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Abstract
The hyperfine structure is an example of a physical phenomenon where the
detailed structure of the atomic nucleus is reflected in the electronic energy
levels of the atom. The analysis of the hyperfine interaction between the elec-
trons and the nucleus thus serves as a sensitive probe of the nuclear structure
and basic physical principles. It is today possible to produce and store highly
charged ions, enabling accurate spectroscopical investigations. This possibil-
ity has caused a large interest in the studies of hyperfine structure in these
ions, where the sensitivity to nuclear and quantum electrodynamics (QED)
effects is greatly enhanced. This thesis presents calculations of the contri-
butions from nuclear charge and magnetization distributions to hyperfine
structure (hfs) in highly charged hydrogen-like ions. The status and relia-
bility of tabulated nuclear magnetic dipole moments are also discussed. The
present work includes direct numerical solutions for the relativistic electronic
wavefunction in realistic nuclear charge distributions. These wavefunctions
are then used to evaluate the effect on the hfs for different nuclear magneti-
zation distributions. In addition, wavefunctions for the valence nucleon were
obtained as a first estimate of the magnetization distribution. The calcu-
lated values can be combined with previously known QED contributions to
predict the total effect as a guide to experiments, and to compare the results
when available. If the nuclear magnetization is sufficiently well known, the
comparison provides a test of calculated QED values—if not, the comparison
instead provides information about this distribution. Extracted information
about the nuclear magnetization distributions constitute the main results
presented in this thesis.

Keywords: hyperfine structure, hyperfine anomaly, nuclear charge distri-
bution, nuclear magnetization distribution, Bohr-Weisskopf effect, nuclear
magnetic dipole moment



Sammanfattning

Hyperfinstruktur är ett exempel p̊a ett fysikaliskt fenomen där atomkärnans
detaljerade struktur reflekteras i energiniv̊aerna för atomens elektroner. Analy-
sen av hyperfin växelverkan mellan elektronerna och kärnan tjänar därmed
som en känslig indikator för kärnans struktur och grundläggande fysikaliska
principer. Det är numera möjligt att framställa och lagra högt laddade joner
och detta möjliggör noggranna spektroskopiska undersökningar. Detta har or-
sakat ett stort intresse för studier av hyperfinstruktur i högt laddade joner, d̊a
fenomenets känslighet för kärnfysikaliska och kvantelektrodynamiska (QED)
effekter är ytterst förstärkta i dessa system. Denna avhandling presenterar
beräkningar av bidragen fr̊an kärnans laddnings- och magnetiseringsfördel-
ningar till hyperfinstrukturen i högt laddade joner. Statusen och tillförlitlig-
heten hos atomkärnors uppmätta magnetiska dipolmoment behandlas ocks̊a.
Arbetet inkluderar direkta numeriska lösningar av relativistiska elektroniska
v̊agfunktioner för realistiska kärnladdningsfördelningar. Dessa v̊agfunktioner
har sedan använts till att bestämma p̊averkan av hyperfinstrukturen fr̊an
olika kärnmagnetiseringsfördelningar. Dessutom har v̊agfunktioner för valen-
snukleoner beräknats som en första uppskattning av magnetiseringsfördel-
ningen. De beräknade värdena kan kombineras med tidigare kända QED
bidrag för att förutsäga den totala effekten som en riktlinje för experimentellt
arbete, och för att jämföra med tillgängliga resultat när s̊adana finnes. Om
magnetiseringsfördelningen är tillräckligt välkänd kan jämförelsen innebära
ett test av beräknade QED värden, om inte ger jämförelsen istället in-
formation om fördelningen. S̊adan extraherad information om magnetiser-
ingsfördelningar utgör de huvudsakliga resultaten presenterade i avhandlin-
gen.
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CHAPTER 1

Introduction

The hyperfine structure is an example of a phenomenon where the detailed
structure of the atomic nucleus is reflected in the electronic energy levels in
the atom. The analysis of the hyperfine interaction between the electrons
and the nucleus and the resulting splitting of the electronic energy levels
thus serves as a sensitive probe of the nuclear structure. Consequently, the
hyperfine interaction has for a long time been used as a tool for the scrutiny
of nuclear properties and basic physical principles. Hyperfine structure was
discovered in the 1890s shortly after the invention of high resolution interfer-
ence spectroscopy (interferometry). It affects atomic spectral lines, causing
many of them to consist of closely spaced components. The hyperfine struc-
ture was first explained by W. Pauli as a result of the orientational potential
energy of a magnetic dipole moment associated with the atomic nucleus in a
magnetic field associated with the motion and spin of the atomic electrons.

A well-known atomic spectral line is the yellow one in the spectrum from
sodium (Na). It has a wavelength of about 590 nm and dominates the light
from sodium-vapour lamps, which are used as lighting for roads in several
countries. A vapour lamp, also called an electric discharge lamp, consists of
a transparent container within which a gas is energized by an applied voltage
and thereby made to glow. The applied voltage accelerates electrons, which
may collide with atoms in the gas and then transfer energy to the atoms.
When sodium atoms in such lamps gain extra energy, the valence electron of
an atom is excited from the ground state to an excited state. The atom then
spontaneously decays from the excited state and the yellow light is emitted
from atoms which undergo a transition from the first excited state back to
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the ground state. With very simple equipment, i.e., a lamp and a grating or
a prism, one can see that this main spectral line consists of two components
known as the Fraunhofer D-lines, D1 and D2, and the wavelengths can be
determined to 589.6 nm and 589.0 nm, respectively, by using slightly more
advanced equipment. This separation is an example of the “fine structure”
phenomenon and is illustrated in Fig. 1.1, which shows schematic line spectra
for sodium. The fine structure is due to the existence of a magnetic coupling
between the electronic spin and the electronic orbital angular momentum.
This coupling splits the first excited state into two substates with different
energy, giving the two different transition wavelengths. Continuing the study
using equipment with even higher resolution each D line is found to consist of
a doublet, i.e., two lines, with a separation of about 0.002 nm and this is an
example of the hyperfine structure phenomenon. This splitting into doublets
is due to a splitting of the ground state into two hyperfine levels. The first
excited state is also split into hyperfine levels, causing the lines, d11 and d12,
of the D1 doublet to consist of two components each and similarly causing
the lines, d21 and d22, of the D2 doublet to consist of three components each.
However, the hyperfine structure splitting of the first excited state is much
smaller than the corresponding splitting of the ground state. Consequently,
the separation between the components of the d lines is much smaller than
the separation of the main D lines.

The first hypothesis, to explain the hyperfine structure (hfs) in atomic
spectra, associated the effect with the presence of several isotopes. But hfs
also was observed in studies of atoms having only one stable isotope, notably
bismuth (Bi), so some additional hypothesis was needed to deduce an expla-
nation. However, the presence of several isotopes does give a contribution to
the spectrum, known as the isotope shift, of the same order of magnitude as
the hfs. W. Pauli, in 1924, was the first to suggest that the hfs phenomenon
is due to the presence of a magnetic coupling between the atomic nucleus
and the electrons. Furthermore, he also predicted the fundamental features
of the Zeeman and Paschen-Back effects for the hfs [1]. Three years later in
a classic investigation, S. Goudsmit and E. Back succeeded in fitting a large
part of the spectrum for Bi into a consistent scheme of energy levels and, by
observing the Paschen-Back effect, in establishing unambiguously the angu-
lar momentum quantum number of the bismuth nucleus [2]. Improvement in
spectroscopical techniques in the late 1920s gave new results for the hfs in
the spectrum of, e.g., Na [3], Cs [4] and Rb [5]. These new results also made
it possible for E. Fermi, in 1930, to perform the first quantum mechanical
calculation of nuclear magnetic moments [6].

The hfs studies was then for a long time primarily used as a method for de-
termination of nuclear multipole moments, specifically the magnetic dipole
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Figure 1.1: Schematic line spectra for Na with wavelength different ranges. The
numbers below each spectrum indicates the wavelength in nm.

moments. Very precise measurements of the nuclear magnetic dipole mo-
ment have been performed also by other methods. This is, however, usually
done on systems where the nuclei are shielded by the surrounding electron(s)
and sometimes by a chemical environment. Corrections for this magnetic
shielding are thus needed and this thesis contains a discussion about such
corrections and the accuracy of nuclear magnetic dipole moment data.

The studies of hfs have continued and been developed. Theorists have
learned to give better descriptions of the physics in an atom. D. R. Hartree
and others developed so-called self-consistent calculations already in the late
1920s with the use of mechanical calculators [7]. Their calculations have
since then been improved by the inclusion of several corrections for, e.g., elec-
tron correlation, relativity, extended nuclear charge distributions, extended
nuclear magnetization distributions and quantum electrodynamics (QED).
Correction factors based on analytical expressions can be useful and have
been tabulated for many of the corrections [8]. Since the late 1960’s the de-
velopment of ever-more powerful computers has made it possible to perform
more and more complete and accurate atomic physics calculations.
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Accurate radio-frequency methods for hfs investigations was introduced
by I. I. Rabi and further developed by N. F. Ramsey and others. The first
motivation for doing these investigations was to get information about the
nucleus, but such studies have also resulted in the development of atomic
clocks and the present definition of the second∗. One current application of
atomic clocks is within the global positioning system, GPS [9].

It is today possible to create few-electron highly charged ions and to per-
form accurate spectroscopy on these extremely relativistic systems [10, 11].
Such work has been performed, e.g., at the ESR at GSI, Darmstadt and at
the SuperEBIT at LLNL, California. These few-electron highly charged ions
offer extremely strong electromagnetic fields, leading to a strong enhance-
ment of the QED effects. However, not only QED effects but also effects
from nuclear structure scale strongly with the nuclear field strength. The
test of QED in strong fields may thus be limited by the known accuracy of
nuclear properties. During recent years hfs measurements were reported for
165Ho66+ [12], 185,187Re74+ (Paper III), 203,205Tl80+ (Paper VII), 207Pb81+ [13],
209Bi82+ [14] and 209Bi80+ [15]. Furthermore, several theoretical investigations
of these systems have been carried out, which included also QED corrections
to all orders in Zα, where Z is the nuclear charge in units of the elementary
charge e and α ≈ 1/137 is the fine-structure constant. Some of the most
recent studies were performed within our group here in Göteborg by Pers-
son et al. [16] and Sunnergren et al. [17], as well as by Shabaev et al. [18]
and Blundell et al. [19]. The aim of these studies is to perform comparisons
between theory and experiments, which would give a test of QED in strong
fields.

Definite conclusions about the validity of QED can, however, not always
be drawn from the comparison between the experimental and the theoretical
results since all nuclear parameters which describe the hyperfine interaction
may not yet be known with sufficient accuracy. This thesis analyses the
different uncertainties in these parameters and gives an overview of the sta-
tus concerning the test of QED with use of hfs studies in highly charged
ions. Whereas the nuclear charge distribution is, in general, sufficiently well
known, the nuclear magnetization distribution is often quite uncertain. An
alternative approach is to make use of the recent accurate QED calcula-
tions together with the experimental results in order to retrieve information
about nuclear properties, in particular the magnetization distribution. This
approach proves to be a fruitful way of using current available data and

∗The second is at present defined in the following way: “The second is the duration
of 9 192 631 770 periods of the radiation corresponding to the transition between the two
hyperfine levels of the ground state of the cesium-133 atom.”
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is discussed and used in this thesis. The results from the latter approach
constitute the main results presented in this thesis.

Thesis overview

This work treats the contributions to hfs from nuclear physics properties, i.e.,
extended charge and magnetization distributions and the nuclear magnetic
dipole moments. Chapter 2 contains a brief discussion of general atomic the-
ory and the theory of hfs. Chapter 3 continues with a qualitative discussion
of the hfs phenomenon and a more quantitative discussion of the method used
for hfs calculations. Such calculations usually start with first-order energy
contributions, which in our work have been obtained by using direct rela-
tivistic numerical solutions for different nuclear charge distributions, which
are discussed in Papers II and VI. In the next step we add contributions
from the nuclear magnetization distributions as discussed in Paper II. Fi-
nally, QED contributions from the work of Sunnergren et al. [17] are added
to achieve total theoretical values. The hfs is proportional to the nuclear
magnetic dipole moment and the known accuracy, of the such moments, is
thus essential for our studies. This topic is also treated in Paper IV. Chap-
ter 4 contains results and discussions, i.e., a status report concerning the test
of QED in hfs and extracted nuclear magnetization distribution data. Nu-
clear magnetization distribution radii are also discussed in Papers III, V and
VII. It is demonstrated for thallium that data from measurements on neutral
systems can be used for determination of isotopic differences in nuclear mag-
netization distributions and for accurate predictions of isotopic differences in
the measurements on highly charged systems. Finally, Chapter 5 contains
conclusions and an outlook.

Appendix A gives a summary of the papers included in the thesis, the
theoretical description of the hyperfine interaction is treated Appendix B and
Appendix C contains a short review over measurements and analyses of the
nuclear magnetic dipole moment in 207Pb.





CHAPTER 2

Atomic Theory

“Who wanted to muck around the dirt, when you could be studying
quantum mechanics?”

Captain Janeway, Star Trek: Voyager

This chapter contains a brief discussion of general atomic theory and the
theory of hyperfine structure. More rigorous treatments can be found in
several textbooks, e.g., Refs. [8, 20–24]. The theoretical description of the
hyperfine interaction is treated in more detail in Appendix B. It must also
be emphasized that the non-relativistic expressions in this chapter and Ap-
pendix B have not been used in the work presented in this thesis. They are
only displayed for reasons of completeness and the connection to classical
mechanics.

2.1 The Schrödinger equation

Non-relativistic calculations on atomic systems are usually based on the time-
independent Schrödinger equation:

Hψ = Eψ , (2.1)

where the wavefunction ψ and the energy E are the corresponding eigenfunc-
tion and eigenvalue of the Hamilton operator H . In the case of a one-electron
atomic system with the nuclear charge Ze the non-relativistic Hamiltonian

7
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for an infinitely heavy point-like nucleus is

H = − h̄2

2me
∇2 − Ze2

4πε0r
,

where h̄ is the Planck constant divided by 2π, me is the electron mass, ε0
is the electric constant and r is the distance between the electron and the
nucleus. It can be shown that the orbital angular momentum l is a constant
of the motion for this central-field Hamiltonian and all other cases of spherical
symmetry. Moreover, the angular part of the wavefunction is generally chosen
to be represented by a spherical harmonic Y l

ml
(θ, φ), which is an eigenfunction

of l2 and lz, i.e., the projection of l along the z-axis. The eigenfunctions can
then be written as

ψnlml
(r) =

1

r
Pnl(r)Y

l
ml

(θ, φ) ,

where n denotes the principal quantum number, ml is the eigenvalue of lz and
r stands for the spatial coordinates r, θ and φ. By inserting this wavefunction
into the time-independent Schrödinger equation a differential equation for the
radial functions Pnl(r) is obtained. Furthermore, the energy eigenvalues of
the one-electron case (for point-like nuclei) are found to be given by

En = − mee
4

2(4πε0h̄)2

Z2

n2
,

which, e.g., gives the ionization energy for the ground state of hydrogen
(Z = 1, n = 1) to be about 13.6 eV.

Two disadvantages of using the Schrödinger equation in atomic physics
calculations is that it does not incorporate relativity and the electronic spin
s, which is quite an important feature of the electron. The problem with the
missing spin can, however, be circumvented by multiplying the wavefunction
above with a Pauli spinor α or β. These spinors are chosen to be eigenfunc-
tions of both s2 and sz, and correspond to spin-up (α) and spin-down (β)
states.

In the case of a many-electron atomic system the non-relativistic Hamil-
tonian can be written as

H =
N∑

i=1

(
− h̄2

2me
∇2

i −
Ze2

4πε0ri

)
+

N∑
i<j

e2

4πε0rij
+ Vmagn ,

where rij is the interelectronic distance. The first sum represents the contri-
butions from the individual electrons, the second sum represents the Coulomb
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repulsion among the electrons and the last term represents interaction of the
spin of the electrons with magnetic fields produced by their spin and orbital
motion (the so-called magnetic interaction, which, e.g., gives rise to the fine
structure).

Not even the most powerful computers can deal with a wavefunction of the
coordinates for all electrons of many-electron systems, and approximations
must be introduced. In the the independent-particle model, the eigenfunc-
tion is written as a product of one-electron functions for N electrons. An
additional, commonly used, approximation is the central-field model, allow-
ing a separation of radial and angular parts. Within these approximations,
the wavefunction can be obtained by iteration giving “self-consistent” poten-
tials and wavefunctions, e.g., in the Hartree-Fock method, which has proven
to be useful and is discussed in several textbooks, e.g., by Froese-Fischer [25]
and by Lindgren and Morrison [21]. The single-configuration description
of many-electron wavefunctions, although often useful as a first approxima-
tion, must be corrected if accurate results are needed. The “random phase
approximation” (RPA) approach accounts for substitutions of one single-
electron function at a time, and couplings between them. Correlation effects
involve at least two electrons and can be treated in systematic ways us-
ing methods such as “configuration interaction” (CI), “multi-configurational
Hartree-Fock” (MCHF) and “many-body-perturbation theory” (MBPT) and
“coupled cluster approach” (CCA).

2.2 The Dirac equation

A relativistic treatment of atomic systems is provided by the Dirac equation
which in Hamiltonian form is similar to the Schrödinger equation (2.1). The
relativistic Hamiltonian for a one-electron system is given by

H = −ih̄cα · ∇+ βmec
2 − Ze2

4πε0r
,

where c is the speed of light in vacuum. The Dirac (4× 4) matrices α and β
are defined as

α =

(
0 σ
σ 0

)
, β =

(
I 0
0 −I

)
,

where σ and I denote the Pauli spin-matrices and the identity matrix, re-
spectively, i.e.,

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
, I =

(
1 0
0 1

)
.
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The dimension of the Dirac matrices indicates that the eigenfunctions in
total must have four components, but in the case of spherical symmetry it
is convenient to write the eigenfunctions in terms of an upper and a lower
component:

ψnκm(r, σ) =
1

r

(
Fnκ(r)χκm(θ, φ, σ)

iGnκ(r)χ−κm(θ, φ, σ)

)
,

where σ is the spin coordinate and the two-component spinor χκm(θ, φ, σ) is
a vector-coupled function of spherical harmonics and Pauli spinors. This rel-
ativistic description has thus an automatic inclusion of the spin phenomenon,
furthermore, the sum of l and s gives the total electronic angular momentum
j. The parameter κ is given by

κ = l(l + 1)− j(j + 1)− 1

4
=

{
− (

j + 1
2

)
= −(l + 1) for j = l + 1

2

j + 1
2

= l for j = l − 1
2
.

The eigenvalues of the Dirac equation gives the total energy of the elec-
tron(s), i.e., the binding energy plus the rest mass energy mec

2. In the one-
electron case (for infinitely heavy point-like nuclei) the energy eigenvalue can
be written as

Enj =
mec

2√√√√√1 +
(Zα)2[

n− (
j + 1

2

)
+

√(
j + 1

2

)2 − (Zα)2

]2

,

where the fine-structure constant is

α =
e2

4πε0h̄c
.

A series expansion of the energy gives

Enj = mec
2

[
1− 1

2

(Zα)2

n2
− 1

2

(Zα)4

n4

(
n

j + 1
2

− 3

4

)
− · · ·

]
,

where the second term is equal to the non-relativistic binding energy dis-
played above and the third term can be regarded as a relativistic correction
to the kinetic energy and the spin-orbit interaction energy, i.e., the fine struc-
ture.

It can also be shown that for electrons with Enj ≈ mec
2, e.g., in atomic

systems with low nuclear charge, the lower component of the wavefunction
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is “smaller” than the upper component by a factor of roughly Zα/2. For
this reason, the upper and lower components are respectively known as the
large and small components of the Dirac wavefunction. Moreover, for the
ground states of one-electron systems with low nuclear charge, the large
(upper) component is essentially identical to the Schrödinger wavefunction
multiplied by a Pauli spinor, i.e., F1s(r) ≈ P1s(r).

The relativistic treatment of many-electron atomic systems involves both
computational and conceptual challenges. The need for two radial compo-
nents for each electron increases the complexity of the calculation. In addi-
tion, the one-electron Dirac equation, itself, gives not only “positive-energy”
solutions for electrons, but also “negative energy” solutions, corresponding to
positrons. The presence of these solutions makes it necessary to account for
virtual electron-positron excitations, leading to the theory of quantum elec-
trodynamics (QED). In addition, the possibility of unwanted admixtures of
negative energy compounds calls for particular care in the choice of basis set
or numerical methods [26]. When such precautions are taken, the relativistic
many-body problem can be treated by similar methods as the non-relativistic
problem [27, 28]. The numerical basis set developed in our group has been
applied also to the evaluation of radiative effects [29, 30].

2.3 Hyperfine structure

Hyperfine structure is a splitting of an atomic energy level caused by inter-
actions between the electrons and electrodynamical moments of the nucleus.
For electronic s-states, considered in this work, only the interaction with the
nuclear magnetic dipole moment contributes. Generally, angular momenta of
the electron(s) J and the nucleus I couple to form a total angular momentum
F , given by

F = J + I

with the quantum numbers

F = J + I, J + I − 1, . . . , |J − I|
MF = F, F − 1, . . . ,−F .

The Hamiltonian which describes the interaction between the electron(s)
and the nuclear magnetic dipole moment can, following the discussion in
Appendix B, be written in terms of an “effective” operator as

Hhfs =
A

h̄2J · I ,
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where the A factor is called a dipole interaction constant. The A factor is,
as also shown in Appendix B, the radial overlap of the electronic orbitals
and the hyperfine operator times the nuclear gI-factor and some well-known
fundamental constants. The gI-factor can be regarded as the magnitude
of the nuclear magnetic dipole moment. In the non-relativistic limit, the
hyperfine structure for an s-electron is described by a contact interaction
and even in the relativistic case, the interaction takes place mainly in a
region within or very close to the nucleus. The produced energy shift, from
the effective operator above, is given by

Ehfs =
A

2
[F (F + 1)− J(J + 1)− I(I + 1)] .

This implies that an atomic energy level is split into (2I + 1) hfs-levels if
I ≤ J and (2J + 1) hfs-levels if J ≤ I and that the separation between the
hfs-levels F and F − 1 is equal to

∆Ehfs = AF .

For the s-states (and non-zero I) discussed in this work there are two hfs-
levels present, since J = 1/2, with a separation given by

∆Ehfs = A(I + 1/2) . (2.2)

The brief treatment of the hfs above will continue in the next chapter
with a more detailed discussion regarding the physics close to the nucleus
and our procedure for calculations of hfs in highly charged hydrogen-like
ions. A more detailed treatment of the hfs operator is given in Appendix B.



CHAPTER 3

The Hyperfine Structure Phenomenon

This chapter continues the discussion from the previous chapter about the
hyperfine structure phenomenon. It contains discussions about the physics
close to the nucleus and about our procedure for calculations of hfs in highly
charged hydrogen-like ions. In addition the dominating uncertainties are
analysed.

3.1 Hydrogen and hydrogen-like bismuth

The present thesis deals with hfs in the ground state of highly charged hydro-
gen-like ions (J = 1/2). It can then be useful to start with a short review
of the situation in ordinary hydrogen. The ground-state hfs in 1H is due to
the interaction between the angular momenta of the proton and the elec-
tron, giving the two F -levels 1 and 0, since I = 1/2. The transition between
these two levels is well-known from radio astronomy and the frequency of the
transmitted radiation is measured to be 1420 405 751.773(1) Hz [31], corre-
sponding to a wavelength of about 21 cm and an energy separation of about
5.87 µeV. This extremely accurate result can unfortunately not be used in
stringent tests of QED for weak fields, since the total theoretical predictions
are much less accurate due to lack of information about the finite size and
internal structure of the proton. A similar situation is also present in the
cases of highly charged ions, as will be discussed in Chapter 4.

The hfs in 1H is used in many applications; the hydrogen maser which
has been used for the determination of the radiation frequency can also be

13



14

used as an accurate clock [9]. A particularly fascinating navigation feature,
dependent on hydrogen masers used as accurate clocks, are the highly suc-
cessful tours of the two Voyager spacecrafts through our planetary system.
Another spectacular application of the hfs in 1H is connected with the search
for extraterrestrial intelligence. The radiation frequency lies in the microwave
band, which is a rational choice for interstellar communications due to its
good signal-to-noise properties [32]. Moreover, hydrogen is the most abun-
dant element in the universe and this frequency must thus be known to every
observer in a technically developed society.

In the case of the highly charged hydrogen-like ion 209Bi82+ the ground-
state hfs gives the two F -levels 5 and 4, since I = 9/2. Such ions were
produced at GSI, Darmstadt, in 1994 and transitions between the two F -
levels were then stimulated. The wavelength of the emitted radiation was
measured to be about 244 nm [14], which corresponds to an energy separation
of about 5.08 eV, i.e., a difference, with respect to the case of hydrogen, of 6
orders of magnitude!

There are several differences between the hfs in 1H and in 209Bi82+ and we
will here qualitatively discuss these before the more quantitative approach
in the next section. In the Bohr model, a hydrogen-like ion is treated as an
electron orbiting the nucleus, like a planet in a solar system. The speed of
the electron is Z/137 of the speed of light. For hydrogen, the nucleus can
be approximated by a point charge, since the radius of the electron orbit
is about 50 000 times larger than the radius of the nucleus. This “Bohr
radius” is also the most probable distance from the nucleus in the quantum
mechanical description. The hfs can, to a first approximation, be regarded
as an effect caused by a point-like nuclear magnetic dipole in the presence
of a magnetic field associated with the electron. The situation in 209Bi82+ is
quite different and a schematic picture is shown in Fig. 3.1. Relativity must
be taken into account for the electron moving around the Z = 83 nucleus
with a speed of about 83/137 of the speed of light. The radius of the electron
orbit is inversely proportional to Z, and (in a non-relativistic extrapolation)
83 times smaller than for hydrogen. The nuclear radius, on the other hand,
is nearly seven times larger, since it is proportional to A1/3, where A is the
mass number of the nucleus, which in this system equals 209. The radius for
the orbit is then only about 90 times larger than the radius of the nucleus.
In the quantum mechanical description, the orbital of the 1s electron has
a substantial part located inside the nucleus, which can then no longer be
approximated by a point-like charge.

The 209Bi nucleus can, in a simple picture, be regarded as a 208Pb nucleus
with an extra outer proton. The 208Pb nucleus is known to be “double-magic”
where both protons and neutrons have particularly stable configurations with
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Figure 3.1: Schematic picture of hfs in 209Bi82+.

a total angular momentum equal to zero. The angular momentum of the nu-
cleus is then due to the spin and the orbital motion of the extra (odd) proton.
The nuclear magnetic moment can still, in a first approximation, be regarded
as a point-like dipole, but since the electron is quite close to the nucleus it
will “feel” that the nuclear magnetic moment is distributed in space. More-
over, the electron will also “feel” that the major part of the nuclear magnetic
moment has its origin in the small current loop from the orbital motion of
the extra proton. On top of these differences compared with hydrogen, we
also have the fact that effects from QED, such as self-energy and vacuum
polarization, are greatly enhanced for highly charged ions. A schematic pic-
ture of the corrections needed to account correctly for hfs in highly charged
ions is given in Fig. 3.2. Corrections due to nuclear recoil, arising due to
the finite mass of the nucleus, will be not be considered here, since they are
very small for the heavy systems discussed in this work, i.e., 165Ho, 185,187Re,
203,205Tl, 207Pb and 209Bi. In the non-relativistic approximation of hfs, the
recoil effect for a one-electron system is determined by the reduced mass cor-
rection (1+me/M)−3, where M is the mass of the nucleus. The reduced mass
correction gives, in the cases of the heavy systems discussed in this work, a
relative reduction slightly less than 10−5, which is an order of magnitude
smaller than the experimental uncertainty.

3.2 Formal expressions

Fermi-splitting and relativity

The hfs is strictly speaking a relativistic phenomenon, since it depends on
spin properties, but can for many system be treated in a “semi-classical” way.
Fermi treated the hfs with a non-relativistic formalism in studies of alkali
atoms, where he derived a approximate generalizations from the hydrogenic
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Figure 3.2: Schematic picture of the corrections to hfs beyond the relativistic
first-order value for a point nucleus. The doubled line represents
a bound electron, the wiggled line represents a virtual photon, the
doubled ring represents a virtual electron-positron pair and the grey
circle represents the nucleus.

case [6]. For a 1s electron in a hydrogen-like system with an infinitely heavy
point-like nucleus the energy splitting is obtained by inserting known electron
orbitals, giving

∆EF =
4

3
α4Z3mec

2gI
me

mp

(
I + 1

2

)
,

where gI = µI/IµN is the nuclear gI-factor, µI is the nuclear magnetic dipole
moment, µN = eh̄/2mp is the nuclear magneton and mp is the mass of the
proton. This formula is also discussed in Appendix B and gives the so-called
“Fermi-splitting”. In the case of 209Bi82+ it gives a value of about 2.75 eV,
which is 46% smaller than the experimental value. A relativistic treatment
is, however, expected to improve the comparison due to the high speed of
the electron.

Relativity can be taken into account by multiplying non-relativistic value
with a relativistic correction factor [8, 33]. For an s electron, this has the
value 1/γ(2γ − 1), where γ =

√
1− (Zα)2. This expression holds for a
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point-like nucleus and gives a hfs splitting for 209Bi82+ of about 5.84 eV,
which is 15% larger than the experimental value. Although the relativistic
correction improves the comparison, a treatment beyond the point nucleus
is clearly needed.

Nuclear charge distribution

The effect of the distribution of nuclear charge was analysed in pioneering
works by Rosenthal, Breit [34] and others [35, 36] and it is sometimes called
the “Breit-Rosenthal effect”. The correction factor for the nuclear charge dis-
tribution can be written as (1−δ), where δ is a small number which depends
mainly on the root-mean-square (rms) radius of the nuclear charge distribu-
tion, 〈r2

c〉1/2. By assuming a uniform spherical symmetric charge distribution
and using the experimental value 〈r2

c〉1/2 = 5.519(4) fm for the nuclear charge
distribution, δ can be calculated to be 0.110 in the case of 209Bi82+ [37]. The
relativistic first-order hfs energy-splitting in 209Bi82+ for a uniformly charged
nucleus then becomes about 5.20 eV, which is 2% larger than the experimen-
tal value. This treatment of the nuclear charge distribution can be improved
by using a more “realistic” model in the calculation of δ.

In this work, we evaluate the hfs by using relativistic wavefunctions from
a direct numerical solution of the Dirac equation for electronic s-states and
an extended charge distribution, using the expression (discussed also in Ap-
pendix B)

∆E1 =
8

3

e

4πε0c
gIµN

(
I + 1

2

) ∫ ∞

0

Fns
1

r2
Gnsdr . (3.1)

Obviously, no additional correction factors for relativity and extended nuclear
charge should be applied to this result. The convergence of the first-order
value for the ground-state hfs in 209Bi82+ is shown in Fig. 3.3.

Figure 3.4 shows experimental results for the radial variation of the charge
density for different nuclei. These results show that the radial charge distri-
bution is fairly constant from the centre of the nucleus to the diffuse surface,
which has a thickness, called the “skin thickness”, with a roughly constant
value of 2.3 fm. Different models can be used to describe the nuclear charge
distribution; we have used the two-parameter Fermi model and the model-
independent Fourier-Bessel expansion to obtain a more realistic description.
The Fermi model contains the basic features of the nuclear charge distrib-
ution described above and it is introduced in subatomic textbooks as “the
simplest useful approximation”. The Fourier-Bessel expansion is a model-
independent expansion of the experimental data in terms of spherical Bessel
functions, its uncertainties are, unfortunately, not trivial to handle. Both
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Figure 3.3: The values of the hyperfine splittings for various approximations com-
pared with the experimental result for 209Bi82+. The uncertainties
in the values are too small to be displayed in this figure.

these distributions are described in more detail in Papers II and VI, and pa-
rameters for different nuclei can be found in tabulations such as Refs. [38, 39].
To summarize, we use a numerical solution of the Dirac equation for a realis-
tic distribution of the nuclear charge and Eq. (3.1) to calculate our first-order
value for the hfs energy-splitting in hydrogen-like systems.

Having obtained a first-order hfs value, we can now add the two final
corrections for extended nuclear magnetization and for QED to get the total
hfs energy-splitting, which can be written as

∆Ehfs = ∆E1(1− ε) + ∆EQED , (3.2)

where (1− ε) is the correction factor for an extended magnetization distrib-
ution of the nucleus.

Nuclear magnetization distribution and QED

The correction for an extended nuclear magnetization was first studied in an
innovative work by A. Bohr and Weisskopf [40, 41] and is also called “the
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Figure 3.4: The radial charge distribution for several nuclei determined by elec-
tron scattering. The skin thickness t is shown for O, Ni and Pb; its
value is roughly equal to 2.3 fm. These distributions were adapted
from the tabulation by de Vries et al. [38].

Bohr-Weisskopf effect”. Their work makes use of a correction parameter ε,
which is described in more detail in Paper II, when replacing the magnetic
point dipole approximation in Eq. (3.1) by a treatment including a distrib-
uted magnetization. This parameter is, however, not trivial to achieve due to
the lack of information about the magnetization distribution. It is of course
possible to assume a distribution, e.g., the uniform and Fermi models men-
tioned above or a shell model, where the magnetization is assumed to be
localized on a spherical shell around the nucleus. The shell model is a fairly
good assumption if the nuclear magnetization has its origin in the spin and
orbital motion of an (outer) unpaired nucleon, but the problem of getting a
radius of the shell remains.

Recently, three approaches for a theoretical ab initio determination of the
Bohr-Weisskopf effect have been used. The simplest of these approaches is
based on a solution of the Schrödinger equation for a nucleon in a Woods-
Saxon potential, the solution gives the distribution for the unpaired nucleon
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in the nucleus and the distribution is used to determine ε. This approach is
explained in more detail in Paper V and in the work by Forssén [42], and has
also been used by Shabaev [18]. A little more sophisticated approach, giv-
ing equivalent results for the hfs in leading order, is the “dynamical proton
model” (DPM), where the odd proton of the Bi nucleus is treated as a Dirac
particle bound in a Woods-Saxon potential. The first-order hfs in hydrogen-
like Bi is then given as a vector-photon exchange between the electron and
the proton. DPM was introduced by Labzowsky et al. [43] and has so far
only been applied to the ground-state hfs in 209Bi82+. The third and more
complete approach is a many-body calculation with use of the “dynamic
correlation model” (DCM) for one-hole nuclei. This approach is the only
calculation of the Bohr-Weisskopf effect which includes many-body correc-
tions and Tomaselli et al. have used it for studies of several systems [44, 45].
The terms included there for the nucleons correspond to those included in
the “RPA” approach for electrons, and are found to give significant contribu-
tions. The results from these three approaches are summarized and discussed
in Chapter 4.

In addition to the dominating electrostatic and hyperfine interactions
with the nucleus, the electron also interacts with the radiation field, an in-
teraction described by QED. The dominating QED corrections originate from
the one-loop self-energy and vacuum-polarization effects, which are depicted
by so-called Feynman diagrams, such as those shown in Fig. 3.5. The basic
idea of QED is that every electromagnetic interaction is due to the exchange
of virtual photons between electrically charged particles. A more thorough
discussion is presented in several textbooks, e.g., by Mandl and Shaw [46]
and by Peskin and Schroeder [47]. The one-loop QED effects for hfs have
been calculated by different groups and the results are consistent [17–19].
We will here use the results from Sunnergren et al. [17, 48].

3.3 Uncertainties

Finally, when all corrections to the first-order hfs energy-splitting in a hydro-
gen-like system are discussed, it is convenient to return to the theoretical
expression for the total hfs energy splitting:

∆Ehfs = µI

[
∆E1

µI

(1− ε) +
∆EQED

µI

]
. (3.3)

This formula is the same as Eq. (3.2) except for a factorization of the nuclear
magnetic dipole moment µI . It is now important to consider the uncertainties
in this expression and we will discuss below the uncertainty for each part, i.e.,
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(a) (b) (c) (d) (e)

Figure 3.5: The Feynman diagrams representing the first-order interaction (a)
and the one-photon radiative corrections (b)–(e) to the hyperfine
splitting [17]. The double line represents a bound electron, the wiggly
line represents a virtual photon, the triangle represents the magnetic
interaction with the nucleus and the doubled ring represents a virtual
electron-positron pair. The diagrams (b) and (c) are examples of
vacuum polarization effects and (d) and (e) are examples of self-
energy effects. The diagrams are constructed from well-defined rules
and each can be rewritten as a mathematical expressions.

∆E1/µI , ∆EQED/µI , ε and µI . The first-order value ∆E1 is given by Eq. (3.1)
and this relation contains, except for gI = µI/IµN and the components F and
G of the electronic wavefunction, only well-known fundamental constants. An
accurate treatment then shows that the dominating uncertainty in ∆E1/µI is
due to uncertainties in the nuclear charge distribution, which in many cases
is accurately determined by experiments and listed in tabulations. The QED
correction has been calculated by different groups with results in agreement
with each other and the relative uncertainty is estimated to be 1%. The
uncertainty in the magnetization distribution parameter ε is a more difficult
problem. In the case of the crude approach where the Schrödinger equation
is solved for the unpaired nucleon, the result is assigned with a rather large
uncertainty as discussed in Paper V and Refs. [18, 42]. The results from
the dynamical correlation model for one-hole nuclei have been assigned with
relatively small uncertainties [44, 45], but this nuclear many-body problem is
difficult. Depending on the relative uncertainties of various parameters it can
be more useful to turn the problem around. Instead of using the comparison
between experiment and theory to perform a test of QED, one can combine
calculated QED values and the experimentally determined ∆Ehfs to obtain
the parameter ε, giving in turn information about the nuclear magnetization
distribution. This possibility is used and discussed in Papers III and VII and
both possibilities will be discussed below.

Both ∆E1 and ∆EQED are proportional to the magnetic dipole moment
of the nucleus, and any uncertainty or error in the value of the nuclear mag-
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netic dipole moment directly affects the total theoretical value. In all mea-
surements of nuclear magnetic dipole moments an external magnetic field B0

is applied. The external field induces a diamagnetic current density in the
electron cloud surrounding the nucleus, and this leads to an induced mag-
netic field B′ at the nucleus usually opposing the external field, so that the
internal field at the nucleus becomes

B = B0 −B′(0) = B0 [1−B′(0)/B0] = B0(1− σ) .

We here introduce a magnetic shielding constant σ, which cannot be deter-
mined by varying the magnetic field because of the proportionality between
B and B0. Therefore, all experimentally determined nuclear magnetic dipole
moments have to be corrected for the shielding effect. Theoretical estimates
exist and are reasonably good for several free atomic systems where the
magnetic shielding consists solely of a diamagnetic part. The claimed rela-
tive uncertainties of these diamagnetic corrections are usually not exceeding
the order of 10−4. However, many measurements of nuclear magnetic dipole
moments have used the method of NMR, where the measurements are usu-
ally performed on molecules in an aqueous solution (or even a solid). The
external magnetic field is then also shielded by the chemical environment,
i.e., the molecular compound and the water, giving an additional paramag-
netic shielding on top of the diamagnetic one. The variation of the magnetic
shielding is called the chemical shift and it is difficult to evaluate except for
simple molecular systems, since it depend on excitation energies in the mole-
cule. For most elements, the chemical shift seems to be of the order of 10−3

or 10−4, but can sometimes be larger. Shifts up to 1.3% have been observed
in Co compounds [8, 49]. There is thus a need for accurate reassessments of
the nuclear magnetic dipole moments in free atoms. The nuclear magnetic
dipole moments used in this thesis are analysed and discussed in more detail
in Paper IV.

3.4 Hyperfine anomaly

The results from hyperfine measurements have traditionally been presented in
terms of A-factors. When comparing the hyperfine structure for two isotopes
of the same element and electron configuration the electronic wavefunction
can to a first approximation be assumed to be unchanged, and we would
expect the ratio of A factors to be equal to the ratio of the corresponding
nuclear gI factors. A hyperfine anomaly is a deviation, ∆ from this ratio,
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and can be defined by

A1

A2
=
g1

I

g2
I

(
1 + 1∆2

)
,

and arise due to differences in the nuclear distributions. Accurate hfs mea-
surements on neutral systems have over several decades provided many ex-
perimentally determined hyperfine anomalies. In general, magnetic shielding
and chemical shift uncertainties do not affect anomaly determinations, since
the nuclear moments for different isotopes of an element usually are measured
simultaneously in the same experiment, and can be regarded as shielded by
the same environment. The hyperfine anomaly is due to differences in nuclear
charge and magnetization distributions. This implies that hyperfine anom-
aly measurements are sensitive tools for detection of differences in nuclear
distributions. Moreover, hyperfine anomaly data for neutral systems can, as
demonstrated in Chapter 4 and Papers V and VII, be used to predict the
corresponding situation in highly charged systems.

3.5 Summary

Accurate comparisons between theoretical and experimental values of the
hfs requires accurate values of the nuclear magnetic dipole moment and the
calculations must include relativity, QED, the extended nuclear charge and
magnetization distributions. In this work relativity and extended nuclear
charge distribution are treated rigorously by solving the Dirac equation nu-
merically. However, the nuclear charge distribution parameters can give rise
to uncertainties in the energy splitting. The nuclear magnetic dipole mo-
ment can, unfortunately, be inaccurate (Paper IV), but it should be possible
to perform a reassessment of the interesting magnetic moments giving a sub-
stantial reduction of the uncertainties. The remaining difficulties are then to
calculate the corrections due to QED and the nuclear magnetization distrib-
ution.

The original aim for the experiments on hfs in highly charged ions was to
perform tests of QED in strong fields, but that requires accurate corrections
for the nuclear magnetization distribution. The determination of the cor-
rection for the nuclear magnetization distribution is a non-trivial problem,
since our knowledge about the nuclear magnetization is limited. The QED
contributions have been calculated by several groups with good agreement.
Depending on the relative uncertainties of the various parameters, the exper-
imental results can be used in different ways. One is to compare theoretical
and experimental results in order to get a test of QED in strong fields, if the
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nuclear magnetization distributions are sufficiently well known. In general,
this is, however, not the case and it may instead be possible to combine
calculated QED values and experimental hyperfine splittings in order to ex-
tract information about the nuclear magnetization. In the next chapter, both
possibilities are considered.



CHAPTER 4

Results

This chapter contains our theoretical results for the ground-state hfs in
the hydrogen-like systems 165Ho66+, 185,187Re74+, 203,205Tl80+, 207Pb81+ and
209Bi82+. These results are used to interpret the experimental results in two
ways: first, in an attempt to test the QED theory for highly charged ions
and secondly, using calculated QED values to extract information about the
nuclear magnetization distributions.

The first approach starts with relativistic calculations of the hfs for nu-
clear charge distributions described by the Fermi model. The next step is
the calculation of the Bohr-Weisskopf effect, i.e., the corrections for extended
nuclear magnetization distributions. Finally, previously calculated QED val-
ues are used to produce the total theoretical results for the hfs. The main
uncertainty in these total values are the uncertainties in the Bohr-Weisskopf
effect and it is found that, for most nuclei considered here, comparisons with
the experimental values do not provide a sensitive test of the QED theory in
strong fields.

The second approach turns the problem around and treats the Bohr-
Weisskopf effect as an unknown parameter which can be obtained for by using
experimental hfs values in addition to the theoretical QED contribution.
Moreover, the extracted values for the Bohr-Weisskopf effect are used to
get information about the nuclear magnetization distributions. The main
uncertainty in the results by using this approach are the uncertainties in the
values used for nuclear magnetic dipole moments.

In addition, it is demonstrated for Tl that data from measurements on
neutral systems can be used for theoretical determinations of isotopic dif-

25
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Table 4.1: Nuclear angular momenta, magnetic dipole moments and parameters
for nuclear charge distributions described by the two-parameter Fermi
model. The magnetic dipole moments are corrected for diamagnetic
shielding and the given uncertainties contain possible chemical shifts
(a more thorough discussion is given in Paper IV. The choice of charge
distribution parameters are discussed in the text.

Nucleus I µI/µN 〈r2
c〉1/2 (fm) a (fm) c (fm)

165Ho 7/2 4.1767(53) 5.21(3) 0.57(1) 6.14(4)
185Re 5/2 3.186(3) 5.39(1) 0.523(10) 6.49(2)
187Re 5/2 3.219(3) 5.39(1) 0.523(10) 6.49(2)
203Tl 1/2 1.6217(13) 5.463(5) 0.524(10) 6.59(2)
205Tl 1/2 1.6379(13) 5.470(5) 0.524(10) 6.60(2)
207Pb 1/2 0.5918(14) 5.497(2) 0.546(10) 6.60(2)
209Bi 9/2 4.110(4) 5.519(4) 0.468(39) 6.76(7)

ferences in the nuclear magnetization distributions, which lead to accurate
predictions of isotopic differences in measurements on highly charged ions.

This chapter is outlined as follows: the first approach, i.e., test of QED,
is treated in Secs. 4.1–4.4, the second approach i.e., determination of nu-
clear magnetization, is treated in Sec. 4.5 and results for thallium, finally, in
Sec. 4.6.

4.1 Nuclear charge distributions

The values for the first-order relativistic hfs energy splitting for an extended
nuclear charge, ∆E1/µI in Eq. (3.3), have been calculated with the use of
Eq. (3.1) and nuclear charge distributions described by the two-parameter
Fermi model. The rms-radius 〈r2

c〉1/2 and the skin-thickness a are chosen as
the distribution parameters and the uncertainty in these parameters totally
dominates the estimated uncertainty in ∆E1/µI . The parameters for 165Ho,
203,205Tl, 207Pb and 209Bi have been determined experimentally and the val-
ues used are given in the tabulation of de Vries et al. [38]. An interpolation
of results for W and Os has been used for the case of 185,187Re in the ab-
sence of experimentally determined parameters, as discussed in more detail
in Paper III. The nuclear charge distribution parameters and magnetic di-
pole moments used are tabulated in Table 4.1. In addition, the half-density
radius c for each nuclear charge distribution is also given. These radii can
be regarded as the nuclear charge radii. The hyperfine interaction is sensi-
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Table 4.2: Our values of ∆E1/µI calculated with use of Eq. (3.1) and nuclear
charge distributions described by the two-parameter Fermi model.
The nuclear charge distribution parameters were taken from Table 4.1.
Note that the Bohr-Weisskopf effect is not include in these values. The
QED values are taken from the work by Sunnergren et al. [17].

System ∆E1/µI xr xa ∆EQED/µI

(eV/µN) (10−3 fm−2) (10−3 fm−2) (eV/µN)
165Ho66+ 0.5313(1) −0.683 1.31 −0.002 587(3)
185,187Re74+ 0.8775(1) −0.925 1.73 −0.004 691(5)
203Tl80+ 2.0378(2) −1.16 2.15 −0.011 14(11)
205Tl80+ 2.0376(2) −1.16 2.15 −0.011 14(11)
207Pb81+ 2.1524(1) −1.20 2.22 −0.012 27(12)
209Bi82+ 1.2628(2) −1.25 2.25 −0.007 26(7)

tive to the electronic wavefunction close to the nucleus and changes in the
nuclear charge density leads to changes in the hfs. The leading correction
to the wavefunction is proportional to 〈r2

c〉, so any uncertainty in 〈r2
c〉 will

lead to an uncertainty in the hfs, as further investigated in Paper II. The
sensitivity to changes in the nuclear charge distribution is most easily seen
by expressing ∆E1/µI in terms of changes in 〈r2

c〉 and a2:

∆E1

µI
=

∆E0
1

µI

[
1 + xrδ〈r2

c〉+ xaδa
2
]
,

where xr and xa are the parameterization coefficients and the superscript 0
denotes the value for a reference distribution. It must also be emphasized that
model-independent parameterizations in terms of changes in the moments
〈r2n

c 〉 can and have been done in Paper II. These parameterizations are maybe
our most important results concerned with the nuclear charge distribution.
The hfs results are summarized in Table 4.2 together with values for xr and
xa and the values for ∆EQED/µI taken from Sunnergren et al. [17].

4.2 Calculations of the Bohr-Weisskopf effect

Paper II contains a discussion about the Bohr-Weisskopf effect and several
formulæ are also given, but to obtain absolute values for the effect the nu-
clear magnetization distributions must be known. In analogy with the charge
distribution, the leading correction to the electronic wavefunction is propor-
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Table 4.3: Our calculated values of the nuclear magnetization radii and the Bohr-
Weisskopf parameters ε for hfs in hydrogen-like ions. The relative
uncertainties in ε are assumed to be 30%, except for the cases of
207Pb and 209Bi where the relative uncertainties are assumed to be
20% since these two nuclei are close to the double-magic nuclei 208Pb.
The nuclear potential parameters were taken from Rost [51].

Nucleus Valence nucleon Ground state 〈r2
m〉1/2 (fm) ε (%)

165Ho proton hole 2 f7/2 5.66(79) 0.99(30)
185Re proton hole 2 d5/2 5.28(74) 1.18(35)
187Re proton hole 2 d5/2 5.28(74) 1.19(36)
203Tl proton hole 3 s1/2 5.26(74) 1.74(52)
205Tl proton hole 3 s1/2 5.27(74) 1.74(52)
207Pb neutron hole 3 p1/2 6.40(61) 4.29(86)
209Bi proton 1 h9/2 6.20(59) 1.31(26)

tional to the squared nuclear magnetization rms-radius 〈r2
m〉. We have per-

formed model-independent parameterizations of ε in terms of the moments
〈r2n

m 〉 and the coefficients for these parameterizations are given in Paper II.
Attempts to determine nuclear magnetization distributions experimentally
have been made, although results for heavy nuclei do not seem to have been
achieved [50]. It is of course possible to assume that nuclear magnetizations
are distributed, e.g., over a shell, but to obtain a quantitative estimation
of ε we have used a simple single-particle model to obtain the distribution.
We have in our model assumed that the nuclear magnetization is generated
by an unpaired nucleon and we have then solved the Schrödinger equation
for this nucleon in a Woods-Saxon potential, as described in more detail in
Paper V and by Forssén [42]. Our results are in agreement with the results of
Shabaev et al. [18], who used the same approach and potential and also have
performed calculations with the inclusion of a spin-orbit (SO) term in the
determination of ε, giving contributions well inside the stated accuracy. Both
that work and ours used a nuclear Woods-Saxon potential with parameters
from the work by Rost valid for nuclei in the lead region [51]. A summary of
our theoretical results is given in Table 4.3.

Our results for ε are in Table 4.4 compared with the results from Shabaev
et al., the “dynamic correlation model” (DCM) calculations by Tomaselli et
al. and the “dynamical proton model” (DPM). Our results are in agreement
with the results, without SO-contribution, of Shabaev et al. and the discrep-
ancies are probably due to their use of approximate formulas for the contribu-
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Table 4.4: Summary of calculated Bohr-Weisskopf effects.

System εa ε (no SO)b ε (with SO)b ε (DPM)c ε (DCM)d

165Ho66+ 0.0099 0.0085 0.0089 — 0.0138
185Re74+ 0.0118 0.0120 0.0122 — 0.0276
187Re74+ 0.0119 — — — 0.0285
203Tl80+ 0.0174 0.0177 0.0179 — —
205Tl80+ 0.0174 0.0177 0.0179 — —
207Pb81+ 0.0429 0.0419 — — 0.0289
209Bi82+ 0.0131 0.0133 0.0118 0.0131 0.0210

aThis work.
bShabaev et al. [18].
cLabzowsky et al. [43], Sunnergren et al. [17].
dTomaselli et al. [45].

tions from the electronic wavefunction [37]. The results with SO-contribution
of Shabaev et al. differ slightly from the results without SO-contribution,
however, both this difference and the discrepancy with our values are no-
tably smaller than the assumed uncertainties. It is also interesting that the
DPM result for 209Bi82+ is consistent with our result, relativistic effects on
the nuclear charge distribution are thus negligible on this level of accuracy.
The results from the DCM calculations, which include additional contribu-
tions, differ substantially from other results, pointing to the importance of
nuclear many-body effects. These effects must thus be carefully investigated
as mentioned above.

4.3 Comparison between theory and experiment

The total theoretical values of the ground-state hfs can now be obtained by
using the following expression:

∆Ehfs = ∆E1(1− ε) + ∆EQED .

The values for ∆E1 and ∆EQED are obtained by multiplying the values for
µI in Table 4.1 with the values for ∆E1/µI and ∆EQED/µI in Table 4.2.
The main contributor to the uncertainty of ∆E1 is in general the uncertainty
of µI . The values for ε are displayed in Table 4.3. The values for ∆E1, ε,
∆EQED and the total theoretical values are summarized and compared with
the experimental results in Table 4.5. The comparison between our total



30

Table 4.5: Our total theoretical values of the ground-state hfs and the experimen-
tal results. The nuclear magnetic moments used are given in Table 4.5
and discussed in more detail in Paper IV. The major contributions
to the uncertainties of total theoretical values are the uncertainties in
the Bohr-Weisskopf effects, which were obtained with use of a Woods-
Saxon potential as discussed in the text and in Paper V.

System ∆E1 ε ∆EQED ∆Etheory
hfs ∆Eexper.

hfs

(eV) (%) (eV) (eV) (eV)
165Ho66+ 2.2191(29) 0.99(30) −0.010 81(11) 2.1863(72) 2.1645(6)a
185Re74+ 2.7956(27) 1.18(35) −0.014 94(15) 2.748(10) 2.7190(18)b
187Re74+ 2.8245(27) 1.19(36) −0.015 10(15) 2.776(10) 2.7450(18)b
203Tl80+ 3.3047(27) 1.74(52) −0.018 07(18) 3.229(17) 3.213 51(25)c
205Tl80+ 3.3374(27) 1.74(52) −0.018 25(18) 3.261(18) 3.244 10(29)c
207Pb81+ 1.2738(30) 4.29(86) −0.007 26(7) 1.212(11) 1.2159(2)d
209Bi82+ 5.1903(51) 1.31(26) −0.029 83(29) 5.092(15) 5.0840(8)e

aCrespo López-Urritia et al. [12].
bCrespo López-Urritia et al., Paper III.
cPeter Beiersdorfer et al., Paper VII.
dSeelig et al. [13].
eKlaft et al. [14]

theoretical and the corresponding experimental hfs results is also displayed
in Fig. 4.1.

4.4 Test of QED or Nuclear Models?

The total theoretical and the corresponding experimental hfs results are in
fair agreement, as shown in Table 4.5 and Fig. 4.1, since they agree within
two standard deviations. The major contributions to the uncertainties in
the theoretical results are the uncertainties in the nuclear magnetic dipole
moment and in the Bohr-Weisskopf effect. The problems with the nuclear
magnetic dipole moments are discussed in Paper IV, where it is stated that
the uncertainties have been underestimated and that remeasurements are in
many cases highly desirable. To theoretically determine the Bohr-Weisskopf
effect accurately a good description for the magnetic properties of the nucleus
is needed. Tomaselli et al. [44, 45] have used the DCM for one-hole nuclei to
determine the Bohr-Weisskopf effect. Their method is the only one beyond
the single-particle model and several effects which take place inside the nuclei
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Figure 4.1: Comparison between our total theoretical hfs results (including rela-
tivity, extended nuclear charge, extended nuclear magnetization and
QED) and the corresponding experimental hfs results. The circles in-
dicate the relative differences between our values and the experimen-
tal ones, the small vertical lines on the horizontal zero line indicate
the experimental error bars. All values are taken from Table 4.5.

are said to have been taken into account. However, their total hfs results do
not coincide with the experimental ones, including the cases of 207Pb81+ and
209Bi82+. The nuclear magnetizations in 207Pb and 209Bi can be regarded
as essentially due to single-particle effects since these two nuclei are one
nucleon away from the double-magic nucleus 208Pb, and the results from
single-particle models gives fair results as discussed below. A more extensive
theoretical and/or experimental determination of the nuclear magnetization
distribution is thus needed.

Our simple determination of the Bohr-Weisskopf effect obtained by solv-
ing the Schrödinger equation for an unpaired nucleon in a Woods-Saxon po-
tential, gives reasonably good results for the total hfs in the cases of 207Pb81+

and 209Bi82+. This situation is probably due to two reasons, first, the mag-
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netization in these nuclei are essentially due to single-particle effects and
secondly, the parameters of our model are valid. These parameters are ex-
pected to be relevant for nuclei close to the double-magic nuclei 208Pb [51],
i.e., 203,205Tl, 207Pb and 209Bi in this work. The relative uncertainties of the
Bohr-Weisskopf effect are set to 20% for both 207Pb81+ and 209Bi82+, the ef-
fect on the total uncertainty is, however, different. In the case of 209Bi82+ the
parameter ε is small, giving a contribution to the total uncertainty smaller
than the QED contribution, but in the case of 207Pb81+ the parameter ε
is large, giving a contribution to the total uncertainty exceeding the QED
contribution.

Our total hfs results in the cases of 165Ho66+ and 185,187Re74+ are notably
larger than the experimental results, but the nuclei in these systems are far
from any double-magic nucleus and any single-particle model for the nuclear
magnetization is only expected to give an order of magnitude estimate for
these systems. For the cases of 203,205Tl80+ the nuclei are close to the double-
magic 208Pb and our total hfs results coincides with the experimental ones.
The agreement is not impressive, but our predictions were useful as a guide for
the experimental work presented in Paper VII. The dynamical proton model
(DPM) calculation of the Bohr-Weisskopf effect for 209Bi82+ [17, 43], is in
agreement with our result. The major difference between our single-particle
model and DPM is the inclusion of relativity in the DPM, and the agreement
implies that relativistic effects on the nuclear magnetization distribution are
small.

A comparison between the hfs in hydrogen-like and lithium-like systems
would make it possible to circumvent some problems with lack of information
about nuclear parameters as recently proposed by Shabaev et al. [52]. This
method is based on the idea that ε can be parameterized in terms of the
moments 〈r2n

m 〉, where the 〈r2
m〉-term is the leading one as discussed above.

The Bohr-Weisskopf effect and the nuclear magnetization rms-radius for,
e.g., a hydrogen-like system of one element can be extracted, as done in this
work, and the nuclear magnetization radius can then be used to determine the
Bohr-Weisskopf effect for the lithium-like system of the same element. Such
work would, in combination with accurate nuclear magnetic dipole moments,
provide tests of essentially only the QED contributions.

The original aim for the studies of hfs in highly charged H-like ions was
to perform tests of the QED contributions, which constitute about 0.5%
of the total hfs value for highly charged hydrogen-like ions. The case of
209Bi82+ can possibly be regarded as a test of QED, since the theoretical value
agrees within its 0.3% relative uncertainty with the experimental result. For
the other cases studied this is not the case since the QED contribution is
comparable in size with the total estimated uncertainty of the theory result.
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Table 4.6: Experimental Bohr-Weisskopf effects and nuclear magnetization radii
determined by a combination of the experimental results for ∆Ehfs

and the theoretical results for ∆E1 and ∆EQED. The uncertainties in
the first parenthesis arise from the linear addition of uncertainties in
the charge distribution and QED effects, and the second uncertainties
from the addition of the uncertainties in the experimental hfs results
and in µI , where the latter are dominating. The uncertainties in the
third parenthesis in the cases of 〈r2

m〉1/2 relate to the magnetization
model dependence.

System ε (%) 〈r2
m〉1/2 (fm)

165Ho66+ 1.97(3)(15) 8.45(8)(44)(12)
185Re74+ 2.20(2)(16) 7.51(4)(35)(10)
187Re74+ 2.28(2)(16) 7.65(4)(34)(10)
203Tl80+ 2.212(14)(80) 5.83(2)(13)(6)
205Tl80+ 2.249(14)(79) 5.89(2)(12)(6)
207Pb81+ 3.97(1)(25) 5.89(1)(23)(8)
209Bi82+ 1.47(2)(11) 6.59(5)(29)(4)

However, the one-loop QED effects have been calculated by different groups
and the results are consistent. It thus seems to be a rational choice to make
use these calculations and using comparison between theory and experiment
to extract information of the most uncertain parameter, i.e., the nuclear
magnetization distribution.

4.5 Determination of nuclear magnetization radii

By turning the procedure around and solving for the Bohr-Weisskopf effect
with use of the QED and experimental values, we can extract information
about the nuclear magnetization distribution. This is an efficient and fruitful
method of using the experimental data and it was done in Paper III for the
cases of 165Ho, 185,187Re and 209Bi and in Paper VII for the cases of 203,205Tl,
and all relevant formulæ can be found in Papers II and III. The revised
nuclear magnetic moments presented in Paper IV imply, however, that also
the extracted Bohr-Weisskopf effects and nuclear magnetization rms-radii
must be revised, and the new results are given in Table 4.6.

A summary of our calculated and extracted nuclear magnetization rms-
radii and ε parameters is given in Table 4.7 together with nuclear charge
distribution parameters for comparison. This comparison shows that our
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Table 4.7: Summary of our values for calculated and extracted nuclear magne-
tization rms-radii and ε parameters. The values are taken from Ta-
bles 4.3 and 4.6. Charge distribution parameters taken from Table 4.1
are included for comparison.

Nucleus Charge distribution Calculated values Extracted values
〈r2

c〉1/2 (fm) c (fm) ε (%) 〈r2
m〉1/2 (fm) ε (%) 〈r2

m〉1/2 (fm)
165Ho 5.21(3) 6.14(4) 0.99(30) 5.66(79) 1.97(18) 8.45(46)
185Re 5.39(1) 6.49(2) 1.18(35) 5.28(74) 2.20(18) 7.51(37)
187Re 5.39(1) 6.49(2) 1.19(36) 5.28(74) 2.28(18) 7.65(35)
203Tl 5.463(5) 5.59(2) 1.74(52) 5.26(74) 2.212(81) 5.83(14)
205Tl 5.470(5) 5.60(2) 1.74(52) 5.27(74) 2.248(81) 5.89(14)
207Pb 5.497(2) 6.60(2) 4.29(86) 6.40(61) 3.97(26) 5.89(24)
209Bi 5.519(4) 6.76(7) 1.31(26) 6.20(59) 1.47(13) 6.59(30)

approach to determine the nuclear magnetization rms-radii by using experi-
mental hfs results and solving for the Bohr-Weisskopf effect gives three types
of results. In the cases of 207Pb and 209Bi the values of ε and 〈r2

m〉1/2 are sim-
ilar to our values from the estimation with use of our simple nuclear model,
where the Schrödinger equation is solved for an unpaired nucleon in a Woods-
Saxon potential. The results for 〈r2

m〉1/2 are in these cases slightly smaller
than the half-density radius of charge distribution, respectively, indicating
that the nuclear magnetizations are distributed over a shell in the external
region of these nuclei. Moreover, our simple model thus describes the basic
features of 207Pb and 209Bi, i.e., both 207Pb and 209Bi can be regarded as a
double magic spherical symmetric 208Pb nuclei with a odd neutron hole and
a odd proton, respectively, distributed in the outer region of the nuclei.

The extracted results for ε of 165Ho and 185,187Re are about twice the
values from the determination using our simple nuclear model, giving quite
large values for 〈r2

m〉1/2, i.e., notably larger than the half-density radii of
charge distributions. These large results can be due to nuclear magnetization
distributions well outside the charge distributions and/or due to effects from
deformed non-spherical nuclear structures. Better nuclear descriptions would
hopefully clarify this situation and we can also conclude that a simple nuclear
model is not suitable in these cases. The result for 165Ho given here differs
from previous result reported in Paper III due to the revised nuclear magnetic
dipole moment.

The two stable thallium isotopes represent the third type of results. For
these isotopes the extracted values for ε and 〈r2

m〉1/2 are similar to our values
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from the calculation with use of our simple nuclear model, but the agreement
is less than in the cases of 207Pb and 209Bi. Another difference compared to
the cases of 207Pb and 209Bi is that the results for 〈r2

m〉1/2 are, in case of
the thallium isotopes, slightly larger than the half-density radius of charge
distribution, respectively, indicating that the nuclear magnetizations are dis-
tributed over a shell in the external region of the these nuclei. Our simple
model thus gives an approximation for the basic features of the 203Tl and
205Tl nuclei and is also supported by previous calculations as discussed in
Papers V and VII. However, as in the cases of 165Ho and 185,187Re better
nuclear descriptions would hopefully be useful in the studies of the nuclear
magnetization distribution. All our results for nuclear magnetization depend
on the nuclear magnetic dipole moments used, and reassessments of the nu-
clear magnetic dipole moments are needed to get more accurate information
of the nuclear magnetization.

The knowledge of nuclear magnetization distributions affects several prob-
lems in the external region between atomic and nuclear physics, as also dis-
cussed in Paper III. One important problem is the interpretation of atomic
parity non-conservation experiments in chains of isotopes, which is limited
by the uncertainty in the distribution of neutrons in the nucleus. Other prob-
lems are the search for P and T violation in atomic systems and to analyse
data from nuclear anapole moment experiments, where a good understand-
ing of nuclear wave functions is essential. We hope that our results can offer
new calibrations in these studies.

4.6 Thallium hyperfine anomaly

The difference between the ground-state hyperfine separations in 205Tl80+

and 203Tl80+ is about 0.03 eV, as can be seen from Table 4.5, where the
accuracy of the theoretical results are limited by the uncertainties in the
Bohr-Weisskopf effect. However, as discussed in Chapter 3, measurements of
hyperfine anomalies are sensitive tools for detection of differences in nuclear
distributions. The 6p1/2 anomaly in neutral Tl is well known due to accurate
measurements of the A-factors, 21 105.447(5) MHz and 21 310.835(5) MHz
for 203Tl and 205Tl [53], respectively, and the nuclear magnetic moment ratio,
gI(

205Tl)/gI(
203Tl) = 1.009 836 13(6) [54], giving 205∆203 = −1.036(3)×10−4.

The calculations by Mårtensson-Pendrill [55] shows that 91(1)% of this anom-
aly, i.e., −0.944(11)× 10−4, corresponds to the single-particle anomaly of a
p1/2 electron, and the increased value is due to many-body effects. For H-
like systems only the single-particle effect is relevant. Furthermore, by scaling
this single-particle contribution we can estimate the H-like 1s anomaly.
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The effect from the differences in nuclear distributions on the anomaly
can be written as

∆ = ∆c + ∆m ,

where the effect from the charge distribution can be expanded as

∆c = x2δ〈r2
c〉+ x4δ〈r4

c〉+ x6δ〈r6
c〉+ · · · ,

and the effect from the magnetization distribution as

∆m = a2δ〈r2
m〉+ a4δ〈r4

m〉+ a6δ〈r6
m〉+ · · · .

The effect from the magnetization distribution is generally more complicated,
but can be given this simple form in the case of Tl where the nuclear dipole
moment can be regarded as originating from the spin of the unpaired 3s
proton. The basic features of nuclear charge distributions can be described
by a Fermi model as discussed previously, and the hyperfine anomaly due to
a difference in charge distribution can thus be written as

∆c = xrδ〈r2
c〉+ xaδa

2 ,

where the parameters xr and xa in case of the single-particle effect are given
in Table 4.8 for states of 1s in H-like Tl and 6p1/2 in neutral Tl. Engfer et
al. [56] have from experimental data of muonic isotope shifts derived values
for δ〈r2

c〉 by assuming Fermi distributions with δa = 0. Their result for
the difference between 205Tl and 205Tl is δ〈r2

c〉 = 0.115(3) fm2, giving ∆c =
−0.897(23) × 10−4 for 1s in H-like Tl and ∆c = −0.245(6) × 10−4 for the
single particle effect of 6p1/2 in neutral Tl.

The hyperfine anomaly due to a difference in magnetization distribution
can, following Mårtensson-Pendrill [55], be rewritten in a more compact way:

∆m = a2λm ,

where

λm = δ〈r2
m〉

(
1 +

a4

a2

δ〈r4
m〉

δ〈r2
m〉

+
a6

a2

δ〈r6
m〉

δ〈r2
m〉

+ · · ·
)
.

The parameters a2, a4 and a6 are given in Table 4.8 for 1s in H-like Tl and
for the single-particle effect of 6p1/2 and 7s in neutral Tl. By using the above
values of ∆ and ∆c for the single-particle effect of 6p1/2 ∆m is determined
to be −0.699(13) × 10−4, which corresponds to λm = 0.299(5) fm2. The
quantities a4/a2 and a6/a2 have very small variations for the states studied,
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Table 4.8: Hyperfine anomaly parameters for the single-particle effect in Tl due
to differences in nuclear charge and magnetization distributions.

1s in H-like Tl 6p1/2 in neutral Tl 7s in neutral Tl
xr (10−3 fm−2) −0.780 −0.213 —
xa (10−3 fm−2) 0.513 0.143 —
a2 (10−4 fm−2) −7.73 −2.34 −8.39
a4 (10−6 fm−4) 3.32 0.985 3.62
a6 (10−9 fm−8) −8.91 −2.66 −9.83
a4/a2 (10−3) −4.29 −4.21 −4.32
a6/a2 (10−5) 1.15 1.14 1.17

making the λm parameter possible to use also for 1s in H-like Tl. Moreover,
the change in magnetization can also be estimated to be δ〈r2

m〉 = 0.38(1) fm2.
By using the analogy with the anomaly for 6p1/2 in neutral Tl, the 1s

anomaly in H-like Tl due to a difference in magnetization distribution is
found to be −2.31(4)× 10−4 giving a total hyperfine anomaly of −3.21(5)×
10−4. Using the ratio of the gI-factors the energy ratio corresponding to our
calculated hyperfine anomaly for 1s in H-like Tl is 1.009 511(5). To obtain
an energy difference from this energy ratio we use our total hfs result for
203Tl80+ giving an energy difference of 0.030 71(16) eV and a corresponding
transition-wavelength difference of 3.617(19) nm. The recently measured
values of 0.030 59(29) eV and 3.638(35) nm agrees with the calculated results
as also discussed in Paper VII.





CHAPTER 5

Conclusions and Outlook

We have in this work performed calculations of the hfs in the ground state
of the hydrogen-like ions 165Ho66+, 185Re74+, 187Re74+, 203Tl80+, 205Tl80+,
207Pb81+ and 209Bi82+. The total hfs results for 207Pb81+ and 209Bi82+ are in
fair agreement with experiment, but reassessments of nuclear magnetic di-
pole moments are needed to achieve good tests of the QED theory. This fair
agreement indicates that the nuclear magnetizations for the systems consid-
ered are relatively well described by a single-particle model. Such a model
is, however, not suitable for 165Ho and 185,187Re, with their more complex
nuclear structure. The discrepancies between theory and experiment point
to a need for descriptions, which are better and more accurate in predicting
nuclear structure, in particular the Bohr-Weisskopf effect. For 203Tl80+ and
205Tl80+ a single-particle model was expected to describe most of the nu-
clear magnetization for these single-valence nuclei. Our total hfs results were
helpful in the experimental search for hfs transitions. The quite recent ex-
perimental results indicate that the magnetization distribution is larger than
indicated by the nuclear single-particle calculation. Our calculated isotopic
energy and wavelength differences for the hfs in the stable thallium isotopes
are more accurate and agree with recent experimental results.

We have also used the experimental hfs results and the QED calculations
to extract nuclear magnetization distribution radii. In addition to our results
for 203Tl, 205Tl, 207Pb and 209Bi, where the magnetization can be regarded
as located in the outer part of nucleus, we have unexpected results for 165Ho,
185Re and 187Re. The results for these three nuclei are notably larger than the
charge distribution radii. Our determined magnetization radii will hopefully
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stimulate work for better descriptions of nuclear magnetization properties.
They may also be used for calibration in studies in the region of overlap
between atomic and nuclear physics, where, e.g., neutron distributions and
nuclear wavefunctions are needed. One of these studies could be the search
for atomic parity non-conservation.

The theoretical hfs determinations use nuclear parameters as input. Re-
fined measurements of nuclear magnetic dipole moments and better descrip-
tions of the nuclear magnetization are needed to fulfill the original aim of
testing the QED effects in the cases of 203,205Tl80+, 207Pb81+ and 209Bi82+.
We hope that our accurate determination of the nuclear magnetization dis-
tribution radii will provide incentive for other theorists in their on-going
development of more accurate methods for studying nuclear structure.
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APPENDIX A

Summary of Papers I–VII

This thesis is based on work reported in seven different papers, referred to
by Roman numerals in the text. A summary of these papers follows below.

Paper I

This paper was published in a volume of Hyperfine Interactions devoted to
the proceedings of the “2nd Euroconference on Atomic Physics with Stored
Highly Charged Ions”. It presents and discusses recent progress in precision
tests of QED in strong nuclear fields. The discussion is focused on theoret-
ical comparisons with experiments on the 1s Lamb-shift in H-like uranium,
the two-electron Lamb-shift in He-like ions, the hyperfine structure of H-like
bismuth and the bound-electron g-factor in H-like ions. My personal contri-
butions were concentrated to the effect of the nuclear charge distribution in
the cases of the 1s Lamb-shift in H-like uranium and the hyperfine structure
of H-like bismuth.

Paper II

This paper was published in a volume of Advances in Quantum Chemistry
dedicated to Prof. Ingvar Lindgren on the occasion of his 65th birthday. It
gives a brief review over hyperfine structure studies, including work per-
formed in Göteborg. The major sections discus nuclear charge and magne-
tization distributions in some detail and gives also several useful relations.
The results are presented in terms of moments, thereby displaying directly
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the sensitivity and emphasizing the need for a better understanding of nu-
clear wavefunctions.

Three small errors are present in this paper:

• page 350, FIG. 2, values for E/µI are given on the vertical axis instead
of A/gI as stated in the caption. In this case are these quantities related
by A/gI = 5

6
E/µI ,

• page 353, the expression for κL(R) contains the parenthesis (1−r/R3),
which should read (1− r3/R3),

• page 358, Ref. [4], the year “(19451)” should read “(1951)”.

Paper III

This article is a joint paper of experimental work performed at Lawrence
Livermore National Laboratory and theoretical work performed in Göteborg.
The experimental part reports that the wavelengths of the hyperfine tran-
sitions in the ground state of the two isotopes 185Re74+ and 187Re74+ were
measured to be (4560.5± 3) Å and (4516.9± 3) Å, respectively, using emis-
sion spectroscopy in an electron beam ion trap. After applying appropriate
corrections for the nuclear charge distribution and QED effects, a Bohr-
Weisskopf effect of ε = 2.23(9)% and 2.30(9)% are found for 185Re and
187Re, respectively. The radius of the nuclear magnetization distribution
for 185Re and 187Re are then extracted to be 〈r2

m〉1/2 = 7.57(32) fm and
〈r2

m〉1/2 = 7.69(32) fm, respectively, considerably larger than the nuclear
charge distribution radius. The parameter ε and nuclear magnetization dis-
tribution radius are also extracted for 165Ho66+ and 209Bi82+. The Bohr-
Weisskopf effect in hydrogen-like ions is found to be a sensitive probe of
the nuclear magnetization distribution, especially for cases where the charge
distribution and magnetic moments are accurately known.

Paper IV

The aim for this paper was to point out the need for a reassessment of tab-
ulated nuclear magnetic dipole moments as prompted by recent experiments
on the ground-state hyperfine structure in highly charged hydrogen-like sys-
tems. This work gives an overview of the magnetic dipole moments for the
nuclei of interest, i.e. 165Ho, 185,187Re and 203,205Tl, 207Pb and 209Bi, including
corrections for diamagnetic shielding and discussions of chemical shifts. It is
found that the present uncertainties in the nuclear magnetic dipole moment
limit the interpretation of the accurate experimental hyperfine structures for
these systems.
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Paper V

This paper was published in a volume of Hyperfine Interactions devoted to
the proceedings of the “1st Euroconference on Atomic Physics at Accelera-
tors”. It considers the effects of the nuclear magnetization distribution on the
hyperfine structure and briefly presents a solution of the Schrödinger equa-
tion for a nucleon in a Woods-Saxon potential. It also considers the isotopic
differences in thallium and the difference in energy-splitting due to hyperfine
structure for 203Tl+80 and 205Tl+80, respectively, is found to be 0.031 04(1) eV,
which corresponds to a transition-wavelength difference of 3.640(1) nm. This
prediction relies on accurate data for neutral Tl and thus has a uncertainty
well below the expected experimental error bars.

Paper VI

This work is an invited chapter in the forthcoming “Handbook of Molecular
Physics and Quantum Chemistry”. The title is “The Atomic Nucleus” and it
is mainly a review over nuclear charge distributions and the effects on atomic
properties.

Paper VII

This article is a joint paper of experimental work performed at Lawrence
Livermore National Laboratory and theoretical work performed in Göteborg.
The experimental part reports that the hyperfine splitting of the 1s ground
state of hydrogen-like Tl has been measured for the two stable isotopes us-
ing emission spectroscopy in the SuperEBIT electron beam ion trap, giving
3858.22± 0.30 Å for 203Tl80+ and 3821.84± 0.34 Å for 205Tl80+ with a wave-
length difference ∆λ = 36.38 ± 0.35 Å, consistent with estimates based on
hyperfine anomaly data for neutral Tl. By using previously determined nu-
clear magnetic moments and applying appropriate corrections for the nuclear
charge distribution and radiative effects, the experimental splittings can be
interpreted in terms of nuclear magnetization radii 〈r2

m〉1/2 = 5.83(14) fm for
203Tl and 〈r2

m〉1/2 = 5.89(14) fm for 205Tl. These values are 10% larger than
derived from single-particle nuclear magnetization models, and are slightly
larger than the corresponding charge distributions.





APPENDIX B

The Hyperfine Interaction Operator

A brief discussion of perturbations and matrix elements is given below. More
thoroughly discussions can, e.g., be found in the textbooks by Jackson [57]
and Lindgren and Morrison [21] and the article by Lindgren and Rosén [58].

B.1 Non-relativistic perturbation

The classical Hamilton function for a particle moving in some potential en-
ergy field V (r) is

H =
1

2m
p2 + V (r) ,

where m is the mass of the particle and p is the linear momentum. In
presence of an electric and magnetic field, E and B, derivable from a scalar
and a vector potential, φ and A:

E = −∇φ , B = ∇×A ,

the Hamiltonian becomes

H =
1

2m
(p− qA)2 + V (r) + qφ ,

where q is the charge of the particle. The corresponding quantum mechanical
Hamilton operator is given by

H =
1

2m
(−ih̄∇− qA)2 + V (r) + qφ , (B.1)
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since the quantity p is represented by the operator −ih̄∇. The operators ∇
and A commute in Coulomb gauge since ∇·A = 0 and the Hamiltonian can
thus be rewritten as

H = − h̄2

2m
∇2 + V (r) + qφ+ i

h̄q

m
A · ∇+

q2

2m
A2 .

The first two terms is recognized as the zero-field Hamiltonian, the third
term gives the perturbation from an electric field, the fourth term scales
linearly with A and is called paramagnetic and the last quadratic term is
called diamagnetic. The quadratic term will here be neglected since it is
commonly very small. For a particle with non-zero spin magnetic moment
µs an additional term equal to−µs·B is present. The first order perturbation
Hamiltonian for an electron in presence of an electromagnetic field can then
be written as

H ′ = −eφ+ 2
µB

h̄
(−ih̄A · ∇+ s ·B) ,

where µB = eh̄/2me is the Bohr magneton and it is assumed that the elec-
tronic g factor is exactly 2.

Zeeman effect

The vector potential of a homogeneous magnetic field is

A =
1

2
(B × r) ,

giving

−ih̄A · ∇ = −ih̄1

2
(B × r) · ∇ = −ih̄1

2
B · (r ×∇) = −1

2
B · l ,

since the operator −ih̄r × ∇ is equal to the l operator. The interaction
between an electron and a homogeneous magnetic field, i.e., Zeeman effect,
is thus described by

Hm =
µB

h̄
(l + 2s) ·B .

Hyperfine structure

The vector potential and field from a magnetic dipole are

A =
µ0

4π

µ× r

r3
, B =

µ0

4π

[
−µ

r3
+

3r(r · µ)

r5
+

8π

3
µδ(r)

]
,



The Hyperfine Interaction Operator · 51

giving

−ih̄A · ∇ = −ih̄ µ0

4π

µ× r

r3
· ∇ = −ih̄ µ0

4π
µ · r ×∇

r3
=
µ0

4π

µ · l
r3

.

The interaction between a nuclear magnetic dipole µI and an electron is thus
described by

Hdip = 2
µ0

4π

µB

h̄

[
l

r3
− s

r3
+

3(s · r)r

r5
+

2

3

δ(r)

r2
s

]
· µI

or

Hdip = 2
µ0

4π

µB

h̄

[
l

r3
−
√

10
{
sC2

}1

r3
+

2

3

δ(r)

r2
s

]
· µI , (B.2)

by using spherical tensor notations.

B.2 Relativistic perturbation

The relativistic Dirac Hamiltonian for an electron in presence of an electro-
magnetic field is, in analogy with Eq. (B.1), given by

H = cα · (−ih̄∇+ eA) + βmec
2 + V (r)− eφ

and the perturbation Hamiltonian for an electron in presence of an electro-
magnetic field can thus be written as

H ′ = −eφ+ ecα ·A .

Zeeman effect

The vector potential of a homogeneous magnetic field gives

α ·A =
1

2
(r ×α) ·B =

1

2
r
(
C1 ×α

) ·B = −i
√

2
1

2
r
{
C1α

}1 ·B ,

since r = rC1 and the vector product for tensor-operators of rank 1 is
defined as t× u = −i√2{tu}1. The perturbation from the interaction with
a homogeneous magnetic field is then described by

Hm = −i
√

2
ec

2
r
{
C1α

}1 ·B .
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Hyperfine structure

The vector potential from a magnetic dipole gives

α ·A =
µ0

4π

r ×α

r3
· µ =

µ0

4π

C1 ×α

r2
· µ = −i

√
2
µ0

4π

{
C1α

}1

r2
· µ .

The interaction between a nuclear magnetic dipole µI and an electron is thus
described by

Hdip = −i
√

2
µ0

4π
ec

{
C1α

}1

r2
· µ . (B.3)

B.3 General hyperfine operator

Hyperfine structure indicates a coupling between the electronic and nuclear
angular momenta. The total angular momentum of the electrons, J , and the
nucleus, I, respectively, couple to form a total angular momentum F , given
by

F = J + I

with the quantum numbers

F = J + I, J + I − 1, . . . , |J − I|
MF = F, F − 1, . . . ,−F .

Generally, the perturbation from the interaction between electrons and nu-
clear multipole fields can be written in terms of scalar products of spherical
tensor operators:

Hhfs =

∞∑
k=1

T k ·M k , (B.4)

where M k represents the 2k moment of the nucleus and T k the corresponding
electronic field at the nucleus. For parity reasons, magnetic interactions give
rise only to odd k (dipole, octupole, . . . ) and electric interactions only to
even k (quadrupole, hexadecapole, . . . ), i.e., for k = 1 we have M 1 = µ and
get the magnetic dipole interaction above and for the case of k = 2 we have
M 2 = Q2 and get the electric quadrupole interaction etc. The electronic
tensor operators T k are one-body operators for many-electron systems and
can be rewritten in terms of sums of single-electron operators:

T k =

N∑
i=1

tk
i .
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For k = 1 the non-relativistic t operator can be found by identification with
Eq. (B.2):

t1 = 2
µ0

4π

µB

h̄

[
l

r3
−
√

10
{
C2s

}1

r3
+

2

3

δ(r)

r2
s

]
.

The general relativistic t operators are given by the following expressions

tk =




− e

4πε0

Ck

rk+1
for k even ,

−i µ0

4π
ec

(
k + 1

k

)1/2
{
Ckα

}k

rk+1
for k odd .

It is easily shown that these expressions in combination with Eq. (B.4) for
k = 1 gives the relativistic expression for the hyperfine dipole interaction,
i.e., Eq. (B.3).

B.4 Matrix elements of the hyperfine operator

The matrix element of the general hyperfine operator (B.4) is

〈ψ|Hhfs|ψ′〉 =
∑

k

N〈γJγI(JI)FMF |T k ·M k|γ′JγI(J
′I)F ′M ′

F 〉

= N(−1)J ′+I+F δ(F, F ′)δ(MF ,M
′
F )∑

k

{
J I F
I J ′ k

}
〈γJJ ||T k||γ′JJ ′〉〈γII||M k||γII〉 ,

where N is a normalizing constant. The matrix elements diagonal with re-
spect to J and I give the energy shift due to the hyperfine interaction:

Ehfs = N(−1)J+I+F
∑

k

{
J I F
I J k

}
〈γJJ ||T k||γJJ〉〈γII||M k||γII〉 .

In the case of dipole interaction k = 1 have these diagonal matrix element
the same F dependence as the scalar product J · I:

〈(JI)FMF |J · I|(JI)FMF 〉 = (−1)J+I+F

{
J I F
I J 1

}
〈J ||J ||J〉〈I||I||I〉 .

Hence, can the energy shift Edip be produced by replacing the dipole operator,
given by Eq. (B.2) or (B.3), with the “equivalent” operator

Hdip =
A

h̄2 J · I ,
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where

A =
〈γJJ ||T 1||γJJ〉〈γII||µI ||γII〉

〈J ||J ||J〉〈I||I||I〉 h̄2 .

This A factor is called the dipole interaction constant. The F dependence
of the dipole energy shift can easily be obtained from the 6-j symbol or by
using the identity

J · I =
1

2
(F 2 − J2 − I2) ,

giving

Edip =
A

2
[F (F + 1)− J(J + 1)− I(I + 1)] .

where the separation between the levels F and F − 1 is

∆Edip = AF .

Furthermore, it can be assumed that the nuclear wavefunction is normalized
but the electronic is not, the A-factor can then be rewritten as

A =
〈γJJ ||T 1||γJJ〉

N [J(J + 1)(2J + 1)]1/2
gIµN ,

since

〈J ||J ||J〉 = Nh̄[J(J + 1)(2J + 1)]1/2

and the nuclear matrix element in the numerator by definition is

〈γII||µI ||γII〉 = gI
µN

h̄
〈I||I||I〉 .

The electronic wavefunctions are here supposed to be perturbed and not
necessarily normalized, but the energy shift can also be expressed by means
of a corresponding “effective” operator and unperturbed (and normalized)
wavefunctions. Moreover, for the one-electron systems considered in this
thesis the effective dipole operator is equal to the dipole operators given by
Eqs. (B.2) and (B.3).

A s-state of a hydrogen-like system with non-zero I is split into two
sublevels with F = I+1/2 and F = I−1/2, respectively due to the hyperfine
dipole interaction. The non-relativistic A-factor in this case becomes

A =
4

3

µ0

4π
µB

∫ ∞

0

Pns
δ(r)

r2
Pnsdr =

16

3

µ0

4π
µB

Z3

n3a3
0

gIµN =
4

3
α4mec

2Z
3

n3
gI
me

mp
,
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where a0 = 4πε0h̄
2/mee

2 is the Bohr radius, giving an energy separation of

∆E =
4

3
α4mec

2Z
3

n3
gI
me

mp

(
I + 1

2

)
.

The corresponding relativistic expressions are

A =
8

3

µ0

4π
ecgIµN

∫ ∞

0

Fns
1

r2
Gnsdr =

8

3

e

4πε0c
gIµN

∫ ∞

0

Fns
1

r2
Gnsdr

and

∆E =
8

3

e

4πε0c
gIµN

(
I + 1

2

) ∫ ∞

0

Fns
1

r2
Gnsdr .

These expressions hold for point-like nuclear magnetizations, corrections for
the extended magnetization lead to the Bohr-Weisskopf effect, as discussed
in Sec. 3.2.





APPENDIX C

The Nuclear Magnetic Dipole Moment in 207Pb

The nuclear magnetic moment of 207Pb has been of some concern recently,
in connection with the measurements of the hfs of the hydrogen-like ion
at GSI. The compilation by Raghavan [59] lists two different experimental
values: The NMR value 0.592 583(9) µN, by Lutz and Stricker [60] and the
optical pumping value, 0.582 19(2) µN, by Gibbs and White [61], differing by
1.8%, well outside the claimed relative accuracies of 1.5 × 10−5 and 3.4 ×
10−5, respectively. This discrepancy clearly affects the comparison between
experimental and theoretical results for the 1s hyperfine structure.

There have been several attempts to reduce the discrepancy and we give
below a short review of the work performed during the last decades. It
must be emphasized that a magnetic shielding (diamagnetic shielding and
possible chemical shift) is present in all measurements of nuclear magnetic
dipole moments. To allow for this effect the observed nuclear magnetic dipole
moment must thus be multiplied by a (1 − σ)−1, where σ is the magnetic
shielding factor. Diamagnetic shielding factors σa for atomic systems can be
calculated with sufficient accuracy as also discussed in Paper IV. A value of
the nuclear magnetic dipole moment which is not corrected for the magnetic
shielding is called uncorrected, and will be denoted by µ′I , to differ from the
corrected (or bare) value µI .

The tabulation by Lindgren [49] gives a clear presentation of the cor-
rections and difficulties involved in the determination of nuclear magnetic
moments. The tabulation lists an NMR value by Proctor for the uncorrected
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nuclear magnetic dipole moment of 207Pb:

µ′I = 0.583 65(8) µN

as reported in 1950 [62] from a measurement on Pb(C2H3O2)2. It must be
emphasized that the uncertainty of this value and the moments below do
not include the uncertainty in the shielding correction unless otherwise is
specifically stated.

This NMR value of Proctor is also listed in the compilation by Fuller [63]
together with other NMR results determined in the 1950s. The other results
were determined for various chemical compounds giving in chemical shifts
up to 0.21%. A 1969 optical pumping experiment in the 3P0 ground state
of free 207Pb atoms by Gibbs and White [61] resulted in an observed nuclear
resonance corresponding to

µ′I = 0.572 35(2) µN .

This result deviates from the Proctor value by 2% and is said to corroborate
“very large chemical shifts of 2–3% in essentially all Pb compounds used to
date for NMR investigations”. This interpretation of the discrepancy was
supported by an article by Lutz and Stricker [60], who in 1971 reported their
NMR experiment as a measurement of “the shielding of lead ions by water”.
This measurement was carried out on Pb(NO3)2 in heavy water resulting in

µ′I = 0.582 543(9) µN.

after an extrapolation to vanishing concentration of lead nitrate. The differ-
ence of −1.78(1)% between the optical pumping value and this NMR result
was interpreted as a shielding of the 207Pb nucleus in the Pb2+ ion by D2O
and reported as the main result by Lutz and Stricker. The optical pumping
value and the NMR value in the compilation by Raghavan originates from
the work by Gibbs and White and by Lutz and Stricker, respectively.

However, in 1970 Margerie [64] pointed out that the 3P0 term of the 6p2

ground state configuration in the Pb atom gets an admixture of the 3P1

term of the same configuration due to hyperfine interaction. This admixture
would affect an optical pumping experiment on the ground state and can
thus explain the large difference between the Gibbs value and the (Proctor)
NMR value. The nuclear magnetic dipole moment can then be written as

µ′I = µ(3P̃0)− δµ(3P̃0) ,

where µ(3P̃0) is the magnetic dipole moment of the mixted 3P0 term (mea-
sured by Gibbs and White) and δµ(3P̃0) is a correction due to the admixture.
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Margerie calculated the correction to be −0.0068(29) µN, corresponding to a
nuclear magnetic dipole moment of

µ′I = 0.5791(29) µN ,

which almost coincides with the NMR value. The compilation by Fuller [63]
quotes a 1972 private communication by Gibbs noting that “large discrepancy
with NMR-value may be due to large interaction of 3P1-state with 3P0-state”.
In 1978 Sushkov et al. [65] observed that the expressions used by Margerie
were very sensitive to small corrections. Sushkov et al. used a different, less
sensitive expression. They solved the Dirac equation numerically in a para-
meterized potential, where the parameters were optimized to fit the terms of
the ground configuration, including the fine structure. They then included
admixtures of the type 6p → np, and obtained a mixing parameter by fitting
the hyperfine splitting constants for the 6p2 states of Pb. Using relativistic
correction factors equivalent “with an accuracy to within notations” to the
expressions by Margerie they obtained −0.0118 µN. Their article contains no
estimation of the uncertainty in the correction term, but assuming a relative
uncertainty of 10% seems to reasonable from their discussion. Their value
for nuclear magnetic dipole moment would then be

µ′I = 0.5842(12) µN ,

in even better agreement with the NMR value. Even this calculation includes
only a limited amount of correlation effects, and could probably be improved
with more powerful computing techniques.

In 1988 Brenner reported of high-frequency measurements on the 3P1

term of the ground-state configuration for 207Pb with use of the ABMR
technique [66]. A combined analysis of his data with the results of Gibbs
and White gave an estimate of the mixing of the fine-structure levels due
to the hyperfine interaction. A correction term to the optical pumping re-
sult for the nuclear magnetic dipole moment could then be estimated to be
−0.0073(14) µN, corresponding to a nuclear magnetic dipole moment of

µ′I = 0.5797(14) µN .

In general, a comparison between nuclear magnetic moments obtained
by different methods requires that the moments are corrected for magnetic
shielding, which depends on the configuration and environment. The dia-
magnetic corrections used in Paper IV for different charge states of atomic
PB were taken from Johnson and co-workers based on RHFS and RPA cal-
culations [67–71], giving:
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neutral Pb (1− σa)
−1 = 1.020 98(21) ,

Pb2+ (1− σa)
−1 = 1.017 02(6) .

The diamagnetic correction for the Pb2+ ion and an assumed relative un-
certainty of 2× 10−3 due to the chemical shift, motivated by the differences
among the NMR values, yields

µI = 0.5925(12) µN

as the corrected NMR value of Lutz and Stricker. The following corrected
optical pumping values:

Gibbs and White: µI = 0.584 36(12) µN

Sushkov et al.: µI = 0.5942(12) µN

Brenner µI = 0.5918(14) µN

were yielded by using the diamagnetic correction for neutral Pb on the values
by Gibbs and White and Brenner, and by using the diamagnetic correction
for the Pb2+ ion on the value by Sushkov et al.. The advantages and disad-
vantages of these four corrected values can be summarized as:

• the NMR value by Lutz and Stricker is subject to an unknown chemical
shift which, however, is only due to surrounding heavy water molecules,

• the optical pumping value by Gibbs and White was performed on free
atoms, but the original result did not take the mixing of 3P0 and 3P1

into account,

• the theoretical work by Sushkov et al. gives a correction to the value
by Gibbs and White, and includes a limited amount of correlation,

• the ABMR measurements by Brenner also produces a correction to the
value by Gibbs and White, however with a relative large uncertainty.

The result of our analysis is that the nuclear magnetic dipole moment of
207Pb is associated with a considerable uncertainty, at least of the order of
0.2%, and thus that the accuracy indicated in the NMR value tabulated by
Raghavan is considerably overestimated. To obtain a value for the nuclear
magnetic moment with higher accuracy, a more precise ABMR measurement
would be helpful, as would a renewed analysis of optical pumping as well as
ABMR results, using more complete atomic wavefunctions. This uncertainty
concerning the Pb magnetic moment presents, of course, a serious complica-
tion in the interpretation of the accurate measurements of the 1s hyperfine
structure in H-like Pb.
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[27] Sten Salomonson and Per Öster. Relativistic all-order pair functions
from a discretized single-particle Dirac Hamiltonian. Physical Review
A, 40(10):5548–5558, 1989.
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207Pb. Comptes rendus hebdomadaires des séances de l’Académie des
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