of C02 is dissolved 
in 1 litre of water. The corresponding values 
at 30'C and 20 °C are 0.039 and 0.052 mmol 
per mm Hg, respectively. Presence of ions in 
the solution depresses the S value (van Slyke 
et al 1928), especially at ion concentrations 

above 0.3 M. The dissociation constant, 
pKa, will increase slightly with decreasing 
temperature but is affected more by the ion­
ic strength of the actual solution. Hence, the 

pKa of carbonic acid is reduced by 0.5 x the 
square root of the ionic strength of the solu­

tion (Hastings et al 1925). The pKa in water 
solutions at 37 °C is 6.31 and the corre­
sponding value in plasma is 6.10. 
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The measuring system 

A Salem sump tube no. 12 was positioned 

with its tip in the upper part of the gastric 
antrum and was coupled to a measuring sys­
tem. Its outlet was connected to an Egnell 

suction pump, which produced an inter­

mittent negative pressure of 15 - 20 kPa 
once a second (Fig. 1,1). Physiological sodi­
um chloride solution at room temperature 
was continuously infused into the stomach 

through an additional thin tube, parallel to 
the main tube. The perfusion port was lo­

cated just below the cardia of the stomach, 
i.e. 12 cm proximal to the tip of the Salem 

sump tube. The perfusion solution con­
tained phenol red as a marker. This enabled 
calculation of the volume of gastric contents 

using the formula: 

VOLUME OF GASTRIC CONTENTS 

perfusion volume x phenol red conc. of the perfusate 

phenol red conc. of the gastric aspirate 

The concentration of phenol red in the per­

fusate was 8 mg/1. Concentration of phenol 
red in the aspirate was measured spectro-
photometrically at a wavelength of 560 nm. 

A high perfusion rate of 440 ml/15 min fa­
cilitated mixing of secreted gastric juice with 

the perfusate. In addition, the high rate di­
luted secreted acid and the rapid washing-

out shortened and allowed easy detection of 
episodes of duodenogastric reflux of bicar­

bonate. 

The measuring chamber 

The measuring chamber was made from 
translucent plastic material and occupied a 
volume of only 9 ml (I). The pH and PC02 

electrodes were placed in such a manner 
that air bubbles did not interfere with the re­
cordings. The outlet of the measuring 

chamber was at the top allowing air bubbles 
which were intermingled with the gastric 
juice to pass along the side wall to the top of 

p C O .  

C O M P UT E R  A M P L I  F I E R  

P R I N T  E R  

P L O T T E R  

C H A R T  

R E C O R D E R  

G A S T R I C  A S P I R A T I ON  

E g n e l l  s u e t  i o n  p u m p  

G A S T R I C  P E R F US I O N  

N a C l - s o l u t i o n  w i t h  p h en o l  r e d  

4 4 0  m  I / 1 5  m i n  

Fig. 1 Schematic diagram of the measuring system. From 1. 
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the chamber without disturbing measure­

ments of pH and PC02. The pH electrode 

and its reference (Radiometer, Denmark: 

G2040C and K8040 respectively) both had 

screw-caps allowing gas-tight insertions in­

to the measuring chamber. A magnetic stir­

rer inside the measuring device ensured tho­

rough mixing of the passing gastric aspirate. 

The PC02 electrode 
The PC02 electrode (Radiometer, Den­

mark: E8001) is basically a pH electrode 

placed in bicarbonate electrolyte behind a 

teflon membrane of 12 um thickness. This 

membrane is impermeable to ions such as 

HCO3" and H+ but permeable to gas mole­

cules. The C02 dissolved in the gastric per­

fusate diffuses into the bicarbonate electro­

lyte until an equilibrium is reached, chang­

ing its pH. This pH change is converted into 

a PC02 reading in the amplifier (Radiome­

ter, Denmark: PHM 73) by using a linear 

calibration curve which relates log PC02 to 

pH. The PC02 electrode was always cali­

brated against two carefully analyzed gas 

mixtures which contained C02 in the range 

of 1 to 3 % in N2 for alternate 15-min peri­

ods in the few hours before the experiment. 

The computer recording 

The pH and PCO, signals from the amplifi­

er were stored digitally in a computer (Com­

modore, USA). The amplifier was provided 

with an analog-digital converter which was 

interfaced between the output of the ampli­

fier and the computer. The binary pH and 

PC02 signals were preceded by identifica­

tion signals to enable the computer pro­

gramme to differentiate between pH and 

PC02 signals. The computer calculated to­

tal bicarbonate concentration every 30 sec­

onds. Since the PC02 electrode is rather 

slow-reacting compared with the pH elec­

trode, the computer programme compen­

sated in the calculations by using the pH va­

lue recorded 90 seconds before the PC02 

value. The computer was programmed to 

use a pKa = 6.10 and a S value = 0.039 in 

the calculation of total bicarbonate concen­

tration since the aspirate had a temperature 

of about 30 °C. During measurement of gas­

tric bicarbonate secretion the computer 

stored 252 recordings and performed 256 

calculations per hour. 

Salivary bicarbonate 

The salivary concentration of bicarbonate 

varies from a few mmoles/litre to about 25 

mmoles/litre. The subjects were instructed 

not to swallow their saliva and it was collect­

ed with the aid of a dental suction set. The 

volume of saliva collected during unstimu­

lated conditions was up to 20 ml per 15 mi­

nutes. Even when saliva was expectorated, 

the involuntarily swallowed salivary bicar­

bonate amounted maximally to 13 % of the 

measured bicarbonate in gastric contents 

(Forssell et al 1984). The amount of invo­

luntarily swallowed saliva was estimated in 

the present investigation by measuring the 

concentrations of amylase in the saliva and 

the 15-min gastric aspirates: 

SWALLOWED SALIVARY VOLUME 

volume of gastric contents x gastric amylase conc. 

salivary amylase conc. 

Any contribution to amylase by duodeno-

gastric reflux was assumed to be negligible 
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as long as bilirubin was absent from the re­

covered gastric perfusate and/or any rapid 
transient increases in bicarbonate concen­

tration from duodenogastric reflux episodes 

(see below) did not occur. The total salivary 
bicarbonate concentration was determined 
from measurement of salivary pH and 
PC02 as described for gastric samples. The 

amount of sw allowed salivary bicarbonate 
was calculated from the volume of swal­
lowed saliva and its bicarbonate concentra­

tion: 

SWALLOWED SALIVARY 
BICARBONATE 

= salivary bicarbonate conc. x swallowed salivary 
volume 

Finally, the amount of bicarbonate in swal­
lowed saliva was subtracted from the calcu­
lated total gastric bicarbonate output to ob­
tain the amount of bicarbonate secreted by 

the stomach: 

NET GASTRIC BICARBONATE 

OUTPUT 

= (total gastric bicarbonate conc. 

x volume of gastric contents) 
- swallowed salivary bicarbonate 

Duodenogastric reflux of 
bicarbonate 

The occurrence of alkaline duodenogastric 
reflux was detected from bile staining of the 

gastric perfusate passing through the trans­
parent measuring device and tubes. Coinci­
dent with the visual observation of bile ref­
lux was a short rise in recorded pH and 

PC02 values (I). Such spikes were superim­
posed on the basal level of bicarbonate se­

cretion and were usually of only a few mi­

nutes duration. These spikes were excluded 

in the calculations of gastric bicarbonate 
output by a computer-editing programme. 

Moreover, measurement of bilirubin con­

centration at alkaline pH in the collected 
15-min gastric aspirates excluded continu­
ous modest duodenogastric reflux. Periods 

with a bilirubin concentration > 1 [j,mol/l 

were rejected. 

Experimental procedure and 
protocol 

Bicarbonate secretion was measured after 

an overnight fast. Before the experiment, a 
histamine H2-receptor antagonist was given 
orally to the subjects. Two alternative 
premedication regimens were used in the 
experiments, either Cimetidine, 400 mg, 
one and three hours before the investigation 

or ranitidine, 150 mg, two and fourteen 
hours before start of the experiment. Both 
regimens gave an increase in intragastric pH 
to around 6, which usually lasted for about 

four hours. 

The pH electrode was calibrated at pH 6.00 
and 7.00 with two buffer solutions. Thereaf­

ter, the PC02 electrode was calibrated 
against two different concentrations of C02 

for alternate 15-min periods. The subject 

was seated in a semirecumbent position and 
the Salem sump tube with the additional 
small tube for perfusion was introduced into 
the distal part of the stomach. Residual gas­
tric juice was aspirated and discarded. The 
perfusion system and the computer based 

system for measurement of gastric bicar­
bonate concentration were subsequently 

commenced. Aliquots of fifteen minutes 
aspirate were used for marker determina-
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tion and for measurement of a mylase and 
bilirubin concentrations. The gastric bicar­

bonate output values and the amount of 
swallowed saliva were stored in a computer 

database (Digital Equipment Corp., USA). 

Statistical analyses were performed with the 
aid of an RS/1 computer programme (Bolt 

Beranek and Newman Inc., USA). Results 

are expressed as mean ± SEM. Statistical 

significance was evaluated using Wilcoxon's 
matched-pairs signed rank test. 
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RESULTS AND 
DISCUSSION 

The measuring system 

In ex viv o control experiments, acid was 
added to bicarbonate solutions in the cham­
ber of th e measuring device. The time re­
quired to receive stable recordings of PC02 

varied from 0.5 to 3 minutes, depending on 
the amount of C02 formed during the pro­
cess of neutralization. In contrast, stable re­
cordings of pH were obtained almost imme­
diately. Thus, the computer had to com­
pensate for the slower reaction of the PC02 

electrode by using the pH value recorded 90 
seconds before that of PC02. 

In other ex vi vo experiments, the interfer­
ence of air bubbles in the perfusate was test­
ed. The recordings of pH and PCO, were 
disturbed only when large amounts of air 
bubbles occurred in the effluent. A high rate 
of gastric perfusion with few air bubbles 
from the air inlet of the Salem sump tube 
would thus provide mor e reliable measure­
ments in human experiments. Two pe rfu­
sion rates were therefore tested in seven 
healthy subjects. Rates of 220 ml/15 min, 
which is the rate routinely used in our acid 
secretory studies, and 440 nil/15 min were 
evaluated. Less variation in the recorded 
basal secretion of bicarbonate was observed 
with the higher perfusion rate (I). This may 
reflect the reduced number of air bubbles 

contained in the effluent. The higher perfu­
sion rate of 440 ml/15 min was thus used in 
the subsequent studies of gastric bicarbon­
ate secretion. 

To further validate the measuring system, 
exogenous bicarbonate in amounts varying 
from 50 to 400 umoles was instilled into the 
stomach of healthy subjects. T he correla­
tion coefficient, r, between added and re­
covered amounts of bicarbonate was 0.91 (p 
< 0.001,1). This indicates that the bicarbon­
ate output was satisfactorily measured over 
a wide range of secretory rates. 

With a luminal pH at the pKa of carbonic 
acid, 50 % of bicarbonate occurs as free 
ions and the rest reacts with acid to form 
C02. At values of intragastric pH below 4, 
virtually all bicarbonate is in the form of 
C02. The effect of decreasing intragastric 
pH on recorded values of bicarbonate o ut­
put was studied in healthy subjects by add­
ing 250 [Amol HCl to the perfusate during 
one 15-min period. The intragastric pH fell 
to between 3 and 4 but no change in bicar­
bonate output was observed during the 15-
min period of acid load or in subsequent 15-
min periods (I). It could thus be concluded 
that the system adequately measured bicar­
bonate even if the intragastric pH fell to be­
tween 3 and 4 and that a moderately low in-
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tragastric pH did not stimulate bicarbonate 
secretion. Similar validation experiments 
were performed by Johansson and cowork­
ers (1983) when testing their technique us­
ing gastric instillations. These investigators 
were unable to demonstrate a stimulation of 
bicarbonate secretion by a pH of abo ut 3. 
Recently, Crampton et al (1986) reported 
the stimulatory effect of an intragastric pH 
of about 2 on gastric bicarbonate output in 
man. In animal experiments, stimulation of 
bicarbonate secretion by luminal acid oc­
curs both in the stomach and the duode­
num, but the required acidity of the gastric 
solution needs to be about pH 2 (Heylings et 
al 1984) or even lower (Takeuchi et al 
1986). 

The present results also indicate that loss of 
CO. by eructation, passage through the 
pylorus or diffusion into the gastric tissue is 
small and presumably negligible. Similar 
findings have been made by Fändriks in cats 
(1986b). He reported a modest underesti­
mation of b icarbonate secretion during ac­
tive acid secretion. Moreover, animal ex­
periments have shown that diffusion of C02 

out of t he stomach as well as diffusion of 
CO, into the stomach from tissue and blood 
is small (Garner and Flemström 1978, 
Kauffman and Steinbach 1981). Hence, the 
findings of a high intragastric PC02 value, 
in the present investigations sometimes 
above 40 mm Hg and thus exceeding that in 
blood, and even higher values reported by 
others (Schierbeck 1892, Rune and Henrik-
sen 1969, Gamer and Flemström 1978) in­
dicate that CO, is produced in the gastric lu­
men by neu tralization of bicarbonate with 
acid. To minimize the risk for loss of CO, in 
the present experiments, inhibition of gas­

tric acid secretion by histamine H2-receptor 
antagonists was used, particularly since Ci­

metidine has been found to exert no direct 
effect on bicarbonate secretion in animals 
(Garner and Flemström 1978, Flemström 
and Turnberg 1984). It should be men­
tioned, however, that a high intragastric pH 
may to some extent decrease gastric bicar­
bonate secretion by removing the stimulato­
ry effects of luminal hydrogen ions, a s dis­
cussed above. 

The measuring system enables detection of 
alkaline duodenogastric reflux episodes as 
indicated by a short rise in both pH and 
PC02. These spikes frequently coincided 
with the visual observation of bile reflux and 
were superimposed on the bicarbonate se­
cretion level. The short duration of these 
reflux-generated bicarbonate spikes of only 
a few minutes very probably reflects the use 
of a high rate of gastric perfusion to wash­
out alkaline reflux. Moreover, measure­
ment of bilirubin c oncentration in the col­
lected gastric samples excluded every con­
tinuous modest duodenogastric reflux. In a 
series of experiments in sixteen healthy sub­
jects (mean age 30 years, range 20-46 years, 
II), no duodenogastric reflux was observed 
at all in 5 subjects. Eleven subjects had a 
mean of 4.6 episodes (range 1-12) over 105 
min of measurement of basal b icarbonate 
secretion. Less th an half of thes e episodes 
occurred without simultaneous bile staining 
of t he aspirate. These results indicate that 
the present method distinctly demonstrates 
duodenogastric reflux, which thus can be el­
iminated enabling correct calculation of 
gastric bicarbonate secretion. 

In summary, the various validation tests 

Acta Chir Scand 1987, suppl 540 



Results and discussion 29 

have shown that the computerized mea­

surement of human gastric bicarbonate se­

cretion satisfactorily determines bicarbon­
ate output. Continuous measurement of pH 

and PC02 seems preferable to discontinu­
ous recording of these parameters. More­

over, the method detects duodenogastric 
reflux without intubation of the duodenum. 

A high gastric perfusion rate facilitates the 
identification of duodenogastric reflux epi­
sodes and shortens their duration by rapid 

washing-out. 

Basal bicarbonate secretion 

The rate of basal bicarbonate secretion in 34 

healthy subjects (10 women and 24 men) 
with a mean age of 32 years (range 20 - 46 

years) amounted to 366 ± 23nmol/h (mean 
± SEM). These subjects have been investi­

gated on a total of 107 different occasions 
and the intra-individual coefficient of varia­

tion was 30 %, a value much less than the 80 

% (Feldman and Richardson 1981) and 110 
% (Lind et al 1986) reported from studies 
on human basal acid secretion. The larger 

variation observed in basal acid secretion 
may be attributed to the influence of a vary­

ing vagal tone affecting the parietal cell 
mass. Basal acid secretion can be inhibited 
by anticholinergics or vagotomy (Gillespie 
et a/1960, Stenquist etal 1979). In contrast, 
a rather high dose of anticholinergics (ben-
zilonium bromide) was unable to change 

basal gastric bicarbonate secretion in heal­
thy subjects (II). This may suggest that any 
cholinergic drive at the mucus cell level does 
not modulate basal gastric bicarbonate se­

cretion in the intact human stomach. The 
cyclooxygenase inhibitor, indomethacin, 

did not significantly affect basal gastric bi­

carbonate secretion (II), indicating that ba­

sal gastric bicarbonate secretion does not 

depend on the release of endogenous pros­
taglandins. This is in contrast to the findings 

in the human duodenum (Selling etal 1987) 

where indomethacin reduced both basal 
and acid stimulated bicarbonate secretion. 

The rate of basal gastric bicarbonate secre­
tion in healthy subjects as determined in the 
present investigations agrees with the find­

ings by other laboratories using recordings 

of pH and PC02 to calculate the bicarbon­

ate secretion (Rees etal 1982, Johansson et 

al 1983). Much higher rates of basal bicar­

bonate secretion in humans, about 2500 
[imol/h, however, have been reported by 

Feldman (1983). Measurements of gastric 

volume, hydrogen ion concentration and 
osmolality of both gastric juice and plasma 

were used to calculate secretion by the 
method of Feldman. The calculation is 

based on a two component model of gastric 
secretion and the assumption of a fixed rela­

tion between the osmolalities of plasma and 
parietal and nonparietal secretions. How­

ever, this relation may not be constant and, 

moreover, has been examined only in the 
stimulated canine stomach. Another expla­
nation for the quantitative discrepancy in 

rates of basal gastric bicarbonate output is 
that hypotonicity of gastric juice could arise 

from both the neutralization of secreted bi­
carbonate by acid and the processes for se­

cretion of acid and water within the gastric 
glands (Flemström 1985). Although it 
seems that the osmolality method overesti­
mates secretion of human gastric bicarbon­

ate (Odes et al 1987), results based on os­
molality and pH - PCO, measurements, re­

spectively, seem to be qualitatively similar. 
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The basal bicarbonate secretion rate in nine 

patients with duodenal ulcer disease (mean 
age 52 years, range 33 - 69 years) was 414 ± 

57 umol/h (III) and did not differ signifi­
cantly from that in healthy subjects. Basal 
gastric bicarbonate secretion was increased 
by 30 % to 539 ± 74 umol/h (N = 9, p < 

0.01) about 2 months after proximal gastric 

vagotomy (III). Hypothetically, the effect of 
partial denervation of the stomach by proxi­
mal gastric vagotomy may be consistent 

with removal of an inhibitory mechanism 
modulating basal gastric bicarbonate secre­

tion. In support of this hypothesis, benzilo-
nium bromide restored the enhanced basal 

bicarbonate secretion after vagotomy to a 
preoperative level (III). Benzilonium bro­
mide had no effect on basal gastric bicar­

bonate secretion in the intact stomach (II), 
possibly due to an active inhibitory mechan­
ism. 

The enhanced basal gastric bicarbonate se­

cretion must originate either from the inner­
vated and/or denervated region of the sto­
mach. However, the present investigation 
was unable to further clarify which area of 

the stomach that had increased its bicarbon­
ate secretion. The increase may originate 
from the antrum in analogy with the regula­
tion of canine antral secretion of gastrin 

(Debas et al 1975) where a vagally depend­
ent oxyntopyloric reflex inhibition exists. 

The increased gastric bicarbonate secretion 
may thus be explained by an enhanced se­

cretion from the antrum caused by removal 
of such a hypothetical inhibitory mechan­

ism following proximal gastric vagotomy. 
The antrum accounts for about 25 % of the 
total surface area of the stomach (Ito 1981) 
and evidence has been presented 

(Flemström 1977, Konturek et a/1985) that 

the bicarbonate secretion in the antrum and 
the fundus-corpus region of the intact sto­
mach is similar. Assuming that the basal 

gastric bicarbonate secretion from the va­
gally denervated fundus and corpus area is 

unchanged after proximal gastric vagotomy, 
the increase in basal bicarbonate rate from 

the antrum would be about 120 %. This fi­
gure would correspond well with the in­

crease in gastric bicarbonate secretion, 
about 125 %, two months after vagotomy in 
response to sham feeding (III). It is reason­

able to presume that this response originates 

only from the antrum. 

In the conceptual model of gastric bicar­
bonate secretion (Fig. 2), one of the final 
transmitters close to the mucus cell level 
most probably is acetylcholine. The nature 

of the inhibitory mechanism likely to affect 
the intramural ganglia is not clear. It may be 
mediated via noncholinergic transmission 
since a rather high dose of benzilonium bro­

mide did not affect the basal bicarbonate se­
cretion of healthy subjects with intact vagal 
nerves. The influence on gastric bicarbon­
ate secretion of noncholinergic vagal fibres 

would accord with a previous demonstra­
tion in the cat, in which the transmitter was 
suggested to be substance P (Fändriks and 
Delbro 1983). Moreover, a noncholinergic 

vagal release of gastrin and a cholinergic in­
hibitory mechanism controlling gastrin re­

lease have been shown in man (Feldman et 

al 1979, Stenquist et al 1979). A vagal cho­

linergic stimulatory effect on the gastric mo­

tor activity and a vagal noncholinergic, 

probably VIP-ergic, relaxatory effect on the 
stomach have also been demonstrated 

(Martinson and Muren 1963, Fahrenkrug et 
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BICARBONATE 

ANTICHOLINERGICS 

INTRAMURAL GANGLIA 

VAGAL NERVE ? 

Fig. 2 Conceptual model of the regulation of human gastric bicarbonate secretion. 

al 1978). The inhibitory mechanism may 
consist of vagally dependent oxyntopyloric 
reflexes, as discussed above, (Debas et al 

1975) which are eliminated by proximal 
gastric vagotomy. 

Alternatively, a sympathetic inhibitory me­

chanism may influence the gastric bicar­
bonate secretion as demonstrated in the cat 

(Fändriks 1986b). Some of the postgangli­
onic sympathetic neurons that accompany 

the blood vessels to the stomach and also in­
nervate the mucosal glands (Furness and 
Costa 1974) are cut by the proximal gastric 
vagotomy. In the cat, the vagally stimulated 

increase in gastric and duodenal bicarbon­

ate secretion was inhibited by an intact 

splanchnic nervous supply or by admini­

stration of an alpha2-adrenoceptor agonist, 
Clonidine. Furthermore, an enhanced bicar­
bonate output was observed after admini­
stration of guanethidine or yohimbine 
(Fändriks 1986b). 

Nevertheless and irrespective of what the 

nature of this inhibitory mechanism may be, 
the basal bicarbonate secretion had dec­

lined and was at the preoperative level 
about one year after the proximal gastric va­
gotomy, suggesting a gradual regress of the 

non-inhibited basal gastric bicarbonate se­
cretion. 
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Vagal stimulation of gastric 
bicarbonate secretion 

Sham feeding is a physiological, vagally me­

diated stimulus of g astric acid secretion in 
man (Stenquist et al 1978). Modified sham 

feeding is accomplished by allowing the 
subject to chew and spit out a meal (Noring 

1951). The acid response to modified sham 
feeding is about 50 % of the maximal acid 
response to pentagastrin. It is of a similar 
magnitude to that produced after adequate 
sham feeding, determined in the postopera­

tive period in patients in whom food was 

swallowed and subsequently drained via a 
gastrostomy avoiding chemical stimulation 
of the stomach by food (Stenquist et al 
1978). The acid response to sham feeding 

can be inhibited by about 65 % but not 
abolished by anticholinergics, suggesting 

that the neurotransmission at acid-secreting 
cells is only in part cholinergic and that pep­

tidergic transmission or amines may also be 

involved (Stenquist et al 1979, Stenquist et 

al 1987). 

Vagal stimulation by sham feeding, per­
formed identically as in acid secretory stud­

ies, was used in the present study to examine 
whether stimulation of the surface mucus 

cells increased bicarbonate secretion. Vagal 
stimulation in sixteen healthy subjects in­
creased gastric bicarbonate output by 69 %, 

i.e. from 410 ± 39 to 692 ± 67 jimol/h 
(mean ± SEM, p < 0.001, II). This increase 
was mainly caused by an increase in bicar­
bonate concentration, and to a lesser extent, 
by an increase in volume. In most experi­

ments, the gastric bicarbonate response to 
sham feeding began only a few minutes after 

start of the vagal stimulation with a peak bi­
carbonate output in the 15-min period of 

sham feeding (Fig. 3). In cats, electrical sti­
mulation of vagal trunks induced a rapid in-
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Fig. 3 Basal and sham feeding stimulated gastric bicarbonate secretion in sixteen healthy subjects (closed circles) and nine 

duoden a l  u l ce r  pa t i e n t s  (open  c i r c l e s ) .  Mean  +  SEM.  F rom II  and  III .  
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crease in bicarbonate output. This rise in bi­
carbonate secretion occurred somewhat 
earlier than that of hydrogen ion secretion, 
suggesting anticipatory protection by bicar­
bonate against acid (Nyländer et al 1987). 
In the present investigation, vagal stimula­
tion evoked a similar increase in gastric bi­
carbonate output irrespective of intragastric 
pH, range above 2 to about 7 (II). This indi­
cates that the bicarbonate response during 
sham feeding is not secondary to a concom­
itant increase in luminal hydrogen ion con­
centration. The anticholinergic drug, benzi-
Ionium bromide, which has a minimal abil­
ity to cross the blood-brain barrier, inhibi­
ted the rise in gastric bicarbonate secretion 
in response to sham feeding by 88 % (II). 
The bicarbonate response to vagal stimula­
tion was thus almost abolished by benziloni-
um bromide, suggesting a mainly choliner­
gic excitatory effect by sham feeding on hu­
man gastric bicarbonate secretion. 

The vagal stimulation of gastric bicarbonate 
output in nine duodenal ulcer patients did 
not differ significantly to that of healthy 
subjects (Fig. 3), the increase being 67 % 
above basal bicarbonate secretion i.e. from 
414 ±57 to 691±83|xmol/h(p < 0.01, III). 
After proximal gastric vagotomy, which was 
complete in all patients since no increase in 
acid output was observed after a separate 
sham feeding test, there was still a signifi­
cant increase (p < 0.01) in gastric bicarbon­
ate secretion, which amounted to 29 %, in 
response to vagal stimulation. Presumably, 
this response originated from the still vagal-
ly innervated antral part of the stomach. 
The bicarbonate output, however, is about 
twice that expected from the antrum. This 
seems consistent with the observation of an 

Results and discussion 33 

increased secretion also during basal condi­
tions and may be due to the loss of an antral 
inhibitory mechanism. A third sham feed­
ing test was performed about one year after 
proximal gastric vagotomy. The response to 
vagal stimulation was then abolished by an­
ticholinergics which implies a remaining 
susceptibility to anticholinergic blockade 

(III). 

Quantitatively, the human gastric bicarbon­
ate secretory response to vagal stimulation 
is much smaller than the acid response to 
sham feeding. This indicates, on allowing 
for the neutralizing effect of the secreted bi­
carbonate, that the amount of acid pro­
duced in conjunction with sham feeding 
clearly is still below the maximal acid secre­
tory capacity determined by a pentagastrin 
test. Consequently, this implies that sham 
feeding in man is either a submaximal sti­
mulus of acid secretion or affects both sti­
mulatory and inhibitory acid secretory me­
chanisms. The gastric bicarbonate response 
to sham feeding may also be submaximal or 
sham feeding may affect both stimulatory 
and inhibitory mechanisms. A much greater 
response, about a 200 % increase, was thus 
observed after instillation of 16,16-dimethyl 
prostaglandin E2 (I, Johansson et al 1983). 
The occurrence of inhibitory actions would 
be consistent with findings in the cat and rat 
of a sympathetic reflex inhibition of vagally 
mediated gastric and duodenal bicarbonate 
secretion (Fändriks 1986b, Jönson and 
Fändriks 1986). 
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Stimulation of gastric 
bicarbonate secretion by 

fundic distension 

The second phase of gastric acid secretion is 

the gastric phase, initiated by food reaching 
the stomach. Both chemical and mechanical 
stimuli are involved in this process. Graded 

distension by stepwise inflation of a balloon 

located in the fundic area of the stomach eli­
cits a volume-related acid secretory re­

sponse (Grötzinger et al 1977a). This acid 
response to fundic distension was similar 

both in healthy subjects and duodenal ulcer 
patients and the observed peak acid re­
sponse averaged about 50 % of the peak in 

response to pentagastrin stimulation. 
Graded fundic distension to volumes of 150 
ml, 300 ml and 600 ml increased the acid 

output in six healthy subjects by 94 %, 106 

% and 194 %, respectively (Grötzinger et al 

1977a). 

Experiments with graded fundic distension 

of the stomach in six healthy subjects 
evoked an increase in gastric bicarbonate 

output amounting to 46 % (p < 0.05), 28 % 
(NS) and 84 % (p < 0.05) over 60 minutes of 

distension to volumes of 150 ml, 300 ml and 
600 ml, respectively (Fig. 4). Obviously, no 
dose-dependent bicarbonate secretion was 

observed with this experimental design, 
which was identical with that used in the 
acid secretory experiments by Grötzinger 

and coworkers (1977a). Instead, a peak in 
bicarbonate secretion occurred after 45 mi­

nutes of distension with 150 ml, followed by 
a decline. During distension to a volume of 
300 ml, bicarbonate secretion was lower 
than in the preceding period with 150 ml 

150 ml 300 ml 600 ml 

300 

HCO3 

ümol 
per 
15 
m i n  

200 

100 

300 ml 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1 5 - m i n  p e r i o d s  
Fig. 4 Basal and fundic distension stimulated gastric bicarbonate secretion. Graded fundic distension in six healthy subjects 

(closed circles) and continuous fundic distension with a volume of 300 ml during periods 5 to 14 in four healthy subjects 

(open circles). Mean + SEM. From IV. 
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and not significantly different from basal se­

cretion. A second peak occurred 45 minutes 

after start of distension with 600 ml. A seri­
es of experiments were performed in four of 

the six healthy subjects to further clarify the 
nature of this biphasic response to graded 

fundic distension. Distension with a volume 
of 300 ml was maintained for 150 minutes. 

Again, there was a peak after 45 minutes. 
Bicarbonate secretion then gradually dec­

lined and reached basal bicarbonate levels 
60 minutes later despite the continued dis­

tension (Fig. 4). These results indicate that 
fundic distension elicits a fading bicarbon­

ate response, possibly reflecting volume 

adaptation of the gastric wall. Another pos­

sibility to explain the decrease in bicarbon­
ate output during sustained fundic disten­
sion would be a somewhat slower activation 
of inhibitory mechanisms. In fact, Schöön et 

al (1978) have shown that distension-in­
duced inhibitory mechanisms operate in the 

regulation of gastric acid secretion. More­
over, experiments in healthy subjects as well 

as in vagotomized duodenal ulcer patients 
with fundic distension failed to enhance 

pentagastrin-induced acid secretion. In­
stead the distension inhibited acid output in 

some subjects (Grötzinger et al 1977b). 

In seven duodenal ulcer patients, who pre­

viously had undergone a proximal gastric 
vagotomy, graded fundic distension result­
ed in virtually an identical biphasic response 
as in healthy subjects (IV). All patients were 

considered to be completely vagotomized, 
since postoperative tests showed no acid in­

crease in response to sham feeding. On the 
reasonable assumption that the two groups 
are comparable, it seems that the disten-
sion-induced bicarbonate response is medi­

ated mainly by short enteric intramural neu­

ral pathways and not by long vagovagal ref­
lexes (Fig. 2). It was also observed that the 

fading response to graded distension re­

mained after proximal gastric vagotomy. 

The response to fundic distension with 150 
ml for 30 minutes was abolished in healthy 

subjects by pretreatment with the muscarin­
ic antagonist, benzilonium bromide, while 
pretreatment with the cyclooxygenase inhi­

bitor, indomethacin, was without any effect 
(IV). These results would suggest a purely 

cholinergic reflex mechanism which is not 
mediated by endogenous prostaglandin 

liberation. The latter accords with findings 
in earlier studies of gastric bicarbonate se­

cretion in man (II, Feldman and Colturi 
1984) but contrasts results from studies of 

human duodenal mucosal bicarbonate se­
cretion (Selling et al 1987). In the latter 

study, indomethacin was given orally in the 
same dose as in the present investigation, 

but was shown to reduce both basal and ac-
id-stimulated duodenal bicarbonate secre­

tion. 

Comparison between stimu­
lants of gastric bicarbonate 

secretion 
In the experiments reported (I,II,IV), bicar­
bonate secretion in four of the healthy sub­
jects had been stimulated by sham feeding, 

as well as by fundic distension and by pros­
taglandin administration. An additional 
series of experiments were performed in 
these subjects. The effects of increasing 

doses of carbachol in the range of 100 to 200 
|ig subcutaneously were tested. The pur­
pose was to compare their maximal re-
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Fig. 5 Increase in gastric bicarbonate secretion in four healthy subjects in response to carbachol 150-200 jxg subcutaneously 

(CARB), fundic distension to a volume of 600 ml (DIST), 15 minutes of sham feeding (SHAM) and gastric instillation 

of 80 [ig 16,16-dimethyl prostaglandin E, for 5 minutes (DIME-PGE2). Per cent increase above basal level. 

Mean + SEM. 

sponses to the different stimuli. The maxi­
mum dose of carbachol tolerated was 200 

[ig, which caused a slight bradycardia, an in­
crease in salivary concentration of amylase 
and some abdominal motor discomfort. 
Sham feeding for 15 minutes, fundic disten­

sion to a volume of 600 ml and 150 - 200 jig 

of carbachol all increased bicarbonate out­
put by about 70 % above basal level. Instil­

lation of 16,16-dimethyl prostaglandin E,, 
80 |ig for 5 minutes, gave an about threefold 
greater response (Fig. 5). These findings 

suggest that vagal stimulation, fundic dis­
tension and carbachol are submaximal sti­

muli of human gastric bicarbonate secretion 
or that they have both stimulatory and inhi­

bitory actions on bicarbonate secretion. 
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FUTURE 
PERSPECTIVES 

The findings in the present investigation 

suggest a complex interplay between stimu­
latory and inhibitory mechanisms influenz-

ing basal as well as stimulated human gastric 
bicarbonate secretion. Further measure­

ments of human gastric bicarbonate secre­
tion in more defined subgroups of subjects 

or patients may improve the possibility of 

clarifying these mechanisms. The complex­
ity of the regulation of bicarbonate secre­
tion is highlighted by the vagally dependent 

stimulatory effect of the muscarinic M,-an­
tagonist, pirenzepine, on mucosal bicar­
bonate secretion in the rat duodenum 

(Säfsten and Flemström 1986). The role of 
a sympathetic nervous influence on gastric 

bicarbonate secretion is of considerable in­
terest and calls for further investigation. 

Such a sympathetic nervous control of va­
gally sti mulated gastroduodenal bicarbon­
ate secretion has been shown to exist in cats 
(Fändriks 1986b). Current experiments in 
healthy subjects in our laboratory also sug­
gest a sympathetic tone to regulate basal 
gastric bicarbonate secretion. Since the pa­
thogenesis of peptic ulcer disease is multi­

factorial and the disease, in many respects, 
is of psychosomatic nature, an enhanced 

sympathetic drive associated with mental 
and physical stress may contribute to a de­

creased epithelial bicarbonate secretion and 
result in a defective mucus-bicarbonate bar­

rier. Recently, it has been shown that duod­
enal ulcer patients may have an impaired 

proximal duodenal mucosal bicarbonate se­
cretion (Isenberg et al 1987). Since duoden­

al ulcer patients in the present investigation 
had a normal gastric bicarbonate secretion 

during basal or vagally stimulated condi­
tions, the findings may indicate that ulcer-

ogenesis is caused by local pathological fac­
tors in the duodenum and be due to an in­

crease in aggressive factors combined with a 
decrease in local mucosal resistance. Pa­

tients with prepyloric gastric ulcers have ac­
id secretory values similar or slightly lower 

than those of duodenal ulcer patients but 
heal their ulcers very slowly and their treat­
ment is often a considerable challenge to 

both the physician and surgeon. On the 

other hand, in the pathogenesis of gastric ul­
cer disease, acid and pepsin secretion are 
usually within normal limits or reduced. 
Hence, a defect in the local gastric mucosal 
defence mechanism is suggested to operate 
in the development of both prepyloric and 
gastric ulcers, prompting the need for fur­

ther investigations of gastric bicarbonate se­
cretion in these patients. If such a defect in 
gastric bicarbonate secretion can be re­

vealed, therapy may also be directed to the 

development of agents that enhance gastric 
bicarbonate secretion and thus strengthen 
the protective mucus-bicarbonate barrier. 
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A method for measurement of human basal 

and stimulated gastric bicarbonate secre­

tion was developed in the present investiga­
tion. The mechanisms involved in the regu­

lation of basal, vagus nerve stimulated as 
well as fundic distension induced bicarbon­

ate secretion were studied. 

The investigations were performed in heal­

thy subjects and duodenal ulcer patients, 
the latter group before and/or after a proxi­

mal gastric vagotomy operation. Healthy 
subjects as well as ulcer patients were pre-

medicated with a histamine H2-receptor an­
tagonist and gastric bicarbonate secretion 
was determined by use of a gastric perfusion 

system in combination with computerized 
continuous recordings of pH and PC02. 

The contribution of alkaline saliva to the 

measured gastric bicarbonate secretion was 
minimized by continuous salivary suction 
and correction was made for swallowed sali­
va by measurement of amylase in the gastric 

aspirate. A high rate of gastric perfusion fa­
cilitated the identification of alkaline duo-
denogastric reflux and also eliminated its in­
fluence on the measurement of gastric bi­
carbonate secretion. 

Validation of the measuring system by in­
stillation of small amounts of bicarbonate 

showed a satisfactory correlation between 

added and recovered bicarbonate in the 
range of bicarbonate determinations usual­

ly rec orded. Decreasing intragastric pH to 
between 3 and 4 converted all secreted bi­
carbonate into C02, but did not affect the 
measured value of bicarbonate secretion. 

Vagal stimulation accomplished by sham 
feeding increased gastric bicarbonate secre­

tion in sixteen healthy subjects from 410 ± 

39 umol/h to 692 ± 67 [xmol/h (mean ± 
SEM, p < 0.001). This response was inde­

pendent of intragastric pH in the range of 2 

to 7. The muscarinic receptor antagonist, 
benzilonium bromide, almost abolished the 
sham feeding response while indomethacin 
left it nearly unchanged. Nine duodenal ul­

cer patients had identical basal and vagally 
stimulated bicarbonate output as healthy 

subjects. Two months after proximal gastric 
vagotomy, the basal bicarbonate secretion 
was significantly increased, whereas the 

output in response to sham feeding was un­
altered. In the early postoperative period, 

anticholinergics reduced the enhanced ba­
sal bicarbonate secretion to a preoperative 
level. In six healthy subjects, graded fundic 
distension with a balloon to volumes of 150 

ml, 300 ml and 600 ml, each distension peri­
od lasting 60 minutes, increased the bicar­
bonate secretion by 46 % (p < 0.05), 28 % 
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(NS) and 84 % (p < 0.05 ), respectively. 
Continuous distension with 300 ml over 2.5 
hours increased the bicarbonate secretion 

with a peak at 45 minutes, whereafter the re­
sponse gradually declined. Seven duodenal 

ulcer patients investigated after proximal 

gastric vagotomy had a response to graded 
fundic distension virtually identical to that 
of healthy subjects. Anticholinergics abol­

ished the response to fundic distension, 
whereas indomethacin was without any 
significant effect. In healthy subjects, 16,16-

dimethyl PgE2 gave an about threefold 
greater response than vagal stimulation, 

fundic distension or carbachol. 

It is concluded that human gastric bicarbon­

ate secretion is activated by cholinergic va­
gal nerves, the response being independent 
of intragastric pH at levels above pH 2. 

There seems to be an interplay of stimulato­
ry and inhibitory mechanisms modulating 
basal as well as vagally stimulated gastric bi­

carbonate secretion. Fundic distension of 
the stomach stimulates bicarbonate secre­

tion and the response is mediated by in­

tramural neural cholinergic pathways. 
Neither vagal stimulation nor fundic disten­

sion apparently involves endogenous pros­
taglandin production. Vagal stimulation, 
fundic distension and carbachol appear to 

be submaximal stimuli of bicarbonate secre­
tion or else may have both stimulatory and 

inhibitory actions on human gastric bicar­
bonate secretion. The increase in bicarbon­

ate secretion during vagal stimulation and 
fundic distension parallels that of acid se­
cretion and may be regarded as a physiolog­
ical response to reinforce the protective mu­

cus-bicarbonate barrier. 
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