
 1 (1)

Project number: 102/G02

Name: Assistant professor Jarmo Rantakokko

Institution: Uppsala University

Information Technology

Box 337

S-751 05 Uppsala

Tel: +46 (0)18 471 29 77

E-mail: jarmo.rantakokko@it.uu.se

Interactive Learning of Algorithms

Abstract
The use of pictures and visualizations as educational aids is accepted practice.
Textbooks are filled with pictures and teachers often diagram concepts on the
blackboard to assist an explanation. Animation goes one step further. While
static visualizations can provide students with the essence of how something
looks or is constituted, animation appears better to explain a dynamic, an
evolving process, an algorithm. An algorithm animation actually serves two
fundamental purposes as an instructional aid; it provides a concrete depiction of
the abstractions and operations inherent in an algorithm or program, and it
portrays the dynamics of a time-evolving process. In the proposed project, the
aim is to go one step even further, by making the animations interactive. This
will allow for students to actively investigate algorithms by trying different
scenarios.

Computer animation is a useful technique for learning in any computer science
course. In the proposed project, we will focus in particular at courses in parallel
programming. Parallel and distributed programming is intrinsically more
difficult than sequential programming. Parallel program development is further
complicated by the need for performance tuning. After a parallel program has
been sufficiently debugged and works correctly, tuning is required to refine the
program's processor and memory utilization. Here, it is necessary to understand
the behaviour thoroughly to be able to modify and improve the design.
Browsing source code and tracing program output are tedious and often
ineffective approaches for parallel program understanding. Using animation and
program visualization in parallel programming can aid comprehension of the
complex concurrent events and transitions that occur in parallel programs.

Keywords
Higher Education, Classroom Research, Instructional Innovation, Computer
Science Education, Teaching Methods, Computer Simulation, Algorithms

Interactive Learning of Algorithms

Jarmo Rantakokko

Scientific Computing, Department of Information Technology
Uppsala University, Uppsala, Sweden

May 3, 2004

1

Abstract

Visualization is believed to be an effective technique for learning and understanding algorithms in
traditional computer science. In this paper, we focus on parallel computing and algorithms. An inherent
difficulty with parallel programming is that it requires synchronization and coordination of the concurrent
activities. We want to use visualization to help students to understand how the processors work together
in an algorithm and how they interact through communication. To conceptualize this we have used two
different visualization techniques, computer animations and role plays. As the students can see how the
processors run simultaneously in parallel, it illustrates important concepts such as processor load balance,
serialization bottlenecks, synchronization and communication. The results show that both animations and
role plays are better for learning and understanding algorithms than the textbook.

Keywords: Higher Education, Classroom Research, Instructional Innovation, Computer Science Educa-
tion, Teaching Methods, Computer Simulation, Algorithms

2

1 Introduction
The motivation and expectations for using visualization of algorithms in the education is that the students
will grasp and understand the abstract algorithms and concepts used in computer science courses easier,
i.e. the algorithms will be more concrete for the students. Visualization is a useful technique for learning
in any computer science course. In this paper, we focus at parallel computing and in particular at parallel
sorting algorithms [2]. Parallel computing is intrinsically more difficult than sequential computing, it
requires coordination of the parallel processes which can be very problematic to conceptualize. We want
the students to understand how the processors work together in an algorithm and how they interact. As the
students can see how the processors run simultaneously in parallel this will illustrate important concepts
such as processor load balance, synchronization, and communication.

The use of pictures and visualizations as educational aids is accepted practice. Textbooks are filled
with pictures and teachers often diagram concepts on the blackboard to assist an explanation. Animation
includes one more dimension, explaining and illustrating the dynamic properties of an algorithm. Role
plays goes even further by actively involving the learners within the algorithm. Furthermore, animations
and role plays bring a variety into teaching that is usually missing. Different students have different
learning styles. The learning styles can be categorized into Visual, Aural, Read/Write, and Kinesthetic
[1]. While traditional teaching and lecturing are more directed towards the Aural and Read/Write learners,
animations are more focused towards the Visual learners and role plays towards Kinesthetic learners. The
latter learning styles are also very common by students taking science and technical courses; “computer
systems students have some preference to the visual learning style” quoting [1].

In this paper we discuss how students perceive these two visualization techniques, animations and role
plays, for understanding abstract algorithms in parallel computing. We have used both techniques in the
same course and then let students answer questions anonymously in writing. The students have also taken
the VARK-test [1] to correlate the answers with their learning style.

Computer animations are commonly used in traditional computer science courses, see e.g. [3, 4], but
little efforts have been made in parallel computing. Most visualization techniques are used by researchers
for analyzing the parallel performance of their programs [5]. For educational purposes a group at Georgia
Institute of Technology lead by John Stasko has developed a software package, Polka, for creating anima-
tions of parallel algorithms [8, 9]. We have used this package to develop our animations. A historically
interesting note of using role plays is the experiment set up by Lewis F. Richardson in 1922 for computing
a weather prediction [7], long before the existence of parallel computers. Richardson simulates a parallel
algorithm by letting individual workers do partial numerical calculations in parallel, as in todays parallel
computers.

2 Method

2.1 Computer Animations
We have developed two different animations for parallel sorting, using the Polka package [8, 9]. The ani-
mations are based on two parallelization strategies that are completely different and with different proper-
ties regarding communication, load balance, memory requirements, etc. The purpose is to let the students
compare the algorithms, learn how they work and understand their inherent problems, i.e. the communi-
cation pattern, computation complexities and load balance. The students can work individually with the
animations in a computer room exercise.

Learning aspects

Before starting designing animations one must consider the learning aspects. It is important to activate
the students in the animations. Previous studies show that there is no significant learning gain in passive
viewing [3]. The studies show that; learners who are actively engaged with the visualization technology
have consistently outperformed learners who passively view visualizations. The learners can be engaged
in a number of ways, such as:

� Constructing their own input data sets.
� Making predictions regarding future visualization states.
� Programming the target algorithm.

3

� Answering strategic questions about the visualization.
� Constructing their own visualization.

Our goal when construction the animations has been to make them interactive, i.e. to engage the students
in the animations. We let the students create their own data sets and input parameters. This allows them to
actively investigate the algorithms by trying different scenarios. As a leading guideline for experimentation
we pose questions pointing to the interesting features of the algorithms in case. The students are then free
to use the animations and create their own data sets to find answers.

In the design phase we have consulted students that have taken the course in the previous year. These
students have provided valuable input on how to design and improve the animations. They have been an
important part of the design process by actively working with and evaluating our animation prototypes.

Parallel bucket sort

The first animation shows a parallel bucket sort algorithm for sorting a sequence of real numbers in the
interval [1, 100]. The numbers are represented with bars of corresponding height. We define k buckets
by dividing the interval length uniformly into k subintervals, e.g. [1,25], [26,50], [51,75], [76,100] using
four buckets on the interval [1,100]. The elements (numbers) are filtered in a sequential step into the
equally spaced buckets. The buckets are then assigned to and sorted with quicksort on different processors
in parallel. When running the animation, the user is prompt for the number of buckets, the number of
processors, and how to distribute the buckets to processors. In addition, the animation is independent of
the random number sequence. The user can choose from different random number sequences as input or
even provide her own data file. In the animation we have two windows, one dynamic view of how the
elements are sorted (Figure 1a), and one static view of the processor load balance (Figure 1b).

(a) Physical sorting view (b) Processor load balance

Figure 1: The bucketsort approach for parallel sorting.

In a first step, the elements are moved from a single stack to the different buckets. The buckets are
coded with different colors depending on which processors they belong. Next, the elements are sorted
simultaneously in the different buckets creating an illusion of parallelism. The processor with the highest
work load will continue sorting the longest time, illustrating the effect of the load imbalance. Different
random number sequences will give different work loads in the buckets. The workload can then be balanced
with, e.g., using more buckets than processors and distributing the buckets cyclicly to the processors or by
providing a file with pre-described non-uniform bucket widths.

4

Parallel Quicksort

The second animation illustrates a memory efficient and fully parallel algorithm. The data is kept dis-
tributed all the time and there are no large serial sections as the filtering operation above. In this approach
we divide the elements equally among the processors and perform a local sort within each processor. Then
we exchange data pairwise between processors to get a global sorting order. The algorithm is outlined in
Figure 2.1.

Parallel quick-sort

1. Divide the data into � equal parts, one per processor.
2. Sort the data locally for each processor.
3. Perform global sort.

3.1 Select pivot element within each processor set.
3.2 Locally in each processor, divide the data into two

sets according to the pivot (’ � ’ or ’ � ’).
3.3 Split the processors into two groups and exchange data

pairwise between them so that all processors in one group
get data less than the pivot and the others get data larger
than the pivot.

3.4 Merge the two lists in each processor into one sorted list.
4. Repeat 3.1 - 3.4 recursively for each half (�����
	�� steps).

Figure 2: Parallel Quicksort. The elements are divided equally among the processors and sorted
locally. Then, in a number of steps, the processors split their data into two parts according to a
pivot and exchange data pairwise with a merging step to get a global sorting order.

(a) Snapshot during global sorting (b) Execution profile

Figure 3: Views of the parallel quicksort animation.

In this animation the user can also choose the number of processors and the random number sequence
as input. Here, the processor load balance depends on how the pivot elements are chosen in step 3.1,
Figure 2.1. There are different pivot selections strategies available for the user to choose as input. The
animation supports two different views of the algorithm. The dynamic view shows how the elements are
physically sorted and moved between different processors (Figure 3a). All parallel activities are animated
simultaneously, creating an illusion of parallelism. In the second view, an execution profile is grown
simultaneously as the animation continues (Figure 3b). Here, different activities are color coded in bars
for respective processor. Arrows represent the communication. The arrows are drawn from the sender
to the receiver processor and their stopping point indicates how much data is communicated. From the
execution profile it is possible to extract both computation and communication load imbalances.

5

2.2 Role Plays
Role plays are well suited for visualization of parallel algorithms. Each student can take the role of a
processor in the algorithm. All bottlenecks, e.g. communication and load imbalance, in an algorithm
become very obvious and concrete. The role plays can be performed within class.

Again, we have used different sorting algorithms for demonstration. The first algorithm is a pipelined
version of bubblesort. The students are given different parts of an unsorted deck of cards. They lay
out their cards on the table. The first student starts its first iteration moving the largest card by pairwise
compare-exchange to her right while the other are idle. When she comes to the end of her cards in the first
iteration she must compare and exchange cards with her neighbor and can then start the next iteration. The
other students proceed in the same way but have to wait awhile in the first iteration before they can start.
Similarly, the processors/students to the right will finish sorting first and will then be idle. This algorithm
requires frequent communication and synchronization but it also has a large load imbalance.

Next, we let the students perform the odd-even transposition algorithm. Here the students are also
given parts of the deck of cards but now they first sort their own cards (locally). Then, they exchange all
their cards alternately with their left and right neighbor. In each step one student in a pair merge its cards
with its neighbors cards and gives back half of the cards, keeping the other half. The algorithm proceeds
in p-steps (where p is the number of processors/students). This algorithm is much faster and requires less
communication than the pipelined bubblesort algorithm. Still, there are some load imbalance, half of the
processors doing the merging while the other half of the processors are idle.

Finally, we let the students simulate the parallel quick-sort algorithm, see Figure 2.1. This algorithm
minimizes the communication compared to the two previous ones and terminates in ��

��������� steps. The
load imbalance comes obvious from bad pivot choices giving some students more cards than the others.

2.3 Students
The target course, Programming of parallel computers, is a C-level course given in the third year. The stu-
dents come from different programs, Master of Science, Computer Science, Natural Science, and exchange
students. The students are mostly males (85 �). The pre-requirements for the course is that they have at
least taken two programming courses. This is their first course in concurrent programming techniques.
The course is given with traditional lectures and has mandatory computer room exercises.

3 Results
In addition to a course evaluation we have asked the students to fill out a survey with the following ques-
tions: Grade 1-5 (where 1=not useful and 5=very useful) traditional lectures (L), textbook (B), animations
(A) and role plays (R) with respect to:

1. Understanding parallelism and algorithms

2. Motivation for learning

3. Help for programming assignments

4. Which combination of teaching methods would you benefit most of, e.g. (L)+(B)+(A)

The results from the survey are summarized in Figure 4. The scores for the fourth question are calculated
by counting the number of (L), (B), (A), and (R), respectively, then dividing these numbers with the number
of students and finally multiplying with five to normalize with the other scores.

The results show that traditional lectures outperform the other teaching methods in all aspects but it
is interesting to see that both animations and role plays give better understanding for the algorithms than
the textbook and that the students prefer animations before the textbook for learning (in combination with
lectures). Comparing the two visualization techniques clearly shows that computer animations are experi-
enced by the students as having higher impact on learning than role plays. The results of the survey depend
very much on factors such as quality of lectures, book, animations, enthusiasm of lecturer, preference to
learning style, etc.

The students did also take a VARK-test [1]. The results from the test, Figure 5, show that this particular
group of students had some preference to the Read/Write and Kinesthetic learning styles. This does not
correlate with the results of the questionary where the textbook got low scores while lectures got high
scores.

6

1 2 3 4
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

QUESTION

A
V

E
R

A
G

E
 S

C
O

R
E

Lectures
Textbook
Animations
Role plays

Figure 4: Average scores from the survey, 13 students answered the questionary.

V A R K
0

10

20

30

40

50

60

70
LEARNING STYLE SURVEY

Figure 5: Total scores from the VARK-test, 15 students answered the questionary.

The course evaluation, which the students also answered anonymously, was very positive giving an
average score 4.3 (out of 5.0) to the course as whole, 4.6 to the lectures and 4.1 to the laboratory exercises
including the animations. The textbook got an average score 3.6 which still can be considered good.

4 Discussion
We have used both computer animations and student role plays to visualize abstract algorithms in parallel
programming. Both techniques increase and facilitate learning and understanding of the specific algorithms
but they also illustrate general concepts, such as load imbalance, synchronization and communication,
in a very concrete way. In this particular study, they are experienced by the students as giving better
understanding for the parallel algorithms than the textbook.

There are though some fundamental differences between these two visualization techniques. Computer
animations allow the students to work in their own pace and let them re-run the animations as many times
they want to. They can also experiment with different input parameters and data testing different scenarios
and behavior of the algorithms. Role plays on the other hand make the inherent concepts more concrete
and real, .e.g. a load imbalance forces one player to work more than the others. Role plays don’t require
any technical equipment or software development, maintenance, etc. Developing computer animations
requires a lot of work and it can be difficult and time consuming to learn how to do this [3]. A problem
with role plays is that it can be difficult to perform in a large group of students. It can be impossible to
let all participate and then some of the students may not be able to follow or they can feel left out and be
unengaged.

In the student survey animations got better scores than role plays. But, the best results were given
to the lectures. One explanation is that the impact of the other factors, e.g. quality and enthusiasm, has
higher impact than the individual learning styles. Moreover, the lectures are a mixture of different teaching
methods, including discussions, writings and visualization with pictures on the blackboard.

An important conclusion is that the visualization techniques cannot replace traditional lectures but can

7

serve as a valuable complement increasing learning and motivation. This is also how the results of the
project will be used, i.e. the developed animations and role plays will be a part of the pedagogy in our
target course, Programming of parallel computers.

References
[1] N. Fleming, VARK, a guide to learning styles, http://www.vark-learn.com/, 2001.

[2] A. Grama, A. Gupta, G. Karypis, V. Kumar, Introduction to Parallel Computing, Second Edition,
Pearson Education Limited, 2003.

[3] T. Naps, G. Roessling, et. al., Exploring the Role of Visualization and Engagement in Computer Sci-
ence Education, report of the working group on Visualization at the ITiCSE conference in Århus,
Denmark, 2002.

[4] T. L. Naps, G. Roessling, J. Anderson, S. Cooper, W. Dann, R. Fleischer, B. Koldehofe, A. Korhonen,
M. Kuittinen, C. Leska, L. Malmi, M. McNally, J. Rantakokko, R. Ross, Evaluating the Educational
Impact of Visualization, inroads - Paving the Way Towards Excellence in Computing Education, vol-
ume 35, Number 4. pp. 124-136, ACM Press, New York, 2003.

[5] C. Pancake, Exploiting Visualization and Direct Manipulation to Make Parallel Tools More Commu-
nicative, in proceedings of Applied Parallel Computing, PARA98, Lecture Notes in computer Science
1541, Springer, 1998.

[6] J. Rantakokko, Interactive Animation as a Learning Aid for Algorithms, in proceedings of Utveck-
lingskonferensen för högre utbildning, Gävle, 26-28 November, 2003.

[7] L.F. Richardson, Weather Prediction by Numerical Process, Cambridge University, 1922 (re-published
1965).

[8] J. Stasko, W. Appelbe, K. Eileen, Utilizing Program Visualization Techniques to Aid Parallel and
Distributed Program Development, Graphics, Visualization, and Usability Center, Georgia Institute of
Technology, Atlanta, GA, GIT-GVU-91/08, June 1991.

[9] J. Stasko, J. Domingue, M. Brown, B. Price, (editors), Software Visualization: Programming as a
Multimedia Experience, MIT Press, Cambridge, MA, 1998.

Author note
The project was carried out by Jarmo Rantakokko (project leader) and Per Wahlund. Professor Michael
Thuné and Krister Åhlander have contributed with valuable discussions and planning of the project. Three
students, Gunilla Linde, Johan Östrand and Erik Lindblad, have actively given important feedback in the
designing phase of the animations. The results of the project have been partially presented and published at
the First IEEE Nordic Education Society Chapter workshop, Uppsala, May 9-10, 2003, at the ITiCSE 2003
algorithm visualization working group, Thessaloniki, June 28-29, 2003, and at Utvecklingskonferensen för
högre utbildning, Gävle, November 26-28, 2003. The project was financially supported by the Council for
the Renewal of Higher Education.

8

	Interactive Learning of Algorithms
	Abstract
	Keywords

