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INTRODUCTION

Theoretical models of fundamental particles and their interactions are invalu-
able for our understanding of physical phenomena in Nature. Experimentally
verified particle theories explaining more phenomena than others are vastly su-
perior and a unification of different established theories is therefore a natural
temptation for theoretical physicists.

One successful and important example of a unification was done in 1864
when J. C. Maxwell coupled electricity and magnetism in the well-known re-
lations now carrying his name, i.e. Maxwell's equations'. Some years later, or
more specifically one hundred years ago in 1905, A. Einstein wrote his famous
article? and thereby founded the special theory of relativity. This theory implied
a unified description of electromagnetism and mechanics. It is based on the
invariance under Lorentz transformations, a symmetry property relating refer-
ence frames moving with constant velocities relative to each other and where
the speed of light in vacuum is the same for all observers. The success of the
special theory of relativity indicated that all future particle theories describing
the laws of Nature should at least locally be invariant under the Lorentz group.

Even though it was Einstein who realized the profound meaning of the
special theory of relativity also H. Poincaré should be mentioned in connection
to the birth of this revolutionary theory. Poincaré also discussed possible
principles of relativity? and showed that Maxwell’s equations are invariant
under the inhomogeneous Lorentz group, also named by others as the Poincaré

1J. C. Maxwell, Phil. Trans. R. Soc., 155. 459 (1864).
2A. Einstein, Zur Elektrodynamik bewegter Kérper. Ann. Phys.. IV. Folge, 17. 891 (1905).
IPresented at the world scientific congress of Saint Louis (Missouri). 1904.
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group®.

In 1916, Einstein probably made his greatest achievement in theoretical
physics when he constructed a theory of gravity by a new remarkable geomet-
rical view of space and time in his general theory of relativity’. Gravity was
until then best described by Newton’s theory.

The idea of particles with spin as an intrinsic property (like the particle’s
mass or charge) was introduced in the midst of the 1920’s to explain the
behavior of electrons in different experimental settings. This was a part of the
development of the theory of quantum mechanics which has ever since occupied
the minds of most theoretical physicists. Eventually one arrived at the Standard
Model in the early seventies, which is the present relativistic quantum theory
for fundamental particles describing the basic forces; electroweak and strong
interactions, typically at the length scale of an atom or smaller. Einstein’s
theory of general relativity, on the other hand, is a classical theory for the
gravitational interactions at length scales large compared to the scales of the
quantum theory.

A natural goal in theoretical particle physics is of course to find a quantum
theory of gravity. Still better is to find a theory unifying the Standard Model
and the general theory relativity. In other words, we nourish the hope of
finding a theory describing all fundamental forces, popularly called a theory of
everything. The best candidate for such a theory is presently String/M-theory.

I would like to return to the importance of symmetry and invariance prop-
erties in fundamental particle theories since, in fact, all established theories
as well as all proposed generalizations not only share the property of being
relativistic but also gauge invariant. A gauge theory is a theory that has the
peculiar feature to be formulated in terms of both unphysical and physical
degrees of freedom. For a theory to be considered sensible it should be inde-
pendent of these unphysical degrees of freedom and this is exactly what the
gauge invariance takes care of. The gauge invariance means simply that the
theory is invariant under gauge transformations. However, these symmetries
are also responsible for the form of the different interactions. For instance, in
the Standard Model the gauge group generating the electroweak and strong
interactions is the semi-simple Lie group U(1) x SU(2) x SU(3). The Standard
Model is built from a class of gauge theories called Yang-Mills theories.

The Standard Model is a quantum theory describing interactions of ele-
mentary particles with spin 0, %, 1, where the half-odd integer spin particles
describe fermions (matter) and the even integer spins, bosons (force carriers
and the spin zero Higgs particle). In a quantum theory of general relativity

4H. Poincaré, Sur la dynamique de l'électron Rendiconti del Circolo Matematico di
Palermo, 21. 129, (1906).

5A. Einstein, Die Grundlage der allgemeinen Relativititstheorie, Ann. Phys. 49. 769
(1916). All Einstein’s Ann. Phys. papers can be found in Ann. Phys. 14, Suppl. (2005).
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there should exist a spin-2 particle, called the graviton, responsible for the
gravitational interactions. Actually, in String/M-theory, even higher spins en-
ter in a natural way. Even though there are no experimental evidence that
fundamental particles with higher spins exist we cannot completely rule them
out.

This Ph.D. thesis describes two quite different approaches to find new gauge
theories. Both of them accounts for certain aspects of the construction of quan-
tum gauge field theories. Roughly, a quantum theory is developed by starting
from a classical theory and thereafter turning it into a quantum mechanical
counterpart.

In the first approach we consider simple classical particle models derived
from representations of the Poincaré group. Specifically we consider a model
describing particles with infinite spin and quantize this covariantly in the sense
of a first quantization. By first quantization is meant that it is a quantum
theory for a particle or a dynamical system of particles just like in a first
quantized string theory. To appropriately describe the laws of nature we should
consider quantum gauge field theories in the sense of a second quantization.
In the second approach, gauge fields theories are generated from an algorithm
constructed within the framework of a general quantization procedure. We are
then in a way considering second quantization directly.

The classical theory should before quantization be formulated in terms of
an action which is a useful mathematical object enabling a compact description
of a physical system. Standard classical theories allow for an action formalism
where an action describing particles is written as

Sz/dtL(z,:b),

and where t is a time coordinate, & the time derivative of the length coordinate
z and L(z,2) is called the Lagrangian. For example, a classical particle model
in Newtonian mechanics may be written as a Lagrangian of the form L(z) =
sma? — V (z), where 3m#? is the kinetic energy and V/(z) the potential energy
related to a force as F' = —%. Thus, the Lagrangian consists of kinetic
and potential energy terms of the considered particle. Requiring the action
S to be stationary under small variations of the coordinates gives rise to the
equations of motion (called the Euler-Lagrange equations) which in this case is
Newton’s equation in classical mechanics, F' = md. In this sense, the dynamics
of particles can be derived from an action principle.

The implementation of the special theory of relativity into the action
formalism is roughly done by replacing the coordinates z' = (z,y,2) (with
i = 1,2,3) above by the spacetime variables z* = (ct, z,y, z), where ¢ is the
speed of light in vacuum and p = 0,1,2,3. The Lorentz indices u, v etc. are
raised and lowered by a constant Minkowski spacetime metric n*, and space
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and time is in a sense treated on equal footing. The metric is e.g. used to
depict the Lorentz invariant interval ds* between two infinitesimal coordinate
displacements dz* with ds* = —n,,dz*dz* if 7" is chosen to be spacelike,
i.e. with diagonal elements (—1,+1,+1,+1).

In our first approach to new gauge theories in this thesis we consider a sim-
ple and elementary construction for relativistic and covariant particle models.
This is done by starting from the irreducible representations of the Poincaré
group. The Poincaré group consists of Lorentz transformations and transla-
tions in spacetime and is therefore an underlying symmetry of all theories of
fundamental particles. A classification of these representations in terms of free
spinning relativistic particles was first done in 1939 by E. Wigner [1]. In this
seminal paper Wigner shows that there are four different types of irreducible
representations that all are characterized by the particle’s mass and spin. How-
ever, there is particularly one called the infinite spin particle representation (also
named the continuous spin representation) that presently do not seem to be
realized in Nature. Wigner showed how this representation contains particles
with spins ranging from —oo to +oo and it was regarded as unphysical. On
the other hand, it has not been sufficiently analyzed, least of all covariantly,
and since higher spins have a natural role to play in String/M-theory the in-
finite spin particles merit further studies. In the first part of this thesis and
in Paper | we consider relativistic particle models and specifically the infinite
spin particles. It is shown how this basic model can be written in terms of
a simple higher order Lagrangian. We discuss possible interactions e.g. with
a gravitational background and make a covariant first-quantization using a
Gupta-Bleuler procedure.

To describe the fundamental aspects of Nature appropriately we ought to
consider field theories as well. Fields have physical reality in the sense that
they carry energy and fill the space, like fluids. In contrast to particles, a field
has infinitely many degrees of freedom. A particle is described by spacetime
coordinates z* representing its position, while a field is a function of spacetime
o(z") (1 =0,1,2,3). Before we proceed to a quantum description of gauge
field theories, let us emphasize an important difference between classical and
quantum field theories. In a classical theory, fields and particles are considered
as completely different objects. A field can interact with a particle or with
other fields. For example, a charged particle is also responsible for its own
radiation field. Whereas a classical theory distinguishes between fields and
particles, a quantum field theory does not. It treats only quantum fields.
Particles are seen as being created and annihilated by the fields alone.

For field theories the expression for the action above is given by an action
functional

S = /d“xﬁ(cjﬁ‘,@,@‘),
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where L£(¢',0,¢') is a Lagrange density and the measure dz is over spacetime,
coordinatized by z*. ¢'(z*) denotes a collective set of fields labeled by the
spacetime coordinates #* and indices i =1,2,...,N.

A central object in the path integral formulation of a quantum field theory
is expressed as

I-— /D¢8ﬁs(¢).

This is a functional integral over the exponential of the action S, integrated
over all possible paths for which D¢ is the measure. Hence, the theory is still
described by an action S. A correlation function (amplitude of a function O)
can be found by considering a weighted integral <O >~ [ D¢ O 5@,

Calculating the path integral above may create obstacles. The measure D¢
is not always well defined (not even from a physicist’s point of view), which in
turn gives rise to infinities. For instance, a gauge theory described by S has
unphysical degrees of freedom and an integration over equivalent field config-
urations makes the path integral diverge. This is characteristic for all gauge
theories. To render a well-defined path integral describing a finite and unitary
theory one has to introduce gauge fixing terms and ghost fields. A unitary
theory is necessary because a non-unitary theory would spoil the probabil-
ity interpretation since it allows physical states with negative probability to
propagate. The introduction of ghost fields and gauge fixing terms was first
done by Faddeev and Popov for Yang-Mills theories [2]. The ghost fields were
here introduced as some unphysical fields used to lift parts of the measure into
the Lagrangian density. It was not until later when more complicated theo-
ries were considered, that one discovered that also the self-interaction of ghost
fields could be necessary to account for in order to obtain a unitary theory.

A general formalism that takes these aspects into account and puts the
fields and ghost fields on an equal basis is the BRST formalism [3-5]. It gen-
eralizes the Faddeev-Popov results of the Yang-Mills theories to a framework
applicable to general gauge theories. The formalism is named after Bechi-
Rouet-Stora-Tyutin [6, 7] who first treated Yang-Mills theories in this way.
In the BRST formalism, the local gauge symmetry in gauge theories is re-
placed by a global fermionic BRST symmetry. The BRST invariance, which
the BRST framework originate from, helps us distinguish between physical
and unphysical observables in a precise and covariant way.

The BRST formalism may be formulated in a phase space with a Hamil-
tonian or in a configuration space with a Lagrangian. In the second part of
this thesis we construct a class of gauge field theories by considering the La-
grangian version. This formalism is better known as the Batalin-Vilkovisky (BV)
formalism® [8-11]. Even though the Faddeev-Popov method is very powerful,

6In the literature the BV formalism is also known as the field-antifield method.
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it may not be applied on theories with more complicated algebras. This is for
example the case for open algebras in supergravity theories [12]. One method
developed to cope with these difficulties is the Batalin-Vilkovisky formalism.
Even though the Hamiltonian version is equally applicable it has the drawback
of not being covariantly formulated for field theories. However, the BV formal-
ism is a covariant quantization procedure in the configuration space, naturally
incorporating the BRST symmetry.

The main difference of the BV formalism compared to its Hamiltonian
analogue is the introduction of so called antifields. One antifield is introduced
to every field, ghost field, ghost for ghost etc, i.e. a doubling of the number of
fields. The cornerstones of the BV formalism is a master action, formulated in
terms of fields and antifields, and a master equation which carry the information
of the gauge structure. In the final expression the antifields are given in terms
of only fields through a gauge fixing procedure. Hence, the antifields may be
seen as merely a mathematical construction. The BV formalism was e.g. used
in the development of the bosonic open string field theory in [13,14].

In the second approach to new gauge theories in this thesis we specifically
consider a class of theories for which a superfield formulation of the BV method
is possible. The superfield formulation is convenient since instead of writing
down expressions for all fields, ghosts, ghost for ghosts etc, we consider all
these fields as components of one superfield. To be able to do this we intro-
duce fermionic coordinates and let the theory live on a supermanifold. This
supermanifold is 2n-dimensional, with n fermionic and n bosonic coordinates.
A superfield can be described as an expansion in terms of the fermionic coordi-
nates such that the fields, ghost fields and ghost for ghosts etc are components
of this superfield. In that way one can reduce the field theory living in 2n
dimensions to the original n-dimensional theory.

In [15,16] Batalin and Marnelius introduced a superfield algorithm which
naively can be seen as a machine for the construction of a class of consistent
first order gauge field theories, once the basic field setup has been chosen.
This is a reversed viewpoint, since usually the BV formalism is used as a
quantization procedure, rather than as a method for generating theories.

Two of the appended papers, Paper Il and Paper Ill, deals with superfield
algorithms. In Paper |l we use the superfield algorithm to investigate four
and six dimensional theories. By using (anti)canonical transformations we
are able to solve the master equation for general interacting six dimensional
theories. In many cases these general six dimensional theories are canonically
equivalent to much simpler ones. A puzzling feature of the superfield algorithm
is that it only seems to generate topological gauge field theories (except in the
one dimensional case, where all theories can be generated [16]). In Paper llI
a generalization of the superfield algorithm is proposed which allows for a
treatment of higher order gauge field theories. This is achieved by introducing
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non-dynamical multiplier fields. By means of the generalized version developed
in Paper Ill it is possible to generate higher order Chern-Simons theories. This
is exemplified by constructing a five dimensional Chern-Simons theory.

1.1 Outline of the thesis

This thesis is naturally divided into two parts with two different approaches
to new gauge theories. The first part includes chapter 2 to chapter 4 and
is connected to Paper | and the second part includes chapter 5 to chapter
7 and is related to Paper Il and Paper Ill.

In the first part we consider classical gauge theories of relativistic particles.
From conditions on the physical subspace of the irreducible representations
of the Poincaré group we show how to construct relativistic gauge theories.
Especially, we construct a simple particle model constructed from the infinite
spin particle representation. In the second part of the thesis we generate a
class of consistent gauge field theories by means of the superfield algorithm.
To be more precise, we find new gauge field theories from BV quantization.

From this introduction we continue in chapter 2 by considering the gauge
structure of particle models by the use of both the Lagrangian and the Hamil-
tonian formalism. The classification of the irreducible representations of the
Poincaré group is thereafter described in chapter 3. We also show how
the Poincaré invariants yield a reparametrization invariant Hamiltonian and
a corresponding Lagrangian. Two simple and well-known examples are con-
sidered, namely the massless relativistic particle and the relativistic spin-%
particle, with emphasis on the gauge structure discussed in the preceding chap-
ter. Chapter 4 is devoted to the infinite spin particle representation of the
Poincaré group. It is shown how to construct a relativistic particle model
for this representation in terms of a simple reparametrization invariant higher
order Lagrangian. We describe a superversion including particles with half
integer spins and perform a covariant quantization of these different infinite
spin particle models using a Gupta-Bleuler procedure. We also discuss possible
interactions with external fields.

In chapter 5 we consider some aspects of the Batalin-Vilkovisky formal-
ism with emphasis on the master equation. We will see how the BV formalism
incorporates the BRST symmetry and how the quantum version of the master
equation differs from the classical counterpart. The BV formalism is illus-
trated by constructing master actions for the massless, relativistic particle,
the relativistic spin—% particle and the infinite spin particle. The superfield
algorithm and its generalized version is introduced in chapter 6, it is shown
how they are constructed and how one may find the original theories by a set
of reduction rules. It is also shown how to derive the gauge transformations
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of the original theory. In chapter 7 we discuss a class of theories generated
by using the methods introduced in chapter 6, with focus on topological gauge
field theories. This is an important class of interacting theories which natu-
rally fit into the framework set up by the superfield algorithm. We also show
how one can formulate topological Yang-Mills theories and higher dimensional
Chern-Simons theories by means of the formalism discussed in chapter 5 and
chapter 6.



PROPERTIES OF CLASSICAL
GAUGE THEORIES

Gauge symmetries are fundamental properties that partly determine the form
of the action in quantum field theories for particle physics. A particle theory
which has inherent gauge symmetries is called a gauge theory and these the-
ories all share the feature that not all degrees of freedom are physical ones.
Examples of gauge theories are the Standard Model and the general theory
of relativity where interactions and symmetries have a profound connection.
That symmetries and conserved quantities are related was shown a long time
ago by E. Noether [17]. To have a sensible theory in particle physics the
properties of gauge theories should be treated properly within the action for-
malism, whether it is considered in a Lagrangian or a Hamiltonian framework.
Actually, not all theories allow for an action formalism but most established
theories do and especially the ones considered in this thesis.

The gauge transformations, corresponding to the gauge symmetries, are
non-trivial transformations that do not change the physical states. This in
turn implies that the classical solutions to the equations of motion are not all
independent and the theory has some unphysical degrees of freedom. Specif-
ically, in particle theories this means that we cannot uniquely describe the
accelerations in terms of the velocities and coordinates and as a result there
is an ambiguity in the classical solutions. At some point this ambiguity has
to be taken care of, otherwise it gives rise to severe problems in the quantiza-
tion procedure, like infinities in the path integral formalism. As was discussed
in the introduction, different techniques have been developed to avoid these
problems among which the Batalin-Vilkovisky formalism is the most efficient

9
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and general method used for gauge field theories.

Quantum gauge field theories are constructed starting from a classical coun-
terpart. It is therefore important to get familiar with the general structure of
classical gauge theories before we proceed to the quantum theory. In this
chapter we describe the Lagrangian and Hamiltonian formalism for particle
models. The Hamiltonian formalism in phase space is very efficient when con-
sidering particle theories which we will do in the next two chapters, regarding
the irreducible representations of the Poincaré group and especially the infinite
spin particles. In a later chapter we describe the Batalin-Vilkovisky formalism
which is a powerful quantization method, especially for field theories, formu-
lated in the Lagrangian framework

Below, we discuss how gauge transformations are naturally incorporated
into the Lagrangian and Hamiltonian action formalism and how these trans-
formations arise from the properties of the classical equations of motion. Fol-
lowing Noether we discuss the relation between symmetries and conserved
quantities in both of these frameworks. This treatment of gauge theories is
made for systems with finite degrees of freedom, the generalization to field
theories (infinite degrees of freedom) is straightforward.

To get familiar with conventions and notations used throughout this the-
sis the following sections are quite elaborate on particularly some important
aspects of the basic structure of gauge theories. Notice that, unless stated
otherwise, we let h = ¢ = 1 and use Einstein’s summation convention, i.e. a
summation over repeated indices.

There are of course several good references on this topic, the ones relevant
to this chapter and related to the subsequent chapters are e.g. [18-25].

2.1 Lagrangian formalism

Let us start with a theory given in a configuration space within the Lagrangian
formalism. More presicely, consider a theory described by an action with a
first order Lagrangian L(z(t),#(t)) integrated over time t with generalized
coordinates x(t) (where i = 1,...,n) describing the world-line trajectory,

12

S= [ aL@),:0) 2.1)

ty

and where © = £z. The local variation éz(t) is defined as an infinitesimal

change in the trajectory from z'(t) to #'(t) such that
F(t) = 2i(0) +05'(t),  oe’ = 03 (2.2)

By requiring the action S above to be stationary .5 = 0 under a local variation
dz we find the familiar equations of motion (i.e. the Euler-Lagrange equations)
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defined by

d 0L 0L

FTEER =k o)
We may write these equations of motion in the more explicit form

#FW;; — K; =0, (2.4)
where W;;(z,2) and K;(z, ) are defined by

&L oL O
Wiy o2 K= — — &' ———. 2.
(%) (8:&'81:1) BT 5 T Gpew (2.9)

Wij(z, ) is called the Hessian matrix. By inspection of the equations of mo-
tion (2.3) the properties of the matrix W;; now yield two different situations.
Either this Hessian has zero modes or it does not and we call the Lagrangian
representing these theories either singular or regular. If W;; does have zero
modes, this implies that the matrix is non-invertible and the accelerations #*
can not be uniquely determined by (2.4). Hence, not all degrees of freedom
enter in the dynamics. Let us study these two separate cases in more detail.

2.1.1 Regular Lagrangian

When the determinant of the Hessian is non-zero, det W,; # 0, the dynamics
described by the equations of motion (2.3) is uniquely determined and the
corresponding Lagrangian is of the regular type. Theories described by such
Lagrangians do not have any superfluous degrees of freedom, i.e. no unphysical
degrees of freedom exist. When quantizing a theory in a Lagrangian formalism,
a regular form of the Lagrangian is necessary. The invertibility of the Hessian
will then normally not produce any infinities in the path-integral measure and
therefore a regular type of Lagrangian is what we eventually are looking for to
quantize.

2.1.2 Singular Lagrangian

From the equations of motion (2.3) we see that when the Hessian matrix is
non-invertible, the accelerations can not be uniquely determined. We then
have

det Wi; = 0 (2.6)

and Lagrangians with this property are called singular. There exist k = (n — m)
independent null eigenvectors R: (z, %) (o = 1,..., k) if the rank of the Hessian
Wi; is m, such that

W R, = 0. (2.7)
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This implies that y; R:, = 0, where y;(z, &) := #W;; — K; which in turn gives
us a number of constraints T, = K; R, = 0. The singularity of the Lagrangian
and the corresponding constraints are characteristic properties of all gauge the-
ories. As mentioned, quantization requires a regular Lagrangian and therefore
there are techniques developed to transform the original singular Lagrangian
to a corresponding regular one. Since all modern particle theories and their
generalizations are gauge theories, the knowledge of the fundamental proper-
ties of classical gauge theories can hardly be overestimated. An analysis of the
constraints in the Lagrangian framework has been made in e.g. [26].

Let us study the non-invertibility of the Hessian by defining a conjugate
momentum to z' by

)
P aa

Using this definition, the singular property (2.6) implies the non-invertibility
of the velocities as functions of the momentum and coordinates. There will
now be a number of relations x;(p,z) = 0 (without the use of the equations
of motion) where the momenta p; are independent of the generalized velocities
#%. These relations are called primary constraints.

The transformation between the phase space (z%,p;) and configuration
space (z', &) is therefore not unique until one introduce these constraints x; via
some associated variables called Lagrange multipliers A;. These multipliers also
have conjugate momenta, but since they are not dynamical their momenta are
ZEro, Py, = g:\% = 0. Consistency of a gauge theory requires the constraints to
be constants of motion. Hence, by considering the time evolution of a primary
constraint we may find some new constraints, called secondary constraints and
so forth. We will shortly come back to this when discussing the Hamiltonian
formalism where a constraint analysis is most efficiently done. But let us first
describe the possible symmetry and invariance properties of the action (2.1)
in more detail.

(2.8)

2.1.3 Noether’s theorem

Consider a Lagrangian L(z,4) (which we for simplicity choose not to depend
on time explicitly) in the action (2.1) we assume that it is invariant under a
local symmetry variation §.L up to a total derivative
;0L 0L -d
O L= 5CIZ+ + JE.T,——.? =—Z N 2.9
¢ Oxi ort  dt”° B
where Z. is dependent on the type of symmetry under consideration. In par-
ticular, a general local transformation is given by

éel‘i — Ri[f] = 6060 + Rflaéa FRb R Ria (E)a (210)
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where the path is parametrized by the infinitesimal parameters e®(t) (a =
1,...,k). The parameters are chosen to depend on time up to some finite
time-derivative r. An explicit calculation of this particular variation of the
action (2.1) gives us the relation

y d .
yiba' = — (g—éml s Ze) , (2.11)

where again y;(z, ) := #/W;; — K;. Hence, we can define a conserved quantity
Q., using (2.8), by

Qe = pidxt — Z.. (2.12)

When L obeys the equations of motion (2.3) it follows from (2.11) that Q. is
a constant of motion, i.e. Q. = 0. Depending of what type of symmetries the
action is invariant under, there are corresponding conserved quantities in the
theory. This is Noether's theorem which will be described further below.

Let us parametrize the introduced quantities Z, and Q. in the same way
as for the variation é.2' above

Ze= ZJe] = Zpot® + Zipl® + -+ + Z1, €7,
Qe = Qc [6] =T Qanﬁ + Qlaéa S QT&(E)“‘, (213)
where €%(t) and its time derivatives are independent. As stated before, Q, is

a conserved quantity which implies that we have the following restrictions on
the components

QOQ‘ v 0»
Qla = _Q007
Q2 = —Qia, etc. (2.14)

For a rigid (global) symmetry ¢ = const. it follows that Q. is a constant.
If the infinitesimal parameters €* have independent non-zero finite order of
derivatives up to r we see from (2.14) that Q. = 0. Hence, this constant of
motion originates from a gauge (local) symmetry with parameter ¢, where the
relations (). = 0 represent the constraints of the theory. Actually, since there
are k numbers of Q.’s, there are k independent primary constraints in the
theory relating the coordinates and canonical momenta. It can also be shown
that there are k secondary, k tertiary etc. constraints such that the remaining
degrees of freedom are n — kr [27].

The local invariance (2.10) can be shown to possess an infinitesimal group
structure, i.e. a closed commutator algebra

[0e1, 0y )2" = 8,027, (2.15)
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where €15 is an expression in ¢; and e,.
More generally we may write the variation of an action depending on any
higher order derivative L(z*, 2%, &, . .. ,%'9), in terms of functional derivatives

of the form
08 e
= —.Rl
ozt

6.8 (2.16)
where R’ denotes the transformation d.z" as in (2.10). The equations of motion
for such a higher order theory are given by

2
£—££+i£+---+(—l)"'—dia—L=0. (2.17)
oxt  dtozt  dt? Oi dim o
We will return to these kind of higher order theories (n > 2) when discussing
the infinite spin particle in a later chapter.

So far we have found the basic properties that follows if the action is invari-
ant under gauge transformations which are local symmetries parametrized by
some gauge parameters ¢*(¢). These symmetries are of the nature that they do
not change the physical states, i.e. they do not change the classical solutions to
the equations of motion. A gauge invariance implies that there are too many
degrees of freedom since it generates constraints. These constraints are most
efficiently analyzed in a Hamiltonian framework which we now turn to.

2.2 Hamiltonian formalism

In the Hamiltonian formalism we write the action (2.1) in a phase space with
coordinates p; and 2! as a Legendre transformation

= [tz dt(p,l'z i H(pi,.’lli)), (218)

1

where H(p,z) is the Hamiltonian which we here assume not to have explicit
time-dependence. The variation of this action yields Hamilton’s equations of
motion

oH ; o0H

Pt = ;= ——, 2.1
= B (2.19)
The Poisson bracket for two phase space functions A(p;, z'), B(p;, z') is
0A0B 0AJB
A B} = —— — ——, 2.2
LA Oxi Op; Op; Ox' (2.50)

such that {z*,p;} = d5. In particular F = {F,H} for any function F(p;,q')
(c.f. (2.19)). This implies that a phase space variable Q. (p;,z*) (not identical
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to the Q. in the previous section) is a constant of motion if Q, = {Q.,H} =0.
From the definition of the Poisson bracket (2.20) we also define symmetry
transformations by

szt = {z%,Q.}, 5p' = {pi, Qc}. (2.21)

Notice that a symmetry transformation of the Hamiltonian yields . H =
{H,Q.} = 0. If we now calculate the variation 6.S of the action (2.18), using
the definitions in (2.21) and 6. H = 0, we see that

ta
0eS = / dt% [pider’ — Q] (2.22)
t1

without the implication of the equations of motions (2.19). This means then
that the symmetry transformations in (2.21) implies constants of motion. Since
the Poisson bracket satisfy the Jacobi identity

{4, B},C} + {{C, A}, B} + {{B,C}, A} = 0 (2.23)
we have for the symmetry generators Qq, Qs

{{QaaQﬁ}vH} =0. (224)

For the @’s to define a complete set of generators, the Poisson bracket with
themselves should consist of polynomials in the generators such that

{Qa, Qs} = cas(pi, ') + fag" (i 2")Qy + O(Q®), (2.25)

where co5(pi,z") are called central charges. The Q’s are the constraints of
the theory when they represent local symmetries. When the central charge is
zero these are classified by Dirac as first-class constraints [18-20], where f,5”
are first-class structure functions. Gauge theories consist of only first-class
constraints. When c,3 # 0 there are constraints of second-class and when the
only non-vanishing coefficient is f,5” and this is a constant, the gauge algebra
is a Lie algebra.

There can also be situations where one has a mixture of both first- and
second-class constraints. The second-class constraints may be eliminated by
replacing the Poisson bracket by a Dirac bracket. When we for example have
only second-class constraints the Dirac bracket is defined by

{Qa: @8} o5 = {Qar @} — {Qa, Qy}"{Q), Qs} = 0. (2.26)

This expression is weakly zero, i.e. zero on the constraint surface and here the
central charge has an inverse, c,5¢" = §j.
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Given a gauge theory, the first-class constraints . (pi,z') generate the
gauge transformation, with Q. = €*xq,

0F = {F,e*xa}, (2.27)

where F(p;,z!) is an arbitrary phase space function and €*(t) the gauge pa-
rameters. In order for the action principle to generate the constraints x, = 0
we must introduce Lagrange multipliers A*. The action is the written as

to
8= / B’ — Hipi,o') = Noxa): (2.28)
ty

We have postulated that the constraints are of first-class which implies that we
are dealing with a gauge theory with time-independent constraints that form
a Lie algebra

{I{v Xa} = daﬁXﬁ» {Xm Xﬂ} = faﬁ’YX’Y’ (2.29)
where d,”? and fap” are constants. It follows that the latter one is antisymmet-
ric in the lower indices. Now choose the gauge transformation of the Lagrange
multiplier to be

8% = & 4+ N\ f5,% — Pdg® (2.30)
such that
B d | % _.d Oy
5.9= [ dt— (b — €®xa) = — [ (=22 —v)) (281
eS ; dt(px €Xa) /tldtdt(e(r«'apz x)) (2.31)

i.e. the variation is zero if we let the gauge parameters fall off appropriately at
the boundaries, €(t,) = €(t,) = 0. Comparing this with (2.22) we find that the
conserved quantity Q. = €*x, where € is the infinitesimal gauge parameter
associated with the first class constraint y,, in agreement with (2.27).

We may also include the transformation properties of the Lagrange multi-
pliers A® in the expression (2.27) by choosing the gauge generator as [22]

G = xa+ (€ + XV f5,% — fds®)p, (2.32)

where p&’\) is the conjugate momenta to the Lagrange multipliers. However,
this expression is just the general solution to the equation

GIXprimnry:O = Ov (233)
where the gauge generator G is defined as
G =€e*Xa + 770, (2.34)

with gauge parameters €*(t), v*(¢). This generator implies that a general gauge
transformation is given by

0.F = {F,G} (2.35)

and where the relations between the gauge parameters are found by solving
the equation in (2.33).
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2.2.1 Constraint analysis

Let us now have a closer look on how to perform a constraint analysis for
a gauge theory described by an action. The established way to do this is to
follow the procedure developed by Dirac in the Hamiltonian formalism [18-20)].
This is a constraint analysis that works for all gauge theories. Starting from
a singular Lagrangian, as in (2.1), there are gauge invariances in the theory
which means that primary constraints y; exist. As discussed briefly before,
the definition of the canonical momenta p; := £ yields k = (n — m) primary
constraints corresponding to the independent nullvectors

Xo(pi, ') = 0, @ =1, s R (2.36)

The transformation from the Lagrangian L to the Hamiltonian H is written
as L = p;@" — Hy, where Hyy is the most general form of the phase space
Hamiltonian in terms of k primary constraints

k
Ho=H+> AaXa- : (2.37)

a=1

The A,’s are the Lagrange multipliers which yield the constraints by their
equations of motion. Notice that these constraints are defined without the use
of the equations of motion for the phase space coordinates p;, #'. The time
evolution of a phase space function A(z',p;) is given by the Poisson bracket
relation A = {A, Hiot }, where the Poisson bracket is defined in (2.20). Hence,
for a primary constraint to be a constant of motion we must have

Xo: = {XmHtot} ~ 0, (238)

which is either identically zero, an already known constraint or gives rise to
a new secondary constraint. There is also a possibility that it yields an in-
consistent relation, which is an indication that the theory is not appropriately
defined. The secondary constraint is a consequence of the use of the equa-
tions of motion together with the primary constraints. By performing the
same consistency check on the secondary constraint there might occur further
constraints which we accordingly call tertiary constraints etc. When all con-
straints (including primary, secondary, tertiary etc) are found we need to check
the Poisson bracket relations between these secondary and tertiary constraints.
If all these relations close, i.e. they yield either zero or an already known con-
straint, this algebra is called first-class or a gauge algebra. Otherwise some of
the constraints are of second-class (how to handle these with the introduction
of a Dirac bracket was discussed in the previous section). Thus the non-zero
bracket relations has the property

{XOHXB} = faﬂ’yx"y- (239)
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These constraints exist due to the gauge invariance inherent in the theory and
give rise to the gauge generator and gauge transformations defined in (2.34)
and (2.35).

In the next chapter we show how particle models derived from represen-
tations of the Poincaré group may be written as reparametrization invariant
theories in terms of their constraints and the associated Lagrange multipliers.
In such theories we have Hiy = LAy Xo- Many important theories can be for-
mulated in this way, such as string theory, general relativity and the relativistic
particle.



IRREDUCIBLE
REPRESENTATIONS OF THE
POINCARE GROUP

The underlying symmetry transformations in the special theory of relativity
form a group which in its extended form is called the Poincaré group, also known
as the inhomogenous Lorentz group. This fundamental symmetry group con-
sists of translations in spacetime and the Lorentz transformations. Eventually,
Wigner realized how to classify the irreducible representations of spinning rel-
ativistic quantum particles in the seminal paper [1|. By irreducible represen-
tations we mean that they cannot be decomposed into further representations
which in turn means that the corresponding relativistic wave equations de-
scribe fundamental point particles with spin and mass.

To explain what Wigner did in his original work we consider a relativistic
particle described by the coordinates z# and momenta p,, u = 0,1,2,3, with
the commutation relation

[2#,p.] = 0. (3.1)

The corresponding Poincaré algebra is a Lie algebra with generators p, and
m,,, satisfying

[p*,p"] =0,
) = (P ),
[m*, mP?] = i(n**m”® + n”"m* + " m*? + n°*mPY), (3.2)

19
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where n*¥ is chosen to be the flat Minkowski spacetime metric, with only the
diagonal elements non-zero and given by (—1,+1,+1,4+1), used to raise and
lower the Lorentz indices. Furthermore,

mt = W 4 s, (3.3)
where the angular momentum operator (¥ is defined by
s e i (3.4)

In his first paper [1], Wigner did not specify the spin operator s**, he only
stated that it obeys the same commutation relations as the generator m*”
and commutes with the conjugate momentum and the angular momentum
operators, i.e.

[s#, 877 = i(n#Ps”" + P s7F 4 7 sHP 4 nPHsPY),
[45pH] =0, [84. 0P = 0. (3.5)

He found that the irreducible representations are classified by the particle’s
mass and its intrinsic spin by considering a subgroup of the Lorentz group,
called the little group, which leaves one particular momentum vector invari-
ant. He showed how all irreducible representations of the Poincaré group was
given by the representations of the little group (independent on the choice of
momentum vector).

In this chapter we review Wigner's classification of the irreducible repre-
sentations of the Poincaré group. We also consider two simple examples of
the Poincaré algebra; the relativistic point particle and the spinning relativis-
tic particle. This is done quite extensively since the same procedure will be
considered in the next chapter when discussing the infinite spin particle. The
gauge structure of these simple particle models will also be used later to ex-
emplify the Batalin-Vilkovisky formalism.

3.1 Classification of the irreducible representations

We will here see how the irreducible representations of the Poincaré group are
classified by their invariants. Consider the generators of the Poincaré group
p*, m* given in (3.1)-(3.5). The Poincaré invariants are the Casimir operators,
i.e. the operators that commute with the Poincaré generators p, and m*”. In a
four dimensional Minkowski spacetime there exist two Casimir operators which
are the momentum squared p,p* and the square of the Pauli-Lubanski operator
wy,w* defined by

1 1
wh = 56‘“’”"m,,pp, = 56‘“’"”5,,,,;)0. (3.6)
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The equality holds, since €*/#7 is a totally antisymmetric tensor with 2% = 1.

The invariance is seen by calculating the commutator between the generators
and the Casimir operators. That p,p* is invariant is easily seen by the defini-
tions above in (3.2) and (3.3). Notice that the Pauli-Lubanski vector (3.6) is
orthogonal to the momentum, i.e. w*p, = 0 and it also follows that [w#,p"] = 0
such that w? commutes with p?. It is also quite easily shown that w? is an
invariant since

[w*, m*] = i(™w* — PMu”),  [w?,m*] =0. (8:7)

We have found two Casimir operators as squares of the momentum and the
Pauli-Lubanski operator which both should have constant values. The defini-
tion in (3.6) allow us to write the square of the Pauli-Lubanski operator more
explicitely as

1
w? = —§sws‘“’p,,p” — S8 pAp”. (3.8)

In [1] Wigner found four different kinds of irreducible and unitary representa-
tions:
I. Py Massive particles with discrete spin s.
The possible physical subspace |phys) of the theory for a massless particle
with m? > 0 and spin s, satisfies the conditions (in a Dirac quantization)

p’lphys) = —m?[phys),  w’|phys) =m’s(s + 1)|phys), ~ (3.9)

where the first condition corresponds to the Klein-Gordon equation. A
specific representation with a spin operator with eigenvalues s = % vields
the Dirac equation from the second equation.

II. P’y Tachyons with discrete spin s. The conditions are here given as
above in (3.9) but with m? < 0.

III. O, Massless particles with discrete spin s.
Massless particles are described by a helicity operator A with eigenvalues
=5, such that the conditions on the possible physical subspace |phys) are

p?|phys) = 0, (w* + Ap*)|phys) = 0. (3.10)

The corresponding equations for the lowest spins are e.g. the scalar wave
equation and Maxwell’s source free equations. Detailed analysis of this
representation may for example be found in [28-30].
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IV. O(Z) Massless particles with continuous spin.

The representation is described by the state conditions
p*|phys) = 0, w?|phys) = Z%|phys), (3.11)

where Z is a real constant. This representation was first called the con-
tinuous spin representation [31] and later in [32] the infinite spin particle
representation, since it contains helicities from —oo to +o0o0. These infi-
nite spin particles will be discussed in detail in the next chapter were
we for example will show how a corresponding particle model is clas-
sically described by a simple reparametrization invariant higher order
Lagrangian.

3.2 The massless relativistic point particle

To find relativistic particle models from the irreducible representations of the
Poincaré group we consider the characteristic properties of a Dirac quantiza-
tion. Here the constraints x; are turned into hermitian operators x; satisfying
a Lie algebra [Xi,X;] = ifijuXx where fijr is a real constant. The physical
subspace satisfies the conditions (for all 7)

Xi|phys) = 0. (3.12)

The relativistic wave equations are thereafter found by using an appropriate
wave function representation for the states.

Let us now specify the spin operator and find some simple models of the
irreducible representations of the Poincaré group. The massive and massless
(spinless) relativistic point particles are described by well-known relativistic
particle model that are contained in the irreducible representations of the
Poincaré group. They can both be described by the same methods used in
this section but we choose here to only consider the massless case. In this
theory there are no internal variables describing the spin (i.e. s#* = 0) and the
Pauli-Lubanski vector (3.6) is identically zero. This particle model is therefore
characterized by the constraint p?> = 0. Hence, the states of the physical
subspace are such that they obey the Dirac condition

p’|phys) =0, (3.13)

which in a wave function representation is the Klein-Gordon equation. As we
later will study much more involved theories, like infinite spin particles in the
next chapter, it is instructive already at this point to be familiar with the
procedure used to analyze this simple relativistic model. In a later chapter
we will also show how the so called master action in the Batalin-Vilkovisky
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formalism is constructed for the relativistic point particle based on the gauge
structure developed in this section. Since this is our first example of a gauge
theory we will be quite explicit in our derivation. The relativistic particle
model is well-known and there are several textbooks which discuss it in more
detail.

A reparametrization invariant theory describing the massless relativistic
particle within the Hamiltonian framework may be defined by

il 1
H= §vp2, X1 = —2—p2, (3.14)

where x; is a constraint and v a Lagrange multiplier (here called the einbein).
A reparametrization invariant theory is characterized by the condition that the
Hamiltonian is zero on the constraint surface and may be expressed in terms
of the constraints. When this is the case, the time evolution of a phase space
variable (generated by the Hamiltonian) is not definitely determined since it
yields a gauge transformation. To each quantity we introduce a canonical
momenta with the Poisson bracket relations

{I‘lvpl’} = 65° {vat'} =1 (315)

By construction, the einbein v imposes the constraint x; = 0 by its equation
of motion. Hamilton’s equations of motion (2.19) also yield the relations i =
{z#,H} = vp* and © = {p#, H} = 0 (where the dot indicates a derivative with
respect to a time variable 7) and the corresponding Lagrangian is given by the
Legendre transformation L(z, %, p) = p,2* — H. Hence the configuration space
Lagrangian L(z, &) is

1,

L=—z°.
2v$

(3.16)
Let us now start with this Lagrangian and show how the Dirac condition (3.13)
is naturally found and also how the full gauge structure is derived in a simple
way, based on the general formalism discussed in the previous chapter.
From the Lagrangian (3.16) above we find the conjugate momenta
' oL 1 oL
=___=_i:u', ‘:—_:0’ 3.17
P ozt v =55 (8:17)
which gives us back the Hamiltonian H (z, v, p, p,) in (3.14). In addition we also
find the primary constraint p, = 0. The consistency condition that the time
evolution of a primary constraint should be zero on the constraint surface yields
the secondary constraint x; = 3p? since p, = —p®. There are no further
constraint since x; = 0 and x; and p, are first-class constraints. Hence, the
massless relativistic point particle is a gauge theory described by an abelian
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Lie algebra with Poisson bracket relation {x1,p.} = 0. We can now construct
the gauge generator given in (2.34) which for this specific model is

G = ex1 + Bpu, (3.18)

where €(t), 3(t) are real and even, infinitesimal gauge parameters. The condi-
tion (2.33) yields a relation between these parameters, § = ¢, and the gauge
transformation (2.35) are therefore given here by

e T S Y (3.19)
v

The action is invariant under this transformation by construction which is con-
firmed by a a quick calculation since the variation of the Lagrangian yields a
boundary term §.L = %(-‘,_,—f;) (compare with the expression in (2.31)). The the-
ory is irreducible and abelian since there are no further gauge transformations
due to the commutator relations of the gauge transformations [de,, d,|z# = 0
and [de,, de,Jv = 0.

We also notice that if we redefine the parameter ¢ — ve, the gauge trans-
formations above transform into

dext = et dev = %(ve). (3.20)
The action for the massless relativistic point particle is of course invariant
under this transformation as well, with 6.L = %(%) But here we notice that
the theory now is non-abelian since a short calculation yields the commutators
[0e;,06,]2# = Oepx and [Og,,0c,|v = Oy,v Where the gauge parameter €5 =
(€160 — €1€2).

We may also calculate the degrees of freedom for this model. This is done by
adding the total number of variables for the canonical pairs in phase space and
subtracting the number of first-class constraints and half of the second-class
constraints (since after gauge fixing there are only second-class constraints
left) [21]. In this case we are therefore left with three degrees of freedom
describing the motion of a free particle in space.

3.3 The massless spinning relativistic particle

Other established and well known particle models are found by specifying the
spin operator s* in (3.3) with the properties given in (3.5). For example, by
adding anticommuting [28-30,33-36] or commuting [30-32,37] variables to the
different irreduclble representation of the Poincaré group one can enlarge the
space and find new free particle theories.

A famous model to describe these spinning particles is found from the
irreducible representation of the Poincaré group by extending the theory to
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include some odd hermitian operators. Such a model is the one we consider in
this section, the massless relativistic spin-3 particle described in e.g. [33-36].
Some of the gauge transformations will now turn out to be local supersymmetry
transformations, relating even (bosonic) variable with odd (fermionic) ones.

The quantization of the massless relativistic spin-% particle is known and
vields the Dirac equation, i.e. a wave equation for the relativistic spin—% parti-
cle.

Let us begin by adding to the previously discussed theory (i.e. the massless
relativistic particle) an odd, hermitian operator ¥* satisfying the commutation
relations

[V, 9")4 == PHP¥ + Py = n, (3.21)

where the index plus indicates an anticommutator. The Poincaré generators
are now expressed as in (3.3) and (3.4) with the spin operator given by

Y = _%(¢#¢" ). (3.22)

In order to construct the reparametrization invariant Hamiltonian for this
massless spinning relativistic particle we need to add a constraint to the one
above such that the Poincaré invariants p? and w? satisfy the state conditions

p’lphys) =0,  w?|phys) =0, (3.23)

where the square of the Pauli-Lubanski operator (3.8) now is given by

w? = = 2p- Y + 2 Y- ) — 5 9 (3.2)

and where p-1) = p,*. The state conditions (3.23) imply that the constraints
are given by’

1
X1 = 5;02, X6 =P . (3.25)

Classically is ¥* an odd variable? which together with the variables z*,p,
satisfy the Poisson bracket relations

{z*.p} =05, {¢*¢"} = -ip™. (3.26)

The Poisson bracket relations (3.26) are such that the Lie algebra (the nonzero
part) is

{x6:x6} = —2x1. (3.27)

!The numbering is chosen in analogy with the constraints introduced in the next chapter.
2Two odd (fermionic) classical variables 1 & I obey the relations ¢TI’ = —T'y and ¥? = 0.
This formalism will be streamlined later when introducing Grassmann parities.
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The reparametrization invariant Hamiltonian is now given by
1
H = 5@192 + iXgp - U, (3.28)

where we have denoted the Lagrange multipliers to the corresponding con-
straints by the real einbein v and the real, odd variable A\¢. The equations of
motion are given by p# = 0 and &* = vp" + A¢¥p* such that the corresponding
Lagrangian is

L= 2—11)(55# — X))t + %¢ -1 (3.29)
The careful reader probably notice that we have a term v -4 that we have not
vet verified. This term is dictated by the Poisson bracket relation in (3.26)
above. Due to the Legendre form of the Lagrangian we do not need to introduce
a canonical momenta to ¥*, whereas it is needed for the z# variable. It can
be seen by considering the general formalism below. A clarification will also
explain the choice of the Poisson bracket relation in (3.26). So let us write a
general Lagrangian as

L= é aQabpb T H(p)v (330)

where p = (p,z,) is a collective variable describing all coordinates p,,, z#, ¥*
and Qg (with inverse (Q271)%) is a constant matrix to be calculated. €y is
antisymmetric in a, b for even p® and symmetric for odd p® (otherwise the first
term in the (3.30) is a total derivative and then it will not contribute to the
equations of motion). The equations of motion are given by p* = (Q‘l)“b%{-
and the Poisson bracket is

-

a
ap®

heansts
Q*—=B. 3.31
@ (331)
We may now write the Lagrangian on the form above as L = pz + %¢ p—H
where the Hamiltonian is given in (3.28). The form of the matrix in this case
is now easily extracted

{A,B}=4A

0 -1 0
@bH®=11 0 0 |9 (3.32)
0 0 —i

and from this expression and (3.31) the Poisson bracket relations (3.26) follows.
Notice also that ¢¥* = %11‘“ So let us now turn to the Lagrangian in (3.29)

from which it follows that the canonical momenta

. !
pi= (@ —ideyt), po=0, pr=0 (3.33)
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and the corresponding Hamiltonian is written as in (3.28). The primary con-
straints are given by p, = 0 and p,, = 0. A Dirac consistency analysis of
these constraints yields the secondary constraints x; and yg in (3.25), since
Pv = —X1, Pas = —Xe6 and Xe = 2Xgx1. To find the gauge transformations
we construct the gauge generator for this model. This generator consists of
the four constraints together with the real, even gauge parameters a, b and the
real, odd ones a, 3

G = ax; + iaxe + bpy + 10Dx- (3.34)
The consistency condition (2.33) yields the relations between the gauge pa-

rameters, 3 = & and b = a + 2ia)s. Hence, the gauge transformations (2.35)
can here be written as

bt = %(.’L‘“ — iAyH) + i,

Syt = %(a’:“ — idgth),
ov=a-+ 27:&’/\6,
Be =4, (3.35)

As in the example of the massless relativistic particle we may redefine the
parameters as a — av and @ — a)\g + va (many authors use o — alg + a, but
the choices we make here slightly simplifies the calculation of the commutator
algebra of the gauge transformations). Using these redefinitions we obtain the
more familiar expressions of the gauge transformations, namely

ozt = az" + ivat,
O = ap* + a(E — idgyH),

d .
v = E(av) + 2ivads,

d
0 = E(a)\s +va). (3.36)

Notice that these local gauge tranformations are seperated in two parts with
either an even or odd gauge parameter. The first term in each transformation
above represents the so called worldline reparametrizations. The second terms
are the local supersymmetry transformations which mixes the bosonic (even)
variable with the fermionic (odd) ones. It should also be noted that the gauge
transformations of the massless relativistic particle is obtained by setting v*
and \g to zero.

The commutator of the gauge transformations are now given by [d;, d2]p =
012p, where p is either p,, z* or 1)*. The transformation §;5 corresponds to the
parameters

Q12 = 201 — a1Gg + 2ivasa;,
Q12 = 0 — Q10 + A1 — Gy + 2 g0y, (337)
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such that e.g. [0y, do)z# = a1p2* + ivagap*. Taking the limit when \g, a7 and
s go to zero we find the commutator algebra of the gauge transformations of
the free massless relativistic point particle in the previous section.

Calculating the degrees of freedom as described before we obtain four in-
dependent variables, describing the motion in space for the particle with spin
up or down.



INFINITE SPIN PARTICLES

Not all irreducible representations of the Poincaré group described in the pre-
vious chapter have been exposed to an extensive study. In this chapter we
focus on the massless representations of the Poincaré group with the condi-
tions on the physical subspace given in (3.11). Except for the massless con-
dition of these particles, p?> = 0, the representations are also characterized
by a real, constant = which is the square of the Pauli-Lubanski vector (3.6)
with w? = Z2. This is one of those irreducible representations of the Poincaré
group that we do not completely understand. Wigner dubbed it the infinite
spin particles [32] or the continuous spin representation (CSR) [31]. We also call
it Wigner's =-representation.

In the communication by Bargmann and Wigner [31], Wigner’s original
work [1] was clarified and further developed. In their paper they also study
models with the generators p*, m*" given in (3.3), (3.4) and an explicit expres-
sion of the spin generator

st = gha¥ — gt (4.1)

in terms of some internal variables £# and m,. These variables obey the com-
mutation relation

[&¥, m,) = id}. (4.2)

This gives rise to a definite representation of the infinite spin particles when the
conditions in (3.11) are fullfilled. This representation has since its birth been
believed to not appear in any physical theories and one has not investigated
it further. Wigner himself disregarded it since it gives rise to infinite heat

29
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capacity [32]. He showed that the state space is infinite dimensional and a
summation over all possible states with positive energy yields infinite heat
capacity. The continuous spin representation has also been found to have
further obstacles, like negative norm states and non-locality [38,39]. Recently
the supersymmetric version has been considered in the light-cone gauge [40].
In [41] it was also shown that the infinite spin particle representation can be
generated from the five dimensional Poincaré group by a combination of a
group contraction and a Kaluza-Klein dimensional reduction.

The history of massless and massive higher spin fields has slowly been
developed for a long period of time, beginning with the communications in
[1,42-44]. In recent years these theories have attracted a lot more attention,
specially due to the possible connection to string theory. For good reviews
on higher spin theories see [45-48] and references therein. The relevance of
the infinite spin particles and other higher spin particles to be candidates for
fundamental particles are of course doubtful. On the other hand we should
not rule them out completely either since we know that string theories have an
infinite tower of spins in its spectrum. Massless higher spin particles seem to
be realized by a sector of string theories with zero tension [49-51]. This zero
tension limit might be an unbroken phase of string theories [52]. However, this
is not easily established since this is a singular limit.

In this chapter we start from Wigner’s =-representation and derive an in-
finite spin particle model described by a simple higher order Lagrangian. In
this derivation we show how to find a phase space Hamiltonian build out of the
constraints recovered from the infinite spin particle representation and there-
after take the theory into the simple higher order Lagrangian in configuration
space. The introduction of fermionic variables is made in the same way as
for the spinning relativistic particle model, i.e. by introducing the odd oper-
ators ¥*. It is shown how the classical higher order Lagrangian is written in
a gravitational background with the only non-negative results in a (anti) de
Sitter spacetime. This might have connections to the results found in other
interacting higher spin theories [53-56]. We also make a Gupta-Bleuler quan-
tization of the infinite spin particle and elaborate on possible extensions and
generalizations to higher dimensions, such as a string theory generalization.
This chapter is based on Paper | and all details are given there. Here we give
supplementary comments and also some new results.

4.1 Wigner's =-representation
As discussed in the previous chapter, the irreducible representations are re-

covered by finding the Poincaré invariants, i.e. the square of the momentum
operator p? and the square of the Pauli-Lubanski operator w?. Wigner’s =-
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representation is a massless representation with p?> = 0 and w,w* = Z. In a
Dirac quantization we may obtain constraints in terms of operators acting on
a physical state [phys) from the conditions

p’lphys) = 0,
(w,w” — Z2)|phys) = 0. (4.3)

These conditions are here written in a so called strong form x;|phys)=0 , a
weaker condition (phys|x;|phys) = 0 may in some cases be necessary to con-
sider. An example of this will be seen later in this chapter when quantizing
the infinite spin particles. The constraints above build up the reparametriza-
tion invariant Hamiltonian and constitute a gauge algebra by their mutual
commutation relations.

Let the particle be described in terms of the coordinates z* with conjugate
momenta p,. Also introduce an internal vector £# with conjugate momenta
m,. These coordinates obey the commutation relations, the non-zero part,

[:L'“,p,,] = i5#> [5#’77»] = 1(55 (4’4)

The conditions in (4.3) now yield two elementary sets of minimal constraints.
With x;|phys) =0 (Vi =1,...,4) these are

1
X4= 51’27
1
Xoii= 5(71.2_ F2)a
X3:=p-m,
Xa =g §— % (4.5)

With x/|phys) = 0, an altenative description is given by the constraints

1
Xll :=§p21
1
X2 =§(§2—F2)»
X :Pf,
A et e LIS 4.6
Xqi=p-T F (4.6)

F' is a non-zero constant or an operator commuting with z#, p,, &*, 7, (e.g. the
inverse einbein introduced in the next section). These constraints are of first
class and satisfy a closed Lie algebra with the nonzero relations

[x4, X2] = ixs, [x4, x3] = 2ix1. (4.7)
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The same relations with minus signs hold for the alternative representation
with x! above. The reparametrization invariant Hamiltonian (with F' = 1) is
given by

H = Aixa + AaXz + Asxs + Aaxa, (4.8)

or explicitly
1 1
Hos= )\1§p2+)\2§(71'2—1) +)\3p7r+)\4@§—5) (49)

The same Hamiltonian is given by the constraints y; but with &* and m,
interchanged.

4.2 Generating the higher order Lagrangian

Let us now turn to a classical description and write this theory in a configu-
ration space represented by a Lagrangian. Hence, we need to transform the
Hamiltonian above into a Lagrangian. The coordinates will now be treated as
classical variables with the commutation relations

{xﬂvpl/} == 55’ {gﬂ’ﬂ—u} = 55 (410)
The equations of motion (2.19) for the Hamiltonian (4.9) are given by
R = )\1].7” + AgmH + )\45“, ]'7“ =1()
€4 = g + Agp*, T = — NPy, (4.11)

where the Lagrange multipliers \;(¢) are time-dependent. The corresponding
configuration space Lagrangian is then
LA 2, Mg Az gy 0 L
L—QA(f Asf) ey —A(ff—)\4§) £+ 350+ AE,
A= A — A2 #£0. (4.12)

This expression can be reduced to a higher order Lagrangian in z* by choosing
A1 =0, A3 = a)y, and Xy # 0 for any real a # 0 and solving the equation of
motion (2.3) for £&* which yields

1 ad/(1
TRNELIPTR BN (T 413
TR ,\2dT<A4x) (4.18)

Inserting this expression into (4.12) yields a simple unique higher order La-
grangian

e (%(%j))z I8, (4.14)
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By unique we mean that exactly the same higher order Lagrangian is found if
we instead start with the alternative reparametrization invariant Hamiltonian
with the constraints given in (4.6). In this analysis we find the alternative
Lagrangian
/ ’\1 -2 1 . 1 2 e} =
U'=—g58+ (@ =2 £ - 0@ -1+ AME, M#0. (415
4

Provided we again choose \; = 0, A3 = aAq, and A2 # 0 and insert the
expression for &, here given by

wo_19d (i '#)
i puiy= )\4:1: ; (4.16)
we may write this model as a higher order Lagrangian which is exactly the one
in (4.14).

The choice of Lagrange multipliers in both of these descriptions might seem
strange but this is plausible since the associated constraints are recovered as
secondary and tertiary constraint when performing a constraint analysis. This
is studied below and shown in detail in Paper I.

To slightly simplify the calculations we write the Lagrangian (4.14) above
in terms of the inverse einbein e = 1—1,, where v = )4 such that

L=/(éx +ei)? +

o =

= (4.17)

4.3 The Ostrogradski method

Consider again the Lagrangian (4.17) and let us try to reproduce the con-
straints obtained in (4.5). In order to perform a constraint analysis of the
Lagrangian we need to transform it into a Hamiltonian. However, the La-
grangian is not on the form we are used to since it consists of higher order
time derivatives. To deal with these we make use of the method introduced by
Ostrogradski [57] (see also [58] chapter X, or better [59] appendix I). This is
nothing spectacular, it follows the standard procedure with the exception that
we introduce some new variables which are equal to our higher order terms.
Start with the Lagrangian L(z, %, #,...,% ;t) and let

T = (q,
ql = Q2
42 ='"@3,

Gn = Gnt1- (4.18)
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Write the Lagrangian L(z,#,%,...,% ;t) in terms of these new coordinates
with Lagrange multipliers p; (why we call them p will soon be obvious)

L'(q1, 02> Gne1it) = L(@1, 92, - - Gnerit) + D _pildi — 1) (4:19)

=1

such that the Hamiltonian is written as
n n
H=> pdi—L(g1,q2- - gne1;t) = > pigisr — L(91,82, - - 1 Gn15 1)
i=1 i=1
(4.20)
The only thing left is to eliminate the coordinate g,+1 by

OL(g1, 92, - -+ Gnt1) (4.21)
8Qn+1

Pn =

4.4 Classical analysis of the infinite spin particles

Now we are ready to transform the Lagrangian description of the infinite spin
particle into a Hamiltonian form and find all constraints. Redefine the coor-
dinates as z* = ¢}, ¢ = ¢5,d5 = ¢4 such that

- 1 . :
L' = \/(éq + eg3)? + —E+ Pru(d) — g5) + pau(dh — db). (4.22)

The Hamiltonian H (p;, p2,w, q1,¢2,g3) (where w is the canonical momenta of
the inverse einbein variable e) can now be written in a simple first order form
by eliminating the coordinates ¢4, w by

Doy = 6£(q17 g2, €, e) - 6(6(1‘21 SE qu)
| gy (éq5 + eqs )2
OL(q1, q2,€,€) L Qou(éqh + eqh)

w= - : 4.23
¢ V/ (€92 + eg3)? =)
The Hamiltonian describing the infinite spin particles is now
1_
Hzp-f—z: (4.24)

where we made the identifications ¢y = &, i.e. ## = &, and p1, = Py, P2 = Tu-
As shown in Paper |, we in addition to the Hamiltonian (4.24) have the primary,
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secondary and tertiary constraints

1
Xp = §p2a
1
X2 = 5=,
Xs = p-m,
o s 5—1:
X4 i p 6—'»
X5 = w-&—we. (4.25)

These constraints are all of first class and their nonzero Poisson brackets are
xoxel =x3  {xaxs}=2x1, {xsx2}=2xa
{xs: x4} = —xa, {5, X3} = xa- (4.26)

A Lie algebra of this kind is called solvable. We may now express the total
reparametrization invariant Hamiltonian as

H = Aixa + doxe + Asxs + Aaxa + Asxs (4.27)

where J; is the Lagrange multiplier corresponding to the constraint y;. Thus
we have shown how to generate the original Hamiltonian (4.9) from the higher
order Lagrangian (4.17). Notice that we here have an extra constraint ys. This
is due to the fact that the Lagrange multiplier became the dynamical einbein
variable in the process discussed before, the constraints x5 removes this degree
of freedom. By gauge fixing e = 1, this reduces to the familiar form of the
Hamiltonian in (4.9) with the four constraints (4.5).

4.5 Pseudoclassical model

As in the case of the spinning relativistic particle discussed in chapter 3 we
may add an odd fermionic operator 1* to the spin operator s*”

sH = ghpY — Euﬂ.u 3 %’(,‘/}uwu _ "/)V"#"'ﬂ)' (4.28)

The odd operators have the same anticommutation relation as considered be-
fore, i.e.

[¥*, 9]+ = n*. (4.29)
To satisfy the relations in (4.3) we add the familiar state condition

p - ¥|phys) = 0. (4.30)
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In order to obtain a simple higher order Lagrangian we need to introduce
another odd operator 6 with

6,6]. = -1, (4.31)
and add the condition
(7 -9 + 6)|phys) = 0. (4.32)

At the pseudoclassical level these two odd operators ¥* and 6 satisfy the
Poisson bracket relations

v, ¢} = —in®, {6,0} =i. (4.33)
Hence the Hamiltonian consists of the constraints in (4.5) (with # = 1) and
Xe =p-¥, xr=7w-¢Y+0. (4.34)

The additional relations to the Lie algebra (4.26) are given by

{x6:x6} = —2ix1, {x7,x7} = —2ixa,
{xe6:x7} = —ixs,  {x7, x4} = —Xe- (4.35)

The Lagrangian is now obtained by a similar analysis as in the original case
in the previous section, which is shown in detail in Paper |. The resulting
expression is given by

L =1/(éd+ed)® - 2iMp - (6 + i) + %s + 51— 500 — iMeb. (4.36)

By identifying £# = #* and following the Ostrogradski procedure we find the
Hamiltonian (for details see Paper |)

g 1.
H=p-&- ps (4.37)

This expression is in itself a constraint (which is seen by a constraint analysis
and implies that the theory is reparametrization invariant) and together with
the six other constraints in (4.25) and (4.34) it constitutes the Lie algebra
described in (4.26), (4.35) and by

{X5$ XS} = 07 {X57 X7} = Xie (438)

The constraint ys is also here due to the fact that the inverse einbein e became
dynamical in the process of obtaining the higher order Lagrangian.
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4.6 Gravitational interaction

A natural way to introduce gravitational interaction in our model is to find the
action that is independent on the choice of spacetime coordinates and reduces
to the original model (4.17) in the flat case. The naive idea is of course just to
let V72 — /"9, & where g, () is the Riemannian metric. But it remains
to check if this term is invariant under arbitrary coordinate transformations.
So basically we need to find out how a term like v/Z2 transforms in a curved
Riemannian spacetime. We know that #* transforms as a tensor, since &* =

%x',',."b but what about ##?7 With some algebra we find that we must add a
term to #* such that it transforms adequately,
ox'*
4+ ThETEY = — (3" + FAUi‘ %), (4.39)
oz
where I'}, is the affine connection
1
l—‘ﬁﬂ = §g’-“’(60gg,/ + nga,, — 8ugaﬁ)~ (4.40)

Hence, to introduce gravity we should replace all terms in the action by
Vi2 — \/ (@ + T, &22) g, (2 + T, 2r27). The Lagrangian corresponding
to the infinite spin particle in a gravitational background is then

1
Loy = 3/ (€6 + eDit#)gy, (é5 + eDi) + =E,
Di* = & + &"T¥ (z)2. (4.41)

Using the Ostrogradski method and identifying £ := ## the conjugate mo-
menta to £* and e are given by

s egu (€€ + eDEY)
" V(68 + eDEN) gy (€~ + eDEF)’
- & g (é€” + eDE") (4.42)
V/(€E* + eDEN)gan (€€~ + eDEX)’

such that the Hamiltonian

Hyo = AEH — éz (4.43)

Here, Ay i=p, — 71',,1“;’“\(2:)5’\ acts as a covariant derivative such that e.g.
{€" 1, (z)m, Ao} = E4(0o fy — [T + [iT o) My = E* fiiomy (4.44)

for a general function f(z). A, also has the useful Poisson bracket relation

{Au, A} = mpRE,, (2)€2, (4.45)
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where the Riemann tensor is defined by
R’;w i= 0,05 — 0%, + gt — I‘Zvan. (4.46)

From the expression of the conjugate momenta above (4.42) we also find the
primary constraints

1
X2 =5 (Mg (@)m — €), X5 = muEt —we. (4.47)

The constraint analysis of this model is rather straightforward but much more
involved than before. The details are given in Paper | were we find that the
only consistent solution to obtain a closed constraint algebra is given by some
specially symmetric spacetimes with a constant curvature, such as the (anti)
de Sitter background and with the additional condition = = 0. The Riemann
tensor is then given by

Ryapy = K(gaﬁgu'v - gavgﬁu)v = Rpuapyw =0, (4.48)

where K is a real constant which is positive for a de Sitter space, and negative
for an anti de Sitter space. By a consistent solution we mean that the degrees
of freedom in the interacting model should be the same as in the free case.

4.6.1 The psudoclassical case

In the pseudoclassical case with the odd spin variables ¥)* we need to introduce
vierbeins V/!(z) in our formalism. These are related to the metric as

() = Vi (2) V) (@)ab, (4.49)

where 75 is the flat metric and V/}‘(z) is the inverse. Except for the affine
connection (4.40) we also need to introduce the spin connection w¢,, such that
the pseudoclassical Lagrangian is given by

Lyw = /(é% + eDin) g, (62 + eDiv) — 2drihaVa(éde + eDie) +
1. i ok
+g._4 F §¢QD1/) 299 2A79 (450)
where Dy? = @ + w“b,ri”’d)b and wapy(z) = V7 (0, Ve — I, Vip). The corre-
sponding Hamiltonian is again
1

H,,, =7\ - =&, (4.51)

but here

- i

Ay :=p, —me L5, ¢ — Qwawam{;”. (4.52)
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The Poisson bracket relation for this variable is
= - i
{Auv Au} 57 WpRp)‘,“,g\ + §wawbRabpu1 Rab;u/ = V:’prRappu- (453)

The (anti) de Sitter spacetime (with Riemann tensor given in (4.48)) yields
a closed constraint algebra also in the pseudoclassical case but only if we
introduce two new constraints

1 I/
X8 = 5(5#9;“/5‘ . w2), (4.54)
Xo = fw + £, VI (4.55)

However, it does not form a Lie algebra. The detailed analysis is also in this
case given in Paper .

4.7 Quantization

We have showed how the infinite spin particle can be written in terms of a
simple higher order Lagrangian and we have considered possible interactions
with a gravitational background. The only non-negative results was found
to be in (anti) de Sitter spacetimes. So far we have not mentioned how a
covariant quantization of this infinite spin particle model might be done. To
do a proper quantization we should use a BRST formulation, which we in
this case expect to be inconsistent with the Dirac quantization conditions
used before. Probably we need to consider a general framework of the BRST
quantization such as the one considered by Batalin and Marnelius in [60] when
quantization is made on inner product spaces. Another possibility is to use the
Batalin-Vilkovisky formalism discussed in the next chapter. However, higher
order theories are not easily described in the BV formalism. On the other
hand, we do believe that a Gupta-Bleuler quantization is in the right direction
and we will therefore discuss this further here.

4.7.1 Gupta-Bleuler quantization

The Gupta-Bleuler quantization procedure uses the weaker condition compared
to the Dirac condition discussed in the previous sections

Xilphys) = 0, (4.56)

(phys

where the constraint may now act on either state. In a Gupta-Bleuler quantiza-
tion this condition follows from some operators ), (not necessarily hermitian)
with the properties

Q;|phys) =0,  (phys|Qf =o0. (4.57)
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The Q’s are required to form a closed algebra

[Qrv Qs] == ifrst@t (4.58)

where f, is a constant (not necessarily real).
Let us introduce the oscillators a* expressed in terms of the internal vari-
ables £ and m, as

a* :=\/i§(§“+m“) [t = g (4.59)

For the physical states we use a Fock ansatz

Z Zk' ) “k £)[0, n)Hakahk +Z ¢(")(z)|0 n),

n=-—00 k=1 n=-—00
(4.60)
where we have defined
|0, nyrrkz-mk = gitgret . gitlo, n), |0, n) = |0),,|0)|n),
|n) := €"|0),, a*|0) =0, p,0),=0, @|0),=0 (4.61)
and [e,w] = i. We may also let the states be such that
(el = (0, Ip) = eH0),,
{e]'= . {0[e®=, |w) = €'*|0),, (4.62)

where the exponentional should not be mistaken for the inverse einbein in
(4.61). Notice that we have introduced a kind of Banach space by using differ-
ent representations of the bra and ket states. The Fock ansatz in (4.60) with
(4.61) and (4.62) now implies the wave function representation

U(z,€) := (z,€|V) = Zw)(z

n=—oo
Vi (2,€) = g (2, €] ¥) = Z AR @), k21,
3 (4.63)
with e # 0 and where we have defined
oo (T €] = (@] (O, -+ Gy, = (01002 ay, - -~ &y,
(4.64)

To exemplify this Gupta-Bleuler quantization we analyze the free classical
model considered in (4.17). The quantization of other related models are
considered in Paper | as well.
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4.7.2 Quantization of the free infinite spin particle model

In order to perform a Gupta-Bleuler quantization of the free classical model
in (4.17) we define the constraints

Qo == 2)21,
- 1
= —(X4 + iX3),
| @ \/—2-(X4 X3)
Q2 = 2X2 — iXs, (4.65)

with the only non-zero commutation relation
[Q1,Q:2] = Q1. (4.66)

X1,---, Xs are the operators corresponding to the constraints given in (4.25)
and in terms of creation and annihilation operators

S P

X1 = 2?7

. 11 S

X2 =—§((G—GT)2+1)7

X3 :=$(p-a*—p a),

: I b e -

X4:=E( ca+p-a') -5,

X5 = %(aﬂ’ —a®) — %(aé + é). (4.67)

Notice that the number of Q,’s and their hermitian conjugate are equal to the
number of Y;’s. Now we look for non-zero solutions for the ¢- and A-fields to
the conditions Q1 23|¥) = 0, where |¥) is given by the Fock ansatz (4.60) and
the constraint operators by (4.67) above. The condition Q;|¥) = 0 yields the
Klein-Gordon like equations

8’p™(z) =0, %AW . =0 (4.68)
and Q2|W) =0;
87 A (2) + =gt () = 0
i0" A (z) + \/5¢ (z) =0,
i AL (@) + AR (2) =0, k21 (4.69)

\/5 M1k
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Notice that if == 0 we find the Lorentz conditions from the equations above.
The last condition Q3|¥) = 0 gives us the expression

(n+5)6%@) - 4(2) - 6" 2a) =0,

VL fLie JL

5
<n +k+ 5) AP (2) - AT () - AR (2)=0, k21
(4.70)

We have not yet investigated these relations in more detail but we notice
that all spins are connected to one another which is specially clear in the
last equation. Thus, one has an infinite tower of states with different spins
connected to each other. This is quite different from other higher spin theories
where the wave equations for different spins are uncoupled. For the infinite
spin particles there is no way to covariantly separate a specific spin. One
might analyze these equation and try to find solutions by for example imposing
different conditions, but since we do not have a clear interpretation of the wave
functions (4.63) we do not speculate on these issues further. Actually, the wave
functions (4.63) are quite peculiar due to the presence of the inverse einbein e
which in a way acts as an extra dimension. We believe that an interpretation
of the dynamical einbein is important to understand in order to analyze the
infinite spin particles further.

4.8 Remarks

Here we make some remarks on the behavior of the infinite spin particle and
how it is related to other particle models. A description of the gauge structure
in configuration space is obtained when rewritten in a first-order formulation.
We also discuss how one may find this Z-representation from the rigid particle
with curvature. In doing this we notice that two different kinds of parametriza-
tions yield two completely separate models.

4.8.1 Infinite spin particles in a first order formulation

The higher order formulation of the infinite spin particle (4.20) is in itself very
simple and elegant. However, to derive the gauge transformations and the
complete gauge structure in a configuration space it is not as useful since the
calculations easily get quite involved. We may instead start with a Lagrangian
in a first-order formulation were we have both 2* and &* variables. This is
found from the Lagrangian given in (4.15) by requiring A\; = A3 = 0, Ay = A,
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A4 ———
e 2

This is exactly the classical model that Mourad starts from when he considers
a string theory generalization in [61,62]. Since the action (4.71) is of first order,
the procedure to obtain the gauge structure is straightforward as in the case
of the massless relativistic point particle. From (4.71) we find the two primary
constraints p, = %—’ =0, px = %—L)‘i = 0 and also the conjugate momenta to
TH EM as pk = el Tk = egt respectively. The total Hamiltonian is then given
by

1 AL
H= E(p-7r—:,)+§,\(§2— 1) 4 pe + p». (4.72)

The constraints in (4.6) (where F' = 1) with Lie algebra {x}, x4} = x4,
{x5, x4} = 2x; are now found by a constraint analysis, since p. = %X},
Xi = —\h % = 2xh, X, = 0 and fy = —Xb, %4 = Lx. Notice that we
only have four constraints here, compared to the higher order version were we
found five. Here the inverse einbein e does not have the same role as in the
higher order version. This first order model is a gauge fixed version of the
higher order theory considered in the previous sections.

The gauge generator (2.34) is given with real, even and time dependent
parameters a, 3,7, Kk, a, b

G = ax; + Bxy +7x5 + £X4 + ape + bpa. (4.73)

Solving the equation in (2.33) yields the conditions v = —jed,b = B,8 =
e(—¥ + Ak),a = —e%k. Using these relations and the expression for the con-
Jjugate momenta above, the gauge transformations (2.35) for the infinite spin
particles are given by

: 1
ozt = aett — §de§” + rkext,

YL

de = —e?k,

S el et S (4.74)
2dr

Hence, the Lagrangian is invariant under these gauge transformations with
gauge parameters «, £ (which may be verified by a long and tedious calculation,
yielding a total derivative). The commutator of the gauge transformations are
[01,02]p = d10p where p is either z#, ¢, e, A and

a1z = e(dy kg — doky), k12 = 0, (4.75)
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such that e.g. [0y, do|z# = algeé“ - %dlgeé“. Comparing the gauge transforma-
tions above in (4.74) with the ones for the massless relativistic point particle
in (3.19) we notice that e has the role of the inverse einbein v = 1. Actually, if
we disregard the gauge parameter o and the multiplier A we obtain the same
gauge transformations, i.e. dz# = ki*, dv = k.

4.8.2 Tachyonic behavior

It is interesting to see what kind of behavior the higher order Lagrangian (4.17)
represents. The constraints were found to be the ones given in (4.25). Let us
focus on the first and the fourth constraint and write them in terms of vectors

Ipil = po,
. il
il l€'] cos & — pobo = —= (4.76)
where ¢* = (£°,€'), p, = (po,p:i) and i = 1,2, 3. |p;| denotes the length of the

vector p; and 6 is the angle between the two vectors p; and £ . Combining these
two constraints we find an expression for the speed (remember that & := #)

€] 1 E
=, sl = e X 4.77
f o 0039(1 i elPiIEO) )

Assuming that e, &, are positive, the sign on = determines if the particle has
a tachyonic behavior or not. There are three different situations we should
study;

= >0 Tachyonic behavior

If Z is positive the velocity of the particle is always larger than the speed
of light, i.e. the particle has a tachyonic behavior.

(1]
Il
o

Tachyonic behavior

If = is zero, the velocity is either greater or equal to the speed of light
v > 1. When the equality holds, the angle cosf = 1, i.e. the vectors
p; and &' are parallel. Since the momentum p, is lightlike this implies
that & is lightlike. But the second constraint in (4.25) implies that m,
is spacelike which contradicts the fact that £* is lightlike, since 7, is a
linear combination of £* and é“. Hence, the only possibility is a tachyonic
behavior.

Here a subtlety arise, since the minimal construction when = = 0 consists
only of the constraints xi, x3 and x4 these can be written in the form

£=0, £-€=0, £-2=0 (4.78)
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where now & is not necessarily equal to ##. The velocity of the partlcle
is either equal to or greater than the speed of light since v = 12 0' == 0,
where 6 is the angle between the vectors * and &. When adding the
constraint yo (which is possible to do) the part where v = 1 is ruled out
due to a contradiction. For v = 1, the vectors ¢! and &* are lightlike and
parallel. This contradicts that 7# is spacelike (which is inherent in the
constraint x») since it is a linear combination of £, #* and &* which all
are lightlike. Thus the model with = = 0 describes a tachyon.

(1

< 0 Possible non-tachyonic behavior

If the constant = is negative there might be situations were we have non-
tachyonic behavior, i.e. velocities less than ¢, depending on the angle
between the two vectors p; and £'.

4.8.3 The curvature action

In our construction we have found a higher order Lagrangian starting from
Wigner’s =-representation in four spacetime dimensions. To accomplish this
we had to do quite a lot of intricate calculations and one may ask whether
there is a simpler way to obtain the same action starting from something that
we already are familiar with. Let us consider a term that is proportional to
the curvature of its world-line trajectory in analogy with the relativistic string

with rigidity [63-65]
[ ( dx R

Here k? = (%) is the curvature and = is a constant. Now introduce the
time 7 and an einbein v with its inverse e = v~ such that ds = vdr and the
curvature k* = e?(e + é2)?. This implies the action

S = /dT (ei + é2)? + -i—z (4.80)

which is exactly the one considered before in (4.17). Hence it reproduces
all the constraints in (4.25) and Wigner’s =-representation, i.e. the infinite
spin particles. Notice that by choosing e = 1 we obtain the particle model
considered by Zoller [66].

It is interesting to see what happens if we instead parametrize the par-
ticle’s world line trajectory with time 7 and z# = z*(r) such that ds® =
—Nuw@E” (dr)?. A simple calculation now shows that in this parametrization,
the action (4.79) with the curvature of the world-line trajectory is given by

&= (4.81)
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This action was considered as a generalization of the point particle action in
e.g. [67-70]. Let us now perform the Ostrogradski procedure on this action.
We define £# = # and eliminate the time derivatives by the introduction of
the canonical momenta

_OL _148-6(-0 e

7TL_ . . .
b Elee g

Hence, we find the Hamiltonian

H'=p- &~ y/—E4E; (4.83)
In addition, from the definition of the canonical momenta (4.82) we also find
the primary constraints (the numbering is chosen in analogy with the con-
straints in (4.25))

il 1
Xa= 5(772 = g),

and the total Hamiltonian

Hiot =p-§ — V—EE + Aaxa2 + Asxs. (4.85)
The consistency conditions now give us the secondary constraints
X3:= T P,
Xa=p-€+ v —EE (4.86)

and the tertiary constraint

xi = 5~ 22). (487)

So even though we started with a seemingly massless relativistic particle, the
constraint x; for this specific parametrization does suggest that it really is
massive. On the other hand, since we have a term v/ —#?Z in the action (4.81)
it is not surprising, since this is just the action for a massive relativistic particle.
Hence, this parametrization describes a relativistic particle with mass = and
with an extra curvature term k added to the action. Using the einbein as
above we instead find the infinite spin particle.

Notice also that when Z is a non-zero constant, y» and x3 are second class

constraints with [y, xa] = Z1/—&2/€* such that the degrees of freedom are
four. However, if = = 0 we only have three degrees of freedom since then all

constraints are of first class.

So a natural question to ask now is whether we actually can parametrize
the object by z# = z#(7). It has been shown that such a parametrization
of the curvature action (4.79) describe tachyons. Hence we should not choose
this parametrization because time loses its meaning and the last term in (4.81)
ceases to be real.
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4.9 Generalizations

4.9.1 Infinite spin particles in higher dimensions

When classifying the irreducible representations of the Poincaré group we con-
sidered only four spacetime dimensions. A natural generalization is to allow
for higher spacetime dimensions. In general dimensions the Poincaré invari-
ants are the Casimir operators p? and Wy, . W # where the Pauli-Lubanski
n-forms in d spacetime dimensions are defined as

d +1Hn+20 Un+3Hn+4 Hd—2Hd—1
_el"l--‘ﬂnﬁln*-l--.#dpu mfeiikatambiniainte . my :

Wiz e
2 =n+1 —n— | —n—
\/T)' d 5 (d n 1)(d n 1)]

(4.88)

2

where n = 1,3,...,(d — 3) for even dimensions and n = 0,2,...,(d — 3) for
odd dimensions. Hence, there are naturally more possible Poincaré invariants
in higher spacetime dimensions. Notice for example that in four spacetime
dimensions the only possible Casimir operators are p? and w,w*. In the case of
d = 5 we obtain the invariants p?, ww and wy,w"” etc. The higher dimensional
analogue of the infinite spin particles can now be constructed in the same way
as described before.

4.9.2 String theory generalization

In Paper | we consider a string theory generalization of the infinite spin particle
model. In d spacetime dimensions the action (4.17) can be written as

S = / a'mc(\/ﬁ (A(h)Xu)uE\/E), h=dethe,  (4.89)

where (* coordinatize the manifold with metric hy,. A(h) is the Laplace-
Beltrami operator

2
vh

where 9, := a—‘z; and a,b = 1,2,..., m are world sheet coordinates parametrized
by the metric h**. X* (u=0,1,...,d— 1) describes the location of the string
in spacetime. For = = 0 and m = 2 (4.89) is exactly the model B considered
by Savvidy [71], see also [72-74].

In order to see that this really reduces to (4.17) we need to write the metric
hapy in terms of vielbeins. Remember that in four dimensions we may write the
metric in terms of vierbeins as

A(h) = —=8,Vhh®8, (4.90)

hab = Nuvivy, (4.91)



48 Chapter 4 INFINITE SPIN PARTICLES

where 7, is the Minkowski metric, such that for a point particle (a,b = 1)
Vh=v, h®=0v2 (4.92)

Since we use the inverse einbein e = % the expression (4.89) reduces to (4.17)
ifm=1.

The generalization of the action (4.71) to a two-dimensional world-sheet is
proposed to be of the form [61,62]

S=%2 / BPovVh(A®8,X*8,Y N + MY? — 1)), (4.93)

where Y* is introduced as an auxiliary field to reproduce the action (4.89) (with
= =0). The action proposed by Savvidy is said to be found by expressing Y*
in terms of X* with the use of the constraint relations and equations of motion.
Mourad claims that in a BRST quantization, the ground level state carries an
infinite spin particle representation and that the spectrum is ghost free [62],
contrary to Savvidy’s results.

It would be interesting to study the classical string action in more detail
with the use of the Ostrogradski method. However, it seems like the constraint
algebra for such a model easily gets quite involved and the procedure to obtain
secondary, tertiary, etc. constraints does not seem to end.

4.10 Non-covariant treatments

There have been several non-covariant treatments of Wigner’s Z-representation
which indicates possible problems of the corresponding models. Firstly, we
have the treatments done by Wigner and Bargmann themselves [31,32] where
they find that this representation contains infinite heat capacity. In [38, 39]
it is shown that the infinite spin particles have non-causal behavior and allow
negative norm states.

Wigner’s Z-representation has also been studied in more detail in the light-
cone gauge [40,41,75].

4.10.1 Infinite spin particles in the light-cone gauge

By introducing light-cone coordinates the Poincaré generators may be more
conveniently expressed. Let the only non vanishing commutators be

(e p) =id%, o] =t p7] =
(¢l =g, g7t = g4 p7] =~ (4.94)
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with 7,7 = 1,2 and

1
+ 3 0
T =—(z" £ z°), = —(0+¢
L@xa), = @xe)
L 5. .3 e g
=—(p° +p%), = — (7" £ 7°), 4.95
| = T
such that
r-p=z,pt=z'p +2°p® —ztp —z p". (4.96)

With proper gauge choices we can now try to eliminate the constraint in (4.5).
We have four different constraint so we need four pairs of canonical gauge
choices. Consider first the constraints x1, X3, x4 in (4.5) (with F = 1) which
makes the following gauge choices possible

| -_ v
xXie, @T=T, P o
= P m
X3 §+ = 09 ™ p+ 3
AT~
IR R 7’57—. (4.97)
The generators of the Poincaré algebra are now P! = pi, P~ = %ﬁ’- and
P* = p* such that m* in (3.3) can be expressed in terms of
19 = € (zp? — g2pt) = €, s = é(gln? — g2p1) = ¢,
(=gl g= 0,
1
i —(a:‘p* +ptz7), 5=,
Pk )
=g~ —( Py’ + pipiat), = = =Ert +€9p’s),  (4.98)
such that m* has the non-vanishing components
m¥ = €] + ¢¥s. (4.99)

But it remains to eliminate the second constraint in (4.5), xo = 77t — 1 =10
which is not as easy as the other ones since it is quadratic in 7. But it does
look like a particle moving on a circle. So let us choose

m = cosd,
72 =sind (4.100)
and
.0
§ =iz, (4.101)

such that the Poincaré generators remain valid.
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THE BATALIN-VILKOVISKY
FORMALISM

So far in this thesis we have considered how to obtain relativistic particle
models starting from different representations of the Poincaré group. We have
then considered particle theories mainly in the Hamiltonian formalism. In
this chapter, which can be seen as the beginning of the second part of this
thesis, we have a different approach to obtain gauge theories. Starting from
an established quantization procedure we generate possible consistent gauge
field theories. Before we can show how this can be done we first present the
formalism in more detail.

To construct a quantum theory one normally starts with a regular classical
theory and turn it into a quantum mechanical counterpart. This quantization
procedure is usually rather straightforward. However, this is not the case
for gauge theories which are singular and therefore requires a gauge fixing
procedure. This in turn breaks the gauge invariance and to compensate for
this and preserve unitarity, ghost fields have to be introduced. What is left of
the local gauge invariance after gauge fixing is the global BRST invariance [6,7].

The BRST method can be formulated within a path integral formalism
both in a Lagrangian or a Hamiltonian framework. In the Lagrangian ver-
sion the Batalin-Vilkovisky (BV) formalism [8-11,76-78] is the most general one
formulated in a configuration space. A general method in the Hamiltonian
framework is the Batalin-Fradkin-Vilkovisky (BFV) method [3-5]. The BV and
BFV methods should give equivalent results and this have been shown for
different simple models [79-82].

The purpose of the BV formalism is to quantize a general gauge theory in a

51
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simple and covariant way directly in the configuration space. The BFV method
on the other hand is formulated in a phase space and has the disadvantage
of not being covariantly formulated for field theories. Even though the BV
formalism requires quite a lot of mathematical machinery, the procedure is
straightforward. For lucid reviews of the BV formalism, see e.g. [21,23-25,83].

The BV formalism introduces some new conceptual ingredients such as
antifields and is therefore often called the field-antifield formalism. One an-
tifield is introduced to every field, ghost field and ghost for ghost etc, which
doubles the number of fields. These antifields have opposite statistics (Grass-
mann parities) to the corresponding fields and can be seen as sources of BRST
transformations. One also introduces an antibracket on the space of fields and
antifields. This antibracket is analogous to the Poisson bracket in the Hamil-
tonian framework. In the BV formalism the theory is formulated in terms of a
master action. The master action has a manifest BRST symmetry if it satisfies
the master equation. By requiring the master action to satisfy the master equa-
tion the gauge structure of the theory is determined such that it represents a
consistent gauge field theory. The only thing that remains is gauge fixing.

The treatments in Paper |l and Paper Ill are based on the BV formalism.
Even though this is done in a superfield formulation the main concepts are of
course the same as the ones given in this chapter. Here we briefly introduce the
BV formalism in analogy with the conventional Hamiltonian formalism. We
consider the gauge structure of classical field theories and thereafter turn to
the master equation and the properties of the antibracket. To connect with the
two previous chapters and to exemplify the BV formalism we construct mas-
ter actions for the massless relativistic point particle, the spinning relativistic
particle and the infinite spin particle. This chapter ends by considering the
quantum description of the BV formalism.

5.1 Gauge structure in classical field theories

Consider a bosonic gauge field theory that is invariant under the gauge trans-
formations

0ut® = Rig®. (5.1)
The parameters €* are depending on spacetime and represent local gauge sym-
metries. Here we use the condensed notation introduced by DeWitt [84]. This
means that repeated indices should be summed over and integrated over space-
time, ie. d¢'(u) = Y, [du'R’,(u,u')e*(v'). R'is the generator of the trans-

formation and £* a gauge parameter.

Varying the original action functional S[¢‘] we find that
aS..

0.8 = Wéeqb‘ =0 (5.2)
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which gives rise to the Noether identities

0S _;

3 ¢1R =0 (6.3)
Since there are gauge transformations that do not change the physical states,
the solutions to the equations of motion are not uniquely defined. This was
discussed earlier in the case of particle theories and the singular property of
the Lagrangian. For field theories this means that the Hessian has zero modes
on the stationary surface of solutions to the equations of motion

6%S
606

This equation now implies that there are redundancies in the theory, i.e. the
gauge transformations map a classical solution to another equivalent classical
solution.

Let us assume a complete set of gauge generators R for the Noether identity
(5.3). A general solution to 55' X? = 0 should be such that we may add a
term proportional to the equations of motion. This is called the completeness
relation and is a result of the theory being a regular theory, i.e. the non-
invertibility of the Hessian comes solely from the gauge generators R'. This is
discussed in [23] and in detail in [11]. Let us write the solution to 65 X' as

2 _pRice = (5.4)

! S L
= Rie*+ — MY, 5.5
et (55)
where MY is antisymmetric in the indices i, j, such that the last term vanishes
when multiplied by 6 . Consider a commutator of two gauge transformations
[01, d2]¢ which is also a gauge transformation. It therefore satisfies the Noether
identity (where the gauge parameters are left out)

6S
S50 j
Yo =%

(o4 1oy

(5.6)

i SR
6R°R "} =0.

In the same way as in (5.5), the general solution to this equation should be of
the form

OR: i JJRz i S .
5¢)]R Raédﬂ Rfaﬁ-th (5/)

Depending on the properties of the quantities f7,5(¢) and hfﬂ(q')) these rep-
resent different kinds of algebras. First assume that the algebra is closed,
i.e. hyjs = 0, then we have a Lie algebra with structure coefficients f7 g if they



54 Chapter 5 THE BATALIN-VILKOVISKY FORMALISM

are constants (if they are zero we are dealing with an abelian algebra). If f 5
depends on the fields it is called a soft algebra. As soon as hifﬁ # 0 we have
an open algebra, that only closes on-shell, i.e. on the level of the equations of
motion.

An expression of the Jacobi identity [[6q,ds]. ;¢ + cyclic(a, 3,7) = 0 can
be written in terms of the above quantities by an analogous construction. The
details of this and how one may transform open algebras to closed ones can be
found in (10, 11].

5.2 The master equation

Assume that we have a gauge field theory described by an action Sy[¢!] which
is BRST invariant under the transformation

8pd' = Ric®. (5.8)

Here we have introduced a ghost field ¢* with ghost number one, to each
generator R . This implies that the gauge parameters £* in (5.1) have been
replaced by the odd ghost fields ¢®. Hence, we have replaced the gauge trans-
formation by a BRST transformation. If the considered theory is irreducible,
i.e. the BRST transformations are independent, there is no need to introduce
any further ghost fields. On the other hand, if the set of R:’s are not linearly
independent there is an invariance of the ghost

s = 234dP, (5.9)

where the term on the right hand side has ghost number two, e.g. given by
f%5,c%c". When d” carries ghost number two we have introduced a ghost for
ghost . If the ghost field d* possess a gauge invariance there is a further set of
ghost for ghost fields to be implemented. Notice that we in this thesis mainly
consider irreducible gauge theories and not reducible ones, i.e. no ghost for
ghosts are needed.

The Batalin-Vilkovisky (BV) and the classical Hamiltonian formalism have
some similar properties. The Hamiltonian formalism is defined within phase
space with coordinates z?,p;. In this framework, an important role is played
by the Poisson bracket defined in (2.20) as

0A0B 0AOB

{A } 0 8.’51 3;) apl 31;"' and {IE :pJ} = 6]'5 (510)

where A(z?,p;) and B(z, p,) are phase spa.ce functlons The time evolution of
a phase space function A(z?,p;) is given by 44 = A = {A, H} such that the
Hamiltonian can be seen as the generator of tlme translatlons With a gauge
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generator G(z', p;) (introduced in (2.32)), the gauge transformations (2.35) are
given by
0. A={A,G} (5.11)

The Poisson bracket has the property {4, B} = —{B, A} which implies that
we have the identity H = {H, H} = 0 for a Hamiltonian without explicit time
dependence.

Having this in mind, we consider now instead a field theory within the BV
formalism. This is a field theory formulated in the Lagrangian formalism with
a set of fields ¢”(u) and antifields ¢} (u), over the set of bosonic coordinates .
The latter are called antifields since they have the opposite statistics (Grass-
mann parities) to the fields. The fields ¢”(u) denote all fields, ghost fields,
ghosts for ghosts etc. and ¢} (u) all corresponding antifields to these. To each
field, ghost field, ghost for ghosts etc. and their respective antifields (¢7%), we
assign Grassmann parities (¢(¢"), €(¢})) and ghost numbers (ghyo”, ghydh).
The ghost number is a grading of the algebra where the physical fields have
ghost number zero. Grassmann parity is a Z, grading of the algebra with
FG = (—1)™<“9GF, where ¢(X) = 0,1(mod 2) denotes the Grassmann par-
ity of X. For a composition of two terms we have e(FG) = ¢(F) + ¢(G) and
due to the Z; grading we also have that ¢(F)e(F) = ¢(F). The ghost number
and Grassmann parity should be conserved. The field and antifield have the
ghost number relation

gh#(ﬁ; =+ gh#¢p =-1 (512)

and the Grassmann parity relation

e(¢3) +e(9”) = 1. (5.13)

Hence, the field and antifield have opposite statistics.
We also introduce an antibracket, here given for two functionals A[¢", ¢%],
B[¢", ¢}] by

= i_g_ — o — 1 (A1) (e(B)+1) i d

The functional derivatives are so called right and left derivatives, this dis-
tinction is necessary since the fields and antifields have different Grassmann
parities, i.e. they are either bosonic (with Grassmann parity zero, i.e. Grass-
mann even) or fermionic (with Grassmann parity one, i.e. Grassmann odd).
The left and right functional derivatives are related as

=Y —

i — (—1)D)e(A)+1) i
A=) A5 (5.15)
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From the definition of the antibracket (5.14) it follows that

(6" (), ¢ (w)) = 66 (u—), (5.16)

such that the antifields play the role of conjugates to the fields in analogy with
the phase space coordinates in the Poisson bracket (5.10). Since we defined
the fields and antifields to have opposite statistics, the antibracket will not
have the same properties as the Poisson bracket. The antibracket has for
instance the symmetry property (€, F) = (€, F) for bosonic functionals £ and
F, which implies that (£, &) # 0 in general. We should already here stress the
importance of this symmetry property of the antibracket in the BV formalism.
More generally, we see from the relations (5.12), (5.13) and (5.16) that the
antibracket (-,-) carries ghost number one and has Grassmann parity one, i.e.

(i) Grassmann parity

€[(A,B)] = e(A) + ¢(B) + 1, (5.17)

(i) Ghost number

ghy[(A, B)] = ghy(A) + ghy(B) + 1. (5.18)

The antibracket (5.14) is graded symmetric and obeys the graded Leibniz rule
and the graded Jacobi identity

(iii) Graded symmetric

(.A,B) = —('—1)(((A)+1)(((B)+1)(B,A), (5_19)

(i) Graded Leibniz rule

(A, BC) = (A, B)C + B(A,C)(—1)*®®,
(AB,C) = (4,C)B + A(B,C)(=1)®, (5.20)

(v) Graded Jacobi identity

(A, (B,C))(=1)«r @ 4 cyucl(A, B,C) = 0. (5.21)

Consider now a master action which is an even functional S[¢", ¢} defined
on the space of fields and antifields. Let this master action generate the gauge
transformation of any functional A

SA=(S,A). (5.22)
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This may be compared with the expression for the gauge transformation in the
Hamiltonian framework (5.11)!. The antibracket for the bosonic functional S
is

a0 d
00" 697,
From (5.22) it now follows that the master action S is gauge invariant if 6S =
(8,8) = 0, which will be required. Since (A4,.4) in general is different from
zero this relation is not trivially true. The equation

(8,8)=0 (5.24)

%(5,3) g (5.23)

is the master equation, the cornerstone of the BV formalism. The master action
S is required to have the properties

816, )] o_y = Sold) (5.25)
which implies the Grassmann parity and ghost number
e(S)=0 and  ghy(S)=0, (5.26)

i.e. the master action S[¢, ¢*| is Grassmann even which then means that the
master equation (5.24) is not trivially satisfied.

Thus, the analogy between the classical Hamiltonian formalism and the BV
formalism is the following: the Hamiltonian H(q',p;) and the Poisson bracket
{-,-} in the Hamiltonian formalism corresponds to the master action S[¢”, @3]
and the antibracket (-,-) in the BV formalism.

5.2.1 The master action

Let us focus on the classical master equation (5.24) and demonstrate that
there exists a master action S[¢”, ¢%] that solves this equation. The solution
to the master equation will be seen to reproduce the gauge structure previously
discussed.

Consider again the set of fields ¢”, ¢}, where r is a collective label for fields,
ghosts and ghost for ghosts etc. An ansatz for the master action that solves
the master equation (5.24) may be expanded in a power series in the antifields
¢7.. The master action for an irreducible gauge theory is then

; - ool e riden
Sl¢".63] = Sol¢]+ GiRic® + 5(~1)4 e, o 5c%”

1 ; i
+ (DD gL e+ (5.27)

! Actually, equation (5.22) generates the BRST transformation (which will be shown later)
and should be compared to the BRST transformation in the Hamiltonian formalism with
dgA = {A,Q} where Q is the nilpotent BRST charge {Q.Q} = 0.
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where S, is assumed to be a BRST invariant action. The factors § and § are
inserted for convenience and ¢°, ¢* are the fields and ghosts condsidered in
(5.8). The dots indicate possible terms if we have a more complicated gauge
theory. The general ansatz for the master action can be found in e.g. [23].
Notice that the terms quadratic in the antifields are needed only when we
consider open gauge algebras. We also notice that the individual terms in the
expansion are required to have vanishing ghost number and that the boundary
condition (5.25) is fulfilled.

When solving the master equation we expect to find one equation for each
coefficient of the antifields and ghost terms and it can be shown that all con-
ditions on the structure tensors of the gauge theory is found. Actually, solving
the master equation shows that the structure coefficients fg,, hfjﬂ are exactly
the ones considered in the previous section.

As a simple example we consider an irreducible theory with fields ¢' and
ghosts ¢* and a closed algebra with hffﬁ = f%s, = 01in (5.27) such that

5[, ¢"] = Sold] + 1 Ric®. (5.28)

The master equation (5.24) gives us the familiar equations

55 i
JRLJ €a€p ]E
W A o Ra

where ¢, and €3 are the Grassman parities of the ghost fields. Thus, the gauge
structure encountered in (5.3) and (5.7) has been shown to be consistent with
the master action. This implies that the master action generates the gauge
algebra via the master equation.

=0, (5.29)

5.2.2 BRST symmetry

It is also interesting to see how the form of the classical master equation
can be understood by demanding that the master action should be invariant
under a BRST transformation. Let us consider a BRST invariant even action
functional S[¢”, ¢}] of the simple form

S[8", ¢}] = Solo) — 858" ¢}, (5.30)
where d;¢' is a BRST transformation. It follows from (5.30) that the BRST
variation 8,¢"(u) = 857,.% = (- l)'“”—d,%;;;& This invariance can be

written as

659" (u) = (8,¢"(u)), (5.31)



5.2 The master equation 59

using the odd antibracket introduced in (5.14). Define in a similar way the

variation 0,95 (u) = S Wém = (S, ¢}.(u)). Demanding BRST invariance of the
action yields
0= fu5= 5B¢P S 4igst 5 =089 9 o (5.32)
oo” P5¢ 00" 003

This is actually nothing but the master equation (compare with (5.23) and
(5.24)), i.e. the variation is zero as a consequence of (S,8) = 0. Hence,
the master equation may be seen as a statement of invariance of the action
S under BRST transformations, where the antifields are the sources of this
transformation. In our simple example in (5.28) we see that §,¢' = Ric®
as expected. Earlier we also noticed that the gauge structure is obtained by
requiring the master action to satisfy the master equation.

From the Jacobi identity (5.21) we see that the variations

629" (u) = (8,¢"(w))  and 80} (u) = (S, ¢5(u)) (5.33)
are nilpotent. This is clear since e.g.
di, 2
030" (u) = (S, (S, 9" (u)) = —5(¢"(),(5,8)) =0, (5.34)
with the use of the master equation (5.24). Actually, for any field &[¢, ¢*],
65§ = (5,€) (5.35)

which implies 0 = (¢, (S, S)) off-shell. Notice that the master action is (clas-
sically) BRST symmetric due to the master equation (5.24). d; has also the
graded derivation property (5.20) such that d, satisfies three important fea-
tures of a BRST-operator; nilpotency, it is a graded derivation and it leaves S
invariant. A functional O is an observable (classical) if 6,0 = 0. In this way
the BV-formalism naturally incorporates the BRST symmetry.

However, we are still considering a theory defined on the space of fields and
antifields. To obtain a theory described by a master action in terms of just
fields we need to consider a gauge fixing procedure. Let us briefly discuss this
by considering a gauge fixed action with a gauge fixing term d5¢ in analogy
with a BRST construction

SG[¢P] = SO[¢] = 5131/)[451)]7 (5.36)

where ¢ is a fermionic gauge fixing functional and we note that §,1 = §,0" %}fs.
The master action S in (5.30) should thus be turned into a gauge fixed master
action S; in (5.36). Comparing (5.30) and (5.36) we find that

Selg) = $19"3l| | _z, = Slol = 8a0"63| 2, (537)

=3P Sr=1eP
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where ¢ makes the last term BRST exact. Thus, in a final path integral the
theory should be represented by a gauge fixed master action which is obtained
first after eliminating the antifield by the gauge fixing

’G/J
é e

W= 5w
The choice of the gauge fixing fermion 1 is restricted and must be investigated
further, a discussion of this is found in e.g. [23].

(5.38)

5.3 Some examples of master actions

We have so far been rather formal in our description of the Batalin-Vilkovisky
formalism. Let us therefore exemplify this procedure by considering the mass-
less relativistic point particle and the spinning relativistic particle. These two
models were considered before as examples of irreducible representations of the
Poincaré group (see chapter 3). They have also been studied in the BV formal-
ism in [23,85]. In addition we construct the master action for the first-order
formulation of the infinite spin particle model considered in chapter 4.

5.3.1 BV construction of the massless relativistic particle

To construct the master action for the relativistic (spinnless) point particle we
introduce a ghost ¢ and ’antifields’ to all ’fields’ and ghosts with ghost number
(ghy) and Grassman parity (€) such that they obey the relations given in
(5.12) and (5.13)

Tk | @ v| v c C
ghe | 0 |=L|0| <=1 L] =2
€ 0 1310 1 1 0

Consider the original Lagrangia.n in (3.16) with the gauge transformation given

by (3.19), such that Rte = -—5 and R'e = dd g, or more specifically from the
compact DeWitt notation R“(T o) = ’1:(:))5(7' —0), Ré(1,0) = dT(S('r —o0). By
the expansion given in (5.27) we find that the master action in the Batalin-

Vilkovisky formalism is

-
S = /dr(%;a'c? 4 x;%c +v%e). (5.39)

No more terms are needed since the commutator of the two gauge transforma-
tions is zero. If we instead consider the gauge transformations (3.20) we find
the master action

1
= /dT (2—vx2 + &} d*e + v*ué + v*ie + ctéc). (5.40)
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The two master actions (5.39) and (5.40) are related by the redefinitions ¢ —
ve, v* — v* — Le*c and ¢* — 1¢*. These master actions therefore describe the
same theory and it is sufficient to consider only one of them. Let us therefore
use the simpler expression in (5.39). The BRST transformations are given by
the relation (5.35) such that

ke d [z,+xe
0ozt = ——, 0ozt = (u) :

v * T dr v
. 2 4+ 2r* it
dgv=¢, St = T;,
s
doc =0, doC" = “v — . (5.41)

Notice that these BRST-transformations are valid on the space of fields and
antifields and should not be compared with the usual expression for the BRST-
transformations. This can first be done when a proper gauge fixing has been
performed.

5.3.2 BV construction of the spinning relativistic particle

In chapter 3 we also studied the massless relativistic spin-% particle which was
found from the Lorentz group by adding an odd hermitian operator ¥*. The
Lagrangian describing this massless relativistic spinning particle is given by
(3.29) (where we now let A\¢ = A). To the variables z#, v, 1, A describing the
spinning particle we add two ghosts ¢,I'. We also add antifields to all these
such that the ghost numbers and Grassman parities of the complete set of
fields, ghosts, antifields and antighosts are:

gt i oy [l e LAY AT (e et [T
ghg | 0 [=1]0] =10 =1| 1] =2(1] =2(1]|-2
€ 0 | 1 0 (0 1 1| 0 (4] 0.0} 7

From the derived expressions of the gauge transformations in (3.36) we can
now construct the master action. The gauge parameters a, a are replaced by
the ghosts ¢, I" and due to the non-zero commutators between the gauge trans-
formations (3.37) we need to add corresponding terms in the master action.
The master action is given by

S = /dT (Q—IUW — N+ S+
+ af(ihc — igphT) + 4 (de + (2* — idp)T) +
+ v*(de+ vé — 2AT) + A (0T + vl + de + Aé) +
¢*(éc + iIT) + T*(cl — T + mr)) (5.42)

—
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where the first two terms are the original ones in (3.29) and the last two are
due to the commutator of the gauge transformations in (3.37). The BRST
transformations in the space of fields and antifields are then found from (5.35)
by an analogous construction as for the massless relativistic point particle. No-
tice that the master action above is reduced to the expression for the massless
relativistic particle (5.40) when #, X\, T are all zero.

5.3.3 BV construction of the infinite spin particle

Making a BV construction of the higher order Lagrangian (4.17) is difficult
since e.g. the gauge structure is quite complicated to find in configuration space
and it is not so obvious how to use the BV formalism on higher order theories.
But in (4.71) these problems have been circumvented and the construction of
the master action is therefore straightforward. Notice that the higher order
Lagrangian can be seen as an extended version of this first-order expression
(4.71). To the variables z*, £#, e, A we add two ghosts ¢, b and antifields to all
these such that the complete set is given by

e [ ] B L R T I e I (M
ghg | 0 |=1]0 | —=1|0] =1|Of =11 —2|1(-2
€ 0 1 0 19.(50 1 0 i Lt | 0 ]1] 0

The ghost b, ¢ can be seen as replacing the gauge parameters a, &, respectively.
From the gauge transformations in (4.74) and (4.75) it now follows that the
master action for the infinite spin particle is given by

2
. Ji el r .
+ ‘et — e*e?c — §A*(eéb + €?b + 2e)c) + b*ebc). (5.43)

5 .= /dT (ei‘. &4+ %E - l)\(52 -1+ z;(eé“b - %ef“b—i— eztc)

One of the things that is left is now to find a suitable gauge fixing fermion,
but this will not be discussed in this thesis.

5.4 The quantum master equation

So far we have only been considering the classical part of the BV formalism.
This analysis gave us a very important equation, namely the (classical) master
equation for a (classical) master action. Now we briefly turn to a quantum
description and look for a similar expression. Consider a path integral with a
gauge fixing term

—

I- [ DoDsr8(6; - SHesp(G WIS 3 (5449
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The quantum master action W depends on the fields ¢” and antifields ¢}, and
its gauge fixed version is equal to S, in (5.37) up to quantum corrections

WIs", 65| =, =8s+O(h). (5.45)

= A

One can now show that requiring the path integral to be independent of the
gauge fixing fermion v implies the quantum master equation

(W, W) = 2iRAW, (5.46)

where the operator A is defined as

(5.47)

Since €(A) = 1, A is a nilpotent operator A? = 0. This operator is the key
object in the geometrical understanding of the BV formalism [86-89].

A general quantum master action W is assumed to be expandable in powers
of h

o0
W=8+Y WM, (5.48)
k=0
The quantum master equation (5.46) should then be satisfied order by order
in A.

Thus the classical master action S that was studied before should for quan-
tum theories be replaced by a quantum master action W, which coincide with
S when i — 0. Hence, the classical master equation (5.24) should be replaced
by the quantum version (5.46).

For many models, a master action satisfying the classical master equation
also satisfies the quantum version assuming an appropriate regularization [90].
Regularization, renormalization, unitarity and locality are important aspects
which should be considered in order to obtain a sensible quantum theory. This
will not be considered here, but can be found in e.g. [91,92].

The generalization of the BRST operator ¢, in the classical analysis, is for
a quantum model

bpAd = (W, A) —ihAA. (5.49)

Violations of the quantum master equation implies that there are gauge anoma-
lies [93].
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GAUGE FIELD THEORIES FROM
A SUPERFIELD FORMULATION

In the previous chapter we glanced at the structure of the BV formalism. We
learned that the master equation was required to be satisfied by the master
action, defined in terms of fields, antifields and ghost. fields etc. The mas-
ter equation contains all information about the gauge structure of the theory.
Unfortunately, the BV formalism might sometimes seem unnecessary compli-
cated. A more transparent form is found in some cases using a superfield
formulation (15, 16, 88,90,94-96]. Due to the superfields it is fairly easy to
cope with all the different fields, ghost fields and ghosts for ghosts etc since
these then are components of one superfield.

In Paper Il and Paper |1l we have chosen to investigate the superfield algorithm
introduced by Batalin and Marnelius [15,16]. They found a way to construct
consistent quantum gauge field theories by means of a superfield algorithm
which applies to a class of first order gauge field theories. It should be noted
that in the superfield algorithm the BV formalism is used as a framework for
generating gauge field theories, rather than as a technique for quantizing gauge
theories. Possible theories are determined by a ghost number prescription
and a simple local master equation. The resulting theories are represented
by a master action living on a supermanifold. The original theories before
quantization are obtained by a simple reduction procedure and by gauge fixing
the master action the quantum theory may be found.

In Paper Il we investigate four and six dimensional theories obtained by
the superfield algorithm. We use (anti)canonical transformations to solve the
master equation and as a tool for investigating canonically equivalent theories.

65
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In Paper Il we also discuss some general features concerning theories in various
dimensions.

In Paper Il we generalize the superfield algorithm to include higher order
terms in the interaction part of the master action, since the superfield algo-
rithm in [15,16] only generates first order gauge field theories which all seem to
be of a topological nature. We also consider non-dynamical multiplier fields in
the models. This helps us generate more general theories, such as a five dimen-
sional Chern-Simons theory. This theory has previously been shown to include
local degrees of freedom according to [97,98] which implies that this gener-
alized version of the superfield algorithm might also include non-topological
theories.

In this chapter we give an introduction to the superfield algorithm and
state some of the results of Paper Il and Paper Il

6.1 The superfield algorithm

The master action in n-dimensions may for a class of models be written as a
field theory living on a 2n-dimensional supermanifold M

E[KP,K;]=/ d'ud" 7L, (u,T), (6.1)
M

where K" (u, ) is a superfield and K7} (u, 7) is an associated superfield. (u®, 7%)
are coordinates on the supermanifold M, where a = {1, ...,n} and u* denotes
the Grassmann even and 7¢ the Grassmann odd coordinates. This implies that
we have a Zj-grading on the algebra of the superfields, and where e(u) = 0
and €(7) = 1. The next thing to do is to choose a Lagrangian density £, (u,7)
with a kinetic and an interacting part:

La(u,7) = KiDKP(—1)+ — S(K%, K*P). (6.2)

This choice of Lagrangian is of the same structure as the ones studied in
e.g. [88,96]. The de Rham differential

d

F a
=7

B (6.3)
is odd and nilpotent, D? = 0. The nilpotency of this operator allows for a
BRST interpretation. It was noticed in [15] that the expression in (6.2) has
a similar structure to the string field theory considered by Zwiebach [99]. We
will look into this BRST interpretation later on.

The fact that the master action ¥ in (6.1) should be physical, ghy(X) =0
and even €(X) = 0, gives us restrictions for the superfields. With ghy(7) =1
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and ghy(u) = 0 we see that ghy(D) = 1. The Berezin integral [drm = 1
implies that the measure d"7 in (6.1) carries ghost number —n. This together
with equations (6.1) and (6.2) now give us the relation

ghy K" + ghu K} =n —1, (6.4)
between superfields and associated superfields, with the Grassmann parities
€Kp)=€r+n+1, where  €(K”) := ¢p. (6.5)

As a convention we choose ghy K} > ghy K”. Note that depending on the di-
mension n, the superfields K and associated superfields A7}, do not necessarily
have opposite statistics which is the case for the fields and antifields discussed
in the conventional BV framework. It also follows that for S(K7, K*),

ghgS =n and €(S) =n. (6.6)

Self-consistency of the BV-formalism requires the master action ¥ in (6.1) to
obey the master equation®
z,xz)=0. (6.7)

The indicated bracket is the BV-bracket (antibracket) defined for two func-
tionals A and B by

B —_

4B)=[ A B—(A o B)(-1) s

(6.8)
A summation over the index p is assumed. This bracket has the usual prop-
erties, i.e. the graded versions of the antisymmetry property, the Leibniz rule

and the Jacobi identity for functionals A, B, C:

o S
0K (u,7)

(A, B) = —(=1)CE e 4 By (6.9)
(A,BC) = (A, B)C + B(A,C)(—1)®©, (6.10)
((A, B),C)(—1) @D 4 cycl(A,B,C) = 0. (6.11)

6.1.1 The n-bracket and the local master equation

By now we have found a way to choose our superfields according to (6.4) and
(6.5), but the beauty of the superfield algorithm lies ahead. Solving the master
equation (6.7) for the specific choice of Lagrangian density (6.2) in the master
action (6.1) yields the local expression

[8,8). =0 (6.12)

!Actually for quantum theories (Z, T) = 2AAX, but for actions local in the superfields
we have AX = (. This was shown in [15].
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and the boundary condition
/ d"ud"TDL = 0. (6.13)
M

For the general functions F(K"(u,7), K}(u,7)) and G(K" (u, 7), K} (u, 7)), the
n-bracket in (6.12) is defined by

99
OK” 0K
Note that for the superfields and the associated superfields we have in partic-
ular

(F,Q).=F G — (F > G)(=1)“Frrnsie@insn) (6.14)

(K™, K},)n = 0™, (6.15)
K" and K}, may be seen as an analogue to the conjugate pairs in the Hamilto-
nian formalism. Due to (6.15), the n-bracket carries 1-n units of ghost number
ghy(F,G), = ghyF + ghyG + 1 —n, (6.16)

and n+1 units of parity
e((F,G),) = e(F)+¢(G) + n+ 1. (6.17)

The n-bracket possesses the graded symmetry property, the Leibniz rule and
the Jacobi identity:

(F,G), = —(—1)Prmsixe@ny (B (6.18)
(FG,H), =F(G,H), + (F,H),G(=1)@eHra+)), (6.19)
((E, G),;-H)y (= 1) R dletertntlp oy cle(F, G H) =00 (6-20)

Due to (6.20) and (6.18), ( , ), is an "ordinary” antibracket in even dimensions
and a super Poisson bracket in odd dimensions.

By introducing the n-bracket (6.14) we have found a simple way of ex-
pressing the master equation (6.7) in terms of a local master equation (6.12),
demanding the boundary condition (6.13).

6.1.2 BRST interpretation of the de Rham differential
The equations of motion for the action (6.1) given in terms of the n-bracket is
DEF = (8, KF), and DR ={(SYRE): (6.21)

For the local master action S(K*, K},) we see that at the level of the equations
of motion DS can be written as

DS=DK”8—S+DK*BS

are TPl S (6:22)
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The de Rham differential D defined in (6.3) is nilpotent which implies that
0=D?K® = (8, (S. K").).: F=D" = (S (B )- (6.23)

It also follows that

0=DF8 = (S.(5.8)) (6.24)

Due to the properties of the n-bracket specified in (6.18),(6.19) and (6.20)
consistency requires

(.5, =1 (6.25)

This gives the de Rham differential a natural interpretation as a BRST-charge
operator. Remember that we had similar arguments for the dz-operator in the
previous chapter. In this sense the de Rham differential may be seen as the
BRST-charge operator of an underlying theory.

6.1.3 Reduction rules and gauge transformations

One advantage of the superfield algorithm is that it is easy to find the gauge
transformations of the original theory. This is done by performing a X-
variation of the superfields, then a reduction to the original model and re-
placing each form field by a gauge parameter, one at a time. This procedure
will be exemplified later on in this section.

The X-variations of the superfield K" and associated superfield K7} are
given by

ssK” = (S,K")=(-1)"(DK" - (S,K"),), (6.26)
oeKy = (B,K3) = (=1)"(DK} = (S, K3).)- (6.27)

Note that the X-variation of the superfields measures the failure of the super-
fields and the associated superfields to be on-shell, from the point of view of
the equations of motion (6.21). The equations above can be used to determine
the gauge transformation of the underlying classical theory after a reduction
procedure.

Since the original fields are the ghost number zero components of the super-
fields K" and K7, reduction rules can be found by expanding the superfields
in the odd coordinates 7. The following reduction rules are found for the ex-
traction of the n dimensional classical field theory corresponding to a given
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master action ¥ of the form (6.1) [16]

dud't — 1
D
K”: ghyK" =k >0

exterior derivative d
k-form field k"where,
e(k") = ep+k
K} :ghyK,=(n—-1—k)>0 — (n-1-k)— form field kj where,
e(ky) = ep+k
all other superfields — 0

1

l

pointwise multiplication — wedge product. (6.28)

This means that ghost numbers in our superfield formulation corresponds to
form degrees in the original theory. This in turn implies that the only surviving
terms are those with ghost numbers greater than zero. That is why we in
the following only consider superfields carrying positive ghost numbers. The
original theory, obtained by performing the reduction rules, are thus described
by forms and wedge products.

As an example, consider the decomposition of a ghost number two associ-
ated superfield ®*(u,7) in two dimensions (n = 2)

D*(u,7) = D} (u) + 7€, P (u) + 7°7"€,, 5 (u), (6.29)

where ¢, is defined to yield [d?r7°7" = €. Since ®*(u,T) carries ghost
number two and 7 ghost number one it follows that ®; has ghost number zero
and thus is a physical field of the original theory. For the original field ®3 to
be even we see that the associated superfield ®*(u, 7) need to be even, due to
the two fermionic coordinates coupled to ®3. Note that for a superfield with
ghy(®(u, 7)) < 0 there is no zero component field and hence no corresponding
physical field. Actually the superfield ®(u,7) (that ®*(u,7) is “associated”
to) does not have a physical component in the fermionic expansion, since this
has ghost number minus one according to (6.4).

The gauge transformations are now found by replacing each k-form field
by an (k — 1)-form gauge parameter, one at a time. If the field happens to be
a zero form field, i.e. a scalar, the gauge parameter is zero.

The superfield algorithm is now clear:

(i) Choose superfields and associated superfields entering in the master ac-
tion (6.2) combined with coefficients in such a way that the expressions
for the ghost numbers (6.4) and Grassmann parities (6.5) are satisfied
and (6.6) is valid.

(ii) Solve the local master equation (6.12) and note that the boundary condi-
tion (6.13) has to be satisfied.
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(ili) Perform the reduction to the original theory following the rules in (6.28).

The gauge transformations may also be found by calculating the X-variation
of the superfields (6.26) and replacing the superfields by the original fields as
discussed before.

Now the question remains what kind of theories can be generated using
the superfield algorithm. From expression (6.2) we see that at least BF-theories
[100-102] may be generated by means of the superfield algorithm. A BF-theory
corresponds to the kinetic part of the Lagrangian density (6.2). In fact, all
theories formulated in this way can be seen to include consistent deformations
of BF-theories, where the local expression S represents the deformation [103,
104]. A quite peculiar feature of the superfield algorithm is that it seems to only
generate topological gauge theories except in the one dimensional case where all
theories can be generated [16], e.g. the relativistic particle theories considered
in the beginning of this thesis. In the next section we consider a generalization
of the superfield algorithm, henceforth referred to as the generalized superfield
algorithm. This generalized version allows for the construction of higher order
gauge field theories, such as five dimensional Chern-Simons theories. In the
next chapter we discuss the class of theories that are possible to generate by
means of the superfield algorithms. Let us first have a closer look at how the
ordinary superfield algorithm works.

6.1.4 A simple example in four dimensions

As an example we consider a master action in four dimensions (i.e. n = 4)
3 / dhudir (- T2DT* — S(T*,T)). (6.30)

Choose S to have the most general form with only one pair of superfields
(T5.T*)

1 AR O Tl :
§ = ST, To,w™ + 5 T3, W 5yp T T + ot g, THTT 5T, (6.31)

where 7" is an odd superfield with ghost number one and 77}, an even associated
superfield with ghost number two

(T") =1, e(T2) =0, (6.32)
ghaT® = 1, ghuT? = 2. (6.33)

From (6.4) and (6.5) it follows that the coefficients are all even, carrying ghost
number zero. This model was also considered in [16] but there the master
action was solved in a slightly different manner. Following the superfield al-
gorithm, the next step is to solve the local master equation (6.12) to get
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restrictions on the coefficients, which in general can be quite difficult. The
difficulties often occur for theories involving a lot of terms. This in turn usu-
ally happens in higher dimensions, since more fields with ghg K* > ghy K > 0
are available to construct interaction terms in the master action. To solve the
master equation we instead use (anti)canonical transformations? such that the
local action Sy is canonically transformed to

Sr = So + (S0, T)n + ((SOa I N (6.34)

where I is a canonical generator and v a rea,l, even parameter of the canonical
transformation. The expansion in the n-bracket comes from the definition of a
canonical transformation: Sy = e*''Sy, with the adjoint action adl’ = (-,T),.
The strategy is now to start with a simple term Sy that trivially satisfies the
local master equation (Sp, Sp), = 0. In this particular case we consider

s .
So = 3T5, Tp,w™™ (6.35)
and the canonical generator
1 X
= '?;')")’ElaznaTE’TEQTEa- (6.36)

From these expressions we see that w”1”2 is symmetric since T} is even and
Ve Eyr, 1S totally antisymmetric since 77 is odd. Now we can perform the
canonical transformation (6.34) and identify the coefficients in the transformed
action Sr with the ones in (6.31). Due to the choice of the canonical generator,
the expansion (6.34) will always truncate®. This is shown in detail in Paper II.
In this way we have found the solution to the master equation to be, modulo
a canonical transformation,

wE’E,‘,Ea - '—2’)’(4)’21575‘52}231 (6.37)

WE B E3Ey, = 1272’75, EngEEl7E’E3E4' (6.38)

The master equation for the master action (6.31) actually yields a third equa-
tion which implies the Jacobi identity for the coefficients w* p,p,. If we let
w2 be invertible we may interpret it as a group metric which lowers and
raises indices. Since the Jacobi identity is required and vz, p,r, is totally anti-
symmetric it follows that w® ;,;, is the structure coefficient of a semi-simple
Lie algebra.

2Note that we mean the transformations that preserves the local n-bracket, which are
either canonical or anticanonical depending on n, therefore we will in the sequel denote this
just as a canonical transformation.

3The truncation will always occur if the canonical generator is chosen not to involve both
superfields and associated superfields in the same term.
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The canonical transformations imply that we have made a trivial defor-
mation of the theory described by (6.35). Hence, this theory is canonically
equivalent to (6.31). Canonical equivalence is however a sufficient but not
necessary condition for two actions to describe the same gauge theory.

To exemplify the reduction procedure and show how to obtain the gauge
transformations we can again study the untransformed master action

1
To=-— /d"ud‘lT(T;DTE + §T:31 % wisy, (6.39)

The reduction rules (6.28) implies that 77 reduces to an even one form t” and
T; to an even two form ¢;. Hence the master action (6.39) reduces to the
bosonic action

o] .
2(;,' = _/t:;/\dtb + Et;l/\tzzwhllaz. (640)

The X-variation (6.26) and (6.27) of the superfields and associated superfields

are

6:T: = DT, (6.41)
5T% = DT+ Tw, (6.42)

This gives us the gauge transformations

oty = diy, (6.43)
&* = di*+1; W™, (6.44)

where 7}, and ¢* are one and zero form gauge parameters, respectively. Since
t}, is a one form ghost field this implies that we also have another zero form

gauge parameter, namely the ghost for ghost % with
ot = £ (6.45)

It is easily checked that the action (6.40) is invariant under these transforma-
tions.

6.2 The generalized superfield algorithm

A natural generalization of the superfield algorithm would be to include higher
order terms in the interaction part S in (6.2) and also allow for non-dynamical
fields such as Lagrange multipliers. Such a type of generalization was developed
in Paper Ill and will briefly be discussed below.
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As in the superfield algorithm, discussed in the previous section, we have a
master action on a 2n-dimensional supermanifold with n Grassmann odd and
n Grassmann even dimensions

E[R'P‘ K;] = / d"ud"Tﬁn(U, 7-)' (646)
M

The only difference in the setup in comparison with the superfield algorithm
is the entering of higher order terms and Lagrange multiplier fields in the
Lagrangian density, now given by

Lo(u,7) = Ki(u, 7)DK* (u,7)(=1)*" — S(K%, K*, DK%, DK”). (6.47)

Thus, DK*- and DK}-terms are here allowed to enter in the interaction part
S. K” and K, denotes superfields and associated superfields as well as non-
dynamical multiplier fields A” and A%. These multiplier fields are restricted
by DA” = 0 and DA} = 0 such that they do not enter in the kinetic part
of the Lagrange density (6.47). D is still the de Rham differential defined in
(6.3).

It follows that the expression for the ghost numbers (6.4) and the Grass-
mann parities (6.5) are left unchanged

ghu K" + ghy K} =n—1 (6.48)
and
e(Kp)=€ep+n+1, where  ¢(K”) :=¢,. (6.49)
It also follows that
ghyS=n  and €(S) = n. (6.50)

Since we still are in the BV formalism the master action (6.46) has to obey
the master equation (6.7)
(B8 =1, (6.51)

where the functional bracket (-,-) is the usual BV-bracket (6.8).

6.2.1 Generalized n-bracket

Introducing higher order terms requires some new ingredients as is seen when
computing the master equation (X, ¥) = 0 for the chosen functional (6.46). We
are forced to do a rather long, but straightforward calculation of the functional

BV-bracket (6.8) and see what comes out of it. One finds that

0=(%,5) = / & ud (Lo Lo (6.52)
M
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which by inserting the expression for the Lagrangian density (6.47) implies

— —

n n 1 =5 s P 6 ¥ 8
0 _/Md ud T(z(s, S). + DLn(u, 7) D(DA oS+ PKigprs s))
: (6.53)
The expression (-,-), is a generalized n-bracket here defined for the general

local functions A and B by

81 g+ 07D s oo+ 0o )
—(A & B)(—1)(cAtn1)(e(Brintn) (6.54)

From the expressions of the master equation (6.52) and (6.53) we choose the
requirement

(5,8). =0, (6.55)
which then also prescribes the allowed boundary conditions to be those satis-
fying

— —

d 2]

S+ DK $)). (656
ODK?* + "ODK:, (5:56)
It is possible to choose another way to establish (£, X) = 0 if we choose another
bracket and boundary conditions. This is clearly the case since one always can
shift the expression by an exact term. On the other hand, when computing
the master equation for ¥ the choice above seems to be the most natural one.

The generalized n-bracket (6.54) has the graded symmetry property

P /M d"ud"r(Dﬁn(u, ) — D(DK"

(F,G), = —(=1)eErme@nin(q g) (6.57)
carries 1-n units of ghost number
ghu(F,G), = ghyF + ghyG +1 —n, (6.58)
and n+1 units of parity
e((F,G),) = €(F) +¢(G) +n+ 1. (6.59)

The Jacobi identity and the Leibniz rule are not trivially satisfied, but since the
BV-bracket (6.8) have these properties the generalized n-bracket will satisfy
them up to a total derivative, i.e. modulo a D-term [105]. The exact expressions
for the graded Jacobi identity and the graded Leibniz rule have not been
calculated.

The gauge transformations can be found in the same way as was explained
in the previous section. The reduction rules (6.28) and X-variations (6.26) and
(6.27) are the same as in this generalized version, i.e.

ssK® = (T,K*)=(-1)"(DK" - (S,K"),), (6.60)
0sKp = (B, K3) = (=1)"(DK} = (S, K}).)- (6.61)

Il
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6.2.2 BRST interpretation

In the framework of the ordinary superfield algorithm we studied the de Rham
operator D and its interpretation as a BRST-charge operator. The natural
question for this generalized version of the superfield algorithm is of course
whether or not this BRST-interpretation is possible also here.

The equations of motion from the master action (6.46) are given by

DK” = (S,K"),, DK%= (S,K:).. (6.62)

Since D? = 0 it allows this operator to be interpreted as a BRST-charge
operator, but if D is acting on a general function A(K”, DK", K},, DK},) this
is not in general true. Define then instead another operator @ by

P} d
P : i§ *
QA:= DA+ D(DK" 5= A+ DK},

TR (6.63)

with €(Q) = 1 and ghyu@Q = 1. Using the equations of motion above we find
QA = (S, A),. (6.64)

Thus @ may here be interpreted as a BRST-charge operator. The equation
above implies

QS=(8,5). ‘and @%S=(S,(S,85))n (6.65)

From the definition of @ in (6.63) one also finds that it is nilpotent on-shell,
i.e. Q> = 0. This in turn implies that (S, S), = 0 due to the properties of the
generalized n-bracket.

Note that the equations of motion for the multiplier fields A” and A} are

DA® = (8,A"),, DA} = (S,A}).. (6.66)

Since the multiplier fields are restricted by DA” = 0, DA}, = 0 it follows from
(6.66) that
0=(S,A")., 0=(S,A})n (6.67)

which are the constraint equations. The constraints are found by a variation of
the action with respect to a multiplier field. Thus, the requirements DA” = 0
and DA} = 0 are quite natural since the equations of motion for the multiplier
fields (6.67) then imply the constraints.

Examples of generated theories using the generalized superfield algorithm
will be shown in the next chapter. The generalized version allows for the con-
struction of higher order gauge field theories like the five dimensional Chern-
Simons theories.



THE CLASS OF GENERATED
THEORIES

So far we have briefly considered the BV formalism from a general point of view
and we have seen how it is possible to construct consistent gauge field theories
by means of a superfield algorithm. As previously discussed, the superfield
algorithm only generates first order gauge field theories. An important class of
theories that naturally fit into this framework is topological gauge field theories.
Due to this feature, we will in this chapter consider topological gauge field
theories in more detail and show examples of theories that can be constructed
using a superfield algorithm. However, we will also consider non-topological
theories generated by means of the generalized superfield algorithm developed
in Paper Ill. Models treated are a topological Yang-Mills theory and a three and
a five dimensional Chern-Simons theory. The latter is only possible to construct
using the generalized superfield algorithm.

7.1 Topological gauge field theories

A topological theory is a theory without local degrees of freedom, where all
observables are independent of the metric. Hence, there are no physical propa-
gators. In a sense it is a theory of nothing and quite the opposite of String/M-
theory which is thought of being a theory of everything. But it is for that
sake not unimportant. A topological theory can be a fully interacting theory
with the advantage of being exactly solvable. Topological theories have many
local symmetries and can be seen as a subclass of non-topological theories. By
considering the 'underlying’ topological theories of two different models, Vafa

7
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and Witten where able to show the strong and weak coupling correspondence
in supersymmetric Yang-Mills theories [106]. This was shown by using the
necessary condition of duality of the 'underlying’ topological theories. Topo-
logical theories have in the past years also been successfully used in connection
to quantum chromodynamics (QCD) [107,108].

A topological gauge field theory has a very large group of symmetries,
one believes that non-topological gauge theories, e.g. string theories can be
obtained by breaking some of these symmetries. How this is done is however
not yet known. In a sense one may consider a topological theory as an embryo
of a fully fledged theory.

In this chapter we only consider the necessary material in order to un-
derstand the topological nature of the generated theories. A more complete
review of general topological theories can be found in [109)].

A topological field theory is usually defined as a field theory living on a
Riemannian manifold and where an observable is independent of the metric.
This implies that the correlation function in a quantum field theory does not
depend on the Riemannian metric structure. All topological field theories
are either of Schwarz type [110] or Witten type [111] which both are lacking
physical degrees of freedom. The Witten type is characterized by a BRST
exact quantum action. In the Witten type, the energy-momentum tensor is
also BRST exact. The energy-momentum tensor is found by a variation of
the action with respect to the metric. Examples of topological field theories
of Witten type are topological Yang-Mills theories [112,113] and topological
sigma models [114]. A Schwarz type topological theory on the other hand
consists of an action which can be split into a BRST exact and a metric
independent term. Chern-Simons theories in three dimensions [110,115] and
BF-theories [100-102] are examples of Schwarz type topological gauge field
theories.

There have also been some progress in understanding the quantization of
topological open membranes using the BV formalism [116-118].

7.2 Topological Yang-Mills theory

A topological Yang-Mills theory (TYM) in four dimensions [112,113] is defined
by

S = / tr(FAF) = / tr(dArdA + 2ArAndA). (7.1)

where the field strength F' is related to the one form gauge connection A
through F = dA + ArA. Since the tr(A*) vanishes, this is just a boundary
term

ot / tr(FAF) = / d[tr(AAdA+§AAAAA)],, (7.2)
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where tr(AidA+ %AAAAA) is the Chern-Simons Lagrangian. We let A = g*A,,
where g* satisfies a Lie algebra [g*, g*] = f*.¢°. The expression (7.1) above
may now be given in terms of a symmetric group metric g* := tr(g°¢") and a
totally antisymmetric structure coefficient f* = fe g%,

Spym = /g""dAndAb + [ 9 A AdA.. (7.3)

We can write the corresponding master action within the framework of the
superfield algorithm (or its generalized version) by introducing superfields 77
and T with ghost numbers

ghaTh =2, gheT* =1, (7.4)
and Grassmann parities
e(Ty) =0, €(T*) = 1. (7.5)

The Grassmann parities of the fields are chosen such that the original fields
are even after the limit (6.28) has been taken.

The master action of a topological Yang-Mills theory may now be written
in at least two different ways. We will in the following show how this is pos-
sible using either the framework of the superfield algorithm or its generalized
version.

7.2.1 Using the superfield algorithm

The local action corresponding to a topological Yang-Mills theory can in the
superfield algorithm be written with auxiliary fields T7 as

1| .
Sl = ZTEIT;UJ’” BT Wy TPT™, (7.6)

where the coefficients are even and have ghost number zero. The ghost numbers
and Grassmann parities of the superfields are the ones prescribed above. The
master equation (S, S); = 0 then yields

0- = w(El'EzEwEE?), (7.7)
0 - wE](E2EwEEsp;4), (7.8)

The brackets in the subscripts indicate antisymmetrization with respect to the
enclosed indices. If we assume that w”*2 is invertible it is quite natural to
interpret this as a symmetric group metric. This implies that we can lower the
indices in the first equation (7.7) in which case wg, 5, is a totally antisym-
metric coefficient. The second equation (7.8) is a graded Jacobi identity, which
means that w5, can be seen as a structure coefficient of a semi-simple Lie
algebra. A reduction to the original theory and eliminating the auxiliary fields
t}, yields the desired topological Yang-Mills action (7.3). This is seen after an
identification of the coefficients wp, s, 5, and w™* with f,, and g*".
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7.2.2 Using the generalized superfield algorithm

The topological Yang-Mills theory can be written in an alternative way using
the generalized superfield algorithm. This is shown in detail in Paper Ill. The
corresponding local master action for the generalized superfield algorithm is
given by

Stym = Tp,w® g5, TT™ + wp, g, g5, THTHT™T™ + AP(TY, — 95,5, DT™).

(7.9)
The ghost number and Grassmann parities of the superfield and associated su-
perfields are the ones given by (7.4) and (7.5). The coefficients are Grassmann
even and independent of the coordinates (w,7). The super multiplier fields
AP are even, carrying ghost number two. When solving the master equation
we should remember to use the generalized n-bracket (6.54). The constraint
is found after varying the action ¥ (6.46) with respect to A” (i.e. applying
(6.62), where DA” = 0)

T;, = 9r, s, DT*2. (7.10)
If we define
¢, =Tp — 95,5, DT, (7.11)
then we see that
(¢Ela¢E1 Ja= 2D(gE1E2) =0. (7-12)

Thus (7.11) is a first class constraint with respect to the antibracket (-,-)s.

Actually, this classification is already included in the master equation. The
first class constraint implies that this is a gauge theory and we can proceed
by calculating the master equation. In the case of a second class constraint,
we need to add extra terms to the action to convert them into first class
constraints.

The constraint is inserted after the master equation has been calculated.
To solve the master equation we also need to use the equation of motion given
by (6.62)

DT® = =P g 5 P75 =~ N5, (7.13)

This is needed in order to replace the expressions involving D-terms, produced
by the generalized n-bracket.
The master equation (S, ,,, Sy, )4 = 0 gives

0= (2w51E2ESEwE54E5 + We'p, Esz’p:alswEE,,Es)TE‘ TEATEPEATSs ((77.14)
0= (2&/‘51 EoEgEy -+ (JJE4E! EwEﬂgFJg =+ CUE[.;I,;2(4)5[;3[;4)TEITE2TE3AE4, (715
0 = we, s, AFLAPST s, (7.16)

~~

Here we have treated g .z, as a group metric. A® is even, such that equa-
tion (7.16) implies wp, pye, = —Wayr,m,- From (7.9) we know that wp g, =
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—Wp, Bykys 1€ Wi i, 15 totally antisymmetric. If the graded Jacobi identity
is satisfied (which should be the case since we are dealing with a topologi-
cal Yang-Mills theory) a solution to the remaining equations is wg, p,p,r =
,_%wEr B Esz' syz- Due to this last relation and the Jacobi identity, the 7%-term
in (7.9) vanishes. Thus, the master equation implies that Wr, ByE, 18 a totally
antisymmetric structure coefficient obeying the Jacobi identity.

A reduction to the original theory gives us the action

B / Eondt® + b WP AP 4 NB(ES — gy dt™).  (7.17)

Implementing the constraint,
te = Gmmyt (7.18)

now yields
ET)'M = /gElEZdtul /\th2 +gEEle,,;2gath] /\tE2/\tE3. (719)

Hence, we have generated the topological Yang-Mills action (7.3).

7.3 Higher dimensional Chern-Simons theories

Higher dimensional Chern-Simons theories are constructed in the same way as
the familiar three dimensional Chern-Simons theory, i.e. from the characteristic
classes in 2n + 2 dimensions [110,115]. The field setup is a one-form gauge
connection A = t,A* = t,A*sdz,, where t, is the generator of the gauge group
G. From this we can construct a two form F* = dA* + % f A A, where f¢,
is the structure coefficient of the gauge group and d the exterior derivative,
d =.dz"a,.

With a symmetric tensor g,, a,..
dimensions is defined by

.an, the Chern-Simons Lagrangian in 2n+1

ALEEY = Gy ogpitpag Foin o on R4, (7.20)
This implies that the Chern-Simons Lagrangian in 3-dimensions is defined by
ALt = guF“AF". The tensor g,, can here be viewed as a group metric. In five
dimensions we have a tensor g,,. and in seven dimensions a g,,., tensor. The
latter may be chosen to be decomposed into various group metrics, but for
the five dimensional case g,,. it is not likely that simple. This is investigated
in more detail in [97,98]. We will study the peculiarity of five dimensional
Chern-Simons theories later on in this section.
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One finds that the Chern-Simons Lagrangian in 3,5 and 7 dimensions are
defined by

Lgs:tr(AAdA+§AAAAA), (7.21)
E%SZfT(AAdAAdA + ‘gdAAAAAAA+ gAAA/\A/\AAA), (722)

Ll g=tr(AndAsdArdA— §.4AAAAAdAAdA - %dAAAAdAAAAA
+2dArArANANARA — %AAAAAAAAAAAAA). (7.23)

The gauge field A takes values in some representation of a Lie algebra, hence
the trace (tr) is needed. Since S[A] = [,, L¢s we see that the integrand is a
volume form, independent of the metric and without reference to the Hodge
dual operator. The Chern-Simons theories are accordingly topological field
theories of Schwarz type.

Chern-Simons theories are interesting since they can reconstruct gravita-
tional theories [119-121]. The d = 26 bosonic string field theory has also been
found to resemble a Chern-Simons theory [122].

The 3-dimensional Chern-Simons theory is a topological theory. Hence it
does not have any local degrees of freedom. One could naively expect that this
will be the case also for all higher dimensional Chern-Simons theories since
these are constructed in an analogous way. But surprisingly this is not neces-
sarily true. Higher dimensional Chern-Simons theories with d > 5 have been
shown to possess local degrees of freedom according to [97,98] and are there-
fore non-topological theories. This is shown by turning to the Hamiltonian
formalism and performing a Dirac analysis and thereafter count the number
of degrees of freedom as explained in [21]. It seems like the local degrees of
freedom increases faster as a function of dimension than the gauge symmetry
does.

7.3.1 Five dimensional Chern-Simons theory

The ordinary superfield algorithm does not provide us with theories like the
five dimensional Chern-Simons theory. But by means of its generalized version
it is possible to generate such a theory.

Consider a classical Chern-Simons theory in five dimensions with the La-
grangian density

L3 = tr[(dA)2A + gdAAS + gA5], (7.24)

where A is a one form gauge connection. Let A = g*A, = g*A,,dz* where
g* satisfies a Lie algebra [g*, ¢'] = f**,¢g°. The trace may now be expressed in
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terms of the generators g* and the structure coefficient f*’_ in such a way that

L = g™*dA,dAA, + % fgdAAAA + % I, 9 A AA A A,
(7.25)
where g := tr(g°g"g°).

This classical Chern-Simons action may be obtained from the generalized
superfield formulation of the form (6.47) by introducing an odd ghost number
one superfield S” and an odd associated superfield S} with ghost number
three, together with multiplier fields A” and A7,.

Superfield | ghost number | Grassmann parity
B 3 1
SP 1 1
AX 2 0
AP 2 0

With these superfields and associated superfields, the master action may be
written as

s = /dﬁudsrf%s = /dsudST(S;DS“ - S%s), (7.26)
where the local master action is given by
3 J 3 ) )
_Sgs o ngl 1.’:2[)3[;4r;5SD15D2SD3SD4S’-’5 + §SZ](.«JD1 ")25‘35[ 2 GPs
+APY(S}, = g, p,0,DS7252). (7.27)

The coefficients wp, p,,0,08: @™ Dy0s> 90,00, aTe all even and carries ghost
number zero. They are also chosen to be independent of the coordinates (u, 7).
The constraint given by

¢b, = S}, — 9p, b0, DS (7.28)
is of first class with respect to the super Poisson bracket (-,-)s, since
(¢D13¢D2)5 = _2D(9[)10025D it ngDgDSD) =0 (7-29)

due to boundary conditions. We choose to have a symmetric tensor g, ;,n,,
such that the solution to the master equation, worked out in Paper I, is given
by

D D
0 = w L (DeDW DaDyg)) (7'30)
il 3 rig D! D’ 731
WpyDyDaDyDy = §9L:D’D2\U D3y %W DyDg» (7.31)
D D
9p,0,0%W D3py; = GpDyDsW DyDy- (7-32)

This is expected to reduce to the original Chern-Simons action (7.25) when
taking the limit (6.28) and by an appropriate redefinition of the coefficients.
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7.3.2 Three dimensional Chern-Simons theory

In Paper Il we also discuss the three dimensional Chern-Simons theory. A way
to obtain this theory, after taking the limit (6.28), is naively by implementing
a constraint

br, = Uy, — 9rr U™ (7.33)

such that the master action may be written as
Y= / U;DU” + Uy w" g, + AR (U7, — 9rr,U™). (7.34)

However, the constraint is second-class with respect to the bracket (-,)s since

(¢r17 ¢F2)3 = —9rr, — 9rF> (7-35)

if we disregard the case when g, 5, is antisymmetric with respect to the sub-
scripts ; and F which not will lead to a Chern-Simons theory. Due to the
second-class constraint we can not proceed in analogy with the construction
of the five dimensional Chern-Simons theory. Instead one may introduce new
terms to convert the constraint into first-class. Another way to approach the
construction of a three-dimensional Chern-Simons theory by means of a su-
perfield algorithm is considered in [16], and which may be viewed as a direct
solution of the constraint (7.33).
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