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DISSERTATION ABSTRACT 

Hasselberg, Linda. Interactions between cytochrome P450 and estrogenic 
compounds in fish. Department of Zoophysiology, Göteborg University, 
Box 463, SE-405 30 Göteborg, Sweden 

Contamination by various pollutions is an environmental concern. Many fish 
populations are continuously exposed to xenobiotics, including endocrine 
disrupting chemicals. Cytochrome P450 (CYP) enzymes metabolize lipophilic 
compounds facilitating their excreation, which prevents bioaccumulation. The 
aim of this thesis was to study effects of estrogenic compounds on CYP, 
redox status and endocrine responses in fish. Furthermore, to identify possible 
sites of interaction between two classes of environmental pollutants, 1) 
estrogenic compounds, i.e. alkylphenols, ethynylestradiol (EE2) and 2) 
antifungal azoles, i.e. ketoconazole. We hypothesize that estrogenic 
compounds and azoles share common routes of excretion in fish through 
CYP1A and CYP 3A. 

Atlantic cod (Gadus morhud) and rainbow trout (Oncorhynchus mykiss) were 
exposed orally or by i.p. injections. Effects on hepatic CYP1A and CYP3A 
protein expression and activities were investigated as well as glutathione, 
glutathione-related enzymes, vitellogenesis and sex steroid hormone levels. 

Alkylphenols induced CYP1A and CYP3A protein expressions in male 
Atlantic cod, but not in females. Alkylphenols had no effect on CYP1A 
activities in either males or females. In vitro inhibition studies showed that the 
alkylphenols efficiently inhibited CYP1A activity. In addition, ketoconazole 
induced CYP1A and CYP3A protein expression, whereas CYP1A and CYP3A 
activities were inhibited. These results indicate that CYP1A and CYP3A 
represent sites of interactions between these classes of xenobiotics. Combined 
exposure of ketoconazole with EE2 increased the responsiveness to EE2 

measured as vitellogenesis. Thus, co-exposure to ketoconazole appears to 
make juvenile rainbow trout more sensitive to EE2 exposure. Combined 
exposure to ketoconazole and EE2 also decreased circulating androgens. This 
study shows interactions between ketoconazole and EE2, which affect the 
endocrine system and that CYP1A and CYP3A may play an important role in 
this interaction. 

Keywords: Cytochrome P450, CYP1A, CYP3A, glutathione, alkylphenols, 
ethynylestradiol, ketoconazole, vitellogenin, Atlantic cod, rainbow trout, fish 
ISBN 91-628-6270-7 
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Sf¥ï®v̂ aawfcïv;;̂ ĵ»::i., . V.«<Ç. .• ..r,Sv'V. y - ' ' • • • •  
. 

551»«* JlSfi&Xgfi 
b§&; j^V;ï «s»ï :'•••*•:. -w-m*. 

flSlStöiälll 
; ;• &%J: '̂ J 

JJJ'J^M^JiJJlfy J'Y' S-WÄ ii 
•>" V-

• " : " r  sifgsï 'isfiif ps« I > ;ilf Sim Så i PlsllllSMM SÄ!*fi»Sa£*S»6!iS 

%jjM8j 
JJS&ÊM 

åjjMsmm 
kSÄII 

. 

atlSIISi;* ^®Slïiïiïû;œ 

. 

vWSSsfefi; 

Y '>"'. 5. . . ; . '  

• 

- ---' • :;;. •••"•.•. - -Vy.'' ? v;I'K ' - •' " ^ : v 
SSsï 

;>  ̂

S;f: 
iiSÄlli 

. . . . . . .  •  .  .  

.t'"-. 1 .• '. 

-
• ' 

; :: , ' i' • : : ;• <• ' :;. •" ••; 



TABLE OF CONTENTS 
LIST OF PAPERS 7 
ABBREVIATIONS 8 
INTRODUCTION 9 

Biotrans formation 9 
Cytochrome P450 (CYP) monooxygenases 9 

CYP1A 10 
CYP3A 11 

Conjugation 13 
Glucoronic acid 13 
Glutathione 13 

Endocrine disrupting chemicals 14 
Environmental estrogenic compounds 15 

Alkylphenols 16 
Produced water 16 
Alkylphenol ethoxylates 18 

Ethynylestradiol 18 
Azole fungicides 19 

The estrogen receptor 21 
Actions of estrogenic compounds 21 
Reproductive endocrinology of fish 22 

Vitellogenesis 23 
AIMS OF THESIS 24 
METHODOLOGICAL CONSIDERATIONS 25 

Animals 25 
Atlantic cod 25 
Rainbow trout 26 

Methods 26 
Analyzing the glutathione concentration 26 
Glutathione-related enzyme assays 26 
7-Ethoxyresorufin-O-deethylase (EROD) activity 27 
7-Benzyloxy-4-[trifluoromethyl]-coumarin-0-debenzyloxylase 
(BFCOD) activity 27 
CYP1A and CYP3A in vitro inhibition studies 28 
CYP1A and CYP3A protein blot analyses 28 
2-Dimensional gel electrophoresis (2D-GE) 28 
Enzyme-linked immunosorbent assay (ELISA) 29 

RESULTS & DISCUSSION 30 
Alkylphenols and the glutathione-dependent anti-oxidant system 30 

Glutathione 30 
Glutathione reductase 31 



Glucose-6-phosphate dehydrogenase 32 
Glutathione S-transferase 32 

Effects of environmental estrogens on CYP1A 33 
Alkylphenols 33 
Xenoestrogens and ketoconazole 33 

Effects of environmental estrogens on CYP3A 35 
Alkylphenols 35 
Xenoestrogens and ketoconazole 35 

Sexually dimorphic expression of CYP1A and CYP3A genes 37 
CYP1A 37 
CYP3A 37 

In vitro inhibition studies of CYP1A and CYP3A activities in Atlantic cod 
38 

Vitellogenesis 40 
Sex steroid hormones 40 

CONCLUDING REMARKS 43 
ACKNOWLEDGEMENT 45 
REFERENCES 47 



LIST OF PAPERS 
The thesis is based on the following papers and manuscripts, which are 
referred to in the text by their Roman numerals: 

I Hasselberg, L., Meier, S. and Svardal, A., 2004. Effects of alkylphenols 
on redox status in first spawning Atlantic cod (Gadus morhuà). Aquatic 
Toxicology 69:95-105. 

II Hasselberg, L., Meier, S., Svardal, A., Hegelund, T. and Celander, 
M.C., 2004. Effects of alkylphenols on CYP1A and CYP3A expression 
in first spawning Atlantic cod (Gadus morhuà). Aquatic Toxicology 67:303-
313. 

III Hasselberg, L., Grosvik, B.E., Goksoyr, A. and Celander, M.C. 
Interactions between xenoestrogens and ketoconazole on CYP1A and 
CYP3A in juvenile Atlantic cod (Gadus morhuà). Submitted. 

IV Hasselberg, L., Westerberg, S. and Celander, M.C. Ketoconazole, an 
antifungal imidazole, makes rainbow trout more sensitive to 17a-
ethynylestradiol exposure. Submitted. 

Published papers were reproduced with permission from the publisher. 

7 



ABBREVIATIONS 
11-KT 11 -keto-testosterone 
2D-GE 2-dimensional gel electrophoresis 
AhR aryl hydrocarbon receptor 
APE alkylphenol ethoxylates 
ARNT aryl hydrocarbon nuclear translocator 
BFC 7 -benzyloxy-4- [trifluoromethyl] -coumarin 
BFCOD 7-benzyloxy-4-[trifluoromethyl]-coumarin O-debenzyloxylase 
BNF ß-naphthoflavone 
c4 A'-tert- b u ty 1 p h e no 1 
c5 4/7-pentylphenol 
c6 4«-hexylphenol 
c7 4«-heptylphenol 
CDNB 1 -chloro-2,4-dinitrobenzene 
CYP cytochrome P450 
DDT dichloro diphenyl trichloroethane 
E2 17ß-estradiol 
EE2 17 a-ethynylestradiol 
EDC endocrine disrupting chemical 
ELISA enzyme-linked immunosorbent assay 
ER estrogen receptor 
EROD 7-ethoxyresorufin O-deethylase 
FMO flavin-containing monooxygenases 
G6PDH glucose-6-phosphate dehydrogenase 
GnRH gonadotropin releasing hormone 
GR glutathione reductase 
GSH reduced glutathione 
GSSG oxidized glutathione 
tGSH total glutathione (reduced + oxidized) 
GST glutathione ^-transferase 
GtH gonadotropin 
I I I  C  7-hydroxy-4- [trifluoromethyl] -coumarin 
HPLC high performance liquid chromatography 
K; inhibitor constant 
NADP+ oxidized nicotinamide adenine dinucleotide phosphate 
NADPH reduced nicotinamide adenine dinucleotide phosphate 
NP nonylphenol 
PAH polyaromatic hydrocarbon 
PCB polychlorinated biphenyl 
PXR pregnane X receptor 
RXR 9-äs retinoic acid receptor 
SDS-PAGE sodium dodecyl sulphate-polyacrylamide gel electrophoresis 
T testosterone 
UDPGT uridine diphosphate glucuronyl transferases 
vtg vitellogenin 

8 



INTERACTIONS BETWEEN CIROCHROME P450. >.\n ESTROGENIC COMPOUNDS IN FISH 

INTRODUCTION 

BIOTRANSFORMATION 
Lipophilic foreign compounds (xenobiotics) as well as endogenous substances 
(endobiotics) are metabolized to more water soluble products for facilitated 
excretion (Nebert, 1994). Biotransformation is usually associated with 
detoxification and occurs mainly in the liver, but is also prominent in the 
respiratory and digestive tracts. Biotransformation can be divided into two 
phases; Phase I and Phase II. Phase I reactions often introduce a reactive 
group such as hydroxyl, into the molecule (functionalisation). Phase I 
reactions are typically oxidation, reduction or hydrolysis. The product can be 
conjugated with an endogenous molecule in phase II reactions (conjugation) 
(Nebert, et al, 1996). The conjugated product is usually inactive and more 
water-soluble, thus can be more rapidly excreted. Biotransformation of 
lipophilic compounds prevents bioaccumulation and the major routes for 
excreation are via the bile, urine or gill/lung. 

Several enzymes are involved in Phase I reactions. For example, Phase I 
oxidation is primarily catalyzed by cytochrome P450 (CYP) monooxygenases, 
which belongs to a diverse gene superfamily. Other major Phase I enzymes are 
the flavin-containing monooxygenases (FMO), epoxide hydrolases, 
lipoxygenases, cyclooxygenases, peroxidases and reductases (Nebert, 1994). 
FMOs are important in oxygenation of drugs, pesticides and other 
environmental chemicals, and they are found in the endoplasmic reticulum 
membrane of cells. FMOs utilize molecular oxygen and electrons from 
NADPH to oxidize substrates, such as secondary and tertiary amines, 
thiocarbamates, thioamides, sulfides, and thiols. Most of the reactions 
catalyzed by these enzymes produce more polar products that are less toxic 
than the parent compound. Unlike CYP enzymes, de novo synthesis of FMOs 
cannot be induced, and the activity of FMO enzymes cannot be lowered 
through the use of mechanism-based inhibitors (Halpert, et al., 1998). FMOs 
are found in bacteria, invertebrates and vertebrates, including fish, reptiles, 
amphibians, birds and mammals (Schlenk, 1998). 

Cytochrome P450 (CYP) monooxygenases 

The CYP gene superfamily are a group of related, heme containing enzymes 
that are found in nearly all living organisms, animals, plants and 
microorganisms (Omura, et al., 1993). The catabolic CYP enzymes are 
predominately located in the liver, in the endoplasmic reticulum of the cells, 
but CYP also are found in all other tissue studied in mammals. There are over 
a thousand known CYP genes, although the number in the human genome is 
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only 57 putatively functional full-length CYP genes, listed on the homepage of 
P450 nomenclature committee, "Cytochrome P450 homepage" 
(http://drnelson.utmem.edu/CytochromeP450.html). The heterogeneity of 
CYP super genefamily is thought to partly reflect the complex interde­
pendence between for example plants and animals which plays an active role 
in the animal-plant "warfare" (Gonzalez and Nebert, 1990). Thus, plants 
develop new metabolites that are increasingly toxic to animals, and animals 
develop new enzymes to metabolize these plant toxins (Nebert, et al., 1989). A 
number of CYP genes, in particular members in the mammalian CYP2 
genefamily, emerged at about the time when terrestrial animals evolved, 
around 400 million years ago (Gonzalez and Nebert, 1990). 

The individual CYP enzymes are grouped together into families and sub­
families based on sequence similarities. A number following the CYP desig­
nation identifies the family (genes that have at least a 40% sequence 
homology), a letter identifies the subfamily (at least a 55% identity), and 
another number identifies the individual enzyme (Nelson, et al., 1993). Some 
CYP are constitutively expressed (anabolic CYP), whereas the expression of 
others (catabolic CYP) can be induced by xenobiotic exposure. CYP that 
mainly degrade xenobiotics belong to the CYP1, CYP2, CYP3 families and 
subfamilies. 

The CYP reaction is initiated by substrate (RH) binding to the oxidized 
CYP (Fe3+). This binding induces conformational changes around the heme, 
increasing the heme iron redox potential, by which CYP becomes reduced. 
Electrons are transferred to the substrate-CYP complex from specific electron 
carrier proteins by reductase enzymes. The reduced state CYP (RH-Fe2+) has 
high affinity for oxygen, and one electron at the heme iron is donated to the 
bound oxygen molecule (RH-Fe3+-02). A second electron stabilizes the (RH-
Fe2+-02~)-form, one oxygen reacts with hydrogen ions and water is released. 
The other oxygen is incorporated in the substrate, forming a hydroxyl group 
(ROH). The substrate is released and CYP is oxidized (Fe3+) again (Omura, et 
al., 1993). The general reaction catalyzed by a CYP enzyme can be expressed 
as: 

RH + NADPH + H+ + 02 -> ROH + NADP+ + H20 

CYP1A 

Two enzymes comprise the mammalian CYP1A subfamily, CYP1A1 and 
CYP1A2. The two CYP1A forms found in teleost fish are more closely related 
to the mammalian CYP1A1 than the CYP1A2 form and have been named 

10 

http://drnelson.utmem.edu/CytochromeP450.html
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CYP1A1 and CYP1A3 in rainbow trout (Oncorhynchus mykiss) (Morrison, et al., 
1995; Buhler and Wang-Buhler, 1998; Morrison, et al., 1998). Furthermore, 
antibodies to fish CYP1A proteins cross-reacted with CYP1A orthologs in 
liver microsomes from several different fish species as well as rat (Goksoyr, et 
al., 1991). This shows that CYP1A forms in fish and mammals have a close 
immunochemical relationship (Stegeman and Hahn, 1994). 

Generally, CYP1A protein levels are very low in fish unexposed to 
chemical inducers (Stegeman and Hahn, 1994). Many compounds can induce 
CYP1A in fish, for example polyaromatic hydrocarbons (PAHs), and planar 
halogenated aromatic hydrocarbons including planar polychlorinated 
biphenyls (PCBs) and dioxins, and in a certain sense they induce their own 
metabolism (Stegeman and Hahn, 1994). The induction mechanism involves a 
ligand-activated transcription factor known as the aromatic hydrocarbon 
receptor (AhR), which is a member of the basic helix-loop-helix family of 
transcription factors (Hahn, 1998). In mammals, this transcription factor 
controls the expression of several other genes apart from CYP1A, such as the 
Phase II enzymes uridine diphosphate glucuronyl transferases (UDPGT) and 
glutathione S-transferase (GST) belonging to the AhR gene battery (Nebert, et 
al., 1990). The inactive cytosolic AhR exists as a complex that includes two 90-
kD heat shock proteins (hsp90) (Hahn, 1998). Upon ligand binding, the 
cytosolic AhR dissociate from hsp90 and becomes activated. The activated 
AhR-ligand complex translocates to the nucleus where it associates with the 
AhR nuclear translocator (ARNT) protein. The ligand-AhR-ARNT complex 
binds to dioxin or xenobiotic response elements (DRE or XRE) in target gene 
promoters such as CYP1A genes, resulting in increased transcription of 
specific DNA sequences (Hahn, 1998). 

There are sex differences in hepatic CYP1A expression. Higher activities 
are generally being present in male fish (Stegeman and Woodin, 1984; Förlin 
and Haux, 1990). CYP1A activities in microsomes from mature females are 
reduced during the sexual maturation process and this decrease in females 
during spawning are believed to be regulated by circulating 17ß-estradiol (E,) 
(Pajor, et al., 1990; Buhler, et al., 2000). The estradiol derived down-regulation 
mechanisms in CYP expression are not known, but probably involves the 
estrogen receptor (ER) (Solé, et al., 2003). A cross-talk between ER and AhR 
has been described in mammals (Safe, et al., 1991; Klinge, et al., 2000; Safe, 
2001) and also in fish (Elskus, 1992; Arukwe, et al., 1997; Solé, et al., 2000b; 
Navas and Segner, 2001). 

CYP3A 

The CYP3A enzymes in fish are orthologs to the mammalian CYP3A forms 
and are the most abundant of all CYP isoforms (McArthur, et al., 2003). For 
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example, CYP3A is the dominant hepatic CYP in fish (Celander, et al, 1996) 
and CYP3A4 represents up to 60% of all hepatic CYP isoforms in humans 
(Thummel and Wilkinson, 1998). Nearly 50% of all pharmaceuticals are 
metabolized by CYP3A4 and CYP3A4 is consequendy involved in numerous 
drug-interactions (Thummel and Wilkinson, 1998; Guengerich, 1999). In 
addition, CYP3A enzymes are responsible for the metabolism of several 
endogenous sex steroids, e.g. testosterone, estradiol, progesterone and 
androstenedione in both mammals and fish (Klotz, et al., 1986; Snowberger 
and Stegeman, 1987; Waxman, et al., 1988; Wang and Strobel, 1997; 
Guengerich, 1999). Another important consideration is the fact that CYP3A 
enzymes are located in the small intestine and responsible for the majority of 
first-pass metabolism in mammals (Thummel and Wilkinson, 1998). The 
CYP3A enzyme is the dominant CYP form expressed in the digestive- and 
respiratory tracts also in fish (Husoy, et al., 1994; Cok, et al., 1998; Lee, et al., 
1998a; Lee, et al., 2001; Hegelund and Celander, 2003). 

The CYP3A enzyme expression shows sexual dimorphic differences in 
fish. Generally higher levels are present in sexually mature males compared to 
females (Stegeman and Woodin, 1984; Celander, et al., 1989; Hegelund and 
Celander, 2003). However, sex differences in hepatic CYP3A have been 
reported where female winter flounder (Pseudopleuronectes ame ricanus) showed 
higher CYP3A levels and activity than males (Stegeman and Woodin, 1984; 
Gray, et al., 1991). The question whether growth hormone plays a role as a 
regulator of hepatic CYP in fish is intriguing, as growth hormone is a strong 
effector of CYP gene expression in mammals (Waxman, et al., 1988; Waxman, 
et al., 1990; Kawai, et al., 2000). 

The CYP3A enzymes have unusually broad substrate specificity and 
catalytic activity is modulated by a variety of compounds. A unique 
characteristic of CYP3A is that its catalytic activity for a particular substrate 
may be stimulated by the addition of another xenobiotic to the in vitro 
incubation mixture (Thummel and Wilkinson, 1998). This is called positive co­
operatively or autoactivation (Shou, et al., 1994; Ekins, et al., 1998; 
Guengerich, 1999). 

The most common mechanism for CYP3A induction is transcriptional 
activation followed by de novo synthesis. The orphan nuclear receptor 
designated the pregnane X receptor (PXR), a relatively new member of the 
nuclear receptor superfamily, activates CYP3A gene expression in response to 
diverse chemicals, including drugs, xenobiotics, bile acids, natural and 
synthetic steroids (Masuyama, et al., 2000; Xie, et al., 2001; Kliewer, et al., 
2002; Masuyama, et al., 2002). The ligand-PXR complex forms a heterodimer 
with 9-eis retinoic acid receptor (RXR) (Moore, et al., 2002). This complex 
binds to response elements in CYP3A gene promoter and regulate expression 
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the CYP3A gene. The existence of a piscine PXR ortholog recently was 
suggested by cloning of the ligand-binding domain of a zebrafish (Danio rerio) 
PXR gene (Moore, et al., 2002). Thus, PXRs have been found in species 
ranging from fish to man (Jones, et al., 2000; Moore, et al., 2002). 

Certain compounds that are metabolized by CYP3A also act as inhibitors 
of the CYP3A activity. Binding of an inhibitor, or its metabolite, to CYP3A 
has been found to result in either competitive or non-competitive inhibition. 
The most potent reversible CYP3A inhibitors include azole antifungal agents, 
e.g. k etoconazole, propiconazole, clotrimazole and miconazole (Miranda, et al., 
1998; Thummel and Wilkinson, 1998; Guengerich, 1999; Hegelund, et al., 
2004) 

Conjugation 

After the Phase I reaction, the molecule is susceptible to conjugation, i.e. 
attachment of a substituent group. Phase II enzymes catalyze conjugation 
reactions, facilitating the excretion of chemicals by the addition of more polar 
groups. Phase II enzymes include UDP glucuronyl transferases (UDPGT), 
glutathione ^-transferases (GST), sulfotransferases, transaminases, 
acetyltransferases and methyltransferases (Nebert, 1994). The enzymes 
UDPGT and GST catalyze conjugation to glucuronic acid and glutathione, 
respectively. Studies have shown that fish may metabolize xenobiotics by 
conjugation to both glucuronic acid or glutathione (Ankley and Agosin, 1987). 

Glucoronic acid 

Glucuronide formation, the most common conjugation reaction, involves the 
formation of a high-energy phosphate compound, uridine diphosphate 
glucuronic acid (UDPGA). This formation is catalyzed by UDPGT, which has 
broad substrate specificity, so the reaction occurs with a wide varity of drugs 
and other xenobiotics (Hanninen, et al., 1984). 

Glutathione 

Detoxification of xenobiotics, as well as endobiotics is an important function 
of glutathione (GSH), a cysteine containing tripeptide that also serves other 
several essential functions within the cell, including synthesis of proteins and 
DNA, transport, enzyme activity, metabolism and protection of cells (Meister 
and Anderson, 1983). In mammals, GSH is present intracellularly in the 
millimolar-range and is therefore the main non-protein thiol in most aerobic 
organisms (Meister and Anderson, 1983). Conjugation of GSH to electrophilic 
sites on a wide range of substrates is catalyzed by GST (Habig, et al., 1974). 
The conjugation of GSH to these compounds is the initial step in the 
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formation of mercapturic acids. GSTs are primarily cytosolic and present at 
high levels in the liver (Meister and Anderson, 1983). 

Glutathione is the predominant cellular defense against oxidative stress 
(DeLeve and Kaplowitz, 1991). For example, hydrogen peroxide is reduced by 
GSH in the presence of glutathione peroxidase (GPx) and GSH is oxidized to 
GSSG. GSSG is then reduced back to GSH by glutathione reductase (GR) at 
the expense of NADPH (DeLeve and Kaplowitz, 1991). A closed system, a 
redox cycle is formed (Fig. 1). NADPH is produced in the pentose phosphate 
pathway, where the key enzyme is the glucose-6-phosphate dehydrogenase 
(G6PDH) (Eggleston and Krebs, 1974). NADPH is important in providing 
reducing equivalents in reactions that are critical in protecting against oxidant 
damage . 

NADP 

G6PDH 

NADPH 

Figure 1. The glutathione redox cycle 

The cell can actively transport GSSG out of the cell to protect the cell 
from a shift in the redox equilibrium (DeLeve and Kaplowitz, 1991). The ratio 
of reduced to oxidized glutathione (GSH:GSSG) may be decreased as a 
consequence of direct radical scavenging or increased peroxidase activity (Otto 
and Moon, 1995). However, normal GSHGSSG ratios can be maintained by 
increased GR activity or increased GSH synthesis. 

ENDOCRINE DISRUPTING CHEMICALS 

Many anthropogenic compounds present in the environment have been found 
to affect hormonal functions in various ways (Sumpter, 1998). The endocrine 
disrupting chemical (EDC) has been described as "An exogenous agent that 
interferes with the production, release, transport, metabolism, binding, action, 
or elimination of natural hormones" (Kavlock, et al., 1996). However, another 
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definition is made by The International Programme on Chemical Safety 
(IPCS) in 2002, which suggest "An endocrine disruptor is an exogenous 
substance or mixture that alters the function(s) of the endocrine system and 
consequently causes adverse health effects in an intact organism, or its 
progeny, or (sub) populations" (Fisher, 2004). In this thesis, the term EDC 
refers to compounds that fulfil the criterions of both definitions. 

Environmental estrogenic compounds 

Those F DC s that have estrogenic activities have been denoted as 
environmental estrogens, ecoestrogens, estrogen mimics, or xenoestrogens 
and they mimic or interfere with the effects of the female hormone estrogen 
by binding to the estrogen receptor (ER). Chemicals that can mimic natural 
estrogens include certain organochlorine industrial compounds such as PCBs 
and various pesticides including dichloro diphenyl trichloroethane (DDT) and 
dioxins. In addition to the use in pesticides, these and other estrogenic 
compounds also are used in plastics, pharmaceuticals, paper and pulp 
production, textiles, and detergents. Many EDCs are lipophilic and 
bioaccumulate in Eving organisms (Ahel, et al., 1993). Environmental 
estrogenic compounds comprise a structurally diverse group and cannot be 
identified by structure alone. This makes it hard to predict which natural and 
synthetic chemicals will act like estrogenic hormones in living organisms. 

Over the last few years, a number of studies have been published which 
support the hypothesis that certain chemicals in the environment constitute a 
threat to animal reproductive health. In connection with a massive spill of 
DDT into Lake Apopka, Florida, they found depressed plasma testosterone 
concentrations and a reduction in penis size in young male alligators (Alligator 
mississippiensis) (Guillette, et al., 1994; Guillette, et al., 1996). In addition, female 
alligators superovulated, with multiple nuclei in some of the surplus ova with a 
declining alligator population as a consequence (Guillette, et al., 1994). 
Furthermore, human epidemiological studies have indicated a decreasing 
sperm count (Sharpe and Skakkebaek, 1993) and increasing incidence of 
testicular cancer worldwide in men (Toppari, et al., 1996). There also is an 
alarming increase in breast cancer incidence (Tyczynski, et al., 2004). Studies 
have implicated that increased breast cancer incidences may be due to 
xenoestrogens (Ibarluzea, et al., 2004). It is well known that, under certain 
conditions, estrogens (natural as well as synthetic) can be tumor promoting, as 
most breast cancer cell types have ERs (Platet, et al., 2004). However, these 
evidences for endocrine disruption are being critically questioned. Are the 
concentrations of environmental estrogenic compounds high enough to cause 
these problems? Many estrogenic compounds exhibit only weak estrogenic 
activity and exist at extremely low levels in the environment and thus may not 
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pose a serious threat to the wildlife. Nevertheless, even though environmental 
estrogenic compounds have weaker binding affinities to estrogen receptors 
than the natural estrogen, their concentrations in human blood are generally 
much higher than the natural estrogen since it is bound up in plasma proteins. 
The higher concentrations and lower binding to plasma proteins of 
environmental estrogenic compounds means that they have a greater potency 
to act as endocrine disrupters. 

This study investigates several known environmental estrogenic 
compounds, including the alkylphenols, (butylphenol (C4), pentylphenol (C5), 
hexylphenol (C6), heptylphenol (C7), nonylphenol (NP) and the synthetic 
estrogen 17a-ethynylestradiol (EE,). All of these are referred to as 
xenoestrogens in this thesis. 

Alkylphenols 

Alkylphenols are found in produced water released in the ocean from oil 
platforms (Brendehaug, et al., 1992; Roe, 1998) (Fig. 2). The estrogenic activity 
of alkylphenols is well known and has been investigated in several studies 
(Nimrod and Benson, 1996; Christiansen, et al., 1998; Arukwe, et al., 2000a; 
Arukwe, et al., 2001). The alkylphenols are shown to interact with ER in an 
identical way as the natural estrogen 17ß-estradiol, but with a weaker response 
(White, et al., 1994; Soto, et al., 1995; Yadetie, et al., 1999; Arukwe, et al., 
2001). An in vitro study showed that the potency of the alkylphenols to 
activate ER depends on 1) the position and 2) the branching of the alkyl 
group. The maximum activity (1000 to 6000 fold less potent than estradiol) is 
found in C6 to C8 para substituted tertiary alkylphenols, but also C5, C4 and C3 

phenols are estrogenic (Routledge and Sumpter, 1997). 

Produced water 

Produced water is continuously released into the ocean as a result of offshore 
oil production. The amount of produced water increases dramatically with the 
age of the oil field, and the discharge of produced water from the Norwegian 
sector reached a volume of more than 120 million m3 in year 2001 (SFT; The 
Norwegian pollution control authority). Produced water contains both natural 
compounds and chemicals that have been added through the process or 
separation line (Brendehaug, et al., 1992). The phenols are one of the larger 
groups of organic pollutants. The cresol (C,), the most water solvable phenol, 
stands for around 80%, but phenols with longer alkyl chains, i.e. C 4 to C7, are 
also reported in small concentrations of 2 to 237 Mg/L in produced water 
from oil platforms outside the Norwegian coast (Brendehaug, et al., 1992). 
The acute toxicity towards marine organisms is low for produced water 
because of the large amounts of sea water in which this discharge is diluted 
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ho HC O \ 
Butylphenol (C4) 

Pentylphenol (C5) 
\ 

OH 

Hexylphenol (C6) 
HO' 

Heptylphenol (C7) 

Nonylphenol (Cg) 

Figure 2. Chemical structures of alkylphenols found in produced 
water: 4-/<r/-lnirylphenol (C4), 4«-pentylphenol (C5), 4«-hexylphenol 
(C6), 4«-heptylphenol (C7) and 2«-nonylphenol (NP). 

(Roe, 1998). However, alkylphenols can accumulate as they move up the food 
chain. The bioconcentration factors for alkylphenols C4 to C7 range from 118 
to 578 in fish (McLeese, et al., 1981; Freitag, 1985; Tollefsen, et al., 1998). This 
could lead to unexpected side effects over time and knowledge of the effects 
from alkylphenols on the environment is still somewhat lacking. 
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Alkylphenol ethoxylates 

Long-chain alkylphenols, e.g. o ctylphenol and nonylphenol, originate from the 
widespread use of alkylphenol ethoxylates (APE). APEs are used as industrial 
surfactants, detergents, paints, pesticides, textile and petroleum recovery 
chemicals, metalworking and personal products. The annual worldwide 
production of APE is 500,000 tons of which 60% ends up in the aquatic 
environment (Renner, 1997; Solé, et al, 2000a). 

Restriction on the use of APE has arisen since the discovery in 1984 that 
their metabolites were more toxic to aquatic organisms than the APE them­
selves. Biodegradation of APE leads to the shortening of the ethoxylate chains 
to alkylphenol carboxylates leading ultimately to nonylphenol and octylphenol, 
which both have low water solubility and adsorb to suspended solids and 
sediments. Nonylphenol in wastewater extracted from digested sewage sludge 
can pass into rivers (Tyler, et al., 1998). 

APEs, nonylphenol and octylphenol has been reported in surface water all 
around the world (Ying, 2002), as well as in drinking water (up to 40 (J-g/L) 
(Berryman, et al., 2004). These alkylphenol doses are not likely to result in a 
biologically significant body burden in humans. However, the situation may be 
different in non-mammalian species: alkylphenol precursors can apparently 
bioaccumulate in certain aquatic organisms, such as mussels (M. edulis L.), 
shrimp (Crangon crangon), sticklebacks (Gasterosteus aculeatus L.), Atlantic salmon 
(Salar salar) and Atlantic cod (Gadus morhua) reviewed by Thiele, et al. (1997), 
but whether they exert adverse effects due to estrogenicity or other 
mechanisms is still unclear. 

Ethynylestradiol 

Discharges from sewage treatment works contain both natural estrogens such 
as E2 and estrone as well as the synthetic derivate 17a-ethynylestradiol (EE,), a 
very potent pharmaceutical estrogen used in oral contraceptive (Fig. 3) (Tyler, 
et al., 1998). Ethynylestradiol interfere with the effects of estradiol by binding 
to ER, and it is classified as an EDC. The potency of ethynylestradiol for 
activation of ER is higher than that for estradiol (Larsson, et al., 1999). For 
example, ethynylestradiol had one order of magnitude or more higher potency 
to induce the ER mediated vitellogenesis in adult zebrafish than that for 
estradiol (Van den Belt, et al., 2004). 

Natural estrogens as well as ethynylestradiol are metabolized in the liver by 
CYP enzymes, CYP1A and CYP3A in particular (Guengerich, 1988; Waxman, 
et al., 1991; Wang and Strobel, 1997; Thummel and Wilkinson, 1998; 
Yamazaki, et al., 1998). In humans, estrogens are metabolized at the 2-position 
to a 2-OH derivate by CYP1A2 (Badawi, et al., 2001). CYP1A2 is more active 
than CYP3A in catalysing 2-, 4- and 16a-hydroxylation of estradiol (Yamazaki, 
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et al., 1998). However, since CYP3A levels are approximately 4- to 14-fold 
higher than CYP1A2 in the liver, the CYP3A4 is the major CYP isoform 
responsible for hepatic metabolism of estradiol (Badawi, et al., 2001). The 2 
hydroxylation of ethynylestradiol in human is primarily catalyzed by CYP3A4 
(Guengerich, 1988). This metabolite can undergo further oxidation with 
subsequent conjugation such as sulphation and glucuronidation prior to 
excretion (Guengerich, 1988). Enzymes from bacteria such as ß-glucuronidase 
in sewage treatment works can biotransform ethynylestradiol to its biologically 
active form again (Tyler, et al., 1998). Ethynylestradiol has been found in 
sewage effluent water at concentrations of 2 ng/L in Sweden, 7 ng/L in the 
UK and up to 17 ng/L in Germany (Desbrow, et al., 1998; Belfroid, et al., 
1999; Larsson, et al., 1999). 

17ß-Estradiol 17«-Ethynylestradiol 

Figure 3. Structure of the natural estrogen 17ß-estradiol (E2) and 
the synthetic derivative 17a-ethynylestradiol (EE,). 

Azole fungicides 

Imidazoles and triazoles are used as fungicides, clinically as well as in 
horticulture and agriculture, and inhibit CYP51 mediated ergosterol 
biosynthesis in fungus (Vanden Bossche, et al., 1995) (Fig. 4). In addition to 
disrupting key enzymes in fungus, azoles cause endocrine disruption in 
mammals and can be classified as EDCs (Kan, et al., 1985; Latrille, et al., 
1989). For example, the imidazole ketoconazole reduced the rate of estradiol 
production in isolated rat ovaries (Latrille, et al., 1989). Vinclozolin and 
prochloraz are two fungicides with anti-androgenic effects, i.e. they interfere 
with the activity of androgen hormones in male rats (Gray, et al., 1999; 
Vinggaard, et al., 2002). Fungicides also inhibit drug-metabolizing members of 
the CYP1, CYP2 and CYP3 gene families in vertebrates (Levine, et al., 1997; 
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Miranda, et al, 1998; Boxenbaum, 1999; Guengerich, 1999; Venkatakrishnan, 
et al., 2000; Hegelund, et al., 2004). This may have adverse effects on 
metabolic clearance of endobiotics and xenobiotics. In humans, prolonged 
ketoconazole therapy results in decreased clearance of 17ß-estradiol, which 
may cause gynecomastia in men (Venkatakrishnan, et al., 2000). Thus, it is 
possible that ketoconazole treatment affect metabolic clearance of steroids 
also in fish. The triazole propiconazole has been detected in the aquatic 
environment in drainage canals of a banana plantation in Costa Rica (>20 
Mg/1.) ( Castillo, et al., 2000) and in Swedish streams (>1 (J-g/L) (The Swedish 
National Chemicals Inspectorate, 1998). 

Ketoconazole Vinclozolin 

Prochloraz Propiconazole 

Figure 4. Chemical structures of the antifungal ketoconazole, 
vinclozolin, prochloraz and propiconazole. 
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THE ESTROGEN RECEPTOR 

Estrogens are small hydrophobic molecules that can diffuse through cell 
membranes. Target cells for steroid hormones have intracellular receptors in 
the nucleus (Brown, 2002). Estrogens act through two known classes of 

nuclear estrogen receptors (ERs), ERa and ERß. Activated ER binds to 
estrogen response elements (ERE) in the 5' flanking promoter region on 
target genes and regulate specific gene expression in the nucleus of the target 
cell. It is still unknown how these receptors control gene expression in their 
target cells (Brown, 2002). The ERa and ERß differ in ligand binding affinities 
to estrogens, tissue distributions, and transactivation properties (Kuiper, et al., 
1997; Paech, et al., 1997). For example, in vitro stud ies showed that estradiol-
binding to ERa activated transcription, whereas with ERß, estradiol inhibited 
transcription (Paech, et al, 1997). 

A new class of nuclear ER has recendy been identified in teleost fish, 
designated ERy (Hawkins, et al., 2000). The ERy have been identified in the 
Atlantic croaker (Micropogonias undula tes), and appears to have arisen by gene 
duplication from ERß early in the teleost linage (Hawkins, et al, 2000). The 
three ER mRNA transcript subtypes are differently expressed in reproductive 
organs as well as in other tissues. Thus, ERa transcripts are abundant in the 
liver and less abundant in testes, ERß transcripts are abundant in liver and 
testes, less abundant in ovary and barely detectable in muscle. The ERy 
transcripts are abundant in the ovary and testes and undetectable in the liver, 
whereas expression in brain and muscle is low or undetectable (Hawkins, et 
al., 2000). The differences in tissue distribution between ERa, ß, and 

y transcripts suggest that they have different functions. Interestingly, the high 

levels of ERy expression in the testes, implies that ERy mediates effects of 
environmental estrogens in male fish. However, the possible effects of ER on 
the observed feminization in male fish exposed to sewage still remains to be 
elucidated. 

ACTIONS OF ESTROGENIC COMPOUNDS 

Estrogenic compounds affect the endocrine system in a number of different 
ways. Once the compound binds to ER, the mimicker can produce a normal 
hormone response, cause an abnormal response or block the receptor site, 
preventing natural hormones from binding. Estrogenic compounds may 
interact with a plasma membrane ER thought to be responsible for non-
genomic actions of estrogens. Activation of plasma membrane ERs have been 
shown to be associated with regulation of cell membrane ion channels, G-
protein-coupled receptors, tyrosine kinases and generation of cyclic AMP and 
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the activation of mitogen activated protein (MAP) kinase cascades, recently 
reviewed by Simoncini and Genazzani (2003). 

Estrogenic compounds may bind to other receptors and create a novel 
reaction or interfere directly with normal hormonal action. Other receptors 
shown to be influenced by estrogenic compounds include AhR, which 
regulates some ER responsive genes as well as several other genes (Safe, et al., 
1998), and PXR, which regulates steroid metabolism (Masuyama, et al., 2000). 
Furthermore, estrogenic compounds can alter synthesis and metabolism of 
hormone receptors and natural hormones modifying the endocrine responses. 
There are reports of endocrine disruptors increasing the expression of ERs in 
Atlantic salmon (Yadetie, et al., 1999) and in channel catfish (Ic/alurnspunctatns) 
(Nimrod and Benson, 1997). The mechanism by which the observed increase 
in ER density occurs is unclear but such a change could mediate estrogenic 
effects by increasing sensitivity to endogenous estrogens as well as 
xenoestrogens. Furthermore, steroid hormone biosynthesis involves a number 
of different steroid hydroxylases and reductases, which also are possible 
targets for endocrine disrupters. 

REPRODUCTIVE ENDOCRINOLOGY OF FISH 

Hypothalamus controls synthesis and release of hormones through the 
influence of external stimuli, such as photoperiod, temperature, feeding and 
social factors as well as internal stimuli, such as sex steroid hormones. 
Secretion of gonadotropin releasing hormone (GnRH) from the hypothalamus 
stimulates the release of gonadotropins (GtH) from the pituitary. Two forms 
of GtH, GtH I and GtH II, have been isolated from salmonid pituitaries 
(Swanson, et al., 1991), which are regarded as homologous to mammalian 
follicle stimulating hormone (FSH) and luteinizing hormone (LH), respectively 
(Borg, et al., 1998). GtH are responsible for stimulating the synthesis of sex 
steroids (E2 and testosterone (T) in female fish, T and 11-keto-testosterone 
(11-KT) in male fish), which in turn act on target tissues to regulate 
gametogenesis, reproduction, sexual phenotype and behavioral characteristics. 
Furthermore, GtH also controls oogenesis in fish by binding to receptors on 
the thecal and granulöse cell layer of the follicle (Arukwe, 2001). The thecal 
cells synthesize T, and the conversion of T to E, depends on the action of the 
aromatase enzyme (CYP19) in the granulöse layer, referred to as aromatization 
(Brown, 2002). Plasma E, binds to ER and triggers the series of steps resulting 
in the production of vitellogenin (vtg) in the liver (Mommsen and Walsh, 
1988). Vtg are released from the liver into the blood and are incorporated into 
the oocytes, through receptor-mediated endocytosis. The cascade reaction axis 
that leads to the production of maturation protein is known as hypothalamus-
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pituitary-gonadal-liver-axis (HPGL-axis). Hormones provide both positive and 
negative feedback to the hypothalamus and pituitary (Brown, 2002). 

Vitellogenesis 

One of the most commonly used biomarker to estimate estrogenic exposure is 
the induction of vtg synthesis in male or juvenile fish (Folmar, et al., 2002). 
Although male and juvenile fish do not normally synthesize vtg, the hepatic 
estrogen receptor and the gene that encodes for vtg is present and expression 
can be activated by both natural and anthropogenic estrogenic substances 
(Tyler, et al., 1998). 

Vtg proteins are large phospholipoglycoproteins with a molecular weight 
of 250-600 kD (Arukwe and Goksoyr, 2003), and they are enzymatically 
cleaved into smaller yolk proteins, which act as nutrient to support the 
development of the embryo (Tyler, et al., 1998). Vtg levels are usually 
measured using radio immune assays (RIA) or enzyme-linked immunosorbent 
assays (ELISA). 
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AIMS OF THESIS 
Fish are continuously exposed to anthropogenic compounds in their natural 
environment, including estrogenic compounds. The general aim of this thesis 
was to study effects of environmental estrogenic compounds on cytochrome 
P450 (CYP), redox status and endocrine responses in fish. In addition, we 
identified possible sites of interaction between environmental estrogenic 
compounds and an antifungal imidazole, i.e. ketoconazole. 

The specific aims of this thesis were: 

To study effects of estrogenic alkylphenols on the redox status in 
Atlantic cod, with emphasis on glutathione and glutathione-related 
enzymes (paper I) 

To study effects of estrogenic alkylphenols and ethynylestradiol on 
hepatic CYP1A and CYP3A protein expressions and enzyme 
activities in Atlantic cod (paper II, paper III) 

To study effects of estrogenic alkylphenols and ethynylestradiol, 
alone and in combination with ketoconazole on hepatic CYP1A 
and CYP3A enzyme activities in Atlantic cod and rainbow trout in 
vitro and in vivo (paper II, paper III, paper IV) 

To study effects of nonylphenol and ethynylestradiol, alone and in 
combination with ketoconazole on vitellogenesis and circulating 
sex steroid hormones in Atlantic cod and rainbow trout (paper III, 
paper IV) 
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METHODOLOGICAL CONSIDERATIONS 
Different techniques have been used in this thesis to study the effects of 
environmental estrogenic substances on CYP as well as effects on oxidative 
stress and steroid hormone homeostasis. These techniques include catalytic 
assays, using spectrophotometry and fluorometry, Western blot, high 
performance liquid chromatography (HPLC), 2-dimensional gel 
electrophoresis (2D-GE) and enzyme-linked immunosorbent assay (ELISA), 
which are discussed here, although a more detailed description of the methods 
used are provided in papers I to IV. 

Atlantic cod 

We used hatchery-reared first spawning Atlantic cod (Gadus morhuà) in our 
studies with alkylphenols (paper I and II), and hatchery reared juvenile 
Atlantic cod to study co-exposure to nonylphenol and ketoconazole (paper 
III). The Atlantic cod exposure studies were conducted in Bergen, Norway. 

Atlantic cod is an economically and ecologically important species. It is 
widely distributed in a variety of habitats, from the shoreline down to the 
continental shelf (depth range 1 - 600 m). Atlantic cod are omnivorous; they 
feed on invertebrates and fish, including young cod. Sexual maturity is attained 
between ages two to four and spawning occurs once a year during winter and 
early spring. The most important stocks are the Norwegian Arctic stock in the 
Barents Sea and the Icelandic stock. The populations around Greenland and 
Newfoundland have declined dramatically. During the past years declining 
populations along the Swedish coast have generated debates on whether the 
Atlantic cod are being exterminated. Overfishing seems to be the cause of 
extermination. However, the environmental contamination may be another 
factor for diminishing recruitment of Atlantic cod populations. 

There are several advantages to using hatchery-reared fish from the same 
strain such as reduced inter-individual variations due to age, strain, 
polymorphism, handling, diet, previous environment and exposures. In paper 
I and II, the fish were exposed by feeding via a sonde inserted directly into the 
stomach to achieve better control of actual individual exposure. In paper III 
and IV, the fish were starved and intraperitoneally (i.p.) in jected with the test 
agents. 
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Rainbow trout 

Juvenile hatchery-reared rainbow trout (Oncorhjnchus mjkiss) was used to 
investigate co-exposure to ethynylestradiol and ketoconazole (paper IV). 
Rainbow trout is one of the most widely introduced fish species and may be 
regarded as global in its present distribution. Rainbow trout in the wildlife 
inhabit fresh water (depth range 1-200 m) with about 12°C in summer and 
feed primarily on insects, crustaceans, fish eggs and small fish. They are 
capable of adapting to sea water and can migrate to the ocean where they 
spend several years of their life. They require moderate to fast flowing, well-
oxygenated waters for breeding, but they also live in cold lakes. So far the 
rainbow trout has been the most widely used species in studies of endocrine 
disrupting chemicals in aquatic environments (Rose, et al, 2002). It also is 
commonly used as a model laboratory species to investigate physiological 
processes or toxicities involving CYP metabolism. 

METHODS 

Analyzing the glutathione concentration 

The level of glutathione in Atlantic cod liver was measured using HPLC, by a 
method developed by Svardal, et al. (1990) (paper I). HPLC is used in many 
laboratories for separation, identification, purification and quantification of 
various compounds. There are several types of HPLC systems. We used 
reversed-phase chromatography where the stationary phase is hydrophobic 
and the mobile phase polar, for example a mixture of water and acetonitrile 
used in our protocol. We used a fluorescence detector, which is a sensitive 
HPLC detector. For example, fluorescence sensitivity is 10-1000 times higher 
than that of the UV detector for strong UV absorbing materials. HPLC is 
reproducible and a specific method, however, time-consuming. 

Using this method, we were able to measure total free glutathione (tGSH) 
as well as reduced glutathione (GSH) concentration. To reduce oxidized 
glutathione (GSSG) and for derivatization of free sulfhydryl groups, we used 
NaBH4 and monobromobimane, respectively. 

Glutathione-related enzyme assays 

The activities of glutathione reductase (GR), glutathione ^-transferase (GST) 
and glucose-6-phosphate dehydrogenase (G6PDH) were measured in Atlantic 
cod liver S9-fractions (paper I). All three methods allow rapid processing of 
small samples, which is important when measuring multiple variables. The GR 
method is based on the cyclic reaction of GSH with 5,5'-dithiobis (2-
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nitrobenzoic acid) (DTNB) in the presence of added NADPH (Cribb, et al, 
1989). GSH conjugation catalyzed by GST was measured using the substrate 
l-chloro-2,4-dinitrobenzene (CDNB). CDNB does not distinguish between 
the different GST isoforms, due to overlapping substrate specificities of these 
isoenzymes (Habig, et al, 1974). G6PDH is the rate-limiting enzyme in the 
pentose phosphate pathway that provides the cell with NADPH. G6PDH was 
measured using glucose-6-phosphate and NADP+. The increase in absorbance 
at 340 nm is proportional to G6PDH activity (Deutsch, 1987). 

7-Ethoxyresorußn-O-deethylase (EROD) activity 

CYP1A activity was measured using a synthetic fluorescent compound, 7-
ethoxyresorufin, as a diagnostic substrate (paper II, III and IV). CYP1A 
enzymes catalyze the formation of the fluorescent product resorufin. The 
amounts produced resorufin is normally proportional to the CYP1A activity in 
the sample. We used the protocol for microplates with a high throughput 
provided in (Hahn, et al., 1993), modified for microsomes by (Yawetz, et al., 
1998). 

Ethoxyresorufin-O-deethylase (EROD) activity has been used for many 
years in biomonitoring program as an early-warning signal for potentially 
harmful pollutants. The activity of EROD assay seems to be the most 
sensitive catalytic probe for determining CYP1A activity in fish (Goksoyr and 
Förlin, 1992) and this method has a great value as a biomarker in 
environmental risk assessment in the aquatic environment (van der Oost, et 
al., 2003). 

7-Benzyloxy-4-ftrißuoromethyl]-coumarin-0-debenzyloxylase 
(BFCOD) activity 

A specific CYP3A substrate is difficult to find because of the unusually wide 
substrate specificities of CYP3A enzymes (Guengerich, 1999). However, a 
protocol was prepared by Miller, et al. (2000) for the mammalian substrate 7-
benzyloxy-4-[trifluoromethyl]-coumarin (BFC), which is predominately 
metabolized by CYP3A4 in humans (Stresser, et al., 2002). This protocol was 
previously optimized for rainbow trout liver microsomes (Hegelund, Hackzell 
and Celander, unpublished) and was shown to be a good probe for piscine 
CYP3A activities (Hegelund, et al., 2004). The CYP3A enzymes catalyze the 
conversion of BFC to the fluorescent product 7-hydroxy-4-[trifluoromethyl] 
coumarin (HFC). This 7-benzyloxy-4-[trifluoromethyl]-coumarin O-
debenzyloxylase (BFCOD) activity was not detected in cod liver S9-fractions 
(paper II). However, the CYP3A activity could be recorded in cod liver 
microsomes (paper III) where CYP levels are higher. 

27 



INTERSECTIONS BETWEEN CYTOCHROME P450.TND ESTROGENIC COMPOUNDS IN FISH 

C\ PIA and CYP3A in vitro inhibition studies 

Both EROD and BFCOD activities were used to assess the possible inhibition 
effects of C4 to C-, NP, E,, EE, and ketoconazole on CYP1A and CYP3A 
enzymes (paper II and III). We analyzed IC50 (median inhibition 
concentrations) and K. values on these activities in cod liver microsomes. 
When measuring CYP1A activity we used liver microsomes from cod exposed 
to ß-naphthoflavone (BNF), which has high levels of CYP1A enzymes. BNF 
is an agonist to the AhR, commonly used as a prototypical CYP1A inducer in 
fish (Celander and Förlin, 1991; Celander, et al, 1993). 

CYP1A and CYP3A protein blot analyses 

It is important to analyze protein expression levels as a complement to 
catalytic activity measurements, because of the possible presence of inhibitors 
that can mask CYP protein levels. The Western blot technique we used is a 
semi-quantitative method, separating proteins based on size using sodium 
dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) (paper II, 
III and IV). Proteins are then transferred to a nitrocellulose membrane and 
visualized using specific antibodies and enhanced chemoluminescence (ECL). 
We used polyclonal antibodies (PAb) against rainbow trout CYP1A and 
CYP3A raised in rabbits (Celander and Förlin, 1991; Celander, et al., 1996), as 
well as monoclonal antibody (MAb) 1-12-3 against scup (Stenotomus chrysops) 
CYP1A1 (Park, et al., 1986). The intensities of the protein bands were 
analyzed using densitometry on scanned fluorograms (Celander, et al., 1996). 

2-Dimensionalgel electrophoresis (2D-GE) 

2D-GE is generally used for the isolation of proteins and can be used for 
further characterization by mass spectroscopy. By isoelectric focusing in the 
first dimension proteins are separated by charge (pi) and in the second 
dimension proteins are separated by size using SDS-PAGE. This allows an 
efficient separation of proteins, which can be visualized by different staining 
methods using coomassie blue, silver, zinc, copper or fluorescent stains, such 
as SyproRuby. In addition, proteins can be transferred to nitrocellulose 
membrane and detected using specific antibodies (paper III). 2D-gel protein 
databases are being created and can be used to apply pattern matching 
techniques. The gel matching is one of the essential and most time-consuming 
requirements for a quantitative and qualitative data analysis of protein gel 
images. Nevertheless, the quality of data and the ability to analyze multiple 
proteins are advantageous. 
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Enzyme-linked immunosorbent assay (ELISA) 

ELISA techniques are commonly used to analyze levels of protein, steroids, 
drugs etc. in various samples such as plasma, microsomes, urine and saliva by 
using antibodies coupled to an enzyme that possesses a high turnover number. 
It is a rapid method, generally highly sensitive and specific and favorably 
comparable with radio immune assays (RIA). The main advantage is that there 
is no need for radioactive reagents in ELISA. Recovery rate, dilution linearity, 
intra-assay and inter-assay variation should be considered when setting up a 
new ELISA protocol. 

One common type of ELISA protocol is based on the sandwich approach. 
The sandwich ELISA requires two antibodies that bind to two different 
epitopes on the antigen. In the first step, the primary antibody is coated on the 
microplate and the standard or samples are added. In the second step, 
unbound products are washed away and the labeled secondary antibody is 
allowed to bind to the antigen, completing the sandwich. There is no need to 
purify antigen in the sample prior to use and there is a high throughput, using 
for example 96-well microplates. A sandwich ELISA can be non-competitive 
or competitive. In a competitive sandwich ELISA, an antigen-specific 
conjugate are added to each well, competing for the limited number of 
antibody binding sites. After washing, a substrate to the conjugate is added. 
The product of the enzymatic reaction is colored and can be assessed 
spectrophotometrically. The amount of color development is inversely 
proportional to the concentration of sample antigen present in the well. 

For measuring Atlantic cod vitellogenin (vtg) w e used a non-competitive 
sandwich ELISA kit employing rabbit PAb against Atlantic cod vtg (paper 
III). Plasma samples from Atlantic cod were diluted 1:20, 1:5,000 and 1:50,000 
in phosphate buffered saline (PBS) with Tween 20 and 1% bovine serum 
albumin. Samples were compared to purified Atlantic cod vtg protein 
standards. For analysis of rainbow trout vtg, we used a competitive ELISA 
using purified rainbow trout vtg as standards and rabbit PAb against Arctic 
char (Salvelinus alpinus) vtg (paper IV) (Larsson, et al., 1999; Parkkonen, et al., 
2000). Plasma samples were diluted 1:20, 1:1,000 and 1:5,000 in PBS-Tween 
containing 1% milk. 

The sex steroids, 17ß-estradiol, testosterone and 11-ketotestosterone, were 
measured using competitive sandwich ELISA kits (paper III and IV). Plasma 
was first extracted with diethyl ether. Atlantic cod plasma was concentrated 
(2:1) prior to the measurements, whereas rainbow trout plasma was diluted 
(1:3) in enzyme immunoassay buffer. 
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RESULTS & DISCUSSION 

ALKYLPHENOLS AND THE GLUTATHIONE-DEPENDENT ANTI­
OXIDANT SYSTEM 

Glutathione 

Oxidative stress was in 1991 defined by Sies as "a disturbance in the 
prooxidant-antioxidant balance in favour of the former, leading to potential 
damage" (Halliwell and Gutteridge, 1999). Oxidative stress could lead to 
increased formation of reactive oxygen species or decreased capacity of 
antioxidant defense systems (Halliwell and Gutteridge, 1999). This in turn 
could result in oxidative damage, alternatively the organism could adapt to 
oxidative stress by up-regulating the antioxidant defense system. GSH is one 
of the most important non-enzymatic defenses against oxidative stress 
(DeLeve and Kaplowitz, 1991). 

Atlantic cod of both sexes were force-fed with various doses ranging 
between 0.02 and 80 ppm of a mixture of alkylphenols (C4:C5:C6:C7 ratio 
1:1:1:1) or 5 ppm 17ß-estradiol (paper I). Female Atlantic cod showed 
increased hepatic total glutathione (tGSH) levels after one week of exposure 
to alkylphenol mixture (0.02 to 80 ppm), whereas tGSH levels decreased in 
females after four weeks exposure to 2 ppm alkylphenol mixture (paper I, fig. 
1). In males, on the other hand, no effects on tGSH levels were seen after four 
weeks of exposure. 

Increased hepatic GSH concentration in response to exposure to 
environmental pollutants have been observed in liver, gills and kidney 
(Gallagher, et al., 1992; Di Giulio, et al., 1993; Hasspieler, et al., 1994). The 
GSH biosynthesis takes place in the cytosol and is regulated by feedback 
inhibition. Increased GSH consumption will lead to an increase in synthesis to 
keep the glutathione homeostasis (Meister and Anderson, 1983). The ability of 
the cell to reduce GSSG by GR may be overcome under severe oxidative 
stress. Accumulated GSSG can actively be transported out of the cell to 
protect itself from a shift in the redox equilibrium (DeLeve and Kaplowitz, 
1991). 

Normally, almost all (>99%) intracellular glutathione is in its reduced form 
(Deneke and Fanburg, 1989). Thus, measuring total hepatic glutathione often 
reflects the reduced levels. The GSH/GSSG ratio can decrease through GSH 
depletion in connection with phase II conjugation or antioxidant defense. In 
paper I, the level of tGSH and GSH were measured and the tGSH/GSH ratio 
was calculated. The tGSH/GSH ratios were similar in controls, 17ß-estradiol 
and alkylphenol exposed groups. Similar observations have been reported in 
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rainbow trout where exposure to the PCB tetrachlorobiphenyl increased 
hepatic GSH concentrations as well as GSSG levels, even though the 
GSSG/GSH ratio remained unchanged (Otto and Moon, 1995). Atlantic cod 
had close to 100% of all glutathione in its reduced form after one week in 
control fish (paper I). The corresponding levels after four weeks were 95% for 
female and 91% for male Atlantic cod (paper I). Other studies have reported 
similar results. For example, eels (Anguilla anguilla) had 88% of all hepatic 
glutathione in its reduced form (Pena, et al., 2000), and in rainbow trout 
(Oncorhjnchus mykiss) t he hepatic glutathione pool consisted of 92% GSH and 
4% GSSG (Otto, et al., 1997). The remaining glutathione is present within the 
cell as mixed disulfides (mainly GSS-protein) and as thioethers (DeLeve and 
Kaplowitz, 1991). 

Male Adantic cod displayed significantly higher hepatic GSH levels (512 
nmol GSH per mg wet weight) compared to females (360 nmol). Sex 
differences in tGSH concentration also have been reported in a field-collected 
brown bullhead {A mein m s nebulosus). Other biomarkers including superoxide 
dismutase and GST activities, also displayed sexual dimorphic expression 
(McFarland, et al, 1999). These results further illustrate the importance of sex 
determination in biomonitoring programs. 

Glutathione reductase 

Glutathione reductase (GR) keeps the GSH-dependent antioxidant system 
active by reducing GSSG to GSH. The hepatic GR activity in female Adantic 
cod exposed to alkylphenol mixture (0.02 to 80 ppm) was affected in a 
biphasic mode (paper I, Fig. 2). The GR activity had a tendency to increase at 
lower concentrations of alkylphenols and decreased at higher concentrations. 
Although the GR activity was reduced in the highest doses of alkylphenol 
mixture (40 to 80 ppm), GSH was retained in its reduced form (paper I, 
Fig.lA). Hepatic GR activities were significantly increased (about 80%) in fish 
of both sexes exposed for four weeks to 0.02 ppm alkylphenol mixture. This 
observed increase is conceivably involved in GSH homeostasis and increased 
GR activity indicates exposure to oxidative stress. Higher GR activities were 
observed in shorthorn sculpin (Myoxocephahis scorpius) from a polluted harbour 
than in fish from a cleaner harbour (Stephensen, et al., 2000). Furthermore, 
the GR activity was the most responsive enzyme in juvenile rainbow trout 
injected with the redox cycling compounds paraquat and menadione 
(Stephensen, et al, 2002). Increased hepatic GR activities were observed in 
European eel exposed to the herbicide molinate. Induction of GR activity 
correlated with increased GSH level as well as maintained GSH:GSSG ratio in 
the liver, resulting in extended survival under oxidative stress (Pena-Llopis, et 
al., 2001). These results in fish indicate that GR activity as well as tGSH levels 
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may be used for detecting changes in redox status and could be good 
biomarkers to assess exposure to oxidative stress. 

Glucose-6-phospha te dehydrogenase 

NADPH is a reducing agent in the cell, provided by NADP+ specific 
dehydrogenases such as glucose-6-phosphate dehydrogenase (G6PDH). This 
enzyme is activated when NADP+ and GSSG levels are increased in relation 
to NADPH and GSH (Eggleston and Krebs, 1974). Hepatic G6PDH 
activities were induced in female Adantic cod after one week exposure to the 
lowest dose of the alkylphenol mixture, representing higher NADPH-
generating capacity. Increasing the dose and exposure times did not affect 
G6PDH activities, which suggests that the level of NADPH was constant 
(paper I, Table 1). The G6PDH activity in erythrocytes from Nile tilapia 
(Oreochromis niloticus) from a polluted site in Brazil was increased, although 
tGSH content decreased (Bainy, et al., 1996). 17ß-Estradiol treatment 
decreased the G6PDH activity in male Atlantic cod after four weeks of 
exposure to the same level, as seen in the female control group (paper I, Table 
1). Winzer, et al. (2002) have shown that 17ß-estradiol inhibits G6PDH 
activity in isolated hepatocytes of immature European flounder {Platichtys flesus) 
of both sexes and that male hepatocytes showed higher G6PDH activity 
compared to females (Winzer, et al., 2002). This could imply that females are 
more susceptible to oxidative stress and xenobiotic exposure. 

Glutathione S-transferase 

Glutathione ^-transferases (GST) are abundant in the liver and catalyze 
conjugation of compounds including Phase I metabolites to endogenous 
GSH, thereby preventing them from causing oxidative stress (Halliwell and 
Gutteridge, 1999). The lowest dose of the alkylphenol mixture resulted in a 
decreased GST activity, using CDNB as substrate in male Atlantic cod, 
whereas higher doses had no effect (paper I, Table 2). GST activities in 
female Atlantic cod were not affected. However, using CDNB as substrate 
for measuring induction of cytosolic GST activity may be less relevant than 
the induction of certain GST isoenzymes (Sole, et al., 2002). 

It has been suggested that glucuronidation (i.e. conjugation to glucuronic 
acid by UDP-glucuronosyltransferase) may be the major pathway in Phase II 
detoxification in fish (Clarke, et al., 1991; Otto and Moon, 1995). It also is 
known that glucuronidation is of particular importance in Phase II metabolism 
of alkylphenols (Lewis and Lech, 1996; Meldahl, et al., 1996; Thibaut, et al., 
1998; Arukwe, et al., 2000b; Ferreira-Leach and Hill, 2001). 

These results taken together shows that GST and G6PDH activities were 
not affected to a higher extent in Atlantic cod exposed to alkylphenols. 
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Nevertheless, tGSH levels and GR activities were affected, suggesting that 
alkylphenol exposure affects the redox status in Atlantic cod. 

EFFECTS OF ENVIRONMENTAL ESTROGENS ON CYP1A 

Alkylphenols 

Treatment of male Atlantic cod with the alkylphenol mixture for four weeks 
resulted in induction of CYP1A protein expression (paper II, Fig. 1). The 
induction was dose-dependent. No induction of CYP1A protein levels was 
seen in females. The alkylphenol induction of CYP1A protein levels in male 
fish was not reflected on CYPlA-mediated EROD activities in vivo, possible 
due to enzyme inhibition. In fact, in vitro inhibition studies confirmed that the 
alkylphenol mixture efficiently inhibited the EROD activity. The individual 
alkylphenols Q and C7 seem to be primarily responsible for this inhibitory 
effect. In female Atlantic cod, treatment with 17ß-estradiol had no effect on 
either CYP1A protein expression or EROD activity in vivo. However, four 
weeks exposure to 17ß-estradiol resulted in a significant decrease in EROD 
activity in males, whereas CYP1A protein expression was induced. In cultured 
rainbow trout hepatocytes, exposure to 4 - tert- o c ty lp h e n ol and 17ß-estradiol 
both induced vitellogenesis, but only the 17ß-estradiol treatment resulted in 
markedly reduced basal EROD activities (Navas and Segner, 2000). Hence, 
effects on CYP1A catalytic activity vary between different estrogenic 
compounds and between different studies. Variables such as species, sex, 
reproductive stage, compound, route of exposure, time of exposure, doses and 
interactions with other compounds may influence the effects. 

Xenoestrogens and ketoconazole 

Treatment of juvenile Atlantic cod with ketoconazole (12 mg/kg fish) resulted 
in a 60% increase in EROD activities (paper III, Fig. 1A). Mixed exposure to 
ketoconazole (12 mg/kg fish) and nonylphenol (25 mg/kg fish) resulted in a 
70% increase in EROD activities as well as an almost 2-fold increase in 
CYP1A protein levels. Induction of hepatic CYP1A gene expression by 
exposure to imidazoles and/or triazoles also has been reported in rat, 
bobwhite quail (Colinus Virginia nus) and trout (Hostetler, et al., 1989; Ronis, et 
al., 1994; Egaas, et al., 1999; Hegelund, et al., 2004). However, it is possible 
that induction of EROD activity, partly or completely, is masked by CYP1A 
inhibition caused by ketoconazole present in the tissue. Chemical data are 
required before this can be concluded. Possible inhibition of EROD activity is 
supported in paper III, showing that ketoconazole was a potent non­
competitive inhibitor of EROD activity in vitro. Ketoconazole and other 
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imidazoles also have been shown to be potent inhibitors of EROD activities 
in other vertebrates, e.g. i n fish (Levine, et al., 1997; Miranda, et al., 1998; 
Levine and Oris, 1999; Hegelund, et al., 2004), birds and mammals (Ronis, et 
al., 1994; Ronis, et al., 1998; Guengerich, 2004). 

Treatment of Atlantic cod with nonylphenol (25 mg/kg fish) and 
ethynylestradiol (5 mg/kg fish) resulted in decreased CYP1A activities (40 and 
70% respectively) (paper III, Fig. 1A), whereas no effects of these substances 
were observed on CYP1A protein levels (paper III, Fig. IB). In vitro inhibition 
studies confirmed that nonylphenol and ethynylestradiol acted as non­
competitive inhibitors of the EROD activity. Hence, ketoconazole, 
nonylphenol, and ethynylestradiol interact with CYP1A enzymes, indicating a 
possible site for interaction of these different classes of xenobiotics. In 
addition, ketoconazole treatment induces CYP1A expression, which further 
may affect this interaction. 

Treatment of juvenile rainbow trout with a combination of ketoconazole 
(100 mg/kg fish) and ethynylestradiol (2.5 iig/kg fish) resulted in more than a 
4-fold increase in EROD activities 3, 6 and 12 days post injection (paper IV, 
Fig. 2). The CYP1A protein levels were elevated 10-fold in rainbow trout 
exposed to a mixture of ethynylestradiol and ketoconazole 6 days post 
injection (paper IV, Fig. IB). This 10-fold increase was not reflected on the 
CYPlA-activity, suggesting CYP1A inhibition by ketoconazole. Exposure to 
ketoconazole alone resulted in elevated CYP1A protein expression 3 and 6 
days post injection (paper IV, Fig. 1A) and increased EROD activities only 12 
days post injection (paper IV, Fig. 2). Ketoconazole treatment has been shown 
to induce CYP1A gene expression in rainbow trout (Hegelund, et al., 2004). 
However, imidazoles also inhibits CYP1A mediated EROD activities in fish 
(Levine et al., 1997; Hegelund et al., 2004). Thus, the elevated CYP1A protein 
expression appears to be partly masked by CYP1A inhibition caused by 
ketoconazole presumably present in the tissue. However, it is not clear 
whether it is the ketoconazole parent compound or a ketoconazole metabolite 
that may activate the AhR. 

There were no effects of the low dose of ethynylestradiol (2.5 jag/kg fish) 
on the CYP1A activities in juvenile rainbow trout (paper IV, Fig. 2). A 
significant reduction in CYP1A activity and CYP1A protein has been reported 
in different fish species after exposure to 17ß-estradiol, or after injection with 
ethynylestradiol (Arukwe, et al, 1997; Solé, et al., 2000b). In juvenile Atlantic 
salmon, this reduction was stronger in CYP1A protein levels than in CYP1A 
activity after administration of either nonylphenol (1-125 mg/kg fish) or 17ß-
estradiol (5 mg/kg fish) (Arukwe, et al., 1997). The mechanism responsible for 
CYP1A inhibition by estrogens is still undefined (Sole, et al., 2002). 
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EFFECTS OF ENVIRONMENTAL ESTROGENS ON CYP3A 

Alkylphenols 

Exposure to the alkylphenol mixture resulted in a dose-dependent elevation of 
CYP3A protein levels in male Atlantic cod, whereas this treatment had no 
effect on CYP3A protein levels in females (paper II, Fig. 2). In addition, 
exposure of male fish to 17ß-estradiol resulted in slightly elevated CYP3A 
protein levels. Alkylphenols, i.e. nonylphenol and 4-Är/-octylphenol, have been 
show to interact with CYP3A enzymes in rat (Lee, et al, 1996; Hanioka, et al., 
1999; Hanioka, et al., 2000), implying that these enzymes are involved in 
alkylphenol metabolic clearance in mammals. In vitro inhibition studies 
revealed that alkylphenols (C4 to C7) are poor inhibitors of CYP3A-mediated 
BFCOD activity in Atlantic cod (paper II, Table 1). This is in contrast to 
efficient inhibition by alkylphenols (C, to C7) on the CYPlA-mediated EROD 
activity. Expression of CYP3A genes in mammals is mediated by the nuclear 
PXR, which can be activated by steroids and xenobiotics including 
nonylphenol (Kliewer, et al., 2002). Nonylphenol was shown to activate the 
PXR mediated expression of CYP3A1 mRNA in rat and to block the 
proteasome dependent PXR degradation in mouse mammary cancer cells, 
resulting in elevated CYP3A expression (Masuyama, et al., 2000; Masuyama, et 
al., 2002). Thus, it is possible that similar mechanisms are responsible for the 
observed elevation of CYP3A expression in Atlantic cod. 

Xenoesttogens and ketoconazole 

Juvenile Atlantic cod exposed to nonylphenol (25 mg/kg fish), 
ethynylestradiol (5 mg/kg fish) or ketoconazole (12 mg/kg fish) displayed 
reduced CYP3A activities (paper III, Fig. 2A). Furthermore, mixed exposure 
to ketoconazole and nonylphenol resulted in a 98% decrease in CYP3A 
activity, which was greater than the additive effects of these two compounds 
administrated alone. Thus, nonylphenol and ketoconazole appear to 
synergistically impair this CYP3A activity in vivo. However, mechanism for this 
possible interaction is not known. Nevertheless, the CYP3A inhibitory effect 
by ketoconazole is well known and ketoconazole is the most established 
diagnostic inhibitor, used to assess human CYP3A4 activities in vitro 
(Thummel and Wilkinson, 1998; Stresser, et al., 2002). Studies in fish 
demonstrate that ketoconazole is a potent inhibitor of hepatic CYP3A 
activities in killifish (Fundulus heteroclitus), rainbow trout and Atlantic cod with 
IC50 values 0.01, 0.1 and 0.3 uM, respectively (Hegelund et al., 2004; paper II). 
Western blot analyses of CYP3A proteins using PAb against rainbow trout 
CYP3A revealed the presence of one CYP3A immunoreactive protein band in 
liver microsomes, with an apparent molecular size around 50 kD in Atlantic 
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cod (paper III, Fig. 3A). No effect on hepatic CYP3A protein levels was 
observed in fish treated with ketoconazole and nonylphenol, either alone or in 
combination. However, by using 2D-GE followed by immunoblotting, two 
CYP3A immunoreactive protein spots were detected above 50 kD in Atlantic 
cod microsomes (paper III, Fig. 3B). The more basic isoform appeared to be 
responsive to ketoconazole treatment, whereas ethynylestradiol and 
nonylphenol treatment resulted in suppressed expression of the more basic 
isoform (paper III, Fig. 3B). 

The existence of multiple CYP3A genes has been shown in several 
vertebrate species, including teleosts, summerized in McArthur, et al. (2003). 
It is conceivable that there are two different CYP3A genes in Atlantic cod and 
that these genes respond differently to ketoconazole treatment. Further 
studies are required to elucidate whether these two CYP3A isoforms are 
different gene products, or due to post-translational modifications such as 
phosphorylation (Mann and Jensen, 2003). Phosphorylation of several 
members of the CYP2 gene family, through phosphokinase A, resulted in 
immediate loss in catalytic activity (Oesch-Bartlomowicz and Oesch, 2003). 
The shift to a more basic form in this report implies a dephosphorylation of 
CYP3A upon ketoconazole treatment (paper III). In juvenile Atlantic salmon, 
multiple CYP3A proteins also were seen, which responded differently to 
nonylphenol treatment. Nonylphenol (125 mg/kg fish) suppressed the high-

molecular CYP3A protein band, whereas lower doses (<25 mg/kg fish) of 
nonylphenol appeared to induce this isoform (Arukwe, et al., 1997). 

Ethynylestradiol has been shown to act as a mechanism-based inhibitor of 
CYP3A4 activities (Guengerich, 1988; Lin, et al., 2002). A possible 
mechanism-based inactivation of CYP3A in Atlantic cod by ethynylestradiol 
was suggested (paper III). Thus, exposure to ethynylestradiol resulted in 
significantly reduced (22%) CYP3A levels and ethynylestradiol acted as an 
uncompetitive inhibitor of microsomal CYP3A activities. However, 
preincubation of hepatic microsomes with ethynylestradiol for up to 60 min 
had no significant effect on CYP3A protein content, which implies a different, 
yet unidentified, mechanism of inhibition (paper III, Fig. 6). 

Treatment of juvenile rainbow trout to a low dose of ethynylestradiol (2.5 
|ig/kg fish) had no effect on CYP3A activities or protein expression in 
rainbow trout (paper IV). Exposure to ketoconazole (100 mg/kg fish) alone or 
in combination with ethynylestradiol resulted in 80% decreased CYP3A 
activities 3 and 6 days post injection (paper IV, Fig. 4). CYP3A protein 
expression was increased around 1.5-fold by ketoconazole after 6 and 12 days 
(paper IV, Fig. 3), although this was completely masked by inhibition of 
CYP3A activities. This temporal effect on CYP3A activity suggest efficient 
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clearance of ketoconazole, although chemical data are required for 
confirmation. 

SEXUALLY DIMORPHIC EXPRESSION OF CYP1A AND CYP3A 
GENES 

CYP1A 

Sexual dimorphic expression of CYP1A genes in fish have been observed, 
where male fish usually have higher CYP1A levels than females (Stegeman and 
Woodin, 1984; Pajor, et al., 1990; Arukwe and Goksoyr, 1997). A cross-talk 
between ER and AhR has been described in mammals (Safe, et al., 1991; 
Klinge, et al., 2000; Safe, 2001), where the AhR ligand tetrachlorodibenzo-p-
dioxin may inhibit ER, and conversely, estradiol affect AhR (Klinge, et al., 
2000). In paper II, female Adantic cod displayed slighdy higher CYP1A 
protein levels than males (paper II, Fig. 1A). Furthermore, treatment of male 
Adantic cod with 17ß-estradiol resulted in elevated CYP1A protein levels, 
whereas this treatment had no effect in females (paper II, Fig. IB). The 
gender difference in CYP1A protein expression was not reflected on the 
EROD activity. Hence, untreated males had 2-fold higher CYP1A activities 
than females (paper II, Fig. 3 and 4). Furthermore, the sex difference in 
EROD activity was abolished by treatment with 17ß-estradiol, which resulted 
in pronounced suppression of CYP1A activity in male Atlantic cod. 
Treatment with 17ß-estradiol had no effect on EROD activity in females. In 
vitro inhibition studies show that the inhibitory effect of 17ß-estradiol on 
CYP1A activity was insignificant and thus does not explain the discrepancy 
between CYP1A protein levels and EROD activities in Adantic cod. However, 
possible mechanism-based inhibition have not been investigated in this study. 
Future studies should investigate the possible AhR-ER cross-talk and other 
possible effects on post-translatory levels. 

CYP3A 

Gender differences in CYP3A protein levels have been demonstrated in 
several investigations in vertebrates, including fish (Stegeman and Woodin, 
1984; Celander, et al., 1989; Cok, et al., 1998). There was a pronounced 
sexually dimorphic expression of CYP3A proteins in adult Atlantic cod liver, 
with 7-fold higher protein levels in females compared to males. In rainbow 
trout and winter flounder (Pseudopleuronectes americanus), females displayed 
higher CYP3A expression or CYP3A activities than males (Stegeman and 
Woodin, 1984; Cok, et al., 1998; Lee, et al., 1998b). However, in rainbow trout 
during spawning and in adult killifish, males displayed higher CYP3A mRNA 
and protein expression compared to females (Celander, et al., 1989; Hegelund 
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and Celander, 2003). Furthermore, no gender differences in CYP3A levels 
were detected in scup (Stenotomus chrysops) ( Gray, et al., 1991). The mechanism 
for the sexual dimorphic CYP3A expression is not fully understood, though it 
is possible that sex steroids are involved. Treatment with 17ß-estradiol 
resulted in down-regulation of CYP3A protein expression in immature brook 
trout (Salvenius fontinalis) a nd testosterone 6ß-hydroxylase activity (presumably 
CYP3A) in winter flounder (Pajor, et al, 1990; Gray, et al., 1991). In addition, 
treatment with 17ß-estradiol resulted in induced vitellogenesis and decreased 
CYP3A mRNA and protein levels in juvenile rainbow trout (Buhler, et al., 
2000). An inverse relationship between PXR and ER expression was shown 
in human breast tumors (Dotzlaw, et al., 1999) and possible cross-regulatory 
mechanism(s) between PXR and ER cannot be ruled out. However, in the 
present study in first spawning Atlantic cod, 17ß-estradiol treatment resulted 
in elevated vitellogenesis and CYP3A protein expression in males (paper II). 
Thus, this sex steroid appears to be involved in regulation of CYP3A 
expression in fish, although species differences are apparent. It is not yet clear 
if 17ß-estradiol mediates a direct effect on CYP3A expression or indirect 
effect(s) through other hormones, feed-back mechanisms or possible PXR-ER 
cross-talks in fish. 

IN VITRO INHIBITION STUDIES OF CYP1A AND CYP3A 
ACTIVITIES IN ATLANTIC COD 

The possible inhibitory effect of 17ß-estradiol and the alkylphenols (C4 to C7) 
were determined as the median inhibition concentration (IC50) values in liver 
microsomes (paper II, Table 1). The IC50 values for 17ß-estradiol, the 
alkylphenol mixture and each individual alkylphenol on CYP1A and CYP3A 
activities were determined in pooled liver microsomes from BNF treated and 
untreated Atlantic cod, respectively. In addition, the IC50 values for these 
substances were determined in CYP3A4 cDNA expressed baculovirus 
supersomes, using BFC as substrate (paper II, Table 1). 

The inhibitory effect of 17ß-estradiol on CYP1A activity was insignificant 
(ICso=500 |iM). However, the alkylphenol mixture (C4 to C7) efficiently 
inhibited CYP1A activity (IC50=10 |xM). The inhibitory effects of each 
individual alkylphenols also were determined. The IC50 values for C4, C5, C6 

and C7 were 300, 30, 15 and 12 |iM, respectively. Thus, the potency for 
inhibition of CYP1A activity increases with increasing length of the 4-
alkylchain. For comparison, the IC5, value for ketoconazole on CYP1A 
activity was 0.6 uM (paper II, Table 1). 

Estradiol inhibited CYP3A activity (ICS0=75 uM). Furthermore, the 
alkylphenol mixture (C4 to C7) also inhibited CYP3A activity (IC50=100 LUYI) . 
In addition, the inhibitory effects of each individual alkylphenol on CYP3A 
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activity were weak or insignificant (paper II, Table 1). The IC50 values ranged 
between 60 and 250 |iM and the rank order for inhibition were [C5 > C6 > C7 > 
C4]. For comparison, the IC50 value for ketoconazole on CYP3A activity was 
0.3 u.M. A similar pattern was observed for BFCOD activities in cDNA 
expressed human CYP3A4 supersomes (paper II, Table 1). 

Further in vitro inhibition studies using pooled Atlantic cod liver 
microsomes showed that nonylphenol, ethynylestradiol and a 
ketoconazole:nonylphenol (1:5) mixture inhibited CYP1A activity, with IC50 

values ranging from 5 to 20 uM (paper III, Table 1). The CYP3A catalytic 
activity also was inhibited by ethynylestradiol (IC50= 35 |J.M) and the 
ketoconazoleinonylphenol (1:5) mixture (IQa= 5:25 |iM). Exposure to 
nonylphenol in vivo res ulted in reduced CYP3A activities in juvenile Atlantic 
cod (paper III). However, nonylphenol did not inhibit microsomal BFCOD 
activities in vitro in Atlantic cod (IC50-180 |0,M). 

For comparison, IC50 values for nonylphenol and ethynylestradiol also 
were determined for BFCOD activities in cDNA expressed human CYP3A4 
baculovirus supersomes, compared to the prototypical CYP3A4 inhibitor 
ketoconazole (IC5(i=0.4 |iM). In contrast to Atlantic cod liver microsomes, 
nonylphenol inhibited the human CYP3A4 BFCOD activity (IC50=35 (xM) as 
well as ethynylestradiol (ICso=50 |iM) (paper III, Table 1). 

The inhibitory effects of these compounds were further investigated on 
hepatic microsomal CYP1A and CYP3A enzyme kinetics (paper III). Thus, 
Kj values were determined in Dixon plots and ketoconazole was a potent non­
competitive inhibitor of both CYP1A and CYP3A activities with k; values in 
the sub-micromolar range (paper III, Fig. 4). Ethynylestradiol was a non­
competitive inhibitor of CYP1A with K, from 3.5 to 5.4 uM and an 
uncompetitive inhibitor of CYP3A with Kj from 54 to 85 |J.M (pap er III, Fig. 
5). Nonylphenol was a non-competitive inhibitor of CYP1A activity with K, 
around 3.5 (xM. There were no effects of preincubation either with 
ketoconazole or ethynylestradiol (in the presence or absence of NADPH) on 
hepatic microsomal CYP3A protein levels in this study (paper III, Fig. 6). 

Other studies have shown that ethynylestradiol is a mechanism-based 
inactivator of human liver microsomal CYP with loss of both spectrally 
detectable CYP and ethynylestradiol 2-hydroxylase activity during incubation 
in the presence of NADPH (Guengerich, 1988; Lin, et al., 2002). 
Ketoconazole also is a well known, highly potent inhibitor of CYP3A activity 
in humans (Venkatakrishnan, et al., 2001). Another antifungal imidazole, 
clotrimazole, was shown to be a noncompetitive mixed-type inhibitor of 
EROD activity with an IC. of 190 nM in rainbow trout (Levine and Oris, 
1999). Hence, both ethynylestradiol and antifungal imidazoles affect CYP1A 
and CYP3A enzymes in vertebrates, which implies that these compounds are 
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involved in metabolic clearance of sex steroid hormones and xenobiotics, 
including EDCs. 

VlTELLOGENESIS 

Juvenile Atlantic cod exposed to nonylphenol (25 mg/kg fish), 
ethynylestradiol (5 mg/kg fish) and the combination of ketoconazole and 
nonylphenol showed increased plasma vtg levels (paper III, Table 2). 
However, nonylphenol dependent vitellogenesis was not affected by co-
treatment with ketoconazole (paper III, Table 2). 

Exposure to ethynylestradiol (2.5 Mg/kg fish) had no significant effect 6 
days post injection on vitellogenesis in juvenile rainbow trout (paper IV, Fig. 
5). However, in combination with ketoconazole (100 mg/kg fish) this 
threshold-dose of ethynylestradiol resulted in a 4.5-fold increase of plasma vtg 
concentration (paper IV, Fig. 5). Thus, co-exposure to ketoconazole appears 
to make rainbow trout more sensitive to low exposure of ethynylestradiol. 
This effect was time-dependent as it was not observed 3 or 12 days post 
injection. 

Schultz, et al., (2001) observed that a 12 h lag time occurred before 
increases in plasma vtg concentrations could be detected in male rainbow 
trout i.v. injected with ethynylestradiol (0.001 to 10.0 mg/kg). They also found 
maximal plasma levels around 7-9 days post injection. Increasing the 
ethynylestradiol dose or time of exposure probably resulted in an increase in 
estrogen receptor recruitment leading to progressively more vtg synthesis 
(Schultz, et al., 2001). This delay in response is believed to be due to 
recruitment of ER, which has been suggested by Nimrod and Benson (1997). 
In another time-course experiment on 17ß-estradiol and ethynylestradiol 
exposed adult male zebrafish, a major time-dependent increase in the vtg 
concentration was displayed until day 5 (Rose, et al., 2002). No further 
increase in vtg levels was not observed until termination of the experiment on 
day 8. Vitellogenesis is evidendy a dynamic process. Temporal aspects as well 
as situations of mixed exposure should be considered when using this  
biomarker to assess estrogenic exposure in the laboratory and in the aquatic 
environment. 

SEX STEROIDHORMONES 

Treatment with nonylphenol (25 mg/kg fish), ethynylestradiol (5 mg/kg fish) 
and the combination of ketoconazole (12 mg/kg fish) and nonylphenol (25 
mg/kg fish) had no significant effect on 17ß-estradiol, testosterone or 11-
keto-testosterone plasma levels compared to control fish (paper III, Table 2). 
However, co-exposure to ketoconazole and nonylphenol resulted in 51% 
decrease in testosterone plasma concentration compared to fish treated with 
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ketoconazole (12 mg/kg fish) alone (paper III, Table 2). Thus, mixed 
exposure to xenoestrogen and ketoconazole may affect sex steroid 
homeostasis in Adantic cod. 

Treatments with ethynylestradiol (2.5 (ag/kg fish), ketoconazole (100 
mg/kg fish) or the ethynylestradiol and ketoconazole mixture had no 
significant effect on plasma 17ß-estradiol levels in juvenile rainbow trout 
(paper IV, Table 1-3). Testosterone levels, on the other hand, were reduced 
50% after co-exposure to ketoconazole and ethynylestradiol 12 days post 
injection compared to fish treated with ketoconazole alone (paper IV, Table 
3). The combined exposure also decreased plasma 11-keto-testosterone levels 
compared to fish exposed to ethynylestradiol alone 12 days post injection 
(paper IV, Table 3). The reason for this anti-androgen effect is not known and 
analyses of plasma levels of EE2 may provide further insight. 

The hypothalamus-pituitary-gonadal axis is a complex system and many 
mechanisms are involved in the regulation process (Brown, 2002). Response 
to this feedback may involve ER or brain aromatization of androgens to 
estrogens (Kime, 1999). Plasma steroid concentration reflects the rate of 
synthesis as well as the rate of deactivation and excreation by the liver (Kime, 
1999). Therefore, low plasma steroid levels could be due to inhibited synthesis 
or elevated hepatic catabolism. In a previously conducted study, plasma vtg 
levels increased without a coincident significant increase in plasma estradiol 
levels in male carp (Cyprinus carpio) exposed to municipal sewage effluent. 
However, circulating testosterone levels were reduced (Folmar, et al., 1996). 
Phytoestrogens such as ß -sitosterol found in pulp mill effluent are capable of 
dramatically reducing plasma testosterone levels in goldfish by altering 
cholesterol availability (MacLatchy and Van Der Kraak, 1995). Testicular 
pieces from ß -sitosterol treated fish exhibited decreased basal release of both 
testosterone and pregnenolone, suggesting that depressed plasma steroid levels 
in males were due to direct effects on testicular steroid production. The 
decreased levels of pregnenolone produced by the ovary and testis from the ß 
-sitosterol treated fish further suggest that the sterol may effect cholesterol 
availability or reduce the activity of the side chain cleavage enzyme 
cytochrome P450scc (CYP11), which mediates conversion of cholesterol to 
pregnenolone (MacLatchy and Van Der Kraak, 1995). It is not impossible that 
ketoconazole, the very potent CYP1A and CYP3A enzyme activity inhibitor, 
also is a possible inhibitor of CYP11 in our study. In fact, ketoconazole has 
been shown to inhibit several steroidogenic CYP enzymes in vertebrates, such 
as CYP11, CYP 17, CYP19 and CYP51 (Weber, et al., 1991; Monod, et al., 
1993; Denner, et al., 1995; Kühn-Velten and Lohr, 1996; Lamb, et al., 1999; 
Monteiro, et al., 2000). Still, CYP1A and CYP3A enzymes are possible 
candidates involved in metabolic clearance of sex steroids in vertebrates 
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(Waxman, et al., 1988; Miranda, et al, 1989; Waxman, et al., 1991; Wang and 
Strobel, 1997; Yamazaki, et al., 1998). Thus, reduced steroid levels reported 
here 12 days post injection may be due to increased clearance as a result of 
induced CYP1A and CYP3A protein levels together with declining inhibitory 
effect of ketoconazole. To conclude, ketoconazole acts as a broad-spectrum 
CYP inhibitor, which may interfere with metabolic clearance of sex steroid 
hormones and xenobiotics, including EDCs. 
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CONCLUDING REMARKS 
The general aim of this thesis was to study effects of environmental estrogenic 
compounds on cytochrome P450 (CYP), and to identify possible sites of 
interaction between estrogenic compounds and the model antifungal 
imidazole, i.e. ke toconazole. Produced water from offshore oil production is a 
source of environmental estrogenic compounds. Produced water contains 
significant amounts of alkylphenols, which are continuously released into the 
aquatic environment. Alkylphenols (C4 to C7) induced CYP1A and CYP3A 
protein expression in male Atlantic cod, but not in females. In contrast, 
treatment with alkylphenols had no effect on CYP1A activities in males and 
only slightly induced CYP1A activities in females. Treatment with estradiol 
resulted in increased CYP1A protein expression but decreased CYP1A 
activities in males, whereas estradiol had no effect in females. Thus, estradiol 
and alkylphenols are both estrogenic, but have different effects on CYP1A 
activities in vivo. In vitro inhibition studies showed that the alkylphenol mixture 
(but not estradiol) efficiently inhibited CYP1A activity, suggesting that these 
two types of estrogenic compounds have diverse effects on CYP1A activities 
in Atlantic cod. Furthermore, alkylphenols increased oxidative stress responses 
in Atlantic cod. We found elevated tGSH levels and increased GR activity in 
alkylphenol treated Atlantic cod. The consequence of the discharges of 
produced water is still not known, but there is good reason to believe that 
long-term exposure will have negative effects on marine organisms. It is 
therefore critical that the discharges of oil and chemicals from produced water 
are reduced as much as possible. 

We identified interactions between ketoconazole and two different types 
of estrogenic compounds on CYP1A and CYP3A in both juvenile Atlantic 
cod and rainbow trout in vivo. Ketoconazole induced CYP1A and CYP3A 
protein expression, whereas CYP1A and CYP3A activities were inhibited to 
various degrees. These studies suggest that induction of CYP1A and CYP3A 
gene expression can be pardy or completely masked by inhibition of catalytic 
activities in vivo in these species. In vitro studies using Atlantic cod liver 
microsomes revealed that ketoconazole acted as a non-competitive inhibitor 
of both CYP1A and CYP3A activities, ethynylestradiol acted as a non­
competitive inhibitor of CYP1A and an uncompetitive inhibitor of CYP3A 
activities and nonylphenol was a non-competitive inhibitor of CYP1A but did 
not inhibit CYP3A. Furthermore, interactions between ketoconazole and 
CYP1A and CYP3A in rainbow trout resulted in increased responsiveness to 
ethynylestradiol exposure, measured as induction of plasma vtg levels. These 
results indicate that CYP1A and CYP3A represent sites of interactions 
between these classes of xenobiotics and that ketoconazole exposure may 
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increase the sensitivity to exposure of low ethynylestradiol concentrations. 
Combined exposure to ethynylestradiol and ketoconazole resulted in 
suppressed levels of circulating androgens. However, the mechanism(s) for 
this response is still not understood and at this point we can only speculate. 
Ketoconazole is known to inhibit steroidogenic CYP enzymes, such as 
CYP11, CYP17, CYP19 and CYP51 in vertebrates. It is possible that 
ketoconazole affected these steroidogenic CYP enzymes also in this study, 
resulting in decreased steroid hormone synthesis. 

We have studied short-term effect of EDCs in fish. In order to better 
understand the long-term effects, more research is needed to estimate the 
possible adverse effect. Furthermore, more research is needed to identify 
additional EDCs and to develop and optimize new, reliable and sensitive assay 
systems. For estrogenic compounds, there are features that make risk 
assessment difficult, such as existence of receptor cross-talk, dependence of 
effects on sex, age, polymorphism, dietary compounds and complicated 
toxicokinetics with plasma protein binding. It is therefore important to learn 
more about interindividual differences, with regards to age, dose, duration of 
exposure and pharmacogenetics. Another aspect is to learn more about 
interactions between multiple synthetic chemicals in vivo. For example, with 
azole fungicides, which interact with CYP1A and CYP3A and possible also 
with steroidogenic CYP enzymes. It is important to move forward with 
further studies on metabolic clearance of endocrine disrupters and steroid 
hormones to better understand the molecular and physiological mechanisms 
of endocrine disruption. 
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