

Research Reports in Software Engineering and Management 2007:01

Proceedings of the 3rd Educators’
Symposium at MODELS 2007

Miroslaw Staron (Ed.)

Department of Applied IT

The 3rd Educators’ Symposium of the
10th ACM/IEEE International Conference on Model

Driven Engineering Languages and Systems

Symposium Proceedings

Edited by:
Miroslaw Staron

Department of Applied Information Technology
IT UNIVERSITY OF GÖTEBORG

GÖTEBORG UNIVERSITY and CHALMERS UNIVERSITY OF TECHNOLOGY
Göteborg, Sweden 2007

ISSN: 1654-4870

Research reports in Software Engineering and Management
Report number 2007:01

Series editor: Lars Pareto

Copyright is retained by authors.

www.ituniv.se/sem_research

Symposium chair

Miroslaw Staron, IT University of Göteborg, Sweden

Program committee

Magnus Antonsson, Ericsson, Sweden

Thomas Baar, EPFL, Switzerland

Robert France, Colorado State University, USA

Holger Giese, University of Paderborn, Germany

Cesar Gonzalez-Perez, Verdeweek, Spain

Rogardt Heldal, Chalmers University of Technology, Sweden

Oystein Heugen, University of Oslo, Norway

Kai Koskimies, Technical University of Tampere, Finland

Ludwik Kuzniarz, Blekinge Institute of Technology, Sweden

Lars Pareto, IT University of Göteborg, Sweden

Pascal Roques, Valtech Training, France

Michal Smialek, Warsaw University of Technology, Poland

Jean Louis Sourrouille, INSA Lyon, France

Perdita Stevens, University of Edinburgh, UK

Tarja Systa, Technical University of Tampere, Finland

Daniel Varro, Budapest University of Technology, Hungary

Frank Weil, Motorola, USA

Paula Filho Wilson de Padua, UFMG, Brazil

Table of Contents

Preface ………1

Invited talk: Fighting the “Formal is Futile” Fallacy, Thomas Kuehne ………………………………………..3

Invited talk: ReMODD in Education, Robert France …………………………………………………………….5

Invited talk: Teaching Domain Specific Modeling, Lars Pareto …………………………………………………7

A Phased Highly-Interactive Approach to Teaching UML-based Software Development,
Egidio Astesiano, Maura Cerioli, Gianna Reggio, Filippo Ricca ………………………………………………..9

Students can get excited about Formal Methods: a model-driven course on Petri-Nets, Metamodels
 and Graph Grammars, Pieter Van Gorp, Hans Schippers, Serge Demeyer, Dirk Janssens, …………………..19

From Programming to Modeling: Evolving the Contents of a Distributed Software Engineering Course,
Jordi Cabot, Francisco Durán, Nathalie Moreno, Raúl Romero, Antonio Vallecillo …………………………..29

Teaching MDA: From Pyramids to Sand Clocks, Ileana Ober …………………………………………………34

Preface

Model-driven development approaches and technologies for software-based systems, in which development is
centered round the manipulation of models, raise the level of abstraction and thus improve our abilities to develop
complex systems. A number of approaches and tools have been proposed for the model-driven development (MDD)
of software-based systems, for example UML, model-driven architecture (MDA), and model-integrated computing
(MIC). Using models as the primary artifacts in software engineering shifts the focus of the existing software
engineering methods from code to models. As the code is the secondary artifact, techniques for estimations,
verification and validation techniques, etc. need to be adjusted to take models as inputs. In parallel to transitioning
from code centric to model driven development, a transition can be observed from programming oriented, computer
science education, to model based software engineering education. Together, these transitions pose new
requirements on knowledge goals for students, namely placing more focus on the learning abstract thinking,
designing, and creating modeling languages rather than algorithms.

The educators’ symposium at the MoDELS conference, the premier conference devoted to the topic of model-driven
engineering of software-based systems, is intended as a forum where educators, researchers, practitioners, and
trainers can meet to discuss model-driven development education from three perspectives:

- modeling-related content of courses and curricula: describing what should be taught to students
- pedagogical approaches, theories, and practices: describing how the material should be taught to increase

students’ learning process
- use of course materials and technology in the classroom: describing how textbooks, modeling tools, and

other technology can be used to increase the students’ learning process
The symposium contains perspectives from industry, academic faculty, and students.

The leading topic for the symposium in 2007 is transitioning from the traditional, programming oriented,
curricula/courses to modern, model based, software engineering curricula/courses. An important aspect is how
modeling courses integrate with students’ career paths (e.g. how useful are modeling skills for the students’
careers).

The students’ role is in the focus as it is the students who should benefit from the symposium in a short run. In the
long run, it is the industry which has the opportunity to employ skilled professionals. In the heart of this we sterted a
joint panel with the doctoral symposium where the researchers, doctoral students, teachers, and industry
professionals could discuss the issues how modeling should be taught.

The best paper from the symposium will be published in the Journal of Information and Software Technology
published by Elsevier as a promotion of the topics of modeling and education on a broader forum.

Miroslaw Staron
Symposium chair

1

3rd Educators symposium at MODELS 2007, Nashville, TN, USA

2

3rd Educators symposium at MODELS 2007, Nashville, TN, USA

Fighting the “Formal is Futile” Fallacy

Thomas Kühne
Darmstadt University of Technology

Darmstadt, Germany
kuehne@informatik.tu-darmstadt.de

Abstract

Many students have difficulties regarding formality as a
tool that provides value in practice. The typical experience
in their studies is that that formal techniques stop being ap-
plicable when they would be most helpful. In this talk, I
argue that it is important to counteract the undesired “im-
practicable” image of formal techniques, and then point out
how formal specification in modeling can help to reshape
how students think about requirements engineering and sys-
tem specifications.

1. What Do You Mean, “Formal”?

In general, a language or method is considered to be for-
mal if it allows the application of rigorous analyses and
proofs, as known from mathematics. This is in contrast
to empirical approaches which—paraphrasing Edsger W.
Dijkstra—can show the presence of errors, but never their
absence. In other words, formality replaces probability by
certainty.

Indeed, many early lessons on formal approaches fea-
ture small and clean examples, promising powerful ways to
deal with the presented problems. When tackled with main-
stream technologies, the same examples would lead to much
less elegant descriptions whose interpretations allow much
less results.

2. What Do You Mean, “Futile”?

In theory, there is no difference between
theory and practice. But, in practice,

there is. – Jan L. A. van de Snepscheut

All too soon, unfortunately, the above alluded to beauty and
utility of formality turns out to be a bait which does not
come without a hook. Later lessons on formal approaches
typically have to acknowledge that their practicability is
rather limited, or ways of dealing with practical issues are

introduced that destroy many nice properties, heavily ques-
tioning the effort involved in learning and applying formal
approaches.

Sadly, students are often left with the conclusion that for-
mality in practice is either infeasible or does not offer any
greater value than more mundane alternatives which appear
to be easier to grapple with.

3. What Do You Mean, “Fallacy”?

In this talk, I argue that there are a number of recent ad-
vances in formal techniques—in particular, regarding their
tool support—that make it possible to provide students with
a hands-on demonstration of the practical utility of formal
techniques.

In particular, I point out how using Alloy [1] and the
right examples, students can be made aware of how fuzzy
one’s thinking can be unless it is challenged by solid vali-
dation. Such experiences are destined to reshape how stu-
dents think about correctly engineering requirements and
thoroughly designing systems.

4. What Do You Mean, “Fighting”?

Educators have the responsibility for preventing students
from falling for the dark (informal) side. They need to
demonstrate unequivocally the advantages of putting in the
effort of learning and applying formal techniques. As much
as possible, students should be exposed to tools that present
them with results which they could not have obtained with
mainstream technologies. This way students will see that
the use of formal techniques has a value other than passing
a course. In turn, this may help students to more easily over-
come the challenges involved in learning and appreciating
formal approaches.

References

[1] D. Jackson. Software Abstractions: Logic, Language, and
Analysis. The MIT Press, Cambridge, Mass., Apr. 2006.

3

3rd Educators symposium at MODELS 2007, Nashville, TN, USA

4

3rd Educators symposium at MODELS 2007, Nashville, TN, USA

ReMODD in Education

Robert France
Colorado State University
france@cs.colostate.edu

The problems that MDD researchers tackle are multi-
faceted and inherently complex. This has led to calls for
a community-wide research infrastructure that not only
enables acccumulation and sharing of MDD research
experience and results, but also provides modeling
artifacts and resources that can be used to accelerate
MDD research.

The Repository for Model Driven Development
(ReMoDD) will contain artifacts whose use can
significantly improve MDD research productivity,
improve industrial MDD productivity, and enhance the
learning experience of MDD students.

Artifacts will include detailed MDD case studies,
examples of models reflecting good and poor
modeling practices, reference and benchmark models
that can be used as the basis for comparing and
evaluating MDD techniques, patterns reflecting
reusable modeling experience, transformations that
automate significant software development tasks,
descriptions of modeling practices and experience, and
modeling exercises and problems that can be used to
develop classroom assignments and projects. In this
talk I will give an overview of ReMoDD goal and
present the current status of the project.

5

3rd Educators symposium at MODELS 2007, Nashville, TN, USA

6

3rd Educators symposium at MODELS 2007, Nashville, TN, USA

Teaching Domain Specific Modeling

Lars Pareto
IT University of Göteborg

lars.pareto@ituniv.se

This talk describes experiences from teaching domain
specific modeling to third year, undergraduate, software
engineering students, by the use of problem based
learning. Primary learning outcomes were an
understanding of the differences between model driven
development and model driven architecture, the ability
to define graphical domain specific languages, and the
ability to define translations from graphical languages to
embedded target platforms. The students (which had
recently taken courses in embedded systems
programming with C, and model driven development
with Rational Rose Realtime) were given two existing
domain specific languages (Labview / Robolab and
Microsoft VPS) and an existing robotics platform
(Parallax Stamp), and were asked to implement one of
these languages for this platform using the Microsoft
DSL toolkit. Two project groups (of 5-6 students each)
took on and completed this task, with graphically
programmable robots as results. A third group realized
the knowledge goals by a graphical agent-oriented
programming language, with an accompanying
translation onto an agent platform (from a past course).

The course was a five week intensive course; no other
courses running in parallel. The organization consisted
of the following scheduled activities: a 1h introduction
to the problem, a 1h tutorial on the Microsoft DSL
toolkit, a weekly supervision, and a weekly workshop
with group presentations and demos. The course was
examined on the basis of a written group report and by
oral examination; grades were individual. The

organization assumed that students were familiar with
UML, MDD, C and Java, and already accustomed to
problem based learning. Notably, however, there were
no knowledge prerequisites in traditional
programming language related subjects such as
compiler design, programming languages, and
semantics.

All groups used iterative software development, with
iteration length set to one week (except for the first
which was two week). Three of the groups presented
working language prototypes after the first iteration,
and demonstrable translations after the second or third
iterations. All groups eventually produced
demonstrable language implementations, and all
participating students passed the course. The two
participating teachers, neither of which had prior
experience with teaching domain specific modeling,
were positively surprised about the ease of with which
domain specific modeling and the underlying
technologies were learnt, and about how far the
project groups reached within the given time. In
particular, three weeks for a demonstrable language
implementations was less time than expected.

Our conclusions are that, given that basic knowledge
in programming, UML, and model driven
development is in place, learning how to design and
implement a domain specific language with the DSL
toolkit is relatively simple, and well within reach of
undergraduate students in software engineering.

7

3rd Educators symposium at MODELS 2007, Nashville, TN, USA

8

3rd Educators symposium at MODELS 2007, Nashville, TN, USA

A Phased Highly-Interactive Approach to Teaching UML-based
Software Development

Egidio Astesiano, Maura Cerioli and Gianna Reggio

DISI, Università di Genova, Italy

astes|cerioli|reggio@disi.unige.it

Filippo Ricca

Unità CINI at DISI∗,

16146 Genova, Italy

filippo.ricca@disi.unige.it

Abstract

In a decade of Software Engineering teaching at un-
dergraduate level, we have always attributed great im-
portance to software development course projects and
since many years we adopt UML-based development
methods. In the attempt at allowing the students to ex-
perience the main software development activities in a
way as realistic as possible, we have experimented dif-
ferent organizational choices. The paper presents the
current organization, based on a rather sophisticated
phased development process, with a very high interac-
tion between teachers and students. Our approach is
illustrated by the last academic year project and its de-
tailed assessment by means of a questionnaire.

Keywords: Undergraduate Software Engineering
course, multi-phase course project, MDA, UML-based
development method, Project community forum, Ques-
tionnaire.

1 Introduction

The undergraduate course in Software Engineering
at the Faculty of Sciences of the University of Genoa,
that has just passed its first decade, has faced since the
beginning the well-known problem of balancing theory
and practice. Since the second year UML has been
taught and soon has assumed a central role, very much
in the sense, advocated in [7], of an essential conceptual
and factual tool for software development. However we
have not found easy to achieve together the two goals
that we have always considered of paramount impor-
tance: to allow the students to experience the main
activities of software development within a rigorous
framework and to make that experience as near to real

∗Laboratorio Iniziativa Software FINMECCANICA/ELSAG
spa - CINI

life development as possible, a problem also emphasized
and discussed in [19], that proposes an interesting sim-
ulated project environment. Among the problems not
easy to overcome, we single out the effort constraint,
both on the students and the teachers side, and the na-
ture and size of the project. But there are other, more
specific, technical and organizational difficulties, as we
will discuss in the paper.

In the years we have experimented different organi-
zational choices, from restricting the project to deal
with a particular step in the development process -
say a part of the design or of the implementation - to
requiring the students to complete some steps within
an overall development mainly provided and illustrated
by the teachers. After some unsatisfactory attempts,
we have found an organization of the project activities
that, together with being more satisfactory, presents
some distinctive features that may be of interest, we
think, to the Software Engineering educational com-
munity.

In essence the relevant features are the following. A
UML-based development method is followed through-
out the project, which is split into distinct phases cor-
responding to development steps. But, most distinc-
tively, for each phase the students are asked to per-
form the relative step on a small subset, the results are
evaluated, and the input to the next phase is a com-
mon complete solution of the previous one provided by
the teachers. Understandably, that process requires a
high degree of interaction between students and teach-
ers and the interaction is aptly supported via a Project
Community Forum. The proposed organization is still
at an experimental stage and thus, to improve the
course, we have found useful to make a rather detailed
assessment, on the basis of a questionnaire related to
the last project and to the well-structured UML-based
method proposed.

In the following section, after a brief outline of
the context and evolution of our Software Engineer-

1

9

3rd Educators symposium at MODELS 2007, Nashville, TN, USA

ing course, the current organization is motivated and
described in detail. In the third section the subject and
some relevant data of the last project are given, both to
make the presentation concrete and the questionnaire
understandable. Finally, the fourth section is devoted
to the mentioned assessment via a questionnaire.

2 Teaching Theory and Practice of
Software Engineering

In this section, we discuss the experience we gained
teaching a Software Engineering course (3rd year B.Sc.)
at the University of Genova (Italy).

2.1 Overview of the course

This undergraduate course is planned both to give
a general view on Software Engineering and to provide
an in-depth knowledge of UML. The course consists of
three parts: an overview on general topics in Software
Engineering (in the following briefly SE), a detailed in-
troduction to UML, and a project on the development
of a software system based on the general concepts on
SE and using UML. The prerequisites are programming
(Java and C), database knowledge and GUIs implemen-
tation using Java. Therefore, the students are assumed
to have a good knowledge of OO concepts, in particular
of the Java language.

We mainly base our lectures about SE on [14, 18],
whereas for UML we use directly the official specifica-
tion [12] and we suggest (but not require) our students
to read [9]. Both for the SE and UML parts, the only
material distributed is a copy of the slides used for the
lectures, providing a summary and a guide to the indi-
vidual study of the suggested text-books.

In order to pass the exam, the students have to inde-
pendently pass two written examinations, in any order,
one concerning SE and the other on UML. Moreover
they have to develop a multi-phase course project in
teams (team size = 3 ± 1). The final grade is computed
from the results of the individual parts, accordingly to
the formula 45% SE + 20% UML + 35% project.

The expected working load for the average student
is of 225 hours (see Table 1). Similarly to [6, 8] we
consider the project to be a prominent part, and in-
deed more than 1/3 of the student time is devoted to
it. We think the project to be extremely instructive
because for the first time the students experience the
development of a realistic system, starting from the
requirements, and putting in practice the principles of
Software Engineering. Moreover, thanks to the project,
students are expected to learn to work in teams and to
prepare a project plan including estimates of size and

effort, a schedule, resource allocation, time manage-
ment, configuration control and project risks. Several
graduate students, already working in ICT companies,
reported that they were able to build on this experience
when they had to face real industrial software projects
and realized retrospectively how useful it had been.

hours

Lectures (6 hours per week × 12 weeks) 72
Study day by day 50
Project 82
Final preparation for the exam 17
Written examinations (2 hours each) 4
Total 225

Table 1. Working load.

The SE part of the course consists of an introduc-
tion to Software Engineering fundamentals, covering
both traditional and object-oriented techniques. Top-
ics include requirements engineering, design engineer-
ing, software architectures, testing, maintenance, pro-
cess models (plan-driven and agile), reuse and design
patterns.

We teach UML 2.0 starting from its basics and
introducing the most important diagrams (Use Case
diagrams, Class diagrams, Sequence diagrams, State
machine diagrams, Activity diagrams and Composite
Structure diagrams). Moreover, considerable impor-
tance is given to OCL [11]. The students gain famil-
iarity with each topic by small toy examples at first.
Then, during the course, UML is applied to various
modeling problems across a variety of application do-
mains.

2.2 Evolution of the project modalities

In our opinion, it is of paramount importance that
a Software Engineering course allows the students to
experience the various activities performed during the
development of a software system, and that the setting
for these experiences be as realistic as possible. That
requires to give careful consideration to the choice of
the subject for the project, balancing the realism of the
selected case study against the strict time constraints,
which make the time span and the effort required by
even the easiest industrial case unfeasible for a course
project. Indeed, in our program on Computer Science,
courses have up to 12 credits1, but most of them have

1In Italy each course has a number of credits, each of them
corresponding to 25 hours of the “average” student, evaluating
the efforts required to take it. Thus, the most time consuming
course occupies a student for up to 300 hours, that is less than
two man months.

2

10

3rd Educators symposium at MODELS 2007, Nashville, TN, USA

just 6 credits (less than one man month of student ef-
fort) and that was the case with the course on Software
Engineering.

In order to reduce the effort required without adopt-
ing a toy case study for the project, we initially chose
to detail only some of the activities of the develop-
ment process. Thus, the first year the course was held
we decided to restrict the project scope to the design
activity. The students were required to produce a de-
sign specification, using UML, starting from the re-
quirement specification developed by the teachers for
a software system supporting committee meetings on
line. That organization was unsatisfactory, since the
students were unable to fully grasp the real effect of
their design choices, as they were not implementing
their own design.

Therefore, the following year, we decided to include
the implementation of the produced design using Java2.
In order to get the extra time for extending the project
to include the implementation phase, we asked for more
credits assigned to our course (hence more student
time) and we got 3 extra credits, going from 6 (150
hours of student time) to the current 9 (225 hours).
However, the result was even less satisfactory, because
to adhere to the time limits on the student work3 we
had to abruptly stop the project before its completion,
as we had underestimated the effort required (we were
apparently overoptimistic on the programming capa-
bilities of our average students).

Thus, to be able to include all the phases from re-
quirements to code on a realistic project, and at the
same time complying with the constraint on the stu-
dent effort, we decided to completely restructure the
project. The organization discussed in the sequel is
still adopted, and we plan to keep it for the near fu-
ture at least, with small adjustments made each year
on the basis of the previous experiences.

We split the development into distinct phases. At
the end of each phase the students produce their arti-
facts restricted to a small part of the system. We col-
lect them and give our complete4 realization back to
the students as a common starting point for the next
phase. For instance, students are required to design
using UML only a few significant classes; the overall

2For the academic year 2003/04 the project required
to develop a software system for managing the differ-
ent categories of questions for a quite complex quiz show
(see http://www.slowtrav.com/italy/general/sc eredita.html),
where each question is selected with a complex algorithm
depending on the state of the game of the different players.

3Being the first time we were using this modality, we were
monitoring the time spent by a pilot group; thus, we were able
to detect our error and modify the rules accordingly.

4The drawback is that this requires a lot of effort on the
teacher side.

class diagram to be implemented is produced by the
teachers.

That organization has the following benefits:

• for each task the students learn how to perform it
on a small subset of the whole system, with an ef-
fort comparable to that required by toy examples,
and so they save time, though they are working
on a realistic example, and can see the result of
the task on the overall system even if they are not
producing it themselves;

• the errors possibly introduced in a phase do not
propagate to the next one, because the students
are starting each stage from the teacher release of
the product for the previous one; thus, errors in
one phase do not prevent to successfully conclude
the project;

• it is easier to compare the products (and hence
fairly grade the projects) of different students in
each phase, because they are all starting from the
same official release.

On the other hand, to guarantee a “realistic” setting
for the project, we need real case studies not already
developed, convincing “clients”, and a non trivial appli-
cation domain, to experience the difficulties in under-
standing it. Therefore, we cannot reuse a case study
already developed in some book, nor go for the n-th
version of the “bank account” or of the “library” case
study.5 In all the projects, one of the authors (G. Reg-
gio) played the role of the client because she had a real
interest in using the software to be developed, thus
providing a most convincing client.

2.3 Teaching an OO UML-based Software
Development Method

Before devising the Software Engineering course de-
scribed so far, we had earlier experiences, prior to
2002, in teaching OO UML-based software develop-
ment methods, like COMET [10] and RUP [15], and
also in tutoring students in their application. The dif-
ficulties encountered during such activities, led two of
the authors to propose a new Model-based Adaptively

5Most recently, our choices were:

• Academic year 2004/05: software for managing a condo-
minium; in Italy this is a real complex problem where the
flat owners are deeply involved.

• Academic year 2005/06: ReqGuru, software for writing
use case specifications, including a scenario editor (it has
now reached the level of alpha-test, as an Eclipse plug in.
http://www.disi.unige.it/person/ReggioG/reqguru.html).

3

11

3rd Educators symposium at MODELS 2007, Nashville, TN, USA

Rigorous Software development method [1, 2, 3] (in
the following shortly MARS). MARS, which is model-
driven and adopts UML, enforces a tighter and more
precise structuring of the artifacts for the different
phases of the software development process, than re-
quired by most MDA compliant methods. That char-
acteristic helps inexperienced developers to speed-up
the process and at the same time facilitates the con-
sistency checks among the various artifacts, and hence
their final quality. Moreover, MARS strives to balance
formalism and easiness of use: the formal background
provides the foundational rigor but is kept hidden from
the developer.

From the very beginning, we adopted MARS in our
Software Engineering course and found it useful for our
sample of rather inexperienced users. Indeed, we plan
to apply it to real-size case studies in some projects
with the industry to see if our promising results carry
over to a population of well seasoned developers.

In order to make the paper self-contained we briefly
sketch MARS; further explanations on the method can
be found in [1, 2, 3]. MARS is a multiview, use-case
driven and UML-based software development process.
The activities of MARS and the artifacts to be pro-
duced are draw in Figure 1. The Concrete Design is
based on the Abstract Design that realizes the Require-
ment Specification, which is built on the Problem Do-
main Model.

����������	
���
��

�

�

����������

����
������ ����
 �	�
��

�

�

���!"#��

$�%��	�� ��%
&�

�

�

���!"#��'�"�(

)������� ��%
&�

*+,-./0/1+203
4256-62562/
7+5638

930/:+;, 4256-62562/ 7+563

930/:+;, <-6=1>= 7+563

Figure 1. Phases and artifacts.

In MARS the Requirement Specification artifacts
consist of different views of the System, including Data
view, a description of the data types used to provide a
rigorous description of such views. The Use Case view
shows the main ways to use the System (Use Cases),
making clear which actors take parts in them. Each
Use case in the Use Case diagram is accompanied by a
textual description following the format in [17].

The (abstract) Design, the structure of which is il-

lustrated in Figure 2, consists of several views of the
System:

The Data View defines all data types used by the
entities composing the System.

The Static View defines the types (classes) of the
entities composing the System.

The Behavior View describes the behavior of a part
of the System.

The Configuration View describes the run-time
structure/architecture of the System at some given
point/situation during its life.

The Additional View describes how some entities
of the System behave to get some particular task
done.

The Interface View describes the GUIs associated
to the entities realizing the interactions with the
users.

Figure 2. (Abstract) Design specification
structure.

All the UML models produced in the various phases
of the development process following MARS use only a
specific subset of UML (see [2]), that has a well defined
semantics.

Moreover, the expressions, the conditions and the
constraints in any diagram are expressed by using
OCL, and the actions using the UML action language.
MARS is totally compliant with the MDA philoso-

phy. One of the strength of this method is that im-
plementation is reduced to an almost mechanic (i.e.,

4

12

3rd Educators symposium at MODELS 2007, Nashville, TN, USA

not creative) phase. The code can be derived, almost
entirely automatically (except for the GUIs) starting
from the Concrete design. That phase is currently per-
formed by the students by applying a set of fixed trans-
formation rules.

2.4 The Project: the Current Format in
Detail

Currently, the project of our Software Engineering
course consists in the development of a software system
in Java, focusing on the design and implementation
parts. The students start from a given requirement
specification, and produce a working system, following
the MARS method, and using Visual Paradigm6 as a
tool for writing the required UML models.

The project is split in four phases and for each phase
the students have to produce some deliverables by a
fixed deadline. After the deadline, we collect, correct
and mark the students’ artifacts and then we propose a
common solution to be used in the subsequent phases.
For the whole project lifetime, each common solution is
modified and reviewed, to accommodate the feedback
from the successive phases (requirements and design
iterations).

The four phases are the following.

Phase 1 The input is a document containing some re-
quirements of the system. This document includes
Use Cases, Use Case diagrams and a UML class di-
agram representing the domain model. Students
inspect it, highlighting possible ambiguities, in-
completeness and any kind of requirements prob-
lems. The deliverable consists of the inspection
report and of two Use Cases not already included
in the input document.

Phase 2 The input is our new version of the require-
ments, revised taking into account the student in-
spections, and completed. The students develop
parts of the Data view and of the Static View and
moreover some Additional Views (i.e., sequence di-
agrams) following the MARS prescriptions. The
deliverable is a UML model prepared using Visual
Paradigm.

Phase 3 The input is our UML model with the com-
plete Data, Static and (enough) Additional Views.
The students define the behavior of a few classes
included in the Data and Static Views, using
state machine diagrams for active classes (as for
example boundaries or executors [2]). For the
operations of the passive classes (e.g., stores or

6http://www.visual-paradigm.com/

calculators [2]), instead, they can choose among
UML method definitions in the action language,
pre/post conditions in OCL or activity diagrams.
The deliverable is a new UML model.

Phase 4 The input is our complete model of the de-
sign. The students implement it in Java and the
deliverable is a running system.

In the implementation phase students have several
levels of freedom. They may choose their favorite
IDE (between Eclipse and Netbeans 5.5) and their pre-
ferred Java GUI technology7 (among Swing, AWT, and
SWT). The use of GUI builders, such as, for example,
Visual editor8 and Matisse9, is suggested but not im-
posed. We suggest to use Junit10 to test the most com-
plex classes of the System. Before starting the imple-
mentation phase we suggest some libraries that we con-
sider useful, but the students can freely decide whether
to use them or others of their choice. We do not give
the students material or lectures about these techno-
logical issues, but let them find by themselves, mainly
looking up documentation, tutorial and comparisons on
the Internet to make their own independent choices.
We think that this freedom is important so that the
students can gain a better understanding not only on
the existing technology, but also on the process of self-
learning which will be of essence in their working days.
Moreover, discussing with their colleagues who made
different choices, and comparing their different results,
they learn the impact of the choice of tools and libraries
on the building of a quality product.

It is easy to understand that with such an orga-
nization it is crucial to keep in continuous contact
with the students. Besides the lectures and the ques-
tion&answer time, where we can meet face to face with
the students attending the course11, a big help to create
an efficient learning community is given to us by Moo-
dle. Moodle12, a free open source software, is a course
management system designed to help educators cre-
ate on-line learning communities. It is not only useful
as repository, but also very useful to manage complex
projects. Indeed, the students, during the project de-
velopment, can solve their problems simply by posting
on the Forum, where educators and others students are
often available 24h/7d to answer. Moreover, Moodle is

7Students are familiar with the underlying GUI technologies
because they have attended a course on GUI development.

8http://www.eclipse.org/vep/WebContent/main.php
9http://www.netbeans.org/kb/articles/matisse.html

10http://www.junit.org/index.htm
11We have a majority of students working part-time, who are

able to participate in person only in a limited way. That required
us to adjust the modalities of interaction.

12http://moodle.org/

5

13

3rd Educators symposium at MODELS 2007, Nashville, TN, USA

also useful for full time worker-students, as it allows
for them to complete the project and pass the exam
without attending the course.

3 Academic Year 2006/07 project:
Easycoin

In the year 2006/2007 the students developed a sim-
ple program for cataloging collections of coins. This
program is named EasyCoin13. The two main charac-
teristics of EasyCoin are:

• it does not use a unique catalogue to classify the
coins, i.e., it is not based on a specific catalogue;

• the visualization of the information is flexible: the
collector can choose which information visualize
and in which way (e.g., cards/sections and com-
plete/reduced).

The aim of EasyCoin is to help the collector manage
both catalogues and collections of coins (the user may
switch from a modality to the other). In the modality
“manage catalogues” EasyCoin provides the following
features:

• insert, modify and delete the various information
about catalogue entries (entities issuing coins, coin
types, and coin issues);

• search in the catalogue;

• sort accordingly to different criteria;

• export in pdf, html and rtf. All reports pro-
duced can be viewed on the screen, printed and
saved. They respect the visualization format se-
lected (i.e., cards/sections or complete/reduced).

• export and import of the catalogue in a propri-
etary format (based on XML).

In the modality “collection of coins” EasyCoin handles
different info about coins (e.g., grade, price, location,
collections it belongs to). In that modality the main
functionalities of EasyCoin are:

• create /delete a collection;

• insert, modify and delete a coin in a collection;

• search coins in the collections;

• compute some statistics on collections;

13Again, one of the authors (G.R.) played the role of client
and user, since she is a coin collector.

• export and import data about sets of coins in a
proprietary format based on XML.

. The students had to implement the corresponding
given design, and we suggested them to divide the work
among the members of the group in equal parts (fol-
lowing a decomposition based on the pattern model-
view-controller), and to use Junit to test some classes.
The average size of the project is about 18.000 LOCs
(this value differ from group to group because it de-
pends mainly on the number/type of libraries used)
per approximately 150/170 Java classes14.

As SQL Database we elected to use the free-
ware H2 Database Engine15, that permits the
embedded connection mode (local connections using
JDBC). Before starting the implementation phase
we suggested (but not required) to use the iText16

library for implementing the pdf exporter. One of
the best implementations realized by the students is
downloadable, togheter with the proposed design, from
http://www.disi.unige.it/person/ReggioG/easycoin.html
(see a snapshot in Figure 3).

Figure 3. EasyCoin.

14It could appear unrealistic that undergraduate students at
their first serious programming experience were able to produce
73 LOC per hour (i.e., 18.000/246) and, indeed, the results of
the questionnaire show that they worked more hours than ex-
pected. However, it is important to note that the 18.000 LOCs
included comments, blank lines and a large amount of code au-
tomatically produced by a prolix GUIs generator. Furthermore,
Java is a verbose language. Therefore, though some adjustment
is definitely in order here to meet the time-frame, it is not as
large as one could expect from the sheer data.

15http://www.h2database.com/html/frame.html
16http://www.lowagie.com/iText/

6

14

3rd Educators symposium at MODELS 2007, Nashville, TN, USA

phase delivered passed % passed % drop-out

1 60 60 100% 0%
2 60 60 100% 0%
3 57 57 100% 5%
4 (1∗ deadline) 34 28 82,3% -
4 (2∗ deadline) 12 12 100% -
4 (overall) 40 40 100% 33,3%

Table 3. Students that have delivered and
passed the project.

4 The questionnaire

After completing project, the students were asked
to fill-in a questionnaire, in one hour. The purpose
was to analyze the answers to better understand their
opinions about the project and theMARSmethod both
to calibrate/improve the next editions of the course and
to gain further feedback on MARS.

The questionnaire consists of two parts. First we
ask general questions (enrollment year, mean of student
marks, experience in the industry if any, etc.) to better
characterize the student population. Then we move to
specific questions regarding the development project
(complexity, adequacy of the time allowed to complete
the work, etc.) and the MARS method (usefulness,
complexity, applicability, etc.). Table 2 shows the 18
questions from the second part of the questionnaire.
Students used a Likert scale [13] from 1 (strongly agree)
to 5 (strongly disagree) to answer. Some free answer
questions concluded the questionnaire.

4.1 Subjects

The subjects answering the questionnaire are the 34
students that delivered the project, meeting the final
deadline. Other 26 students participated in the initial
phases of the project, but were not able to complete
it by the deadline. They are given the choice between
completing the project for a later deadline and getting
a lower rank (12 of them make use of it), or develop a
new project (not organized in phases) during the sum-
mer. Table 3 indicates the students that delivered and
passed the project and the drop-out rate.

From the analysis of the general questions we ob-
tain the following results. Only 8.8% of the subjects
worked full-time as programmer in the industry, 11.7%
worked part-time and 79.5% had no working experi-
ence. At the question “What is the mean of your
marks?” 32.2% answer medium, 47% high and 20.8%
very high. No one has a low mean. At the question
“How do you describe the typology of the code that you
have written until now?” 73.5% answer only small pro-

grams, 17.6% medium programs and 8.9% large pro-
grams. Only 26.5% of the students declare to know a
development method different from MARS and 29.4%
state to have applied before agile methods.

4.2 Results

This section summarizes the main results obtained
from our analysis of the answers in the second part of
the questionnaire. Some insights can be obtained by
looking at the descriptive statistics in Table 4. In this
section, only questions associated with “significant”
answers (i.e., having median �= 3) will be considered.
They are represented in bold in Table 4.

About the project

Students state that the time to complete EasyCoin
was not sufficient (Q1: 52.9% considered it insufficient,
20.6 sufficient and 26.5% was not certain). They had
difficulties to develop the project (Q7: 2.9% strongly
disagree, 2.9% disagree, 35.3% not certain, 52.9% agree
, 5.9% strongly agree) but at the same time they judge
the experience of the project useful and formative (see
Figure 4). Participants claim that the pictures of the
GUIs of EasyCoin, given contextually to the require-
ments and refined during the design activity, were use-
ful to make the requirements clearer (Q3: 67.6% re-
tained it useful, 11.8% no and 20.6% was not certain).

Figure 4. Histogram of Q5.

About MARS
Students find MARS useful (Q9:14,7% strongly agree,
64,7% agree, 20,6% not certain) and not difficult to
apply (Q8: only 5,9% found difficulties to apply it
to EasyCoin). They claim that MARS guides “step
by step” the developer (Q13: 20.6% strongly agree

7

15

3rd Educators symposium at MODELS 2007, Nashville, TN, USA

ID Question

Q1 I had enough time to complete the EasyCoin project.
Q2 The EasyCoin requirements were perfectly clear to me.
Q3 The pictures of the EasyCoin GUIs helped me to better understand the requirements.
Q4 I experienced no difficulty in developing EasyCoin.
Q5 I consider the experience of the project useful and formative.
Q6 I had enough time to learn MARS.
Q7 I had difficulties in grasping MARS.
Q8 I had difficulties in applying MARS to EasyCoin.
Q9 I found MARS useful.

Q10 In the development activity it is better to use UML without any specific method instead of MARS.
Q11 MARS is too difficult to apply.
Q12 Does MARS balance agility and formalism.
Q13 MARS guides “step by step” the developer in the development activity.
Q14 Using MARS the implementation phase became purely mechanic.
Q15 OCL is useful to understand the diagrams of the design model.
Q16 The application of MARS in real cases takes too much time; hence MARS is not usable in practice.
Q17 I think that MARS could be successfully used in the professional practice.
Q18 In the future projects I will use MARS.

Table 2. Specific Questions of the questionnaire.

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18

Mean 3,24 2,76 2,21 3,55 1,64 2,45 3,15 3,27 2,06 3,52 3,7 2,85 2,15 2,79 2,42 3,30 2,45 2,73

Median 4 3 2 4 2 3 3 3 2 3 4 3 2 3 2 3 3 3

χ2
− test 0,73 - 0,04 0,3 1,6*10−6 - - - 0,0006 - 0,17 - 0,02 - 0,3 - - -

Table 4. Descriptive Statistics and results of the χ2-test.

and 50.0% agree) and consider OCL useful to under-
stand the diagrams of the design (Q15: 5.9% strongly
agree, 52.9% agree, 35.3% not certain, 5.9% disagree,
0% strongly disagree).

Chi2-test

χ2-test [20] was used to gain statistical evidence over
the whole set of subjects involved in the experiment.
For each question, we have compared the percentage of
answers with value > 3 (< 3) against that of answers
having value ≤ 3 (≥ 3). We decided to adopt the most
commonly used value for the alpha-level, that is, con-
sidering statistically significant a test with a p-value
lower than 5% [20]. Results of the χ2-test are shown
in Table 4.

4.3 Threats to Validity

This section discusses the threats to validity that
can affect our results [20]. The main threat could
be due to the fact that the questionnaire was deliv-
ered and compiled by the students some days before
the written examination and before the grading of the
project. Students could have answered not sincerely to
the questions hoping to have some benefits (or fearing
some threats). To limit that threat we informed the
students that the answers to the questionnaire would
not influence the final vote of the course nor our opin-
ion of them. Another threat to the validity of results
is that the questionnaire was only completed by those

who delivered their projects within the first deadline.
The opinion of those who did not deliver the project is
somehow neglected.

Though the selected subjects represent a population
of students specifically trained on Software Engineer-
ing, UML and MARS, we doubt that the results ob-
tained can be generalized for industrial senior devel-
opers [16]. In any case, only further specific studies,
with other students and professionals, could confirm
or contradict the obtained results. The threat, always
present when experimenting with students, is the lack
of experience of the subjects. Some questions require
indeed some amount of experience to be answered (for
example, “does MARS balance agility and formalism?”,
see [4]) and moreover the majority of the students is
facing a realistic system for the first time; they know
only one development method learned in this course
and they have never applied agile methods. It will be
interesting to repeat the questionnaire with profession-
als.

4.4 Discussion

The experiment was useful for two reasons: to have
feedback on the project and to understand what stu-
dents think about MARS. Even if we have obtained
only four statistically significant results (Q3, Q5, Q9

and Q13) other important information can be obtained
analyzing the other answers.

8

16

3rd Educators symposium at MODELS 2007, Nashville, TN, USA

We intend to take into account the opinions of the
students to improve the next year project. Indeed, we
plan to confirm the structure of the course and in par-
ticular our idea of having the students develop a re-
alistic project as part of the course, because it has
been highly appreciated by the students (see Figure 4).
However we have to tune some details. We understand
that the time given (1 week for the phase 1, 3 weeks
for the phases 2 and 3 and 2 months for the imple-
mentation of the system) to complete the project was
not sufficient (Q1). In particular students complained
to have little time for the implementation (this is the
phase with higher drop-out rate). Given than the num-
ber of credits of the course is fixed (9 credits correspond
to 225 hours, of which 82 hours for the project) we can
see only two solutions to solve this problem. Reduc-
ing the complexity of the project (choosing, for exam-
ple, a domain better known to students - or reducing
the number of requirements to implement) or increas-
ing the team size up to 5-6 students as done in other
courses, as reported in [6].

Another lesson that we have learned is about re-
quirements: in the future we will have to pay major
attention to their quality. They have been judged by
the students as not always clear (Q2). As suggested by
the students a way to make the requirements clearer is
to accompany them with the pictures of the GUIs of
the System to realize (Q3). As students appreciated
the idea of having requirements and pictures, we plan
to confirm it for the next years. Improving the clar-
ity of our requirements may seem to lessen the amount
of realism, as one referee has observed. However the
emphasis of this SE course is on design and implemen-
tation. In a second advanced SE course the project is
centered around requirement elicitation and analysis.

Even if students are not experienced programmers
we think that their opinions/suggestions may be useful
to refine/improve MARS. First of all, we have to im-
prove the explanation of MARS (several students had
problems to understand the method and needed more
time to learn it, others had problems to apply it to
EasyCoin; see Q6, Q7 and Q8 in Table 4). Surpris-
ingly to us, students consider OCL unequivocally useful
to understand the diagrams of the design (Q15). This
result, though unexpected, goes in the same direction
of [5]. Maybe, the most interesting results of the ex-
periment are that students consider the experience of
the project useful and formative (Q5) and find help-
ful (Q9) and not difficult to apply (Q8, Q11) MARS
(Q13: MARS guide “step by step” the developer).

Some of the results have been confirmed by a set of
free answer questions we have included in the question-
naire. In particular the students recognized the need

for a method able to guide the programmer in all the
phases of the development. Students question the ex-
cessive rigidity of MARS, but, at the same time, some
of them appreciate the possibility to be precise and rig-
orous in the development, even if this requires a greater
effort. A lot of students ask for a better tool support,
able to derive the implementation in automatic way.

5 Conclusion

We have presented and discussed our current ap-
proach to organizing a project in software development
within an undergraduate Software Engineering course.

Our organization has some distinctive features that
are the result of various attempts at allowing the stu-
dents to seriously experience most of the different activ-
ities involved in adopting a well-structured UML-based
method. In particular we have tried to overcome some
maturity, time and effort constraints on the students
side with the main aim of making their experience as
realistic as possible. By “as possible” we obviously
mean a reasonable compromise that takes into account
some constraints, like time and effort, and priorities,
such as learning a rigorous UML-based development
method and experiencing all the relevant development
phases.

Admittedly, our approach is demanding on the
teacher side; however we must say that it is also re-
warding in terms of understanding the difficulties that
the students − and, to a certain extent, the common
developer − experience when seriously applying UML-
concepts and related methods and tools. In that re-
spect we also found of great help the proposed assess-
ment via a questionnaire carefully analyzed and dis-
cussed, an experience that we intend to reiterate.

Acknowledgments

We would like to thanks first of all the students that
along these years have taken part in this experience.
We also gratefully acknowledge the benefit we gained
from some very competent and accurate referee reports.

References

[1] E. Astesiano and G. Reggio. Tight structuring
for precise UML-based requirement specifications.
In 9th Monterey Software Engineering Workshop,
pages 16–34, September 2002. Lecture Notes in
Computer Science n. 2941, Berlin, Springer Ver-
lag, 2004.

9

17

3rd Educators symposium at MODELS 2007, Nashville, TN, USA

[2] E. Astesiano and G. Reggio. Towards a well-
founded UML-based development method. In
Conference on Software Engineering and For-
mal Methods, SEFM 2003, pages 102–113, 22-27
September 2003.

[3] E. Astesiano, G. Reggio, and M. Cerioli. From
formal techniques to well-founded software devel-
opment methods. In Formal Methods at the Cross-
roads: From Panacea to Foundational Support.
10th Anniversary Colloquium of UNU/IIST the
International Institute for Software Technology of
The United Nations University, pages 132–150,
18-20 March 2002. Lecture Notes in Computer Sci-
ence n. 2757, Berlin, Springer Verlag, 2003.

[4] B. Boehm and R.Turner. Balancing Agility and
Discipline: A Guide for the Perplexed. Addison
Wesley, 2003.

[5] L. C. Briand, Y. Labiche, M. Di Penta, and H. D.
Yan-Bondoc. An experimental investigation of for-
mality in UML-based development. IEEE Trans-
actions on Software Engineering, 31(10):833–849,
2005.

[6] K. Cooper, J. Dong, K. Zhang, and L. Chung.
Teaching experiences with UML at the university
of Texas at Dallas. In Educators Symposium of
the 8th International Conference on Model Driven
Engineering Languages and Systems, pages 1–8, 3
October 2005.

[7] G. Engels, J. Hausmann, M. Lohmann, and
S. Sauer. Teaching UML is teaching software en-
gineering is teaching abstraction. In Educators
Symposium of the 8th International Conference
on Model Driven Engineering Languages and Sys-
tems, 3 October 2005.

[8] W. Filho. Process issues in course projects. In In
the Proceedings of 27th International Conference
on Software Engineering, pages 629–630. ACM
2005, 2005.

[9] M. Fowler. UML Distilled: A Brief Guide to the
Standard Object Modeling Language. 3th edition.
Addison Wesley, 2003.

[10] H. Gomaa. Designing Concurrent, Distributed
and Real-Time Applications with UML. Addison-
Wesley, 2000.

[11] OMG. UML 2.0 OCL Specification, 2003.

[12] OMG. UML 2.0 Superstructure Specification,
2003.

[13] A. N. Oppenheim. Questionnaire Design, Inter-
viewing and Attitude Measurement. Pinter, Lon-
don, 1992.

[14] S. L. Pfleeger. Software Engineering. Theory and
Practice. 2nd edition. Prentice Hall, 2001.

[15] Rational. Rational Unified Process c© for System
Engineering SE 1.0. Technical Report Tp 165,
8/01, 2001.

[16] P. Runeson. Using students as experiment sub-
jects - an analysis on graduate and freshmen stu-
dent data. In 7th International Conference on Em-
pirical Assessment in Software Engineering, pages
95–102, 2003.

[17] S. Sendall and A.Strohmeier. Requirements Anal-
ysis with Use Cases. http://lgl.epfl.ch/res-

earch/use cases/RE-A2-theory.pdf, 2001.

[18] I. Sommerville. Software Engineering. 6th edition.
Addison Wesley, 2000.

[19] R. Szmurlo and M. Smialek. Teaching software
modeling in a simulated project environment. In
Educators Symposium of the 9th International
Conference on Model Driven Engineering Lan-
guages and Systems, 1-6 October 2006. Lecture
Notes in Computer Science n. 4364, T.Kuehne
(Ed.), Berlin, Springer Verlag, 2007.

[20] C. Wohlin, P. Runeson, M. Höst, M. Ohlsson,
B. Regnell, and A. Wesslén. Experimentation in
Software Engineering - An Introduction. Kluwer
Academic Publishers, 2000.

10

18

3rd Educators symposium at MODELS 2007, Nashville, TN, USA

Students can get excited about Formal Methods:
a model-driven course on Petri-Nets, Metamodels and Graph Grammars

Pieter Van Gorp Hans Schippers∗ Serge Demeyer
Dirk Janssens

Department of Mathematics and Computer Science
University of Antwerp

{Pieter.VanGorp,Hans.Schippers,Serge.Demeyer,Dirk.Janssens}@ua.ac.be

Abstract

Formal Methods have always been controversial. In
spite of the fact that the disbelief about their usefulness has
been corrected by a growing number of applications and
even more publications, it remains a challenge to demon-
strate the strengths and weaknesses of formal methods
within the time constraints of a typical semester course.
This paper reports on a new course at the University of
Antwerp in which the introduction of a new formalism yields
a better understanding of previously taught ones. While the
exercises are designed to reveal the limitations of the for-
malisms used, students remain convinced that their formal
models have more value than conventional source code.

1 Introduction

Formal Methods have been praised for facilitating the

detection of inconsistencies and/or inaccuracies early in the

development process. Still, formality is often falsely asso-

ciated with the exhaustive specification of proofs in special

symbols that are hard to read by most stakeholders. There-

fore, they are often believed to be very costly and thus only

applicable to very specific applications, such as embedded

spacecraft software [10, 3]. To prevent the further spread of

such myths in industry, software engineering students at the

University of Antwerp are confronted with formal modeling

languages in a variety of settings.

On the one hand, providing correctness proofs is part of

courses on mathematics, databases, computer arithmetics

and computability. On the other hand, several courses il-

lustrate that modeling a system before its implementation

assists in the early detection of misunderstandings. For ex-

ample, already after a minimalistic introduction to the Uni-

fied Modeling Language (UML), student teams have lively

∗Research Assistant of the Research Foundation, Flanders (FWO)

discussions to reach a consensus on the structure of a do-

main model before constructing their first distributed net-

work application. Similar discussions are held when student

teams are instructed to construct a small compiler. Within

this compiler project, students are not allowed to implement

a semantical analyzer and code generator using the implicit

abstract syntax tree from the parser generation framework

directly. Instead, they are required to model a more ab-

stract representation of the source language as a class di-

agram. The instructor verifies that students do not model

implementation-specific concepts and ensures they do not

abuse UML compositions and/or association cardinalities.

While this exercise does significantly improve the students’

knowledge of the UML, the learning curve is rather steep.

Therefore, one can hardly expect that students fully appre-

ciate the added value of their modeling task.

Recently, the introduction of a new undergraduate course

indicated that this investment in precise modeling did re-

sult in more appreciation of further courses in formal meth-

ods in general and a model-driven engineering approach

specifically. This paper presents that course, called “Formal
Techniques in Software Engineering”, in more detail, using

the following structure: Section 2 presents the role, objec-

tives, structure and examination form of the course; Sec-

tion 3 presents some of the artifacts to be developed by the

students and indicates their relation and educational value;

Section 4 summarizes the lessons learned after the first year

while the final section concludes this paper.

2 Course Design

This section first describes the role of the course within

the curriculum. Secondly, it discusses how the students’

background and the complexity of supportive tools affects

the objectives. Then, a description of the course structure

and examination form clarifies how competences are trans-

ferred to the students and how students are evaluated.

1

19

3rd Educators symposium at MODELS 2007, Nashville, TN, USA

2.1 Role within the Curriculum

As stated in the introduction, modeling is an integral

part of the computer science curriculum at the University

of Antwerp: after an absolutely fundamental course on dis-

crete mathematics, several courses rely on formal models

with laws to derive properties of the domain or system un-

der study.

For example, instead of focussing an introductory

“databases” course on querying concrete databases with

SQL, systematic procedures are taught to transfer an En-

tity/Relationship model into a relational model. More-

over, the course illustrates how the formal nature of the

latter model allows one to normalize databases automati-

cally. Similarly, a course on computer arithmetics relies on

a model of the standard for floating point arithmetics to rea-

son about the correctness of floating point implementations.

While other courses use languages such as Z, B, SDL

and statecharts, they leave the definitions of the involved

models and languages implicit. In the third and final year

of the bachelor program, the new course aims to teach stu-

dents how different formal techniques relate to one another

instead of leaving them isolated within the other, individ-

ual, courses. Primarily, students are taught that in model-

driven software engineering, software is developed in dif-

ferent languages, at different levels of abstraction and that

there are good reasons to do so. Secondly, the course il-

lustrates how metamodeling and model transformation can

be used to maintain the consistency between the models ex-

pressed in these languages.

2.2 Course Prerequisites and Objectives

This section describes the prerequisites and objectives

that were defined when the course was first planned.

Students can enroll in the course provided they have

practical programming experience, practical experience in

the use of UML class diagrams and a solid understanding

of the formal foundations of computer science (logic, for-

mal languages). In practice, this expertise was provided by

courses from the first two years of the bachelor program.

Officially, the expected learning outcomes were initially

defined as follows:

“Based on formal specifications (logical specifi-

cations, statecharts, Petri-Nets) the student should

be able to build models expressing the intended

functionality of a system, to analyse and to verify

these models, and to generate a working imple-

mentation from them.”

These objectives were designed with the AndroMDA code

generators in mind [2]. Using this code generator from

UML diagrams to Java web applications would bring stu-

dents in contact with:

• conceptual modeling with UML class diagrams,

• query definition with a subset of the Object Constraint

Language (OCL),

• user interface flow modeling with use cases and activ-

ity diagrams.

However, supervision of another undergraduate course (in

which students have to build a large software system within

two semesters) indicated that the use of AndroMDA re-

quired a significant learning curve for setting up a correct

modeling and build environment. Moreover, despite the

significant amount of code generation, students are still re-

quired to master the underlying J2EE technologies. There-

fore, the use of AndroMDA would put too much weight on

the use of a code generator and leave too little more room

for teaching how the modeling languages used (class dia-

grams, activity diagrams, ...), are defined and kept consis-

tent. Since the novelty of model-driven engineering does

not consist of using code generation as such, but of adapt-

ing code generation environments (by using standard model

and code transformation languages), the course objectives

were informally adjusted to:

“The student should be able to express the in-

tended functionality of a system from different

viewpoints in different formalisms (Petri-Nets,

Graph Grammars) and ensure particular proper-

ties (boundedness, consistency, ...) of such mod-

els. The student should use state-of-the-art trans-

formation techniques (model animation, model

translation and code generation) to integrate dis-

tinct models and relate them to a complete imple-

mentation. The student should experiment with

metamodelling in this context, and acquire an un-

derstanding of the benefits and limitations of the

4-layer meta model architecture.”

After considering a combination of the DiaMeta [13] and

Tiger [9] meta-case tools with the MoTMoT [14] model

transformation tool, the AToM3 tool was selected because

of its completeness. AToM3 offers mechanisms for meta-

modeling, concrete syntax definition, model transformation

and code generation in a self-contained, Python based, en-

vironment [6].

2.3 Course Structure

The course takes place in the last semester of the bach-

elor program. It divides six European Credits (ECTS [4])

across seven theoretical sessions and eleven lab sessions of

2

20

3rd Educators symposium at MODELS 2007, Nashville, TN, USA

Figure 1. Structure of the Course

two hours per session. The course structure is visualized by

Figure 1.

The first part of the theoretical sessions consist of lec-

tures whereas the latter sessions are more interactive: in

these sessions, the lecturer leads a discussion on a set of se-

lected papers. The first lecture introduces the students to the

Model Driven Engineering paradigm. Based on a concise,

yet sufficiently complete textbook [11], the lecturer clari-

fies the definitions of a model, modeling language, meta-

model, transformation definition and a transformation lan-

guage. The following three sessions introduce the students

to the most commonly used variants of the Petri-Net lan-

guage. After explaining the role of invariants in the anal-

ysis of Condition/Event nets, the language is extended to

Place/Transition nets with weights and capacities. A num-

ber of examples illustrate how the underlying formalism al-

lows one to reason about deadlocks and other properties.

The first three lab sessions make sure that students mas-

ter Petri-Nets both for modeling and verification. Since stu-

dents are already heavily loaded with project work from

other courses in their final year of the bachelor program,

all exercises are made in the controlled context of the lab

sessions. In the last Petri-Net session, students are given

an assignment that will serve for evaluating their modeling

ability. More interestingly, it serves as input for a Petri-Net

editor that will be constructed in the second series of prac-

tical lab sessions.

The second and final part of the lab sessions distinguish

the course from a conventional course on formal methods.

In each of these eight lab sessions, students are given a

well-defined assignment contributing to the construction of

a Petri-Net based toolset using the AToM3 tool.

Within the first session from this series, the teaching as-

sistant demonstrates the core features of this tool. More-

over, the students are given an idea of what kind of toolset

they will construct in the upcoming weeks. In the remain-

der of the first session, students are already creating their

first metamodel, using the Entity/Relationship language.

This first metamodeling exercise consists of the definition

of the Robustness Modeling language [16]. This language

consists of only five modeling constructs: Actors, Bound-

aries (Interfaces), Controls (Processes), Entities (Domain

elements) and Use Cases. The language is selected because

it is related to design rules that students have encountered in

other software engineering courses. More specifically, the

language includes well-formedness rules stating, for exam-

ple, that user interface elements should not access persis-

tent elements directly. Students realize that it is better to

enforce these constraints by means of a specific modeling

language than to check them in implementations based on

a general purpose programming language. Moreover, stu-

dents become familiar with metamodeling. At the end of

the first session, students hand in their E/R model defin-

ing the Robustness Modeling language along with a sample

Robustness Diagram that they created with the generated

editor.

In the second AToM3 session, an editor for Condi-

tion/Event and Place/Transition Nets with weights and ca-

pacities is constructed. The third section is the first hands-

on introduction to model transformation: in this session,

students are instructed to define a graph grammar realizing

the Petri-Net transition semantics. Again, the introduction

from the teaching assistant starts from a demonstration of

the result that needs to be achieved. More specifically, a cor-

rect grammar is executed on a Petri-Net model of the din-

ing philosophers problem. Students see how different rules

are combined to detect whether a transition is enabled and

whether tokens have already been moved from input places

to output places. To illustrate that the presented techniques

are not specific to Petri-Nets, a model of a railroad track is

presented and a graph grammar is used to move trains across

the tracks. These demonstrations are followed by a brief in-

troduction to the core graph grammatical concepts, like the

left- and right-hand side of a rule, the node identification

mechanism and rule priorities.

At the end of the third session, students hand in their

graph grammar for Condition/Event nets. In session four,

students generalize this grammar to the Place/Transition

variant of Petri-Nets (allowing more than one token per

place). The grammar should handle weights on arcs from

places to transitions properly. Although this seems like

a minor conceptual extension of the Petri-Net variant, the

grammar needs to realize a loop over a number of its rules.

Since AToM3 only supports priorities as a control flow

structure, the realization of such a loop is not straightfor-

ward. In the fifth session, the grammar is generalized one

last time by supporting weights on arcs from transitions

to places and capacities on places too. At the end of the

fifth session, students should be able to animate a Petri-Net

model for access control that is part of the theoretical course

material on Petri-Nets.

3

21

3rd Educators symposium at MODELS 2007, Nashville, TN, USA

In session six, students return to metamodeling. They are

instructed to model the “Railroad” language that was briefly

demonstrated in session three. Since this language con-

tains a set of related concepts (trains move across straight

tracks in the same way as they drive through a station), it

motivates the need for inheritance in the metamodeling lan-

guage. Therefore, the Railroad language needs to be mod-

eled with class diagrams instead of with Entity/Relationship

diagrams. In sessions seven and eight, the AToM3 lab is

concluded with a transformation from Railroad models to

Petri-Nets. This assignment challenges students to com-

bine all competences acquired so far. Additionally, they are

brought in contact with the additional techniques required to

define an exogenous transformation (see Section 3.3). For

example, this transformation between different languages

introduces students to the need for (and nature of) traceabil-

ity mechanisms.

The discussions from the four final theoretical sessions

are based on three to four papers per session. To prepare

for such a paper session, the students should read the pa-

pers and answer a few questions. In the lecture itself, the

students debate the strong and weak points of a given pa-

per, which results in quite vivid discussions. The goal dur-

ing these debates is not that one student wins the debate,

but rather that all students see the merits and differences in

each approach. The final discussion session is based on two

papers that generally classify today’s model transformation

approaches and two papers that each present an AToM3 al-

ternative in detail. During the debate, students are asked

which aspects of their transformations they found difficult

to express with AToM3. Moreover, students need to assess

what features of other graph transformation languages ad-

dress these difficulties.

2.4 Examination Form

The course evaluation consists of two parts: permanent

evaluation, and an oral exam with a written preparation.

First of all, the solutions to the lab exercises are taken

into account, which test one of the course objectives,

namely “The student should use state-of-the-art transfor-
mation techniques (model animation, model translation and
code generation) to integrate distinct models and relate
them to a complete implementation.” This part of the

examination is managed by electronic submissions to the

university’s electronic learning platform [17]. Since the

AToM3 lab sessions build incrementally upon one another,

the teaching assistants have prepared partial solutions cor-

responding to all AToM3 related deadlines. This can help

students that have failed to meet one deadline in catching up

for the next deadline. In practice, students have enthusias-

tically completed some incomplete exercises at home. The

e-learning system has been useful to collect all AToM3 ar-

tifacts within one web-based system. Moreover, it provides

a comprehensive overview of the deadlines that have been

met by each individual student. However, teaching assis-

tants have selectively relaxed the firm deadlines by allowing

e-mail submissions too. This was desirable when students

encountered unexpected problems that were due only to un-

predictable behavior of the AToM3 tool.

Secondly, at the end of the semester the students must

pass an oral exam with a written preparation. During this

exam, the remaining course objectives are tested, namely

“The student should be able to express the intended func-
tionality of a system from different viewpoints in different
formalisms (Petri-Nets, Graph Grammars) and ensure par-
ticular properties (boundedness, consistency, ...) of such
models.” and “The student should ... acquire an under-
standing of the benefits and limitations of the 4-layer meta
model architecture.” The former is tested with an exercise

in Petri-Net modeling and verification while the latter is

tested with a discussion on two papers selected from the

list read during the paper sessions.

3 Course Artifacts

This section presents some of the models, metamodels

and transformations that need to be developed in the new

course.

3.1 Petri-Net Editor

Figure 2 displays a simplified version of one of the mod-

els used to convince students that AToM3 can be used to

build powerful editors. The Petri-Net models the dining

philophers problem with six philosophers. The Petri-Net

editor is developed in the second session of the AToM3 labs.

For improving the readability of this paper, the token capac-

ities and edge weights have been omitted. The model can

be animated using the graph grammar that is developed in

sessions three, four and five.

In Figure 2, each philosopher is represented by a pair of

places that are positioned on a diameter of the circle that

represents the table. The outer place from such a pair holds

a token when the philosopher under consideration is think-

ing. Therefore, in Figure 2, all six philosophers are think-

ing. These philosophers are numbered clockwise and with

number 1 for the two places on the top of the figure. From

the twelve places representing the philosophers, six places

hold a token. These six places represent the three spoons

and three forks. Since they hold a token, all silverware lies

on the table.

After executing some graph transformation rules (that

are selected automatically from the grammar), the Petri-Net

model from Figure 2 has evolved into that of Figure 3. In

the latter (version of the) model, philosophers 1 and 5 are

4

22

3rd Educators symposium at MODELS 2007, Nashville, TN, USA

P1_thinks

SPOON3

P1_eats

FORK1 SPOON1

P2_eats

P5_thinks

P5_eats P3_eats

P4_eats

P2_thinks

P3_thinks

FORK2

SPOON2

P4_thinks

FORK3

P6_thinks

P6_eats

Figure 2. Petri-Net model: Dining Philophers.

P1_thinks

SPOON3

P1_eats

FORK1 SPOON1

P2_eats

P5_thinks

P5_eats P3_eats

P4_eats

P2_thinks

P3_thinks

FORK2

SPOON2

P4_thinks

FORK3

P6_thinks

P6_eats

Figure 3. Model during graph grammar exe-
cution.

Figure 4. Editor for modeling the concrete
syntax of visual language elements.

eating while the others are still thinking. Philosopher 3 can

start eating since spoon 2 and fork 2 are still on the table.

However, philosophers 2, 4 and 6 have to wait until their

neighbours (philosophers 1 and 5) have finished eating and

returned their silverware to the table.

The Petri-Nets language can be represented by a straight-

forward metamodel containing a Place class and a Transi-
tion class, related by an association for input places and an

association for output places. Figure 4 shows the AToM3

editor for modeling the concrete syntax of the Place class.

This example teaches students how to use the basic con-

structs for representing individual language elements and

for representing relations between these elements. In addi-

tion, students are confronted with the limitations of visual

modeling. More specifically, the representation of tokens

within a place is realized by some pragmatic programming

at the level of the Python code that AToM3 generates from

the metamodel and the concrete syntax definition.

The transition semantics for Petri-Nets can be modeled

by a variety of graph grammars. However, some essential

rules occur in almost any solution. Figure 5 presents a snap-

shot of the active AToM3 windows when such a rule is being

edited. At the center of the screenshot, the graph transfor-

mation rule for incrementing output places is shown. The

“order” field at the top of the dialog defines the priority of

this rule and is set to 4. Rules with a lower order have a

higher precedence. In this example, such rules make sure

that the input places of the transition under consideration

5

23

3rd Educators symposium at MODELS 2007, Nashville, TN, USA

Figure 5. Screenshot of the AToM3 dialogs for editing graph grammar rules.

6

24

3rd Educators symposium at MODELS 2007, Nashville, TN, USA

Berchem Mol

Lier

unnamed place0
unnamed place1

unnamed place2

unnamed place3unnamed place4unnamed place5 unnamed place6unnamed place7

unnamed place8 unnamed place9

unnamed place10

unnamed place11

unnamed place12

unnamed place13

unnamed place14unnamed place15unnamed place17unnamed place18

unnamed place19

unnamed place20unnamed place21unnamed place23

unnamed place24

unnamed place0
1

unnamed place1
1

75.0110.0

n

n

n
n n n

unnamed place22

nn

nn n

n

n n

nn

n

n

n

n

nn nn

n

n

n

n

nn

n

Figure 6. Sample model in the Railroad lan-
guage.

hold enough tokens to enable the transition. Moreover, it

is ensured that not more than one transition is enabled at

a time. On the other hand, rules with a lower precedence

make sure that the transition under consideration is disabled

and that other rules can be enabled again.

Unlike most of today’s generic model transformation en-

gines [12, 5], AToM3 supports the specification of rewrite

rules in concrete syntax. The left-hand side of the rule in

Figure 5 specifies that any transition, called 1, holding an

edge to an output place, called 2, should be matched. The

screenshot does not show that these nodes are constrained

further by additional clauses from the “condition” field. The

right-hand side of this rule copies the weight of the edge and

the name and capacity of the output place. In contrast, the

value of the “tokens” attribute from the output place is spec-

ified in Python code. The dialog at the bottom center of the

screenshot shows that this value is defined by the old value

of the “tokens” attribute plus the value of the weight of the

incoming link. Within this dialog, the values of the Pre- and

Post-condition widgets have no meaning for this example.

3.2 Railroad Editor

The Railroad language requires a somewhat more com-

plex metamodel. In summary, it is desirable to use inher-

itance between classes such as Track, Station and Fork.
Tracks and stations can be connected to exactly one next

track while a fork holds a left and a right outgoing track. A

Fork has an explicit property that denotes whether incoming

trains will be switched to its left or right track. This prop-

erty can be altered manually. Figure 6 illustrates what kind

of systems can be modeled in the Railroad language. Note

that the edges between the tracks, stations and forks define

the path along which trains can travel the railroad.

Again, this language is supported by a graph grammar

for simulation. As Figure 7 shows, this example brings stu-

dents in contact with polymorphic matching: the rule for

Figure 7. Polymorphic rule for moving trains.

Figure 8. Translation rule for a left-going fork
to a Petri-Net pattern.

moving a train from one track to the next one states that as

soon as a train is located on a Place (a Track or a Station),
it can be moved to the next track. This is realized by rep-

resenting the connection with label 3 only on the left-hand

side of the transformation rule and creating a new connec-

tion with label 7 in the right-hand side. All other properties

are preserved.

3.3 From Railroad Models to Petri-Nets

The final course artifact is a graph grammar for translat-

ing Railroad models to Petri-Net models. Figure 8 displays

a fragment from a student’s solution. The rule matches Fork
elements that hold a train and that are configured for moving

trains to the left (this property would be visible when open-

ing a property editor for node 1). For such Fork elements,

the translation rule generates a Place element that holds one

token (representing the train) and two subpatterns holding a

transition, two opposite connections and a place. These pat-

terns are used to encode the behavior of the Train switch:

the upper place holds a token when trains should be moved

to the left and the lower place holds a token when trains

need to be moved to the right. Therefore, this transforma-

tion rule generates a token in the upper place and no tokens

in the lower place. A transition connects the place from

the upper subpattern with the lower place and vice versa.

These transitions can be used to switch the Fork pattern in

the Petri-Net from left to right.

Other rules generate links between the transitions rep-

resenting the next-track relationship. These rules need to

7

25

3rd Educators symposium at MODELS 2007, Nashville, TN, USA

Figure 9. Navigation across traceability links.

employ some kind of traceability information. AToM3 pro-

vides “generic links” for connecting model elements from

different languages. However, since the use of this built-in

traceability mechanism resulted in obscure error messages,

students had to design an ad-hoc solution in Python code.

On the one hand, it is unfortunate that not all students have

thus not been able to “model” traceability links within the

rewrite rules. On the other hand, the exercise illustrated

that in the final lab session, most students master the tool

“internals” sufficiently to implement an alternative solution

creatively.

One student did succeed to apply the built-in traceability

feature of AToM3. Figure 9 for example displays his rule

that properly applies generic links to generate a transition

between places that correspond to two connected tracks.

The left-hand side of the rule contains the two tracks, la-

beled 1 and 2, that are connected in the input model. The

edges labeled 6 and 7 elegantly model that these tracks need

to be mapped to two places, labeled 4 and 5, before this rule
becomes applicable. The right-hand side of the rule speci-

fies that between these two places a new transition, labeled

8, should be generated.

In summary, it can be stated that the AToM3 exercises

have brought students in contact with the most essential

techniques in model-driven development.

4 Lessons Learned

This section summarizes the lessons that were learned

from designing and teaching the first edition of the course.

In general, student satisfaction (as measured during a for-

mal questionnaire) exceeds the expectations of the instruc-

tors. Nevertheless, several points for improvement are con-

sidered for future editions. The first part of this section

presents the best practices that were applied in the design

of the course. The second part discusses the outlook for

the second edition. The section concludes by discussing the

short- and long-term industrial applicability of the course’s

learning outcomes.

4.1 Best Practices

The instructors of the course have paid attention to the

following didactical aspects:

Feasibility Study. A key factor that contributed to the suc-

cess of the new course was the use of a sufficiently

tested toolsuite. All solutions to the lab sessions were

prepared before planning the complete course struc-

ture. This ensured that as long as students used the

evaluated AToM3 release, teaching assistants could

guide them around known bugs and limitations. It

should be noted that AToM3 was not just the first and

best tool selected for this course. Instead, during the

course preparation phase, other tools were actually

found unsuitable or incomplete for use by undergradu-

ate students.

Expert Supervision. As a constructive guide to the adop-

tion of formal methods, Antony Hall complemented

his objections against misbeliefs about formal meth-

ods with a list of hints about training in formal meth-

ods [10]. Hall essentially confirms that after theoreti-

cal training in general discrete mathematics and a spe-

cific formal language, practical workshops are indis-

pensable. Moreover, supervision by at least one tutor is

said to be essential. Hall also reports about productiv-

ity problems in the context of non-user-friendly tools.

By allocating two teaching assistants during the course

of all AToM3 sessions, the time that the students under

supervision spent on figuring out the AToM3 user in-

terface specifics was significantly smaller than the time

the teaching assistants had spent on that issue.

Work Incrementally. By building upon the results of pre-

vious lab sessions, students have been able to construct

a realistic toolsuite within a very limited time frame.

The result has convinced students that the techniques

they have learned can be applied on realistic problems.

By defining intermediate milestones for the construc-

tion of the graph grammar for animating Petri-Nets,

students have been able to demonstrate their progress

at the end of each lab. This approach resulted in stu-

dent satisfaction weeks before the delivery of their

complete toolsuite.

Start Small. Because the Petri-Net toolsuite was used as

a partial evaluation for the exam, teaching assistants

had to ensure that students produced a solution as in-

dividually as possible. This was achieved by starting

the AToM3 sessions with the development of the self-

contained Robustness Diagram editor. Students should

be – and have been – able to generalize their expertise

from this small exercise to the larger ones.

8

26

3rd Educators symposium at MODELS 2007, Nashville, TN, USA

Illustrate Applicability. Formal methods can help future

system users understand what kind of system will be

built by modeling functionality before it is realized.

However, that requires that the formal model is made

accessible to such a user [10]. Instead of claiming

the applicability of Petri-Nets by means of natural lan-

guage explanations, the course relied on the customer-

oriented Railroad language. The translation between

the Railroad and the Petri-Net languages provides con-

crete evidence that formal methods can be economi-

cally integrated into the requirements elicitation pro-

cess.

Examples First. Another driving force for letting students

define the Railroad language is that this exercise moti-

vates the need for inheritance in the language for meta-

modeling. From such examples, it becomes straight-

forward to motivate why the Meta Object Facility

(MOF), OMG’s standard language for metamodeling,

resembles class diagrams.

Problems First. Before referring to the papers on more

powerful model transformation languages, the lab ex-

ercises expose the limitations of the simplistic AToM3

approach. More specifically, the Petri-Net animation

grammar illustrates that the execution order of graph

grammar rules does not necessarily correspond to the

order in which these rules are defined. By experiencing

this problem in the lab sessions first, students under-

stand why in Story Driven Modeling [7], graph trans-

formation rules are embedded in an activity diagram.

4.2 Planned Improvements

The following list summarizes the future work on the

course:

Provide Tool Feedback. AToM3 was originally developed

for research purposes. Applying it in a classroom

context revealed several bugs and usability issues.

Constructive feedback is collected from students and

teaching assistants. This feedback may influence fu-

ture releases of the tool.

Consider Other Tools. Since the tool landscape is rapidly

evolving, new tools may provide the metamodeling,

concrete syntax definition and model transformation

features required to construct an equivalent of the

Petri-Net toolsuite. Therefore, the maturity of alter-

native tools needs to be evaluated frequently.

Provide Reusable Integration Components. The moti-

vation of the students can be increased by providing

so-called technical projectors: for example, one could

develop a Python component that generates a file

compliant with a popular Petri-Net analysis tool from

instances of an AToM3 metamodel for Petri-Nets

and vice versa. Such a component would close the

remaining gap between the Petri-Net verification part

of the course and the model-driven engineering part,

without reinventing the wheel.

Extend Railroad Case Study. A feedback loop should be

developed from the analysis of a Petri-Net that is gen-

erated from a Railroad model by means of the graph

grammar. By illustrating students how such analy-

sis results should be interpreted, the case study would

practically show how model-driven engineering can

help improving the safety of software.

Prepare Follow-Up Courses. The curriculum at the Uni-

versity of Antwerp also includes two new graduate

courses related to Model-Driven Engineering. These

courses need to be designed such that students can

apply their AToM3 expertise in tools based on ac-

tual MDA standards such as QVT [15] and industrial-

strength frameworks such as the Eclipse Graphical

Modeling Framework (GMF [8]).

4.3 Industrial Relevance

This section briefly discusses the short- and long-term

applicability of this course in an industrial context.

In 2006, the computer science curriculum at the Univer-

sity of Antwerp has been completely redesigned. One nov-

elty is that graduate students need to choose between an in-

dustrial, educational or research profile. Since the course

being discussed in this paper takes place in the third year of

the bachelor program, it should still fit into the three pro-

files. As Section 2.2 illustrates, this leads to subtle trade-

offs. Coming back to the design of the course objectives, the

learning outcomes that were initially planned would be di-

rectly applicable in industry: many organizations are strug-

gling with the complexity of today’s middleware and use

code generators such as AndroMDA to tackle this issue.

The revisited learning outcomes may seem less applica-

ble in the short term. However, the acquired insights are

directly applicable for companies that need technical ad-

vice in the selection of an MDA tool. By gaining practical

experience with model transformation, graduates should be

able to look beyond marketing labels and investigate a tool’s

adaptability. Moreover, companies from e.g. the automo-

tive industry demand expertise in the customization and in-

tegration of custom visual modeling tools [1, 18].

9

27

3rd Educators symposium at MODELS 2007, Nashville, TN, USA

5 Conclusions

This paper presented a new course that combines tradi-

tional lectures and exercises on formal modeling and ver-

ification with a series of practice-oriented lab sessions on

emerging model-driven engineering techniques. The course

is focused on the definition and integration of languages

rather than on the use of the languages as such. By incre-

mentally developing an integrated case study within con-

trolled lab sessions, students encounter problems in practice

before reading and debating related papers. The permanent

evaluation of the course indicated continuous student sat-

isfaction, despite the theoretical nature of the background

material and frequent failures of the supportive tool.

Acknowledgements

This work has been sponsored by the Belgian national

fund for scientific research (FWO) under grant “Formal

Support for the Transformation of Software Models”. The

authors wish to thank Denis Dubé for providing technical

support during the preparation of the AToM3 lab sessions.

References

[1] C. Bock. Visuelle domänenspezifische sprachen - der

schlüssel zur modellgetriebenen entwicklung von mensch-

maschine-schnittstellen? http://software-families.org/, 10

2006.
[2] M. Bohlen et al. AndroMDA Model Driven Architecture

framework. http://galaxy.andromda.org/docs-3.2/, 2007.
[3] J. P. Bowen andM. G. Hinchey. Seven more myths of formal

methods. IEEE Software, 12(4):34–41, 1995.
[4] E. Commission. ECTS - european

credit transfer and accumulation system.

http://ec.europa.eu/education/programmes/socrates/ects/, 6

2007.
[5] K. Czarnecki and S. Helsen. Feature-based survey of model

transformation approaches. IBM Syst. J., 45(3):621–645,

2006.
[6] J. de Lara and H. Vangheluwe. Using atom3 as a meta-case

tool. In International Conference on Enterprise Information
Systems, pages 642–649, 2002.

[7] I. Diethelm, L. Geiger, and A. Zündorf. Systematic story

driven modeling, a case study (Paderborn shuttle system).

In Workshop on Scenarios and state machines: models, al-
gorithms, and tools; ICSE’04, Edinburgh, Scottland, 2004.

[8] Eclipse. Graphical Modeling Framework.

http://www.eclipse.org/gmf/, 2007.
[9] K. Ehrig, C. Ermel, S. Hänsgen, and G. Taentzer. Genera-

tion of visual editors as Eclipse plug-ins. In ASE’05: Pro-
ceedings of the 20th IEEE/ACM international Conference
on Automated software engineering, pages 134–143, New

York, NY, USA, 2005. ACM Press.
[10] A. Hall. Seven myths of formal methods. IEEE Software,

07(5):11–19, 1990.

[11] A. Kleppe, J. Warmer, and W. Bast. MDA explained: the
model driven architecture: practice and promise. Object

Technology Series. Addison – Wesley, 2003.
[12] T. Mens and P. Van Gorp. A taxonomy of model transforma-

tion. In Proc. Int’l Workshop on Graph and Model Transfor-
mation (GraMoT), Satelite Event of GPCE, 2005.

[13] M. Minas. Generating visual editors based on Fu-

jaba/MOFLON and DiaMeta. In H. Giese and B. Westfech-

tel, editors, Proc. Fujaba Days. Technical Report tr-ri-06-
275 - University of Paderborn, pages 35–42, Bayreuth, Ger-

many, 2006.
[14] O. Muliawan, H. Schippers, and Pieter Van Gorp. Model

driven, Template based, Model Transformer (MoTMoT).

http://motmot.sourceforge.net/, 2005.
[15] Object Management Group. MOF QVT Fi-

nal Adopted Specification – ptc/05-11-01, 2005.

http://www.omg.org/docs/ptc/05-11-01.pdf.
[16] D. Rosenberg and K. Scott. Use case driven object modeling

with UML: a practical approach. Addison-Wesley Longman

Publishing Co., Inc., Boston, MA, USA, 1999.
[17] Universiteit Antwerpen. Blackboard academic suite.

http://blackboard.ua.ac.be/, 6 2007.
[18] J. Weiland. Variantenkonfiguration von modellbasierter em-

bedded automotive software. http://software-families.org/,

10 2006.

10

28

3rd Educators symposium at MODELS 2007, Nashville, TN, USA

From Programming to Modeling: Evolving the Contents of a Distributed
Software Engineering Course

J. Cabot1, F. J. Durán2, N. Moreno2, J.R. Romero3, A. Vallecillo2

1Universitat Oberta de Catalunya, 2Universidad de Málaga, 3Universidad de Córdoba
jcabot@uoc.edu, {duran, vergara, av}@lcc.uma.es, jrromero@uco.es

Abstract
Distributed Software Engineering (DSE) concepts

in Computer Science (or Engineering) Degrees are
commonly introduced using a hands-on approach
mainly consisting in teaching a distributed and
component-based technology platform (as Java
Enterprise Edition or Microsoft .NET) and proposing
the students to develop a small distributed software
application with it. Though this approach provides
some relevant practical knowledge to the students, we
believe that it is not the most appropriate one to teach
all the specificities of DSE. Thus, in this paper we
report on our experience with the redesign of the
contents of an initial DSE course following an MDA-
based approach. By raising the level of abstraction we
gained modularity, separation of concerns and
technology independence, while making the course
evolve according to the latest trends in software
development methods. Our experience was not free
from problems but in general the initiative has been
positively evaluated and welcomed by the students.

1. Introduction

The growing adoption of Model-Driven
Development (MDD) and Model-Driven Architecture
(MDA) approaches in today’s software development
projects is shifting the focus of existing software
engineering methods from code to models, which are
now the primary artifacts of the software process.

To prepare our students for this new development
context, we believe that current software engineering
courses must evolve in this direction. In this sense, the
main goal of this paper is to present our experience
with the redesign of the contents of a distributed
software engineering (DSE) course (DSE understood
as the engineering of distributed software [1] and not
as the process of distributed development of software).

This course is taught at the Open University of
Catalonia (UOC) [2], a fully virtual university founded
in 1993 and with more than 5.000 computer science
students. Though studying in a virtual university poses

some additional problems on the students’ learning
process of a DSE course, their discussion is out of the
scope of this paper. We just want to remark that, in a
virtual course, the teaching materials become the
primary reference for the student (instead of the
lecturer which now adopts more the role of a tutor).
Therefore, an adequate and well-explained content
selection for the DSE course is a key issue to improve
its quality.

In the UOC, the DSE course is the most advanced
course in the software engineering area. In previous
courses, students learnt the phases of the software
development cycle and how to specify and design (in
UML) a given software system. Fundamental concepts
of distributed systems (as asynchronous
communication or clocks) are also reviewed in
previous courses. Then, the DSE course addresses the
specificities of developing distributed software systems
with emphasis on the use of architectural and software
components during the specification and
implementation of such distributed systems. The DSE
course has an estimated workload of 6 ECTS credits
[3] (around 180 work hours in total).

The rest of the paper discusses the reasons that
motivated us to change the DSE course contents
(section 2), justifies the proposed new contents
(Section 3) and gives some preliminary conclusions
after the completion of a first term using the new
contents and materials (Section 4).

2. Reasons for a change

The previous contents of the DSE course consisted
of three different modules. The first one provided a
brief introduction on distributed systems and a
description of the RMI, CORBA and DCOM
technologies. The second module was devoted to the
study of the component technology, including some
basic definitions and their representation in UML.
Finally, the third one (by far the largest one) contained
a thorough description of the different technologies
forming the Java Enterprise Edition (JEE) platform.

29

3rd Educators symposium at MODELS 2007, Nashville, TN, USA

Clearly, with those contents, the course was more a
programming course than a software engineering
course. The contents were more focused on describing
a particular technology than on explaining concepts
and techniques common to all kinds of distributed
systems. After a few terms with those contents, we
realized about a number of drawbacks that impaired a
correct learning of the DSE concepts and motivated the
redesign of the course contents as explained in the next
section. Main drawbacks encountered:
- Students were unable to develop complex systems.

This requires raising the level of abstraction far
beyond their programming-oriented view.

- No methodological aspects about the
specification/design of distributed software
systems are taught. Even the few ones that do
appear in the course are mostly hidden by the
technical details of the JEE platform that are
regarded as more relevant by the students.

- There was an important lack of architectural
concepts. As a result, we found that students
always proposed the same solution (the classical
3-tier architecture) to all kinds of distributed
systems presented during the course.

- The focus on specific technologies caused that
many of the contents became quickly outdated due
to the high speed of technology evolution. This
implies that teaching materials needed to be
continuously updated and, more important, that
part of the time students invested on the course
became obsolete shortly after the course. Instead,
a more abstract view of the area is more stable and
offers a more long-term usefulness of the learned
contents.

- No distinction between platform-independent and
platform-specific concepts was provided. One of
the consequences is that, at the end of the course,
students tent to believe that they only knew how to
develop distributed systems with JEE (and not, for
instance, with .NET or other platforms). Their
perception was that all acquired knowledge was
specific for that technology platform.

3. Component Software Engineering and
Distributed Systems: A New Approach

As mentioned in the first section, this course is
intended to provide an introduction to the concepts and
fundamental methods for the design and development
of component-based distributed applications, thus
complementing the knowledge acquired in previous
courses. In this way, the course explains both the
theoretical concepts in the design and development of

distributed applications, and the way in which the
present technological platforms implement such
concepts.

Our main goal is to combine an eminently practical
approach with a conceptual frame that makes it
independent of the technology so that the problems
sketched in the previous section can be overcome. The
new approach we follow counts at the moment on an
increasing interest from industry, where the complexity
of the applications demands manageable, structured
and easy to understand designs.

The new contents of our DSE course consist of five
modules which are devoted to the following sub-goals:
- Module 1: To understand the different concerns

and aspects that need to be considered when
developing this kind of applications.

- Module 2: To know the different architectural
styles and how to define the more suitable software
architecture according to the particular
characteristics of each application.

- Module 3: To learn how component-oriented
programming can serve as an implementation
technique for software systems.

- Module 4: To learn how this theoretical frame can
be realized on current technological platforms, with
special attention to JEE.

- Module 5: To understand the similarities and
differences between the different technological
platforms currently available, and to become
conscious that the software development process
explained here can be used independently of the
final implementation platform since all of them
follow the same architectonic principles.
In the following subsections, we will briefly discuss

how our students are led to acquire the knowledge and
skills required in each module.

3.1 Module 1: Viewpoints to consider in the
development of a distributed system

Most current proposals for describing the global
architecture of distributed systems are based on the
identification and separation of independent
viewpoints. Each one of these viewpoints focuses on
concrete aspects of the systems, abstracting from the
rest, and thus simplifying the design.

It normally happens that the different aspects to
consider in a distributed application are intermingled,
thus increasing the complexity of its design and
implementation. Even worst, since it is unusual to
apply any systematic method to handle these concerns
separately or to integrate them in a controlled, their

30

3rd Educators symposium at MODELS 2007, Nashville, TN, USA

handling is usually rather chaotic, and dependent on
the programmer or designer at hand.

The Software Engineering community has already
come to the conclusion that these problems must be
addressed in the first stages. Specifically, at the
architectural level, when decisions on structure,
general goals and strategies, implementations
platforms and system deployment are taken.

In this line, several (international or de-facto)
standards have been published (the IEEE Std. 1471
standard, Kruchten’s “4+1” views model, or the
Reference Model for Open Distributed Processing,
known as RM-ODP), which try to settle the basis for
the description of the global architecture of software
systems, using a modular separation of the design in
different perspectives, named viewpoints. We agree
that the use of standards is the most effective way to
achieve the required interoperability between the
different parties and organizations involved in the
design and development of complex systems.

So, among all the standard proposals, we have
chosen RM-ODP [4] as a framework for teaching the
DSE course. RM-ODP is a joint ISO/IEC and ITU-T
standard which is currently receiving increasing
interest by many large companies and organization. It
provides a comprehensive and coherent framework of
concepts for the specification of complex large scale
IT systems and now it has taken on a new significance
in the light of the MDA initiative from the OMG and
the wide-scale adoption of Service-Oriented
Architectures (SOA). In addition, major companies
and organizations are starting to use RM-ODP as an
effective approach for structuring their large-scale
distributed IT system specifications, mainly because
the size and complexity of current IT systems is
challenging most of the current software engineering
methods and tools. These methods and tools were not
conceived for use with large, open and distributed
systems, which are precisely the systems that the RM-
ODP addresses.

RM-ODP defines five different and complementary
viewpoints: enterprise, information, computation,
engineering, and technology. Each of these viewpoints
is studied separately inside the course. Besides, in RM-
ODP, an “abstract” language is defined for each of the
five viewpoints. They are abstract in the sense that
they define what concepts should be used but not how
they should be represented. Several notations have
been proposed for the different viewpoints, although
we have opted for the general purpose modeling
notation UML (Unified Modeling Language [5]).
UML is familiar to our students, easy to learn and to
use by non technical people, offers a close mapping to
implementations and has commercial tool support.

Furthermore, the use of UML for ODP system
specification is currently being standardized by
ISO/IEC and ITU-T [6], which allows us again
aligning our course contents with international
standards—something specially important in any
engineering discipline.

In summary, this first module serves as an
introduction to the concepts and mechanisms on which
RM-ODP bases the architectural description of
distributed systems using independent viewpoints. In
addition, it reviews the main international standards
related to these subjects that guarantee portability,
interoperability and compatibility between applications
developed by different enterprises or organizations.

From the five ODP viewpoints, in this subject we
concentrate on two of them: the computational
viewpoint, which provides the high-level description
of the software architecture and functionality of the
system in a platform and technology independent
manner; and the engineering viewpoint, which
describes the concepts and mechanisms used for the
distribution of that functionality across different
physical nodes, i.e., machines and processes.

3.2 Architectural styles for development
distributed systems

The computational viewpoint of a distributed
system determines its software architecture by a high
level of abstraction description of its functionality in
terms of architectural components, interfaces and
connectors. Thus, the architectural components
encapsulate the basic system’s functionality, provided
through the components interfaces, whereas the
connectors describe how these interfaces are connected
to achieve that functionality. In this module, we show
the students the advantages of having an independent
technology design for this viewpoint, i.e., a design that
is not focused on how the architectural components
will be later placed and distributed in physical nodes.

In this regard, we put special attention on the
importance that the correct choice of an architectural
style has in the development process. We present to the
student the commonly used architectural styles for the
development of distributed systems (e.g., multi layers,
client-server and peer-to-peer architectures) though we
focus on the three-layer (or n-layer) architecture due to
its importance in the development of web applications.

At the end of this module, students are able to find
and adapt an architectural style to meet a concrete
system requirement specification, taking into account
not only its functional but also extra-functional
requirements such as performance, scalability, etc.

31

3rd Educators symposium at MODELS 2007, Nashville, TN, USA

This is not an easy task because we can have several
appropriate architectures that fit well with a software
specification. So, to decide which is the best one
requires compromising a set of quality criteria, many
of which are usually contradictory to each other.

In addition, this second module tries to show the
student how to make the architectural design of a
system software using UML. This aim requires that the
student understands, on the one hand, the role of the
architectural design and its relevance in the
development process of distributed systems and, on the
other hand, the importance of reusing existing
architectural solutions to address a new system design
with similar characteristics.

3.3 Component-oriented programming as a
technique for the implementation of
software architectures.

Once we have selected a specific architectural
pattern for our application and the description of the
software architecture has been made, we need to
develop the system. It is possible to use different
alternatives, depending on the programming paradigm
chosen: structured programming, object-oriented
programming, component-oriented programming,
aspect-oriented programming, etc. Each of these
paradigms has associated a different technology and a
series of programming languages, which are more apt
for a specific type of systems. This module focuses on
one of these paradigms, namely component-oriented
programming (COP), currently the most widely
acknowledged and used for developing distributed
applications.

Note that at the specification level (see previous
section) we refer to architectural components instead
of referring to software components. The latter ones
implement the functionality architectural components
defined by the software architecture of a system (i.e.,
software components realize architectural
components).

It is also important to note that the COP concepts,
mechanisms and processes presented in this module
are described in a general way, independently of any
concrete platform or implementation technology, in
order to separate the concepts specific to this discipline
from their implementation in any concrete platform
(commercial technologies evolve much faster than
their supporting theoretical concepts). Hence, in this
module we adopted the definition of “component”
(proposed in [7]) that considers that “the specification
of a component represents the specification of a
software unit and describes both the provided services,

as well as the required ones from other components,
and the behaviour of any component instance
concerning to its specification.” These “component
specifications” define the abstract components that
comprise the system design and refine the previous
ones identified in the computational viewpoint
specification although there may not exist a one-to-one
correspondence among them. That is, an architectural
component may be implemented by several different
software components interconnected, that jointly
realize the services offered by the specification of such
component.

RM-ODP does not prescribe any specific
development process to define the tasks that must be
performed by the software engineer to “transform” the
architectural components and connectors into software
components. Therefore, in this course we have tried to
offer the students a generic vision of the different
software development processes that permit us to
implement the requirements of the software
architecture from these software components. In any
case, and for practical reasons, we try to follow the
approach by Cheesman and Daniels [7] because it is
intrinsically easy, and also wide well known and
adopted in practice.

Architectural and software components are
described by means of UML 2.0 component diagrams.
In addition, for the representation of physical
structures, such as DLL, executable files, etc., UML
deployment diagrams are used.

3.4 Implementing with JEE

The basic objective of this module is to show the
student how the theoretical concepts studied in the
previous modules are implemented in a specific
platform. In particular, we describe in detail one of the
platforms commonly used nowadays to develop
distributed systems: Java Enterprise Edition.

The module explains the principles of the JEE
platform, its elements and the architectural patterns it
provides. The module is focused on the study of multi-
layer architectures, as proposed by the JEE application
model, and analyzes the components and technologies
offered by this particular platform in each layer (the
Enterprise Java Beans, the Java Server Pages, etc.).

Once, the student has acquired a basic knowledge
of the JEE platform, he/she learns how to transform the
platform-independent specification of the distributed
software system (obtained as a result of defining the
RM-ODP viewpoints described above) into a platform-
specific design for the JEE platform. This design is
represented using specific UML profiles for describing
JEE applications. If not before, during this translation

32

3rd Educators symposium at MODELS 2007, Nashville, TN, USA

the student finally realizes that the contents of the first
three modules can be used regardless the technology
platform where the system is about to be implemented.

The last part of this module gives some
recommendations that help in choosing the right JEE
technology for each part of the system during the
translation from the RM-ODP specification to the JEE
design. These recommendations are based on the own
professional experience of most of the course tutors.

3.5 Other technological platforms

Finally, this last module introduces alternative
platforms to JEE. This module is intended to provide
an historical view of the implementation technologies
that can be used for the development of distributed
applications. The main principles of CORBA,
Microsoft .NET and the Web Services implementation
platforms are explained here using the same simple
distributed application to illustrate all of them. Thus,
the skills and knowledge acquired by the student in
this module will allow him to establish the main
similarities and differences between them.

Additionally, we believe this comparison facilitates
that students become familiar with the main keywords
and acronyms used by the different platforms and that
this improves the student’s confidence on his/her
abilities to develop distributed systems in any kind of
technology platform.

4. Conclusions

After completing a first term with these new course
contents, we must say that the preliminary results are
quite positive. Though we have not conducted a formal
poll, informal opinions expressed by the students show
that they quite prefer this new approach. The most
cited reason is that now they have a better overall view
of the aspects, concerns and problems of distributed
software engineering, without losing a practical view
(the programming part with JEE). We found this
positive feedback somewhat surprising because
students tend to prefer practical contents instead of
more “abstract” concepts.

Our approach was not free from problems, either.
We would like to point out some of the challenges that
we think must be addressed in order to successfully
teach a DSE course with our proposed set of contents.
They are based on our findings after this experience.
- The contents of the course are quite extensive. To

facilitate the student learning process additional
auxiliary materials (as tutorials, case studies,…)
should be provided

- The course requires a broad set of previous
knowledge (software engineering, Java
programming, databases,…) and thus, the course
pre-requisites must be properly defined and
enforced.

- Technical assistance should be provided during the
programming part. Implementing an application
with JEE requires installing and configuring an
application server (JBoss in our case), an integrated
development environment (Eclipse) and a database
server (MySQL). To avoid students losing too much
time with these low-level tasks, some kind of
technical assistance should be available. We
provided a virtual lab with a specific tutor that
answers all installing and configuration questions
within 24 hours.

- Difficulties in finding tutors able to teach the
course. An adequate profile for this course must
mix technical skills with deep UML analysis and
design capabilities. We have had serious problems
in finding tutors with such a profile. An alternative
way to tackle this problem would be to split the
course into two separate parts, each one with a
different tutor.
Finally, we expect that our experiences and

observations can be useful to other educators who are
involved in teaching Distributed Software Engineering
(or similar) courses.

5. References

[1] J. Kramer. "Distributed software
engineering", ICSE'94, 253-263, 1994

[2] UOC, "Open University of Catalonia",
http://www.uoc.edu/web/eng/index.html.

[3] European Commission, "ECTS - European
Credit Transfer and Accumulation System",
http://ec.europa.eu/education/programmes/soc
rates/ects/index_en.html.

[4] ISO/IEC, "Reference Model for Open
Distributed Processing" ISO/IEC IS 10746
ITU-T Recs X.901 to X.904, 1997
http://www.rm-odp.net.

[5] OMG, "UML 2.0 Superstructure
Specification," OMG Adopted Specification
(ptc/03-08-02), 2003.

[6] ISO/IEC, "Use of UML for ODP system
specifications" ISO/IEC FDIS 19793, ITU-T
Rec. X.906, 2007 http://www.rm-odp.net

[7] J. Cheesman and J. Daniels, UML
Components. A simple process for specifying
component-based software. Addison-Wesley,
2000.

33

3rd Educators symposium at MODELS 2007, Nashville, TN, USA

Teaching MDA: From Pyramids to Sand Clocks

Ileana Ober
IRIT – Toulouse University

118 Route de Narbonne, F-31062 TOULOUSE CEDEX 9
ileana.ober@irit.fr

Abstract

One of the main issues in teaching is finding the
best abstraction that can help the student get a correct
picture of reality. This issue is particularly sensitive
when teaching model driven development concepts.
Surprisingly, we noticed that even experienced
students find it hard to understand the MDA
philosophy and that their experience in modeling and
using modeling tools does not facilitate their
comprehension. Experienced students perception of the
meta level is disturbed by the lack of interoperability
between various commercial tools, which contradicts
the beauty of the pyramidal view of model driven
development. In this paper we propose a new point of
view on the relationships between the concepts
handled by the model driven development technology.
This new vision, which is centered on models, proved
much more illustrative for the state of affairs in MDD
industry as confirmed by feedbacks received from
students and by their results.

1. Introduction

The curriculum of the Toulouse University induces

an early contact with UML and modeling in general, as
means to model and develop software. Students get
familiar with the language at the undergraduate level
and apply it intensively on scholar projects.
Additionally, starting the last year of the undergraduate
level, and during each year of the graduate level,
students get in contact with the “real” world, through
various internships in companies that use the
techniques learned at school. More and more, during
the last years, the internships confront the students
with the use of MDA techniques on real size projects.
This usage varies from the “simple” use of modeling
languages and tools, to the use of model
transformation techniques.

At the graduate level we have a course called
“Modeling and meta modeling” which aims to revisit
MDA techniques in order to structure the information
that students have received through various sources at
school and during their practical work in internships. It
is at this point that we tackle issues as meta-modeling,
levels of abstraction, model transformation, etc. In
spite of the relatively good background of our students,
as proved also by their results in internships, feed-
backs of their industrial tutors and various
examinations, we have difficulties in finding the
arguments and vocabulary that would allow them to
easily switch between abstraction levels and to master
the rationales of MDA concepts [1].

We make the case that their early contact with
industrial projects, and real-life projects, does not
necessarily help them, and thus they find it hard to
accept some of the MDA purist principles.

Taking as a basis this observation, and using a
theory that we developed on the role of metamodels
[4], we tried during the last two academic years a new
approach in teaching MDA.

This paper overviews two strategies of presenting
MDA concepts and discusses on the advantages of the
one that proved most successful.

2. Teaching MDA in the spirit of pyramids

When describing the models, meta-models and their
mutual relationships, the classical picture used is that
of an edge-up pyramid (see Figure 1), with meta-
models on top of models. The meaning of this picture
is basically that a model corresponds to a single meta-
model and that each meta-model may have several
models conforming to its definition. This is the
classical view of the model � meta-model
relationship, which was already presented in the first
versions of the UML standard. It occurs again in the
last versions, and is discussed into more detail in [2].

34

3rd Educators symposium at MODELS 2007, Nashville, TN, USA

While this picture is of course accurate and
suggestive for the instance-like relationship between
model-realization, models and meta-models, our
experience shows that it may be confusing for people
familiar with some individual MDA concepts, but
lacking the maturity to have a synthetic and
abstracting overview.

Discussions with the students allowed us to realize
that one of the most disturbing (if not The most
disturbing) factor in acquiring a synthetic overview is
the technological mess at the level of modeling tools,
primarily the lack of real interoperability between
tools.

Figure 1 Pyramidal view of MDA relationships

Indeed, students find it hard to understand, for

instance, that various UML tools are not actually
compatible, especially as they all implement a standard
modeling language and there is an allegedly standard
interchange format. As teachers, we try of course to
find reasons, related to the history of tool development,
to the complexity of the XMI standard, to politico-
economical issues. It helps students, but some
fuzziness still remains.

It seems quite unreasonable in these conditions to
argue on the uniqueness of the UML meta-model, and
to state that each UML model conforms to the one and
only UML meta-model. Our experience shows that this
difficulty even more significant for students that have
some experience.

The mismatch between reality and its abstraction
raises questions about the accuracy and the soundness
of the concepts we teach. Therefore we have looked
for an abstraction closer to reality.

 Our research work on the interoperability between
tools based on (ad-hoc) standards [2] gave us the
opportunity to reconsider the relationships between the
various MDA concepts. As a result we had to drop the

pyramid-like view of the model -- meta-model
relationships for a sand watch-like view.

3. Sand watches: an alternative view of
MDA concepts relationships

The sand-watch view starts from the observation,
that in the “real world” models rarely conform to a
unique meta-model. Especially when they are dealt
with in various tools, the models actually conform to a
set of (related) meta models.

Figure 2 UML model example

Let us consider a very simple UML model, as
depicted in Figure 2, and two distorted and simplified
“UML” meta-models, such as given in Figure 3 and
Figure 4.

Figure 3 First meta-model candidate

meta model

model

model realisation

35

3rd Educators symposium at MODELS 2007, Nashville, TN, USA

A quick look at the three figures allows us to say
that the model in Figure 2 actually conforms to both
meta-models. In fact, it also conforms to quite a lot of
other meta-models, which are either super-sets of these
ones, or “equivalent” to them. We do not discuss here
on the equivalence relationship between of meta-
models, which is a research topic by itself. We rely on
the intuitive notion of meta-model equivalence, since
we need it precisely in order to facilitate
comprehension.

Figure 4 Second meta-model candidate

A UML model that conforms to several meta-
models is precisely the situation that exists for instance
in the case of two UML tools, offering export-import
facilities. Inherently the two tools implement different
meta-models, as the UML standard meta-model is not
(necessarily) directly used by case tools. Since the two
tools support different metamodels, they can manage
to interchange some (more or less) simple models, but
still cannot exchange any model.

Simple models would conform to both of these
meta-models. In their case, the import-export is not
problematic. However, for more complex models, that
use parts specific to one of the tools, the import-export
can be problematic, as such models are not (at least by
default) conformant to both meta-models.

Based on these observations we transformed the
pyramidal-like view of the models into the sand-watch
like view described in Figure 5.

Figure 5 Sand-watch view of MDA relationships

The sand-watch view is centered on the notion of

model, basically because the model is the most used
concept of MDD. Each model may have a set of (run-
time) realizations that conform to it. Moreover, each
model conforms to a set of meta-models.

The key difference between the two visions is of
course that we explicitly admit that a model conforms
to a set of meta-models. While this is not forbidden by
the current view, in which one meta-model has a set of
models conformant to it, this is not directly allowed
either.

Before discussing how we used our one model
conforms to several meta-models vision in teaching
MDA principles, we quickly asses the advantages and
drawbacks of this sand-watch shaped vision.

The main advantage that we see is that it reflects
better the situation existing in the real world. It also
naturally raises the issue of compatibility between
meta-models which is a research topic of its own,
where work still has to be done.

Moreover, the sand-watch vision has the advantage
of centering the discussion on models which are the
entities the people are the most familiar with.

The only drawback that we see is that since the
model is term relative to the viewpoint (e.g. the UML
metamodel is a model of its own), the sand-watch view
is also relative and may need to be reconsidered,
according to the abstraction level that we are focusing
on.

We should highlight that we prefer this view not
just because of the state of affairs in industrial use of
MDA (lack of tool interoperability, variety of UML
meta-models, etc) but rather because we feel it reflects
better the MDA philosophy. Remember that a few
years ago it seemed obvious THE relationship between
a model and a meta-model is an is instance of
relationship. Today we are more flexible about the
nature of this relationship and we admit the existence

meta model

model

model realisation

36

3rd Educators symposium at MODELS 2007, Nashville, TN, USA

of a generic conforms to relationship between models
and meta-models, which can be (but it is not
necessarily) an is instance of relationship. In the same
spirit, we think that the sand-watch view is a
generalization of the classical pyramidal view, which
removes the unneeded constraint of the uniqueness of
the meta-model a model conforms to.

4. Teaching MDA in the spirit of sand
watches

During the last two academic years, in the course
that teaches the basics of MDA, by presenting its
concepts and their mutual relationships, we used the
sand-watch vision described in the previous section.

We used this vision in the graduate course
“Modeling and meta modeling”. This course addresses
to students familiar with modeling and with (often
strong) practical experience in modeling.

The results were very positive, as students already
familiar with MDA concepts and having some
industrial experience in modeling, accepted much
easier the overall picture and without having the
impression that the course is presenting an unrealistic
world.

Moreover, and this is the point that made us more
confident in this approach, we noticed a much more
mature feed-back from students. Spontaneously,
students raised issues related to model transformation
[3] and model equivalence.

The next topic of the course, that addresses
transformation related issues, arrived naturally as an
obvious continuation of the MDA concepts
introduction, and not as yet another topic within the
MDA course.

As the basic information was much easier to
transmit and accept, the course was more consistent
and we managed to tackle more issues, in particular
related to model transformation.

5. Conclusions

Model driven development is a relatively new
technological field. Although promising, the
technology integration into the industrial practice is
slowed down by the lack of properly trained staff [5].

One of the main missions of the academia is to
prepare students for the industrial world as it will be
tomorrow. The chance of our students is that they do
not have to follow the way the technology evolved,
and can directly get familiar with a way of thinking

that more and more evolves towards abstracting away
details, thinking globally, and concentrating to the real
problems not to technological small problems (at least
not at a wrong time).

In this context, we have to look for the best
strategies to present concepts inherently complex. Our
aim should be then not only to find the most accessible
representations of the concept, but also those that are
closest to the realities of the “real life”. We make the
case that using an alternative representation of the
abstraction level hierarchy would facilitate
comprehension and the later accommodation to the
realities of the industrial best practice.

We had the opportunity to compare the two
teaching approaches on similar student populations and
the results were very encouraging. Indeed, not only we
managed to introduce the MDA specific concepts more
naturally, but also the closeness with the situations
encountered in practice made our point more
trustworthy and raised more valid and more
constructive issues. All of these allowed us to have
more dense presentations with much better results as
shown by the examinations results and feed-backs of
their future teams, which we start to get.

6. References

[1] G. Engels, J. H. Hausmann, M. Lohmann, S. Sauer,
“Teaching UML Is Teaching Software Engineering Is
Teaching Abstraction”. MoDELS Satellite Events 2005:
LNCS 3844, 306-319, 2005
[2] Jean-Marie Favre. Foundations of Model (Driven)
(Reverse) Engineering : Models - Episode I: Stories of The
Fidus Papyrus and of The Solarus. In Jean Bezivin and
Reiko Heckel, (eds), Language Engineering for Model-
Driven Software Development, number 04101 in Dagstuhl
Seminar Proceedings. IBFI, Schloss Dagstuhl, Germany,
2005.
[3] Tom Mens, Krzysztof Czarnecki, Pieter Van Gorp. A
Taxonomy of Model Transformations. In Jean Bezivin and
Reiko Heckel, (eds), Language Engineering for Model-
Driven Software Development, number 04101 in Dagstuhl
Seminar Proceedings. IBFI, Schloss Dagstuhl, Germany,
2005.
[4] I. Ober, A. Prinz, “What do we need metamodels
for?”, 4th Nordic Workshop on UML and Software
Modelling, GRIMSTAD, NORWAY, p. 8-28, 2006
[5] Stanley J. Sewall, Executive Justification for
Adopting Model Driven Architecture (MDA), OMG
Presentation, November 2003, available at
http://www.omg.org/mda/mda_files
/11-03_Sewall_MDA_paper.pdf

37

3rd Educators symposium at MODELS 2007, Nashville, TN, USA

Information and
Software
Technology

Aims and Scope
Information and Software Technology is the international archival
journal focusing on research and experience that contributes to the
improvement of software development practices. It covers methods and
techniques to more effectively and efficiently engineer and manage
software.

Examples of areas covered by the journal include:
• empirical and experimental analyses
• software economics
• project management
• software metrics
• quality management, assurance and control
• software processes and development methods
• requirements engineering
• specification and design
• software architecture and modeling
• components, frameworks and product-lines
• testing and program analysis
• maintenance, reverse engineering and evolution
• configuration management and coordination
• large-scale distributed development

Journal Homepage
The Information and Software Technology homepage contains all
the information you need on the editorial board, submitting your paper,
accessing the editorial management system, accessing articles on
ScienceDirect, subscribing to most downloaded article alerts and how
to download a free sample copy.
www.elsevier.com/locate/infsof

Co-Editors

M. Shepperd

Brunel University, School of IS,
Computing and Maths, Uxbridge, UB8
3PH, UK

Email: martin.shepperd@brunel.ac.uk

C. Wohlin
School of Engineering, Blekinge
Institute of Technology, Ronneby,
Sweden

Email: claes.wohlin@bth.se

S. Elbaum
Department of Computer Science and
Engineering University of Nebraska-
Lincoln, Lincoln, USA

Email: elbaum@cse.unl.edu

Submit your paper online
Visit:
http://www.editorialmanager.com/infsof

Most Downloaded Articles on ScienceDirect

Critical success factors for a customer relationship management
strategy
Mendoza L.E.; Marius A.; Perez M.; Griman A.C. 49 (8) 01-Aug-07

Group cohesion in organizational innovation: An empirical
examination of ERP implementation
Wang E.T.G.; Ying T.C.; Jiang J.J.; Klein G. 48 (4) 01-Apr-06

Data flow analysis and testing of JSP-based Web applications
Liu C.H. 48 (12) 01-Dec-06

PageGen: an effective scheme for dynamic generation of web
pages
Al-Darwish N. 45 (10) 01-Jul-03

Software maintenance seen as a knowledge management issue
Anquetil N.; de Oliveira K.M.; de Sousa K.D.; Batista Dias M.G. 49 (5)
01-May-07

An analysis of web services support for dynamic business
process outsourcing
Grefen P.; Ludwig H.; Dan A.; Angelov S. 48 (11) 01-Nov-06

An analysis of the most cited articles in software engineering
journals – 2000
Wohlin C. 49 (1) 01-Jan-07

Managing the business of software product line: An empirical
investigation of key business factors
Ahmed F.; Capretz L.F. 49 (2) 01-Feb-07

Testing Web-based applications: The state of the art and future
trends
Di Lucca G.A.; Fasolino A.R. 48 (12) 01-Dec-06

Trust in software outsourcing relationships: An empirical
investigation of Indian software companies
Oza N.V.; Hall T.; Rainer A.; Grey S. 48 (5) 01-May-06

Autonomic resource provisioning for software business
processes
Pautasso C.; Heinis T.; Alonso G. 49 (1) 01-Jan-07

Evaluation of object-oriented design patterns in game
development
Ampatzoglou A.; Chatzigeorgiou A. 49 (5) 01-May-07

This list of most downloaded articles is based on an analysis of usage statistics on
ScienceDirect from August 2006 – July 2007

Benefits of Publishing
with Elsevier

• Renowned editorial board
All editors are leading researchers in the
field. View the full editorial board on the
journal homepage.
www.elsevier.com/locate/infsof

• Easy online submission
Submit your paper online to Information
and Software Technology.
The editorial process is performed
electronically, which shortens the
refereeing time. Submissions are free of
charge.
http://www.editorialmanager.com/infsof

• More services for authors:
proofs, online tracking, free
offprints
It is easy to check the progress of your
paper online through the editorial
management system. The corresponding
author, at no cost, will be provided with a
PDF file of the article via e-mail or,
alternatively, 25 free paper offprints.

• Wide online visibility
When your article is published in
Information and Software Technology it will
appear on Science Direct, the world’s
largest full-text database, reaching over 16
million scientists worldwide.
www.sciencedirect.com

• Online visibility within 3 weeks
Within 3 weeks after acceptance your
article will be online on ScienceDirect and
accessible by your peers. The article is
immediately linkable and citable using the
article’s Digital Object Identifier.
www.sciencedirect.com

• Free online colour figures
If you submit usable colour figures then
Elsevier will ensure, at no additional
charge, that these figures will appear in
colour on the web regardless of whether
these illustrations are reproduced in colour
in the English version.

• Liberal copyright policy
Elsevier's copyright statements allow for
posting on pre- and post-print servers, as
well as personal homepages and
institutional repositories, provided a link to
the official version on ScienceDirect is also
indicated. Please see
http://www.elsevier.com/wps/find/supportfa
q.cws_home/copyright for a full overview of
Elsevier’s copyright policy.

• 30% discount on all Elsevier
books
If your work is published in an Elsevier
journal you will be entitled to a life-long
30% author discount on all Elsevier, and
associated imprints including Academic
Press and Morgan Kauffman.
www.books.elsevier.com/authors

Department of Applied IT

