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ABSTRACT 
 

 
 

Many human diseases, such as rheumatoid arthritis and type 2 diabetes 
mellitus, have a very complex development, depending on both environmental and 
multiple genetic factors. By crossing inbred rat strains susceptible to a genetic 
disorder with strains resistant to the same disorder, genomic regions associated with 
the disease can be identified, so called quantitative trait loci (QTLs). A QTL region is 
often rather large, sometimes covering hundreds of genes. To help selecting the most 
likely causative candidate genes from such QTLs in rat, we have created a publicly 
available application, called candidate gene capture (CGC).  

The CGC application was primarily applied on experimentally induced 
arthritis QTLs in rat. CGC uses an array of keywords compared to the reference term 
“arthritis”. For each keyword, this results in a keyword score that reflects the 
percentage of PubMed abstracts containing the keyword that also contain the 
reference term. OMIM records for human genes localized to human regions 
homologous to rat QTL regions, are scanned for all keywords. The sum of all 
matching keyword scores is used to rank candidate genes within each QTL. When 
evaluated, the CGC application is able to rank candidate genes for arthritis-associated 
QTLs in a manner very similar to what is done manually. 

In a second application, CGC was applied on non-insulin dependant diabetes 
mellitus QTLs in rat. Here, the number of included keywords was dramatically 
increased. In the CGC-Diabetes application the user can choose from 25 different 
reference terms, to which the keywords are compared. The reference terms are 
selected to represent sub-phenotypes of diabetes so that the user can choose which 
distinct characteristics to analyze. A “phylogenetic tree” was created to give an 
overview of how much the gene rankings would differ when different reference terms 
are used. Just like the CGC-Arthritis application, the CGC-Diabetes application 
proves to be successful in ranking candidate genes in a manner very similar to what is 
done manually. 

In an extended version of the CGC-Arthritis application, CGC-RefLink, 
candidate genes identified for a QTL using CGC can be functionally connected to 
candidate genes in other QTLs via hyperlinks in the respective OMIM records. In a 
comparative study, CGC-RefLink was applied on arthritis QTLs from two distinct rat 
crosses. In this way, we were able to find functional connections between genes in 
QTLs from the two crosses that could contribute to a similar arthritis phenotype. 

Finally, using the CGC-Arthritis and the CGC-RefLink applications, we 
analyzed the localization of candidate genes in the rat genome. We concluded that i) 
certain QTLs from two different rat crosses harbor a number of genes involved in 
similar functions, which could be associated to arthritis and ii) candidate genes are 
randomly distributed between QTL and non-QTL regions.  
 
Keywords:  rat, complex disease, rheumatoid arthritis, type 2 diabetes mellitus, QTL, 
candidate genes, web application, text mining. 
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ABBREVIATIONS 
 

 
 
Aia  Adjuvant-induced arthritis 
BB/Dr  Bio-breeding diabetes-resistant (inbred rat strain) 
BN  Brown Norway (inbred rat strain) 
CGC  Candidate gene capture 
Cia  Collagen-induced arthritis 
DA  Dark agouti (inbred rat strain) 
EIA  Experimentally induced arthritis 
F1  First generation of a cross 
F2  Second generation of a cross (F1 x F1) 
GO  Gene ontology 
HSA  Human chromosome (Homo Sapiens) 
Mb  Mega base pairs 
MeSH  Medical Subject Headings 
Niddm  Non-insulin dependent diabetes mellitus 
Oia  Oil-induced arthritis 
OMIM  Online Mendelian inheritance in man 
Pia  Pristane-induced arthritis 
QTL  Quantitative trait locus 
RA  Rheumatoid arthritis 
RNO  Rat chromosome (Rattus Norvegicus) 
Scwia  Streptococcal cell wall-induced arthritis 
T2D  Type 2 diabetes mellitus 
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INTRODUCTION 
 

 
 
Complex diseases 
 

Genetic diseases that occur due to a single gene mutation and that interfere with a 
specific function can often be identified by the pattern of inheritance. These diseases 
are defined as autosomal, x-linked, recessive or dominant and follow a strict 
Mendelian inheritance pattern.  
 
However, many chronic human diseases do not follow a Mendelian pattern and the 
onset of the disease is usually influenced by a number of genes as well as 
environmental factors [1]. Human conditions that exhibit such complexity include 
rheumatoid arthritis, diabetes mellitus, various cancers, hypertension and many more. 
The complexity of these conditions makes them much more difficult to study than 
monogenic diseases. The more genes that are involved, the smaller the contribution of 
each gene to the disease and the harder they become to detect [2]. In addition, a 
specific phenotype can develop through the action of different susceptibility genes in 
different individuals (genetic heterogeneity). To find common genetic aberrations, 
much effort needs to be made in screening samples from large numbers of patients 
[3]. 
 
 
Animal models/ Rattus Norvegicus 
 

Animal models are often used to study complex diseases. One advantage in using 
animal models is that the genetic and environmental heterogeneity, which will always 
be a complication when studying a human population, can be greatly reduced by 
controlled breeding and identical habitats. The brown rat (Rattus Norvegicus) is one 
of the most commonly used animal models for complex human diseases. The brown 
rat has been bred as a laboratory animal since the 19th century and has been used in a 
wide spectrum of physiological, psychological and genetic studies [4]. More than 500 
inbred rat strains have been developed for a wide range of phenotypes and as models 
for human diseases [5]. 90% of the genes identified in rat have homologous 
counterparts in both mouse and human, making it a good model for human genetics 
[6]. Other advantages in using rat as a model for human diseases include large litter 
size, short gestation period and a well-studied biology [7]. In addition, compared to 
smaller rodents, the physiology of rats is more similar to human. The almost complete 
sequence of the rat genome was released in April 2004, making the rat even more 
useful as a model of human genetic diseases. Consequently the identification of genes 
and mutations associated with disease has accelerated in the recent years [8].  
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QTL analysis 
 
Inbred rat strains, that are susceptible to a condition mimicking a human disease, can 
be used to map genetic regions to a given phenotype. By crossing rats susceptible to a 
disease (P1) to rats resistant to the same disease (P2) and then making intercrosses of 
the offspring (F1xF1), alternatively backcrosses to one of the parents (F1xP), a 
generation of rats whose genome will be a mix of the two P-animals will be 
generated. Using genetic markers, genetic regions that are inherited from the two 
inbred strains can be identified. By statistically linking regions inherited from the 
susceptible strains to animals displaying characteristics of the disease under current 
investigation, genomic regions harboring disease-enhancing alleles can be discovered. 
Such regions are called Quantitative Trait Loci, or QTLs [9].  
 
A common problem with QTL analysis however, is that the genomic regions found to 
be associated with a disease are rather large, covering hundreds of genes. In addition, 
a QTL can be identified because it harbors a single gene with a relatively strong effect 
on a phenotype, or it can be identified due to several genes, each adding a smaller 
contribution to the studied phenotype. Thus, in most cases it is unknown how many 
disease-enhancing alleles a given QTL actually contains. For example, the collagen-
induced arthritis QTL Cia5 has been shown to comprise at least three loci regulating 
arthritis severity [10]. To find which gene or genes within a QTL that actually 
contributes to the phenotype under study is the major challenge. A first step in the 
search for such causative genes most often includes a time consuming work to find 
candidate genes.  
 
 
Sources of gene information 
 
One source of information that can be very useful when deciding whether a gene is a 
probable candidate gene for a certain disease is the OMIM database (Online 
Mendelian Inheritance in Man) [11]. OMIM contains textual information for over 
12,000 human genes as well as for all known Mendelian disorders. The information is 
in the form of summaries of scientific papers with a focus on the relationship between 
genotype and phenotype and with references to the original papers included. Hence, 
OMIM gives a comprehensive, up to date overview of what is known about the 
functions of specific genes and associated phenotypes.   
 
Another source of functional information, which is often used in bioinformatics 
applications, is gene ontology (GO) [12]. GO is a collaborative effort of several 
databases associated with the GO consortium. Genes in GO are annotated with terms 
from a controlled vocabulary divided into three hierarchical categories: cellular 
component, biological process and molecular function. Although not as detailed as 
OMIM, GO can give a comprehension of the functions of a gene. In addition, the 
form of a controlled hierarchical vocabulary makes GO a valuable bioinformatics 
resource.  
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Available tools for selecting candidate genes 
 
There are a number of different bioinformatics tools available, which are all built to 
aid the prioritization of candidate genes. A majority of these were developed in the 
same time period as the candidate gene capture (CGC) application (Paper I). A 
possible explanation may be that the need for these kinds of tools and the possibility 
to create them coincided at this time. Some representative examples are listed below. 
 
GeneSeeker searches several databases simultaneously and filters positional candidate 
genes based on expression and phenotypic data from both human and mouse [13]. The 
application is best suited for disorders where the expression pattern is expected to be 
aberrant in the affected tissues. The application presents a list of candidate genes 
based on the cytogenetic region and expression locations entered by the user. No 
prioritization is made between the presented suggestions. 
 
POCUS (prioritization of candidate genes using statistics) is a downloadable software 
that ranks candidate genes within a susceptibility region based on similarity to genes 
within other susceptibility regions for the same disease [14]. This similarity is 
measured using GO terms, InterPro domain IDs and expression pattern terms. Genes 
within two susceptibility regions sharing similarities, where the probability of finding 
this by chance is less than 5%, are considered good candidates. This method is not 
that useful if the susceptibility regions analyzed contain many genes however. In 
addition, if two genes contributing to the same disease are not annotated with the 
same functional data, they will not be found.  
 
SNPs3D is an application available online that uses keywords weighted against a 
selected disease to search genome wide for candidate genes using PubMed abstract as 
the information source [15]. The scoring of keywords in SNPs3D, which was released 
about a year after CGC, is very similar to ours and is based on the number of abstract 
associated with a disease that contain the keyword divided by the total number of 
abstracts containing the keyword. The information used for text mining is PubMed 
abstracts associated with genes. SNPs3D can also give information on relationships 
between candidate genes in a graphical interface, based on keywords that are 
associated with different genes. However, this tool is not designed for searches within 
restricted chromosomal regions, such as QTLs. 
 
G2D (candidate genes to inherited diseases) prioritizes candidate genes within a 
genomic region (maximum limit 50 Mb) from one of three starting points: a disease 
phenotype described as an OMIM identifier, genes associated with the disease or 
another genomic region associated with the disease [16, 17]. If an OMIM ID is given, 
the MeSH terms of all articles cited in the OMIM record are used to score similar GO 
terms. The sequences of the genes within the selected region are then compared to a 
set of genes that are scored based on the GO terms. A gene with high sequence 
homology to a gene with a high GO score is considered to be a good candidate gene. 
If known disease-associated genes are given, the candidate genes are prioritized based 
on their similarity of GO terms and sequence similarity. If another region associated 
with the disease is given, all genes with protein-protein interactions with genes within 
the second region, are suggested as candidate genes. The interactions are collected 
from the STRING database, which contains known and predicted protein interactions 
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[18]. The candidate genes are ranked based on the STRING score, which indicates 
how likely it is to be a true connection.  
 
GFSST (gene function similarity search tool) is a web application that finds genes 
from searches with a protein identifier [19]. GFFST extracts GO terms associated 
with the given protein and ranks genes based on similar GO profiles. Alternatively, a 
set of GO terms can be entered as the search criteria. The search can be performed 
towards the human or mouse proteome, but searches limited to genomic regions are 
not implemented. 
 
Endeavour is a downloadable application that prioritizes candidate genes based on 
similarities to genes known to be associated to a specific phenotype [20]. The 
similarities are based on multiple information sources, such as PubMed abstracts, GO 
terms, InterPro protein domains, KEGG pathways, expression data, sequence 
similarity (BLAST) and more.  
  
Suspects is another web application that ranks candidate genes based on similarity to 
genes known to be associated with a complex trait [21]. Within a given genomic 
region, Suspects first collects genes that are likely to be involved in disease based on 
sequence features. The GO terms, InterPro domains and expression profiles for the 
genes are then compared to the set of genes that are known to be associated with the 
investigated disease.  
 
TOM (Transcriptomics of OMIM) is another example of a web application that within 
a genomic locus prioritizes among candidate genes based on similarities to genes 
known to be involved in a disease [22]. The similarities are scored based on GO terms 
and expression profiles. Alternatively, a second locus associated with the disease can 
be entered, and similarities between genes from the two loci are presented.  
  
BioMercator is a statistical tool that based on QTL maps from different experiments 
generates consensus loci and hence minimize the number of candidate genes [23]. 
BioMercator is available on request.  
 
QTL Mixer searches QTLs associated with similar traits from three different species 
(rat, mouse and human). Homologous genes localized within QTLs in all three species 
are considered to be the best candidates [24]. At present, the only diseases available 
for analysis are multiple sclerosis (experimental allergic encephalomyelitis in mouse 
and rat) and rheumatoid arthritis (collagen-induced arthritis in mouse and rat). 
 
From this overview it can be concluded that a majority of the applications available 
for candidate gene prioritization are focused on finding candidate genes that share 
certain characteristics with genes that are already known to be associated with a 
disease (POCUS, G2D, GFSST, Endeavour and TOM). A complex disorder can 
however be caused by susceptibility genes involved in very different biochemical 
pathways, cellular functions and cellular localizations and with totally different DNA 
sequences. Hence, candidate genes that differ too much in functional annotation, 
sequence features and expression profile will probably not be selected using a 
similarity-based prioritization. 
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A second strategy applied by BioMercator and QTL Mixer, involve methods based on 
genomic localization. They may both decrease the number of candidate genes, but 
will not tell much about the remaining genes. 
 
Finally, SNPs3D and our CGC application use a rather similar text mining approach 
with weighted keywords (Paper I). However, our method is focused on rat QTLs, 
while SNPs3D makes genome wide searches in human. The textual information used 
in SNPs3D is PubMed abstracts, while we use PubMed abstracts to score keywords 
and OMIM as the textual information source. Once again, we like to emphasize that 
SNPs3D was published about one year after the first publication of CGC (Paper I). 
 
Our choice of using a text mining approach in CGC is based on the belief that written 
text might be more informative when prioritizing among candidate genes, since a step 
of human consideration is added to the data. In addition, information extraction from 
text requires no similarity to other disease-associated genes (connections to well-
established disease-associated genes can of course be valuable information in the 
form of text as well). More specifically, we think that OMIM records is a good choice 
of information source, since they contain an up to date and comprehensive resume of 
the knowledge of specific genotype – phenotype interactions. 
 
 
Rheumatoid arthritis 
 
Rheumatoid arthritis (RA) is one of the most common autoimmune diseases. RA is 
characterized by chronic inflammation of the joints accompanied by variable degrees 
of erosive bone loss and cartilage destruction. The prevalence of RA worldwide is 
about 1% and women are affected about 2.5 times as often as men. Based on twin 
studies, the genetic contribution to RA is calculated to be around 60%, with the major 
histocompatibility complex as the predominant contributor [25, 26]. Environmental 
factors connected to the incidence of RA include smoking, coffee consumption, body 
mass index and physical activity [27]. To find genes contributing to RA, rat models 
are often used. Several inbred rat strains have been identified that are susceptible to 
experimentally induced arthritis, conditions very much resembling human RA. The 
arthritis phenotype can be induced in these rats with an injection of a number of 
agents, such as collagen, pristane, oil, streptococcal cell wall or adjuvant [28]. By 
linkage studies of crosses of such arthritis susceptible strains to arthritis resistant 
strains, at least 68 experimentally induced arthritis QTLs have been identified in rat 
[29, 30]. Even though many of these are overlapping and may have been identified 
due to allelic variations of the same genes, they cover more than 50% of the rat 
genome [31]. Since each QTL contains at least one disease-enhancing gene, the 
genetic interactions behind the disease are very complex.   
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The DA rat 
 
The inbred Dark Agouti (DA) rat strain was established in 1965 [32]. It is susceptible 
to an array of autoimmune disorders including experimentally induced arthritis [33]. 
Of the inbred rat strains, DA is considered to be the most arthritis-prone, responding 
with severe arthritis to a number of inducing agents. DA is also the only known rat 
strain to respond with arthritis to injection of non-immunogenic oil [34]. In crosses 
with different arthritis resistant rat strains, over 50 QTLs associated with 
experimentally induced arthritis have been identified using the DA strain [33, 35-48]. 
 
 
The BB/Dr rat 
 
The Bio-Breeding Diabetes-resistant rat (BB/Dr) is susceptible to several autoimmune 
diseases, such as experimentally induced insulin dependent diabetes mellitus, 
autoimmune thyroid disease and collagen-induced arthritis [49-52]. In crosses with 
the BN strain, at least 14 QTLs associated with experimentally induced arthritis have 
been identified using this strain [53].  
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AIMS OF THE STUDY 
 

 

 
The overall aim of this PhD project was to develop web applications for investigating 
candidate genes in rat models of complex diseases. More specifically, we sought to: 
 
 
 

• Develop general methods for ranking candidate genes in QTLs for complex 
diseases in different rat models and implement these methods as publicly 
available web applications. 

 
 

• Based on the methods developed, analyze the genetic interactions behind 
complex diseases in specific rat models. 

 
 

• Based on the methods developed, investigate the association of candidate 
genes, gene functions and QTL regions. 
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MATERIALS AND METHODS 
 

 
 
The CGC application is at the center of this work. It was developed in three steps: i) a 
basic application applied on RA models in rat, ii) an extended application including 
the possibility to change so called reference terms, applied on a diabetes model in rat, 
and iii) a complementary application for connecting candidate genes between QTLs, 
applied on two crosses of collagen-induced arthritis in rat. Finally, the CGC 
applications were used as a basis for exploring the distribution of candidate genes and 
connections between specific loci in rat arthritis models. More detailed information on 
the methods used in this study is available in the corresponding papers. 
 
 
CGC - Basic application (Paper I) 
 
In a first step the CGC application was designed to rank candidate genes for 
experimentally induced arthritis QTLs in rat. 37 QTLs for pristane-induced arthritis 
(Pia), collagen-induced arthritis (Cia), oil-induced arthritis (Oia), adjuvant-induced 
arthritis (Aia) and streptococcal cell wall-induced arthritis (Scwia) were collected 
from RatMap [54]. For each QTL, all genes within the homologous human region 
were selected and included in the web application. The OMIM records for the 
homologous human genes within each region were made searchable for 49 preset 
keywords, each with a keyword score reflecting the connection to arthritis. The 
keyword scores were calculated from the number of PubMed abstracts containing the 
keyword together with the reference term ”arthritis”, divided by the number of 
PubMed abstracts containing the keyword alone. This value was then multiplied with 
100 to get the final keyword score. The user has the possibility to add up to ten 
keywords of his own choice, and the keyword score can automatically be calculated. 
When a candidate gene search is performed for a QTL of interest, the keyword scores 
for the keywords found within each OMIM record are added, and the candidate genes 
are ranked based on the sum of the matching keyword scores (the CGC score).  
 
 
Database construction 

 
All tables included in the application were stored in a MySQL database. The tables 
were made searchable from the web page through PHP-scripts.  
 
Information on the 37 experimentally induced arthritis QTLs was collected from 
RatMap [54]. The data included flanking markers defining the region of the QTL, 
locus information and a short description of each QTL. Human gene information was 
collected from National Centre for Biotechnology Information (NCBI) [55]. Human 
gene position data was collected from University of California Santa Cruz (UCSC) 
[56]. By combining the information from NCBI and UCSC, a MySQL table 
containing human gene information ordered by codon start position was generated. 
Rat gene symbols and positions were collected from RatMap and integrated into the 
human gene table based on gene homologies.  
 



 15

To find human regions homologous to the rat QTLs, an integrated linkage map 
containing polymorphic markers and rat genes was used. For each QTL, the first rat 
genes that were found outside the flanking markers and that had homologous human 
genes with known positions were selected. The region defined by these two flanking 
human genes were considered to be the homologous region. In many cases however, 
due to recombinations throughout the evolution, the human homologous regions are 
comprised of several smaller regions on different chromosomes. To overcome this 
problem, all rat genes with known human counterparts within each QTL were used to 
define the final human homologous gene list. 
 
Functional gene information to be used for keyword querying was downloaded from 
OMIM and stored in a local MySQL database. The 49 keywords were selected from 
literature describing rheumatoid arthritis and from Medical Subject Headings (MeSH) 
terms from the PubMed MeSH term database under the headings “autoimmune 
diseases” and “rheumatoid arthritis”. The keyword scores were calculated as 
described above and stored in a MySQL table.  
 
 
Running the application 

 
The application can be found at www.ratmap.org/cgc/arthritis.php. At the first page of 
the CGC application the user has the option to search for a QTL based on QTL 
symbol, words in the QTL description or chromosome number. A list of QTLs 
matching the search criteria is collected from the MySQL database and presented on 
the same page. The user then selects the QTL of interest from the presented list 
(Figure 1). 
 
At the resulting (second) page of the CGC application, known rat genes within the 
selected QTL are presented as well as human genes within the homologous human 
region (Figure 2). A list of 49 preset keywords are also collected from the database 
and presented together with their individual keyword scores. The keyword scores can 
be overwritten and keywords can be deselected. In addition, the user can add up to ten 
keywords and the keyword scores can automatically be calculated. When the search 
button is pressed, OMIM records for all human genes presented are scanned for the 
selected keywords.  
 
The CGC search results in a page where all genes within the selected QTL with at 
least one matching keyword are presented together with the sum of the keyword 
scores (the CGC score). Candidate genes with a CGC score of 100 or above are 
marked in red color and candidate genes with a CGC score between 50 and 100 are 
marked in yellow color (Figure 3). 
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Figure 1. Selection of a QTL of interest on the first page of the CGC application. 
 
 

 
 
Figure 2. The second page of the CGC application. Rat genes and human genes 
within the homologous region are presented and keywords are selected. 
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Figure 3. The result of a CGC search. Gene rankings and CGC scores are presented. 
 
 
CGC – Multiple reference terms (Paper II) 
 
In order to make CGC into a more versatile application that could take more than one 
single phenotype into consideration, a rebuilt version was made. This version of the 
application was designed to rank candidate genes for different aspects of non-insulin 
dependent diabetes mellitus (Niddm) QTLs in rat. Information on 55 Niddm QTLs 
was collected from RatMap and RGD [30, 54]. A total of 789 keywords related to 
diabetes were selected. These keywords were chosen from terms frequently found in 
literature describing different aspects of diabetes as well as from MeSH terms. The 
keyword value for each keyword was calculated in a similar manner as in the arthritis 
application described above, but in this application each keyword was compared to 25 
different ”reference terms”. The reference terms were selected to reflect different 
aspects of diabetic syndromes as suggested by experts in the field. The reference 
terms include words such as ”insulin secretion”, ”pancreas development”, ”insulin 
resistance” and ”hyperinsulinemia”. More general terms such as ”diabetes” were also 
included. This gives the user the possibility to use the reference term that best reflects 
the diabetes model under study. The list of keywords and keyword values are 
generated according to the selected reference term. Only keywords with a keyword 
value of 0.1 or greater are included in the list.  
 
A CGC-Diabetes search with several hundreds of keywords might take several 
minutes to perform however. We therefore created a quick search version containing 
28 keywords. These keywords were selected because they were all frequently found 
in literature describing diabetes. In addition, these terms all received significant 
keyword scores when compared to the reference term “diabetes”. The 28 keywords 
were compared to the 25 reference terms in the same way, and the quick version is 
available as a complement to the CGC-Diabetes application. 
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Database construction 

 
The CGC-Diabetes application and the accompanying database were constructed in 
the same way as the CGC-Arthritis application, with some differences. In the CGC-
Diabetes application, the human-rat homologous regions are not manually created, but 
instead generated when a QTL is selected. A PHP script selects the position of the 
flanking markers from a MySQL table. All rat genes known to be situated between 
these markers are selected from a database. Human genes homologous to these rat 
genes are selected, as well as human genes situated within the regions defined by the 
selected human homologues. These human genes are included in the CGC search. 
 
 
Running the application 

 
The CGC-Diabetes application can be found at www.ratmap.org/cgc/diabetes.php. 
The application works in the same way as CGC-Arthritis. On the first page, the user 
can search for and select a Niddm QTL of interest. In contrast to the CGC-Arthritis 
application, at the second page the user can select from a list of 25 reference terms 
(Figure 4). The preset reference term is “diabetes”, which is a rather general term, and 
the user may want to select a more specific term. The keyword scores of 789 
keywords are changed to represent co-occurrences with the selected reference term. 
Only keywords with keyword scores above 0.1 are included in the following CGC 
search. The resulting list of candidate genes is ordered based on the genes individual 
CGC scores. The user may select another reference term and then rerun the search 
with the new keyword scores to retrieve a different gene ranking. 
 

 
 
Figure 4. The second page of the CGC–Diabetes application involves the selection of 
reference terms to which the keyword are to be compared. 
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Tree phylogeny of reference terms 

 
To evaluate how much the resulting candidate gene rankings from CGC will differ if 
different reference term are used we compared gene rankings for a single QTL 
(Niddm46) using the quick CGC version (presented above). Gene rankings were 
generated for the QTL using each of the 25 different reference terms. The differences 
in ranking position of ten top candidate genes between searches with each reference 
term were then compared. (For example, if gene A is ranked 1 when the reference 
term ”diabetes” is used and ranked 4 when the reference term ”hypoinsulinemia” is 
used, the difference in candidate gene position for that gene is 3. The sum of the 
differences of the top ten genes between two reference terms was used as a measure 
of difference in ranking.) 
 
To give an overview of how much the gene rankings will differ if two different 
reference terms are used, a graphical tree was created using the FITCH software from 
Phylip (Phylogeny interface package version 3.66) [57]. The software was developed 
to create phylogenic trees based on distances calculated from molecular sequences, 
restriction sites, restriction fragments or gene frequencies. FITCH uses a distance-
based optimization created by Fitch & Margoliash [58]. The FITCH software creates 
a tree with the smallest squared distance between the computed distances and the 
predictions in the tree. The phylogenies are estimated from a distance matrix under an 
additive tree model, in which the distances are expected to equal the sums of branch 
length between the species compared. In our evaluation, we used the differences in 
gene rankings when using different reference terms in CGC as the distance matrix. 
 
 
Linking candidate genes between QTLs (Paper III) 
 
To be able to find possible candidate genes originally ranked low by the CGC 
application and to find common pathways leading to the same phenotype, but with 
different genes disrupted in different rat strains, an additional function was added to 
the arthritis CGC application, called CGC-RefLink. The CGC-RefLink application 
uses the links within individual OMIM records to other OMIM records to connect 
different candidate genes. Thus, when a candidate gene ranking has been performed 
by CGC for one QTL, all genes within all the arthritis QTLs included in the 
application that are linked to the ranked genes, can be found. The genes that are found 
to be linked to the selected candidate genes are presented together with individual 
CGC scores.  
 
 
Database construction 

 
The CGC-RefLink application is based on a local OMIM database stored in MySQL. 
The OMIM database was made searchable for hyperlinks containing the six digit 
OMIM IDs of selected genes via PHP. By running basic CGC searches for all 
included QTLs, CGC scores were retrieved for all genes, and the results were stored 
in a MySQL database. These CGC scores are retrieved each time a CGC-RefLink 
connection is found. 
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Running the application 

 
The CGC-RefLink application is available at www.ratmap.org/cgc/ra_to_omim.php. 
To use the CGC-RefLink application, the user first performs a CGC search in the 
same way as for CGC-Arthritis. When the ranking of candidate genes has been 
retrieved, the user can choose which genes to search for connections to. The 
checkboxes for interesting genes are marked and the “compare” button is pressed. The 
OMIM records for all human genes situated within a region homologous to an 
arthritis QTL are searched for hyperlinks to the selected candidate genes. The results 
are presented on a new page (exemplified in Figure 5). 
  

 
 
Figure 5. Example of a result from a CGC-RefLink search. AXL, ESR1 and GPI were 
selected from the result page in a CGC search for Cia2 (Figure 3). All genes within 
any experimentally induced arthritis QTL with an OMIM-hyperlink to the three 
selected genes are presented together with their CGC scores. These CGC scores were 
obtained from basic CGC searches for all arthritis QTLs.  
 
 
Investigating connections between candidate genes in QTLs from two rat crosses 

 
We used the CGC-RefLink application to establish OMIM links between genes within 
collagen induced arthritis QTLs from two different crosses, DA x BN and BB/Dr x 
BN. We chose to only include connections between genes where at least one of them 
had a CGC score of 100 or greater. In addition, only gene connections where one of 
the genes was localized in a QTL from DA x BN and the other gene was localized in a 



 21

QTL from BB/Dr x BN were included. The gene connections were divided into three 
groups based on the CGC scores of the connected genes: a) Two connected genes 
with CGC scores of 100 or above. b) One gene with a CGC score less than 100 
connected to two genes with CGC scores of 100 or above. c) One gene with a CGC 
score less than 100 connected to a single gene with a CGC score of 100 or above. All 
connections in group A and B were manually surveyed to evaluate the functional 
association between the genes and to arthritis. In group C, connections including 
genes in QTLs where no connections were found in group A or B were manually 
evaluated. 
 
 
Functional connections between QTLs (Paper IV) 
 
To investigate if several genes within specific QTL regions share functions with 
several genes within other QTLs, we analyzed the 13 QTLs identified in the two 
crosses DA x BN and BB/Dr x BN. We used the CGC-RefLink application to search 
OMIM records for all hyperlinks connecting genes from a QTL of the DA x BN cross 
to a gene in a QTL of the BB/Dr x BN cross. Based on the number of genes within 
each QTL and on the total number of connections between specific QTLs from the 
two crosses, we then calculated if certain pairs of QTLs had an overrepresentation of 
shared gene pairs. This was done with a chi-square test with Yates correction. 
 
The pairs of QTLs that were found to be connected by a significantly high number of 
gene pairs were then dissected into two groups: a) two QTLs connected by a 
significantly high number of gene pairs, where at least one gene in each pair received 
a CGC score of 50 or above, b) two QTLs connected by a significantly high number 
of genes where both genes in each pair received a CGC score lower than 50.  
 
To investigate if the genes connecting two QTLs share similar functions that could be 
associated with arthritis, we used the DAVID Gene Functional Classification Tool 
[59, 60]. This tool generates groups of functionally related genes based on co-
occurrences of terms collected from 14 annotation sources, such as GO, Swiss-Prot 
keywords, KEGG-Pathways and OMIM. For each QTL pair, all genes connecting the 
two QTLs in either the high CGC score group or the low CGC score group were 
functionally compared. We recorded functional groups of genes where the 
geometrical mean of the p-values for the shared terms was lower than 0.05 (Geo). 
However, since this is a mean of the terms found in each cluster, clusters with higher 
Geo-values might still contain interesting terms with low p values. 
 
 
Investigating localization of candidate genes (Paper IV) 
 
To investigate if candidate genes for arthritis in rats identified with the CGC 
application is more likely to be found within QTL regions than in non-QTL regions, 
we made a genome wide CGC search. 68 QTL regions associated with experimentally 
induced arthritis in rat were collected from RGD [30]. The CGC-Arthritis application 
was modified to rank genes in a genome wide manner for 2403 rat genes with known 
genomic position collected from RGD and Ensembl [30, 61]. The genes were 
subsequently divided into groups reflecting their CGC scores. For each group, the 
numbers of genes localized in QTL regions and in non-QTL regions were recorded. 
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RESULTS AND DISCUSSION 
 

 
 
CGC-Arthritis - Basic application (Paper I) 
 
The CGC application uses keywords and keyword values based on co-occurrences of 
a keyword and a reference term in PubMed abstracts. Several alternative strategies 
could be used to put different weights on keywords. For example, hierarchical terms 
such as GO terms or MeSH terms could be applied, where more specific terms render 
higher keyword values. This kind of controlled vocabulary however, is dependent on 
the opinion of experts in the fields, who have decided which terms to be selected and 
how they should be arranged. Naturally, such an approach limits usable keywords to 
terms included in the selected vocabulary. Our method on the other hand, makes it 
possible to include an, in principal, unlimited number of keywords. In the CGC-
Diabetes application for example, 789 keywords underwent calculation of keyword 
values (Paper II). Irrelevant or unspecific keywords will generate very low keyword 
values and will consequently have neglectable impacts on the final candidate gene 
ranking.  
 
 
Gene information source 

 
We chose to use OMIM records as the genetic information source in the CGC 
application, since written text based on human evaluations, as opposed to more 
unrefined data, often brings an interpretation that gives more meaning to the data. 
OMIM records summarizes the most relevant data known for a gene and are as such 
sufficient as a primary data sources. A more obvious text source would of course be 
PubMed, which is frequently used for text-based searches [62]. OMIM records are in 
our opinion a better choice since they are always based on a manual consideration in 
relation to the function of a single gene. Furthermore, our choice of OMIM as the 
gene information source, as opposed to, for instance OMIA or similar animal gene 
resources, was based on the fact that most human genes are described in more detail 
than genes of non-human origin [63]. In order to use OMIM as the primary text 
resource, for all QTLs we established the homologous regions between rat and 
human. 
 
Of course, using human gene data instead of rat data, may be questionable 
considering the specific gene changes in the rat model used. On the other hand, the rat 
models included in our application are, after all, models for human diseases, designed 
to be able to study and understand human diseases. Furthermore, most OMIM records 
include descriptions of animal studies, making them appropriate also from a rat model 
point of view. 
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First evaluation of CGC: Keyword values and gene ranking 

 
To evaluate how good the CGC-application is in ranking candidate genes compared to 
a human evaluation for the experimentally induced arthritis QTLs tested, we 
randomly picked four QTLs. The genes within the four QTLs were ranked by the 
CGC application. Independently, we performed manual evaluations of the OMIM 
records describing the genes within the four QTLs. In the manual evaluation, genes 
were scored on a scale from one to five, where five meant that we found no 
connection to arthritis and one meant that the connection to arthritis was obvious.  
 
To compare the gene rankings obtained from CGC with the manual ratings, the CGC 
results for each QTL were divided in three separate groups: 
 
Group 1 (the high group) contained the top two ranked genes for each QTL. 
Group 2 (the middle group) contained the genes ranked in position 3 – 6. 
Group 3 (the low group) contained the rest of the genes in each QTL. 
 
We found that out of the eight highest ranked genes in group 1, seven were manually 
evaluated as 1 or 2 based on the OMIM records alone. The eighth gene, CD74 on 
Cia17, was manually evaluated to 3 based on the OMIM records alone. When 
additional literature was surveyed though, CD74 too turned out to be a very likely 
candidate gene. The similarity between the manually evaluation and the CGC 
rankings was consistent in the second and third group as well. In group 2 (genes 
ranked in position 3–6 by CGC) the average manual rating was 2.7 and in group 3 
(genes ranked low by CGC) the average was 3.75 (Table 1).  
 
 
Table 1. CGC rankings and manual evaluation of genes in three groups and four 
tested QTLs. The genes were manually rated 1 – 5, where 1 is an obvious candidate 
gene. 
 
 Best two   Middle group   Low group  

QTL CGC Manual  CGC Manual  CGC Manual 

Cia4 152.6 1.5  10.7 3.5  2.3 3.9 

Cia10 128.5 1  14.9 2  3.6 3.9 

Cia14 20.4 1  9.5 2.7  4.6 3.4 

Cia17 26 2.5  14.4 2.5  4.9 3.8 

 
The CGC-Arthritis application proves to be able to rank candidate genes very similar 
to what would be done manually, hence we believe that the application should be very 
useful when selecting likely candidate genes for experimentally induced arthritis 
QTLs.  
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CGC-Diabetes – Multiple reference terms (Paper II) 
 
Many clinical diagnoses such as type 2 diabetes mellitus and rheumatoid arthritis 
comprise a multitude of sub-phenotypes, and the disease might differ from patient to 
patient. Hence, the genetics involved in the development of the disease will differ 
between individuals. Because of this discrepancy we wanted to offer a tool where the 
user can choose from an array of sub-phenotypes when ranking genes. This second 
version of the CGC application was implemented on non-insulin dependent diabetes 
mellitus QTLs in rat. 25 different reference terms that reflect different aspects of type 
2 diabetes and a total of 789 keywords were included. The keyword values of each 
keyword were individually calculated based on co-occurrence frequencies with each 
of the reference terms. 
  
 
Tree phylogeny of reference terms 

 
The respective values of the 789 keywords will differ greatly depending on which 
reference term that is used. For example 330 terms are found with a score of 0.1 or 
higher when the reference term ”diabetes” is used, while only 24 are found with the 
term ”diabetic foot”.  
 
When we compared the outcome of queries using different reference terms we found 
a subset of keywords that were frequently found in the query results and that made 
substantial contributions to the final CGC score. Taking advantage of this 
circumstance, we also made a quick version of the diabetes CGC application, 
containing 28 keywords that are frequently found in diabetes literature. Keyword 
values for these 28 keywords were calculated using all 25 reference terms. For most 
queries, this quick version generates more or less the same rankings as the full CCG 
application, but much faster. This also indicates that the 789 keywords in the full 
CGC application should be more than sufficient to cover most aspects of type 2 
diabetes mellitus. 
 
A multitude of reference terms can make it hard to select which one or which ones to 
use. To get an overview of how much the gene rankings will differ if different 
reference terms are used, we calculated the differences in gene position for the top ten 
ranked genes in a single QTL. The sum of the differences in gene rankings between 
every combination of reference terms were used as a distance matrix to construct a 
phylogenetic tree using the FITCH software from Phylip [57]. 
 
In the tree, the lengths of the horizontal branches between two reference terms 
represent the difference in gene rankings when using the two terms (Figure 5). For 
example, the reference terms “glucose uptake” and “glucose transport” are situated 
very closely, indicating that CGC searches with keywords compared against these two 
terms would generate very similar candidate gene rankings. In the same way there are 
a cluster of five reference terms, all including “insulin”, that are situated in the 
vicinity of each other in the tree (“hyperinsulinemia”, “hyperinsulinaemia”, insulin 
sensitivity”,  “insulin resistance” and “insulin action”). Thus, it seems as if CGC 
searches based on reference terms that are functionally related will generate similar 
gene rankings. On the other hand, terms that are localized far apart and thus rank 
genes very differently, also seems to be less functionally related. 
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Figure 6. The “phylogenetic tree”, based on differences in gene rankings when using 
different reference terms.  
 
 
Second Evaluation of CGC: Multiple keywords and keyword selection 

 
To evaluate how successful the diabetes CGC application is in ranking genes for non-
insulin dependent diabetes QTLs, we made a manual candidate gene rating for four 
randomly selected QTLs in a manner similar to what was done for the arthritis CGC 
application (Paper 1 – see above). Candidate gene rankings was obtained from CGC 
using the reference term ”diabetes”. This term generated the longest list of significant 
keywords and was considered to be the most general reference term. 
 
In summary, when comparing the manual candidate gene ratings and the CGC gene 
rankings for the four QTLs analyzed, out of the 21 genes with a CGC score of 100 or 
greater, 52% were manually rated as ”obvious” candidates (manual rating 1), 38% 
were manually rated as ”likely” candidates (rating 2) and 10% were manually rated as 
”possible” candidates (rating 3). No candidate genes with a CGC score of 100 or 
greater was manually rated as ”unlikely” (rating 4) or ”irrelevant” (rating 5). Of the 
genes with a CGC score less than 100, no obvious candidate (rating 1) was manually 
found. 16% were manually rated as ”likely” candidates (rating 2), 14% were rated as 
”possible” candidates (rating 3), 34% were rated as ”unlikely” candidates (rating 4) 
and 36% were rated as ”irrelevant” (rating 5).  
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Table 2. Genes manually evaluated as likely candidate genes for Niddm on a scale 
from 1 to 5 as compared with the rankings obtained from CGC-Diabetes (given in 
percentage values).  
 

 CGC >100 CGC <100 

1. Obvious 52 0 

2. Likely 38 16 

3. Possible 10 14 

4. Unlikely 0 34 

5. Irrelevant 0 36 

 
To conclude the observations from our evaluation of the CGC-Diabetes application, it 
obviously ranks candidate genes very similar to what would be done manually. Thus, 
the application should be of great use when evaluating which genes are the most 
likely candidate genes within a region associated with diabetes. 
 
 
CGC-RefLink – Connecting candidate genes (Paper III) 
 
Our evaluation of the original CGC application shows that it succeeds very well in 
ranking gene candidates. However, in many cases there may be several genes in a 
single QTL that all have a high CGC score, which can make it hard to select the most 
likely candidate genes. In order to discriminate between different highly rated 
candidate genes we reasoned that a second selection criterion was needed. Preferably, 
this selection criterion should be independent and not associated with our weighted 
keywords and reference terms. Still using the same information source, we found that 
one such independent criterion could be the citations between different OMIM 
records. Each time another gene is mentioned in an OMIM gene record, a hyperlink to 
the OMIM record of that gene is included. By scanning OMIM records for such links 
to other OMIM records, genes involved in the same functions, or that affect each 
other in one way or another can be found. This method also makes it possible to re-
evaluate previously low-ranked genes if they are linked to genes that are highly rated 
as a candidate genes for the investigated phenotype. 
 
To test if this method was able to present a clear view of how gene mutations in QTL 
regions of a given strain may affect the phenotype, we selected thirteen collagen 
induced arthritis QTL regions discovered with the two arthritis susceptible rat strains 
DA and BB/Dr crossed to the arthritis resistant rat strain BN. 9 QTLs were identified 
in F2 animals of BB/Dr x BN crosses and 5 QTLs were identified in F2 animals of 
DA x BN. Of these QTLs, only one (Cia13) was found in both variants of crosses. 
This indicates that the genes contributing to the collagen induced arthritis phenotype 
in offspring of the two variants of crosses are different. Since the resulting condition 
is the same in affected F2 animals of the two crosses we hypothesize that genes 
involved in the same pathways are disrupted in the two variants. Hence, a gene variant 
contributing to the phenotype within a QTL from one of the rat crosses corresponds to 
a variant of another gene within a QTL from the other rat cross.  
 
In the study, only QTLs from the two susceptible rat strains which both had been 
crossed to the same resistant strain were included. Thus, the genetic differences in the 
models would all come from DA and BB/Dr. In addition, for the QTLs selected, the 
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arthritis phenotype was induced by collagen in both crosses to limit environmental 
differences. To find corresponding gene pairs between genes within QTLs from DA x 
BN and BB/Dr x BN, all 13 QTLs were scanned for candidate genes using the 
arthritis CGC application described above. 34 genes with a CGC score of 100 or 
greater were found within the selected QTLs. These highly rated genes were used as 
the basis for establishing gene pairs. The OMIM records for these genes were scanned 
for references to OMIM records for any gene situated within a QTL from the opposite 
cross. In the same way, all OMIM records for genes within any of the included QTLs 
were scanned for a reference to any of the highly rated genes of the opposite cross. In 
this way, 15 of the highly rated genes were found to be linked to 38 genes with a CGC 
score less than 100. In addition, four interconnections between highly rated genes 
only were found.  
 
The results of this study were divided into three groups: 
 
Group A: Two connected genes, one from each cross, where both has a CGC score of 
100 or above. 
Group B: One gene with a CGC score less than 100 from one cross connected to two 
genes with CGC scores of 100 or greater from the other cross. 
Group C: One gene with a CGC score less than 100 from one cross connected to one 
gene with a CGC score of 100 or greater from the other cross. 
 
Four gene pairs were found to match the criteria for group A. Since both genes in 
each pair are already rated as good candidate genes for arthritis by the CGC 
application they here become confirmed as top candidates. In addition, since our 
hypothesis is that more or less the same functions should be disrupted in the two 
variants of rat crosses, each gene pair should have a function in common and that 
function should be related to arthritis. When analyzing the gene pairs in group A, it is 
possible to find at least four such key functions:  
 
CD44 (Cia11) -TGFB1 (Cia2) - Decreased downregulation of inflammation [64]. 
CD69 (Cia13) -TGFB1 (Cia2) - Decreased downregulation of inflammation [65]. 
CD44 (Cia11) -TNF (Cia1) - Increased bone loss [66].   
AXL (Cia2) -TYRO3 (Cia11) - Increased longevity of inflammation [67, 68]. 
AXL (Cia2) -TYRO3 (Cia11) - Decreased self tolerance [69]. 
    
In group B, we found four groups of genes where one of the genes from one of the 
crosses had a CGC score less than 100, but had connections to two genes from the 
other cross with a CGC score of 100 or above. Although the connections to arthritis 
were not as striking as in group A, all four genes, that were previously rated rather 
low by the CGC application, were all re-evaluated as very likely candidate genes for 
collagen induced arthritis when their connections to the highly rated genes were 
studied.  
 
Some possible dysfunctions contributing to the arthritis phenotypes could be 
concluded in this group as well: 
 
TAP1 (Cia1) – B2M (Cia11) – FCGRT (Cia2) 

- Impaired MHCI presentation (TAP1-B2M) and misregulation of IgG-levels (B2M - 
FCGRT) [70-72]. 
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TNF (Cia1) – TNFRSF1A (Cia13) – LTBR (Cia13)  
- Misregulation of TNF-induced immune regulators (TNF - TNFRSF1A) [73, 74]. 

 
TNF (Cia1) - DDX11(Cia13) – TGFB1 (Cia2) 

- Reduced telomeric length (TNF - DDX11 - TGFB1) [75, 76]. 
 

CCR5 (Cia6) – CD4 (Cia13) – CD69 (Cia13) 
 - Misregulation of T-cell migration (CCR5 - CD4) [77-79]. 

 
In group C, 38 gene pairs were found, where one gene from one of the crosses had a 
CGC score of 100 or greater and the other gene from the other cross had a CGC score 
less than 100. We chose to analyze gene pairs from this group so that every QTL 
included in this study would have at least one candidate gene with a link to a 
candidate gene for a QTL from the opposite cross. In other words, QTLs with no 
functional gene pairs in group A or B were further analyzed in group C. 
 
For each of the QTLs Cia12, Cia7, Cia6, Cia17 and Cia19 only one gene pair was 
found to match the criteria for group C. For the QTLs Cia5ab and Cia14, three gene 
pairs each were found to match group C. In these cases, the gene pairs manually 
considered to contribute to an arthritic phenotype are presented below. For the two 
remaining QTLs, Cia16 and Cia18, no gene pairs were found matching any of the 
groups.  
 
ICAM2 (Cia5ab) – TNF (Cia1)  -Misregulated apoptosis of B-cells [80]. 
ELN (Cia12) – TNXB (Cia1)  -Abnormal elastin bodies [81]. 
HMOX1 (Cia14) – TNF (Cia1) -Decreased downregulation of inflammation [82]. 
IL21 (Cia7) – CD44 (Cia11) -Decreased downregulation of inflammation and 

increased bone loss [66, 83, 84]. 
MBD2 (Cia17) – CHD4 (Cia13) -Connection to dermatomyositis [85, 86]. 
PHEX (Cia19) – FGF23 (Cia13) -Connection to hypophosphatemia and osteoarthritis 

[87, 88]. 
 
No clear connection to rheumatoid arthritis could be concluded for the gene pairs 
found for Cia17 and Cia19. It should be noted that several genes with very high CGC 
scores are present in some of the QTLs above, although no connections to genes 
within QTLs from the opposite cross were found. For instance, in Cia12 we find the 
highly rated gene NCF1 (CGC score 240,9) but with no connections to genes from the 
opposite cross. It has been shown by positional cloning that the Pia4 QTL, which 
overlaps with Cia12, is a polymorphism in Ncf1 [89]. However, such highly rated 
genes are, of course of great interest, but in the context of interconnected gene pairs 
they cannot be considered as candidate genes.  
 
To conclude our findings, by combining the CGC ranking with citations between 
OMIM records we are able to suggest candidate genes for most of the DA x BN and 
BB/Dr x BN QTLs where a gene is found within a QTL from the opposite cross with 
a similar function. In these gene pairs, a mutated form of one of the genes in one of 
the crosses are hypothesized to correspond to a mutation of the other gene in the other 
cross, which would make the similar phenotypical outcome. 



 29

Functional connections between QTL regions (Paper IV) 
 
Since some of our data indicate that a majority of QTLs contain several genes that 
contribute to a phenotype under study, we investigated if it is possible to find genes 
within specific QTL regions that share functions with genes within other specific QTL 
regions. Once again, we analyzed the 13 experimentally induced arthritis QTLs 
identified in the DA x BN and BB/Dr x BN crosses. We based this study on the same 
assumption as earlier, that since animals from the two crosses develop similar 
phenotypes but with different loci involved, they should have the same biochemical or 
cellular functions disrupted, but with different genes mutated or disregulated.  
 
We used the CGC-RefLink application to find connections between genes localized in 
QTLs identified in the two respective rat crosses. Pairs of QTLs that were linked by a 
significantly high number of gene pairs were considered to be functionally connected.  
 
Four pairs of QTLs were found with significantly high numbers of gene connections. 
One pair with a p value of 0.054, Cia13 – Cia1, was also included in the further 
dissection (Table 4). The gene connections for these pairs of QTLs were divided into 
connections where at least one of the genes had a CGC score > 50 and connections 
where both genes had a CGC score < 50. All gene pairs connecting the five pairs of 
QTLs are presented in Table 5. It turned out that four of the connected QTL pairs had 
significantly high numbers of connections involving high-ranked candidate genes 
(Cia11 – Cia1, Cia11 – Cia2, Cia13 – Cia1 and Cia5ab – Cia1). Cia11 – Cia2 were 
found to have significantly high numbers of gene connections in both groups while 
only one pair of the connected QTLs had significant connections in the low CGC 
score group (Cia14 – Cia7). Thus, six groups of gene pairs were defined. In all 
significant connections between the QTLs studied except one, candidate genes with a 
relatively high CGC score are involved. When investigating Cia14 and Cia7, which 
were connected by genes with CGC scores lower than 50, there are in fact no genes 
with higher CGC scores. The genes with the highest CGC scores within these regions 
(IL15 - 27.3 CGCp, IL21 – 25.7 CGCp and IL2 – 21.4 CGCp) are all involved in the 
connections between Cia14 and Cia7.  
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Table 3. Pairs of QTLs connected by a significantly large number of gene pairs. 

 
 
Table 4. Gene pairs connecting QTLs in a significant manner. Gene pairs where at 
least one of the genes received a CGC score of 50 or above are shaded in the table.  
 

Cia11   Cia1  

CD44 233.7 - TNF 383.4 

PCNA 2.8 - CDKN1A 242.4 

TP53BP1 5.3 - CDKN1A 242.4 

PLA2R1 8.8 - TNF 383.4 

B2M 23.5 - TAP1 117.7 

B2M 23.5 - TAPBP 30.4 

CDC25B 0 - MAPK14 24.6 

WT1 7.7 - BCR 2.8 

B2M 23.5 - CSTB 0 

GCG 12.5 - GLP1R 0 

     

Cia11  Cia2 

TYRO3 244.9 - AXL 244.9 

AVP 15.3 - ESR1 121.3 

OXT 0 - ESR1 121.3 

CD44 233.7 - TGFB1 128.2 

ITGB6 6.8 - TGFB1 128.2 

ACVR1 0 - TGFB1 128.2 

GCG 12.5 - VIP 233.6 

B2M 23.5 - FCGRT 131.8 

CD44 233.7 - HAS1 24.2 

CD44 233.7 - VIL2 9.7 

PRNP 25 - SOD2 10.6 

PRNP 25 - PLG 22.3 

BDNF 9.6 - PLG 22.3 

SN 15.8 - CD22 17.5 

PRNP 25 - BAX 21.5 

PRNP 25 - FPRL1 11.6 

CD59 12.5 - PLAUR 9.2 

CKMT1 0 - CKM 6.2 

SN 15.8 - SIGLEC8 5.8 

TBR1 0 - T 5.5 

SN 15.8 - CD33 2.4 

PCNA 2.8 - POLD1 2.4 

BDNF 9.6 - GRIN2D 0 

QTL1 
Number of 

genes in QTL1 QTL2 
Number of 

genes in QTL2 
Number of 
gene pairs P value (Yates) 

Cia11 58 Cia1 136 10 0.0017 

Cia11 58 Cia2 260 23 7.00E-06 

Cia13 135 Cia1 136 18 0.054 

Cia5ab 25 Cia1 136 6 0.018 

Cia14 53 Cia7 19 4 0.0024 
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Table 4. (Continued) Gene pairs connecting QTLs in a significant manner. Gene pairs 
where at least one of the genes received a CGC score of 50 or above are shaded in the 
table. 

     

Cia13   Cia1  

CDKN1B 10.6 - CDKN1A 242.4 

TNFRSF1A 55.9 - TNF 383.4 

LAG3 13.8 - TNF 383.4 

TNFRSF7 12.7 - TNF 383.4 

SIAT8A 2.8 - TNF 383.4 

OLR1 5.8 - TNF 383.4 

DDX11 2 - TNF 383.4 

VWF 34.8 - CYP21A2 50 

LTBR 107.5 - LTB 2.5 

TNFRSF1A 55.9 - LTB 2.5 

A2M 5.8 - C4B 43.3 

AICDA 9.5 - PIM1 18.4 

PPARG 21.2 - RXRB 15.2 

PPARG 21.2 - PPARD 12.7 

GPR19 0 - DRD1 2.8 

VWF 34.8 - BCR 2.8 

PTPN6 14 - G6B 0 

ETV6 4.6 - TEL2 0 

     

Cia5ab   Cia1 

ACE 3.6 - TNF 383.4 

ICAM2 10.2 - TNF 383.4 

GH1 4.8 - TNF 383.4 

CD79B 8.3 - PIM1 18.4 

MAP2K6 0 - MAPK14 24.6 

FALZ 0 - HMGIY 6.2 

     

Cia14  Cia7  

IL15 27.3 - IL2 21.4 

NFATC3 11.3 - IL2 21.4 

IL15 27.3 - IL21 25.7 

GLG1 2.8 - FGF2 3.4 
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When investigating the functional gene clusters obtained from the functional 
classification application DAVID [60] for the QTL pairs, we find significant clusters 
containing a majority of the genes for five out of six groups of genes, indicating that 
there is indeed a functional connection between each identified QTL pair. When 
inspecting the actual annotation terms associating the genes, functions that may be 
involved in the development of arthritis can be identified for four out of five QTL 
pairs.  
 
A pair of QTLs sharing several gene pairs that also have functions related to arthritis, 
may suggest that these QTLs harbor several genes contributing to the phenotype, as 
opposed to one gene with a strong phenotypic effect. In addition, the functions shared 
by a pair of QTLs from the two different rat crosses might be disrupted in animals 
from both crosses, and hence explain how they can develop similar arthritis 
phenotypes with different loci involved. 
 
 
Localization of candidate genes (Paper IV) 
 
Since the arthrits QTLs in rat cover more than 50% of the genome [31], it seems 
reasonable to believe that a majority of the genes that are associated with arthritis in 
rat would be localized within these regions. To explore this notion we took the CGC-
Arthritis application and modified it to rank candidate genes for arthritis in rat in a 
genome wide manner. 
 
In total, out of the 2403 genes, 1160 (48%) were found to be localized within 
experimentally induced arthritis QTLs and 1243 (52%) were localized in non-QTL 
regions. When analyzing genes with respect to their CGC score, no correlation 
between highly ranked candidate genes and their position within QTL regions can be 
made. Thus, to our surprise, the distribution of genes with different CGC scores inside 
and outside of QTL regions seems to be completely random. The only small deviation 
is that 57% of the genes with a CGC score of 100 or above are localized in non-QTL 
regions. 
 
 
Table 5. Localization of candidate genes within different ranges of CGC scores 
within QTL regions and non-QTL regions. 
 

CGC score Genes within QTLs Genes outside of QTLs 

200 - 23 22 

100 -200 23 38 

50 -100 12 13 

30 -50 18 16 

20 -30 59 54 

10 –20 138 154 

0 -10 887 946 

Total 1160 1243 
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These results are contradictory to the findings presented by Xiong and coworkers, 
who report that 124 of 185 genes identified as RA associated genes are localized 
within experimentally induced arthritis-QTL regions [31]. Xiong and coworkers used 
a method to find RA associated genes similar to ours but with some crucial 
differences. They searched for combinations of gene symbols and the term ”arthritis” 
within OMIM and PubMed records. Then they turned to a manual evaluation of the 
references for the primary candidate genes to select RA associated genes. This is in 
contrast to our method, which is based on automatic selections. We believe that our 
choice of an automatic procedure is to prefer in this kind of evaluation, since a manual 
selection of candidate genes may bring a bias towards established candidate genes 
situated within QTLs.  
 
Our conclusion that approximately 50 percent of candidate genes for arthritis genome 
wide in rat are localized within QTL regions, which do in fact cover half of the rat 
genome, indicates that there are still many genes with a capacity to contribute to an 
arthritis phenotype that have not yet been detected through QTL analyses. This is not 
too surprising however, since a very limited number of rat strains susceptible to 
arthritis have been used in these studies. Each inbred rat strain has a unique allelic 
combination, and the experimentally induced arthritis studied using these models are 
probably just a small subset of the genetic combinations that could lead to an arthritis 
phenotype. From this reasoning a hypothetical consequence could be that with enough 
rat models of arthritis, more or less the whole rat genome would be covered by QTLs 
for this disease. In some sense, this seems contradictory since the purpose of QTL 
analysis is to limit the number of possible candidate genes. But this may very well be 
the case if many different candidate genes in different QTLs interfere with the same 
cellular functions. In this perspective, a rat model would be nothing but a specific case 
of gene disruptions in a limited set of biochemical pathways. 
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CONCLUDING REMARKS 
 

 
 
This thesis focuses on the development and evaluation of web based tools for finding 
candidate genes for QTLs associated with complex diseases in rat. More specifically, 
the thesis describes: 
 
 

• The construction of a web application that can make reliable selections of 
candidate genes in QTLs associated with experimentally induced arthritis in 
rat (CGC-Arthritis). 

 

• The construction of a web application that can make reliable selections of 
candidate genes for Niddm QTLs in rat. This application can be adjusted to 
select candidate genes for a multitude of sub-phenotypes of diabetes (CGC-
Diabetes). 

 

• The development of a method for identifying functional connections between 
candidate genes in different QTLs associated with the same phenotype (CGC-
RefLink). Based on this method, we could find functional gene connections 
between collagen-induced arthritis QTLs that might explain how rats from two 
different crosses can develop similar arthritis phenotypes, but with different 
loci involved. 

 

• An investigation of how functional gene pairs identified using CGC-RefLink 
are localized to specific arthritis QTLs. We found five pairs of QTLs from two 
rat crosses that share a significantly large number of functional gene 
connections. The gene pairs for each connected pair of QTLs were found to 
share functions, which could be related to arthritis. 

 

• An investigation of how candidate genes identified using the CGC-Arthritis 
application are distributed in the rat genome. Based on this study, we conclude 
that these genes are not more frequently found in QTL regions than in non-
QTL regions. 
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