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ABSTRACT 
Drott, C. Heart function and metabolism in malnutrition. Department of 
Surgery, Institution I, University of Gothenburg, Sahlgrenska Hospital, 
Gothenburg, Sweden. 

This study has investigated the functional effects of cardiac hypotrophy, 
alterations of cardiac energy and protein metabolism, myosin ATPase 
activity and adrenergic adaptation in conditions with malnutrition, parti­
cularly in tumor-induced malnutrition. 
Growing rats and adult weight stable mice were used. Tumors (methylcho-
lanthrene induced) were transplanted subcutaneously in syngenic animals. 
In addition to freely fed control animals, reference animals with pure 
malnutrition were used.Starvation (96 hrs) and feeding a protein free diet 
for 2 weeks (PCM) induced severe malnutrition and subsequent heart 
hypotrophy. The isolated working rat heart model was employed to assess 
heart pumping performance and reaction to catecholamine stimulation in 
vitro. Protein synthesis was measured in vivo by the injection of large 
doses of radioactive amino acids (flooding technique). Cardiac B-receptor 
affinities were investigated by radioligand binding experiments. Myosin 
concentration and pattern of myosin tryptic++digests were determined by 
SDS poly acrylamide gel electrophoresis. Ca activated ATPase activities 
were assessed in purified native myosin. Finally, malnourished patients 
with and without cancer were infused with adrenaline in comparison to 
healthy control individuals. 
Cardiac pumping performance was well maintained in hypotrophic hearts 
from both tumor-bearing rats and rats with benign conditions of malnutri­
tion. The functional protection of the heart was associated with increased 
sensitivity and reactivity to catecholamines and increased B-receptor 
affinities. Cancer patients had elevated plasma adrenaline concentration. 
The metabolic response to adrenaline infusion was maintained and in some 
respect increased in malnourished patients. The wasting of cardiac muscle 
was rather dependent on increased protein breakdown in tumor-bearing 
animals compared to states of pure malnutrition where depressed synthesis 
dominated. No transcriptionally regulated myosin alterations could be 
detected although myosin ATPase activities were markedly depressed in all 
hypotrophic hearts. Tumor-bearing rats had a reduced cardiac glucose 
uptake and a consistently increased oxygen consumption compared to all 
other animal groups. 
it is concluded that functional protection prevents heart insufficiency in 
cancer cachexia and probably also in benign severe malnutrition. Adapta­
tion mechanisms, operating through adrenergic modulation, seem to be a 
response to general heart wasting rather than being tumor-specific. 
Hearts from tumor-bearing hosts exhibit increased preference of fat as 
energy substrate. Myocardial wasting in tumor disease is a composite of 
reduced protein synthesis and increased protein degradation rate. The 
increased oxygen uptake in hearts from tumor-bearing rats may indicate 
that the heart has been identified as an energy draining compartment in a 
tumor-bearing host. 

Key words: Heart function, cancer, myosin ATPase, heart contractile 
proteins, heart protein synthesis, cardiac B-receptors, catecholamines, 
cardiac glucose metabolism, cardiac oxygen uptake. 
ISBN: 91-7900-323-0. 
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ABSTRACT 
Drott, C. Heart function and metabolism in malnutrition. Department of 
Surgery, Institution !, University of Cothenburg, Sahlgrenska Hospital, 
Gothenburg, Sweden. 

This study has investigated the functional effects of cardiac hypotrophy, 
alterations of cardiac energy and protein metabolism, myosin ATPase 
activity and adrenergic adaptation in conditions with malnutrition, parti­
cularly in tumor-induced malnutrition. 
Growing rats and adult weight stable mice were used. Tumors (methylcho-
lanthrene induced) were transplanted subcutaneously in syngenic animals, 
in addition to freely fed control animals, reference animals with pure 
malnutrition were used.Starvation {96 hrs) and feeding a protein free diet 
for 2 weeks (PCM) induced severe malnutrition and subsequent heart 
hypotrophy. The isolated working rat heart model was employed to assess 
heart pumping performance and reaction to catecholamine stimulation in 
vitro. Protein synthesis was measured in vivo by the injection of large 
doses of radioactive amino acids (flooding technique). Cardiac B-receptor 
affinities were investigated by radioligand binding experiments. Myosin 
concentration and pattern of myosin tryptic++digests were determined by 
SDS poly acrylamide gel electrophoresis. Ca activated ATPase activities 
were assessed in purified native myosin. Finally, malnourished patients 
with and without cancer were infused with adrenaline in comparison to 
healthy control individuals. 
Cardiac pumping performance was well maintained in hypotrophic hearts 
from both tumor-bearing rats and rats with benign conditions of malnutri­
tion. The functional protection of the heart was associated with increased 
sensitivity and reactivity to catecholamines and increased B-receptor 
affinities. Cancer patients had elevated plasma adrenaline concentration. 
The metabolic response to adrenaline infusion was maintained and in some 
respect increased in malnourished patients. The wasting of cardiac muscle 
was rather dependent on increased protein breakdown in tumor-bearing 
animals compared to states of pure malnutrition where depressed synthesis 
dominated. No transcriptionally regulated myosin alterations could be 
detected although myosin ATPase activities were markedly depressed in all 
hypotrophic hearts. Tumor-bearing rats had a reduced cardiac glucose 
uptake and a consistently increased oxygen consumption compared to all 
other animal groups. 
It is concluded that functional protection prevents heart insufficiency in 
cancer cachexia and probably also in benign severe malnutrition. Adapta­
tion mechanisms, operating through adrenergic modulation, seem to be a 
response to general heart wasting rather than being tumor-specific. 
Hearts from tumor-bearing hosts exhibit increased preference of fat as 
energy substrate. Myocardial wasting in tumor disease is a composite of 
reduced protein synthesis and increased protein degradation rate. The 
increased oxygen uptake in hearts from tumor-bearing rats may indicate 
that the heart has been identified as an energy draining compartment in a 
tumor-bearing host. 

Key words: Heart function, cancer, myosin ATPase, heart contractile 
proteins, heart protein synthesis, cardiac B-receptors, catecholamines, 
cardiac glucose metabolism, cardiac oxygen uptake. 
ISBN: 91-7900-323-0. 
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BACKGROUND 

There has been a myth that the heart is in some way special and does not 

suffer adversely from the effects of malnutrition. Sparing of heart tissue 

was supposed to reflect "the wisdom of nature" to protect vital organs 

(Foster, 1895; Evans, 1945).This teleologic reasoning has, however, not 

proved to be entirely correct.The origin of this myth is a study perfor­

med by Carl Voit in 1866 (Voit, 1866). He starved one cat for 14 days 

and found a 33 percent loss of body weight but only a 2,6 percent loss of 

heart weight. Carl Voit himself did not put any emphasis on his finding 

but in his paper referred to Chossat who already 1843 performed detailed 

studies of organ weights in starved pigeons {Chossat, 1843). Chossat 

found 45 percent reduction of heart dry weight compared to 51 percent 

loss of skeletal muscle in starvation. Despite the careful studies of Chos­

sat the unfortunate single cat experiment by Cari Voit had a prolonged 

impact on the general view of the heart in inanition (Vaquez, 1921; 

Evans, 1945). In 1920 Krieger published a review of the literature dealing 

with heart weights in various catabolic conditions (Krieger, 1920). Re­

gardless of the cause of cachexia, all species of experimental animals and 

man showed a pronounced hypotrophy of the heart. The first comprehensive 

experiments with tumor-bearing rats and mice were performed in 1910 by 

Medigreceanu who found hypertrophy of the liver but hypotrophy of the 

heart (Medigreceanu, 1910). 

The horrors of Nazi concentration camps led to pronounced emaciation of a 

vast number of people during World War 11. Despite cardiac hypotrophy, 

impairment of heart function was not a prominent feature. Infections, 

primarily pulmonary were instead identified as the cause of death in the 

majority of patients dying from starvation (Dmochowski S Moore, 1975). 

Sudden death during refeeding was, however, observed and might in the 

light of more recent observations have been associated with cardiac arr­

hythmias. 

The so called Minnesota experiments were performed on human volonteers 

who were subjected to semistarvation leading to severe cachexia (Keys et 

al, 1950). Semistarvation was found to cause bradycardia, hypotension, 

reduced cardiac output, reduced whole body energy expenditure and 

hypotrophy of the heart. Electrocardiographic changes included low 

voltage and prolonged systole. Despite all these alterations of heart 

function, no subject showed signs of circulatory insufficiency. The con-
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elusions of these studies were that heart muscle mass and performance 

were adapted to the decreased whole body energy expenditure and the 

subsequent reduced circulatory demand. 

Clinical studies of marasmus or kwashiorkor have shown that heart weight, 

heart rate, cardiac output and stroke volume decline in a linear fashion 

with reduction of body weight but clinical signs of heart failure are infre­

quent (Kerpel-Fronius 6 Varga, 1949; Smythe et al, 1962; Alleyne, 1966; 

Viart, 1977). Some investigators have found myocardial fibrosis, intersti­

tial oedema and heart dilatation (Piza et al, 1971; Thomas et al, 1972). 

These clinical studies are, however, often confounded by known or unknown 

incidence of sepsis and vitamin or mineral deficiency which have specific 

adverse effects on the heart (Cohen et al, 1976; O'Connor et al, 1977). 

Uncomplicated starvation such as anorexia nervosa leads to reduction of 

heart mass but left ventricular function has been found unimpaired (Gott-

diener et al, 1978). On the other hand, several studies have shown 

sudden death associated with refractory ventricular arrhythmias in pa­

tients undergoing extreme weight reduction regimens (Isner et al, 1979; 

Sours et al, 1981). Myocardial changes due to dietary factors might thus 

induce electrical instability of the heart. On the other hand it seems that 

the incidence of myocardial infarction in patients with cachexia is lower 

than expected (Wilens et al, 1967). Malnutrition is associated with increa­

sed morbidity and mortality in patients undergoing cardiac procedures 

(Blackburn et al, 1977). There are, however, no evidence that heart 

failure is responsible for this increased complication rate. 

In summary, the functional significance of cardiac hypotrophy is not clear 

and clinical studies of the heart in malnutrition have not shown evidence 

of heart failure but rather an adaptation to the concomitant reduction of 

circulatory demand. The hemodynamic characteristics are as whole compara­

ble with the well known changes seen in hypothyroidism (Morkin et al, 

1983). 

INTRODUCTION 

Cachexia is a common manifestation of cancer and contributes to physical 

disability and mortality. The incidence of cancer is increasing and the 

number of tumors for which we have options of cure or long term remis­

sion are also increasing. Modern treatment with surgery, radiotherapy 

and chemotherapy often add to catabolism of the patient. Cancer cachexia 
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is thus an increasing clinical problem. Since Warren, 55 years ago, in a 

study of 500 autopsies on cancer patients, reported that cachexia was the 

principal cause of death (Warren, 1932) much research effort has been 

devoted to evaluate the mechanisms behind and the effects of progressive 

catabolism in malignant tumor disease. Only sparse information is, how­

ever, available on specific organ derangements in cancer patients. This is 

the first systematic study of the distant influence of malignant tumor 

growth on the heart. 

The degree of cachexia in cancer seems often to exceed that which may 

reasonably be expected on the grounds of the extent of the neoplastic 

process. Thus it is acknowledged that cancer profoundly influences the 

host metabolism in a way which is completely separate from the physical 

effects of tissue organ invasion. It is therefore clear that the tumor can 

communicate its prescence to distant non-involved organs. Effects on the 

brain cause anorexia by some "uncoupling" of the physiological fine 

tuning of food intake which normally match the demands. Anorexia is 

consequently a prominent feature that can explain most of the tumor 

associated cachexia (DeWys, 1977; Lundholm et al 1980; Lundholm et al 

1981;). It has been reported that overt cachexia can occur in patients 

with tumors which comprise less than 0.01 percent of the total body 

weight (Nathanson & Hall, 1974). The total tumor mass of the majority of 

terminal cancer patients, even without obstruction of vital organs, seldom 

exceeds 500 grams (Costa, 1977). Tumors therefore, are often lethal in 

spite of the fact that they only constitute a minor part of the host. The 

pregnant woman on the other hand is able to nourish the growing fetus to 

a final weight of around 3.5 kilograms without developing cachexia. The 

human body is thus able to compensate for and support a much larger 

and more rapidly growing "parasitic" mass of tissue than is the case in 

cancer. Apart from the increase of food intake pregnancy leads to adapti­

ve increase of heart mass as a response to increased circulatory demands 

(Katz et al, 1978; Buttrick et al, 1987). In contrast malignant tumor 

growth is associated with inadequate nutrient intake despite increased 

energy expenditure (Warnold et al, 1978; Bastable et al, 1979; Costa, 

1977; DeWys, 1977; Young, 1977; Walker & Gray, 1983; Lindmark et al, 

1984). 

In contrast to skeletal muscle the heart must function continually in order 

to maintain life and it is, of course, vital that the heart can respond 
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properly to the increased circulatory demands in tumor disease. Heart 

muscle wasting is,however, almost proportional to the general loss of lean 

body mass in cancer and not different from the cardiac hypotrophy in 

non-tumor states of cachexia where circulatory demands often are decrea­

sed (Smith,1928; Addis et al, 1936; Wood et al, 1982]. The cardiac hypo­

trophy thus stands in conflict with increased circulatory demands in 

cancer disease but not necessarily in pure starvation.This may be further 

emphasized in conditions with complications and stressful treatment regi­

mens. Despite hypotrophy of cardiac muscle, overt signs of heart failure 

is not a general clinical feature in cancer disease. Cardiodepressant 

circulatory factors have been reported in specific malignant diseases e.g. 

leukemia (Mir, 1981} and certain therapeutic regimens e.g. doxorubicin 

have direct cardiotoxic side effects (Bristow et al, 1981). There are, 

however, few reports addressing the impact of tumor disease itseif on 

heart function. 

Electrocardiographic findings in starvation includes low voltage, brady­

cardia, prolonged QRS complex and increased Q-T interval (Simonson et 

ai, 1948; Burch et al, 1968). in contrast, clinical cancer is often asso­

ciated with increased heart rate even in the abscence of sepsis or other 

complications (Karlberg et al, 1981; Lindmark et al, 1984). A large epide­

miological study has shown that increased heart rate might constitute an 

indépendant risk factor for cancer mortality in men (Persky et al, 1981). 

Feldman et al found that patients with a QRS complex shorter than 0,08 

seconds had a significantly higher incidence of neoplasia compared to 

patients with longer QRS complex (Feldman et al, 1982). The increased 

heart rate in cancer disease is consistent with the increased whole body 

energy expenditure and may be secondary to increased circulatory demand 

mediated by hormonal and neural changes. Alterations of circulating 

substrate levels and changes of myocardial metabolism in malignant 

disease compared to non-malignant causes of heart cachexia might also 

play a roll. The heart constitutes less than one percent of total body 

weight but utilizes about ten percent of total basal oxygen and energy 

consumed (Brachfeld, 1978). This makes the heart the metabolically most 

active organ of the body. Consequently, alterations of heart metabolism 

can considerably affect whole body oxygen consumption. The heart might 

thus be involved as an energy draining organ in progressive cancer 

cachexia. 
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AIMS OF THE STUDY 

It has previously been shown that the heart undergoes hypotrophy in 

cancer cachexia. If heart function should deteriorate in parallel with the 

loss of myocardium one would expect symptoms of cardiac dysfunction. 

Clinical empirism, however, has not given support to this expectation. 

This is not necessarily evidence of a nonexistent problem but could also 

indicate that the issue have not received appropriate attention and inves­

tigation. If protection of function occurs in the hypotrophic heart, this 

may include alterations in protein composition, energy metabolism and 

hormonal regulation. Knowledge of these processes are of prime interest 

in the understanding of adaptive mechanisms and may provide a basis for 

therapeutical approach. Since one of the main features of cancer cachexia 

is the associated anorexia several different reference states of malnutri­

tion are almost mandatory in addition to freely-fed control animals in 

studying the distant effects of tumors.The overall strategy of this study 

was to explore the distant influence of malignant tumor growth on the 

heart in an animal model and thereafter to assess whether some of its 

implications were valid also in malnourished patients with and without 

cancer. 

The specific aims of this study were: 

1. To evaluate the effects of tumor associated cardiac hypotrophy on 

heart pumping performance and oxygen consumption. 

2. To investigate whether altered adrenergic regulation of the heart is 

involved in the functional adaptation to cardiac hypotrophy in tumor 

disease. 

3. To evaluate whether the presence of a malignant tumor affects myocar­

dial energy metabolism. 

4. To evaluate heart protein metabolism and composition of cardiac cont­

ractile elements in tumor disease. 

5. To investigate whether malnourished cancer patients have adaptive 

changes in their whole body metabolism in response to alterations in 

the adrenergic state. 



11 

METHODOLOGICAL CONSIDERATIONS 

ANIMAL STUDIES 

Tumor and animal model 

The tumor-bearing animal models used in this study have previously been 

extensively used in our laboratory and are well characterized (Lundholm 

1975; Ekman 1980; Lindmark 1985a; Moldawer 1986; Ternell 1986; Svaninger 

1987b). Crowing rats were used in heart perfusion experiments. The 

rationale for this choice was that rat hearts are big enough to permit 

technically easy perfusions and that transplantable tumors grow poorly in 

adult rats. For in vivo experiments on heart protein synthesis, adult 

non-growing mice were used in addition to rats. In using both growing 

rats and non-growing mice it must be born in mind that host response to 

tumor growth may not be the same in young growing and weight stable 

adult animals due to inherent differences in hormone levels. 

Male, growing Sprague-Dawley rats were obtained from Anticimex, Södertäl­

je, Sweden. All animals in each series of experiments were born on the 

same day. On arrival the rats were randomly allocated to tumor inocula­

tion or the various control groups. Tumor inoculation was performed 

during light ether anaesthesia in 3 - 4 weeks old animals (body weight 80 

- 100 grams). The tumor (methylcholanthrene induced sarcoma) was 

transplanted subcutaneously in the flanks under aseptic conditions using 

a trocar. After 10-14 days the tumors become palpable and after 25 - 30 

days the rats die spontaneously with cachexia. Experiments were perfor­

med three weeks after tumor implantation. At this time the rats appeared 

healthy apart from their tumor lumps and reduction of subcutaneous fat. 

The tumor did not impair their movements and no signs of metastasis were 

seen. A few rats with tumor ulceration of the skin or intraabdominal 

tumor growth (from inadvertent intraabdominal puncture at the time ol 

inoculation) were discarded. At the time of sacrifize tumor weight compri­

sed 13-20 percent of body weight. Female adult weight stable mice were 

used for in vivo studies of protein synthesis (C57/BL 6J, Bomholtgård, 

Ry, Denmark). A methylcholanthrene induced sarcoma was transplanted as 

described above for rats. The mouse tumor has the same b iological behavi­

our as the previously described rat tumor apart from a faster relative 

growth rate. The mice die with cachexia 15 - 17 days following tumor 

implantation. Experiments were performed 11 - 12 days after tumor trans­

plantation when the tumor comprised 10 - 15 percent of body weight. 



1 2  

Caution is necessary when extrapolating data from animal models to the 

clinical situation. The main differences are the very rapid growth and 

great tumor mass in experimental tumors compared to clinical cancer. 

Thus, experimentally induced tumors in animals may constitute 20 - 30 

percent of body weight whereas the tumor burden in human cancer rarely 

exceeds 5 percent of the body weight (Costa, 1977). It has, however, 

previously been shown that many host reactions are similar in tumor-

bearing animals and cancer-bearing man (Lundholm et al, 1978a). 

Reference and control animals 

An important aspect in all research concerning cancer is selection of 

appropriate controls. Much; and perhaps even the main part of the dis­

tant effects of malignant tumor-growth may be related to the concomitant 

anorexia (DeWys, 1977; Lundholm et al, 1980; Lundholm et al, 1981). The 

decreased food intake is of course dependent on the tumor but alterations 

of metabolism, such as acute phase response and increased energy expenditu­

re may add to the catabolic effects of anorexia (Bastable et al, 1979; 

Lindmark et al, 1983; Lindmark et al, 1984). To strictly define tumor-

specific effects would thus require controls not only matched for food 

intake but also with an inflammatory reaction of the same magnitude as 

that of tumor-bearing animals. It is, however, in practice impossible to 

create conditions that exactly mimic the pattern of spontaneous food 

intake of tumor-bearing animals. A sterile inflammatory reaction can be 

induced by e.g. injection of turpentine but it is impossible to obtain a 

graded response. In these studies we therefore mainly chose reference 

conditions of very severe malnutrition in order to exaggerate the nutritio­

nal effects on the heart, thereby focusing more on qualitative alterations 

for comparison to the tumor-bearing state. 

Apart from non-tumor-bearing freely-fed control animals, two groups of 

nutritionally deprived rats were used as additional references. Starvation 

and protein calorie malnutrition were prolonged to obtain very pronounced 

cardiac hypotrophy in order to fully explore functional and metabolic 

alterations. Starvation for four days resulted in a final body weight 

around 65 percent of freely-fed control animals. Protein-calorie malnutri­

tion represented a more prolonged way to induce cachexia. This was 

accomplished by giving rats a protein free diet for two weeks resulting in 

a final body weight around 40 percent of freely-fed control rats. The 

composition of protein free diet is shown in Paper 1. This chow also led 
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to a drastically reduced caloric intake thus yielding rats with both protein 

and calorie malnutrition. The time course of food intake and body weight 

for all groups is shown in Paper 1. In an attempt to distinguish between 

effects of the tumor per se from the effects of anorexia on heart protein 

synthesis, pair-weighed and pair-fed animals were used. The rationale to 

use these reference groups in the mouse experiments is the fact that the 

mouse tumor model is associated with early and a more pronounced anorec­

tic effect than the rat tumor model. Thus sarcoma-bearing in rats caused 

a 12 percent decrease in cumulative food intake during the period from 

tumor transplantation to the time of experiment, whereas sarcoma-bearing 

mice showed a 30 percent reduction. Pair-fed animals were given the same 

amount of food as the spontaneously eating tumor-bearing animals on a 

daily basis. Pair-weighed animals were offered a daily amount of food in 

order to obtain a loss of body weight corresponding to the carcass weight 

loss of tumor-bearing animals. Food was given twice daily. Pair-fed 

animals can control for depressed food intake to some extent by adapta­

tion of energy and nitrogen metabolism. Pair-weighed animals are more 

calorie restricted than pair-fed. Thus pair-weighed mice received 56 

percent of the spontaneous food intake of freely-fed control mice. However, 

both models of calorie and nitrogen restriction are hampered with the 

problems of meal feeding and altered diurnal eatings compared to freely-

fed animals. All animals had free access to tap water and were kept in a 

room with constant temperature and humidity on a 12 hour light-dark 

schedule, in rats general anaesthesia was induced by intraperitoneal 

injection of pentobarbital (Nembutal 60 mg/kg b w) before heart exstirpa-

tion. Mice were killed by cervical dislocation. 

Heart composition and tumor growth 

The tumors consisted of two well defined lumps that could easily be 

dissected free for weighing. Heart dissection and lipid extraction are 

described in detail in Paper 1. Care was taken to dissect the chambers 

free from atrial and extracardiac tissues. Hearts were dried to constant 

weight at +80° C and no difference of cardiac water content was found 

between groups after perfusions or in unperfused hearts. 

The isolated perfused, working rat heart model 

Langendorff introduced the method of isolated hearts perfused in a retro­

grade fashion in 1895 (Langendorff, 1895). The retrogradely perfused 

heart is often referred to as "non-working" which correctly speaking is 
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misleading since the heart indeed contracts rythmically and produces a 

ventricular pressure although minima! volume work is performed. In the 

antegradely perfused heart, "working11 preparation, both the aorta and 

the left atrium are cannulated which enables the heart to do external 

work and maintain its physiological role as a pump in vitro (Neely et al, 

1967). In comparison with other in vitro muscle preparations the isolated 

heart has many advantages. Oxygen, substrates and hormones are provided 

in a physiological way through the capillary network and changes in 

uptake and release are easily measured. Vast amounts of investigations 

have used this model in studies on heart physiology and metabolism in 

hypertension, diabetes, ischemia, and nutritional manipulation. The useful­

ness of this model in investigations of heart physiology and metabolism 

has recently been reviewed (Williamsson & Kobayashi, 1984). When compa­

ring the isolated perfused heart to the in vivo situation it must be empha­

sized that the heart is influenced in vivo by factors such as lipolysis 

leading to increased circulating free fatty acids as well as other variations 

of substrate and hormone levels and possible interactions between these 

factors, it must also be pointed out that the isolated heart is denervated 

thus excluding the effects of systemic nervous reflexes. However, as the 

initial purpose of this study was to delineate intrinsic changes of the 

heart induced by tumor growth it was advantageous to eliminate direct 

humoral and neural influences. Thus, the isolated working heart prepara­

tion was considered useful for the present experiments. 

Rat heart perfusions 

The rats were heparinized {1000 iU/ kg b w given i.p.) 30 minutes prior 

to heart exstirpation. After anaesthesia, the chest was opened by lateral 

incisions at both sides of the midline so that the whole anterior part of 

the thorax could be lifted upwards to expose the heart. The heart was 

carefully picked up and the large vessels were severed with one single 

cut with a pair of scissors. The heart was immediately immersed in ice-

chilled saline. When the heart had stopped beating, the aorta was attac­

hed to the perfusion cannula by a ligature (Fig 1). Retrograde preperfu-

sion was immediately started from a reservoir 70 cm above the heart. 

Preperfusion was carried out for 5-10 minutes and the perfusate discar­

ded after one passage through the heart. During preperfusion the left 

atrium was cannulated through a pulmonary vein. Care was taken to ligate 

all other pulmonary veins to prevent leakage from the left atrium. The 

p u l m o n a r y  a r t e r y  w a s  c a n n u l a t e d  b y  a  f i n e  p o l y e t h y l e n e  c a t h e t e r  ( F i g  1 ) .  
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Figure 1. Preparation of the heart in the isolated, working, perfused 
heart model. The aorta was first attached to a steel cannula by a ligatu­
re. This route was used for retrograde preperfusion during which the 
left atrium was connected to a steel cannula and the pulmonary artery to 
a polyethylene catheter.Oxygen electrodes were placed in contact with the 
perfusate just prior to entry into the heart and after passage through the 
myocardium thus enabling measurement of myocardial oxygen uptake when 
the preparation was switched to antegrade perfusion. A cannula connected 
to a pressure transducer was inserted in the left ventricle. Pacing was 
performed via the aorta and left ventricular cannulas. 

Antegrade perfusion with recirculating buffer (in most experiments 100 

ml) was started by clamping the tube from the. preperfusion reservoir and 

unclamping the tube from the atrial bubble trap (Fig 2). Left atrial filling 

pressure was altered between 5 and 20 cm water by changing the vertical 

distance from the overflow outlet of the bubble trap to the left atrium. 

T h e  l e f t  v e n t r i c l e  p u m p e d  t h e  p e r f u s a t e  v i a  a  p r e s s u r e  c h a m b e r  w i t h  2 , 5  

ml air in order to provide elasticity. Aortic output was measured at the 

top of the oxygenating chamber 80 cm above the heart. The coronary flow 

was measured as the sum of perfusate ejected through the pulmonary 

artery cannula and fluid dropping from the heart. Flow was quantified by 

collection in a graded cylinder. In some experiments maximal afterload was 
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accomplished by clamping the aortic tube. Left ventricular pressure, 

maximum positive dP/dt and heart rate were recorded with a Statham p 

23Db transducer connected to a 18 gauge cannula inserted through the 

left ventricular wall (Fig 1). Recordings were obtained on a Crass poly­

graph model 7D (Crass Instruments Co, Mass, USA). In some experiments 

the hearts were atrially paced at 350 beats/minute by means of a 

pacemaker (Elema-Schönander, Sweden). The energy of the pace signal 

was set to two times the measured threshold value necessary for eliciting 

a contraction in each individual heart. Hearts were discarded if there 

were signs of air embolism, leakage from the left atrium, marked 

arrythmia or an aortic pressure less than 80 cm water. To ensure the 

stability of the experimental set up a few perfusions were carried out 

during four hours after which the hearts were still vigorously working. 

Krebs-Henseleits buffer was used through all experiments (Krebs 6 

Henseleit, 1932). Disodium EDTA (0,5 mM) was included to chelate trace 

quantities of heavy metals in the perfusate. The final concentration of the 

buffer expressed as mM was: glucose 14; NaCI 118; KCl 4,7; CaClj 2,5; 

MgSO^ 1,2; KH^PO^ 1,2; NaHCO^ 25. All perfusions were carried out at 

Figure 2. Perfusion apparatus used for in vitro rat heart perfusions. A 
peristaltic pump circulates the perfusate from the oxygenating chamber to 
a bubble trap used to avoid air embolism to the heart. The height of the 
bubble trap can be varied to obtain different hydrostatic pressure of the 
inflow to the left atrium, thereby altering preload. A pressure chamber 
filled with air is located on the outflow side of the system thus providing 
elasticity as the tubes are stiff. The left ventricle pumped the perfusate 
to the top of the oxygenating chamber 80 cm above the heart. 

+37°C 

CORONARY 
FLOW 
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Mechanical heart performance 

Evaluation of cardiac performance has long been a problem that has 

plagued investigators. This problem is derived from the fact that perfor­

mance of the heart as a pump may be altered by multiple factors, the 

major of which include: 1) the initial myofibre lenght often indirectly 

assessed by the end diastolic ventricular volume or the left atria! filling 

pressure (preload); 2) the resistance to ventricular emptying, as determi­

ned in a complex manner by the aortic pressure (afterload); 3) alterations 

in the contractile properties of the muscle itself (contractility) (Brutsaert 

& Sonnenblick, 1973). The distinction between changes in cardiac perfor­

mance due to the Frank-Starling mechanism and those due to changes in 

contractility are crucial. The Frank-Starling mechanism is the phenomenon 

that the mechanical response increases progressively as the length at 

which the muscle fibre is held is increased. An altered response of deve­

loped force, fibre shortening or velocity of shortening which is indepen­

dent of muscle fibre length means a change in contractility. By definition 

the study of hearts in various cachectic states means that heart size in 

study and control groups differ. Differences in heart volume and wall 

thickness means that a given left atrial filling pressure does not yield the 

same end diastolic left ventricular wall tension in various hearts according 

to the law of Laplace. Thus, the wall stress is proportional to intraventri­

cular pressure and radius and inversely proportional to wall thickness 

(Hopkins et al, 1973). The translation of left atrial filling pressure to end 

diastolic fibre length is further complicated by possible differences of left 

ventricular compliance and geometry of the heart. In theory the heart 

shape may vary from a thin wailed spherical to a thick walled ellipsoid 

form. These differences occur between various hearts and within the same 

heart during contraction. Furthermore, the orientation of muscle fibers 

within the heart is extremely complex and not parallel but oblique. In 

conclusion, there does not appear to be a variable which is a well valida­

ted index of myocardial contractility in the intact heart (Noble, 1972; 

Brutsaert £ Sonnenblick, 1973). Differences in cardiac output, left ventri­

cular peak systolic pressure and pressure development during systole 

(dP/dt) between hearts are thus net reflections of a variety of possible 

heart changes including the theoretical concept of contractility. The 

methods used in this thesis in order to assess the mechanical activity of 

the hearts included the measurement of coronary and aortic flow, the left 

ventricular pressure development during systole and the peak left ventri­

cular systolic pressure. By sliding the atrial bubble trap up and down 
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(Fig 2) the left ventricular filling pressure was varied between 5 and 20 

cm water. For simplicity we used the expression preload for left ventricu­

lar filling pressure despite the theoretical objections mentioned above. 

The reason to use pacing was to normalize diastolic filling time and to 

avoid the so called Treppe phenomenon which means that increased heart 

rate is associated with increased contractility. 

Oxygen uptake and adequacy of oxygenation 

Hemoglobin free oxygen transport requires high flow rates to provide 

adequate tissue oxygenation from the physically dissolved oxygen. Thus, 

coronary flow was high but the coronary vascular bed was not maximally 

dilated as it was able to adjust to increasing work loads. Oxygen tension 

of the affluent perfusate was continuously measured just before entering 

the left atrium and the effluent was measured just after leaving the heart 

by the pulmonary artery (Fig 1). The electrodes and calibration procedure 

are described in detail in Paper 1. Oxygen tension of the affluent perfusa­

te was adjusted to around 70 kPa. No arterio-venous shunting occurs in 

the isolated perfused rat heart (Huhman et al, 1967) and the coronary 

flow is uniform throughout the heart (Shipp et al, 1964). The fact that 

coronary effluent oxygen tension was always above 10 kPa thus indicates 

a sufficient oxygen supply to the myocardium. Moreover, perfusion with 

blood instead of oxygenated buffer does not change the oxygen uptake 

even at high pressure work (Gamble et al, 1970). In a recent review Opie 

came to the conclusion that oxygenation of the isolated, working perfused 

rat heart is adequate (Opie, 1984). 

Perfusions in the presence of catecholamines 

To avoid oxidation, noradrenaline and isoproterenol solutions were made 

fresh each morning and kept in darkness, at +4°C in the presence of an 

antioxidant (ascorbic acid). The catecholamines were added to the perfusa­

te in the oxygenating chamber to allow dilution before entering the heart. 

The amount of catecholamines necessary to elicit a barely detectable 

response was defined in pilot studies and that concentration was used at 

the start. Addition of catecholamines in excess of the highest concentra­

tions used in the experiments gave no further increased response. In 

order to avoid differences in desensitization the hearts were perfused for 

exactly three minutes on each level of catecholamine concentration. 
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Cardiac glucose uptake in vitro 

Glucose uptake can be measured as the disappearance of glucose from the 

perfusate but the use of radioactively labeled glucose has been reported 
3 to be a more sensitive method (Cheung et al. 1978). (2- H) glucose was 

3 evaporated to dryness in order to eliminate any ~H20 before addition to 

the perfusate of the heart preparation. The initial five minutes of ante­

grade perfusion was used for stabilization of the hearts and equilibration 

between perfusate and tissue pools. Thereafter, the perfusions were 

carried out during one hour at steady state conditions with a preload of 

10 cm water and pacing. Samples of the perfusate were removed 5, 35 and 

65 minutes following the start of antegrade perfusion. The tritium incorpo­

rated into water was quantified in a scintillation counter after isolation of 

pure water by vacuum destination at low temperature. The hydrogen in 

the 2-position is the first to be transferred after glucose entry into the 

cell. It takes place by the isomerization reaction of glucose-6-phosphate to 

fructose-6-phosphate and thus reflects the total uptake of glucose and is 

not a direct measure of oxidation of glucose (Katz, 1976). The conversion 

of carbon radiolabel from glucose into carbon dioxide provides a mean to 

quantify the oxidation rate but this method does not account for glucose 

conversion into lactate, amino acids or glycogen. The rationale to use 

tritium labelled glucose to obtain total cellular uptake ratios was the fact 

that hormonal and other regulatory mechanisms of glucose metabolism mainly 

operate by modifying transmembrane transport (Opie, 1968; Brachfeld, 1978). 

Cardiac amino acid metabolism 

Perfusate samples obtained simultaneously with those for glucose uptake 

determination as described above were analyzed with respect to amino acid 

content by the use of high pressure liquid chromatography (HPLC). After 

a precolumn derivatization procedure (Hill, 1979), the amino acids were 

separated in a gradient system on a reverse phase uBondapac-C18 column 

(Waters associates liquid chromatographic system). The amino acids were 

detected fluorometrically and finally quantitated with a data module system 

(Waters, model 730) for automatic integration of the peak areas using 

standard amino acids. As the aim was to study protein metabolism rather 

than total protein breakdown, protein synthesis inhibitors were not used. 

Thus, the measured release of aminoacids reflects the net effects of 

protein breakdown, protein synthesis, amino acid oxidation and de novo 

synthesis of amino acids. Since amino acids such as phenylalanine and 
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tyrosine are not metabolized in the heart they represent a mean to quanti­

fy net protein balance. 

Plasma and heart tissue catecholamines 

The recovery of catecholamines from biological samples are very sensitive 

to factors in the work-up procedure and the nature of stabilizing agents. 

Therefore, heart tissue was immediately immersed in liquid nitrogen after 

removal from the rats. The frozen tissue was cut into small pieces put 

into a tissue grinder and weighed. One millilitre of perchloric acid (0.1 

mol/l) containing EDTA (2.7 mmol/l} and the internal standard dihydroxyben-

zylamine (DHBA) (0.2 umol/l) was added per 0,1 g of tissue and the 

homogenization was performed in an ice-bath. The homogenate was then 

centrifuged in a refrigerated centrifuge at 4°C for 10 minutes at 25.000 

g. The supernatant was transferred to a new tube and frozen (-70°C) 

until analysis. The blood samples were collected into chilled tubes contai­

ning 20 ul/ml blood of a solution of the anticoagulant ethyleneglycol-bis-

(B-aminoethylether) N1,N'-tetraacetic acid (ECTA) (0.2 mol/l) and the 

antioxidant reduced glutathione (CSH) (0.2 mol/l). After centrifugation 

(1000 g for 5 min) at 4°C the plasma phase was separated and stored at 

-70°C until analysis. The catecholamines were separated from the sample 

by adsorption to alumina and then desorbed by elution with perchloric 

acid. The assay was performed using liquid chromtography and electrochemi­

cal detection. The method has previously been described in detail and 

validated against the radioenzymatic method, showing good agreement 

(Eriksson and Persson, 1982). 

Cardiac protein synthesis in vivo 

Protein accounts for some 80 percent of heart dry weight in rats (Munro, 

1970). The renewal rate of heart proteins is a key regulating process of 

heart composition and subsequent function. In steady-state, synthesis 

may be estimated from degradation of labelled proteins, but in non-steady 

state incorporation of labelled amino acids into newly synthesized proteins 

is a more valid approach in estimating synthesis (Schreiber, 1982). This 

can be accomplished by a variety of analytical techniques, each with its 

own advantages but none without disadvantages and assumptions to make 

them valid (Waterlow et al, 1978). The main difficulties is to achieve a 

correct measurement of the immediate precursor pool for protein synthe­

sis. Constant infusion of radio-labelled amino acids relies on the assump­

tion of isotopic steady state and that radioactivity in the acid soluble 
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fractions are true reflections of the specific radioactivity of the free 

amino acids at the site of protein synthesis. The validity of this assump­

tion has been questioned as intracellular compartmentalization may cause 

the specific activity of amino-acyl-tRNA to be different from that of the 

total free intracellular pool (Martin et al, 1977; McKee et al, 1978), 

Furthermore, additional errors might arise from recycling of tracer during 

longer infusion periods. The constant infusion technique has subsequently 

received considerable criticism {Waterlow et al, 1978; McNurlan et al, 

1979; McNurlan et al, 1982;). The flooding technique relies on the assump­

tion that a massive administration of amino acids will saturate all of the 

free amino acid pools,thus reducing compartmentalization and thereby 

minimizing the problem of defining the correct precursor pool (Garlick et 

al, 1980). This method, using the plasma specific activity as a measure of 

the precursor pool is convenient and the short time span of the experi­

ment Sowers the risk of recycling of radiolabel. In direct comparison, the 

flooding dose methodology has been reported to give significantly higher 

estimates of protein synthesis compared to the continuous infusion method 

(Emery et al, 1984; Pomposelli et al, 1985). We have recently validated 

the flooding technique against the "pulse-labelling" tracer technique which 

represents a reliable method to quantify protein synthesis rate (Garlick, 

1980). The rates of protein synthesis obtained with a flooding dose of 

either leucine or phenylalanine were significantly higher than those obtai­

ned with pulse labeling technique (Ternell, 1986). The major disadvantage 

of the pulse labelling method is that it requires a large number of ani­

mals. A further possible disadvantage is compartmentalisation of aminoacyl 

tRNA which may occur within the cell (Martin et al, 1977). There are 

thus still controversies regarding methodology in measuring the true 

protein synthetic rate in vivo. However, in the relative comparisons 

between groups of animals the flooding technique may represent a valid 

and convenient method why we chose this technique. The isotopes were 

given in a lateral tail vein in rats. After intravenous injection, there is a 

fast mixing of the substance in blood (Waterlow et al, 1978). In mice 

intravenous injection is technically difficult why we chose intraperitoneal 

administration as it has been shown that watersoluble substances like 

amino acids are rapidly absorbed into the circulation from the peritoneal 

cavity (Henshaw et al, 1971). A suitable radioactive aminoacid for inves­

tigation of the rate of protein synthesis should have no possibility of 
11 

conversion to other amino acids. In the heart C phenylalanine fulfils 

this critérium, whereas leucin may be less appropriate. We have, how-
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ever, determined that more than 95 percent of the radioactivity incorpo­

rated into tissue protein was as leucine 30 minutes following an injection 

of L-(U- CJIeucine (unpublished observations). The animals were given a 

single injection of a large dose of phenylalanine (150 umol "cold" phe/100 
14 

g body weight and 0.4 uCi L-(U- C)-phe/g bw) or leucine (100 umol 
14 

"cold" lucine/100 g b w and 0.4 uCi L— ( 1 — C) leucine/g b w) which give 

linear kinetics in plasma and tissue pools (Carlick et al, 1980). Plasma 

proteins were extracted in absolute methanol overnight. The specific 

radioactivity of phenylalanine or leucine was quantified by means of high 

pressure liquid chromatography with a precolumn derivatization procedure 

{Hill et al, 1979). Plasma specific radioactivity was determined during 10 

minutes for phenylalanine and during 30 minutes for leucine in a large 

number of animals. Plasma specific radioactivity of phenylalanine was 

almost stable during 10 minutes whereas that of leucine showed a linear 

decrease leaving 20 percent of initial activity at 30 minutes. The disap­

pearance curve for the specific radioactivity thus followed zero order 

kinetics which simplified calculations of protein synthesis rates. This 

permitted the calculation of the average plasma specific radioactivities 

from single measurements obtained at sacrifize at 10 and 30 minutes for 

animals injected with phenylalanine and leucine respectively. These avera­

ge plasma values were regarded as the precursor pool for protein synthe­

sis. Amino acids in heart proteins were quantified by conversion of 

phenylalanine into B-phenetylamine (Carlick et al, 1980) and subsequent 

spectrophotometric quantification (Suzuki S Vagi, 1976) or by suspension 

in water for H PLC separation. The leucine content was estimated to be 8 

percent and phenylalanine 3 percent of total heart protein (Waterlow et 

al, 1978). Protein concentration was determined according to Lowry (Lowry 

et al, 1951). The fractional synthesis rate (kg) was determined using the 

equation (Carlick et al, 1980): 

k = S, / S x t 
s b p 

where is the specific radioactivity of heart protein, is the average 

specific activity of the free plasma amino acid pool and t is the incorpo­

ration time. Myocardial RNA was extracted and quantified as described by 

Munro and Fleck (1966). 

Heart protein composition 

In all studies of the heart, but especially in compositional studies one 

must bear in mind that heart muscle is a mixture of cell types (myocytes, 

fibroblasts, neural and endothelial cells). Thus 75 percent of myocardial 
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DNA is associated with connective tissue and endothelial cells (Munro, 

1970). Myocytes are, however, so much larger than other cell types that 

they constitute at least 75 percent of the heart by volume (Wildenthal, 

1980). Thus, cardiac protein content may be a better reflection of myocyte 

mass than the amount of DNA. The heart contains an abundance of mitochon­

dria which constitute around 46 percent of total cardiac protein (Wilden-

thal, 1980). This fact necessitates isolation of the protein compartments 

involved in the contractile process when studying functionally important 

myofibrillar alterations in pathological conditions. We therefore concent­

rated on determination of contractile proteins. Heart tissue was homogeni­

zed in 20 mM potassium phosphate buffer. Total SDS (sodium dodecyl 

sulphate) lysates were used as this method has been reported to give a 

higher recovery of myosin than ordinary high salt concentration extrac­

tions (Everett et al, 1983). During extraction and purification there is a 

risk of myosin degradation. Everett has, however, shown that addition of 

protease inhibitors did not increase the yield of myosin in these prepara­

tions (Everett et al, 1983). After denaturation and centrifugation, the 

supernatants were subjected to SDS Polyacrylamid gel electrophoresis. 

Following electrophoresis, the gels were dried, stained with Coomassie 

brilliant blue and destained with ethanol, acetic acid and distilled water. 

Identification of the bands were obtained by comigration of standards of 

myosin, actin, troponin and tropomyosin. The relative concentration in 

each band was quantified by densitometer scanning and integrating the 

area under the curve. 

Tryptic digestion of myosin 

Functionally important alterations of myocardial myosin composition can be 

obtained by changes in the expression of specific genetic information of 

the cell. Thus, three distinct ventricular isomyosines V1, V2 and V3 have 

been identified by pyrophosphate gel electrophoresis of native molecules 

(Hoh et al, 1977). The relative isomyosin composition is dependent on 

species and age (Lompre et al, 1981) and can be influenced by various 

physiological and pathological conditions (Dillmann, 1985; Mercadier et al, 

1981). In our initial experiments we found no difference of electrophoretic 

mobility of myosin between groups. Separation of the classical three 

isomyosines by electrophoresis of native molecules might, however, not be 

sensitive enough to detect minor shifts in their relative distribution. 

Furthermore, post-transscriptional modification of the myosin molecules 

can occur and is not necessarily reflected by altered mobility of the 
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intact molecule in pyrophosphate gel electrophoresis (Scheuer 6 Bhan, 

1979}. The point at which myosin is cleaved by trypsin into the meromyosins 

represents a flexible region of the tail because the susceptibility to 

cleavage by proteolytic enzymes is greater where the coil conformation is 

less rigid (Katz, 1977). The peptides thus obtained constitutes a "finger 

print" of the molecule and may be more sensitive than traditional methods 

to detect subtle differences in myosin structure. Myosin was extracted by 

a previously described method (Hoh et al, 1976; Höh et al, 1977). Ventri­

cular tissue was minced in an extraction buffer with the following compo­

sition: 100 mM Na^PjOy, 5mM EGTA, 2 mM 2-mercaptoethanol, pH 8.8 at 

+2C. The homogenate was centrifuged for 3h at 48.000 g. The pellet was 

discarded and the supernatant thoroughly mixed with an equal volume of 

ice-cold glycerol. Trypsination was then performed according to Bhan and 

Malhotra at high ionic strength (0.5 M KCl) to avoid aggregation of 

myosin which may occur at low ionic strength (Bhan 6 Malhotra, 1976). 

Aggregation of myosin might render some of the susceptible bonds unacces-

sible to trypsin, thus yielding incomplete digestion. The cleavage pro­

ducts were separated in SDS Polyacrylamide gel elecrophoresis and quantita-

ted by densitometer scanning. 

Cardiac myosin ATPase activity 

The splitting of ATP provides energy for the cyclic interaction of myosin 

and actin, the molecular basis for muscular contraction. It is therefore 

tempting to postulate that the activity of myofibrillar ATPase is an impor­

tant control factor in the whole complex chain of events known as excita­

tion - contraction coupling. The main problem is, however, to define 

which ATPase to measure and during which conditions to measure it in 

order to obtain an optimal correlation to in vivo contractile properties of 

the intact myocyte. Thus crude myofibrillar preparations retain the physio­

logic interrelations of actin and myosin but also contain mitochondria, 

sarcoplasmatic reticulum and sarcolemma, all of which have their own 

ATPase activities. At the other end of the purity scale of preparations 

one can study ATPase activity of proteolytic subfragments of myosin 

where the enzymatically inactive portion of the molecule has been elimina­

ted (Bhan 6 Malhotra, 1976). Proteolysis of myosin might, however, lead 

to degradation of subunits creating artifacts in the determination of 

ATPase activity (Scheuer 6 Bhan, 1979). By using pure myosin preparations 

the problems of contaminating ATPase and preparation artifacts may be 

avoided. On the other hand, purified intact myosin is removed from actin 
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and the regulatory proteins tropomyosin and troponin which might alter 

the enzymatic activity. However, good correlations have generally been 

found between purified myosin ATPase activity and physiological function 

(Rovetto et al, 1972; Schwartz et al, 1981; Garber S Neely, 1983; Alpert 

6 Mulieri, 1986). Myosin was isolated as described above. As myosin is 

insoluble in low ionic strength buffers normally used for electrophoretic 

studies, a high ionic strength pyrophosphate buffer where myosin is quite 

soluble was used (Hoh et al, 1976). After electrophoresis, the gels were 

incubated in ATPase reagent. Determination of ATPase activity was perfor­

med according to Hoh et al with spectrophotometric quantification of 

calcium phosphate precipitate (Hoh et al, 1977). This scanning process 

was repeated four times during the course of incubation. After scanning 

for ATPase activity, the gels were stained for protein with Coomassie 

brilliant blue and scanned again at 550 nm using the same absorbance 

scale and scan rate as before. The ratio of the area under the calcium 

phosphate peaks to the area under the protein peaks (the absorbance 

ratio) was plotted against incubation time. The ATPase activity found in 

freely-fed control rats of seven weeks age in this study was approxi­

mately three times higher than previously found in adult rats (Hoh et al, 

1977). 

Cardiac B-adrenergic and muscarinic receptor affinities 

Radioligand binding techniques in isolated cardiomyocyte membrane prepara­

tions were used to determine adrenergic and muscarinic receptor affini­

ties. Preparation of cell membranes is crucial. !n earlier studies on avian 

and amphibian erythrocytes, membranes could be prepared with ease and 

high purity. Myocytes require a more extensive procedure to give pure 

membrane preparations. In order to avoid excessive non-specific agonist 

binding a high degree of purity is necessary. An important step is to 

remove contractile proteins which is accomplished by washing with 0,6 M 

potassium chloride. Excessive washing and prolonged centrifugation at 

high force may, however, damage membrane proteins and cause depletion 

of guanosine triphosphate which is necessary for adenylate cyclase activa­

tion (Pecker & Hanoune, 1977). Therefore, only five minutes exposure of 

the membranes to KCL followed by centrifugation at 25.000 x g for ten 

minutes was used. Receptor analysis depends on the use of radiolabelied 

tracers. Binding affinities of receptors coupled to the adenylate cyclase 

system are different for agonists and antagonists. Antagonist binding 

displays only one affinity while agonists exhibit variable binding affini-
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ties. Thus, the tracer used should be an antagonist. The antagonist 
3 125 

tracers used were ( H}-quinuclidinyl benzilate (QNB) and ( l)-iodo-

cyanopindolol (ICVP) for muscarinic and B-adrenergic receptors respecti­

vely. ICYP was chosen because it has lower non-specific binding and a 

high specificity to B-adrenergic receptors compared to previously used 

B-adrenergic ligands (Brodde et al, 1981). Carbachol and oxotremorine 

were used as muscarinic agonists and isoproterenol as B-adrenergic 

agonist. Binding assays were carried out in phosphate-buffered saline 

{composition see Paper 3). Receptor agonist kinetics was studied by 

incubating membranes with either 0.4 nM tritiated QNB or 0.05nM iodina-

ted CVP and various concentrations of carbachol or isoproterenol, respec­

tively. The reactions were carried out at + 26 C and terminated after one 

hour by ice-cold phosphate-buffered saline. The samples were poured 

over a Whatman glass filter (CF/F 25 mm), followed by a wash with the 

same buffer. Radioactivity was then quantified in a Packard scintillation 

spectrometer. By using equilibrium binding studies and plotting the data 

according to Scatchard (bound/free ligand against bound ligand concentra­

tions) the eqilibrium dissociation constant and the binding site concent­

ration can be determined. Scatchard plots were utilized in order to ensure 

that observed agonist affinity changes were not due to altered antagonist 

binding. Agonist-receptor affinity is influenced by receptor binding to 

guanine nucleotide binding proteins, which are essential for adenylate 

cyclase effects. Thus, free receptors bind agonists with a lower affinity 

than the complex between receptors and guanine nucleotide binding proteins. 

Guanosine triphosphate (CTP) induces a shift in affinity leaving all the 

receptors in the free, low affinity form. Antagonist displacement was 

studied in both the absence and presence of a non-hydrolyzable GTP 

analogue, 5'-guanylyl-imidodiphosphate (Gpp(NH)p). Non-specific binding 

was assessed by a 100 fold excess of either scopolamine or alprenolol and 

never exceeded 5 percent. Data analysis was carried out using computer 

assisted both linear (Minneman et al, 1979) and non-linear (Feldman, 

1972) regression analysis of saturation and competition binding curves. 

To determine if the data were fit significantly (p<0.001) better by the 

multi-site model, the residual sums of squares of the respective fits were 

compared using an F-test (DeLean et al, 1982). Finally, binding parame­

ters were corrected according to Cheng and Prusoff (Cheng S Prusoff, 

1973). 
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Figure 3. 
The mechanism of B-receptor mediated adenylate cyclase stimulation. H = 
hormone; R = receptor; N = stimulatory nucleotide regulatory protein; 
AC = adenylate cyclase. In the resting state R, N and AC do not inter­
act with each other. B-adrenergic agonists (but nSt antagonists) promote 
the functional coupling between R and Ns. This favours the release of 
GDP from N and its exhange by other guanine nucleotides such as GTP 
which in tufn destabilizes the R-N complex so that it dissociates into 
R-H and N -GTP. The free N -GTP complex is then able to stimulate AC. 
Hydrolysis of GTP into GDP terminates the AC stimulation. When GTP is 
replaced by a non-hydrolysable analogue such as Gpp(NH)p AC stimula­
tion persists and all B-receptors are left in the low affinity form (R is 
free and not bound to NHs). 

Adenylate cyclase activity 

Adenylate cyclase activity was determined in cell according to the method 

described by Hanoune et al (1977). The method is described in detail in 

Paper 3. Adenylate cyclase activity was assayed by increasing concentra-
-8 -f 

tions of adrenaline from 10 to 10 M. Inhibition of adenylate cyclase 

activity mediated via muscarinic receptors was monitored in the prescence 

of 10 uM adrenaline/0.1 mM Gpp (NH)p and increasing concentrations of 
-10 -4 the muscarinic agonist oxotremorine-M (10 - 10 M). 
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CLINICAL STUDY 

Patients 

Consecutive malnurished surgical patients with and without cancer disease 

and well nourished control patients were investigated. The diagnoses of 

cancer patients were all histologically proven. Nutritional status and body 

composition were assessed by history of weight loss, body weight, anthro-
40 

pometric measurements, total body potassium content ( K whole body 

counter} and serum albumin concentration. To account for differences in 

age and length, body weight index and total body potassium index were 

calculated from tables derived from a local reference population (Bengts­

son et al, 1981) and relationships between ideal body weight and total 

body potassium (Boddy et âl, 1972). 

Adrenaline infusion 

The experiments were carried out in the morning after an overnight fast. 

Following baseline measurements, constant adrenaline infusion was started 

at a rate of 0.005 ug/kg b w/min during 40 minutes resulting in a slight 

but detectable rise of serum adrenaline conc. After discontinuation of the 

infusion, the plasma adrenaline concentration promptly returned to preinfu-

sion levels during 40 minutes of rest. The subsequent infusion rate of 

0.02 ug/kg/min during 40 minutes gave plasma concentration in the range 

seen in moderate trauma {Davies et al, 1984). Higher infusion rates were 

judged to be hazarduous in these elderly and malnourished patients. As 

adrenaline is sensitive to oxidative degradation, care was taken to protect 

the infusion lines and bottles from light. All blood samples were obtained 

from an indwelling arterial cannula which was also used for measurements 

of blood pressure and heart rate. 

Indirect calorimetry 

Indirect calorimetry was performed before the infusions started and 

during the latter half of each of the 40 minutes periods. The system used 

has previously been described in detail (Lindmark et al, 1985b). The 

patients head was placed in a ventilated hood where a soft face mask was 

placed 1/2 cm above the mouth and nose. This allowed the patient to 

breathe without restrain or discomfort. The air from the hood was drawn 

by a membrane pump and the flow measured by a flow meter with a 

precision of 2 %. The air sample for gas analysis was dried in a column. 

Oxygen was measured with a paramagnetic Servomex 1100 (Taylor, Servo-

mex) and carbondioxide with an LB-2 infrared analyzer (Beckman Instru-
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merits). The output signals from each instrument were led to a portable 

desk computer (Epson HX 20) via an analogue/digital coupler (KEBO 

Computer AB, Stockholm, Sweden). The computer collected values every 

10 seconds from the instruments and processed the data to give oxygen 

consumption, carbondioxide production and respiratory quotient after a 

complete run. The integrated system has a coefficient of variance of 3 - H 

percent when used repeatedly on the same subjects over several days 

(Lindmark et al, 1985b). 

STATISTICS 

Values are expressed as mean + SEM. For comparison of means the non-para­

metric Mann-Whitney U-test (Siegel, 1956) was used when the numbers of 

observations were small to avoid assumptions of normal distribution and 

the parametric t-test (Colton, 1974) was used when larger numbers of 

observations were computed. When analysis of variance (Afifi S Azen, 

1979) was used, possible individual differences between groups were 

analyzed by a multiple range test (Woolf, 1968). Least square regression 

analysis was used in calculations of correlation. P values less than 0.05 

were considered as statistically significant. 
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RESULTS 

Body and heart weights 

Table 1 shows body weight, heart dry weight and ratio of heart weight to 

body weight in tumor-bearing and the various control groups of rats 

(pooled data from all the studies). The tumor comprised approximately 15 

percent of body weight leaving a carcass (tumor-free body weight) weight 

in tumor-bearing rats of around 82 percent of the body weight of freely-

fed control rats. 

Table 1. Body weight, heart dry weight and the ratio of heart dry weight 
to body weight in tumor-bearing (TB), starved (S) and protein-calorie 
malnourished (PCM) rats expressed as percent of freely fed control (C) 
rats (pooled data from all the studies ). Mean + SEM. 

Body weight Heart dry weight Heart dry weight/ 

(%) (%) body weight (%) 

TB 97+3 88+2a 89+1a 

S 65+4a 69+4a 107+13 

PCM 38+2 3 45+3a 116+13 

C 100+2 100+2 100+0.5 

a)p<0.01 vs C. 

Cardiac mechanical performance and oxygen uptake 

Cardiac output, left ventricular peak systolic pressure and contractility 

were well maintained in the hypotrophic hearts from both sarcoma-bearing, 

starved and PCM rats during various left atrial fill ing pressures (paper 

1) as well as during catecholamine stimulation (Paper 1 and 2). The 

pumping ability expressed per gram myocardial mass was thus improved 

when depicted as Frank-Starling relationships (Fig. 4). Oxygen uptake 

was consistently increased in tumor-bearing rats compared to freely-fed 

control rats regardless if it was normalized to the entire heart, heart dry 

weight or left ventricular work (Fig.5; Paper 1 and 2). Starvation and 

PCM were on the other hand associated with decreased oxygen consumption 

compared to freely-fed controls. 



3 1  

>1500-150-

StOO' •o 1000' 

2 50' 500-

20 20 
Preload (cm H2O) Preload (cm H2O) 

Figure 4. 
Frank-Starling relationships when hearts were paced at 350 beats/min 
• Freely-fed tumor-bearing animals (n = 20); • Starved rats (n = 20); 
A PCM rats (n = 10); O Freely-fed controls (n = 20). 

m »IM 
5 10 15 20 5 10 15 20 

Spontaneous heort rate pacing at 350 beats/min. 

PRELOAD 

Figure 5. 
Oxygen uptake in perfused hearts from tumor-bearing rats compared with 
freely-fed controls. Tumor-bearing rats had statistically significantly 
higher oxygen uptake at all examined conditions (p<0.01). The difference 
are even more pronounced when oxygen uptake was normalized to heart 
dry weight t̂umor-bearing rats (n = 20) ; j_] freely-fed controls (n = 20). 

Cardiac sensitivity and responsiveness to catecholamines 

The reaction of heart rate, left ventricular peak systolic pressure and 

contractility in the graded exposure to isoproterenol and noradrenaline 

revealed an increased sensitivity (the slope of the relative increase) and 

responsiveness (maximum relative response) in hearts from tumor-bearing, 

starved and PCM rats compared to freely-fed controls (Fig 6; Paper 1 and 

2 ) .  
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Figure 6. 
The relative increase in contractility at increasing Isoproterenol concen­
trations. Mean + SEM. •Freely-fed tumor-bearing rats (n = 19); 
• Starved rats {96 hrs) (n = 10); A PCM rats (n = 10); O Freely-fed 
control rats (n = 16). 
Baseline levels (mm Hg/s) (T) 6027 + 504; (S) 651 1 + 596; (PCM) 6018 + 
591; (C) 5200 + 252. The responsiveness is defined as the maximum 
relative response" and the sensitivity as the recession cogfficient of the 
slope at Isoproterenol concentrations between 10 and 10 
Responsiveness: T vs S n.s; T vs PCM p<0.0001 ; T vs C p<0.05. Sensiti­
vity: T vs S p<0.005; T vs PCM p<0.001; T vs C p<0.001. 

Cardiac B-adrenergic and muscarinic receptor characteristics 

Neither B-adrenergic nor muscarinic receptor numbers were different in 

groups of tumor-bearing, starved, PCM and freely-fed control rats. 

Agonist affinities of B-adrenergic and muscarinic receptors were, how­

ever, markedly increased in myocardial cell membranes derived from all 

g r o u p s  o f  m a l n o u r i s h e d  r a t s  c o m p a r e d  t o  f r e e l y - f e d  c o n t r o l s  ( F i g .  7 ) .  

Adrenaline stimulation and muscarin agonist inhibition of adenylate cyclase 

a c t i v i t y  s h o w e d  n o  d if f e r e n c e s  b e t w e e n  t h e  v a r i o u s  r a t  g r o u p s  ( P a p e r  3 ) .  
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Fig 7.( I)-ICYP/isoproterenol competition binding in the abscence (o-o) 
or presence {•-•) of Gpp(NH}p on myocardial membranes from 
tumor-bearing (left panel) and freely-fed control rats (right panel). The 
insets demonstrate the affinity state distribution. 

Cardiac energy metabolism 

Tumor-bearing rats had a decreased cardiac glucose uptake and a lower 

release rate of lactate compared to both starved and freely-fed control 

rats during in vitro perfusion. This indicated a greater dependence on 

endogenous lipids as energy substrate in the cardiac metabolism of tumor-

bearing rats (Table 2; Paper 4). 

Table 2. Glucose uptake per heart, per gram dry weight myocardium and 
per left ventricular work in perfused hearts from tumor-bearing (TB), 
starved (S) and freely-fed control rats (C). 

Per heart 

(umol/h) 

Per g d w 

(umol/h x g) 

Per I v w 

(umo l  1 0  6 /  

mm Hg x ml) 

TB 

S 

C 

30+5 
33+Sa  

47+4 

206+33  

298+18 

293+25 

b,c 
82+15 

143+36 

139+14 

a p<0.01 vs. control ;b p< 0.05 vs control; c p<0.01 vs starved rats. 
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Cardiac protein metabolism 

Protein synthesis, assessed in vivo, was decreased by 19 percent in 

growing sarcoma-bearing rats compared to freeiy-fed controls. This 

depression of synthesis was, however, slight compared to starved and 

PCM rats whose cardiac protein synthetic rates were reduced by almost 50 

percent. In adult non-growing sarcoma-bearing mice the capacity for 

protein synthesis {RNA content) was decreased, whereas the efficiency of 

protein synthesis (protein synthesis/RNA) and total cardiac fractional 

synthesis rate were maintained (Table 3). Malnourished reference mice 

(pair-fed and pair-weighed) had a depressed efficiency of protein synthe­

sis and a tendency towards decreased whole heart fractional synthesis 

rate (not statistically significant) (Paper 5). The net release rates of 

amino acids during in vitro perfusions of hearts were different between 

sarcoma-bearing, starved and freely-fed control rats. Thus, sarcoma-bea­

ring rats showed a higher net release rate of the non-metabolized amino 

acids (tyrosine, methionine and phenylalanine) whereas the main gluconeo-

genetic amino acids (alanine and glutamine) were released at lower rates 

compared to freely-fed control rats. These altered release rates were not 

evident in hearts from starved rats. 

Table 3. Heart protein synthesis in tumor-bearing (TB), pair-fed (PF), 
pair-weighed (PW) and freely fed control (C) mice. 

TB PF PW C 

Fractional 5.4+0.4 4.9+0.4 4.5+0.8 5.5+0.8 

synthesis 

rate (l/day) 

Cardiac contractile proteins 

The concentrations of contractile cardiac proteins were not different 

between hearts from tumor-bearing, PCM and freely-fed control rats. 

Figure 8 shows SDS Polyacrylamid gel electrophoresis of myosin and 

tryptic digests of myosin. There were signs of more tightly bound acto-

myosin complexes in the tumor-bearing and PCM groups compared to the 

starved and freely fed control groups. This conclusion is drawn from the 

fact that the area under the actin peak to the area under the myosin 

peak was higher in tumor-bearing (0.40) and PCM (0.32) than in starved 

(0.18) and control (0.21) rats. Tryptic digestion of fetal mouse myosin 
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(mainly V3 isomyosin) showed a clearly different peptide pattern compared 

to adult control mouse myosin (mainly V1 isomyosin). This method is thus 

able to detect transscriptionally regulated major isomyosin shifts. When 

myosin from tumor-bearing, starved and PCM animals were subjected to 

trypsination, the pattern of fragments showed essentially quantitative 

differences compared to freely-fed control animals. Myosin from PCM rats 

seemed more resistant to tryptic digestion compared to the other groups. 

Thus all myosin was lysed in the TB, S and C groups within 15 min 

whereas 18 percent of the initial amount of myosin remained intact in PCM 

rats after 15 min and 3 percent afer 30 min trypsination. 

Before tryptic After tryptic 
digestion digestion 

Trypsin TB C S PCM TB C S PCM Trypsin 
inhibitor 

Fig.8. SDS Polyacrylamide gel electrophoresis of myocardial myosin from 
tumor-bearing (TB), starved (S), protein-calorie malnourished (PCM) and 
freely-fed control (C) rats before and after tryptic digestion. 

Myosin ATPase activity 

ATPase activity of purified myosin from growing rats was lowest in hearts 

from starved animals, intermediate in hearts from tumor-bearing and PCM 

animals and highest in hearts from freely-fed controls (Fig.9). Non-gro-

wing adult mice showed the same pattern as that of rats when ATPase 

activity was assessed in hearts from tumor-bearing, starved and freely-

f e d  c o n t r o l  a n i m a l s  ( P a p e r  5 ) .  
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Fig 9. ATPase activities in purified myosin from tumor-bearing (TB), 
starved (S3, protein malnourished (PCM) and freely-fed control (C) rats. 

Metabolic response to adrenaline infusion in malnourished patients 

Malnourished cancer patients had increased plasma concentrations of 

adrenaline compared to well nourished control patients. Whole body oxy­

gen uptake, carbon dioxide production increased and mean arterial pres­

sure decreased significantly in response to adrenaline infusion in all 

patients. Plasma concentration of glucose and insulin did not change 

during adrenaline infusion, while FFA concentration increased in all 

patients. The regression plots of whole body oxygen uptake, carbon-

dioxide production and plasma FFA concentrations versus plasma adrena­

line concentrations were statistically significantly steeper in malnou­

rished patients compared to well-nourished patients when values from all 

s u b j e c t s  w e r e  t r e a t e d  a s  p o o l e d  o b s e r v a t i o n s  ( P a p e r  6 ) .  
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DISCUSSION 

Although much research effort has been spent all over the world on 

evaluating the mechanisms and effects of cancer cachexia, very little 

interest has been focused on the heart despite its virtue as a vital organ 

in the real sense of the word.This thesis consists of various experiments 

utilizing methods ranging from studies of isolated protein fragments to in 

vitro heart perfusions, in vivo studies in animais and clinical research in 

patients with the aim to evaluate the distant influence of malignant tumor 

disease on the circulatory system. It is a logical continuation of the 

previous investigations, dealing with the effects of tumor growth on host 

tissues performed in our laboratory during the past years. 

Anorexia is recognized as a prominent feature in cancer disease (DeWys, 

1977; Lundhoirn et al, 1980; Lundholm et al 1981) but many observations 

support the view that some metabolic changes arising in cancer patients 

are distinct from those associated with simple starvation or benign disease 

(Warnold et al, 1978; Shapot, 1979; Lindmark et al, 1984). It has also 

been shown that cancer can affect the host early and well in advance of 

nutritional stress (Wood et al, 1982). Therefore, in order to discriminate 

qualitatively between the effects of pure malnutrition and tumor specific 

metabolic and functional cardiac alterations groups of non-tumor animals 

with malnutrition were used in addition to freely fed controls. 

A common denominator of malignant tumor disease and conditions of pure 

starvation or undernutrition is negative energy and protein balance 

necessitating mobilization of endogenous tissues. The regulation of the 

subsequently altered metabolism and the adaptation of individual organs 

are not completly understood. In figure 10 our present view of the influ­

ence of malignant tumor growth on the heart is illustrated. 

Skeletal muscle constitutes the main, readily exchangeable pool of body 

protein. It is well recognized that net breakdown of skeletal muscle 

proteins represents an essential adaptation in situations of inadequate 

nutrient intake. Previous studies have also indicated tumor-specific accele­

ration of skeletal protein net degradation, indépendant of food intake 

(Stein et al, 1976; Coodlad 6 Clark, 1980; Norton et al, 1981; Kawamura 

et al, 1982). This might translate into abnormal depletion of body compo­

sition including a greater loss of body cell mass, in cancer patients 
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compared to states of pure undernutrition such as anorexia nervosa 

(Moley et al, 1987). The present study confirms previous work in refu­

ting that the heart is spared from this general wasting of muscle tissue 

(Keys et al, 1950; Smythe et al, 1962; Wiiens et al, 1967; Viart, 1977; 

Heymsfield et al, 1978; Nutter et al, 1979). Heart catabolism was, how­

ever, not tumor-specific as the heart weights were reduced in proportion 

to the loss of carcass (tumor-free body weight) in both tumor-bearing 

and benign reference states of malnutrition. 

CNS yr 
Anorexia 

Adrenals 
Noradrenaline 

TUMOR 

Adrenaline 

Cortisol 
Mono­
kines 

jnsulin ( 
resistance Immune 

system 

Acute phase 
response J 

Glucose j 

Fatty acids 
Liver 

Figure 10. Interrelationship between the malignant tumor and the heart. 
The tumor elicits an immunological response with subsequent release of 
immune proteins (monokines and related substances). These proteins may 
act as mediators to produce anorexia, acute phase response of the liver 
and hormone alterations. Anorexia and the acute phase response contribu­
te to protein breakdown in the heart with resulting cardiac hypotrophy. 
The heart, however, retains pumping ability to meet increased demands of 
oxygen supply. This may be achieved by increased catecholamine stimula­
tion in combination with increased B-receptor affinity. Insulin resistance 
and increased adrenergic tone leads to decreased glucose and increased 
fat utilization as myocardial energy substrate. Increased myocardial oxy­
gen consumption may contribute significantly to the elevated whole body 
energy expenditure in cancer. 
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A well known effect of skeletal muscle mass reduction is the feeling of 

weakness in both inanition and cancer disease. Studies on individual 

muscles, including electrically induced involuntary twitches, have confir­

med the decreased function in hypotrophic skeletal muscle (Jeejeebhoy, 

1986). If cardiac function should deteriorate in parallel with myocardial 

wasting it is not necessarily catastrophic provided that the circulatory 

demand of the host is diminished to the same extent. This might be the 

case in unstressed patients with undernutrition where energy expenditure 

is decreased (Keys et al, 1950) and, as shown in this study, the ratio of 

heart weight to body weight acually is increased. The situation in the 

tumor-bearing rats was, however, quite different as myocardial mass was 

reduced in parallel with the loss of carcass weight. The circulatory 

requirements of the tumor in combination with the acute phase response of 

the host consequently lead to increased demands on the heart as a pump. 

The fact that the tumor "consumes and replaces" lean tissues was revea­

led by the decreased ratio of heart muscle to body weight implying that 

"cardiac reserves" were quantitatively decreased in tumor disease. 

Fortunately the heart does not lose its functional capacity in proportion 

to its diminished mass. On the contrary, this study shows that cardiac 

function is well maintained in hypotrophy and even improved if normalized 

to heart weight. This effect was not specific for tumor induced cachexia 

but occurred in hearts from starved and protein-calorie malnourished rats 

as well. Our findings are in concert with reports of normal or enhanced 

left ventricular function in cachectic patients (Heymsfield et al, 1978; 

Cottdiener et al, 1978) and in vitro heart preparations in protein-calorie 

undernourished rats (Nutter et al, 1979; Penpargkul et al, 1980). Inte­

restingly, it has recently been reported an improvement of left ventri­

cular function and cardiac performance during caloric restriction in obe­

sity (Caviezel et al, 1986). in contrast, the comprehensive studies of 

Abel et al showed that left ventricular pressure and dp/dt were depres­

sed in severely malnourished dogs (Abel et al, 1979). These hypotrophic 

canine hearts had, however, an increased peak developed force and as 

intraventricular baloons were used, cardiac output could not be measured 

thus making conclusions of net cardiac pumping performance hazardous. 

Others have suggested adverse cardiac effects of malnutrition. Thus, 

Kyger et al found decreased pumping ability in hearts from protein-calorie 

malnourished rats (Kyger et al, 1978). The malnourished rats had however 

a lower heart rate not accounted for by pacing and an unphysiological 



high preload was used which caused several atria to rupture. Freund and 

Holroyde used a non-working Langendorff model and found only indirect 

suggestions of impaired cardiac pumping ability in malnourished rats 

(Freund £ Holroyde, 1986). In these studies which argue for a detri­

mental effect of malnutrition on heart function, no account is taken for 

the quantitative loss of myocardium. In conclusion, previous reports do in 

no way provide definite contradictions to our findings but might reflect 

differences in methodology. 

The ability of the heart to pump blood is of course the crucial variable in 

assessing cardiac adaptation in pathological conditions. However, to 

provide understanding of the underlying mechanisms and form a basis for 

therapeutical intervention detailed knowledge of myofibre function is 

essential. Due to the complexity of cardiac geometry the well maintained 

pumping ability of hearts from malnourished rats as found in this study 

does not necessarily mean that improved myofibre function accounts for all 

of the augmented performance per unit tissue. Thus, conformational and 

wall thickness changes of the hearts and subsequently altered compliance 

and wall stress might prevent the translation of a given left atrial filling 

pressure into an equal myofibre end diastolic length in hearts with variab­

le size making the interpretation of the Frank-Starling relationships 

hazardous, in fact, the impossibility to accurately assess fibre length in 

intact muscles, especially in a syncytium like the myocardium has led to 

questioning of the whole concept of Starling's law of the heart (Altschule, 

1986). 

However, when maximal afterload was induced by clamping the aortic 

outflow in combination with high preload this study showed that the 

contractility and intraventricular peak systolic pressure were well main­

tained in all hypotrophic hearts sustaining the view that individual myo­

fibre function was improved. In support of this conclusion are experi­

ments performed on isolated strips of myocardium where the problems of 

differences in heart size are reduced. Such experiments have shown 

increased developed tension in atrial strips derived from animals after 

prolonged starvation (Ko & Paradise, 1972) and augmentation of tension 

development in left ventricular trabecular muscles derived from rats 

subjected to prolonged undernutrition (Cohen et al, 1976; Nutter et al, 

1979). 
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Understanding of the mechanisms behind enhanced myofibre performance 

in hypotrophic hearts requires knowledge of cellular and subcellular 

adaptation, the protein metabolism being of prime interest. Net loss of 

lean tissue in weight stable organisms or the retarded growth in growing 

individuals result from an imbalance between protein synthesis and break­

down. A number of combinations of changes in these processes may 

occur. Skeletal muscle depends mainly on depressed protein synthesis in 

the regulation of wasting in chronic malnutrition, whereas increased 

degradation seem to play a role in acute trauma and sepsis {Miliward et 

al, 1976; Rennie, 1985). The contribution of changes in protein synthesis 

and degradation to wasting of muscle have received less attention in 

myocardium compared to skeletal muscle. Thus, in cancer disease no 

studies are available on protein metabolism in the heart but in pure 

undernutrition it has been shown that protein synthesis is reduced during 

both acute starvation and more prolonged nutrient deprivation (Carlick et 

al, 1975; Preedy et al, 1984). This study confirmes that cardiac protein 

synthesis is markedly depressed in conditions of acute starvation and 

severe protein-calorie malnutrition, whereas tumor-bearing led to a mode­

rate reduction of synthesis in growing rats. The synthesis of protein is 

regulated by gene transscription and translational modulation permitting 

fine tuning of the synthetic rate of each individual protein. Such unique 

mechanisms permitting selective modulation of degradative processes of 

individual proteins may not exist. Thus, alteration of synthesis rate is 

presumably the general key regulator in organ adaptation to altered 

demands. 

Our knowledge of the regulation and mechanisms of protein synthesis is 

far more advanced than our understanding of intracellular protein break­

down largely because of technical problems involved in the study of 

degradative processes (Wildenthal, 1980). We c ould not determine whether 

increased protein degradation was involved in the myocardial wasting in 

growing tumor-bearing rats as no measurements of the time course changes 

of heart protein content during tumor growth were performed. However, 

indirect evidence of increased protein degradation could be derived from 

the experiments on tumor-bearing adult weight-stable mice. Thus, protein 

synthetic efficiency was not impaired and fractional protein synthesis rate 

was not depressed in tumor-bearing mice implying that increased degrada­

tion must have contributed to the net loss of heart tissue. This may be in 

keeping with increased activity of lysosomal enzymes (e.g. Cathepsin D) 
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in hearts from tumor-bearing mice {Lundholm et al 1978  a). A plausible 

explanation for the finding that the net loss of heart tissue in tumor-

bearing mice is more dependent on increased protein breakdown, than in 

uncomplicated undernutrition where depressed synthesis is the main 

regulator, might be the net result of the combination of anorexia and 

acute phase response. Thus the nutritional deprivation would strive to 

depress synthesis, whereas the increased work load imposed on the heart 

by the circulatory demand of the tumor-bearing host could be a stimulus 

for increased protein synthesis. Increased heart work is a powerful and 

well described stimulator of protein synthesis (Isaksson, 1972; Moalic et 

al, 1984; Rappaport et al, 1986) but leaves degradation unchanged (Smith 

S Sugden, 1983). Degradation in tumor-disease might on the other hand 

be increased by the acute phase response which is known to have similari­

ties with situations of trauma and sepsis where protein breakdown is 

elevated (Bastable et al, 1979; Jeevanandam et al, 1984). The suggestion 

that cardiac protein degradation is increased in tumor disease stands in 

contrast to findings in skeletal muscle of both mice (Svaninger et al, 

1983) and man (Lundholm et ai, 1982). One explanation to this might be 

the decreased demands on skeletal muscle in comparison with the increa­

sed work load of the heart in progressive tumor growth. In line with this 

hypothesis is a recent report of a protective effect of increased muscle 

work  load on  ske le ta l  musc le  was t ing  in  ra ts  (Nor ton  e t  a l ,  1979) .  

Protein synthesis was in this study as in most other studies measured 

over a very short period of time. This can of course just give a momenta­

ry glimpse of the metabolic events that are subject to diurnal variation 

and are part of a dynamic and progressive disease state, it is thus 

possible that the metabolic adaptation in the early stages of tumor growth 

is different from that of more advanced disease. Such variation during 

the time course of a pathological condition can be seen in starvation 

where protein synthesis is promptly decreased at the onset of food depriva­

tion whereas protein degradation has been reported initially decreased 

(Crie et al, 1980; Smith & Sugden, 1986) followed by a final increase as 

some sort of last resort emergency when the animal becomes desperately 

depleted (Miiiward et al, 1976; VVaterlow et al, 1978). 

The information obtained from measurements of total protein synthesis is 

limited as the heart is a mixture of cell types and each cell contains 

hundreds of proteins, each with its own rate of synthesis and dégrada-
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tion. Heart proteins have half lives ranging from one hour to several 

days (Waterlow et al, 1978}. In the response to a departure from the 

norma! state ,the synthesis of some proteins may be increased and others 

decreased. This can be exemplified by the reaction of the liver to inflam­

mation or tumor-growth where the protein synthetic rate of some proteins 

is reduced whereas others e.g. acute phase proteins are synthesized at 

markedly increased rates (Lundholm et al, '1979). During in vitro perfu­

sion, hearts from tumor-bearing rats showed a decreased release of the 

sum of ail amino acids which was partly explained by a lower efflux of 

glutamine and alanine whereas the non-metabolizable amino acids were 

released at increased rates. This is in keeping with a different turnover 

of individual cardiac proteins as suggested by others (Smith S Sugden, 

1986). 

Despite the possibility of altered protein turnover the relative distribu­

tion of soluble, myofibrillar and collagen types of protein has been found 

unaltered in hearts from tumor-bearing mice indicating that the variuos 

gross protein compartments are equally reduced in the catabolic process 

(Sjöström et al, 1987). However, each of the major protein compartments 

contain an abundance of individual proteins making further and more 

detailed characterization necessary in order to explore adaptive changes. 

The functionally most important cardiac protein compartment is the myofib­

rillar which is composed of the contractile proteins actin and myosin and 

the regulatory proteins troponin and tropomyosin. These individual pro­

teins show heterogenous synthetic rates and newly synthesized molecules 

constitue a precursor pool for incorporation into myofibrils (Zak et al, 

1976). The half life of the contractile proteins is shortest for myosin 

heavy chain (5 days), intermediate for troponin, tropomyosin, myosin 

light chain and longest for actin (8 days) (Wildenthal, 1980). This 

heterogeneity of the rate of synthesis of the various contractile proteins 

has been found maintained during overload and subsequently increased 

overall protein synthesis (Moalic et al, 1984), whereas starvation has been 

reported to induce discoordinate reduction of myofibrillar protein synthe­

sis with a more profound reduction of actin synthesis compared to myosin 

synthesis (Clark £ Wildenthal, 1986). In this study the relative distribu­

tion of these major subgroups of cardiac contractile proteins was found 

unaffected by tumor-bearing, starvation and protein-calorie malnutrition 

compared to freely eating controls. In concert with our finding is the 

report of Zähringer et al who found the relative content of specific mRNA 



44 

coding for the major myofibrillar cardiac proteins unchanged in starvation 

and protein deprivation (Zähringer et al, 1985). 

There is, however, the possibility of qualitative alterations of individul 

myofibrillar proteins with subsequent influence on their functional charac­

teristics. Myosin occupies a central position in the transduction of chemi­

cal to mechanical energy and in the mammalian heart polymorphism of 

cardiac myosins seems to be a general feature. Native ventricular myosin 

can be separated in non-denaturing pyrophosphate gels into three isozy­

mes V1 Vj and in order of decreasing electrophoretic mobility and 

ATPase activity. The isomyosin distribution is determined by changes in 

transscription of specific genes coding for different forms of myosin 

heavy chains. The expression of the isomyosin genes appears to be under 

multifactorial control and varies with animal species (Lompré et al, 1981). 

The pattern of isomyosin composition is also altered by age and is influen­

ced by various pathological conditions such as volume overload, pressure 

overload, diabetes, thyroid and growth hormone aberrations (Hoh et al, 

1977; Morkin et al, 1983; Dillmann et al, 1984; Dillman et al, 1985). 

Several authors have found correlations between cardiac function and 

isomyosin composition (Schwartz et al, 1981; Alpert S Mulieri, 1986). We 

found no difference in electrophoretic mobility of native myosin among the 

animal groups. In order to detect possible differences in contractile 

protein structure, myosin molecules were subjected to trypsin digestion 

and the peptides, separated electrophoretically, thus creating a "finger­

print". The results indicated merely minor quantitative differences bet­

ween the various animal groups. Some indications of altered actomyosin 

properties were, however, found in SDS Polyacrylamide gel electrophoresis 

as actin seemed more tightly bound to myosin in hearts from tumor-bearing 

and PCM rats compared to starved and freely-fed control rats. The 

functional significance of this finding is, however, not clear. 

Despite the fact that we were unable to detect any major shifts of the V1 

-V3 isomyosin distribution or tryptic cleavage pattern between groups, 

the ATPase activities in purified myosin preparations were depressed in 

hearts from all groups of cachectic animals which is in agreement with 

previous reports from studies of various states of undernutrition (Carber 

& Neely, 1983; Dillman et al, 1985). Discordant patterns of total myosin 

ATPase activity and isomyosin distribution has previously been reported 

(Winegrad et al, 1987). The decreased ATPase activities might partly be 
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mediated through hormonal mechanisms. Thyroid hormones affect myosin 

synthesis through binding to nuclear receptors which alters transcription 

of specific genes, low hormone levels yielding isoforms of low ATPase 

activity (Garber et al, 1983; Everett et al, 1984). Low insulin levels are 

similarly associated with decreased ATPase activities {Garber et al, 1983; 

Dillman et al, 1985). Consequently, the low T3 (Burman et al, 1980; 

Persson et al, 1985; Svaninger et al, 1986) and insulin (Lundholm et al, 

1978b; Svaninger et al, 1987a) levels in cachexia might play a regulatory 

role for the decreased ATPase activities observed in tumor-bearing and 

protein-calorie malnourished animals.Transscriptional regulation of myosin 

can, however, hardly explain the decreased enzyme activity found in 96 h 

starved rats in this study and by others (Garber 5 Neely, 1983) as the 

turnover of myosin is slow. An alternative mechanism might be post-trans-

lational modification of myosin (Morkin et al, 1983). Such conformational 

myosin modulation with influence on ATPase activity may include altera­

tions of sulfhydryl residues near the active sites on the globular head of 

the heavy chains (Scheuer 8 Bhan, 1979). 

Our finding of decreased myosin ATPase activity and increased function 

in hypotrophic hearts seem contradictory but it has previously been 

reported a dissociation of myosin Ca++ ATPase activity and contractile 

function in rat myocardium (Effron et al, 1983; Bhatnagar et al, 1985). 

The relevance and physiological significance of these apparantly conflic­

ting findings are unclear. It is, however, unlikely that ATPase activity of 

purified myosin alone can provide information that is definitive regarding 

the contractile process in vivo. ATPase activity can be measured in a 
++ 

number of different ways apart from Ca activated purified myosin. 

However, the physiological importance of various in vitro ATPase activity 

measurements is far from clear. The ATP splitting of myosin is activated 

in vivo by making contact with actin and using magnesium as cofactor. 

Thus the most important cation for physiological activity of actin regula­

ted myosin ATPase is magnesium, yet magnesium inhibits pure myosin 

ATPase activity and therefore has not been used in purified myosin 

preparations (Scheuer & Bhan, 1979). Heart contractile function has also 

been reported dissociated from magnesium stimulated myofibrillar ATPase 

activity (Dowell, 1984) and discoordinate results of ATPase activity du­

ring different conditions of assay has been shown in hypothyroidism 

where Ca++ ATPase activity is reduced whereas K+-EDTA ATPase is 

unaffected (Rovetto et al, 1972; Garber & Neely, 1983). In addition to 
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myosin, the loci of control that might be important in alterations of cont­

ractile function include the ionic movements and electrical currents cont­

rolled by the sarcolemma, the energy dependent uptake and release of 

calcium by the sarcoplasmic reticulum and the sensitivity of the troponin-

tropomyosin system to alterations in calcium concentration in the cell 

(Philipson et al, 1980). Such control of the activity of contractile pro­

teins might be regulated by the phosphorylation of myosin light chains 

and troponin (Kopp et al, 1979; Stull et al, 1980; Morano et al, 1986J. 

Another major structural component of the sarcomere is actin of which 

exist isoforms with functional significance (Schwartz et al, 1986). 

Interestingly Ca++ activated myosin ATPase activity has been considered 

as an index of the rate of myosin cross-bridge cycling, high enzyme 

activity leading to increased velocity of shortening whereas low activity is 

associated with prolongation of the muscular twitch i.e. the muscle shor­

tens and develops force more slowly throughout a longer period and 

consequently contracts more economically (Alpert, 1986; Lecarpentier et 

al, 1987). Hence, lowering of myosin ATPase activity in malnutrition may 

be an adaptive physiological response that results in the more efficient 

conversion of chemical energy into cardiac contraction. 

Hypothetically the low circulating levels of thyroid hormones detected in 

both man (Persson et al, 1985) and experimental animals (Svaninger et al, 

1986) with cancer cachexia and other types of malnutrition might be part 

of a logic down regulation of metabolism in an effort to optimize survival 

in situations of inadequate nutrient intake. As mentioned above, the 

effects on the heart may be a decreased ATPase activity and subsequently 

diminished oxygen consumption. A consistent finding in this study was 

the decreased oxygen uptake in hearts from starved and protein-calorie 

malnourished rats sustaining this hypothesis. However, in conditions with 

increased circulatory demand, the heart must be able to respond by 

pumping more vigorously. This requires a regulatory system to relay the 

message of increased circulatory needs to the heart. The adrenergic 

system constitutes the most powerful stimulator of cardiac performance by 

influencing both chronotropic and inotropic mechanisms making it a possi­

ble candidate for such regulatory function (Opie, 1969). This study 

clearly shows experimental evidence that the physiological response to 

adrenergic stimulation is increased in malnutrition, regardless of the 

cause of cachexia. Thus both sensitivity and reactivity was augmented to 
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graded isoproterenol and noradrenaline exposure in malnourished rats. 

The regressions plots of several parameters versus plasma a^i....aline 

concentration were statistically significantly increased in malnourished 

patients compared to well nourished controls during adrenaline infusion. 

The variables that showed this increased response were associated with 

heart function i.e. mean arterial pressure and heart rate apart from whole 

body energy metabolism. An increased response to adrenergic stimulation 

in malnutrition has previously been shown in adipocytes (Dax et al, 1981; 

Wolfe et al, 1987). Although this study was not designed to evaluate 

lipolysis, the increased plasma glycerol levels in malnourished patients 

sustains these previous investigations. The increased physiological respon­

se to catecholamines was evident in all the various states of malnutrition. 

Our results are in agreement with previous clinical (Jayarajan et al, 1985) 

and experimental (Heriihy et al, 1984) reports. An intriguing possibility 

is that modulation of adrenergic stimulation may be one of several common 

adaptations in response to the loss of cardiac contractile muscle elements. 

Thus intrinsic myocardial dysfunction in acute sepsis (Smith et al, 1986) 

and in cardiomyopathic hamsters (Rossner S Coudrai, 1986) were associated 

with increased sensitivity to isoproterenol. 

Possible pathways to obtain increased adrenergic drive on the heart 

include increased exposure to catecholamines, increased receptor numbers, 

increased receptor affinity or a combination of these. Pure undernutrition 

is generally associated with signs of decreased adrenergic activity such as 

bradycardia, hypotension and decreased energy expenditure as well as 

decreased noradrenaline turnover (Young S Landsberg, 1977; Avakian, 

1982; Rappaport et al, 1982). Plasma levels of catecholamines and urine 

output of catecholamine metabolites are also decreased in uncomplicated 

starvation (Jung et al, 1979; DeHaven et al, 1980; Cross et al, 1979). 

Clinical undernutrition is, however, seldom uncomplicated and pure but is 

often associated with stress from disease and treatment. Thus, cancer 

cachexia is associated with increased circulating levels of catecholamines 

as shown in this study and by others (Russel et al, 1984). Furthermore, 

we have recently shown that urine excretion of catecholamines is signifi­

cantly higher in cancer patients compared to control patients matched for 

malnutrition and inflammation (Drott et al, 1987). The increased physiolo­

gical response to catecholamines can thus hardly be explained by receptor 

upregulation due to decreased exposure to adrenaline and noradrenaline. 

Regulation of the adrenergic response to prolonged alterations of catecho-
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lamine exposure can operate via modulation of receptor density. We c ould, 

however, not detect any impact of pure malnutrition or tumor-growth on 

B-receptor numbers, confirming previous reports from studies on calorie 

restricted animals (Crandall et al, 1983). 

The increased physiologic response to catecholamines was instead associa­

ted with altered affinity of the B-adrenergic receptors. Assessed in 

isolated cardiomyocyte membranes, the affinity was at least ten-fold 

increased in all the malnourished groups of rats compared to freely-fed 

controls. Previous ligand binding studies of B-adrenergic receptors have 

suggested the ternary complex model in which the receptors show high 

affinity towards agonists if coupled to the stimulatory guanine nucleotide 

binding protein (Ng) (DeLean et al, 1980). Guanine nucleotides convert 

all the high affinity receptors to the low affinity state which is believed 

to mirror the dissociation of the receptor-Ns~complex. The extent to 

which an agonist may stimulate the activity of adenylate cyclase correlates 

with the percentage of adrenergic receptors in the high affinity state,i.e. 

equivalent to the number of receptors shifted in agonist affinity by 

guanine nucleotides. Several features of isoproterenol binding to B-recep-

tors in hearts from malnourished rats were, however, not compatible with 

the ternary complex model. Thus, despite increased affinity of the high 

affinity state the percentage of receptors in this state was diminished and 

addition of a CTP analogue shifted the affinity of the low affinity state 

but not the high affinity state as expected in hearts from PCM and tumor-

bearing rats. The reaction to a CTP analogue in cardiomyocyte membranes 

from starved rats was similar to that of control rats but attenuated. The 

difference between receptor characteristics in acute and more prolonged 

undernutrition might indicate that the adaptation requires some time to 

develop. In general, catecholamines stimulate adenylate cyclase with an 

order of potency that parallels their inotropic potency. We were, how­

ever, not able to detect any increase of adenylate cyclase activity despite 

the intriguing combination of increased receptor affinity and increased 

physiological response. This does, however, not exclude the possibility 

that cAMP relays the message in vivo as the concentration range of 

adrenaline used for in vitro stimulation (umol levels) is unphysiologically 

high as compared to the in vivo situation (nM levels) but other possible 

pathways for transmembrane signaling do also exist. Thus, catecholamine 

induction of increased contractility has been reported without cyclic 

nucleotide formation (Opie, 1969; Benfey et al, 1974). Such B-receptor 
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mediated influence on heart contractility by mechanisms other than adenyla­

te cyclase stimulation might operate through regulation of magnesium ion 

transport (Maguire, 1984). Furthermore, phosphorylation of myosin has 

functional effects and myosin light chain kinase is not dependent on cyclic 

nucleotides for activity but requires the calcium binding protein calmodu­

lin and calcium for activity (Adelstein, 1980). It has also been reported 

that agents coupled to the inhibitory nucleotide binding protein can 

influence glucose transport in isolated adipocytes through a non-cyclic 

AMP associated mechanism (Lönnroth et al, 1987). 

Glucocorticoid production is increased in cancer disease (Schaur et al, 

1979; Svaninger et al, 1987c). These hormones have a permissive effect in 

the adrenergic regulation of cardiac contractility. This effect is obtained 

by modification of calcium influx through the sarcolemmai membrane and is 

not mediated by adrenergic receptors. Thus, corticosteroids can influence 

the process of contraction by potentiating adrenergic stimulation by a 

non-cAMP dependent mechanism (Seleznev 8 Martynov, 1982). An alternative 

explanation to the increased receptor affinities and the lack of increase in 

cAMP production might be a receptor population that has a high agonist 

affinity but does not couple to adenylate cyclase (Dixon et al, 1987). The 

adrenergic hypersensitivity could not be explained by an attenuated 

muscarinic inhibition of adenylate cyclase activity, as muscarinic receptor 

numbers were unaltered and their affinities increased in the various 

states of malnutrition. 

In contrast to conditions of starvation and undernutrition where energy 

requirements are decreased, the tumor-bearing host exhibits increased 

energy expenditure (Warnold et al, 1978; Lindmark et al, 1983; Lindmark 

et al, 1984). This has been found associated with increased heart rate 

(Karlberg et al, 1981). The tissues and organs mainly responsible for the 

elevated oxygen consumption in cancer disease has hitherto not been 

clearly identified. This study indicates that the heart might be a signifi­

cant contributor to the increased oxygen demand in the tumor situation as 

oxygen uptake was constantly increased during all experimental conditions 

in hearts from tumor-bearing rats, whereas starvation and protein-calorie 

malnutrition led to decreased oxygen uptake compared to freely fed cont­

rols. Increased cardiac oxygen consumption might be secondary to elevated 

circulatory demands due to metabolic alterations in peripheral tissues 

including the tumor itself. It has recently been suggested that the presen-
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ce of the tumor directly causes an increase in the rate of fuel oxidation 

in brown adipose tissue and that the wasting of other tissues is then 

caused by the demand of brown adipose tissues for metabolic substrates 

(Brooks et al, 1981; Edström et al, 1986; Shellock et al, 1986). However, 

this cannot explain the increased oxygen consumption per work load that 

was evident in hearts from tumor-bearing rats. An increased utilization of 

fat as energy fuel might contribute to the increased oxygen consumption 

as more oxygen is required to metabolize equicaloric amounts of fat compa­

red to glucose (Siess et al, 1985). Thus, the heart itself might be invol­

ved as an energy draining organ in cancer disease. Further indications of 

an altered energy metabolism is evident from the experiments on starved 

and tumor-bearing rats. Hearts from tumor-bearing rats had a significantly 

lower glucose uptake compared to both starved and freely-fed control 

rats. We did not measure fat oxidation directly but it can be deduced 

from the increased oxygen consumption and decreased glucose uptake that 

hearts from tumor-bearing rats must rely more on fat substrate than 

hearts from control rats. Endogenous myocardial fat is available and can 

account for an increased triglyceride oxidation rate during the comparati­

vely short in vitro experiment (Olson £ Hoeschen, 1967; Crass et al, 

1972; Morgan et al, 1984). In vivo this might translate into increased 

utilization of circulating fat substrate as shown in patients with cancer 

(Hansell et ai, 1986). In support of this hypothesis are elevated plasma 

glycerol levels in cancer patients (Edén et al, 1985; Paper 6). The increa­

sed plasma concentrations of catecholamines in combination with increased 

catecholamine sensitivity might mediate the increased fat oxidation in 

tumor disease. Thus, adrenergic stimulation has been shown to enhance 

respiration of fat and decrease glucose uptake {Opie, 1969). 

The low thyroid state might cause a prolonged systole and subsequent 

prolonged Q-T time which has been shown clinically in malnourished 

patients. The prolonged Q-T time is also associated with an increased risk 

for life threatening ventricular arrhythmias (Moss, 1986). Sudden, unex­

pected death has been reported in patients who have lost considerable 

weight on the very low energy liquid protein diets (Isner et al, 1979) and 

in patients with weight loss complicating anorexia nervosa (Isner et al, 

1985). One hypothetical explanation for these fatal arrhythmias might be 

that situations of stress induce elevated adrenergic activity which in 

combination with increased B-adrenergic sensitivity could induce electrical 

instability in the heart of the malnourished individual (Opie et al 1979). 
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We h ave recently addressed the question of altered electrical properties in 

hearts from malnourished rats both in vitro and in vivo. Despite the known 

difficulties to elicit ventricular arrhythmia in rat hearts preliminary data 

show that starvation and tumor-bearing are associated with cardioelectrical 

abberations including a significant delay of the vulnerable period to the 

end of the QT interval and a tendency towards increased timespan where 

ventricular fibrillation could be induced. 

SUMMARY AND CONCLUSIONS 

In summary, this study shows that cardiac hypotrophy in tumor disease 

involves alterations of energy and protein metabolism as well as adrener­

gic modulation. The resulting functional adaptation of the hypotrophic 

heart was, however, not limited to tumor-bearing rats but was also evident 

in starved and protein malnourished rats. Teleologically, the increased 

sensitivity and reactivity to adrenergic stimulation and concomitantly 

increased B-adrenoceptor affinities may be general means to minimize 

deterioration of pumping performance during malnutrition rather than 

being specific to tumor disease. Maintained and perhaps even increased 

sensitivity to adrenaline was confirmed in malnourished patients. Ca++ 

activated purified myosin ATPase activities were depressed in hearts from 

all groups of malnourished animals although only minor alterations of 

myosin structure could be detected. 

Some observations in tumor-bearing hosts might indicate specific effects of 

the presence of the tumor in addition to the effects of malnutrition. 

Thus, cancer patients had elevated plasma levels of adrenaline and in 

common with tumor-bearing rats showed signs of increased fat utilization 

as energy substrate. Hearts from tumor-bearing rats had an increased 

oxygen uptake, even after normalization to left ventricular work, which 

might indicate that the heart contributes to the increased whole body 

energy expenditure in cancer disease. Although wasting of cardiac muscle 

was evident in all hypotrophic hearts, tumor-bearing animals showed 

evidence of an increased protein breakdown compared with animals with 

pure undernutrition. In starved and protein malnourished controls, cardiac 

hypotrophy was explained by a decreased protein synthesis, it is still 

unclear how the "functional reorganization" of the heart in cancer disease 

and malnutrition is coordinated and the fine details of how each change 

contributes to specific as well as overall performance remains to be clari­

fied. One important challange for the future is to elucidate whether 

electrical instability might impose a risk for arrythmia. 
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