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Abstract 
Education research regarding electricity and circuit theory have shown that 
students, even at university or college level, have difficulties in acquiring a 
functional understanding of and to distinguish between fundamental concepts 
such as current, voltage, energy and power. Student’s lack of qualitative 
understanding results in difficulties solving quantitative problems correctly. 
 
In this project an introductory course in electric circuit theory for electrical 
engineering students are reformed using active engagement methods. Students 
take this course during the second semester in their first year. This course 
contains fundamental circuit theory for DC- and AC-circuits including matrix-
methods and the jw-method, coupled circuits, some theory for three-phase AC-
circuits in the first part of the course. In the second part of the course Fourier-
series, Fourier-transforms and Laplace-transforms are introduced for treating 
stationary and non-stationary circuit problems. Some system theory and some 
feedback theory are also introduced in the second part of the course. 
 
We have developed "tutorials" to be used in the recitation sections and a series 
of labs, which are focused on helping the students to develop a better functional 
understanding. In the labs low-tech (batteries, bulbs) and high-tech (computers, 
MBL-interfacing, simulations) are combined using active engagement methods. 
MBL-interfacing allows the use of more advanced tools such as FFT (Fast 
Fourier Transforms) and the modelling of transient response using experimental 
data. We have also developed some interactive lecture demonstrations (ILD) 
using MBL-interfacing for use in the lectures allowing real-time display of 
experimental data.  
 
During the 2001/2002 academic year students actions and communications 
during the labs have been videotaped by a doctoral student from the Swedish 
National Graduate School for Science and Technology Education Research. 
 
In the 2002/2003 academic year the recitation sections and the lab sessions will 
be merged into a joint experimental problem solving session. Also a doctoral 
student will study this implementation of a reformed curriculum. 
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ABSTRACT 
Education research regarding electricity and circuit theory have shown that students, even at 
university or college level, have difficulties in acquiring a functional understanding of and to 
distinguish between fundamental concepts such as current, voltage, energy and power. 
Student´s lack of qualitative understanding results in difficulties solving quantitative problems 
correctly. 
In this project an introductory course in electric circuit theory for electrical engineering 
students have been reformed using active engagement methods. Students take this course 
during the second semester in their first year. This course contains fundamental circuit theory 
for DC- and AC-circuits including matrix-methods and the jω-method, coupled circuits, some 
theory for three-phase AC-circuits in the first part of the course. In the second part of the 
course Fourier-series, Fourier-transforms and Laplace-transforms are introduced for treating 
stationary and non-stationary circuit problems. Some system theory and some feedback theory 
are also introduced in the second part of the course. 
In the first implementation of the reformed electric circuit a series of conceptual labs were 
developed. In a second implementation these conceptual labs were merged with the problem 
solving sessions into problem solving labs. 
We have videotaped students' actions and communication during these labs. The 
videorecordings from the labs dealing with AC-electricity and with transient response have 
been analysed in more detail.  
Our analysis show that the conceptual labs have been good at fostering conceptual 
understanding. By taken these conceptual labs one step further by merging problem solving 
into the labs and systematically develop the task using the theory of variation we show that 
we have been even more successful.  



INTRODUCTION AND RATIONALE FOR CHANGE 
“What do you really do using these complex numbers [in alternating current problems]?” This 
exclamation one of us (J. B.) heard from his co-instructor when preparing an alternating 
current lab for a university-level electricity course about 15 years ago. The person behind this 
statement had, at that time, recently got a Ph D in physics.  

This experience points to two conjectures from a rich body of research in physics and 
engineering education (Bernhard, 2000; McDermott, 1997; Thornton, 1997; Arons, 1995; 
Arons, 1997):  
•  A functional understanding (in this case an understanding why complex representation and 
phasors are used in theory of AC-electricity) is not typically an outcome of traditional 
instruction. Qualitative reasoning and the ability to make verbal explanations must 
specifically be addressed in teaching. 
 • Even faculty members, graduate students and students at high ranking institutions have 
problems with their conceptual understanding. 

Learning electric circuit theory is important in engineering education. For an engineer it’s 
important to know not only DC-circuit theory but also AC-circuit theory since AC-electricity 
is much more common in technological practise. Students specialising in electrical 
engineering or engineering physics typically need to study not only AC-circuits but methods 
for handling more complex circuits and are usually requested to learn to apply various 
transform methods (phasor, Fourier and Laplace) and Fourier-series in circuit analysis. 
Understanding of concepts from circuit theory, and specially AC-electricity, periodic signals 
and transients, is important for understanding of for example electronics, telecommunication 
and system theory.  

However research on student learning and understanding of electric circuit theory is still in its 
infancy. Student’s conceptions in circuit theory and electricity are not as well investigated as 
those in mechanics. To our knowledge very little research have been done on student 
understanding of more advanced topics in DC-theory such as superposition, source 
transformation, mesh-current and node-voltage methods or on student understanding of AC-
electricity, periodic signals and on transients. Most studies have dealt with pre-university 
students understanding of simple resistive DC-circuits or simple circuits with a few bulbs and 
a battery. Little research has been done on university level students understanding. 
 

OVERVIEW OF EARLIER RESEARCH 

Learning and teaching of physics and engineering 
Research into the learning and teaching of physics in general have been summarised into the 
following points (Bernhard, 2000; McDermott, 1997; Thornton, 1997): 

• Facility in solving standard quantitative problems is not an adequate criterion for functional 
understanding. Questions that require qualitative reasoning and verbal explanation are 
essential. 

• A coherent conceptual framework is not typically an outcome of traditional instruction. 
Rote use of formulas is common. Students need to participate in the process of 
constructing qualitative models that can help them understand relationships and 
differences among concepts. 



• Certain conceptual difficulties are not overcome by traditional instruction. Persistent 
conceptual difficulties must be explicitly addressed by multiple challenges in different 
context. 

• Growth in reasoning ability does not usually result from traditional instruction. Scientific 
reasoning skills must be expressly cultivated. 

• Connections among concepts, formal representations, and the real world are often lacking 
after traditional instruction. Students need repeated practice in interpreting physics 
formalism and relating it to the real world. 

• Teaching by telling is an ineffective mode of instruction for most students. Students must 
be intellectually active to develop a functional understanding. 

The late Arnold Arons (1995) have stressed “The pre- and mis-conceptions found to be 
widely prevalent among students in introductory physics courses extend to students in upper 
division courses, to secondary school teachers, to graduate students, and even to some 
university faculty members. The proportion of individuals exhibiting such difficulties 
decreases significantly but does not drop to zero discontinuously beyond introductory level.” 
[Emphasis in original text]  

 

Understanding of electric circuits 
As mentioned in the introduction most of the research done on electric circuits are in the 
domain of pre-university students understanding of DC-circuits. 

According to this body of research (Duit & Rhöneck, 1997; Cohen et al, 1983; McDermott & 
Shaffer, 1992; Shaffer & McDermott, 1993; Stocklmayer & Treagust, 1996; Shipstone et al, 
1988) students tend to “cluster” together concepts such as voltage, current, power and energy. 
This means that students do not clearly distinguish between these concepts and from this 
“clustering” view follows conceptions such as: 

• Current consumption. 

• Battery as constant current supply. 

• No current – no voltage.  

• Voltage is a part or a property of current. 

 Research have also shown that it is very difficult for students to se a circuit as an system 
and to understand that local changes in a circuit results in global changes and that all voltages 
and currents in a circuit are affected. One can see both: 

• Local reasoning. Students focus their attention upon one point in the circuit. A change in 
the circuit is thought on as only affecting current and/or voltages in the circuit there the 
change is made. 

• Sequential reasoning. If something is changed in the circuit this is thought on as only 
affecting current and/or voltages in elements coming after the place there the change was 
made, not before.  



The research which have targeted university students (even electrical engineering students) or 
secondary school teachers understanding of electrical circuits indicates that these groups 
reveals very much the same difficulties as found among younger students. 

 

DESIGNING A REFORMED COURSE 

– results and discussion 

FIRST IMPLEMENTATION 

The project was implemented in an electric circuit course for students studying electrical 
engineering. In the first years of the project experience from a previously successfully 
developed innovative course in engineering mechanics (Bernhard, 2000b; Bernhard, 2003) 
using conceptual labs were used. Conceptual labs in electric circuit theory were developed. 
This series of labs consisted of nine two hour labs utilising a computerbased measurement 
system.  

Our aim was to help students relate electric circuit phenomena and their representational 
means (mathematical and graphical). We are convinced, and the finding of us and other 
researches support this claim, that this must expressively and extensively cultivated to make 
the process transparent to students. 

Student’s communications and actions during labs were videotaped. Typically two lab-groups 
were videotaped each time. Thus about one-third of the total number of students were 
videotaped each time. On two occasions, for technical reasons, only one camera was used. We 
have also supplemented the videotaping of labs with interviewing selected students inside and 
outside this course.  The videorecordings have not yet been fully analysed. Below we will 
discuss the results from the labs dealing with AC-electricity.  

We see in the videorecordings from the lab, and in from in-class observations, very much the 
same problems with conceptual understanding of AC-electricity as have been reported before 
with DC-circuits. A typical example is from different tasks in the lab there students are asked 
to measure AC-voltages and AC-currents in a circuit using voltage and current sensors. 
Students who have not conceptualised the difference between voltage and current struggle 
very much with how to connect these sensors. Typically some students would try to connect 
the current sensor to the circuit in the same way as a voltage sensors. This means that they are 
connecting the current sensor parallell to the circuit elements instead of connecting it in series 
as shown in figure 1. 



 

 

Figure 1. Task: Measure the current delivered by the source and the current through the 33Ω 
resistance and through the 100 µF capacitator using current-sensors. Many students struggle 
with how to connect the sensors. The connection above was not uncommon indicating voltage 
- current confusion 
 
We also see that many students struggle with the interpretation of mathematics in this context. 
Although some students have problems with their understanding of “pure” mathematics this is 
not our main point. Our conjecture is that the students have problems with the translation back 
and forth between the “real” world and the mathematical representation of the observed data. 
This means that we focus on first arrow (Real world → Mathematical Representation) and 
third arrow (Mathematical Representation → Real world). When mathematics is re-
interpreted in a physics or in an engineering context many things change: The role of 
symbols, the conventions for interpreting the symbols and the way equations are interpreted.  

 

Figure 2. Steps involved in modelling or in the use of mathematics in for example problem 
solving. 

Physics and engineering is not just applied mathematics. The way one thinks about 
mathematics differs from what is taught in the subject of mathematics. This process is not 
transparent for students. 



 

Figure 3. Measurement of AC-currents in one of 
the task in the laboratory aiming to give students 
an understanding of Kirchoffs’ current law in 
the context of AC-electricity. The circuit is 
arranged in such that “output current” should 
equal the sum of the currents I1 and I2. Included 
is also this summation (I1+I2) made by the 
software. 

One task in the laboratory was to measure the 
AC-current in different circuit configurations 
(Figure 3). We were aiming at enhance student 
understanding of Kirchoffs’ current law. When students were asked to also represent the 
addition of currents i1(t) + i2(t) with the corresponding complex phasor representation many 
students were lost. Although they had learned complex numbers in mathematics and although 
the complex representation had been discussed in lecture and in the textbook students 
struggled with the translations of the measurements similar to the ones displayed in figure 3 to 
the corresponding complex mathematical representation. 

The observations we have made are very similar to the observations of Roth and Bowen 
(2001) in the context of graph interpretation:  

“Our research shows that competent readings are related to understanding of both the phenomena 
signified and the structure of the signifying domain, familiarity with the conventions relating the two 
domains, and familiarity with the translating between the two domains. Graphs are not significant 
(signifying!) signs on their own. /…/ Finally, only through the continuous movement between the 
experiential and expressive domains do we expect students to begin to dissociate the features of the two, 
which lead, without familiarity in translating, to iconic errors. 
 
 To deal with all these issues will require much more than traditional instruction in graphing has 
allowed for. To read a graph competently, one needs more than instruction in graphing has allowed for. 
To read a graph competently, one needs more than instruction on the mechanical aspects of producing 
graphs. One’s extensive interaction with the phenomena and representational means seems to be 
prerequisite for competent graphing practises.” [Our emphasis] 

If one substitute mathematical representation into graphing into the writings of Roth and 
Bowen above this well be very much in agreement with what we see in our preliminary 
analysis. 

y(t) = y1(t) + y2(t) =  
Y1msin(ωt + φ1) + Y2msin(ωt + φ2) =  
Im(Y1m⋅ ej(ωt+ φ1)) + Im(Y2m⋅ ej(ωt+ φ2)) =  
Im(Y1m⋅ ejφ1⋅ ejωt) + Im(Y2m⋅ ejφ1⋅ ejωt) =  
Im(Y1⋅ ejωt) + Im(Y2⋅ ejωt) =  
Im(Y1⋅ ejωt + Y2⋅ ejωt) = Im((Y1 + Y2)⋅ ejωt) =  
Im(Y⋅ ejωt) = Y ⋅sin(ωt + arg(Y)) 
 
There  
Y = Y1 + Y2 =  
Y1m⋅ (cosφ1 + j⋅sin φ1) + Y2m⋅ (cosφ2 + j⋅sin φ2) = 
= Y1m⋅ cosφ1 + Y2m⋅ cosφ2  
+ j⋅( Y1m⋅ sinφ1 + Y2m⋅ sinφ2) = 
= Y1x + Y2x + j⋅( Y1y + Y2y) 
 
Y = Y  = (Y1x + Y2x)

2
 + (Y1y + Y2y)

2
 

 

arg(Y) = arctan(
Y1y + Y2y

Y1x + Y2x

) 
 

 
Y1x = Y1m⋅ cosφ1 

Y1y = Y1m⋅ sinφ1 

Y2x = Y2m⋅ cosφ2 

Y2y = Y2m⋅ sinφ2 

FIGURE 4.  Some mathematics behind complex 
representation: Addition of two sines (such as in 
figure 3) with the same frequency. When relating to 
observations several translations back and forth, as 
discussed in figure 2 and in the text, is needed. 



SECOND IMPLEMENTATION 
As mentioned above the first implementation of the reformed course had 9 lab-sessions 
lasting two hours, except the last one which lasted four hours. All these were videotaped. The 
students also had lectures 2 hours/week and classroom-sessions 2 hours/week. The videotapes 
were preliminary analysed. The questions raised by the students were in focus of the analysis, 
and the question we tried to answer was whether it would be possible to include the teacher 
inventions into the new revised course. 
In the second implementation the course were further revised and the lab-sessions and the 
classroom-sessions have been integrated, resulting in 13 weekly four hour "problem-solving 
labs": 

• Voltage and current – PSpice 
• Voltage and current – MATLAB 
• AC-electricity – Complex (phasor) representation 
• AC-electricity – Circuit analysis 
• AC-electricity – Frequency dependency 
• AC-electricity – Power 
• Magnetic circuit 
• Transient response I 
• Transient response II 
• Fourier I 
• Fourier II 
• Mathematical methods for circuit analysis 
• Summary – further problem solving 

 
The labs which are the focus of this analysis are the last ones – Transient Response. In the 
former course this lab lasted four hours and the classroom-sessions 2x2, i.e. four hours, which 
in the new course transformed into two four hour sessions. Thus the same amount of time was 
appropriated for this part in both courses.  
 
Method for analysis of the lab-instructions 

The lab-instructions were revised by using the Theory of variation to promote learning. One 
of the changes made was to integrate the theory and practice by integrating the 
problemsolving-sessions into the labs. The other was to vary the problems in such a way that 
the students would discern critical aspects of the problems, such as that the roots of the 
polynomial, called the transfer function, could be used to determine the most dominant 
property of the graph that they also later would measure, see appendix. To find the critical 
aspects we had looked at the videotapes from the lab course 2002, and as described by 
Runesson, Mok et. al. (Morris et.al. 2003) discussed those aspects that were critical to the 
teachers intended object of learning, which did not appear as critical to, or were at all dealt 
with by the students: the lived object of learning.  
What has to be dealt with in the analysis is what is critical to learning, which is not always the 
same as what is critical to the profession, and analyse how these critical features may be 
varied in such a way that the student may discern them. It is thus important to analyse which 
features to vary, and which to keep invariant, as is especially dealt with in the comparisons 
shown by the founders of the Variation Theory (see eg. examples in Chapter 3 in Marton, 
Tsui et. al.). One of the more important questions dealt with is how the focus of awareness 
changes due to which aspect is the one varied and which is the one kept invariant. 
It is also important to vary some aspects simultaneously, either synchronously or 
diachronically. Diachronic simultaneity means that critical aspects are experienced at different 



times but are in the awareness simultaneously, and synchronic simultaneity means that they 
are experienced at the same time. Regarding lab-work it is very often supposed that students 
should work with diachronic simultaneity, although it is not explicitly said in the instructions, 
as we will show later in this paper. 
 
Method for analysis of the activity during the labs 

Learning is to experience the world in new ways (Marton & Booth, 1997), and to analyse 
learning is to analyse the new ways students experience their world. One way to analyse the 
learning in the lab is to observe the students conversation and actions that takes place during a 
lab-session. Typically very long sequences of videotapes concern the same area of learning, 
and the students seldom talk about their learning explicitly. Thus it was earlier considered a 
non-fruitful way to learn about students learning through observation of students when 
studying (Marton & Säljö 1986, p. 58).  
A method to study when learning takes place is to use the method suggested by P-O Wickman 
and Leif Östman at Uppsala University. It is concisely presented in Wickman (in press): 

“Wickman and Östman  [2002 – discourse…] have suggested a theoretical mechanism for the learning 
process that can be used to analyse students’ practical epistemologies. Inspired by the later 
Wittgenstein(1967;1969) it views talk and actions as inextricably entwined in socially shared language-
games. In a language-game certain things stand fast. What stands fast is used as point of departure in 
encounters with the world in speech and in action. If they were questioned the practice would stop, and 
we would no longer be able to act and to communicate with each other. When we say ‘give me a towel’ 
or when we reach for a towel we do not ask what a towel is or the meaning of these acts. The 
encounters between persons and towels gain meaning from the language-game, which may be that of 
‘getting dry’ (Wittgenstein, 1969,§510).  
When people encounter something during talk or in action (utterances, artifacts, natural phenomena 
etc.) a gap occurs. They then establish what is and occurs in the encounter by establishing relations to 
what stands fast, which may fill the gap. However, sometimes people cannot fill the gap immediately. 
When this happens people typically stage additional encounters to fill the gap with relations to what 
stand fast in these additional encounters. Such staged encounters typically involve relations from earlier 
and current experiences and the purpose of the practice. Relations of similarities and differences, 
sometimes of details, sometimes of wholes are what gives speech and actions sense and what fills the 
gaps and go on with our doings (cf. Wittgenstein, 1967, §66). If a gap is not filled eventually, the 
current activity or theme of discourse stops, and a gap will linger. However, before a gap can be filled, 
it must be noticed. The progress and direction of learning thus depends on the gaps noticed and filled.” 

The intended object of learning – Transient Response 
Transient response is referred to as one of the more difficult parts of electric circuits, and 
skipped in many engineering curricula especially at college level. What makes it difficult is 
that the mathematics used is rather advanced, using the Laplace Transform to solve 
differential equations. Very often the mathematics is handled in the maths course and in the 
problem solving sessions, the graphs in the lab course and the conceptual understanding of the 
transients in the lectures, and still it is expected that the students should make links between 
them.  
The idea of conceptual labs that are carried out in physics courses (Bernhard 2003) has been 
used in the development of the lab instructions. In this kind of labs as well physical 
phenomena as their mathematical and graphical representations are elaborated. Working with 
the Laplace transform to solve the differential equations the intention is to learn and reflect on 
the chains from the real circuit through the mathematics onto the graph derived 
mathematically, to compare this graph with the measured graph and thus relating back to the 
real circuit again, see the chain below. Relations are sought for as well clockwise as counter-
clockwise.  



 
Figure 5: The intended object of learning  
 
The students are measuring the current through an electric circuit in which a varying resistor 
is put in series with a capacitor and an inductor: 
 

 
Figure 6: Circuit analysed in the transient response lab 
 
The input voltage is in this lab a step (practically achieved by a square wave with low 
frequency). 
Basically there are two qualitatively different graphs that may be expected from that kind of 
input(see appendix). Depending on the value of the resistor the graph will show one or the 
other of the two different curves. The equations that will render the two different types of 
curves (the solutions to the differential equation, that depend on the denominator polynom) 
are either  
 )sin()( dctaeti

bt
+=  

 or 
dtbt

ceaeti +=)(  
Only one of these equations is given in the lab-instruction, since one aim is to make the 
students aware of the significant differences of the solutions of differential equations in the 
context of electric circuits. This ought to be possible since it is supposed that the students 

Real Circuit 
Differential equation 

Laplace transform 

Invers transform 

Measured graph 

Calculated graph 
©annax 



prepare themselves by some problem solving, where both of these equations are elaborated. In 
the MBL-environment it is possible to get both the measured and the calculated graph in the 
same diagram, so one task is to put in "the right formula" and change the parameters a, b, c 
and d, until the calculated and the measured curves coincide.  
In the report the students are asked to reflect on what difference the change of resistance 
makes both mathematically and physically.   
 

Results 
The results will consist of three parts. First some significant examples from the video 
recordings from the labs carried out before changes were made, and then a discussion about 
the lab instructions and the changes made will follow. The third part will give some examples 
from the video recordings from the new course. (All video recordings are not yet transcribed.) 
 

Analysis of the videotapes before changes 

First all groups open the lab instructions which are available via the course page on the 
Internet. For some groups it only takes a minute, while for others it can take as long as 10 
minutes.  

Group one 2002 

Group one starts immediately and already after two minutes they have some measurements 
documented on their screen. The first gap that occurs for the students is when they encounter 
the word "step response": 
2002_Group_1 _Tape_1 3:44  
Anne: Record the step response Reads from instruction 
Betty: the step response?  questioning, looks towards  
      the screen 
Anne:  step response   looks in the instruction,  
      turns towards the 
screen 
Betty: what? how is it supposed 
 to look then 
 
The discussion goes on for another two minutes before they ask the teacher what the step 
response is, and teacher 1 answers that it is the output from a circuit when the input is a step, 
and that a step can be achieved by a square wave of low frequency. They do some 
measurements which takes about a quarter of an hour. The they study the instructions 
thoroughly, but stop at the point where they read: 
2002_Group_1 _Tape_1 17:18 
Anne:  Here it says: "Your task is to  
 make fittings to the graph  
 showing the measured current,  
 when L and C are kept constant  
(20 s)      Anne looks at the 
instructions and  
      the lab board 
alternately 
Anne: Is that what we have done? Reviews her notes from the  
      measurements 
(30 s) 
Anne: I don't understand 
(5s) 



Betty: Let's start with one, then 
Anne:  We are to add some kind of  
 curve onto the other onto  
 those we have saved, that  
 is. OK, it's just to do it Turns to the page where settings  
      for the measurements 
begin 
Betty:  Mm 
Anne:  Let's open the first one then. 
They start with the first. They open the user defined fit, but have not entered any function, so 
they get a straight line at zero. They ask teacher 1 if this is the right curve. He reenters the 
curve fit (not looking at their window), and he shows them how to receive only one step 
(which they did not ask), by doing it for them, and after that he tells them to enter the 
function. He then walks away. They are back at the same point as before the teacher came, so 
the gap is still not filled.  
2002_Group_1 _Tape_1 24:39 
Anne:  Are we supposed to calculate  
 it first 
Betty: But we have no idea about what  
 formula this is 
(30s) 
Anne: Do you think this is the formula  
 to put in 
Betty: But it is hardly so, We probably  
 have something different, other  
 parameters     
Betty starts to add the function which is in the instructions, Anne looks 
around. Teacher 1 comes up to them: 
26:39 
Anne:  Mister, this formula here, is  
 this the one we should enter? Points to the instruction 
T1: Yeah, it is is it is  
Anne: Is it exactly this one or what is it? 
T1: It is a damped sine now yes, it is this one then, it looks like a 
damped sine, but then it generally concerns then what formula it is 
supposed to be 
Anne:  And one is supposed to know that? 
Betty: But that's difficult to know 
T1: What did you say 
Betty: But how do you know? 
T1: Yeah, but you get a tip from  
 calculating the current as a  
 function of R, which gives you  
 different kinds of poles. 
(4s) 
Betty: I don't understand 
T1: If you express the current by means  
 of the Laplace transform 
 
The discussion goes on for another minute or so, but ends with Anne's question: 
2002_Group_1 _Tape_1 28:15 
Anne: But are we supposed to enter this  
 one 
T1: Yes      T1 leaves  
 
Again here is a lingering gap. The students did not make any relations to what they had 
learned in the lectures or problem solving sessions, but again repeated the very same question 
as they had started this conversation with. They again get the straight line, and ask the teacher 
why. He explains that they need to try to find out what the parameters mean. He also talks 



about the internal resistance in the inductor, something they didn't ask for, and this is left by 
the students. They now start to explore the parameters and find the best fit within 20 minutes.  
Nest graph is not obviously a damped sine, which the students discuss, but since they cannot 
find out what kind of curve it might be instead, they try to fit a damped sine again. It takes 
about 20 minutes, and when they are satisfied they ask the teacher to come: 
2002_Group_1 _Tape_2 36:16 
Anne: We can't get it any better now 
T1: No, which one are you doing 
Anne: We are doing the one with the 10Ω resistance  
T1: 10Ω 
Anne: It is if we change here, but then it happens some change there 
T1: Yeah, but that may be due to the zero there 
Anne: But is it OK? 
 
After this they discuss if they should carry out some calculations, but decide to postpone that. 
They start their third measurement. After a couple of minutes: 
2002_Group_1 _Tape_3 5:19 
Anne:  This is the hard thing, one doesn't understand anything 
Betty: No, exactly 
Anne: Do you find this to be a damped sine? 
Both start to laugh 
Betty: Yes! 
Anne: No, it can't be 
 
They discuss the differences between this new curve and the old ones, especially the "sharp 
peak" at the top of the curve. They still try to fit it with a damped sine, return twice to the 
"sharp peak". After about a quarter of an hour they ask the teacher about their problems: 
2002_Group_1 _Tape_3 17:19 
Betty: It looks so strange 
Anne: Yes, it does 
T1: Which one are you doing 
Anne: R33 
T1: Is it obvious that it is a damped sine 
Anne:  No, but we didn't have any other guess. 
T1: What alternatives are there? 
Anne: We don't know 
 
After a couple of minutes they have come to the conclusion that it is two exponential 
functions added. For 10 minutes they are now using trial and error to make the curve look 
somewhat like the measured graph. They change the parameters randomly. Between each 
statement they do, there is a 2-3s pause. But suddenly they get something more like the graph, 
they also found out that a and c are of opposite signs. From now the conversation changes and 
the testing is not random any more. Still they don't get the right curve, and they ask the 
teacher for more help. He asks if they have done any calculations yet, which they have not. 
First they say to him that they will do that later, but he insists that they should do some 
calculations now, in order to find out what kind of values that may be possible, eg. a and c are 
of opposite signs, and also that both b and d have to be negative.  
After 2½ hours they have done the calculations on the third example together with another 
group, and also received a satisfactory curve fit to both the third and the fourth graphs. Betty 
reviews their saved material, and Anne continues to do some more calculations, but leaves 
here place after a while, which results in video-recordings without conversations. They leave 
after 3:45.   



Group three 2002 

Group three on the other hand have trouble getting the instructions, and after ca 10 minutes 
they start to connect the components and the measurement cables to the interface. They ask 
the teacher: 
2002_Group_3 _Tape_1 11:45 
Mike: John, it says here connect across the whole circuit 
 
After a while they receive a curve on the screen, a sinewave, but are not satisfied, they discuss 
inaudibly. Their hands show that they had expected a step response, but got a sinewave. After 
about two and a half minutes they ask another group: 
2002_Group_3 _Tape_1 17:51 
Mike: Should it be set to square wave or 
 
They continue the measurements and save the graphs from using Rinductor, R10 and R33. After 
about 40 minutes students from another group ask this group whether they have done any 
fittings of the curves, which they have not. They review the lab instructions, and utter: 
2002_Group_3 _Tape_2 0:06 
0:06 Mike: What the h_ are we doing? 
1:54 Mike: But what curve fit. Are you supposed to just test it 
some minutes later  
2002_Group_3 _Tape_2 4:37 
Mike:  This is not at all like theirs  turns towards the teacher 
 This is just a bunch of errors   loudly across the room 
 Now he´s gonna have to explain  
 for once 
Silence until teacher 1 comes 
Pete: We've done this 
Mike: We've opened a user defined  looks towards the 
screen 
The teacher shows how to open the right window (the conversation is almost 
inaudible) Continues at 6:34 
T1: So now you can continue 
Mike: But we got error there too 
T1: But you haven't defined anything yet 
Mike: But what am I supposed to define then? 
T1: But it tells in the instruction 
Mike: And we were supposed to understand this? 
T1: Mm, Now it is about unders' now you have got a function an' then  
 it's jus'to (.) well it's measurements that you're to try to  
 model mathematically an' it is ab' try to recognise what it is  
 can be which function it is 
Mike: Well, I wouldn't have guessed that one 
T1: Hmm now you are on another one   refers to 
Rind and 
        
  the students  
        
  measured R33 
Mike, Pete and T1 says something simultaneously 
T1: Like that damped one it is most obvious in the first measurement 
Mike: =Mm 
T1 =with the inductor then for the other also it is then to (.)  
 think about what (.) what it is can be which type of function  
 You can also find out which function it is by looking at the  
 Laplace Transform of the current and  
Mike: =Mm 
T1: =the poles are 
Mike: Now this became all too advanced. I would never have figured  
 that out 



T1 leaves, Pete browses the instruction and Mike giggles 
Mike: Alright, let's Laplace-transform an check the pole-values then. 
 
This last quote is reoccurring at least three times more during the lab, and can be considered a 
lingering gap. The students reflect on the appearance of the curve, and say that they don't 
agree on the teachers suggestion of the function as being the damped sine-wave, but although 
they tried to do the fitting of the third curve as their first one, the teacher does not notice this, 
but just tells them that the first curve is of this kind. 
The group goes on with the fitting of the first curve, but has difficulties, so they repeat: 
2002_Group_3 _Tape_2 14:37 
Mike: let's run the Laplace-transform an  
 check the poles, hey.    ironically 
 
They ask for help once more and the tip is to try to figure out which parameter changes what, 
and they try to find the relation between the constants a, b, c and d and the real world, i.e. c 
stand for the frequency of the sinewave, a is the amplitude, and b the damping. But, again the 
students fail. They start with parameter b, which they have found to be the damping, but since 
they use too low frequency the curve seems to "jump" randomly when they try to change 
parameter a. Again they ask for help and they find it easier to start with parameter c, which 
easily can be calculated by measuring the period of the sinusoidal oscillation. 
The first task, to fit the first curve, was thus finished after about two hours of the lab-session.  
During this last half hour Mike has also started to do some calculations. By the time Mike has 
finished the calculations of the poles for the first transfer function, Pete has fitted the second 
curve after about 2½ hours.  
When they come back to curve three again they still consider it to be a damped sine, but there 
is no possibility to make the curve fit to the function. They ask the group next to them and ask 
about what value they have for a, b, c and d, they tell their values: 
2002_Group_3 _Tape_4 25:10 (ca 2hours 45 minnutes) 
Pete:  But there we ought to have 4000 
Mike: No, maybe not, 'cause this isn't complex like last time. 
Charles:No, that's right 
Mike: Here we just have ordinary 
David: You have to change the function, you know. 
Charles: You can't use the sine on that one because= 
Mike: =then it will just be two e:s, won't it 
 
They change the formula and the fitting is finished after about three hours. The fourth curve is 
done in just some few minutes, but now the two groups work together. They continue with 
some calculations, check if they have saved all the graphs that are needed for the report. The 
extra task was to look at the change of the curve if an iron core would be inserted into the 
inductor. They work with the curve fit for a while but conclude (after 3½ hours): 
2002_Group_3 _Tape_4 25:10 (ca 2hours 45 minnutes) 
Mike:  Now this doesn't work at all.   Pete leaves 
 I'm tired of all this testing 
       
 Mike leaves 
 
Analysis of the lab instructions before and after changes 

The most obvious problem in the first course was that the students did not recognise the 
graphs as showing either a damped sine-wave or a function of two added exponential 
functions it seemed very important to highlight this. So one of the changes in the lab-
instruction was to make the students draw graphs from the solutions to the differential 
equations, solutions they received through inverse Laplace transformation of examples that 



could represent transfer functions of the kind they would be able to measure in the lab. One 
way of doing this was to make the students work on the inverse Laplace transforms in 
mathematical terms, by hand, and another to let them elaborate the graphs through Matlab's 
Simulink, where transfer functions are evaluated numerically, and graphs achieved directly. 
By using systematically chosen transfer functions that would show the two significantly 
different curve types, with reference to the two different kinds of poles to the denominator 
polynomial, as well as some other critical features such as limit value, it was argued that it 
would become easier for the students to identify the curves they measured. It was also argued 
that not until the students had begun to do some mathematical work on the Laplace transforms 
would they possibly be able to fit the measured curve to the user defined function. The normal 
text books would offer transfer functions with randomly chosen constants, and many of the 
resulting time-domain-functions that are calculated would never occur in the real world. 
The changes in the instructions were thus to  

1) Include a part where the students elaborated the six transfer functions (suggested 
in the appendix) in Matlab, Simulink, drawing conclusions about how the graphs 
were related to the transfer functions 

2) Make the students do the calculations intertwined with measurements.   
The problem with the step response was not considered to remain as a problem after the 
simulations in Simulink, since the input block would have the name STEP, and the step 
response would be discussed during that new part of the lab.  
Since we have found that students seldom want to, what they call, "waste time" by doing 
calculations during the lab sessions, even when they are asked to, we inserted the calculations 
at a point in the lab-instruction where the students would try the most difficult example during 
the lab session (and also get some hints from the white board on how to do it) and then be 
asked to do the rest of the examples at home, between the two sessions. By this we would 
possibly gain as well that the students would study more continuously during the course as 
would they bring materials from lectures and home work to the lab room. 
 

Analysis of the videotapes after changes 

Group one 2003 

The students start with the simulations in Matlab. Tess almost immediately starts with the 
calculations, while Benny tries to figure out what transfer functions they are supposed to 
simulate. Benny takes some help from the group sitting next to them. After about 10 minutes 
he has set up the transfer function for the RCL-circuit, calculates the different constants 
(depending on the possible combinations of R, L and C) to use in the transfer function. They 
start with R=100 L=100mH and C=10µF and then they change to C=1µF 
2003_Group_1 _Tape_1 25:18 
Chris: Yeah, and we should explain this  
 mathematically and physically 
Benny: Bu', how easy is this to explain 
Chris: I think it ought to be the other  
 way around, almost 
Benny: Difficult to tell 
Chris: Smaller capacitor, makes less  
 resistance so it ought to go down  
 faster 
Benny: =Yeah 
Chris: Less resistance so then the voltage  
 will drop faster and since it is  



 the voltage across the capacitor  
 that we measure 
Benny: =Yeah the voltage across the  
 capacitor becomes faster, you may say 
Chris: =Yeah it runs away faster 
Benny: Yeah, here it is charging,  
 and it does that faster when  
 it's small= 
Chris: =Yes= 
Benny: It's pretty obvious 
Chris: Then it's the question why there  
 is a peak= 
Benny: Yes 
Chris: It has to some exchange between  
 the capacitor and the inductor there 
Benny: The inductor gives a push here  
 in some way, but the inductor tries  
 to counteract, not to forget,  
 here 't is. 
Chris: The inductor tries to hinder the  
 charging of the capacitor 
Benny: You can't say that the inductor  
 sucks out the capacitor? 
Chris:  But now, wait a second, the  
 capacitor is charged, the there  
 is current through the inductor,  
 and then when it is full, the  
 capacitor , the current still  
 continues to come, since the  
 inductor wants it to keep on for  
 another while 
Benny: =Yes= 
Chris: Then it becomes even more charges  
 in the capacitor than it wants,  
 so the voltage raises a little more= 
Benny: =Yea since the inductor= 
Chris: =Then it falls back since the  
 capacitor throws that voltage  
 overcharge back out because it  
 can't keep it.  
Benny: Yeah, 'cause when the inductor  
 has evened out 'cause the current  
 decreases 
Already here in the beginning of the lab there are vivid discussions on subject matter.  
They now go on with the examples from the appendix, but add: 
2003_Group_1 _Tape_1 25:18 
Benny: Alright, it's just to do as it  
 says here then, but have we've  
 gotto calculate, What's the use  
 of calculating when the computer  
 has already done it? 
Chris: You can't sit here and calculate  
 what it will look like 
Tess: What?     raises 
from her calculations 
Chris: Calculate the step response 
Tess: Yes you can 
Chris:  We have a differential equation  
 for how this circuit will behave  
 over time 
Tess: Yes, but only when you have  
 inverse-transformed it you will  



 get it back 
 
The discussion goes on for a while where the guys consider it to render in too much work and 
Tess concludes "so you might as well get started!" Next Chris and his fellow student start to 
calculate the inverse transform, using Maple to do the partial fractions, and then do the rest by 
hand. Benny fetches the lab-board and wires up the circuit and starts DataStudio (the program 
which shows the measured graphs) Tess continues to calculate the inverse transforms for the 
six examples. After about one hour of the lab session the teacher is asked to do one of the 
examples on the white board, which he does. This takes about 20 minutes. After about two 
hours Benny has made some measurements and is trying to fit the damped sine-function to his 
graph. He turns to his neighbors: 
2003_Group_1 _Tape_3 22:49 
Benny: Do you know what we'll get from this? 
Chris: Sort of 
Benny: Well, here I am now   points to the screen 
 To make it raise I have to  
 increase  
Chris: Think like this: This is a sine  
 wave that rolls away, and here  points to the screen 
 well (.) let's see (.) here is  
 the amplitude 
Benny: Ok, I can see that 
Chris: The damping 
Benny: Yeah 
Chris: How fast it declines (.) Here it  
 declines too little You have  
 too damp it harder. 
 
This discussion goes on for another minute or so, and after this Benny has no problems to 
finish this first curve fit. After half an hour both Benny and the neighbors have finished both 
of the two first measurements and have problems when fitting the third. They call for the 
teacher who asks if this is the right function, and the students answer that they don't know. 
The teacher asks what they think the curve looks like, but the students don't know. They start 
guessing, but do not suggest exponential functions even if the teacher tries to get them to. 
Thus the teacher asks them if they have done any calculations, which none of them have. Tess 
who has been calculating the whole lab session now takes a calculator and gets a graph 
calculated from one of the exponential functions that she has received through the inverse 
transform, and shows the guys. The guys hopes for a simpler way to get the right curve than 
to have to do all the work Tess has done. After a 5 minutes discussion Benny utters: 
2003_Group_1 _Tape_4 13:02 
Benny: Can't we just calculate what it should look like? 
Chris: Of course we can 
Benny: But that's gotta be the simplest way 
 
They start to do some calculations but decide that they can as well do it at home before the 
next lab session.  
A week later they are back for the second session. The session starts with a discussion: 
2003_Group_1 _Tape_1_Session2 00:00 
Tess: I think we are supposed to process this curve.  
Benny: Add a curve? 
Tess: Mm.. 
Benny: Yea, then we'll have to do that. 
Tess: But do you think we should go back to the 10�:er first, and do 
 it on that first, and then measure each one again? 
Benny: Yea, that's what we'll have to do. Connect the 10�:er. 
 I didn't save anything. 
Tess: It doesn't matter. 



Benny: We can as well erase the graphs and do them again. 
Tess: Mm.. 
Benny: Oh, yea, and I thought it would be so simple 
(Benny starts measuring, and Tess studies the instructions) 
Tess: But what else have you processed? 
Benny: Ehh (.)I did it on (.) 
Tess: I mean this with "fit" and such (.) 
Benny: I did it with this one. (Points at the instruction) 
 The first one I did with this (points at the instructions  
 again). This one(.) an' then next one (.)'twas much more  
 difficult to fit 'cause then you need another formula to fit to,  
 an' it's not so easy to know which one to use. 
 (Looks through the instructions) 
Benny: Here one has to take the one he used. 
Tess: OK 
Benny: I guess this is the one. Let's see (.) 
 (Enters the formula into the computer) 
Tess: Which formula are you using? 
Benny: OK, this is (.) (continues writing on the keyboard) 
Tess: Well, I don't want to interrupt, but I don't think that's the  
 right formula. 
Benny: You never know. 
 (continues writing on the keyboard to see what happens, about  
 one minute later Tess tries to interrupt again ) 
Tess:  See, This here, this is for the damped sine-wave (points at the 
instructions), It looks like this 
Benny: Yea. 
Tess: And that's not our curve! 
Benny: Nop, (looks at the computer) It's not! (starts suddenly turning  
 the pages in the instructions) 
 I was perhaps (.) I thought it would be this simple (.) Ehh 
(2s) 
Tess: We could (.) (starts turning pages again, reviewing the whole  
 instruction) 
Benny: But what can we (.) (scratches his head, looks alternately 
 towards Tess and the computer, mumbles) 
Benny: I don't know what to do. 
Benny: Let's see (.) What kind can this be? 
Tess: (Difficult to hear)  z is not in here, so I don't believe  
 this is it. 
Benny:  But later it works, when we do this, but (.) yea, then the  
 inductor is also in here yea, so, that’s another story, then you  
 get the "sinedamped story" again, yea,  But this isn't (.)  
 but(.). But isn't this an exponential graph maybe?! 
Tess: But look at this, it just looks as one of those upgoing ones  
 from an inductor, (.), At the lecture he showed one like this.  
Benny: Wait now, just a resistor and an inductor, hey? Or a resistor  
 and a capacitor?  
(Tess reads her lecture notes and Benny his Lab-instructions) 
Tess: No, this was the step-response. 
Benny: But, just a second, 
Tess: (interrupts) but that's what we have! 
Benny:  But we have an inductor in this. (wonders) 
Tess: But test this one, this is the transient for an inductor. Just 
 this part. 
Benny: But this is only for an inductor (.) Nop, it's not, is it? 
Tess: And I think this is for the capacitor. Yes this is the one for a  
 capacitor (paus) But try something with an exponential function. 
Benny: Yea, but where does it say anything about the exexpexponential  
 function ehh (.) a*exp *a (.) 
Tess: No, no, Not like that 
Benny: Is it plus some phase shift ehh, do you think we can just  
 add (.) ab, ab plus c comma zero (.) well, it  



 (writes the formula onto the computer) 
Tess: It doesn't seem to work 
Benny: Nop (.) Oh well, (.) But (.) 
 (continues to write on the keyboard) 
Benny: Well, it's no use in just keeping on guessing. 
Tess: No, it isn't. But if we make the rest of the measurements, 
 and try to figure out the mathematics later. 
Benny: But the measurements are made very quickly, it's rather  
 automatic. There will be no measurements that we will save. It  
 seems useless to record them. I will loose them anyway. They are  
 so easy to make.  
Tess: Mmm 
Benny: I think, I think it's ,that we'd as well go ahead with the math. 
Benny: We'd better do it straight away, now when we can get some help. 
(Both students look at their notes and instructions) 
Benny: What's this? 
(They are looking at one page in their notes for about one minute) 
Benny: Which capacitor did we use? 100? 
 And the last one was the (.) 10? 
 Well, this has to be the fourth one that we've got here! 
Tess: But this is a little confusing. I don't see where it ends.  
 (Looks at calculations made in here notes)  
 We are supposed to fit the measured current. 
Benny: Yea, that's it. I knew that. I didn't think about it.  
 (Starts writing on the computer again) 
Tess: But I don't know if we are supposed to do this for all of them.  
 I'll check that. 
Benny: Yes I think it is, but only the current.  
Tess: What do you mean. current? 
The discussion goes on 
 

Discussion and Conclusions 
(I will call the groups old and new referring to the groups from 2002 and 2003 respectively) 
 
It is obvious from both years that students have difficulties connecting the mathematical 
representation to the measured graphs and the circuit they use. Especially this is seen in the 
first half of the lab. As an example Tess has been doing all the calculations, and Benny has 
worked on the simulations, and when they after about 40 minutes are supposed to wire up the 
circuit they read: 
Tess: "Wire up the circuit"   (reads from instruction)  
      (turns her head 
towards B)  
 It seems taken for granted what circuit he talks about 
Benny: Yea, we'd better read this again 
 
Even though Benny had worked with the circuit in order to find the equation to work on, he 
has now forgotten which circuit he was working with. It does not take very long before they 
know which circuit to work on, but the stop here is typical of the gap that has not been filled 
yet.  
The gap may also be illustrated by the circle which shows the intended relations to make: 



 
Figure 7: a) Benny's lived object of learning in this firs part of the lab 
b) Tess' lived object of learning in this firs part of the lab 
 
Tess and Benny have here encountered different objects of learning, and in order to fill the 
gap they have to make relations to what they know, what is standing fast. None of them is 
now thinking about the real circuit, because in order to do so the have to make links back, 
Benny from the graph and Tess from the mathematics.  
That the students do not connect what is done in other previous sessions, especially lectures, 
is evident. For instance the comment that group three in the old course makes several times: 
"let's Laplace-transform an' check the pole-values" is a comment which shows that they have 
heard of the Laplace transform, but have no idea what it is. That this comment is constantly 
recurring is also a sign of a lingering gap. In the new course, where the lab sessions and 
problem solving sessions are integrated, the students are used to the fact that they need to 
bring their notes from lectures. In the old course this was only explicitly asked for in the 
problem solving sessions, and very seldom in the labs, although the teachers had expected the 
students to bring both books and notes to all sessions of the course.  
To integrate the lab sessions and the problem solving session thus gives some important 
changes in the students' ways to handle the subject matter 

1) They bring their knowledge from the mathematical context into the lab-room, but 
can also use the graphs when elaborating the mathematical context. And as a 
consequence they also bring their materials from the different sessions to all 
sessions.  

2) When simultaneously working from as well the real world as the mathematical 
worlds, the students make the two meet, so that the gaps between the two worlds, 
may be filled 

In the old course one of the questions asked, and asked several times by all groups, was: "Is 
this curve good enough for the report?" This question is never asked in the new course. The 
question seems to be stated because the students are not quite sure of what they have been 
doing, and have thus no idea of what to expect. It also shows that the students' expectations of 
the lab-work is most of all to pass the course. Of course the students were asked to do 
homework on problem solving (several examples were recommended in the course 
information) also in the old course, but they did not do that until late in the course. Forcing 
the students to work continuously on the mathematical models during the course make them 
keep up with the course and thus learn more. The change is thus that: 

3) The focus of the lab work is changed. Instead of focusing on what to report, the 
students now focus on what is to be learned, i.e. to make links between all the 
components of the circle: 
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Figure 8: Links made at the end of the lab-work in the new course 
 
At the end of the lab-session the Tess and Benny have made all the links described in figure 8. 
Their discussion simultaneously covers two or more of the links, and the others are figural to 
their awareness so that they draw conclusions from what they see. 
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Appendix: Examples of systematically varied Laplace-functions to 
analyse, mathematically and graphically 
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Important characteristics: 
 
1) Solutions to the characteristic polynomial, i.e. the poles to the transfer function 
give different shapes to the curves: 
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gives under-critically   gives critically   gives over-critically 
damped behavior  damped behavior  damped behavior 
 
2) Note the different start behavior that depend on the difference in degree of powers 
in the nominator and denominator polynomials 
 
3) The Steady-State value depends on the transfer-function's limit-value when s 
approaches zero.  
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