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ABSTRACT 

Children with acute lymphoblastic leukemia (ALL) can be cured with cytotoxic 
chemotherapy, but myelosuppression and immunosuppression are major side effects causing 
morbidity and even mortality from infections. Vaccinations with diphtheria toxoid (DT), tetanus 
toxoid (TT) and protein conjugated Haemophilus influenzae type B (Hib) capsular polysaccharide 
were used to investigate the adaptive immune system in a controlled study of 31 children after 
treatment for ALL. Subprotective antibody levels were found in 83% of the patients against 
diphtheria and 67% against tetanus, whereas all had protective levels of Hib antibodies. All standard 
and intermediate risk patients had protective antibody levels after immunization. The memory 
response was weak in the high risk (HR) group, with subprotective antibody levels in a substantial 
proportion after immunization. Antibody avidity after immunization was low for anti-TT, but not 
for anti-Hib, in the HR group. The poor antibody production in the HR group correlated to low 
numbers of specific antibody secreting cells after immunization. No difference in the immune 
response was detected between patients vaccinated at one month (N=12) or six months (N=19) after 
treatment. To examine immune reconstitution after childhood ALL, lymphocyte populations and in 
vitro function of T and B cells was measured in the vaccine recipients. At 6 months after treatment 
T cells were subnormal due to low CD4+ and CD4+45RA+ T cells. During reconstitution the CD5+  

B cells were increased, most marked in the HR group. These findings clearly suggest a relationship 
between treatment intensity and immunosuppression in children with ALL, which should influence 
the policy for immunizations. Inactivated vaccines are effective in patients from the lower risk 
group already at 1 month after treatment. The effect of repeated immunizations after 6 months in 
the HR group should be examined. 

Ara-C is an important, but highly myelosuppressive drug for ALL. To investigate the 
inflammatory reaction named the Ara-C syndrome a retrospective study of 57 patients in first 
complete remission (ALL=49, NHL=8) treated with 169 courses of high dose ara-C (HDAC) was 
performed. Ara-C fever occurred in 113/169 (67%) of the courses, and was associated with elevated 
plasma levels of the inflammation markers CRP and procalcitonin. An association between fever 
and release of proinflammatory cytokines (TNF-a, IL-6 and I FN-"/) was found. This was 
counterbalanced by elevations of the anti-inflammatory cytokines ILl-ra and IL-10. The syndrome 
was self limiting, but could be inhibited by administration of corticosteroids. Myelosuppression, 
including lymphopenia, was profound after HDAC, and neutropenic fever occurred after 55% of the 
courses. The incidence of viridans streptococcal sepsis was low (2/169) and no mortality occurred, 
despite that 93% of all HDAC was administered without the use of colony stimulating factors. This 
study demonstrates that ara-C has strong effects on the innate immune system leading to an 
exceptionally high incidence of both drug fever and infections. 
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ara-C, fever, cytokines 
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ABSTRACT 

Children with acute lymphoblastic leukemia (ALL) can be cured with 
cytotoxic chemotherapy, but myelosuppression and immunosuppression are major 
side effects causing morbidity and even mortality from infections. Vaccinations with 
diphtheria toxoid (DT), tetanus toxoid (TT) and protein conjugated Haemophilus 
influenzae type B (Hib) capsular polysaccharide were used to investigate the adaptive 
immune system in a controlled study of 31 children after treatment for ALL. 
Subprotective antibody levels were found in 83% of the patients against diphtheria 
and 67% against tetanus, whereas all had protective levels of Hib antibodies. All 
standard and intermediate risk patients had protective antibody levels after 
immunization. The memory response was weak in the high risk (HR) group, with 
subprotective antibody levels in a substantial proportion after immunization. Antibody 
avidity after immunization was low for anti-TT, but not for anti-Hib, in the HR group. 
The poor antibody production in the HR group correlated to low numbers of specific 
antibody secreting cells after immunization. No difference in the immune response 
was detected between patients vaccinated at one month (N=12) or six months (N=19) 
after treatment. To examine immune reconstitution after childhood ALL, lymphocyte 
populations and in vitro function of T and B cells was measured in the vaccine 
recipients. At 6 months after treatment T cells were subnormal due to low CD4+ and 
CD4+45RA+ T cells. During reconstitution the CD5+ B cells were increased, most 
marked in the HR group. These findings clearly suggest a relationship between 
treatment intensity and immunosuppression in children with ALL, which should 
influence the policy for immunizations. Inactivated vaccines are effective in p atients 
from the lower risk gr oup already at 1 month after treatment. The effect of repeated 
immunizations after 6 months in the HR group should be examined. 

Ara-C is an important, but highly myelosuppressive drug for ALL. To 
investigate the inflammatory reaction named the Ara-C syndrome a retrospective 
study of 57 patients in first complete remission (ALL=49, NHL=8) treated with 169 
courses of high dose ara-C (HDAC) was performed. Ara-C fever occurred in 113/169 
(67%) of the courses, and was associated with elevated plasma levels of the 
inflammation markers CRP and procalcitonin. An association between fever and 
release of proinflammatory cytokines (TNF-a, IL-6 and I FN-7) was found. This was 
counterbalanced by elevations of the anti-inflammatory cytokines ILl-ra and IL-10. 
The syndrome was self limiting, but could be inhibited by administration of 
corticosteroids. Myelosuppression, including lymphopenia, was profound after 
HDAC, and neutropenic fever occurred after 55% of the courses. The incidence of 
viridans streptococcal sepsis was low (2/169) and no mortality occurred, despite that 
93% of all HDAC was administered without the use of colony stimulating factors. 
This study demonstrates that ara-C has strong effects on the innate immune system 
leading to an exceptionally high incidence of both drug fever and infections. 

Key words: acute lymphoblastic leukemia, immune reconstitution, immunization, 
antibody, avidity, ara-C, fever, cytokines 
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ABBREVIATIONS 

AbSC Antibody secreting cells 

a-CD3 Antibody to CD3 

ALC Absolute lymphocyte count 

ALL Acute lymphoblastic leukemia 

ANC Absolute neutrophil count 

ConA ConcanavalinA 

CRP C-reactive protein 

DT Diphtheria toxoid 

G-CSF Granulocyte Colony Stimulating Factor 

HD AC High dose Ara-C 

Hib Hemophilus influenzae type B 

HR High risk 

IFN Interferon 

IL Interleukin 

Ig Immunoglobulin 

IR Intermediate risk 

NHL Non-Hodgkin lymphoma 

NOPHO Nordic Society of Paediatric Hematology and Oncology 

PBL Peripheral blood lymphocytes 

PBMC Peripheral blood mononuclear cells 

PCT Procalcitonin 

PHA Phytohemagglutinin 

Pit Platelets 

SR Standard risk 

TNF-a Tumor necrosis factor-a 

TT Tetanus toxoid 

VS Viridans streptococci (a-hemolytic streptococci) 

WBC White blood cells 



INTRODUCTION 

Childhood acute lymphoblastic leukemia 

Acute lymphoblastic leukemia (ALL), originating from a clonal proliferation of 

lymphoblasts in the bone marrow, is the commonest pediatric malignancy. The annual 

incidence rate in children 0-14 years old in the Nordic countries is = 4 / 100 000 (1). 

The 5 year survival rate has increased from «• 5% in 1970 to 81% in the Nordic ALL 

protocol of 1992 (NOPHO-92) (2). 

Much progress has been accomplished through the insight that ALL is a heterogenous 

disease. This has led to adaptation of therapy depending on the presence of the most 

important prognostic factors and assignment of patients to different risk groups. An 

attempt to agree on universal risk criteriae was done in the NCI/Rome classification 

of 1996 (3). Although all modern treatment protocols for childhood ALL stratify 

therapy according to such risk groups, the precise definitions of these vary beween 

different studies. The most important risk factors at diagnosis are white blood cells 

(WBC) count, age and immunophenotype. Besides, specific cytogenetic 

abnormalities, treatment and response to treatment are well defined risk factors 

nowadays. In NOPHO-92, classification into 3 main groups was based on these 

factors (table 1) (4). The proportions of patients were standard risk (SR) 35%, 

intermediate risk (1R) 37% and high risk (HR) 29%. The HR group was subdivided in 

3 groups: (l)HR<5y(2)HR 

Table I. Risk classification in the NOPHO-92 protocol 

Risk group Age 
(y) 

WBC 
(xl03/|iL) 

Im mu no 

Phenotype 

Other criteria 

Infants (excluded) <1 - - -

B-ALL (excluded) - - Mature B -

Standard risk 2-10 <10 B-precursor No HR-crit 

Intermediate risk 

1-2 <50 B-precursor No HR-crit 

Intermediate risk 2-10 10-50 B-precursor No HR-crit Intermediate risk 

>10 <50 B-precursor No HR-crit 

High risk >1 

- T-precursor -

High risk >1 

>50 B-precursor -

High risk >1 

- - CNS+, testis+ 

High risk >1 - -
Lymphomatous 

(clinical and laboratory crit) 
High risk >1 

- - t(9;22) / t(4;l 1) 

High risk >1 

- - Slow response 
to induction treatment 

(- denotes any value) 
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>5 y (3) Very HR, that included children >5 y and CNS+ or lymphomatous leukemia 

or slow response to treatment or T precursor disease together with another HR criteria 

(5). 

Intensive chemotherapy is required to cure childhood ALL. In NOPHO-92 a common 

induction phase was followed by an early intensification in the IR and HR groups 

(table 2) (4, 5). Thereafter CNS-consolidation, delayed intensification (the IR and HR 

groups) and maintenance therapy subsequently followed. To reduce the number of 

children exposed to cranial irradiation, CNS-consolidation was based on intrathecal 

methotrexate and high doses of methotrexate iv (5 - 8 g/m2) and Ara-C iv (2 x 2 g/m2 

for 3 days = 12 g/ m2). Only very HR patients were irradiated. The NOPHO strategy 

was successful and the cumulative incidence of CNS-relapses was < 5%, despite that 

only 10% of all patients (33% of the HR group) received cranial irradiation (6). A few 

patients with very HR ALL had allogeneic stem cell transplantation in first remission, 

but this was not an integrated part of the protocol. 

Given the myelosuppressive effects of ALL and its treatment, infectious 

complications are common and supportive care is an essential part. The description of 

the strong association between neutropenia and infections was a landmark in 

management of infections (7). However, the association between leukemia and 

immunological dysfunction has also been known for a long time (8-10). Already in 

1920 Dr Katharine M. Howell described failure of humoral immunity in leukemia 

patients. She examined two patients with untreated leukemia, who failed to form any 

agglutinating or opsonizing antibodies after inoculation with B. typhosus or B. 

paratyphosus (8). 

Immunosuppression and immune reconstitution 

Immunosuppression, which can be caused both by leukemia and its treatment, is of 

major importance for pediatric cancer patients. Suppression of the innate immune 

response, e.g. neutropenia and monocytopenia, causes an increased sensitivity for 

bacterial and fungal pathogens (11). The adaptive immune system is also affected by 

therapy, but due to more complex interactions, the consequences are more difficult to 

predict. The risk of opportunistic infections with viruses, particularly of the 

herpesvirus and paramyxovirus groups, and intracellular organisms like Pneumocystis 

carinii, as well as infections with encapsulated bacteria is increased (12-17). This 

5 



broad range of infections implies deficiencies of both T and B cell function (18-20). 

Thus, a correlation between low levels of CD4+ T cells and opportunistic infections 

has been found for pediatric patients with solid tumors (21). A single center study 

found that children with HR-ALL treated with the NOPHO-92 protocol had a 

cumulated risk of 70% for Pneumocystis pneumonia, and that the risk correlated to 

lymphopenia (22). 

Immune reconstitution is an active process by which an organism strives to restore 

function when the homeostasis of the immune system has been disturbed. To some 

extent regeneration occurs already between cytotoxic courses, but in general immune 

reconstitution refers to recovery after end of treatment (23). Some basic principles of 

immune reconstitution are known (figure 1). The innate immune system regenerates 

more rapidly than the adaptive immune system, and B cells faster than T cells. 

Expansion of peripheral T cells precedes the reconstitution of naïve T cells, which 

require thymic maturation. 

i^mus-independent 

ell expansion 

ent \  

Thymopoiesis 
Naive T cells 

/ I Inna te immunity 

(myeloid cells, NK^ CD8+ high 

I cells) CD4+ low 

CD19+ normal 

End of therapy  

B cells 

DQ[ Immunoglobulins 

Figure 1. Schematic time scale of the immunological reconstitution after intensive 
chemotherapy in children. 

Regeneration of T cells 

T cells are depleted during intensive chemotherapy (21, 23, 24). Mackall et al have 

studied the regeneration of lymphocyte subpopulations in pediatric patients, treated 

with intensive chemotherapy for solid tumors. They found that the CD4+ T cell 

regeneration in children is related to thymic function, consequently declining after 

puberty (25). The median time to full regeneration was 8 months (range 6-12) after 
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completion of treatment. In contrast, CD8+ T cells, which regenerated primarily 

through thymus-independent pathways reached pretreatment values at +3 months 

(26). 

T cell recovery after ALL was studied by Alanko et al (27). They found that the total 

T cell number recovered in 6 months, CD8+ T cells reached normal levels at +3 

months, and CD4+ T cells at +6 months. As for children with solid tumors, young 

children (3-6 years old) had a quicker recovery. T cell defects may be long standing, 

as shown in a study where 4% of long-term survivors had CD4+ lymphocytopenia 

after > 5 years in remission from ALL or non Hodgkin lymphoma (NHL) (28). 

T cell function is also affected by ALL treatment (29). The proliferative capacity after 

PHA-stimulation was reduced during induction therapy, but restored in the 

maintenance phase. More refined measures, like stimulated IFNy-secretion and 

cytotoxic respone to allogeneic cell stimulation were reduced during all phases. 

Regeneration of NK cells 

NK cells are reduced during ALL treatment, whereas they seem to be normal during 

therapy for solid tumors (21, 30, 31). Following ALL treatment, NK cells regenerate 

in the first months (31). Recovery of NK cells is important not only for host defense 

against infections but may also influence the risk of leukemic relapse, since it has 

been shown that reduced NK cell reactivity against autologous leukemic blasts 

correlates to increased risk of relapse (32). 

Regeneration of B cells 

Humoral immunity is affected during ALL treatment with profound B cell 

lymphopenia and low immunoglobulin (Ig) levels, particularly IgM (33-35). Few data 

exist, but one study found that B cells increased rapidly to normal levels already at +1 

month, whereas serum Ig levels increased at a slower pace. At +6 months IgG, IgA 

and IgM were normal, but some young patients (<8 y) had persistently low IgG2 (34). 

After intensive treatment for solid tumors the B cells increased to 150-200% of 

normal values at +3 months (26). Subpopulations of B cells have not been extensively 

studied, but it has been shown that CD27+ B cells (memory B cells) are decreased 

during recovery from ALL treatment (36). Humoral immunity may be affected for 

long periods after ALL, since some children fail to respond to vaccination with 
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common vaccines against bacterial and viral infections several years after treatment 

(37, 38). 

Vaccine induced immunity after ALL 

Immunity and protection 

Protective immunity is a relative concept, and depends on many factors related to the 

host and the pathogen. The first defense line of adapted immunity against invasive 

infection or toxin-mediated disease is opsonizing or neutralizing antibodies produced 

by plasma cells in the bone marrow (39). The memory response, or recall antibody 

response, is activated after a short lag period. It is characterized by a rapid production 

of high-affinity antibodies and depends on both memory B and memory T cells. The 

generation of non-secreting memory B cells takes place in the germinal centres (40). 

Both measureable antibody levels and memory B cells can persist for very long times 

after antigen exposure (41, 42). 

Vaccine efficacy is demonstrated by a correlation between vaccination and disease 

prevention (43). To determine protection at the individual level measures of an 

immune response are used. Neutralizing antibody tests evaluate the level of functional 

antibodies, and are considered to be the best serological correlates to protection (44-

47). ELISA methods are often used for antibody analysis, despite an inherent 

sensitivity to antibody affinity (48). They tend to overestimate the amount of 

protective antibodies, since low-affinity antibodies, that confer less protection 

especially at low levels, also bind in the assay (44, 46). There is some inconsistency 

regarding protective antibody limits, but when ELISA methods and international 

standards are used, anti-diphtheria toxoid (DT) / anti-tetanus toxoid (TT) >0.1 IU/ml 

is considered to represent complete protection against diphtheria or tetanus (44, 49-

51). Neutralizing/opsonizing IgG antibodies to Haemophilus influenzae type B (Hib) 

capsule polysaccharide are essential for the defense against invasive infections. The 

question about serological correlates to protection from Hib has attracted much 

dispute. The currently used limit for protection is >0.15 iig/'ml (52). In studies of pure 

polysaccharide vaccines a postimmunization level >1.0 ng/ml was the limit for good 

immune response, probably conveying long term immunity (49). Protein-conjugated 

vaccines augment protection by inducing T cell dependent immunological memory. 

9 



Antibody avidity 

Functional antibody activity is dependent upon both amount of antibody and affinity 

to the antigen. Analysis of avidity has been developed as a method of measuring the 

average binding strength of antibodies in a serum sample (53, 54). In vivo, it appears 

that antibody amount is correlated to protection, provided that avidity is above a 

certain threshold (55). It has been suggested that avidity can be used as a surrogate 

marker of memory responses (56). Goldblatt et al found that children with suboptimal 

levels of anti-Hib IgG also had low avidity, indicating insufficient memory priming 

(57). Few and conflicting data exist about antibody avidity after childhood ALL. 

Abrahamsson et al found that the avidity of E. Coli and poliovirus antibodies was 

increased in ALL patients (58). Nilsson et al studied the immune response to 

revaccination with live measles vaccine >2 years after treatment and found that 

children with low antibody levels after vaccination also had low antibody avidity (37). 

Immunity after ALL treatment 

Why is it o f importance to evaluate the immunological protection against pathogens 

after cancer therapy? Although it must be held in mind that there is no herd immunity 

for tetanus and occasional case reports exist, this disease is not seen as a clinical 

problem for ALL patients in countries with good vaccination coverage (59). Large 

outbreaks of diphtheria have occurred in eastern Europe, and occasionally also in 

Sweden (60, 61). Immunosuppressed individuals are at increased risk. Children with 

leukemia have been reported as a risk group for invasive Hib infections, even at age 

>5 years (16, 17). Despite the introduction of general Hib vaccination (1992 in 

Sweden) immuncompromised children may still be at risk, due to vaccine failure (62, 

63). Viral agents, like measles and varicella, are causing significant morbidity and 

mortality in children with leukemia (12, 14, 15, 64). 

Measurement of vaccination antibodies is an accessible way of evaluating the 

humoral immune function in immunodeficiency states (65, 66). As discussed above, 

useful methods for evaluation of the important immunological memory function are 

analysis of: (1) Antibody levels and isotypes after immunization (2) Antibody avidity 

(3) Specific antibody secreting cells (AbSC) as measure of memory B cells. 

A number of studies have examined immunity after childhood ALL (16, 37, 67-75). 

They cannot easily be compared, due to differences in use of methods for antibody 

analysis, definitions of protection, treatment protocols, pretreatment vaccination 
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schemes, vaccines and evaluation at different time points during or after treatment. 

Some risk factors for losing antibody protection can be discerned: (1) Younger age 

correlates with risk of losing protection (37, 71, 74). (2) Patients with hematological 

malignancies seem to be at greater risk than patients with solid cancers (72, 76). 

However, there are studies that have failed to show a difference between patients with 

ALL and solid tumors (71, 74). (3) Recent studies show a higher proportion of 

patients without protection than earlier studies, probably reflecting higher treatment 

intensity (figure 2). 
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• Ek 2004 

Figure 2. Proportions of children with ALL with protective levels of diphtheria toxoid antibodies in 
different studies published over the years 1981 - 2004. Adapted from the references (67-69, 71, 72, 77) 

In general, antibodies against DT and TT decrease during treatment and do not 

increase spontaneously during the first year after treatment. Nevertheless, the majority 

(60-100%) of the patients still have antibody levels above the limit for protection after 

treatment (67-69, 73-75, 78). Exceptions exist, like von der Hardt's study showing 

that only 14% of ALL patients had full protection against DT after treatment (72). 

The response to reimmunization has been good in 90-100 % of the patients (67, 69, 

73, 74, 78). 

A number of investigations have been performed on children with ALL before the 

introduction of Hib-vaccination (16, 69, 79, 80). They all showed that >50 % of the 
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patients had subprotective levels of Hib antibodies and that the immune response to 

vaccination during treatment was variable, with 50-100 % responders. 

High-dose Ara-C treatment 

Ara-C is a structural analogue of deoxycytidine that is used in the treatment of 

leukemia and lymphoma. The active metabolite Ara-CTP is incorporated into DNA-

strands during replication, leading to DNA-strand breaks and eventual induction of 

apoptosis (81). Drug concentration and exposure time are important determinants of 

cytotoxicity. HDAC is used to overcome cellular drug resistance and to achieve 

therapeutical drug levels in CNS (82). HDAC is extensively used for treatment of 

AML, and has also been used both for consolidation in primary treatment and relapse 

of ALL (83, 84). 

Toxicity 

The commonest toxic side effects in children after HDAC are myelosuppression and 

mucosal injury in the gastrointestinal tract (85). Neurotoxicity, especially cerebellar 

dysfunction, is a serious event that is uncommon in pediatric patients (85, 86). A 

severe respiratory failure with features of acute respiratory distress syndrome (ARDS) 

and high mortality was first described in adults, but has subsequently also been 

reported in pediatric patients with AML (87-89). The reaction occurs after an interval 

of approximately 1 week after HDAC and in most patients coincides with 

myelosuppression and gastrointestinal damage. The pathogenesis is not fully known, 

but capillary leakage due to fluid overload, hypoalbuminemia and endothelial injury 

has been proposed. One study suggested that elevated levels of proinflammatory 

cytokines, TNF-a and Platelet activating factor, may be important mediators (90). 

Since HDAC induces severe myelosuppression, neutropenic infection is a common 

life threatening complication in pediatric patients (84, 85). In a study of ALL patients, 

it was found that HDAC + L-asparaginase was followed by the highest rate of 

neutropenic infections, even when comparing with other treatment blocks inducing 

similar duration of leukopenia (91). Several studies has shown HDAC to be a risk 

factor for viridans streptococcal (VS) sepsis, which is a serious complication 

sometimes evolving to shock and ARDS (92-94). The oral cavity is the commonest 
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portal of entry, but it has been suggested that Ara-C is an independent risk factor apart 

from its association with mucositis (94). 

The Ara-C syndrome 

A remarkable side effect of Ara-C is that a substantial proportion of patients develop 

systemic inflammatory symptoms during treatment. The reaction resembles the 

systemic inflammatory response syndrome (SIRS) and may easily be confused with 

fever caused by infections (95). The term "Ara-C syndrome" was coined by 

Castleberry et al (96). In their work 6 children exhibited fever, myalgia, bone pain, 

occasionally chest pain, maculopapular rash and conjunctivitis 6-12 hours after low-

dose Ara-C injections. The reaction was self-limiting, but could be inhibited by 

corticosteroids. They concluded that the most likely explanation was hypersensitivity 

to Ara-C. 
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AIMS OF THIS STUDY 

The aims of the study were to investigate: 

the immunity to diphtheria, tetanus and Hib after treatment for childhood ALL. 

the immune response after immunization with DT, TT and Hib after treatment for 

childhood ALL, and to compare reimmunization at 1 or 6 months after treatment. 

the reconstitution of the adaptive immune system after treatment for childhood 

ALL, with particular focus on finding variables that are predictive of the immune 

response to reimmunizations. 

the incidence and characteristics of the acute inflammatory reaction that is 

associated with Ara-C treatment, and if proinflammatory cytokines act as 

mediators. 

the myelosuppression and the subsequent infectious complications after single-

drug, high dose Ara-C for pediatric lymphoid malignancies 

14 



PATIENTS AND METHODS 

Patients 

Göteborg is the referral centre for pediatric oncology in the western region of Sweden. 

The mean population for the time period 1993-2002 was 530 000 children (0-18 

years). All subjects in the studies are from the 231 new cases of ALL and 13 cases of 

non-B NHL stage III-IV during the period 1993-2004. The characteristics of cases 

and controls are shown in table 3. 

Table 3. Characteristics of study I- V 

Study Time 
period 

Diagnosis N Age* (years) 
Mean(range) 

Study design 

SR ALL 6 
IRALL 16 9.9 (3.3-19.1) Consecutive patients at 1 
HR ALL 9 or 6 months after treatment 

I-III 1997-2002 Controls (I) 20 11.1 (5.6-15.7) 

Controls (II) 18 11.4(7.1-15.7) 
Age-matched, healthy 
controls 

Controls(III) 40 7.8 (2.1-15.7) 

IV 1993-2004 
HR ALL 49 7.2(1.8-17.8) 

Retrospective study IV 1993-2004 
NHL 8 11.6 (5.6-17.8) 

Retrospective study 

V 1995-1998 
HR ALL 14 

6.3(2.5-14.8) 
Consecutive patients 

V 1995-1998 
NHL 2 

6.3(2.5-14.8) 
during HDAC treatment 

*Age refers to age at investigation 

In study I-III we included 31 children with ALL in first complete remission and 20 

( 18 in study II) healthy, age-matched controls. Patients that completed ALL treatment 

during the study period, and agreed to participate, were alternately included at 1 

(N=12) or 6 months (N=19) after treatment. The groups are unequal, because more 

patients refused to participate in the 1 month group. The slow enrolment was caused 

by a high proportion of patient and parent refusal and to initial restriction to patients 

living near Göteborg due to transportation problems. Later we used taxi transports 

from hospitals outside Göteborg to ensure delivery within 6-8 hours. 

The detailed characteristics of the HR patients are shown in table 4. The controls were 

recruited among healthy siblings and friends of the patients. Patients and controls 

were vaccinated once with 0.25 ml Duplex® [vaccine against diphtheria (30 Lf/ml) 

and tetanus toxoids (7.5 Lf/ml), SBL, Stockholm, Sweden] and 0.5 ml Act-Hib® [Hib 

capsule polysaccharide (CP) conjugated to tetanus toxoid, Aventis Pasteur, MSD], 

Serum was collected before vaccination and 3 weeks later for analysis of level and 
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avidity of DT, TT and Hib antibodies. All serum samples were stored at -70°C until 

analyzed. Blood cells were collected at 7 days after vaccination for measurement of 

total number of AbSC (with unknown specificity) and TT or Hib specific AbSC, since 

the number is known to be maximal at that time (97). In addition we used serum 

samples that were frozen at the time of diagnosis, to compare immunity before and 

after treatment. The subjects that were <10 years old, and had not received the 

scheduled booster dose of DT+TT at 10 years of age, were advised to refrain from 

this immunization. 

In study III we included the same subjects as in study I-II and an additional 20 

controls, that were not vaccinated in the study but were sampled for baseline 

immunological parameters. Peripheral blood mononuclear cells (PBMC) and serum 

was sampled before vaccination for analysis of lymphocyte subpopulations, mitogen-

stimulated PBMC proliferation, total number of AbSC, serum Ig and subclasses of 

IgG. 

In study IV we included 57 consecutive patients with HR ALL (n=49) or non-B NHL 

stage III-IV (n=8). They received altogether 169 HDAC courses. Study IV was 

retrospective. Ara-C fever was defined as body temperature 238.0° C for >2 hours 

between the start of the first and the end of the last Ara-C infusion. Fever occuring 

after the last Ara-C infusion was included in analysis of post Ara-C febrile episodes. 

In study V 14 patients with HR ALL and 2 with T-NHL stage III-IV were 

consecutively included before a planned HDAC treatment (2 g/m2 * 2 for 3 days = 12 

g/m2). EDTA-blood was sampled before 1st, 2nd, 4th and 6th infusion. One additional 

sample was drawn if fever occurred. All the samples were frozen for later analysis of 

cytokines and PCT. 

Table 4. Characteristics of the HR patients in study /-/// 

Patient Sex Age Blast Special risk Therapy Timepoint of study 
n:o (years) phenotype Factors (post-treatment) 

1 F 3.8 B-lineage CNS+ CT 1 month 

2 M 4.6 B-lineage Slow response CT 6 months 

3 M 5.0 B-lineage CT 6 months 
4 F 5.1 B-lineage CT 6 month 

5 M 5.4 B-lineage CT 1 month 

6 M 5.8 T-lineage Mediastinal CT 6 months 

7 F 6.9 T-lineage Mediastinal CT+CNS 
irrad 

1 month 

8 M 11.7 T-lineage CT 6 months 
9 F 16.5 B-lineage Lymphomatous CT 6 months 
CT = chemotherapy 
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Study I-III and V were approved by the local ethics committee of Goteborg 

University. All patients and controls received oral and written information before 

consent. Study IV was performed within the framework of the NOPHO-ALL 92 

study. 

Laboratory methods 

Cytokine analyses 

Cytokine analyses were performed with commercially available enzyme amplified 

sensitivity immunoassays (EASIA™, Medgenix, BioSource, Europe) utilizing double 

monoclonal antibodies. The detection limits were tested by the manufacturer: TNF-a 

3 pg/ml, IL-6 2 pg/ml, IFN-y 0.03 IU/ml, IL-lß 2 pg/ml, IL-8 0.7 pg/ml, IL-10 1 

pg/ml, and ILl-ra 4 pg/ml. 

Procalcitonin analysis 

PCT was analyzed with an immunoluminometric assay (LUMItest PCT®, 

B.R.A.H.M.S, Hennigsdorf, DE). The sensitivity was given by the manufacturer as 

0.1 ng/ml. The reference values for normal individuals is <0.1 ng/ml , and 0.1 - 0.5 

ng/ml can be seen in mild infections and inflammatory conditions (98, 99). PCT >0.5 

ng/ml is often regarded as suggestive of a systemic inflammatory response, also in 

neutropenic patients (99-101). 

ELISA for detection of specific antibodies 

Tetanus toxoid (TT, Statens Serum Institut, Copenhagen, Denmark) in concentration 

of 5 (ig/'ml or Diphtheria toxoid [DT, 02/176, National Institute for Biological 

Standards and Controls (NIBSC), UK] in concentration of 0.5 Lf units/ml were used 

as antigens and diluted in PBS for coating of microtiter plates. Af ter washing with 

PBS the plates were blocked with 5% fish gelatine in PBS for 1 hour at room 

temperature. All additional washings were with PBS-0.05% Tween 20 (PBS-T). 

International Standard for Tetanus Immunoglobulin, Human (TE-3; 120 IU/ml) or 

Diphtheria antitoxin, human serum (00/496; NIBSC; 1.6 IU/ml) were used as 

reference in the IgG antibody assay. Alkaline phosphatase-conjugated rabbit-anti 

human IgG 1:3000 (DAKO) and 1 mg/ml of AP-substrate o-nitrophenyl-b-D-
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galactopyranoside (Sigma) in IM diethanolamine buffer pH 9.8 (DEA) were used for 

detection. The reference for TT was used in 8 three-fold dilutions from 0.4 IU/ml —» 

0.00017 IU/ml and for DT in eight 2,5-fold dilutions from 0.08 —> 0.0001 IU/ml for 

construction of standard curves. All reference preparations, serum samples and 

conjugates were diluted in PBS-T. Serum samples were analyzed in dilutions of 1:100 

and 1:100 000 (tetanus) or 1:100 and 1:10 000 (diphtheria) to be certain that the 

whole range of values was covered by the standard curve, and to assure that the 

antibodies could be diluted out after a high dilution to undetectable levels. 

TT specific IgA and IgM antibodies were analyzed with use of the same antigens as in 

the IgG assay. As no international standard was available, an internal high titered 

serum was used as a reference. Serum samples were diluted 1:100 and 1:1000 in PBS-

T and the reference serum was diluted in four 10-fold dilutions from 1:100 -» 1:100 

000. AP-conjugated rabbit anti-human IgA or IgM 1:1000 (DAKO) were used for 

detection. The patient serum antibody levels were expressed as per cent of absorbance 

of the reference serum in the same dilution. 

In the Hib assays biotinylated Hib-CP diluted in PBS in a concentration of 2 ug/ml 

was used as antigen after precoating of the plates with 5 ug/ml of avidin (Sigma, 

USA) diluted in PBS. After washing with PBS the plates were blocked with 5% fish 

gelatine (Sigma) for 1 h at room temperature. Human anti Hib-CP standard with 

known concentration of anti-Hib IgG ( 60.9 (xg/ml), an ti-Hib IgA (5.6 ug/ml) and 

anti-Hib IgM (3.5 |ig/ml) (Lot 1983 from Laboratory of Standards and Testing 

DMPQ/CBER/FDA, Bethesda, Maryland) was used as a standard. The standard was 

diluted in PBS-T-1% fish gelatine in 1:2 steps from 0.2 (ig/ml -» 0.0016 ug/ml (IgG), 

0.056 j^g/ml -» 0.0004 |ig/ml (IgA) and 0.035 [xg/ml —» 0.00 03 ug/ml (IgM). The 

patients sera, and Anti-Hib Human Reference Serum (96/536, NIBSC) used as 

positive control, were diluted 1:100 and 1:1000 in PBS-T-1% fish gelatine. The AP-

conjugates used for detection were Rabbit anti-human IgG (1:2000), IgM and IgA 

(1:1000), all from Dakopatts. Antibody levels were expressed in ug/ml. 

All assays were performed with duplicates of standards and samples, and the identity 

of the samples was blinded to the laboratory investigator. 

18 



Antibody avidity 

The avidity of serum IgG antibodies against Hib-CP and tetanus toxoid was 

determined using potassium thiocyanate (KSCN) elution, in a modified ELISA 

described previously (54, 102). The antigen-bound antibodies were eluted with 7 

different molarities of KSCN (0.1-10 M). The molarity of KSCN needed to achieve 

an absorbance value of 50% of the absorbance value without KSCN was determined. 

The relative avidity index (AI) was expressed as the molarity of KSCN (M) 

equivalent to the 50% elution point. 

Flow cytometry of PBL 

Flow cytometry was performed on a FACScan instrument (Becton-Dickinson) as 

previously described (103). The monoclonal antibodies used were anti-CD3, -CD4, -

CD5, -CD8, -CD 19, -CD45RA, -CD45RO, -CD56 and -HLA DR (Becton-Dickinson, 

Mountain View, CA, USA). The following designations were used: 

ELISPOT methods for enumeration of AbSC 

Vaccinations induce both increased circulating AbSC and antibody levels (104, 105). 

In order to adress the question if low antibody levels are correlated to low number of 

AbSC the ELISPOT technique was used for enumeration of both total number of 

AbSC with unknown specificity (IgG/A/M) and TT or Hib specific AbSC (IgG/A/M) 

(106). PBMC were separated from heparinized whole blood with Lymphoprep 

(Nycomed Pharma AS, Norway). A single cell suspension of PBMC was washed, 

resuspended and incubated on a solid phase with or without antigen, followed by an 

immuno-enzymatic procedure which allowed the visualization of total or antigen-

specific B cells as single dark spots. The spots (AbSC/106 PBMC) were counted. 

Total number of AbSC (IgG, IgA or IgM) was determined in unstimulated PBMC, 

CD3+ 

CD3+4+ 

CD3+8+ 

T helper lymphocytes 
Cytotoxic T cells 
Naïve subset 
Antigen-primed (memory) subset 
NK cells 
NKT 
B cells 
B-l subset 

T cells 

CD3+4/8+45RA+ 

CD3+4/8+45RO+ 

pnr?/+ CD356 
CD3+56+ 

CD19+ 

CD5+19+ 
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and after stimulation with Epstein-Barr virus (EBV) or pokeweed mitogen (PWM; EY 

laboratories Inc. San Mateo, CA, USA) before vaccination. The total number of AbSC 

and the numbers of TT or Hib specific AbSC of different isotypes (IgG, IgA or IgM) 

were determined 7 days after vaccination. 

Proliferation of PBMC after mitogen stimulation 

PBMC were stimulated with PHA (10 |xg/mL; Murex Biotech Ltd, UK), ConA (50 

ug/mL; Sigma-Aldrich Fine Chemicals, St Louis, MO, USA) or monoclonal anti-CD3 

(125 ng/mL; Ortho Diagnostic Systems Inc., Raritan, NJ, USA). Proliferation was 

measured as incorporation of 3H-thymidine as previously described ( 103). 

Ig and subclasses of IgG 

IgG, IgA, IgM and IgG subclasses were analyzed by radial immunodiffusion (103). 

The concentrations are expressed as g/L. 

Statistical methods 

In study IV variables were tested for normality and presented as mean and 95% 

confidence interval if appropriate. In the other studies median and range was used 

because of small samples with skew distributions. Non-parametric tests were used: 

The Kruskal-Wallis H test (multiple independent samples), the Mann-Whitney test 

(two independent samples), or the Wilcoxon signed rank sum test (two related 

samples) for comparison between groups. The Spearman rank correlation test for 

correlation between variables. Categorical data were analyzed with chi-square 

statistics. All p-values are two-sided (107). The statistical analyses were performed 

with SPSS v 11.0. 
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RESULTS 

Immunity after childhood ALL (study l-ll) 

Levels of specific IgG antibodies decreased during treatment for childhood ALL 

(figure 3 and table 5). After treatment, a considerable proportion of the patients lacked 

complete antibody protection against diphtheria and tetanus, whereas all had 

protective levels against Hib (table 6). 

Table 5. IgG antibodies (median and range) against DT, TT and Hib in 
children with ALL. All risk groups are included. 

At diagnosis (N=31) After treatment (N=31) P 
Anti-DT (Ill/ml) 0.08 (0.01-5.69) 0.06 (0.01-1.24) 0.005 
Anti-TT (Ill/ml) 0.65 (0.09-5.20) 0.07 (0.01-1.00) <0.001 

Anti-Hib (^ig/ml) 5.55 (0.40-36.50) 1.00 (0.20-40.50) 0.001 

No HR patients had protection against diphtheria and tetanus, but 9/9 had protection 

against Hib. The immune response also showed marked differences between the risk 

groups. All SR and IR patients achieved complete protection against all antigens after 

vaccination. On the other hand, in the HR group 5/9 were protected against diphtheria, 

2/9 against tetanus, and 7/9 against Hib after vaccination (figure 3). 

Table 6. Protective immunity Proportions of patients with full antibody protection 
against diptheria, tetanus and Hib. The limits for protection are defined as: (1) Anti-
DT and anti-TT> 0.1 lU/ml (2) Anti-Hib >0.15 ßg/ml before and >1.0 ng/ml after 

vaccination.. 

ALL (N=31) Controls (N=20) 

T'lmepoint At 
diagnosis 

Before 
vacc 

After 
vacc 

At 
diagnosis 

Before 
vacc 

After 
vacc 

Diphtheria 39% 17% 87% - 45% 100% 
Tetanus 81% 33% 77% - 50% 100% 
Hib 100% 100% 93% - 100% 100% 

Neither the immunity, nor the immune response differed between patients vaccinated 

at 1 month or 6 months after treatment. 

IgA and IgM antibodies against TT and Hib were also analyzed, and the results 

showed that the SR and IR groups had levels that were comparable to the control 
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Figure 3. Specific IgG antibodies against DT, TT and Hib. Antibody level at S 
different time points in children with ALL compared to controls (I = at diagnosis, 
2 = before vaccination and J = after vaccination). The values are grouped 
according to ALL risk group. 
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group. The HR group had lower levels of all antibodies after vaccination (IgArr 

p=0.002; IgMrr p<0.001; IgAHib p<0.001; IgMHib p<0.001). 

The total number of IgG AbSC (with unknown specificity) was higher in the HR than 

the controls before vaccination [440 (200-1600) vs 205 (60-1100) AbSC/106 MNC 

(median and range); p=0.03] and lower in the HR at 7 days after vaccination [300 (20-

1400) vs 1000 (300-5200) AbSC/106 MNC; p=0.01]. Analysis of TT and Hib specific 

AbSC in peripheral blood at one week after vaccination showed that the HR group 

were virtually devoid of TT specific IgG cells and IgA cells (figure 4). The number of 

TT specific IgM cells was not decreased in the HR group. The Hib specific cells 

showed a different isotype distribution in SR, IR and controls, with more IgA and 

IgM cells and less IgG cells than for TT. The HR group showed very few Hib specific 

AbSC. 

Figure 4. The median number of TT and Hib specific antibody secreting cells at 7 days after 
vaccination (AbSC /106 PBMC). 

The median avidity of anti-TT was marginally lower at diagnosis of ALL compared to 

the control group after immunization. The median avidity of anti-Hib was higher at 

diagnosis of ALL compared to the control group after immunization (III). Antibody 

level and avidity correlated for anti-TT IgG after vaccination (rs=0,59; p<0,001). The 

HR group displayed both low concentration and low avidity of anti-TT IgG (figure 5). 

For anti-Hib IgG there was no correlation between concentration and avidity, and no 

patients were found with low level and low avidity concomitantly. 
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Figure 5. The relation between antibody level and avidity after vaccination. Levels and 
avidity of anti-TTIgG at 3 weeks after vaccination in ALL patients, grouped in three risk 
groups, and controls. The line (- -) indicates the limit for complete protection. 

Immune reconstitution after ALL (study III) 

Lymphocyte populations 

The different lymphocyte subpopulations were measured at l or 6 months after 

treatment for ALL. The time scale for regeneration varies between the major 

lymphocyte populations (figure 6). Both the CD3+ and CD3 4+ were still decreased at 

6 months, whereas CD3+CD8+ were nearly normal both at l and 6 months. The 

CD4+/CD8+ quotient at l month was 1.12 (0.3-1.7; median and range) (p=0.001) and 

at 6 months 1.06 (0.3-2.8) (p=0.006) compared to 1.5 (0.8-2.6) in the control group. 

The CD4 45RA subset was decreased both at 1 and 6 months (figure 6B), and the 

number of CD4 at 6 months after treatment was strongly correlated to the number of 

CD4+45RA+ (r=0.93; p<0.001). The CD19+ were normalized at 6 months, but subset 

analysis showed that this was mainly due to an increase of the CD5+19+ (Bl B cells), 

since the CD5"19 were subnormal also at 6 months (fig 6C). The median proportion 

of B1 cells was 64% at 1 month (p<0.05), 54% at 6 months (p<0.001) versus 38% in 

the control group. NK cells were low at 1 month, but normal at 6 months (fig 6D). The 

NKT subset (CD3+56+) was low both at 1 and 6 months. 
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Looking closer at the different risk groups revealed some differences between the IR 

and HR group at 6 months after treatment. Both had decreased T cells, CD4 T cells 

(both CD4 45RA' and CD4 45RO , but the HR group in addition had decreased CD8+  

T cells (median 0.32 x 10 00/uL; p<0.05 vs the control group). The HR group also had 

the highest number of CD5+ B cells (median 0.33 x 1000/^L; p<0.05 vs the control 

group). 

Lymphocyte function and Ig levels 

The proliferative capacity of T cells was tested with PHA, ConA and a-CD3 as 

stimulators. The response to a-CD3 was normal both at 1 and 6 months. The responses 

to PHA and ConA were both lower at 1 month, but at 6 months only the ConA 

response was decreased . No differences were detected between the risk groups (data 

not shown). 

B cell function in vitro was analyzed as number of AbSC both unstimulated and after 

stimulation with EBV and PWM. At 1 month after treatment the number of 

unstimulated IgG and IgA AbSC was increased. At 6 months only IgM AbSC after 

PWM stimulation was reduced. In the HR group all responses were normal at 6 

months. 

Total levels of Ig and IgG subclasses showed that IgM levels were lower at 1 month 

and IgG3 levels were higher both at 1 and 6 months. No significant differences could 

be detected in total IgG or IgA levels. The HR group had significantly lower IgG2 

levels at 6 months posttherapy (0.58 g/L vs 1.6 g/L for controls; p<0.05). 
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Figure 6. Reconstitution of lymphocytes after childhood ALL. Lymphocyte subpopulations 
at I mon th (1 mo; N=12) and 6 months (6 mo; N=19) after treatment for ALL compared to 
a control group (N=40). A. T cell subpopulations B. CD4 45RA' T cells C. B cell 
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Toxicity of HD AC (study IV-V) 

The Ara-C syndrome 

Fever (>38.0°C) during HDAC occurred in 113/169 (66.9%) courses. The fever began 

at an average of 26.0 hours (Cl95% 23.7-28.3) after start of the first infusion. The 

average maximum temperature in the febrile patients during HDAC was 39.1°C 

(Cl95% 39.0-39.2 and range 38.0-41.0). No septic infections were documented during 

HDAC, and no patient was febrile at discharge. The inflammatory reaction was 

accompanied by moderately increased serum levels of CRP. The maximum CRP in 

the febrile patients was 38.0 mg/L (3-150; median and range). 

Corticosteroids were used at the judgement of the physician in charge of the treatment 

as antiemetic or anti-inflammatory agent. In 16/169 HDAC the patient received 

steroids already before start of the first infusion ("prophylactic steroids"). In this 

group only 3/16 (18.8%) developed fever compared to 110/153 (71.9%) of the others 

(pO.OOl). 

In the subgroup of 16 patients examined for cytokines 13 developed fever. Figure 7 

shows the plasma levels of six different cytokines in 16 patients at 4-5 different 

timepoints during HDAC. 

Proinflammatory cytokines: TNF-a increased at 12 h, preceding the fever in all 

patients. This was followed by increases of IL-6 and IFN-y, peaking at the onset of 

fever. Levels declined at the end of the treatment. Levels of IL-8 and IL-lß were low 

or undetectable. 

Anti-inflammatorv cytokines: IL-1 receptor antagonist (IL-Ira) increased sharply at 

the onset of fever. Whereas only 1/16 patients had detectable IL-10 before treatment, 

13/16 had detectable, but low, levels of IL-10 at 36 or 60 h (p=0,05 and 0,02 

respectively). 

A correlation was found between the plasma level of IL-6 at 36 hours and the 

maximum CRP level (rs=0.53; p=0.04). 
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Figure 7. Cytokine values during high dose Ara-C treatment. Plasma levels of six 
cytokines at 4-5 different timepoints during HDAC. 13/16 patients had fever, at a median 
time point of 28 hours after start (20-47), and for clarity the values at fever is inserted 
between 12 and 36 hours. Median, qua rtiles (box) and range (whiskers) are shown; o — 
outliers 
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Procalcitonin: PCT was also analyzed at the same timepoints in the 16 patients (figure 

8). All except one patient displayed increasing PCT during HDAC, with large 

interindividual variations. At 36 hours after start 4/16 patients displayed PCT >0,5 

ng/mL. PCT36 correlated to the maximum CRP (rs=0.81; pO.OOl). 

Medians 0,12 0,19 0,26*** 0,30* 
10  

0,1 -I 1 1 i " 

PCTO PCT 12 PCT 36 PCT 60 

Figure 8. PCT values at 4 different timepoints during high dose Ara-C. 
PCT 0 = before start of 1" infusion; PCT 12 = before start of 2nd 

infusion; PCT 36 = before start of 4,h infusion and PCT 60 = before 
start of 6'1' infusion. Values at fever are excluded from the figure for 
clarity Comparisons between PCT 0 and PCT 12/36/60 were made 
with Wilcoxon signed ranks test. * = p<0.05, *** = p<0.001 

Hematological toxicity 

The hematological toxicity was marked and almost universal (figure 9). The nadir of 

ANC appeared at day +16 (11-24; median and range), and the duration of neutropenia 

was 11 days (5-18). The nadir of platelets appeared earlier than for neutrophils, at day 

+13. HDAC induced a rapid reduction of lymphocytes. The ALC decreased at days 

+1-3 to 0.03 (0.01-0.21) and at days +4-6 ALC was 0.10 (0.01-0.68). In the group that 

received prophylactic steroids the nadir of WBC was lower [0.4 (0-0.6; median and 

range) vs. 0.6 (0.1-1.7) in the others] (p=0,001). 
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Figure 9. Blood values after high dose Ara-C. A. Absolute neutrophil granulocytes counts (ANC) and 
B. Platelet counts (Pit) in 86 cases. C. Absolute lymphocyte counts (ALC) were available in a 
subgroup of 32 cases. The values in A and B are grouped in intervals of 3 days, and in C in intervals 
of 6 days. If more than one value/interval was measured, the lowest was included in the analysis. 
Median, quartiles (box) and range (whiskers) are shown. 

Infections after HDAC 

A febrile episode during the period after HDAC occurred after 93/169 (55%) HDAC. 

The onset of fever was at day +16 (7-23; median and range) and mirrored the nadir of 

ANC. Only 6/93 infections started before day +10. The cause of fever was septicemia 

or focal infections in 53/93 (57%), and unknown in 40/93 (43%). The blood culture 

isolates were gram-positive bacteria in 14 cases and gram-negative bacteria in 2 cases. 

In 21 cases the infection was related to the central venous catheter, with clinical signs 

of tunnel infection. No patient needed intensive care and all patients recovered without 

complications. Two patients had viridans streptococcal sepsis, but they were not 
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seriously ill. Prophylactic G-CSF was administered after 12/169 (7.1%) in selected 

cases. A trend towards more infections occurred in the G-CSF group (9/12) than in the 

non-G-CSF group (82/155) (p=0.14). When comparing the frequency of infections 

after the first HDAC (to avoid multiple inclusions of single patients) it showed that 

infections were a little more common after Ara-C fever [26/36 (72%)] than after non-

febrile Ara-C courses [10/21 (48%)] (p=0.06). 
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DISCUSSION 

Immunosuppression and immune reconstitution 

There are large individual differences in the frequency of toxic side effects after 

chemotherapy. Several drugs show a relationship between cumulative dose and side 

effects: Anthracyclins - cardiotoxicity, alkylators - gonadal toxicity, ifosfamide -

nephrotoxicity (108-110). However, a clear correlation between chemotherapy doses 

and duration and degree of immunosuppression has not been established. The studies 

I-III strongly suggest a relationship between treatment intensity and 

immunosuppression in children with ALL. The risk groups showed no major 

differences in antibody levels or avidities before the initiation of treatment, but 

afterwards the HR group had more pronounced immune abnormalities than the SR or 

IR groups, especially for measures of the antigen specific immune response (table 7). 

The HR group displayed low antibody levels after immunizations, low avidity of anti-

TT and low number of TT- and Hib specific AbSC as evidence of a defective 

immunological memory response. 

Table 7. Schematic overview of the immunological defects in the different risk 
groups. 

Antigen 
specific < 
functions 

Antibody levels at diagnosis (DT, TT and Hib) 
Antibody avidity at diagnosis (TT/Hib) 

SR + IR HR 
Antibody levels at diagnosis (DT, TT and Hib) 
Antibody avidity at diagnosis (TT/Hib) 

N 

Nf 
N 

Ni 
Antibody levels after treatment L L 
Antibody levels after immunization N L 
Antibody avidity after immunization (TT/Hib) N/N L/N 
TT and Hib specific AbSC N(J in SR) L 
Total Ig and IgG subclasses N ( I  in SR) N 
B cells L H (CDS' B) 
Unspecific B cell function N (I in SR) N 
T cells 
Unspecific T cell function 

L L T cells 
Unspecific T cell function N N 

L = low, V = normal, \ -high 

Also, reflecting that treatment may affect the immune system in a diverse and complex 

pattern, the SR group shows signs of immunological hyperactivity. In this group, the 

antigen specific immune responses were normal, both measured as antibody levels and 

avidities. Furthermore, the B cell function measured as number of AbSC (both 

unspecific and TT-/Hib-specific) and serum levels of IgG and IgA were increased. The 
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reason for this increased responsiveness is unclear, but a reduction and inhibition of 

regulatory T cells may be induced by less intensive cytotoxic chemotherapy ( 111). 

Table 7 is simplified but nevertheless shows that the major lymphocyte subsets and 

antigen independent T and B cell function in vitro only differ slightly between the 

treatment groups despite the qualitative differences in the response to immunizations. 

What mechanisms can explain this apparent discrepancy? 

Defects in humoral immunity 

A model for the development of low levels of specific antibodies after cytotoxic 

chemotherapy is proposed in figure 10. Intensive chemotherapy for ALL is toxic to B 

cells, and induces a reduction of B cells in peripheral blood and plasma cells in the 

bone marrow (33, 34, 37, 112). This results in decreased serum levels of Ig (19, 35). 

We propose that specific antibodies decline at a faster rate, and often reach low 

("subprotective") levels. 

A booster immunization normally activates the memory response resulting in rapid 

production of high affinity, isotype-switched antibodies (113). We find that the 

antibody response in SR+ IR is quite comparable to the control group, measured both 

as levels and avidities (I-II). The HR group displays weak antibody responses after 

booster immunizations, resulting in subprotective antibody levels. 

Normal situation 

HR ALL 
G) 
> 0) 
>. •o 
O 
-Q 

Chemotherapy 

c 
< 

Time 

Figure 10. A proposed model of how ALL patients become deficient of specific antibodies. The 
black line represents the normal situation, in which serum levels of specific antibodies (e g anti-
TT or DT) are maintained both through continous antibody production by long lived plasma 
cells in the bone marrow and polyclonal activation of memory B cells (114, 115). A booster 
immunization activates memory B cells and leads to an antigen-driven increase of specific 
antibodies. The dotted line represents what happens if the normal, slow decline is accelerated by 
chemotherapy. The antibody response to a booster immunization is blunted in some patients (the 
HR group in this study) after chemotherapy. Adapted from Traggiai, Puzone and Lanzavecchia 
(116). 
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The defective memory response may be caused, at least partially, by a decrease in 

CD27+ B cells, which are considered to confer immunological memory and are 

reduced after treatment for ALL (36, 117). We used enumeration of AbSC in 

peripheral blood as a measure of the vaccine induced B cell response. Immunizations 

typically lead to an increase of both the total number of AbSC and antigen specific 

AbSC in normal individuals (105, 115). The cellular response to immunization was 

increased in SR and normal in IR. In th e HR group both total numbers of IgG AbSC 

(with unknown specificity) and TT and Hib specific IgG and IgA AbSC were low at 7 

days after immunization, consistent with a defective memory response. 

The origin of the poor immune response is not revealed by a quantitative analysis of B 

cells, since the total B cells were higher in HR than SR+IR. Considering that the 

frequency of total IgG AbSC and TT+ IgG AbSC at 7 days after vaccination can be 

estimated to be 7/1000 and 1/1000 respectively of the total B cell number1, it is not 

surprising that no correlation was found between the quantity of B cells and antibody 

response. 

Analysis of B cell subsets showed that the number of CD5+ B cells, suggested to be 

the human counterpart of the B1 cells in mice, is increased during reconstitution. The 

relative and absolute increase was most pronounced in the HR group. B1 cells are 

believed to be part of an intermediate early response system ("natural memory"), that 

together with the marginal zone B cells of the spleen, bridges the time gap between the 

rapid innate and the more slowly evolving adaptive immunity (118). B1 and marginal 

zone cells characteristically produce a rapid IgM response to blood-borne antigens in a 

T cell independent pathway, giving short-term protective immunity to bacterial 

polysaccharides. Immunological memory does not develop in the B1 subset, and the 

isotypes produced are mainly IgM, IgG3 and IgA (119). An expanded B1 subset after 

chemotherapy may at least in part explain why invasive bacterial infections are 

relatively uncommon after treatment, despite defects in the adaptive immune system 

(17). Increased B1 cells may contribute to the poor immune response in the HR group, 

since negative correlations were found between CD5+19+ and anti-TT IgG/anti-Hib 

IgG after immunization (data not shown). Further, we found increased IgG3 levels 

both at 1 and 6 months as an indication of increased B1 cell activity. 

1 The proportion of lymphocytes in PBMC was 87% in our lab (mean of 10 samples; personal 
communication B.A. Andersson). The median value of B cells in t he control group was 15% of PBMC 
=> 0.15 X 0.87 X 106 = 130 X 105 B cells / 106 PBMC. The total IgG AbSC were 1000/106 PBMC and 
TT+ IgG AbSC 200/106 PBMC. 
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Defects in T cells 

The memory response to antigens is a special property of protein antigens. Preformed 

memory B cells interact with cognate helper T cells and when activated differentiate to 

plasmablasts (113). Since chemotherapy leads to depletion of T cells, particularly long 

standing for CD4+ subsets, defective T cell help can be anticipated (21, 25) Indeed, the 

total T cells, CD4+, CD4 45RA" and CD4 45RO' subsets were decreased at +6 

months, but no significant differences between 1R and HR were found. T cell 

responses to mitogens were roughly normal at +6 months, also without differences 

between the risk groups. In contrast to HR, the IR group produced high levels of 

specific antibodies with normal avidities demonstrating that the actual size of the 

major peripheral T cell populations does not predict the response to immunizations. 

Immunization with TT causes an increase of TT-specific CD4+ T cells in normal 

individuals, and it remains to be determined how antigen-specific T cells are affected 

by chemotherapy (120). 

Immune reconstitution 

Immune reconstitution is an important process in the restoration of the homeostasis, e 

g it has been convincingly shown that immune reconstitution after stem cell 

transplantation influences both the risk of infections and relapse of the leukemia (121). 

Comparing our data to previous studies of children with solid tumors or ALL confirms 

that recovery of CD4+ T cells was not accomplished at +6 months, and shows that 

recovery of CD4+ correlated to the CD45RA+ (naive) subset also after treatment for 

ALL (25, 26). CD8+ T cells recovered more slowly in the HR group, and at +6 months 

neither CD8+ nor CD8+45RA+ were normalized in this study. Alanko et al found, in 

contrast, that CD8+ T cells recovered within 3 months after ALL (27). 

Vaccinations after chemotherapy 

While different studies have shown that children lose immunity after chemotherapy, 

clinical guidelines for management have not been established (122). A few published 

recommendations are based on expert opinions rather than controlled studies (123, 

124). It has been suggested that the immune recovery is sufficient for a good immune 

response to revaccinations after 3-6 months without chemotherapy (34, 123, 124). The 

data generated in study I-III challenge this since we noted normal antibody responses 

to DT, TT and Hib in SR and IR already at +1 month. 
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For diphtheria and tetanus subprotective antibody levels are common also in normal 

children in Sweden, and the unprotected proportion increases with time after 

immunization (125, 126). Booster immunizations are recommended to ensure long 

term protective immunity. Comparing our results in children with ALL to normal 

children shows that subprotective antibody levels are more common in patients after 

treatment. Information regarding the quality of immunity (primary or memory 

response) supplements antibody levels and can be obtained through measurement of 

antibody levels after vaccination, analysis of avidity or specific AbSC. In the swedish 

studies of normal children >95% had antibody levels above the limit for protection 

after booster immunization. We can also compare to our control group, of which 100% 

were protected after immunization. Poor immune responses were documented only in 

HR patients in this study. 

Ara-C and the innate immune system 

Fever is a frequent problem in children with cancer. Numerous causes exist, such as 

the malignant disorder itself, drug fever and transfusion reactions. Since infections are 

common and also, particularly in the setting of neutropenia, potentially life-

threatening, fever must always be considered as a sign of infection (110). Ara-C is 

highly effective against leukemia and lymphoma, but also a good example of an anti­

neoplastic agent that can cause fever in different ways. The potential to cause drug 

fever has been recognized for a long time, with reported incidence of 33-44% (96, 

127-129). In study IV the incidence of Ara-C fever after HDAC was 67% of all 

courses. This higher frequency may depend on the fact that previous studies were 

either performed in adults or in children receiving lower doses. 

Study V shows an association between HDAC and elevated plasma levels of both pro-

and anti-inflammatory cytokines, suggesting that Ara-C induces a cytokine release 

syndrome. IL-lß, TNF-a and IL-6 are pyrogenic cytokines inducing both fever and 

the acute phase response, and TNF-a and IL-1 ß are primary inducers of inflammation 

often acting synergistically (130). Our data show that TNF-a levels increase before the 

onset of fever in all patients. Since no systemic release of IL-1 ß was detected, it can be 

speculated that TNF-a is the prime mediator, inducing the production of IL-6 and 

IFN-y. However, it must be held in mind that measurements of IL-1 ß are more 

unreliable than for TNF-a and IL-6 (131). The correlation between IL-6 levels and 
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CRP indicates that IL-6 may cause the moderate elevation of CRP that accompanies 

Ara-C fever. Later during HDAC treatment the anti-inflammatory peptides IL-Ira and 

IL-10 increase. Since anti-inflammatory cytokines are beleived to counter-balance the 

inflammatory response, the increased plasma levels of ILl-ra and IL-10 may 

contribute to the spontaneous resolution of the Ara-C syndrome. 

Procalcitonin was also shown to increase in plasma during Ara-C fever. Three of 16 

non-neutropenic patients had PCT >1.5 ng/ml at 36 hours after start of the first 

infusion, which are levels that are normally seen in bacterial infections (132). The 

production of PCT in monocytes can be stimulated by IL-lß, TNF-a and IL-6 (133). 

A correlation between levels of CRP and PCT was found, but it can be concluded that 

determinations of CRP and PCT have low specificity in patients with Ara-C fever. 

The molecular mechanisms behind Ara-C induced activation of the innate immune 

system are unknown. Ara-C can activate the transcription factor nuclear factor kappa 

B (NF-KB), which is a critical mediator for the upregulation of the cytokine network 

leading to an inflammatory host response (134, 135). NF-KB can also have anti-

apoptotic effects and NF-KB inhibition is explored as a way of increasing Ara-C 

induced apoptosis in human acute myeloid leukemia cells (136, 137). One way of 

reducing NF-KB activation is through glucocorticoids, so this could explain the efficient 

inhibition of Ara-C fever by steroids (138). 

Is cytokine release a unique property of Ara-C or a generic reaction to cytotoxic 

chemotherapy? Gemcitabine, a nucleoside analog derived from Ara-C, can cause fever 

and lung toxicity (139, 140). A study on mice showed that gemcitabine can induce the 

expression of proinflammatory cytokine genes in lung tissue (141). Taxanes 

(paclitaxel and docetaxel) can also lead to cytokine release (142, 143). However, some 

of the most commonly used drugs in ALL protocols (high dose methotrexate, 

cyclophosphamide, doxorubicin) do not cause increased plasma levels of TNF-a, IL-6 

or IFN-Y (Jonas Abrahamsson, unpublished data). 

Besides these activating effects, Ara-C also has strong suppressive effects on the 

innate immune system. Myelosuppression is a primary side effect of HDAC (81, 85). 

Neutropenic fever is very frequent, occuring after 40-50 % of the cycles (85, 91). We 

found an incidence of febrile episodes during the neutropenic phase of 55% (IV). In a 

study of the total incidence of infections in childhood ALL it was shown that fever 

was observed during 24% of all chemotherapy cycles (91). 
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Already in 1966 Bodey found that infections were more frequent in patients with acute 

leukemia when both granulocytopenia and lymphopenia were present (7). Subsequent 

studies have confirmed that early lymphopenia (within 5 days after cytotoxic 

treatment), as well as CD4+ lymphopenia, are independent risk factors for febrile 

neutropenia after chemotherapy (144, 145). Study IV demonstrates that HDAC causes 

both neutropenia, a profound early lymphopenia and a high incidence of infections. 

The emergence of lymphopenia was so early, already during HDAC, that suppression 

of the bone marrow cannot be the sole reason. Instead, it must be due to either pooling 

of peripheral lymphocytes or direct lymphotoxic effects. Thus, since Ara-C treatment 

is known to activate the apoptotic machinery in normal human peripheral blood 

lymphocytes, a rapid elimination of lymphocytes may occur (146). 

We found that neutropenic fever was more common in patients that had experienced 

Ara-C fever. It can be discussed if the initial cytokine release during HDAC 

predisposes for immunosuppression and subsequent infections through deactivation of 

monocytes (147, 148). 

Although HDAC has been reported to be an independent risk factor for VS sepsis, 

such infections were only documented in 2/169 HDAC courses and none of the cases 

were severely ill. (92, 93). The risk of VS sepsis is modified by other factors, such as 

underlying disorder, incomplete remission, mucositis and antibacterial prophylaxis, 

but our results show that when HDAC is used as monotherapy in patients in complete 

remission of lymphoid malignancies VS sepsis is uncommon. 

The use of prophylactic G/GM CSF after HDAC to decrease the risk of febrile 

neutropenia has been debated. However, very little data support that growth factors 

actually decrease the frequency of infections (149-151). Although our study was not 

designed to evaluate the effect of G/GM CSF, the data convincingly show that in this 

particular setting HDAC can be safely administered without the use of prophylactic 

CSF. 
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CONCLUSIONS 

> Antibody levels decrease during intensive ALL treatment, leaving a 

majority of patients with subprotective levels against diphtheria and 

tetanus. Reimmunizations lead to a normal immune response in the 

standard and intermediate risk groups already at one month after treatment, 

and give full protection against diphtheria, tetanus and Hib in all patients. 

In contrast, the high risk patients display an attenuated immune response 

even at six months after treatment, with low numbers of circulating specific 

antibody secreting cells and low antibody levels of all isotypes. Antibody 

avidity after immunization was low for anti-TT, but not for anti-Hib, in the 

high risk group. In the high risk group, immunizations are of limited value 

before 6 months after treatment, and the effect of repeated immunizations 

should be evaluated in future studies. 

> Reconstitution of the adaptive immune system after childhood ALL 

depends on treatment intensity and full recovery of T or B cell subsets is 

not accomplished at 6 months after treatment. In particular, low levels of 

CD4+45RA+ cells and an abnormal increase in CD5+19+ (Bl) cells is 

present, most pronounced for the HR group. 

> HDAC affects the innate immune system. A systemic inflammatory 

response is induced in 2/3 of all courses. The pathogenesis involves a 

release of proinflammatory cytokines, starting with TNFa and followed by 

a peak of IL6 and IFN. This is counterbalanced by anti-inflammatory 

cytokines (ILl-ra and IL-10). The Ara-C syndrome is self-limiting, but can 

be inhibited by corticosteroids. 

> Myelosuppression after HDAC is profound and nearly universal, and 

neutropenic infections occur after half of the courses. A pronounced 

lymphopenia, starting within the first days after treatment, may also 

influence the risk of infections. However, the risk of viridans streptococcal 

sepsis was low and there was no mortality from infections, despite that 

almost all HDAC was administered without use of G/GM-CSF. 
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SAMMANFATTNING PA SVENSKA 

Immunrekonstitution efter leukemi hos barn och ungdomar 

Aspekter på vaccinationer och effekter av 
högdos cytosar på den naturliga immuniteten. 

Torben Ek, leg läkare 

Cytostatika behandling har lett till att minst 80% av barn med akut lymfatisk leukemi 
botas, men immunologiska biverkningar är vanliga och potentiellt allvarliga 
biverkningar. Vaccinationer mot difteri, tetanus och Haemophilus influenzae typ B 
(Hib) användes för att undersöka det adaptiva immunförsvaret i en kontrollerad studie 
av 31 barn som behandlats för ALL. Majoriteten av patienterna hade förlorat sitt 
antikroppsskydd mot difteri (83%) och tetanus ( 67%) efter behandlingen, medan alla 
hade skydd mot Hib. Immunsvaret skiljde sig markant mellan de olika riskgrupperna. 
Alla standard och intermediär risk patienter hade bra skydd, medan hög risk gruppen, 
som fått mest intensiv cytostatika behandling, hade lägst antikroppsnivåer och många 
var oskyddade även efter vaccinationen. Hög risk patienterna hade flera tecken på ett 
defekt immunologiskt minne, såsom låga antikroppsnivåer och 
antikroppsproducerande celler efter vaccinationen. Aviditeten, ett mått på 
antikropparnas funktionella bindningsstyrka, hos tetanusantikropparna var också låg i 
den gruppen. Effekten av vaccination 1 månad eller 6 månader efter behandlingen 
skiljde sig inte. Den immunologiska rekonstitutionen efter ALL undersöktes genom 
mätning av olika subpopulationer av lymfocyter och T och B cellsfunktionen in vitro. 
Sammanfattningsvis var immunförsvaret ej norma liserat vid 6 månader efter avslutad 
behandling. T cellerna var reducerade, beroende på låga antal CD4+ och CD4+45RA+ 
T celler. CD5+ B celler ökade under rekonstitutionsprocessen, mest markant i hö g risk 
ALL gruppen. Resultaten motiverar en förändrad policy för vaccinationer efter ALL. 
Inaktiverade vacciner ger bra effekt redan 1 månad efter ALL behandlingen i standard 
och intermediär risk patienterna. I hög risk gruppen bör effekten av upprepade 
vaccinationer undersökas. 
Cytosar (ara-C) är ett viktigt läkemedel för behandling av leukemi och vissa lymfom. 
Cytosar behandling ger ofta feber (cytosar-feber) och detta undersöktes i en grupp av 
57 patienter med ALL eller lymfom, som fick behandling med högdos cytosar (totalt 
169 kurer). Cytosar-feber uppträdde vid 2/3 av kurerna och åtföljdes av förhöjt CRP, 
och i vissa fall procalcitonin. Ett samband mellan feber och frisättning av 
proinflammatoriska cytokiner (TNF-a, IL-6 och IFN-y) kan förklara patogenesen till 
febern. Febern var självbegränsande, men kunde även inhiberas av kortikosteroider. 
Myelosuppression och grav lymfopeni var allmänt förekommande efter högdos-
cytosar, vilket delvis förklarar den höga incidensen (55%) av neutropen feber efteråt. 
Incidensen av sepsis med viridans-streptokocker var låg (1.1%) och inga dödsfall 
inträffade. Undersökningen visar att högdos-cytosar har kraftiga effekter på 
immunsystemet, vilket leder till exceptionellt hög incidens av både cytosar-feber och 
infektionsrelaterad feber. 
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På grund av upphovsrättsliga skäl kan vissa ingående delarbeten ej publiceras här. 
För en fullständig lista av ingående delarbeten, se avhandlingens början.
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