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Abstract Methods for on-line turning point detection in business cycles are discussed. 
The statistical properties of three likelihood based methods are compared. One is based 
on a Hidden Markov Model, another includes a non-parametric estimation procedure 
and the third combines features of the other two. The methods are illustrated by 
monitoring a period of the Swedish industrial production. Evaluation measures that 
reflect timeliness are used. The effects of smoothing, seasonal variation, autoregression 
and multivariate issues on methods for timely detection are discussed. 
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1. Introduction 
 
For both government and industry it is important to have systems for predicting the 
future state of the economy, for example timely prediction of a change from a period of 
expansion to one of recession. Leading economic indicators can be used to predict the 
turns of the business cycles. By constructing a system for early warnings about turns in 
one or several leading indicators, the turning point time of the general business cycle can 
be predicted.   
 Here, we study different methods for early warning, i.e. methods for timely detection 
of a regime shift, from a recession phase to an expansion phase (or vice versa) in a 
leading index. For reviews and general discussions on the importance of timeliness in 
the detection of turning points see e.g. Neftci (1982), Zarnowitz and Moore (1982), 
Westlund and Zackrisson (1986), Hackl and Westlund (1989), Zellner et al. (1991), Li 
and Dorfman (1996) and Layton and Katsuura (2001).  Suggested methods for detecting 
regime shifts are presented in the works by e.g. Diebold and Rudebusch (1989), 
Hamilton (1989), Jun and Joo (1993), Lahiri and Wang (1994), Layton (1996), Koskinen 
and Öller (2003), Layton (1998) and Birchenhall et al. (1999).    
  As pointed out by e.g. Diebold and Rudebusch (1996), Kim and Nelson (1998) and 
Birchenhall et al. (1999) two distinct but related approaches to the characterization and 
dating of the business cycle can be found. One approach emphasizes the common 
movements of several variables. This approach is pursued by e.g. Stock and Watson 
(1991) and Stock and Watson (1993) and is briefly discussed in Section 3.2.5 on 
multivariate approaches.  The other approach, the regime shift, is the one pursued in this 
paper, as also in the works by Neftci (1982), Diebold and Rudebusch (1989), Hamilton 
(1989), Jun and Joo (1993), Lahiri and Wang (1994), Layton (1996), Koskinen and Öller 
(2003), Layton (1998) and Birchenhall et al. (1999). 
 The inference situation in this paper is one of repeated decisions: a new decision is 
made after each new observation. Several other research areas treat turning points, but 
from another perspective, for example estimating the location and size of structural 
breaks in a series of fixed number of observations (Mudambi (1997), Delgado and 
Hidalgo (2000)). To make this decision an alarm system is used, based on an alarm 
statistic and an alarm limit. Statistical surveillance, and especially the inference 
questions regarding the repeated decisions, has been investigated and developed by e.g. 
Shiryaev (1963), Frisén and de Maré (1991), Wetherhill and Brown (1991), Srivastava 
and Wu (1993), Lai (1995), Frisén and Wessman (1999) and Frisén (2003).  
 Statistical surveillance methods were first used in industrial process control, but are 
now used in many areas, for example for financial decisions (signaling the optimal time 
to trade). In Theodossiou (1993) and Blondell et al. (2002) a surveillance method, 
CUSUM, is used to discriminate between healthy firms and firms in financial distress. 
Since September 11, 2001, there is an increased interest in surveillance methods, in 
order to detect bio terrorism (on-line detection of health hazards).  
 In recent years on-line surveillance methods based on the likelihood ratio (or 
posterior distribution) have been in focus. In the general theory on statistical surveillance 
there are proofs for their optimality properties (see e.g. Shiryaev (1963) and Frisén and 
de Maré (1991)). The posterior probability is often used as an alarm statistic in methods 
based on a hidden Markov model (HMM), see Hamilton (1989).  
  When comparing and evaluating methods for on-line detection, it is important to 
consider timeliness, i.e. the time of the alarm in relation to the time of the turn. Suitable 
measures are the probability of successful detection within a specified time limit, and the 
expected delay of an alarm. Another important aspect is the predictive value of an alarm, 
which can indicate the appropriate action 
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 One purpose of this paper is to review some likelihood ratio based surveillance 
methods. We discuss different assumptions regarding the process under surveillance and 
the estimation procedures connected with them. Data transformations, e.g. seasonal 
adjustment and smoothing can distort the characteristics of the data and hence influence 
the surveillance performance. Some of the suggested approaches for dealing with 
seasonal variation are reviewed and the effects of smoothing the data are investigated by 
a Monte Carlo study. The purpose is also to discuss how to deal with autocorrelated 
data, trend and multivariate problems in surveillance. The properties of the methods are 
demonstrated by application to the problem of turning point detection in the Swedish 
Industrial Production (IP).  
 The paper is organized as follows. Section 2 contains a description of different 
likelihood based approaches in surveillance and common ways in surveillance for 
making different methods comparable. In Section 3 special data problems and estimation 
procedures are discussed. Also a Monte Carlo study regarding the effects of smoothing 
on the detection ability is presented in this section. In Section 4, three monitoring 
methods are applied to a period of the Swedish industrial production containing a turn 
and the pros and cons of this way to evaluate methods are discussed. Also in this section, 
the timeliness properties of the three methods are described. Section 5 contains a 
summarizing discussion.  
 
2. Concepts of likelihood based surveillance for detection of turning points 
 
 In this section the basic concepts of likelihood based surveillance for online detection of 
turning points are given.  
  First, we formulate the surveillance problem. Here, a process X (leading economic 
indicator) is under surveillance, where X is often measured monthly or quarterly. For 
quarterly data, a new observation becomes available every quarter. Thus every quarter, 
based on the available observations, we decide whether the observations so far indicate a 
turn. An alarm system is developed for this purpose, with an alarm statistic and an alarm 
limit. The alarm statistic at time s is a function of the available observations, p(xs) = 
p(x(1), ..., x(s)) and the alarm limit can be constant or time dependent. In the alarm 
statistic the observations x(1), ..., x(s) are weighted together. For example in the EWMA 
method of surveillance (Roberts (1959)) the observations are weighted exponentially, 
whereas in the Shewhart method (Shewhart (1931)), all weight is given to the last 
observation. The EWMA method is evaluated in e.g. Sonesson (2003).  
  Thus at every decision time s, we use the alarm system to decide whether there has 
been a turn or not. This can be formulated as, at every decision time, discriminating 
between two events: D =“the turn has not occurred yet” and C =“the turn has occurred”. 
This is further described in the next section.    
 
2.1 Event to be detected 
 
The situation under study is one where X is a leading economic indicator. By monitoring 
X we want to detect a regime shift (a turning point) as soon as possible. The model for X 
at time t is: 
 
   X(t) = μ(t) + ε(t), (1) 
 
where ε(t) ∼iid N[0; σ 2 ]  and μ(t) is a cyclical stochastic process described below. This 
simple assumption regarding the disturbance term is used to emphasize the inferential 
issues. Suggestions of how to adjust the surveillance system in the presence of 
autoregression in the disturbance term are discussed in Section 3.2.3.   
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  The regime shift occurs at an unknown and random time τ, i.e. at τ there is a turn in 
μ. An alarm system is developed, for on-line detection of the turn. At each decision time 
s an alarm statistic is used to discriminate between the two events D(s) =”the turn has 
not occurred yet” and C(s) =”the turn has occurred”. The event D is often defined as 
D(s) = {τ > s}. Regarding the event C(s), it could be that we want to decide if a turn has 
occurred at a the time point t’, and then C(s)={τ = t’}. But when we want to decide 
whether there has been a turn since the start of the surveillance, then C(s) = {τ ≤ s}.   
  Knowledge of whether the next turn will be a trough or a peak is assumed. The 
solutions for peak- and trough-detection are equivalent, as everything is symmetrical. It 
is the knowledge per se which is important. For simplicity in the presentations 
henceforward the turning point will be expressed as a peak (a transition from expansion 
to recession). This is not, however, a restriction in the methods.  
 A time τ  there is a turn in μ  and as τ is random, so is μ.  Different assumptions can 
be made about μ, conditional on D and C., i.e. about the expected value of the process in 
expansion (or recession) and at a turn. Parametric assumptions regarding μ make the 
method more powerful if the assumptions are valid. Under the assumption that the 
regression consists of linear functions where the slopes are symmetrical for the two 
phases, the aim is to discriminate between D and C, such that 
   D (s): μ(s) = β0 + β1⋅s  (2)
  
   C (s) = {∪ Cτ}, 
 
where Cτ : μ(s) = β0 + β1⋅(τ-1) - β1⋅(s-τ +1) and where τ ={1, 2, ..., s} and β0 and β1 are 
known constants.  
  Then we have the following model for the turn 

   E[X(t)]=μ(t) = 
⎩
⎨
⎧

≥+−⋅−−⋅+
<⋅+
ττβτββ
τββ

tt
tt
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10 ,  (3) 

 
where t ={1, 2, ...}. The expected value in (3) holds for a random walk with drift where 
the value of the drift parameter changes from β1 to -β2 at time t= τ.  
  The assumption that μ is known is not always realistic in on-line detection. Instead of 
assuming that the parametric shape is known, we can use only monotonicity restrictions 
to define μ under C and D. Then the aim is to discriminate between the following two 
events: 
   D (s): μ(1) ≤...≤ μ(s)  (4) 
   C (s): μ(1) ≤...≤ μ(τ-1) and  μ(τ-1) ≥ μ(τ) ≥...≥ μ(s)  
 
where τ ={1, 2, ..., s} and at least one inequality is strict in the second part. 
  Thus here the exact parametric shape of μ is unknown. We only know that μ is 
monotonic within each phase, that is 

   E[Xt]=μt : 
⎩
⎨
⎧

≥≥≥−−≤≤
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where t=1 is in a period of expansion, τ is the random time of a turning point (the time 
of change from the expansion to a recession) and Xt={X(1), X(2), ..., X(t)} and where, for 
t ≥ τ, at least one inequality is strict in the second part. The monotonicity restrictions for 
a trough are the opposite of those in (5). 
 If an HMM is assumed then, at decision time s, an alarm statistic is used to 
discriminate between  
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   D (s): μ(s-1) ≤ μ(s),   (6) 
   C (s): μ(s-1) > μ(s). 
 
 The s in (2), (4) and (6) is the decision time and s=1 when the surveillance is started. 
At the next time point (e.g. the next quarter), s=2. Thus the events D and C are not 
constant from one decision time to the next. The difference between D and C in (2) and 
(4) is only the assumptions regarding μ(t). However, when D and C are specified as in 
(6), the events are different also in another aspect. The apparently simpler event in the 
HMM approach is combined with a more complicated situation for the information of 
previous states. No knowledge of previous states is utilized in an HMM approach. Thus 
the probabilities for the history of those earlier states will have an effect. The two events 
in (6) correspond to families of histories of states, for example are the events in (4) only 
a subgroup of the events in (6). Because of Markov dependence the probabilities for the 
histories of those earlier states will have an effect and earlier observations carry 
information of the history of states.  
  In many HMM approaches the series under observation, X, is differentiated and the 
expected value of the differentiated process is assumed to be constant, conditional on the 
state, see e.g. Layton (1996), Ivanova et al. (2000) and Layton and Katsuura (2001). If 
the process is assumed to be a random walk with drift, or another process with an 
expected value as in (3), then the differentiated series will have a constant expected 
value, conditional on the state. For the situation when the turn is a peak we have 

    E[X(t)-X(t-1)] = 
⎩
⎨
⎧

≥
<
τβ
τβ

t
t

,
,

2

1 ,  (7)

    
where β1≥0 and β2<0. When the observations are independent over time, as in (1), the 
expected values in (7) imply the linear functions in (3). For a process with an expected 
value as in (3), then (7) is valid. 
  The variation might be different for recession and expansion, and French and Sichel 
(1993) find that the variation is largest around business-cycle troughs. Macroeconomic 
time series are sometimes considered to have a continuously varying standard deviation. 
If there is evidence of considerable heteroscedasticity, then the observations in the alarm 
statistic should have different weights. Another suggestion, by Fang and Zhang (1999), 
is to use time varying limits. Maravelakis et al. (2004) show that ARL1 changes with a 
larger heteroscedasticity. Sometimes the logarithm transformation is used for variance 
stabilization. This is the case here, where the observation X is the logarithm of the 
original observation. After this transformation, the variance is here assumed equal, as 
also by Andersson (2004). The surveillance is conducted and evaluated for the 
transformed variable X. 
 In this paper, the alarm statistics are based on the likelihood ratio between the events 
D and C, i.e.  

    
)(
)(

Dxf
Cxf

s

s , 

   
where xs={x(1), …, x(s)} and f is the likelihood function. This is described further in 
Section 2.3. 
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2.2 Assumptions about transition probabilities 
 
The probability of a transition from recession to expansion (or vice versa) are, in most 
approaches in the HMM framework, assumed to be constant with respect to time, see 
e.g. Hamilton (1989), Layton (1996) and Ivanova et al. (2000). But the transition 
probability can also be assumed to be time varying, as by Neftci (1982), Diebold et al. 
(1994), Filardo (1994) and Layton and Katsuura (2001). One approach for the time 
varying transition probability is to use a model where the transition probability is a 
function of economic indicators, see e.g. Layton and Katsuura (2001). The probability of 
a transition might depend on the time spent in the current state and Zuehlke (2003) finds 
evidence of duration dependence in several US economic indicators. Filardo and Gordon 
(1998) use an extension of Markov switching models where a probit model allows the 
transition probabilities to vary with the information in the leading indicators. The 
assumption of a time invariant transition probability is made for all three methods 
investigated in this paper.   
  The specification of C and D in (2) and (4) implies that we know the type of the latest 
turn (whether it was a peak or a trough) and we specify C and D accordingly, that is if 
the latest turn was a trough, we want to detect the next peak and we specify C and D 
accordingly. At an alarm the surveillance is restarted so that we are always looking for 
the next turn, no more than one turn at a time. When the information about the time and 
type (peak or trough) of the last turning point is not utilized (as in (6) above), it is 
necessary to make a probability statement regarding the type of the next turning point as 
well as inference about whether the turning point has occurred or not. For this purpose, 
it is necessary to consider all previous possible turns (both peaks and troughs) and hence 
two transitions probabilities are needed in the monitoring system. The probabilities of 
transitions can also be expressed as intensities of the occurrences of peaks and troughs.  
  Contrary to the situation of an HMM, where a whole history is considered, sometimes 
the specific  type of the next turn (peak or trough) is sometimes used (e.g. Neftci 
(1982)). In that case it is sufficient with one measure of intensity in the monitoring 
system. The intensity, is hereafter denoted ν.  
   ν ( )ttPtDtCP ≥==−= ττ))1()(( . (8) 
 
  Note that the value of the intensity may differ for peak detection and trough 
detection. The assumption of a constant transition probability, and thus a geometric 
distribution for the turning point time τ, is not very realistic in the business cycle 
application. The lengths of the cycles vary more than for a geometrical distribution and 
the probability of small values of the time for the turning point is much smaller for the 
business cycle than for a geometrically distributed variable, as shown in Figure 1.  
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Figure 1. Left: density for peak with observed sample density function (ò ò ò ]) compared to geometric 
density function with intensities 0.07 (VVV) and 0.13 (òòò). Right: density for trough with observed data 
(ò ò ò ]) compared to geometric density with intensities 0.53 (VVV) and 0.10 (òòò). Source: National 
institute of Economic Research, Sweden.   
 
 It could be argued that the empirical distribution for τ should be used. However a 
prior based on the observed data above would result in a high prior probability for a 
turning point after about 9 quarters. The consequence would be that the influence of the 
actual data is reduced and the probability of an alarm after 9 quarters would be very 
high, only due to prior information.  
 Estimation of the probabilities can be made using data from an earlier period. But a 
very long time series is required since there is often several years between transitions in 
the business cycle (see Figure 1).  
 In order to avoid the risk of misspecification, a non-informative prior for the turning 
point time can be used. This is done by the Shiryaev-Roberts (SR) approach, suggested 
by Shiryaev (1963) and Roberts (1966). The SR approach is used for two of the methods 
in this paper. 
 
2.3 Alarm rules  
  
As mentioned in Section 2.1, all methods considered here use a likelihood ratio based 
alarm statistic. The likelihood ratio (LR) method has several optimal properties, see 
Frisén and de Maré (1991). The expected utility, based on very general functions of the 
gain of an alarm and the loss of a false alarm, is maximized. The LR method yields a 
minimum expected delay of an alarm signal conditional on a fixed probability of false 
alarm. In Frisén and Wessman (1999) several properties of the LR method are 
investigated and compared with other methods of surveillance, e.g. the Shewhart method 
and the CUSUM method (Page (1954)). Frisén and de Maré (1991) showed that the 
posterior probability approach is equivalent to the LR approach for the situation where C 
is the complement of D. 
 The LR method is based on the full likelihood which is a weighted sum of the partial 
likelihoods for the components in C={C1, C2, ..., Cs}, For the situation where μ are 
known functions under D and C (see (3)), the alarm rule for the likelihood ratio at time s 
is written as  

   
1

( ) ( )

( )

Cjs
s s

D
j s

w j f x

f x

μ μ

μ μ=

⋅ =

=
∑ > ks, 
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where ws(j) = P(τ =j)/P(τ ≤ s), ks=k/(1-k)·P(τ >s)/P(τ ≤ s) and μCj and μD are vectors 
under restriction Cj={τ=j} and D={τ>s}. 
 The assumptions made about the intensity affect the alarm method through the 
weights, ws(j), and the alarm limits, ks. In the SR approach, the weights as well as the 
alarm limit are constant.  

   
1

( )

( )

Cjs
s

D
j s

f x

f x

μ μ

μ μ=

=

=
∑ > kSRlin, (9)

  
 
where kSRlin is a constant alarm limit. The method, where μD and μCj are modelled using 
known linear functions with a symmetric turning point and where the SR approach is 
used regarding the intensity, is hereafter referred to as the SRlin method. The SR 
approach (i.e. with equal weights) has also been used for a Poisson process (Kenett and 
Pollak (1996)). 
 The non-parametric approach, without parametric assumptions regarding μ, has the 
alarm rule   

   
1

ˆ( )

ˆ( )

Cjs
s

D
j s

f x

f x

μ μ

μ μ=

=

=
∑ > kSRnp, (10) 

 
where kSRnp is a constant alarm limit and Dμ̂  and ˆ Cjμ  are the maximum likelihood 
estimators of the vector μ under monotonicity restrictions D and Cj, described in Section 
3.1.1. This method is hereafter referred to as the SRnp method and was suggested by 
Frisén (1994) and evaluated by Andersson (2002) and Andersson et al. (2004).  
  With an HMM approach (e.g. Hamilton 1989), the posterior probability is used in 
order to classify time points into either expansion or recession, based on the following 
rule 
   ))(( sxsCP > kHMM. (11) 
 
The alarm limit, kHMM, is usually chosen to be 0.5 (see e.g. Hamilton (1989) and Ivanova 
et al. (2000)). The classification by the posterior probability can be used in prospective 
monitoring (see e.g. Neftci (1982)). LeSage (1991) uses the posterior probability as a 
turning-point indicator. By “the HMlin method” we hereafter refer to a monitoring 
method where the rule in (11) is used with kHMM=0.5, together with the definition of the 
event C in (6) and the assumption that the differentiated series is constant in each regime 
according to (7). These conditions agree with those used by Koskinen and Öller (2003). 
 The approach by Birchenhall et al. (1999) is similar to both the HMM approach and 
the likelihood ratio method of surveillance in two respects: i) Birchenhall’s approach  is 
based on Bayes theorem and the likelihood and ii) a classification is made of the type of 
regime. A major difference, however, is that the classification into different regimes is 
based on explaining variables and not on the earlier state. This difference is discussed 
further in Andersson et al. (2004). 
 The time of alarm, tA, is the first time for which the alarm statistic (in (9), (10) and 
(11) respectively) exceeds its specified alarm limit.  
 The alarm limits can be determined indirectly, in order to control the false alarms. 
The most common way in the general theory and practice of surveillance is to control 
the ARL0, (the Average Run Length to the first alarm if the process has no turn). Also 
the MRL0 (the median run length) has been used (Hawkins (1992), Gan (1993) and 
Andersson (2002)), which has a clearer interpretation for skewed distributions. The 
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alarm limit 0.5, for the posterior probability (11), is based on a symmetric loss function 
and no direct conclusion can be made regarding the rate of false alarms. Canova and 
Ciccarelli (2004) provide methods for forecasting variables and turning points using 
VAR models and an alarm is called if the probability of a turn, given a model, exceeds 
0.5. 
 
3. Estimation and special data problems 
 
When a surveillance method is applied to a set of data, for example the industrial 
production, in order to detect the next turn, the user is faced with several practical 
problems: Which assumption should be made regarding the parameters of the 
surveillance system? Which estimation procedure should be used? If the data is very 
noisy – should it be smoothed before monitoring? How will seasonal adjustment and 
trend adjustment affect the performance of the surveillance? How should surveillance be 
made if we have more than one leading economic indicator? For all these questions the 
special situation of surveillance must be born in mind – we can only use data from 
previous cycles for estimation, since the current cycle is not over yet.  
 
3.1 Estimation 
 
An important aspect is which assumptions that are made about the process, since these 
assumptions determine how the parameters of the model are estimated. The parameters 
are often estimated using previous data. If the parameters are estimated from a short 
period the variance of the estimates will be large and the parameters might be severely 
misspecified. As a result the method will produce misguiding results, leading to wrong 
conclusions and decisions. Here we discuss assumptions and estimation of μ and the 
transition probabilities.  
 
3.1.1 Estimation of the level 
 
Sometimes it is assumed that μ is known, which, in practice, means that it has been 
estimated from a large enough set of data from earlier periods.  
  If it is assumed that the differentiated series has a constant expected value, 
conditional on the state, and that the expected values are constant over the cycles, then 
the estimation can be made using previous data. This assumption is used by e.g. Neftci 
(1982), Layton (1996), Ivanova et al. (2000) and Layton and Katsuura (2001). One 
example of such an estimation procedure, under the model assumptions in (1), is to first 
use some classification rule to classify each time point in the estimation period as 
belonging to either the expansion state or the recession state (see e.g. Koskinen and 
Öller (2003)). Then the parameters β1 and β2 in (7) can be estimated as 

   ∑
=

==
nj

i
ji

j
jj d

n
d

1

1β̂ ,  

 
where nj = # time points classified as state j and dj is the differentiated series classified 
as belonging to state j. 
 In order to avoid the rather strong assumption of a specific parametric function for μ, 
or when reliable information on the parametric function is not available, an approach 
based only on the knowledge that the monotonicity of μ changes at a turning point can 
be used, as specified in (5). Then μ is also estimated, however not under a strong 
parametric assumption, but only under the monotonicity restrictions in (5).  The 
estimation is made using a least square criterion and under the model assumptions in (1), 
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the estimates Dμ̂ and ˆ Cμ  are also the maximum likelihood estimates. The Dμ̂  is the 
estimated parameter vector which corresponds to 
   )(max μ

μ
s

F
xf

D∈
,  

 
where FD is the family of μ-vectors such that {μ(1) ≤ μ(2)≤ ... ≤ μ(s)}. Thus, Dμ̂ is the 
maximum likelihood estimator of μ under the monotonicity restriction D. For a trough, 
the estimation is made under the restriction {μ(1) ≥...≥ μ(s)}. This estimator is described 
by e.g. Robertson et al. (1988), p. 1-58.  
 The event C is composite, C={τ ≤ s}, and thus we have C = {C1, C2, ..., Cs} and ˆ Cjμ  
is the estimated parameter vector which corresponds to   
   max ( )

Cj s
F

f x
μ

μ
∈

, 

  
where FCj is the family of μ -vectors such that {μ(1) ≤ ... ≤ μ(j-1) and μ(j-1) ≥ μ(j)≥.... }, 
where j = {1, 2, ..., s} and where at least one inequality is strict in the second part. Thus, 
ˆ Cjμ , j ∈{1, 2, ..., s}, is the maximum likelihood estimator of μ under the monotonicity 

restriction Cj. This estimator is given by Frisén (1986). For a trough, the estimation is 
made under the restriction {μ(1) ≥...≥ μ(j-1) and μ(j-1) ≤ μ(j) ≤...}.  
 
 
 
  
3.1.2 Estimation of transition probabilities 
 
When considering different methods of estimation, simultaneous maximum likelihood 
estimation of all parameters in the model is an obvious choice. However, if the whole 
parameter set is estimated using a maximum likelihood criterion then the rareness of the 
turning points can lead to large errors around turning points, compensated by high 
accuracy within phases, as pointed out by Lahiri and Wang (1994) and Koskinen and 
Öller (2003). For that reason, the transition probabilities are sometimes estimated using 
some other criterion than maximum overall likelihood.   
 Of the three surveillance methods compared here, only the HMlin method needs 
estimates of the transition probabilities. Maximum likelihood estimates, based only on 
the events of transitions, are a natural choice. For the data on the Swedish IP (source: 
National Institute of Economic Research, Sweden), the transition probabilities, p12 and 
p21, are estimated using  

    13.0
534

5ˆ
1211

12
12 =

+
=

+
=

nn
n

p  (0.054), (12) 

    10.0
364

4ˆ
2221

21
21 =

+
=

+
=

nn
n

p  (0.047), 

 
where nij is the number of transitions from state i to state j and the standard errors are 
given in parenthesis. 
 
3.2 Special data problems 
 
There are many special data problems when applying methods for on-line turning point 
detection in cyclical, economic processes. In this section we discuss the problems 
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connected with using a surveillance system on data that have been transformed (e.g. 
smoothed, adjusted for seasonality and adjusted for trend). The section is also concerned 
with the problems with monitoring data that exhibit autoregression and the surveillance 
of multivariate data. Additional problems not discussed here concerns e.g. those 
associated with the data quality (reporting delays, measurement errors and revisions). 
 
3.2.1 Effect of smoothing  
  
In surveillance it is important to have control over the false alarms by being able to 
make a statement regarding how often we can expect a false alarm by a certain 
surveillance system. The variability of the process affects the false alarm rate. In order to 
reduce the false alarm rate some authors, e.g. Koskinen and Öller (2003), recommend 
that the observations should be smoothed after differentiation, see also Öller (1986). One 
motivation of the smoothing, has been the reduction of white noise and by that the false 
alarm rate. Another motivation has been a time adjustment when using multivariate data, 
where the turning points of the different processes are not always the same.  
 Smoothing by kernel estimators is used by e.g. Hall et al. (1995). Often the 
differentiated observations y(t) are smoothed according to 
   )1(~)1()()(~ −−+= tYtYtY λλ ,  
 
where 0<λ<1 can be determined in different ways. Koskinen and Öller (2003) estimate 
the transition probabilities and the smoothing parameter simultaneously from historical 
information, with the criterion of minimizing a cost-function based on the sum of two 
measures of error (the Brier probability score and the proportion of wrongly classified 
states) obtained by classifying observations from a previous period of data. The Brier 
probability score, also referred to as the Quadratic probability score, is the mean square 
error for the posterior probability, i.e. the average squared deviation between the true 
state (0 or 1) and the posterior probability.   
 The smoothing of observations reduces the variance and hence reduces the false 
alarm probability. However, there are also disadvantages in a surveillance situation as 
will be seen in the Monte Carlo study on the effect of smoothing on the HMlin method. 
Results will be given on the distribution of the alarms, both conditional of no change and 
of a turn, and the probability of detecting a turning point within a specified time.  
 Data on the (logarithm of the) Swedish IP was used to get a reasonable simulation 
model (see Appendix 1). A linear function was fitted to the officially dated (National 
Institute of Economic Research (1992)) expansion phase 1987Q2 to 1989Q3. The 
observations on X, under event D, are simulated using the following model  
    XD(t) = μD(t) + ε(t), (13) 
 
where μ D(t) = 11.194 + 0.0069⋅t and ε(t) ∼ iid N[0; 0.016]. In order to evaluate the 
alarm properties under event C the following model is used:  
   XC(t) = μCτ(t) + ε(t), (14) 
 
where μCτ(t) = 11.194 + 0.0069⋅t – 2D1⋅0.0069⋅(t-τ +1) , t = {1, 2, ...}, and 

    D1=
⎩
⎨
⎧ ≥

otherwise,0
,1 τt

  

  
and ε(t) ∼ iid N[0; 0.016 ]. 
 Replicates of sequences of three expansion phases and four recession phases are 
simulated.  
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 The alarm limit for the smoothed data (λ=0.3) is adjusted to yield the same MRL0 as 
for the unsmoothed data (λ=1).  
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Figure 2. HMlin method, λ=1 (VVV) and λ=0.3 (òòò). Left: Distribution of the time of an 
alarm, conditional on event D (no turn). Right: Distribution of the time of an alarm, 
conditional on τ=10.  
 
 
 The common value of the MRL0 is 17. For both cases, λ={1, 0.3} we have a large 
enough sample so that the standard error of the median is less than 0.15. We can see in 
Figure 2 that the density of the time of the alarm has different skewness for λ=1 and 
λ=0.3.  
 

d

43210

P
S

D
(d

, 1
0) 1.0

.9

.8

.7

.6

.5

.4

.3

.2

.1
0.0

 
Figure 3. Probability of successful detection within d time points for τ=10. HMlin method, λ=1 (VVV) and 
λ=0.3 (òòò).  
 
 The probability of successful detection (PSD) is the probability of detecting a turn 
within d time units, that is 
   ( )0)( τττ =>≤− AA tdtP .  
 
For both cases, λ={1, 0.3}, the number of replicates is large enough to yield a standard 
error of PSD of less than 0.0030. The reduced distinctness of the turning point, due to 
smoothing, decreases the probability of successful detection (see Figure 3). 
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3.2.2 Seasonal variation  
 
The variables (leading economic indicators) are measured monthly or quarterly and thus 
often contain seasonal variation, which could complicate the monitoring. The seasonal 
variation can be considerable, as is seen in Figure 4.  
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Figure 4. Swedish Industrial Production, quarterly data (1970Q1 to 1992Q2). Source: 
National Institute of Economic Research, Sweden. 
 
 
 If seasonality is neglected in the monitoring, it could lead to seriously wrong 
conclusions. In the monitoring situation here, it is important that the time of the turns is 
preserved after the adjustment in order to make actions induced by an alarm powerful. 
The problem of altered change points by seasonal adjustment has been briefly discussed 
in a fixed sample context, see e.g. Ghysel and Perron (1996) and Franses and Paap 
(1999).  
  Often the monitoring is made on data that have been adjusted for seasonality. The 
question of whether the seasonal variation can be considered stable over time is treated 
by e.g.  Canova and Hansen (1995) and Busetti and Harvey (2003). These issues are 
important to consider when deciding the method for seasonal adjustment. The effect of 
using different filters in order to adjust for seasonality is analyzed in Andersson and 
Bock (2001) and it is demonstrated that the detection of a turn is delayed when data are 
differentiated or when a one-sided moving average is used. In the monitoring, the largest 
reduction in probability of detection is caused by the moving average. 
 
3.2.3 Autoregression  
 
Economic time series often exhibit strong autocorrelation. For instance, this can this be a 
problem when the sampling intervals are short (Luceno and Box (2000)). Lahiri and 
Wang (1994) evaluate the performance of a monitoring system where a model with 
autoregressive errors is assumed and where the posterior probability is used together 
with an alarm limit. The same alarm limit is used for models with autoregressive errors 
of different orders. They find that the introduction of autoregression in the errors leads to 
a smaller forecast error within phases but increases the risk of wrong inference 
concerning turning points. Three ways to deal with the effect of autoregressive errors is 
to i) use the correct likelihood ratio alarm statistic, see Pettersson (1998), ii) ignore the 
dependency but to adjust the alarm limit or iii) to monitor the residuals of an estimated 
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model of the dependency. If the assumption of an independent process is used, when it is 
in fact dependent over time, the result is an increased false alarm probability. The 
consequence of autoregression in the process is examined in the general theory of 
surveillance where also remedies are suggested.  For a review, see Pettersson (1998) and 
Frisén (2003). The situation with multivariate time-dependent data, modeled using a 
VAR model, is studied in Pan and Jarrett (2004).   
 Ivanova et al. (2000) argue that the effect of the autoregressive parameters will 
largely be captured by the probabilities of remaining in the current state (p11 or p22). 
Many of the suggested methods of surveillance assume that the possible autoregression 
is not a severe problem, as is also assumed here. 
 
3.2.4 Adjusting for trend  
 
Many macroeconomic variables can be characterized as cyclical movements around a 
trend. In order to distinguish the movements and make the time series stationary around 
the cycle it is sometimes necessary to adjust for the trend. In model (1) no separation 
between the trend and the cycle is made.   
  Adjusting for trend implies a data transformation, which may result in a distortion of 
the characteristics of the original series, whereby the surveillance will not give reliable 
signals.  
  The effect of trend removal has often been studied in a non-surveillance context, but 
the results can still be used in this discussion. Gordon (1997) studies the effect of trend 
removal for predictive densities of the US GDP and warns against using other 
information from the data than that which is directly associated with the business cycle 
turning points. Canova (1998) discusses trend removal and evaluates the effect using 
several different approaches, among them first order differentiating. One conclusion 
from the study is that linear trend removal does result in turning point times which do 
not correspond to the official turning point times of the National Bureau of Economic 
Research (NBER), USA. In another paper Canova (1999) points out that previous 
research has shown that the trend may interact with the cyclical component and is 
therefore difficult to isolate. The general conclusion is that statements concerning the 
turning points are not independent of the statistical assumptions needed to extract trends.  
  In most HMM approaches, and also the one considered here (HMlin), differentiation 
is used and the surveillance is made on the differentiated process, whereas in SRlin and 
SRnp , surveillance is made on the undifferentiated process. The removing of the trend 
has less effect on the possibility to distinguish the turning points when analyzing short 
time series. Since the SRlin and SRnp methods are applied to a part of the time series 
that contains one turning point at most, no attempt to separate the trend from the cycle is 
made. 
 
3.2.5 Multivariate problems  
 
In the common movement approach, a business cycle is characterized as the cyclical 
movement of many economical activities. This is one example of how multivariate data 
is used. The common movement approach demonstrates that important information is 
contained in the relation between the turns of different indices. This information can be 
utilized, either by transforming the problem to a univariate one (by using a composite 
index of leading indicators) or by applying another method for surveillance of 
multivariate data. We discuss general approaches in the theory of multivariate 
surveillance and review some important contributions to the multivariate approaches to 
business cycles. 
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  Wessman (1998) demonstrates that when the variables have the same change point 
(or known time-lag) the minimal sufficient alarm statistic is univariate. An example is 
that several leading indices with a known time lag concerning the turning point can be 
the base for one leading economic index. Reducing data to a univariate index is, in fact, 
the recommendation also for most of the earlier studies.  
  Stock and Watson (1991) and Stock and Watson (1993) model the common 
movements of coincident variables as arising from an unobservable common factor (the 
overall state of the economy). The key elements are the selection of variables and the 
estimation of the common factor.  
 Diebold and Rudebusch (1996) consider the common movements of coincident 
variables where the common factor is assumed to be governed by a two-state HMM. 
Kim and Nelson (1998) use the same approach as in Diebold and Rudebusch (1996) and 
find that the main cause of increase in forecast accuracy is the ability to capture the 
common movement among several variables instead of just one, whereas the prior 
assumptions concerning the transition probabilities has a minor influence.  
  Hamilton and Perez-Quiros (1996) compare the accuracy in predicting the phases of 
U.S. real gross national product using univariate and bivariate linear models, where the 
latter included a composite leading index (CLI), and corresponding HMM. Adding a 
CLI to the linear model was found to result in the greatest increase in accuracy, whereas 
using HMM makes no substantial increase in accuracy.  
 Koskinen and Öller (2003) utilize multivariate information by monitoring a joint 
vector of leading indicators with a common time of turn.  
 Birchenhall et al. (1999) exploit the feature of a business cycle, of common 
movements across variables, by extracting a business-cycle index from a vector of time 
series. As in the works by Stock and Watson, the selection of variables is an important 
element.  
  One alternative to the transformation to surveillance of a univariate index is to base 
the multivariate surveillance on the union intersection principle for the marginal 
processes. This is for example done in Woodall and Ncube (1985), where one 
surveillance system is applied to each process, and the aim is to detect the first change in 
any of the processes. Kalgonda and Kulkarni (2004) propose a surveillance method for a 
VAR process, where each process is standardized and the alarm statistic is the maximum 
of the standardized processes. Kontolemis (2001) compares turning point identification 
based on individual series to a multivariate approach (in all cases HMM approaches). It 
is shown that the business cycle chronology based on the latter approach is closer to that 
of NBER than the turning points obtained from individual series. 
  An optimal multivariate LR method can be based on the joint density function 
(Sonesson and Frisén (2004)). For reviews on the theory of multivariate surveillance, see 
e.g. Basseville and Nikiforov (1993), Lowry and Montgomery (1995), Ryan (2000) or 
Sonesson and Frisén (2004). 
 
4. A comparison of some likelihood based approaches for detecting a turn in a 
leading index 
 
When evaluating a surveillance method it is important to be able to make statements 
regarding the statistical properties of the method, for example the false alarm rate and 
the expected delay time for a motivated alarm. In Section 4.1 the performance of the 
methods are demonstrated for a turn in the Swedish industrial production and in Section 
4.2 statistical properties of the three methods (SRlin, SRnp, HMlin) are summarized.  
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4.1 Evaluation by data on the Swedish Industrial Production  
 
The most common way to evaluate methods for the detection of turning points in 
business cycles is by using one set of data. Here we use quarterly data on the Swedish 
industrial production. The three methods (SRnp, HMlin and SRlin) are applied to the 
period 1987Q2 to 1992Q2.) .    
  According to official records (National Institute of Economic Research (1992)), the 
period contains one turn, a peak, at time 1989Q3 (t = 10) which implies that the time of 
change is 1989Q4 (τ =11). The period is displayed in Figure 5. The official turning point 
times can often be based on more information than data. This other information might 
make the official time different than it should have been, if only the IP data had been 
used. Figure 5 indicates that the turning point in the data is earlier than the official time. 
Thus the methods, using only the IP data, can not be expected to be good at indicating 
the recorded official time for this realization. All three methods give alarms earlier than 
the official times for this set of data.  
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Figure 5. Seasonally adjusted values of the (logarithm of) Swedish industrial production, for the period 
1987Q2:1992Q2. The official time of change, 11, is marked with a solid vertical line. The alarm times 
(tA={4, 7, 10} for SRnp, HMlin and SRlin, respectively) are marked with dashed vertical lines. The model 
for μ with τ=11, used by SRlin and HMlin, is marked with a solid curve (see Section 3.2.1). The 2.5th and 
97.5th percentiles of values of the observations according to the model is marked as dotted curves. Source: 
National Institute of Economic Research, Sweden.   
 
  Both the SRlin method and the HMlin method use the assumption of a piecewise 
linear model for μ (see (3)). The piecewise linear model fits less well at the turning point 
as we have a plateau. McQueen and Thorley (1993) argue that it is reasonable that 
recessions tend to be preceded by plateaus. A plateau will result in a tendency to give 
alarms just before the turn. It can be discussed whether this is a drawback or not. An 
early indication of a coming recession is a plateau. In this light, alarms just before the 
turning point can be considered to be good, since they can be seen as warnings. 
  The two parametric methods, SRlin and HMlin, rely on the assumption that the 
parameters (slopes and standard deviations) are known or possible to estimate with great 
certainty. Here we use the data on Swedish IP from the period 1970Q1:1987Q1 and the 
estimation procedure described in Appendix 1 to estimate the parameters. The resulting 
signal-noise ratios are: 11 ˆ/ˆ σβ  = 0.47 (expansion phase) and 22 ˆ/ˆ σβ  = 0.40 (recession 
phase). These estimates are used for the HMlin method when calculating the posterior 
probability. The SRlin method assumes a symmetric turning point and homoscedasticity.  
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We use pooled (by their frequency) estimates for both parameters, resulting in σβ ˆ/ˆ = 
0.41, when calculating the alarm statistic. The HMlin method also includes two 
transition probabilities, whose values are estimated according to (12).  
 An actual data set, as used above, is representative of the specific time period and 
situation at hand. However, the real data set might deviate stochastically from the 
process of interest. When a method is intended to be used on future data, then it is the 
properties of the process that are important for that method. In order to be able to make a 
general statement about, for example, the average delay time of a method, it is necessary 
to replicate the performance of the method at a turning point. Then Monte Carlo 
methods are a valuable tool.  
 
4.2 Statistical properties  
 
In Andersson et al. (2004) an evaluation was made of the properties of the three methods 
by means of a Monte Carlo study. The major results are summarized here. The 
evaluation was made both for the situation when the correct parameter values were used 
and for the situation when the values were misspecified.  
 
4.2.1 Correct parameter values used 
 
For all three methods the alarm limits are set to yield MRL0 = 17 (quarters), but the 
distribution of the alarm times differs. The HMlin method has more frequent alarms at 
early time points, but low alarm probability later on, compared to the others. 
  The expected delay measures the delay time for a motivated alarm (i.e. the time 
between τ and tA). This measure depends on τ. For a turning point within a year from the 
last turn, the SRnp method has the longest expected delay. For turning points that occur 
later, the SRnp method has a (slightly) shorter delay than the HMlin method. SRlin has 
the shortest delay time for every value of τ. 
  In a practical situation it is important to have a strategy for what action to take when a 
turning point is signalled. The predictive value (see Frisén (1992)) reflects the trust you 
should have in an alarm. For the HMlin method the high alarm probability at the first 
time point results in that alarms at t=1 are of little value, whereas the predictive value for 
SRnp and SRlin at this time have much higher predictive values. The alarms that come at 
time points t=4 and hence forward have predictive values of (at least) 0.75 for all three 
methods. 
 
 4.2.2 Incorrect parameter values used 
 
The effect of using wrong parameter values for μ was evaluated both for the situation 
when only the slope after the turn was misspecified and for the situation when both 
slopes (pre-turn and post-turn) were misspecified. Also in this evaluation the alarm 
limits are set to yield MRL0 = 17 (quarters). 
  When only the post-turn slope is misspecified, it has very little effect on the 
conditional expected delay and the predictive value.  
  When both slopes (pre-turn and post-turn) are misspecified, the effect on the 
conditional expected delay and the predictive value is major. For small and moderate 
values of τ, (τ <10), the delay time is longer when the slopes are specified as being too 
steep. Thereafter the delay time is shorter for misspecified slopes. The price for the short 
delay times is however that the predictive value of those alarms is low.  



 

 18

  In view of these results, using a method that does not require any parametric values 
for μ is a safe way, particularly since the properties of the SRnp method are almost as 
good as those of the SRlin method.        
  
 
 
5. Discussion 
 
When estimating the parameters of the monitoring system, historical data is often used. 
Then there has to be a balance between, on one hand, the risk of using data sets that are 
too small, which results in estimates with a large variation and, on the other hand, the 
risk of using historical data which might be out of date. The user of a system for on-line 
detection is faced with the paradox that the parameters in the surveillance system might 
be estimated using previous data, which means that it is assumed that previous patterns 
will repeat themselves. However, the aim of the surveillance is to detect changes and by 
estimating parameters from previous data, the ability to detect changes in the current 
cycle might be diminished. Sarlan (2001) examines the change in intensity and duration 
of US business cycles and concludes that the modern business cycle is different from the 
historical one.  
  Other issues that must be considered in on-line detection is how to handle seasonal 
variation and whether to apply different kinds of transformations of data (e.g. trend 
removal and smoothing). 
 Since the surveillance methods are based on the ratio between the likelihoods given 
that the cycle has or has not reached a turn suitable models for the cyclical process must 
be found. Parametric models contain information, which should be used whenever it is 
reliable. However, wrong specifications do cause bad stochastic properties and 
misleading results. Here, a non-parametric approach, which works also when such 
reliable information is not available, is considered. The safe way with the non parametric 
method might be preferred in order to avoid risks of misleading results. 
 Many alarm systems, for example methods based on a Hidden Markov model, use 
assumptions regarding the intensity of the change (the transition probability). These 
parameters also need to be estimated. One approach is to use only the observed 
transition frequencies. Another approach is to estimate several parameters 
simultaneously. If, for example, both transition probabilities and smoothing parameters 
are estimated simultaneously then the parameters compensate for each other (a heavy 
smoothing is combined with a high transition probability). Thus it might be difficult to 
interpret the parameters separately. Different criteria can be used in the estimation and if 
the Brier probability score is used as a criterion when estimating the transition 
probabilities, it must be borne in mind that this measure does not take into account the 
order of the observations. As a result, the transition probabilities might again be difficult 
to interpret. 
 In many systems for on-line detection, it is assumed that the transition probability is 
constant, which implies that the time of the turn has a geometric distribution. This might 
not be in accordance with reality for business cycles, but can be interpreted as a way of 
avoiding to use strong assumptions regarding the intensity of turns. Good estimates of 
the transition probabilities are useful if the pattern is constant over time and will remain 
the same, even in the future. Technically, the inclusion of transition probability estimates 
in the monitoring system is easily done by likelihood ratio methods. However, it is 
important that the monitoring system has the ability to detect a turning point also when 
this happens at an unexpected time. Thus, it might be preferred to use a non-informative 
prior for the time of the turn in the suggested SRlin and SRnp methods, so as to avoid the 
risk of errors due to wrong assumptions or uncertain estimates. 
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 The smoothing of the observations before applying a method of monitoring will 
reduce the variation and hence reduce the false alarm probability. However, the 
smoothing will introduce autocorrelation and, as pointed out by Öller and Tallbom 
(1996), will lead to a delayed signal. In this paper it is confirmed that the expected delay 
of a motivated alarm is increased by smoothing (when the false alarms are controlled). 
One method of surveillance, where the smoothing procedure is included in the alarm 
statistic and not made separately, is the EWMA method (see e.g. Crowder (1987), 
Domangue and Patch (1991) and Frisén and Sonesson (2004)). This method allows for a 
controlled false alarm rate at the same time as the variability is reduced by smoothing.   
 Economic time series often exhibit seasonal variation. Most data-driven filters can 
seriously alter the turning point times (see e.g. Andersson and Bock (2001)). Thus 
information from historical data or other prior knowledge, which makes the seasonal 
adjustment independent of the data to be monitored, is very valuable. 
  In surveillance of multivariate data, different approaches have been suggested. A 
common approach is to reduce data to a univariate index (e.g. a mean) and then apply 
methods for univariate surveillance to the index. Reducing data to a univariate index is, 
in fact, the recommendation also for most of the earlier studies. It can also be 
theoretically motivated if the turns occur at the same time (or with a known time lag). 
Surveillance with several leading indicators is, as it appears, an interesting topic for 
future research. Aspects influencing which approaches are optimal are the dependency 
structure of the variables (X1, X2, ...) as well as the dependency between the turning point 
times (τ1, τ2, ...).  
 When evaluating methods for on-line detection, it is important to consider the 
timeliness of the alarms. The rate of false alarms in surveillance is often controlled by 
setting the alarm limit so that the average time to the first false alarm is fixed (ARL0 or 
MRL0). A hybrid between surveillance and hypothesis testing is to set the alarm limit so 
that the probability of a false alarm is, at every time point, less than e.g. 0.05, which has 
been suggested by e.g. Chu et al. (1996). This approach has the disadvantage that the 
detection ability is very low if the change occurs after a long time (see Frisén (2003) and 
Bock (2004)).  
 The performance of a surveillance method should be measured by how quickly an 
actual change is detected (for example by the expected delay of an alarm or by the 
probability of successful detection). Evaluations using the power or using measures like 
the MSE does not take the timeliness into account.   
 Once the evaluation measures have been determined, there are still two main roads 
for evaluating a method of surveillance. In this paper, the effect of smoothing is 
evaluated by in a simulation study, whereas the monitoring methods are evaluated with a 
set of real data; a period of the Swedish IP. Evaluation of the properties of a method by 
one sample of real data is difficult. One difficulty is to know whether the turnout of the 
sample is typical. Evaluations by several real data sets (instead of just one) would 
decrease some of the stochastic variation in the measures of evaluation. However, if 
these analyses are not totally independent (for example if the same parameter estimates 
are used) then some of the stochastic components would keep their variance.  
 The results from the application of the three methods on a period of the Swedish IP 
did not contradict the conclusion by the statistical properties that the non-parametric 
method is a safe way without much loss of efficiency. 
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APPENDIX 1. Model for Monte Carlo study of the effect of smoothing 
 
Data on the Swedish IP was used to get a reasonable simulation model. For the dating of 
recession and expansion phases, official records are used (National Institute of 
Economic Research (1992)),  
 The data on ln(IP) is seasonally adjusted and then, for each expansion and recession 
phase, a polynomial regression function is fitted.  
 
 2

0 1 2( ) ( ) ( ) ( ) ( )ij ij ij ij ij ij ijy t t t t t tμ ε θ θ θ ε= + = + ⋅ + ⋅ + , 
where i = {expansion} or {recession} and j = {1, 2, 3, 4}.  
 
Results for the intercept-adjusted polynomials are given in Table 1.  
 
Table 1. Simulation model for the estimation period 
 
i j θ0 θ1 θ2 sd[ε(t)] 
Expansion 1 10.707 0.023 -0.0002 0.004 
 2 11.056 -0.019 0.0005 0.024 
 3 12.678 -0.075 0.0008 0.013 
Recession 1 10.920 0.009 -0.0009 0.007 
 2 10.550 0.046 -0.001 0.018 
 3 8.426 0.117 -0.001 0.013 
 4 11.615 -0.016 0.0001 0.020 
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