

Research Reports in Software Engineering and Management 2007:02

Proceedings of the 7th Conference on
Software Engineering Research and
Practice in Sweden
Thomas Arts (Ed.)

Department of Applied IT

Proceedings

Seventh Conference on Software Engineering Research and
Practice in Sweden

SERPS’07

24-25 October, 2007
IT University of Göteborg, Göteborg, Sweden

Department of Applied Information Technology
IT UNIVERSITY OF GÖTEBORG

GÖTEBORG UNIVERSITY and CHALMERS UNIVERSITY OF TECHNOLOGY
Göteborg, Sweden 2007

ISSN: 1654-4870

Research reports in Software Engineering and Management
Report number 2007:02

Series editor: Lars Pareto

Copyright is retained by authors.

www.ituniv.se/sem_research

Preface

Welcome to SERPS’07 – the seventh conference on Software Engineering Research and
Practice in Sweden.

This year we selected 11 papers and 2 thesis abstracts of in total 15 submissions. We got
submissions in all six main topics, viz Requirements Engineering, Product and Project
Management, Design, Quality Management, Verification and Validation, and Methods.
This indicates that all research is performed over the whole scale of topics that SERPS
covers.

As in other years, we obtained a good number of papers with direct industrial participation.
This shows that the conference can accommodate papers that have one foot in research and
one in practice, which we are very happy for.

SERPS offers a forum to young researchers to submit their papers and get valuable
feedback for improving before they send it to another workshop, conference, or journal.
Many of these contributions have nowadays a high standard, already when submitted to
SERPS. The conference also provides the opportunity to listen to research presentation of
other researchers in the field and as such create a strong national awareness of research
going on in Sweden. For that reason SERPS welcomes papers from more senior
researchers, such that the conference is representative for the research performed in
Sweden. That in its turn allows us to market the conference towards industry as: “come
and see what is happening in Software Engineering research in Sweden”.
I like to thank all authors for their submissions, vital for the existence of a conference.

Reviewing papers for SERPS is not so much selecting the good papers as well as providing
valuable feedback to the authors of the papers to make their submission into a good paper.
I would like to thank all reviewers for their important contribution.

I would also like to express my appreciation to Miroslaw Staron for the local organization
of the conference. Coffee, lunches, a conference dinner, all those issues make a conference
a pleasant event if it works smoothly and a bit cumbersome if things do not work out.
Thanks Mirek for taking care of it! Thanks also to Linda Kullenberg for creating the
website.

Have fun at the conference

Thomas Arts
Program chair

Conference Organization

General chair
Peter Öhman, IT University of Göteborg

Program chair

Thomas Arts, IT University of Göteborg

Program Committee
Jonas Andersson, Syntell AB

Thomas Arts, IT University of Göteborg
Tomas Berling, Saab Microwaves
Jürgen Börstler, Umeå University

Ivica Crnkovic, Mälardalen University
Robert Feldt, Blekinge Institute of Technology

Martin Höst, Lund Institute of Technology
Mira Kajko-Mattsson, Stockholm University

Michael Mattsson, Blekinge Institute of Technology
Peter Öhman, IT University of Göteborg

Anne Persson, Skövde University
Per Runeson, Lund Institute of Technology

Kristian Sandahl, Linköping University
Martin Törngren, KTH - Royal Institute of Technology

Claes Wohlin, Blekinge Institute of Technology

Additional reviewers
Aneta Vulgarakis, Mälardalen University
Séverine Sentilles, Mälardalen University

Hongyu Pei-Breinvold, Mälardalen University
Magnus Persson, KTH - Royal Institute of Technology

Local arrangements
Miroslaw Staron

Website

Linda Kullenberg

Table of Contents

Key Elements of Software Product Integration Processes,
Stig Larsson, MdH …………………………………………………………………...1

A Classification Framework for Component Models,
Severine Sentilles, Ivica Crnkovic, Michel Chaudron and
Aneta Vulgarakis, MdH and TUE ………………………………………………........3

Usability Patterns in Design of End-user Tailorable Software,
Jeanette Eriksson, BTH ……………………………………………………………..13

An Industrial Case Study on Visualization of Dependencies between Software
Measurements, Ludvig Johansson, Wilhelm Meding and
Miroslaw Staron, IT University and Ericsson ………………………………………23

Dependability of IT Systems in Emergency Management at Swedish Municipalities,
Kim Weyns and Martin Höst, Lund University …………………………………….33

Prerequisites for Software Cost Estimation in Automotive Development Projects - A
Case Study, Ana Magazinovic, Joakim Pernstål and
Peter Öhman, IT University / Chalmers ……………………………………………43

A case study of the interaction between development and manufacturing
organizations with a focus on software engineering in automotive industry, Joakim
Pernstål, Ana Magazinovic and Peter Öhman, IT University / Chalmers51

An Empirical Evaluation of Domain-Specific Language Tools in the Context of
Service-Oriented Architectures, Ola Lindberg, Peter Thorin, and
Miroslaw Staron, IT University …………………………………………………….61

Evaluation of Automated Design Testing using Alloy,
Johannes Andersson and Per Runeson, Lund University …………………………..68

A simple quantitative failure prediction model,
Hanna Scott, BTH …………………………………………………………………..78

A Method for Assessing and Improving Processes for Capacity in Telecommunication
Systems, Kristian Sandahl, Mikael Patel and Andreas Borg, Linköping University and
Ericsson ……………………………………………………………………………..88

Evaluating Software Evolvability,
Hongyu Pei Breivold, Ivica Crnkovic and Peter Eriksson, ABB and MdH ……......96

Thesis Abstract:
Key Elements of Software Product Integration Processes

Stig Larsson
Mälarsdalen University

Västerås, Sweden

stig.larsson@mdh.se

ABSTRACT
The integration phase represents a highly critical part of the
software product development process as components are
combined and should work together. Errors and problems in
product integration result in delays and rework as the resulting
artifacts are needed for later phases. Standards and other
reference models that include guidelines for product integration
are available, but are not always used.

Our proposal is that is that the current descriptions in standards
and reference models are taken one by one insufficient and need
to be consolidated to help development organizations improve
the product integration process. The presented research includes
a number of case studies and analyses that have resulted in a
union of product integration practices, i.e. a combination of the
activities included in the different reference models. Through
the case studies performed in seven different product
development organizations, a connection between problems that
are observed and the failure to follow the recommendations is
identified. The analysis has indicated which practices are
necessary, and how other practices support these. We have also
found a connection between the development of software
architectures and how that product integration practices need to
be adapted when evolving products and systems, and provide
organizations with a method to find necessary adaptations

1. MOTIVATION
Good practices for product integration are described and made
available through different reference models and standards such
as ISO/IEC 12207 [1], CMMI [2], EIA-731.1 [3], and ISO/IEC
15288 [4]. Results from research investigating costs related to
different phases [5], integration in relation to testing [6], and in
why available methods are underused [7] as well as my own
experience suggest that the available knowledge is not always
utilized, or that the recommendations in the reference models
are insufficient. This leads to inadequate, insufficient, or
lacking use of activities that would ensure efficient and
effective product integration. are not used may be that they
sometimes are not fully understood or that they are perceived as
not being applicable for specific organization, development
models used.

Failure in the integration can thus be expensive and need to be
avoided. Practices described in different reference models may
help in avoiding these problems and can be divided into three
categories:

• Preparation of product integration
This includes decisions on strategy, integration
sequence and of the criteria for integration

• Management of interfaces between components
The integration processes include checking that
interfaces are properly defined, and that changes to
interfaces are controlled, but not the definition and
design of the interfaces as this is a design issue

• Execution of the product integration
The execution comprise ensuring that the strategy,
sequence and criteria are followed, assembling the
components, as well as performing planned tests

However, the specifics of the reference models differ, and there
is a need to understand how these differences may affect the
performance of product development projects. Another
important aspect is to understand what is needed to help
organizations to better follow reference models in different
product integration undertakings.

This leads to the objectives for this research: to find what
practices among those available in reference models help
product development units avoiding problems in product
integration and making it efficient and effective. We would also
like to understand if the reference models are sufficient or if
there are other means to help organizations to improve the
execution of product integration.

2. RESEARCH APPROACH AND
RESULTS
To investigate the factors that influence the software product
integration processes, we have used different types of reference
models. We have examined what effect the use of, or negligence
of following, the practices described in the reference models
have on the performance in product integration. This is done in
investigations of product development organizations through
examining development projects. In addition to this, we have
examined how changes in architecture can influence processes,
and how this influence can be captured.

Through a combination of an analysis of the reference models,
and a compilation of seven different industrial cases, we have
identified 15 practices that are useful for efficient and effective
product integration. The cases are described in [8-10]. A
compilation of the results are presented in detail in [11], and are
summarized here. The reference model analysis resulted in a
union consisting of 15 practices which describes what can be
considered the current level of knowledge in product
integration.

Of the 15 practices four are concerned with preparation of the
product integration:

1. Define and document an integration strategy
2. Develop a product integration plan based on the

strategy
3. Define and establish an environment for integration
4. Define criteria for delivery of components

The following five practices describe design and interface
management:

5. Identify constraints from the integration strategy on
design

6. Define interfaces
7. Review interface descriptions for completeness
8. Ensure coordination of interface changes
9. Review adherence to defined interfaces

SERPS 2007, 24-25 October, Göteborg

1

One practice defines the preparation of the verification to be
performed in the product integration:

10. Develop and document a set of tests for each
requirement of the assembled components

The actual integration of components is made up of four
practices:

11. Verify completeness of components obtained for
integration through checking criteria for delivery

12. Deliver/obtain components as agreed in the schedule
13. Integrate/assemble components as planned
14. Evaluate/test the assembled components

Finally, a single practice ensures that the integration is
documented:

15. Record the integration information in an appropriate
repository

Of these Product Integration practices, we have observed that
problems are likely if any of the following five are neglected: PI
practices 4, 7, 8, 11, and 12. However, the practices are not
independent and the set of practices that need to be followed is
larger than the set that we have seen causes problems in the
development organizations as they support the crucial ones.

When investigation the product integration area, we have seen
that organizations are aware of practices that are described in
reference models. However, as the information in the models is
too limited, the usefulness is limited and additional information
such as examples and hands-on methods are needed.
Consequently, the models should primarily be used as
guidelines for what to improve, and information about how the
practices should be implemented need to be found elsewhere.

One observation was made in the case studies: the architecture
of a product or system is very often changed, but the processes
to further develop the system are not altered to reflect this
evolvement. Through an investigation of different models used
for supporting architectural decisions, and appraisal methods
for process improvement, a method has been proposed and
piloted [12]. The method was successful in helping the
organization to understand what process changes are needed to
benefit from the architectural changes. This was especially true
for the product integration process as the architectural changes
called for new strategies.

3. CONCLUSIONS
Product integration enables an organization or a project to
observe all important attributes that a product will have;
functionality, quality and performance. This is especially true
for software systems as the integration is the first occurrence
where the full result of the product development effort can be
observed. Consequently, the integration phase represents a
highly critical part of the product development process.
Although reference models that describes practices for product
integration, research and experiences indicate that practices are
not used in an effective manner.

Through case studies covering seven different product
development organizations, the ineffective use of practices that
are described in reference models have been connected to the
problems that have been observed. Our analysis indicates that
the management of interfaces as well as the delivery of
components that fulfill criteria are crucial to the effectiveness

and efficiency of software product integration. We have also
found a connection between the development of software
architectures and how that product integration practices need to
be adapted when evolving products and systems, and have
proposed and piloted a method to find necessary adaptations.

Additional research is needed to look at other methods, tools,
and technologies to help product development organizations
improve product integration. Based on the available reference
models and understand how these can help, a foundation is
available for future research. Also, through providing a method
to understand how different changes affect the processes,
proposed improvements in the means for better product
integration can be understood and assessed.

4. REFERENCES
[1] ISO/IEC12207:1995, "Information technology - Software

life cycle processes," ISO/IEC, 1995.

[2] SEI, "CMMI® for Development, Version 1.2.," Pittsburgh,
PA, USA, Technical Report CMU/SEI-2006-TR-008,
2006.

[3] EIA-731.1, "Systems Engineering Capability Model,"
Electronic Industries Alliance, 2002.

[4] ISO/IEC15288:2002, "Systems engineering - Systems life
cycle processes," ISO/IEC, 2002.

[5] J. Campanella, Principles of Quality Costs: Principles,
implementation and Use, 3rd ed. Milwaukee, WN, USA,:
ASQ Press, 1999.

[6] RTI, "The Economic Impacts of Inadequate Infrastructure
for Software Testing." Gaithersburg, MD, USA,: National
Institute of Standards and Technology, 2002.

[7] M. Bajec, D. Vavpoti, and M. Krisper, "Practice-driven
approach for creating project-specific software
development methods," Information and Software
Technology, vol. 49, pp. 345, 2007.

[8] S. Larsson, I. Crnkovic, and F. Ekdahl, "On the expected
synergies between component-based software engineering
and best practices in product integration," presented at
Proceedings - 30th EUROMICRO Conference, Aug 31-
Sep 3 2004, Rennes, France, 2004.

[9] S. Larsson and I. Crnkovic, "Case Study: Software Product
Integration Practices," presented at 6th international
conference Profes, June, 2005, Oulu Finland, 2005.

[10] S. Larsson, P. Myllyperkiö, and F. Ekdahl, "Product
Integration Improvement Based on Analysis of Build
Statistics," presented at ESEC/FSE, Dubrovnik, Croatia,
2007.

[11] S. Larsson, P. Myllyperkiö, F. Ekdahl, and I. Crnkovic,
"Examination of Product Integration Practices in
Reference Models," Information & Software Technology,
2007.

[12] S. Larsson, A. Wall, and P. Wallin, "Assessing the
Influence on Processes when Evolving the Software
Architecture," presented at IWPSE 2007, Dubrovnik,
Croatia, 2007.

[13]

SERPS 2007, 24-25 October, Göteborg

2

A Classification Framework for Component Models
Ivica Crnkovic

Mälardalen University,
Department of Computer
Science and Electronics

Box 883, SE-721 23
Västerås, Sweden

ivica.crnkovic@mdh.se

Michel Chaudron
Technical University
Eindhoven, Dept. of

Mathematics and Computing
Science,

P.O. Box 513, 5600 MB
Eindhoven, The Netherlands

m.r.v.chaudron@TUE.nl

Séverine Sentilles
Mälardalen University,

Department of Computer
Science and Electronics

Box 883, SE-721 23
Västerås, Sweden

severine.sentilles@mdh.se

Aneta Vulgarakis
Mälardalen University,

Department of Computer
Science and Electronics

Box 883, SE-721 23
Västerås, Sweden

aneta.vulgarakis@mdh.se

ABSTRACT
The essence of component-based software engineering is
embodied in component models. Component models specify the
properties of components and the mechanism of component
compositions. In a rapid growth, a plethora of different
component models has been developed, using different
technologies, having different aims, and using different
principles. This has resulted in a number of models and
technologies which have some similarities, but also principal
differences, and in many cases unclear concepts. Component-
based development has not succeeded in providing standard
principles, as for example object-oriented development. In order
to increase the understanding of the concepts, and to easier
differentiate component models, this paper provides a Component
Model Classification Framework which identifies and quantifies
basic principles of component models. Further, to illustrate its
utilization, this paper also classifies a certain number of
component models using this framework.

Categories and Subject Descriptors

D.2.2 Design Tools and Techniques

General Terms
Design, component-based software engineering.

Keywords
Component models, taxonomy.

1. INTRODUCTION
Component-based software engineering (CBSE) is an established
area of software engineering. The inspiration for “building
systems from components” in CBSE comes from other
engineering disciplines, such as mechanical or electrical
engineering, and Software Architecture in which a system is seen
as a structure with clearly identified components and connectors.
The techniques and technologies that form the basis for
component models originate mostly from object-oriented
programming and Architecture Description Languages (ADLs).
Since software is in its nature different from the physical world,
the translation of principles from the classical engineering
disciplines into software is not trivial. For example, the
understanding of the term “component” has never been a problem
in the classical engineering disciplines, since a component can be
intuitively understood and that understanding fits well with
fundamental theories and technologies. This is not the case with
software; the notation of a software component is not clear: its

intuitive perception may be quite different from its model and its
implementation. From the beginning, CBSE struggled with a
problem to obtain a common and a sufficiently precise definition
of a software component. An early and probably the most
commonly used definition coming from Szyperski [1] (“A
software component is a unit of composition with contractually
specified interfaces and explicit context dependencies only. A
software component can be deployed independently and is subject
to composition by third party”) focuses on characterization of a
software component. In spite of its generally it was shown that
this definition is not valid for a wide range of component-based
technologies (for example those which do not support
contractually specified interface, or independent deployment). In
the definition of Heineman and Councill [2] (“A software
component is a software element that conforms to a component
model and can be independently deployed and composed without
modification according to a composition standard”), the
component definition is more general – actually a component is
specified through the specification of the component model but
the component model itself is not specified. This definition of a
component can be even more pushed further in the generalization,
but on the contrary the definition of a component model can be
expressed more precisely [3]:

Definition I: A Software Component is a software building block
that conforms to a component model.

Definition II: A Component Model defines standards for (i)
properties that individual components must satisfy and (ii)
methods, and possibly mechanisms, for composing components.

This generic definition allows the existence of a wide spectrum of
component models, which is also happening in reality; there exist
many component models with many different characteristics on
the market and in different research communities. This diversity
makes it more difficult to properly understand the Component-
Based (CB) principles, and to properly select a component model
of interest, or to compare models. In particular, this is true since
CB principles are not clearly explained and formally defined. In
their diversities component models are similar to ADLs; there are
similar mechanisms and principles but very different
implementations. For this reason there is a need for providing a
framework which can provide a classification and comparison
between different component models in a similar manner as it was
done for ADLs [4,5].

In this paper, we thus propose a classification and comparison
framework for component models. Since component models and
their implementations in component technologies cover a large
range of different aspects of the development process, we group

SERPS 2007, 24-25 October, Göteborg

3

these aspects in several dimensions of the framework - for certain
component models we will say that they are similar in one
dimension, but different in another. Several different taxonomies
of component models already exist. An example is [6] in which
taxonomy is described in respect to compositions and component
life cycle. Another example is [7] in which the emphasis is on
reuse aspects and characteristics of different application domains.
Our comparison framework has the goal to provide a
multidimensional framework, that counts different, yet equality
important aspects of component models.

The remainder of this paper is as follows. Section two motivates,
explains and defines the different dimensions of the classification
framework. Section three gives a very brief overview of selected
component models, and section four provides a short description
of component model characteristics in the comparison framework,
for each dimension.

2. The Classification Framework
The main concern of a component model is to (i) provide the rules
for the specification of component properties and (ii) provide the
rules and mechanisms for the component composition, including
the composition rules of component properties. These main
principles hide many complex mechanisms and models, and have
significant differences in approaches, concerns and
implementations. For this reason we cannot simply list all
possible characteristics to compare the component models; rather
we want to group particular characteristics that have similar
concerns i.e. that describe the same or related aspects of
component models. The fundamental principles can be divided
into the following categories:

1. Lifecycle. The lifecycle dimension identifies the support
provided (explicitly or implicitly) by the component model, in
certain points of a lifecycle of components or component-
based systems. Component-Based Development (CBD) is
characterized by the separation of the development processes
of individual components from the process of system
development. There are some synchronization points in
which a component is integrated into a system, i.e. in which
the component is being bound. Beyond that point, the notion
of components in the system may disappear, or components
can still be recognized as parts of the system.

2. Constructs. The constructs dimension identifies (i) the
component interface used for the interaction with other
components and external environment, and (ii) the means of
component binding and communication. Interface
specification is the characteristic “sine qua non” of a
component model. In some component models, the interface
comprises the specification of all component properties, but
in most cases, it only includes a specification of properties
through which the communication with the environment
should be realized. Directly correlated to the interface are the
components’ interoperability mechanisms. All these concepts
are parts of the “construction” dimension of CBD.

3. Extra-Functional Properties. The extra-functional
properties dimension identifies specifications and support
that includes the provision of property values and means for
their composition. In certain domains (for example real-time
embedded systems), the ability to model and verify

particular properties is equally important but more
challenging than the implementation of functional properties
themselves.

4. Domains. This dimension shows in which application and
business domains component models are used. It indicates
the specialisation, or the generality of component models.

In these four dimensions, we comprise the main characteristics of
component models but, of course, there are other characteristics
that can differentiate them. For example, since in many cases
component models are built on a particular implementation
technology, many characteristics come directly from this
supporting implementation technology and that are not visible in
component models themselves.

2.1 Lifecycle
In the software development lifecycle, a number of methods and
technologies specifying and supporting particular phases of the
cycle exist. While CBSE aims at covering the entire lifecycle of
component-based systems, component models provide only
partial lifecycle support and are usually related to design,
implementation and integration phases.

The overall component-based lifecycle is separated into several
processes; building components, building systems from
components, and assessing components [6]. Some component
technologies provide certain support in these processes (for
example maintaining component repositories, exposing interface,
and similar).

The component-based paradigm (i.e. composability and
reusability) has extended the integration activities in the run-time
phase; certain component technologies provide extended support
for dynamic and independent deployment of components into the
systems. This support reflects the design of many component
models. Accordingly, some of the components are only available
at development stage and at run-time the system is monolithic.
However not all component models consider the integration
phase. We can clearly distinguish different component models
that are related to a particular phase and such phase can be
different for different component models. Some component
technologies start in the design stage (e.g. Koala which has an
explicit and dedicated design notation). Many other component
technologies focus on the implementation phase (e.g. COM, EJB).
For this reason one important dimension of the component model
classification is the lifecycle support dimension. In such
classification, we must consider both component lifecycle and
component-based system lifecycle, which are somewhat different
[3, 9] and are not necessary temporally related – they are ongoing
in parallel and have some synchronization points. Here we
identify characteristic “points” of both lifecycles that are concerns
in component models:

(i) Modelling stage. The component models provide support for
the modelling and the design of component-based systems and
components. Models are used either for the architectural
description of the systems and components (e.g. ADLs), or for the
specification and the verification of particular system and
component properties (e.g. statecharts).

(ii) Implementation stage. The component model provides support
for generating and maintaining code. The implementation can
stop with the provision of the source code, or can continue up to

SERPS 2007, 24-25 October, Göteborg

4

the generation of a binary (executable) code. The existence of
executable code is an assumption for the dynamic deployment of
the components (i.e. the deployment of the components in the
system run-time).

(iii) Packaging stage. Since components can be developed
separately from systems, and the primary idea of the component-
based approach is to reuse existing components, there is a need
for their storage and packaging – either in a repository or for
distribution. The result of this stage can be a file, archive, or a
repository where the packaged components, including
documentation and specification, are residing prior to decisions
about how they will be run in the target environment. For
example, in Koala, components are packed into a file system-
based repository, in which a directory exists for each component.
The directory contains a Component Description Language
(CDL) file and a set of C and header files. Additionally, it can
also contain interface definition files and/or data definition files.
Another example of packaging is achieved in the EJB component
model. There, packaging is done through jar archives, called ejb-
jar. Each archive contains an XML deployment descriptor, a
component description, a component implementation and
interfaces.

(iv) Deployment stage. At a certain point of time, a component is
integrated into a system i.e. bound to the execution platform. This
activity happens at different points of development or
maintenance phase. However, each of the component
technologies that exist today solves the deployment issues in their
own particular way. In general, the components can be deployed
at compilation time (static binding) as part of the system, making
it no longer possible to change how the components interact with
each other, or at run time as separate units by using means such as
registers (COM) or containers (CCM, EJB). For instance, Koala
components are deployed at compilation time and they use static
binding by following naming conventions and generated
renaming macros. In opposition, CORBA components are
deployed at run time in a container by using the information of
the deployment descriptor packed with the component
implementation.

2.2 Constructs
As mentioned in [30], the verb “construct” means “to form
something by putting different things together”, so in applying
this definition to the CBSE domain, we define under this
“Constructs” dimension, the way components are connected
together within a component model in order to provide
communication means. But although this communication aspect is
of primordial importance, it is not often expressed explicitly.
Instead, it is reflected implicitly by some underlying mechanisms.
This is at contrary to functional – and sometimes extra-functional
– properties of a component which are clearly stated in
component interfaces. Consequently, a component interface has a
double role: it first specifies the component properties (functional
and possibly extra-functional), and second, it defines the actions
through which components may be interconnected. Some of the
component models distinguish also the “provides”-part (i.e. the
specification of the functions that the component offer) from
“requires”-part (i.e. the specification of the functions the
component require) of an interface.

Besides coming along with the massive emergence of component
models, several languages exist nowadays for specifying an
interface: modelling languages (such as UML or different ADLs),
particular specification languages (Interface Definition
Languages), programming languages (such as interfaces in Java)
or some additions built directly in a programming language.
Similarly, the interaction can also be of different types: port-based
where ports are the channels for communication of different data
types and events; functions in programming languages defining
input and output parameters; interfaces or classes in Object
Oriented programming languages.

However, an interface remains most of time a very succinct
description of the services a component proposes or needs. So in
order to ensure that a component will behave as expected
according to its specification and operational mode, the notion of
contract has been adjoined to interfaces. According to [10],
contracts can be classified hierarchically in four levels which, if
taken together, may form a global contract. We only adopt the
three first levels in our classification since the last level
“contractualizes” only the extra-functional properties and this is
not in direct relation with interoperability

– Syntactic level: describes the syntactic aspect, also called
signature, of an interface. This level ensures the correct
utilisation of a component. That is to say that the “client-
component” must refer to the proper types, fields, methods,
signals, ports and handles the exceptions raised by the
“server-component”. This is the most common and most easy
agreement to certify as it relies mainly on an, either static or
dynamic, type checking technique.

– Semantic level: reinforces the previous level of contracts in
certifying that the values of the parameters as well as the
persistent state variables are within proper ranges. This can be
asserted by pre-conditions, post-conditions and invariants. A
generalization of this level can be assumed as semantics.

– Behaviour level: dynamic behaviour of services. It expresses
either the composition constraints (e.g., constraints on their
temporal ordering) or the internal behaviour (e.g. dynamics of
internal states).

Finally, the constructs dimension refers to the notions of
reusability and evolvability, which are important principles of
CBSE. Indeed, many component models are endowed with
diverse features for supporting them but one typical solution is
directly related to the existence of interfaces and therefore to our
constructs dimension. This solution offers the ability to add new
interfaces to a component which makes possible to embody
several versions or variants of functions in the component.

Another type of binding is also realised through connectors.
Connectors, introduced as distinct elements in ADLs, are not
common among the first class citizens in most component models.
Connectors are mediators in the connections between components
and have a double purpose: (i) enabling indirect composition (so-
called exogenous composition, in regards to direct or endogenous
composition), (ii) introducing additional functionality. Exogenous
composition enables more seamless evolution since it allows
independent changes of components. In addition, in several
component technologies, connectors act as specialised
components, such as adaptors or proxies, either to provide

SERPS 2007, 24-25 October, Göteborg

5

additional functional or extra-functional properties, or to extend
the means of intercommunication.

The interface specification implicitly defines the type of
interaction between components to comply with particular
architectural styles. In most cases, particular component models
provide a single basic interaction mechanism, but others, such as
Fractal for example, allow the construction of different
architectural styles.

For the constructs dimension of this classification framework, we
distinguish consequently the following points.

(i) Interface specification, in which different characteristics
allowing the specification of interfaces are identified:
a. The distinction between the notions of interface and

port. Although a port is generally seen as a part of an
interface, in some component models a port is actually
the only mean of communication. In these cases, the
binding is done in a wiring manner such as in the pipe
and filter architectural style. On the contrary, interfaces
may involve different ways of binding, for example
function calls, or queries.

b. The distinction between the provides-part and requires-
part of an interface.

c. The existence of some distinctive features appearing
only in this component model; and,

d. The language used to specify those interfaces.
(ii) Interface levels which describe the levels of

contractualisation of the interfaces, namely syntactic,
semantic and/or behaviour level

(iii) Architectural Style which aims at identifying the recurrent
patterns of interaction among components. Some of them are
for example pipe&filter or client/server.

(iv) Communication type which details mainly if the
communication used is synchronous and/or asynchronous.
An extension of this could be to consider also the number of
receivers (unicast, multicast or broadcast).

(v) Binding type describes the way components may be linked
together through the interfaces.
a. The exogenous sub-category depicts if the component

model allows using some connectors. and,
b. The vertical sub-category expressing the possibility of

having a hierarchical composition of components

We assume here that the “endogenous” composition and the
“horizontal” binding are the default mechanism of any

component model, i.e. a “direct” connection between two
components.

2.3 Extra-Functional Properties
Properties (also designated as attributes) are used in the most
general sense as defined by standard dictionaries, e.g.: “a
construct whereby objects and individuals can be distinguished”
[11]. There is no unique taxonomy of properties, and
consequently there can exist many property classification
frameworks. One commonly used classification is to distinguish
functional from extra-functional properties. While functional
properties describe functions or services of an object (individual
or thing), extra-functional properties (EFP) specify the quality (in
a broader sense) of objects. In CBSE, there is a distinction
between component properties and system properties. The system
properties can be the result of the composition of the same
properties of components, but also of a composition of different
properties [12]. Important concerns of CBSE are how to provide
relevant parameters from components which will be used in a
provision of the system properties.

The two main dimensions in which component models differ in
the way they manage EFP are the following:

– A property is managed by the system (exogenous EFP
management) or managed by components (endogenous EFP
management). This corresponds to wonder which actor
manages a property;

– A property is managed on a system-wide scale or the
property is managed on a per-collaboration basis (i.e. what is
the scope of management of a property).

The different types of approaches are characterized by the
reference architectures shown in Figure 1

Many component models provide no specific facilities for
managing extra-functional properties. The way a property is
handled is left to the designers of the system, and as a result a
property may not be managed at all (approach A). This approach
makes it possible to include EFP management policies that are
optimized towards a specific system, and also can cater for
adopting multiple policies in one system. This heterogeneity may
be particularly useful when COTS components need to be
integrated. On the other hand, the fact that such policies are not
standardized may be a source of architectural mismatch between
components.

The compatibility of components can be improved if the
component model provides standardized facilities for managing

Figure 1. Management of extra-functional properties

Component Execution Platform

component component

EFP Management EFP Management

Component Execution Platform
EFP Management

component component

Component Execution Platform

component

EFP Management

EFP Management EFP Management

component

Component Execution Platform

component

EFP Management EFP Management

component

EFP Managed systemwideEFP Managed per collaboration

Exogenous EFP
management

Endogenous EFP
management

A B

C D

Component Execution Platform

component component

EFP Management EFP Management

Component Execution Platform
EFP ManagementEFP Management

component component

Component Execution Platform

component

EFP ManagementEFP Management

EFP ManagementEFP Management EFP ManagementEFP Management

component

Component Execution Platform

component

EFP ManagementEFP Management EFP ManagementEFP Management

component

EFP Managed systemwideEFP Managed per collaboration

Exogenous EFP
management

Endogenous EFP
management

A B

C D

SERPS 2007, 24-25 October, Göteborg

6

EFP (approach B in Figure 1). In this approach, there is a
mechanism in the component execution platform that contains
policies for managing EFP for individual components as well as
for EFP involving multiple components. The ability to negotiate
the manner in which EFP are handled requires that the
components themselves have some knowledge about how the EFP
affects their functioning. This is a form of reflection.

A third approach is that the components should be designed such
that they address only functional aspects and not EFP.
Consequently, in the execution environment, these components
are surrounded by a container. This container contains the
knowledge on how to manage EFP. Containers can either be
connected to containers of other components (approach C) or
containers can interact with a mechanism in the component
execution platform that manages EFP on a system wide scale (D).

The container approach is a way of realizing separation of
concerns in which components concentrate on functional aspects
and containers concentrate on extra-functional aspects. In this
way, components become more generic because no modification
is required to integrate them into systems that may employ
different policies for EFP. Since these components do not address
EFP, another advantage is that they are simpler and smaller and
hence they are cheaper to implement.

For the EFP we provide a classification in respect to the following
questions:
(i) Extra-functional properties support: does the component

model provide general principles, means and/or support for
specification and reasoning about extra-functional
properties?

(ii) Extra-functional properties specification: Does the
component model contain means for specification and
reasoning of specific extra-functional properties. If yes,
which types and/or which properties?

(iii) Composability of extra-functional properties: Does the
component model provide means, methods and/or techniques
for composition of certain extra-functional properties. If yes,
which properties and/or what type of composition?

2.4 Domains
Some component models are aimed at specific application
domains as for instance consumer electronics or automotive. In
such cases, requirements from the application domain penetrate
into the component model. As a result, the component model
provides a natural fit for systems in that particular domain. The
benefits of a domain-specific component models are that the
component technology facilitates achieving certain requirements.
Such component models are, as a consequence, limited in
generality and will not be so easily usable in domains that are
subject to different requirements.

Some component models are of general-purpose. They provide
basic mechanisms for the production and the composition of
components, but on the other hand, provide no guidance, nor
support for any specific architecture. A general solution that
enables component models to be both generally applicable but
also cater for specific domains is through the use of optional
frameworks. A framework is an extension of a component model
that may be used, but is not mandatory in general.

There is a third type of component models - namely generative;
they are used for instantiation of particular component models.
They provide common principles, and some common parts of
technologies (for example modelling), while other parts are
specific (for example different implementations).

3. SURVEY OF COMPONENT MODELS
Nowadays there are numerous component models which can vary
widely in many possible aspects: In usage, in support provided, in
concerns, in complexity, in formal definitions and similar. In our
classification of component models, the first question is whether a
model (or technology, method, or similar) is a component model
or not. Similar to biology in which viruses cover the border
between life and non-life, there is a wide range of models, from
those having many elements of component models but are still not
assumed as component models, via those that lack many elements
of component models, but are still called component models,
through to those which are assumed as being component models.
Therefore, we identify the minimum criteria required to classify a
model, or a notation as a component model. This minimum is
defined by Definition I and Definition II: A model that explicitly
or implicitly identifies components and defines rules for
specification of component properties and means of their
composition can be classified as a component model.

In the next section, we provide a very brief overview of some
component models and their main characteristics. The list is not
complete, and can be increased by time. It should be understood
as a provision of some characteristic examples, or examples of
widely used component models in Software Engineering.

The AUTomotive Open System Architecture (AUTOSAR)
[14], is the result of the partnership between several
manufacturers and suppliers from the automotive field. It
envisions the conception of an open standardized architecture
aiming at improving the exchangeability of diverse elements
between vehicle platforms, manufacturer’s applications and
supplier’s solutions. Those objectives rely upon the utilisation of
both a component-based approach for the application and
standardized layered architecture. This allows separating the
component-based application from the underlying platform.
AUTOSAR support both the client-server and Sender-Receiver
communication paradigms and each AUTOSAR Software
Component instance from a vehicle platform is only assigned to
one Electronic Control Unit (ECU). The AUTOSAR Software
Components, as well as all the modules in an ECU, are
implemented in C.

BIP [14] framework designed at Verimag for modelling
heterogeneous real-time components. This heterogeneity is
considered for components having different synchronization
mechanisms (broadcast/rendez-vous), timed components or non-
timed components. Moreover, BIP focuses more on component
behaviours than others component models thanks to a three-layer
structure of the components (Behaviour, Interaction, Priority); a
component can be seen as a point in this three-dimensional space
constituted by each layer. This also sets up the basis for a clear
separation between behaviour and structure. In this model,
compound components, i.e components created from already
existing ones, and systems are obtained by a sequence of formal
transformations in each of the dimension. BIP comes up with its
own programming language but targets C/C++ execution. Some

SERPS 2007, 24-25 October, Göteborg

7

connections to the analysis tools of the IF-toolset [16] and the
PROMETHEUS tools [17] are also provided.

CORBA Component Model (CCM) [18] evolved from Corba
object model and it was introduced as a basic model of the
OMG’s component specification i.e CORBA 3 in 2002. The CCM
specification defines an abstract model, a programming model, a
packaging model, a deployment model, an execution model and a
metamodel. The metamodel defines the concepts and the
relationships of the other models. Component is a new CORBA
metatype. CORBA components communicate with outside world
through ports. CCM uses a separate language for the component
specification: Interface Definition Language (IDL). CCM
provides a Component Implementation Framework (CIF) which
relies on Component Implementation Definition Language
(CIDL) and describes how functional and non-functional part of a
component should interact with each other. In addition, CCM uses
XML descriptors for specifying information about packaging and
deployment. Furthermore, CCM has an assembly descriptor
which contains metadata about how two or more components can
be composed together.

The Entreprise JavaBeans (EJB) [19], developed by Sun
MicroSystems envisions the construction of object-oriented and
distributed business applications in trying to hide to developers
the underlying complexity, such as transactions, persistence,
concurrency, interoperability. It also aims at the improvement of
component reusability in providing different utilities, such as
means, so called EJB-jars to package components, called beans.
Three different types of components coexist to match the specific
needs of different applications (The EntityBeans the SessionBean
and the MessageDrivenBeans). Each of these beans is deployed in
an EJB Container which is in charge of their management at
runtime (start, stop, passivation or activation). In order to achieve
this, EJB technology use the Java programming language.

Fractal [20] is a component model developed by France Telecom
R&D and INRIA. It intends to cover the whole development
lifecycle (design, implementation, deployment and
maintenance/management) of complex software systems. It comes
up with several features, such as nesting, sharing of components
and reflexivity in that sense that a component may respectively be
created from other components, be shared between components
and describes its own behaviour. The main purpose of Fractal is to
provide an extensible, open and general component model that
can be tuned to fit a large variety of applications and domains.
Consequently, nothing is fixed in Fractal; On the contrary, it even
provides means to facilitate adaptation in notably having different
implementations to fit the specific needs of a domain as for
example its C-implementation called Think, which targets
especially the embedded systems. A reference implementation,
called Julia and written in Java, is also provided. Fractal can also
be seen as a generic component model which intends to
encompass other component models.

Koala [21] is a component model developed by Philips for
building consumer electronics. Koala components are units of
design, development and reuse. Semantically, components in
Koala are defined in a ADL-like language. Koala IDL is used to
specify Koala component interfaces, its Component Definition
Language (CDL) is used to define Koala components, and Koala
Data Definition Language (DDL) is used to specify local data of
components. Koala components communicate with their

environment or other components only through explicit interfaces
statically connected at design time. Koala targets C as
implementation language and uses source code components with
simple interaction model.

Microsoft Component Object Model (COM) [22] is one of the
most commonly used software component models for desktop and
server side applications. A key principle of COM is that interfaces
are specified separately from both the components that implement
them and those that use them. COM defines a dialect of the
Interface Definition Language (IDL) that is used to specify
object-oriented interfaces. Interfaces are object-oriented in the
sense that their operations are to be implemented by a class and
passed a reference to a particular instance of that class when
invoked. A concept known as interface navigation makes it
possible for the user to obtain a pointer to every interface
supported by the object. This is based on VTable. Although COM
is primarily used as a general-purpose component model it has
been ported for embedded software development.

The Open Services Gateway Initiative (OSGi) [23] is a
consortium of numerous industrial partners working together to
define a service-oriented framework with an “open specifications
for the delivery of multiple services over wide area networks to
local networks and devices”. Contrary to most component
definitions, OSGI emphasis the distinction between a unit a
composition and a unit of deployment in calling a component
respectively service or bundle. It offers also, contrary to most
component models, a flexible architecture of systems that can
dynamically evolve during execution time. This implies that in
the system, any components can be added, removed or modified
at run-time. Thus, there is no guaranty that a service provided at a
certain time will be still provided later. Being built on Java, OSGI
is platform independent.

Pecos [24] is a joint project between ABB Corporate Research
and academia. Their goal is to provide environment that supports
specification, composition, configuration checking and
deployment for reactive embedded systems built from software
components. Component specification and component
composition are done in an ADL-like language called CoCo.
There are two types of components, leaf components and
composite components. The inputs and outputs of a component
are represented as ports. At design phase composite components
are made by linking their ports with connectors. Pecos targets
C++ or Java as implementation language, so the run-time
environment in the deployment phase is the one for Java or C++.
Pecos enables specification of EFP properties such as timing and
memory usage in order to investigate in prediction of the
behaviour of embedded systems.

Pin [25] component model is based on an earlier component
technology developed by Carnegie Mellon Software Engineering
Institute (SEI), for use in prediction-enabled component
technologies (PECTs). It is aimed for building embedded software
applications. By using principles from PECT it aims at achieving
predictability by construction. Components are defined in an
ADL-like language, in the “component and connector style”, so
called Construction and Composition Language (CCL).
Furthermore, Pin components are fully encapsulated, so the only
communication channels from a component to its environment
and back are its pins.

SERPS 2007, 24-25 October, Göteborg

8

Robocop [26] is a component model developed by the consortium
of the Robocop ITEA project, inspired by COM, CORBA and
Koala component models. It aims at covering all the aspects of
the component-based development process for the high-volume
consumer device domain. A Robocop component is a set of
possibly related models and each model provides particular type
of information about the component. The functional model
describes the functionality of the component, whereas the extra-
functional models include modelling of timeliness, reliability,
safety, security, memory consumption, etc. Robocop components
offer functionality through a set of ‘services’ and each service
may define several interfaces. Interface definitions are specified
in a Robocop Interface Definition Language (RIDL). The
components can be composed of several models, and a
composition of components is called an application. The Robocop
component model is a major source for ISO standard ISO/IEC
23004 for multimedia middleware.

Rubus [27] component was developed as a joint project between
Arcticus Systems AB and the Department of Computer
Engineering at Mälardalen University. The Rubus component
model runs on top of the Rubus real-time operating system. It
focuses on the real-time properties and is intended for small
resource constrained embedded systems. Components are
implemented as C functions performed as tasks. A component
specifies a set of input and output ports, behaviour and a
persistent state, timing requirements such as release-time,
deadline. Components can be combined to form a larger
component which is a logical composition of one or more
components.

SaveCCM [28], developed within the SAVE project and several
Swedish Universities, is a component model specifically designed
for embedded control applications in the automotive domain with
the main objective of providing predictable vehicular systems.
SaveCCM is a simple model that constrains the flexibility of the
system in order to improve the analysability of the dependability
and of the real-time properties. The model takes into
consideration the resource usage, and provides a lightweight run-

time framework. For component and system specification
SaveCCM uses “SaveCCM language” which is based on a textual
XML-syntax and on a subset of UML2.0 component diagrams.

The SOFA (Software Appliances) [29] is component model
developed at Charles University in Prague. A SOFA component is
specified by its frame and architecture. The frame can be viewed
as a black box and it defines the provided and required interfaces
and its properties. However a framework can also be an assembly
of components, i.e a composite component. The architecture is
defined as a grey-box view of a component, as it describes the
structure of a component until the first level of nesting in the
component hierarchy. SOFA components and systems are
specified by an ADL-like language. Component Description
Language (CDL). The resulting CDL is compiled by a SOFA
CDL compiler to their implementation in a programming
language C++ or JAVA. SOFA components can be composed by
method calls through connectors. The SOFA 2.0 component
model is an extension of the SOFA component model with several
new services: dynamic reconfiguration, control interfaces and
multiple communication styles between the components.

4. COMPONENT MODEL
CLASSIFICATION
In order to illustrate the utilization of our classification
framework, we categorize here the component models listed
above with respect to the corresponding dimensions. The
reference documentation of each component models has generally
been used to fill those tables. However, some of the information
presented here are not mentioned explicitly in the reference
documentation and are subject to the reader’s point of view.

Table 1: Lifecycle Dimension
Component

Models Modelling Implementation Packaging Deployment

AUTOSAR N/A C N/A At compilation

BIP
A 3-layered representation: statemachine

diagram, priority and interaction expression
or a statemachine with ports

BIP language N/A At compilation

CCM Abtstract model:OMG-IDL,
Programming model: CIDL Language independent. Deployment Unit archive

(JARs,DLLs) At run-time

Fractal

FractalGui,
ADL-like language

(Fractal ADL, Fractal IDL),
Annotations (Fractlet)

Julia, Aokell(Java)
Think(C/C++)
FracNet(.Net)

…

File system based repository At run-time

KOALA ADL-like language (IDL,CDL and DDL) C File system based repository At compilation

EJB N/A Java,
Java binary code EJB-Jar files At run-time

MS COM Microsoft IDL Different languages,
Binary standard DLL At run-time

OSGi N/A Java Jar-files (bundles) At run-time

PIN ADL-like language (CCL) C DLL At compilation

SERPS 2007, 24-25 October, Göteborg

9

Component
Models Modelling Implementation Packaging Deployment

PECOS ADL-like language (CoCo) C++,
 Java Jar packages At compilation

ROBOCOP IDL for the interface model. Several
different models

C,
C++ zip files At compilation

At run-time

RUBUS N/A C File system based repository At compilation

SaveCCM ADL-like language C N/A At compilation

SOFA 2.0 Meta-model based definition Java Repository At run-time

Table 2: Constructs
Interface Specification Binding Type

Component
Models

Interface/
Ports/
Both

Distinction
Provides /
Requires

Distinctive feature Interface
Language

Interface Levels
Standard

Architecture
Styles

Communication
Type Exogenous Vertical

AUTOSAR Both Yes

Classified within
3 types:

– AUTOSAR
Interface,
– Standardized
AUTOSAR Interface,
– Standardized
Interface

C header files
Syntactic

No semantic
No behaviour

Client/Server
Data-centered

Synchronous
Asynchronous

No Delegation

BIP Port No
Existence of:

Complete interfaces,
Incomplete interfaces

BIP Language
No syntactic

Semantic
Behaviour

Event-driven

Synchronous
Asynchronous
(Rendez-vous,

Broadcast)

No Delegation

CCM Both Yes

Classified within
2 types:

– Facets and
receptacles
– Event sinks and
event sources

CORBA IDL
Syntactic

No semantic
No behaviour

Blackboard
Synchronous

Asynchronous
No No

EJB 3.0 Interface No N/A

Java
Programming
Language +
Annotations

Syntactic
No semantic
No behaviour

Client/Server
(JDBC)

Blackboard
(JMS)

Synchronous
Asynchronous

No No

Fractal Interface Yes
Existence of:

Control
Interface

Any
programming

language,
IDL, Fractal

ADL

Syntactic
No semantic
Behaviour

Multiple
architectural

styles

Multiple
communication

styles
Yes Aggregation

KOALA Interface Yes
Existence of:

– Diversity Interface,
– Optional Interface

IDL
Syntactic

No semantic
No behaviour

Pipe&filter Synchronous Yes Aggregation

MS COM Interface No All interfaces derived
from a IUnknown Microsoft IDL

Syntactic
No semantic
No behaviour

Multiple
architectural

styles
Synchronous No

Delegation
Aggregation

OSGi Interface Yes Existence of:
Dynamic Interfaces

Java
programming

language

Syntactic
No semantic
No behaviour

Event-driven Synchronous No No

PECOS Port Yes N/A
Coco

composition
language

Syntactic
Semantic
Behaviour

Pipe&filter
(with

blackboard)
Event-driven

Synchronous No Delegation

Pin Port Yes N/A
Component
Composition

Language

Syntactic
No semantic
No behaviour

Pipe&filter
Event-driven

Synchronous
Asynchronous

Yes No

SERPS 2007, 24-25 October, Göteborg

10

Rubus Port Yes

Classified within
2 types:

– data
– triggered

C header file
Syntactic

No semantic
No behaviour

Pipe&filter Synchronous No Delegation

Robocop Port Yes N/A Robocop IDL
(RIDL)

Syntactic
Semantic

(Behaviour)
Client/Server

Synchronous
Asynchronous

No No

SaveCCM Port
No – but

input/outpu
t interface

Classified within
3 types:

– data
– triggered
– data& triggered

SaveComp
(XML-based)

Syntactic
No semantic
Behaviour

Pipe&filter Synchronous No Delegation

SOFA 2.0 Interface Yes

Existence of:
 Utility Interface,

Possibility to annotate
interface and to control

evolution

Java
programming

language

Syntactic
No semantic
Behaviour

Multiple
architectural

styles

Multiple
communication

styles
Yes Delegation

Table 3: Extra-Functional Properties
Component

Models General support for properties Properties specification Composition support

AUTOSAR N/A

BIP Behaviour compositions,
endogenous EFP management times properties

CCM
Support for mechanism to influence

of some EFP, exogenous EFP
management

N/A Run time support for some
EFP

Fractal

Interceptor and controller in Julia,
extension possibilities for different

EFP,
endogenous EFP management

Extension with a new
controller

KOALA Extensions in interface
specification and the compiler

Resource usage but no
timing and memory

consumption
Compile time checks

EJB
Support for mechanism to influence
of some EFP, container maintaining
EFP, exogenous EFP management

N/A Run time support for some
EFP

MS COM Endogenous EFP management N/A N/A
OSGi endogenous EFP management N/A N/A

PIN Analytic interface for EFP,
endogenous EFP management Timing properties Different EFP composition

theories

PECOS endogenous EFP management
Timing properties (WCET,

periods), memory
consumption

N/A

ROBOCOP
CEP provides manager for resource

budgets, exogenous EFP
management

Memory consumption,
WCET, cycle time,
priority, reliability

Some EFP checked at
deployment and monitored

during execution.

RUBUS Exogenous EFP management Timing, resource usage,
QoS Design time

SaveCCM Interface extension endogenous
EFP management Real-time attributes Composition of RT EFP

SOFA 2.0 Behaviour EFP specification,
endogenous EFP management Behavioural (protocols) Composition at design

Table 4: Domains

D
om

ai
n

A
U

T
O

SA
R

B
IP

 C
C

M

Fr
ac

ta
l

K
O

A
L

A

E
JB

M
S

C
O

M

O
SG

i

PI
N

PE
C

O
S

R

O
B

O
C

O
P

R
U

B
U

S

Sa
ve

C
C

M

SO
FA

 2
.0

Generative x x x

General x x x x x x x

Specialised x x x x x x x x

SERPS 2007, 24-25 October, Göteborg

11

5. CONCLUSION
In this short survey we have presented a framework for
classification of component models. Such classification is not
simple, since it does not cover all aspects of component models. It
however identifies the minimal criteria for assuming a model to
be a component model and it groups the basic characteristics of
the models. From the results we can recognize some recurrent
patterns such as – general-purpose component models utilize
client-server style, while in the specialized domains (mostly
embedded systems) pipe & filter is the predominate style. We can
also observe that support for composition of extra-functional
properties is rather scarce. There are many reasons for that: in
practice explicit reasoning and predictability of EFP is still not
widespread, there is an unlimited number of different EFPs, and
finally the compositions of many EFPs are not only the results of
component properties, but also the context in which they are
composed [12]. This taxonomy can be further analyzed and
refined, which is our intention: on one side enlarge the list with
the new component models, on other side refine the taxonomy by
introducing some comparative values and by introducing subtypes
of the points in the framework dimension.

6. REFERENCES
[1] C. Szyperski, Component Software, Addison-Wesley

Professional; 2002
[2] G. T. Heineman and W. T. Councill, Component-based

Software Engineering: Putting the Pieces Together, Addison-
Wesley, 2001.

[3] M. R. V. Chaudron, Lecture notes on CBSE Technische
Universiteit Eindhoven, 2006

[4] N. Medvidovic, E. M. Dashofy, R. N. Taylor, Moving
architectural description from under the technology
lamppost, Information and Software Technology,vol.49,
Iss.1, 2007

[5] N. Medvidovic and Ri. N. Taylor, A Classification and
Comparison Framework for Software Architecture
Description Languages, IEEE Transactions on Software
Engineering, Vol. 26, No. 1, January, 2000

[6] K.-K. Lau and Z. Wang. A taxonomy of software component
models. In Proc. 31st Euromicro, Conference, pages 88–95.
IEEE Computer Society Press, 2005.

[7] G. Kotonya, I. Sommerville and S. Hall, Towards A
Classification Model for Component-Based Software
Engineering Research, Proc. of the IEEE 29th
EUROMICRO Conference, September 2003

[8] I. Crnkovic, M. Chaudron, S. Larsson Component-based
Development Process and Component Lifecycle, Journal of
Computing and Information Technology, vol 13, nr 4, 2005

[9] I. Crnkovic, M. Larsson, Building Reliable Component-
Based Software Systems Artech House, 2002

[10] A. Beugnard, J.-M. Jézéquel, and N. Plouzeau. Making
components contract aware. IEEE Computer, 32(7):38-45,
1999.

[11] Miller, G. A. (2002). WordNet®. Cognitive Science
Laboratory, Princeton University Available:
http://www.cogsci.princeton.edu/~wn/

[12] I. Crnkovic, M. Larsson, O. Preiss, Concerning
Predictability in Dependable Component-Based Systems:
Classification of Quality Attributes, Architecting Dependable
Systems III,, p pp. 257 – 278, Springer, LNCS 3549, 2005

[13] The Object Management Group, UML Superstructure
Specification v2.1, April 2006.
Available at http://www.omg.org/docs/ptc/06-04-02.pdf

[14] AUTOSAR Development Partnership, AUTOSAR –
Technical Overview v2.0.1, 27/06/2006,
Available at
http://www.autosar.org/download/AUTOSAR_TechnicalOverview.pdf

[15] Ananda Basu, Marius Bozga and Joseph Sifakis, Modeling
Heterogeneous Real-time Components in BIP, 4th IEEE
International Conference on Software Engineering and
Formal Methods (SEFM06), Invited talk, September 11-15,
2006, Pune, pp 3-1

[16] M. Bozga, S. Graf, I. Ober, I. Ober, and J. Sifakis, The IF
toolset, in SFM, 2004.

[17] G. Gößler, PROMETHEUS — a compositional modelling
tool for real-time systems, Proc. Workshop RT-TOOLS
2001, Technical report 2001-014, Uppsala University

[18] OMG CORBA v 4.0, http://www.omg.org/docs/formal/06-
04-01.pdf

[19] EJB 3.0 Expert Group, JSR 220: Enterprise
JavaBeansTM,Version 3.0 EJB Core Contracts and
Requirements Version 3.0, Final Release, May 2, 2006.,

[20] E. Bruneton, T. Coupaye & J.B. Stefani, The Fractal
Component Model, February 5, 2004.
http://fractal.objectweb.org/specification/index.html

[21] R. van Ommering, F. van der Linden, and J. Kramer. “The
koala component model for consumer electronics software”,
In IEEE Computer, pages 78–85. IEEE, March 2000.

[22] D. Box, Essential COM, Addison-Wesley Professional, 1997
[23] OSGi Alliance, 15/02/2007, http://www.osgi.org/
[24] M. Winter, C. Zeidler, C. Stich, “The PECOS Software

Process”, Workshop on Components-based Software
Development Processes, ICSR 7 2002.

[25] S. Hissam, J. Ivers, D. Plakosh, K. Wallnau, Pin Component
Technology (V1.0) and Its C Interface. CMU Technical
Report, CMU/SEI-2005-TN-001

[26] H. Maaskant; “A Robust Component Model for Consumer
Electronic Products”, Philips Research Book Series
Volume3, p167-192

[27] Arcticus Systems, Rubus component model,
http://www.arcticus-systems.com

[28] M. Åkerholm et al., The SAVE approach to component-
based development of vehicular systems, Journal of Systems
and Software, Elsevier, May, 2006

[29] T. Bureš, P. Hn�tynkal and F. Plášil, SOFA 2.0: Balancing
Advanced Features in a Hierarchical Component Model, Proc. of
SERA 2006, Seattle, USA, IEEE CS, Aug 2006

[30] Oxford Advanced Learner’s Dictionary,
 http://www.oup.com/oald-bin/web_getald7index1a.pl

SERPS 2007, 24-25 October, Göteborg

12

Usability Patterns in Design of End-user Tailorable
Software

Jeanette Eriksson
Blekinge Institute of Technology

P.O. Box 520
S-37225 Ronneby
+46 457 358000

jeanette.eriksson@bth.se

ABSTRACT
Design of end-user tailorable software requires a cooperative
design process were users and developers participate on equal
terms. Tailoring differ from other interactive software in that end-
users continue to evolve the software in use time. Users are co-
designers. To be able to fruitfully work together users and
developers has to reach mutual understanding. The objective for
this paper is to provide such common ground by adopting patterns
to end-user tailoring. Different types of patterns can act as a
mediating artefact between users and developers and as usability
is close to the user domain, usability pattern can act as a gateway
to other types of patterns in the architectural design process. To
facilitate the work and introduction of pattern in a cooperative
design project we make a selection of usability patterns that are of
vital importance for the success of end-user tailorable software,
and also have architectural impact and therefore should be
addressed early in the design process. The result is a small
collection of usability scenarios with corresponding usability
patterns that are especially important to tailoring. The usability
patterns are related to different types of tailoring through an
existing categorization. A comparison between different pattern
structures is also presented and resulted in a pattern template
suitable for the cooperative design process of end-user tailoring.

Keywords
Cooperative design, usability pattern, architecture, end-user
tailoring

1. INTRODUCTION
In a fast changing world more and more flexibility is needed in
software to supply support for higher reusability and prevent the
software from expiring too fast. “Real-world systems must change
or they die” [15, s. 22]. One way to provide this kind of
flexibility is end-user tailoring. A tailorable system is modified
while it is being used as opposed to changed during the
development process. To tailor a system is to “continuing
designing in use” [12] It is possible for the user to change a
tailorable system by support of some kind of interface.

Tailorable software is needed when the environment is
characterized by fast and continuous change. As Stevens and his
colleagues put it “The situatedness of the use and the dynamics of
the environment make it necessary to build tailorable systems.
However, at the same time these facts make it so difficult to
provide the right dimensions of tailorability.” [22]. This paper
aims for providing support for the process of designing end-user
tailorable software by introducing patterns as a mediation artefact
between users and developers.

The development of tailorable software is an ongoing process
where users are co-designers [8] as it is users that evolve the
software in use time. The absence of end-user participation can
result in low acceptance of the software [21] and in end-user
tailoring user acceptance is especially important as it is the users
that carry out the intension with the software, to be evolved. We
agree with [13] that the users’ view of the system is not only the
interface. Task related needs are what motivate end users to make
changes to the system [18].

As the users are co-designers human-centered design are required
when designing tailorable software. The users bring profound
knowledge of the business process and organizational issues into
the development project, that should be made use of in the design
of the technical solution [11]. But it is difficult to get active
involvement of the end-users in the development process [21].
This is confirmed by our own interviews with users and
developers in a Swedish telecom company. Both users and
developers express their desire and an interest in achieving an
environment were users and developers take active part and equal
responsibility of the software developed, but they also agree on
that it is not easy to achieve. A prerequisite to make such a
cooperative process to work is that users and developers share the
same language [20]. Or in other words they have to reach a
mutual understanding.

A classification can be a useful tool to understand a phenomenon
as tailoring. A classification of tailoring consisting of four
categorises of tailoring is presented in [6]. The categorization is
designed to take both user and system perspective into account so
that the categorization can act as a base for communication
between developers and user when designing tailorable software.
The categorization is intended as a means of communications to
involve the users more in the design process and was found
promising for use in industry. The categorization is presented in
Section 2.

Another obstacle to overcome is the knowledge transfer of
technical issues from developers to users. This is a difficult
matter, but patterns have been found to be a useful tool [17, 20,
21] of knowledge transfer. Patterns facilitate understanding and
communication, increase confidence in decisions, make it easier
to consider different solutions and provide for control [4].

What we need to use a pattern approach in end-user tailoring
design is a selection of suitable patterns. This selection of patterns
should be connected to the categorization of tailoring to be able to
narrow down the numbers of patterns to consider for each type of
tailoring. Especially for beginners it is hard to have a lot of
patterns to consider [10]. As we believe that end-user participation

SERPS 2007, 24-25 October, Göteborg

13

in the design process is essential to gain quality in end-user
tailorable software it is important to neutralize possible obstacles.

There are two ways to introduce patterns in the cooperative design
process, either by starting with architectural design patterns that
transfer good practice when it comes to architectural design or
patterns that expresses design issues of interaction or HCI
(Human Computer Interaction). We call such patterns usability
patterns. The content of usability patterns is closely related to the
task and the users’ domain and usability patterns may provide for
a gentle slope into patterns for software architectures. Therefore it
is preferable to start with using usability patterns. Usability
patterns do not only deal with issues that are put on top of the
basic software architecture. In fact separation of concern is not
enough to achieve usability [14]. Usability features that are
recognized late in the design process are often expensive to attend
to. Usability issues obviously have architectural impact beyond
the detailed design of graphical interfaces and several usability
scenarios are identified to influence software architecture [2]. This
paper focus on usability patterns with architectural impact, that
are of vital importance to end-user tailoring.

In summary we have two research questions to answer:

� What usability patterns with architectural impact should
initially be introduced and how are they related to the
different categories of end-user tailoring?

� What should a pattern consist of to be supportive in the
cooperative design process involving both user and
developers?

The result is a classification of patterns that can act as a mediating
media between users and developers as well as a concrete base for

the technical solution when designing end-user tailorable
software.

In the end-user tailoring community patterns are not discussed
very frequently. It is likely that the researchers and practitioners
that are in the area of end-user tailoring use patterns, but there is
not a explicit discussion of the topic in the research community.
We therefore argue that there is a need to classify patterns suitable
for end-user tailorable software not only from an industrial
perspective but also from an academic point of view as patterns
seems to be a kind of blind spot in the area of end-user tailoring.
We do not claim the collection of patterns presented in this article
is exhaustive. We indeed hope the collection will be extended
with more dedicated patterns.

The rest of the paper is structured as follows. The next section
will present the categorization of tailoring. Section 3 describes
two approaches to identify usability patterns that have to be
introduced early in the development. In Section 4 the usability
patterns of vital importance to end-user tailoring is explored and
presented. Section 5 contains a description of how the patterns for
end-user tailoring can be presented. Thereafter follows a
discussion of how the results relate to other work and how the
results can be used. The paper ends with a summary of the results.

2. CATEGORIZATION OF TAILORING
The categorization proposed by Eriksson et al.[6] is intended as a
means of communication between developers and users in
situations when deciding what kind of tailorability to implement.
The categorization takes into account both a user perspective and
a system perspective. The user perspective represent what changes
can be done or the intention with the activity, while the system
perspective corresponds to how the change is achieved in the
system (on a high level). The categorization is shown in Table 1.

Table 1. Categorization of tailorable software

Category User Perspective System Perspective

Customization Small changes (set of parameter values) Parameter Values are interpreted and used in existing code.

Composition Link different existing components The relationships between the components are defined by a
composition language. (It does not matter which programming
language)

Expansion Creation of a new component. Components are integrated into the software by the implementation
language and the new component does not differ from the pre-
existing components. The composed component is used as a
starting point for further tailoring.

The software may generate code that is added to the pre-existing
code or in another way incorporate the new component into the
application.

Extension Insertion of code. New code (implemented by the end-user) is added to the pre-
existing code.

The application may also generate code to integrate the end-user’s
code to the software.

Customization is the simplest way of doing tailoring. It means
that the user sets some values on one or more parameters and
those parameters manage what functionality that is used.
Composition means that the user has a set of components to
choose from and he or she can connect them in specific ways to

reach the desired functionality. Expansion also mean that the
user chooses components out of a set, but the difference is that
the users’ combination of components are build into the system
to be an integrated part. The new component is treated as the
predefined components and will be accessible in the set to

SERPS 2007, 24-25 October, Göteborg

14

choose from next time the software is tailored. Extension is the
category which provides for the highest flexibility. It means that
the user writes code that is integrated into the system either by
wrapping up the new code into system generated code or, if
written in a predefined way, just adding it to the code mass of
the software. The user can either write the code in some high
level language or some visual programming language.

The categorization can be used as a gateway to which patterns to
consider. By defining both a user and a system perspective, the
intention is to make it easier to discuss tailoring in a consistent
way. As the usability patterns deals with the user perspective we
will only use this perspective on tailoring in the following
discussion.

3. USABILITY PATTERNS
Usability patterns or HCI (Human Computer Interaction) design
patterns are useful tools when designing user interfaces [28].
And there exists a number of different collections of patterns, for
example a comprehensive pattern language for user interfaces by
Tidwell [24, 25, 27]. Traditionally HCI (interface design) and
software architectures have been kept separate by the notion of
separation of concerns, but separation of concerns are not
enough if we want to design software with good usability, highly
accepted by users. Usability issues discovered late in the process
can be expensive to recover [14] which implicate that usability
issues have impact on an architectural level of software design.
There are two recent approaches (presented below) that deals
with usability issues that should be considered early in the
design process.

Based on experience Bass and John [2] have identified 27
usability scenarios that have to be considered during the
architectural design. For each scenario they created an
architectural pattern as a solution to the scenario. The 27
scenarios are in short:

1. Aggregating data

2. Aggregating commands

3. Cancelling commands

4. Using applications concurrently

5. Checking for correctness

6. Maintaining device independence

7. Evaluating the system

8. Recovering from failure

9. Retrieving forgotten passwords

10. Providing good help

11. Reusing information

12. Supporting international use

13. Leveraging human knowledge

14. Modifying interfaces

15. Supporting multiple activities

16. Navigating within a single view

17. Observing system state

18. Working at the users’ pace

19. Predicting task duration

20. Supporting comprehensive searching

21. Supporting undo

22. Working in an unfamiliar context

23. Verifying recourses

24. Operating consistently across views

25. Making views accessible

26. Support visualization

27. Supporting personalization

A similar attempt to introduce usability aspects early in the
development process was done within a European Union project
(STATUS) [7, 9, 16]. But they started from a different angle
compared to Bass and John. The STATUS project started out
with a set of usability attributes (satisfaction, learnability,
efficiency and reliability) and then mapped the attributes to
usability properties that in its turn were related to usability
patterns. A usability property is specified in terms of the solution
space and can be regarded as usability requirements expressed in
a more concrete form. For example the quality attribute
efficiency has a relation to the usability property error
prevention as error prevention has a positive effect on
efficiency. Error prevention in turn has a relation to, for
example, the usability patterns form or field validation and
workflow model [16] as the patterns fulfil the requirement.

The results from the two approaches are overlapping and consist
of a set of usability pattern that have an impact on software
architecture and thus has to be considered early in the
development process. The relationship between the usability
patterns from the STATUS project and the general usability
scenarios provided by Bass and John is presented in [16].

4. PATTERNS FOR TAILORING
Our goal is to match the categories of end-user tailoring to a set
of usability patterns that are especially important to provide for
user satisfaction and confidence in the tailoring process. To
achieve this we have made use of both approaches presented in
Section 3.

During a project done in corporation with our industrial partner,
a major telecom operator, we explored how end-users could
manage system infrastructure. We built a prototype that was
evaluated by users and developers by “talking aloud” when
using the prototype. In the same project we explored what
technical issues that are most important to consider to make end-
user tailoring work. Four usability issues or overall requirements
were revealed concerning the tailoring interface [5]:

1. Functionality for controlling and testing
2. Clear split between definition, execution and the tailoring

process.
3. Unanticipated use revealed to the tailor.
4. Complexity

Functionality for controlling and testing is self-explanatory. It is
essential that the user can control the tailoring process and test
the changes. It was also important for the users to have a clear

SERPS 2007, 24-25 October, Göteborg

15

split between use and tailoring. One reason was that it was easier
to focus on one abstraction level at a time and another reason
was that a clear split makes it possible to assign different people
for the different tasks. In other words it is easier to separate the
role ‘tailor’ from the role ‘user’ and thereby delegate the
tailoring process to a few people. It was also evident that it was
important that the different possibilities to change the software
was revealed to the tailors even though it might not be what the
designers had in mind when designing the tailoring feature. The
software should be prepared for creative use. The last issue
concerning complexity is somewhat connected to unanticipated
use and it was shown that the users preferred a more complex
tailoring interface with superfluous information in favour of just
in time information to minimize cognitive load that are
advocated as a pattern to support. The motivation was that a
tailoring activity is not performed at a regular basis and
therefore it is allowed to take time. It is therefore preferable to
have a complex interface that allow for creative use. But a
complex tailoring interface requires a very simple user interface
in compensation. As the complexity issue is diametrically to
what is recommended in usability literature, we will not discuss
complexity further. We do not need a pattern to decrease the
complexity. But for the interested reader there are patterns to
handle complex data in user interfaces [25, 26].

The first step towards a match between usability patterns and the
tailoring categories is to match the usability issues presented
above (unanticipated use revealed to the tailor, explicit user
control, error correction and error prevention) with usability
properties. The usability issues are requirements on end-user
tailorable software and correspond well to usability properties as
the properties also are a form of requirements. Then the usability
issues are mapped to the general usability scenarios. For
example, if an end-user tailorable system provide for
unanticipated use revealed to the tailor it also has to provide for
the usability properties explicit user control, error correction
and error prevention [9]. Then we examine the general usability
scenarios. If you fulfil the requirement of error prevention it is
easier to work in an unfamiliar context. Likewise if you fulfil the
requirement of guidance you provide for good help. The
summary of the correspondence is shown in Table 2.

Table 2 results in a subset of scenarios that are of vital
importance to end-user tailoring, Scenarios corresponds to
activities and it is therefore convenient to match the subset of
scenarios to the categories of tailoring as the describe how the
changes are performed. It is therefore easy to imagine what
scenarios should be relevant for the different categories. For
example, independent of what kind of tailoring activity you
perform you would like to be able to check for correctness,
support of undo and good help. But if you do a composition,
combine different component to each other, it involves doing
things you are not doing on a regular basis. The scenario of
working in an unfamiliar context is equivalent with what you are
doing. The match is presented in Table 3. Then the relationship
between the categories reveal themselves automatically by
matching the scenarios with usability patterns according to [16]
(Table 3).

The result is a selection of usability patterns that have an
architectural impact. By choosing a type of tailoring to
implement we get some examples of usability patterns we
should consider to use. We do not claim that the selection is

complete. Actually there may be other usability patterns that
match the scenarios and should be considered to be used. Note
that we have made a selection of usability scenarios that are of
vital importance, thereby we do not say that the rest is
unimportant for end-user tailoring. In the contrary those
scenarios with corresponding usability patterns are as important
to tailorable software as to any other software concerned with
user interaction. The rest of the scenarios can be used as a
checklist to determine if important usability issues have been
considered during architectural design. What we say is that the
selected scenarios are not negotiable if the end-user tailorable
software is to be a success. For example providing for good
help is not negotiable and therefore one of the patterns
“Wizard”, “Context-sensitive help”, “Standard Help” or “Tour”
should be considered.

Table 2. Relations between usability issues and properties.
Usability issue Usability property

[9]
Usability scenario
[2]

Functionality
for controlling
and testing

Explicit user control
Error management

� Error correction
� Error prevention

Checking for
correctness
Observing system
state
Supporting undo
Working in an
unfamiliar context
Verifying resources

clear split
between
definition,
execution and
the tailoring
process.

Adaptability

� Matching user
preferences

� Matching user
expertise

unanticipated
use revealed to
the tailor.

Guidance
Provide feedback

Providing good
help
Providing good
help

5. PATTERN STRUCTURE
It is important that the different patterns are not too
comprehensive. One intention with the patterns is that both users
and developers may get an overview of the different design
possibilities. To make the patterns easy to understand by end-
users it is essential that they are written in a more prosaic style
than if the patterns are solely intended for the developers to use
[21]. The patterns should provide the participants with an
understanding of the pattern almost at a glance at the same time
it is essential that the patterns provide the participants, both
users and developers with enough information to be able to
transform the pattern into the software architecture without
having to invent the wheel once again. In other words the
patterns should not only be a base of discussion but at the same
time also an effective tool for the developers.

SERPS 2007, 24-25 October, Göteborg

16

Table 3 Tailoring categories and corresponding scenarios
and pattern.

Category Usability Scenario Pattern [16]
Customization Checking for

correctness
Supporting undo
Providing good help

Form/Field
validation
Undo
Wizard, Context-
sensitive help,
Standard Help,
Tour
User profile

Composition Checking for
correctness
Supporting undo
Providing good help

Working in an
unfamiliar context

Form/Field
validation
Undo
Wizard, Context-
sensitive help,
Standard Help,
Tour
User profile
Workflow model

Expansion Checking for
correctness
Supporting undo
Providing good help

Working in an
unfamiliar context
Observing system state

Form/Field
validation
Undo
Wizard, Context-
sensitive help,
Standard Help,
Tour
User profile
Workflow model
Status indication

Extension Checking for
correctness
Supporting undo
Providing good help

Working in an
unfamiliar context
Observing system state
Verifying resources

Form/Field
validation
Undo
Wizard, Context-
sensitive help,
Standard Help,
Tour
User profile
Workflow model
Status indication
Alert

There is a lot of different pattern forms [4]. We have chosen to
compare four different approaches to evaluate the suitability of
using one of the approaches for the patterns aimed for end-user
tailoring and determine if we should put together our own
pattern template. The four approaches are chosen because they
fulfil at least one of the requirements for a pattern template for

end-user tailoring. Borchers pattern structure [3] is uniform and
supports both application domain patterns, HCI patterns and
software patterns, which is an advantage as we, in the future,
want to incorporate software design patterns in the design
process as well. Schümmer’s et.al. [17, 21] supports both users
and developers and are constructed as a means of
communication, which is exactly what we also want to do. John
et. al. [14] explicitly manifest the importance of consider
different types of forces influencing the design, which we
consider important, and the last approach is Gamma’s et.al [10]
which is the most widely known pattern collection. This
collection is written for developers and since an end-user
tailoring pattern also should be useful and effective for
developers when implementing the software, it is relevant to
compare the other approaches with this.

Borchers [3] extends the notion of pattern languages in to
Human-Computer Interaction as patterns is a suitable tool to
capture experiences of user interface design. Borchers also
extends the pattern language approach to the area of the
application domain. Borchers has worked a lot with interactive
exhibitions in, for example, music. Borchers has constructed a
interdisciplinary pattern language framework to be able to
collect design experiences from both HCI, software engineering
and the application domain. The pattern structure is uniform and
is intended to be suitable for all three areas. Table 4, left column,
lists the different subsections in the pattern structure.

Schümmer and colleagues [17, 21] outline a pattern structure of
design patterns that are constructed to meet both users’ and
developers’ requirements of detailed description and
visualization. This structure was tried out in two projects and
found useful in the context of educational groupware. The
patterns acted as metaphors and made it possible for the
participants to talk about the software system and it also helped
the participants to focus on one feature at a time [21]. The
pattern structure is used for a pattern language and is constructed
to facilitate communication and learning. The pattern template
consists of three main sections. The first section is to facilitate
deciding if the patterns seams to fit the situations, the second
section contains solutions and the last part present the solution in
more detail. Table 4, second column, lists the different
subsections in the pattern structure.

Most patterns, design as usability pattern are constructed as the
pattern are independent of external forces [14], but John et.al
[14] have constructed a structure for usability-supporting
patterns that have a section dedicated for a ‘Specific Solution’.
John et.al have identified different types of forces that influence
the implementation of the patterns and incorporated them in
their usability-supporting patterns. This makes the pattern
dependent of the actual situation it would be used in. The forces
identified are:

� Forces exerted by the environment and the task
� Forces exerted by human desires and capabilities
� Forces exerted by the state of the software
� Forces that come from prior design decisions

SERPS 2007, 24-25 October, Göteborg

17

SERPS 2007, 24-25 October, Göteborg

18

These identified forces correspond well to our own experiences
from prolonged observations of a project developing an end-user
tailorable subsystem of one of the business systems of telecom
operator. Also Buschmann et.al [4] claim the forces are the heart
of every pattern. Table 4, third column, lists the different
subsections in the pattern structure.

Forth column in Table 4 lists the structure of Gamma et.al’s
patterns [10]. This approach is well known amongst developers
and it is also developers that is the target group for the patterns.
The patterns “help designers reuse successful designs by basing
new designs on prior experience.” [10, s. 1]. The patterns
structure consists of not only graphical diagrams but also
relationships between classes and objects, alternative solutions
and trade-offs. Examples are also important as it shows how the
pattern can be applied.

The question is which of the approaches that is most suitable for
a pattern of end-user tailoring. We have to list the requirements
for a pattern of end-user tailoring:

1. The pattern structure shall be practicable for software
engineering design patterns too.

2. The patterns shall start generally and gradually be
more detailed to facilitate learning.

3. The patterns shall be easy to overview, grasp and
understand.

4. The pattern structure shall be an effective tool for both
users and developers, together and individually.

If we compare how well the different approaches comply to the
requirements (Table 4) we can see that Borchers’ and
Schümmer’s et.al. approach is equally favourable. Borchers’
pattern structure is better than Schümmer’s et.al. when it comes
to how practical it is for software engineering patterns, but it is
compensated by the fact that Borchers’ patterns are less detailed.
It is easy to take care of the lack of details by adopting the parts
from John’s and Bass’ approach, were the different forces are
described in detail. John and Bass also recommend diagrams on
a detailed level.

Table 5 Compliance of requirements (Legend: ++ = very good , + = good, - = not that good , -- = bad)

Requirement Pattern for an
interdisciplinary
framework [3]

Pattern for user
participation [17, 21]

Usability-supporting
pattern [14]

Pattern by Gamma
et.al [10]

Practical for SE
patterns

+ - ++ ++

Gradually more
detailed

- + ++ +

Easy to overview and
understand

++ + -- --

Good tool for both
developers and users

+ + -- user
++developer

-- user
++developer

Borchers pattern structure should be a good base and then fill in
with good features from the other approaches. Borchers patterns
start out in a general way and there are few headings, which
makes it easier to grasp and overview. The headings are general
and easy to understand. The details should not appear until
further down in the solution part. The solution should first be
introduced generally and then get more detailed. This is attended
to by adding section general solution and specific solution from
John’s and Bass’ pattern structure. But compared to patterns for
user participation and Gamma’s et.al pattern there are even more
details that should be added to better support the developers.
That is consequences, danger spots, sample code and Related
Patterns. Related patterns are in Borcher’s approach
incorporated in the Context section. But we find it better to
explicitly point out the related patterns, in favour of ease of use.

The resulting pattern structure is intended solely for end-user
tailorable software and the tailoring categories act as a gateway
to the patterns, therefore it is of course important to relate each
pattern with the type of tailorability it is suitable for.

The template is constructed so that it begins in a general way
and get more detailed and specialized further down. It is

essential to remember that the descriptions in the pattern
template have to be written in a way that complies with different
types of stakeholders.

6. DISCUSSION
That design patterns are useful when designing software have
been proven over and over again during the last decades. In
1997 when the design pattern concept in software engineering
was intensely discussed Pree and Sikora [19] express their
concern of design patterns being a hype, but now ten years later
we are beyond the hype [4] an we can see that design patterns is
here to stay. We have made an attempt to adjust a part of the
patterns concept to end-user tailoring. Apart from the benefit
from using patterns discussed previously, use of patterns can
also decrease development time [1]. It is often discussed that
even though tailoring has benefits tailoring means that the
development time is increased. If the time for developing
tailorable software can be decreased by using patterns it is
certainly advantageous.

SERPS 2007, 24-25 October, Göteborg

19

Table 6 Template of design pattern for use in the cooperative design process of end-user tailoring.

Design Pattern for End-user tailorable software
Prefatory description

� Name

� Ranking The authors confidence in the pattern

� Tailoring Categories Which categories of tailoring the patterns suitable for

� Illustration
Overall description of problem and solution

� Problem

� Forces � Environment and
task

Forces from environment and task that influence the choice of solution.

� Human desires
and capabilities

Forces from human desires and capabilities that have an impact on the choice of
solution.

� State of the
software

Forces generated by the system state, for example software is sometimes
unresponsive [14]

� General Solution
Detailed description of solution

� Specific Solution Example of prior design decisions that influence the choise of solution. The
forces are specific for the situation. � Prior design

decisions
� Diagrams

� Consequences

� Danger spots

� Sample code A short example of how to implement the pattern. Written in the language used
at the company or in C++ as it is well known.

� Examples Examples of features in applications where the pattern is used

� Related patterns

We believe that the selection of usability patterns presented in
Section 4 can act as a gateway to wider use of patterns in
cooperative design projects developing end-user tailorable
software. It is our hope that users as well as developers shall find
the patterns beneficial and get encouraged to incorporate more
patterns gradually. As the pattern are kept separate and not
related in a comprehensive pattern language the patterns can be
used in any type of development process, independent of other
tools used in the process. It is also possible to just get inspired of
what patterns to use for a specific type of tailoring and then use
whatever pattern structure you prefer. But the intended use is
that a team consisting of different types of stakeholders can
discuss tailoring with the categorization as a base. As the
categorization explicitly define both a user perspective and a
system perspective it is easier to reach a consensus of what
tailoring is needed. When the participants have agreed upon
which type of tailoring that is needed they can continue the
design process and then go further and look for what patterns
should be considered for the chosen category of tailoring. The
other usability scenarios that also have an architectural impact,
bur not are vital to tailoring can be used as a checklist to find out
if all essential usability issues are taken care of. If the
participants find patterns to be useful, they can use the

corresponding usability patterns for the usability scenarios they
found were important for the software.

But how does our approach differ from the other approaches
discussed? Borchers’ approach [3] involves a pattern language
that guide the team members to the next pattern. He just like us
advocates patterns as a lingua franca, but there is a difference.
When Borchers assume collaboration between the users and the
usability experts and other cooperation between usability experts
and developers, we advocates a direct cooperation between all
the different stakeholders. We have previously not discussed
usability experts at all, but we think that usability experts are
closer to the software than the task and therefore we have
incorporated usability experts in the term developer. The
intention of having the same pattern structure for all type of
patterns dealt with within the project is advocated by us as well
as Borchers.
Schümmer and colleagues [17, 21] have constructed a whole
process that is based on a pattern language just as Borscher. We
have started in the small by introducing a small selection of vital
unrelated patterns. Schümmer et.al support a iterative process
and so do we. One of the advantages with patterns is that you
can and are allowed to focus on one feature at a time and in an

SERPS 2007, 24-25 October, Göteborg

20

iterative way fill up with new features and patterns. Also
Schümmer et.al use patterns as means of communication and
learning and their pattern structure get more detailed further
down just as our.
John and Bass [2, 14] is they who have taken the most unusual
approach, by explicitly name the different forces influencing the
design decisions. We find their work with forces very insightful
and as their findings are mirrored in our experience from
industry, we felt it was essential to incorporate the forces in the
pattern structure for end-user tailoring. Unlike us John and Bass
have built in a sort of process in the pattern structure. For
example the responsibilities of the general solution are
transferred to the section of specific solutions to get a better
overview of how the specific solution should look like.
The last approach, but the most well known, is the approach of
the Gang of Four, Gamma et.al, [10]. Gamma et.al also have
patterns that are not related in a pattern language. The main
difference between Gamma’s et al. approach and ours is that the
patterns are mainly intended for developers and are described
thereafter. But the patterns are intended for a base of
communication even though within the developers’ group.

7. SUMMARY
The study has resulted in a subset of usability patterns with
architectural impact. The subset are matched with corresponding
tailoring category to make it possible to focus on a few, vital
usability patterns that is not negotiable when designing end-user
tailorable software of a specific type. The selection of usability
patterns is intended as a sample of how useful patterns can be in
a cooperative design process. By allowing for designing with
this kind of building blocks the cognitive load of the participants
decreases [1] and the patterns can be a mediating artefact in the
design discussions and decisions. The study also resulted in a
pattern structure for patterns of end-user tailoring design. The
pattern structure is a merge between several different approaches
to be able to satisfy the needs of both users and developers. The
patterns have to be easy to grasp and understand as well as
detailed enough to be useful when implanting the software. This
is achieved by starting with a prosaic description of problems
and general solution and then a more detailed description of the
solution is presented along with detailed diagrams and so on.
This latter part aims more at the developer, but it is also our
belief that interested users get more and more familiar with the
pattern structure and gradually learn the meaning of, not only the
beginning of the patterns, but also the more detailed and
developer adjusted part.

ACKNOWLEDGMENTS
This work was partly funded by The Knowledge Foundation in
Sweden under a research grant for the project "Blekinge -
Engineering Software Qualities (BESQ)"
(http://www.bth.se/besq).

REFERENCES
[1] Bass, L., Clements, P., and Kazman, R., Software

Architecture in Practice. Addison Wesley, Chichester,
England, 1998.

[2] Bass, L. and John, B. E., "Linking Usability to Software
Architecture Patterns trough Scenarios," The Journal of
Systems and Software, 66(2003), 187-197.

[3] Borchers, J., A Pattern Approach to Interaction Design.
John Wiley & Sons, Ltd, Chichester, England, 2001.

[4] Buschman, F., Henney, K., and Schmidt, D. C., Pattern-
Oriented Software Architecture - On Patterns and Pattern
Language. John Wiley & Sons Ltd, Chichester, England,
2007.

[5] Eriksson, J. and Dittrich, Y., "Combining Tailoring and
Evolutionary Software Development for Rapidly Changing
Business Systems," Journal of Organizational and End User
Computing (JOEUC), 19, 2 (2007), 47-64.

[6] Eriksson, J., Lindeberg, O., and Dittrich, Y., "Four
Categories of Tailoring as a Means of Communication,"
submitted to Journals of Software and Systems(2007).

[7] Ferre, X., Jusisto, N., Moreno, A. M., and Sánchez, M. I., A
Software Architectural View of Usability Patterns. In the
Proceedings of the INTERACT 2003, (Zürich, Switzerland,
September 2003).

[8] Fischer, G., Meta-Design: Beyond User-Centered and
Participatory Design. In the Proceedings of the Proceedings
of HCI International 2003, (Crete, Greece, June 2003,
2003). Lawrence Erlbaum Associates, Mahwah, NJ, 88-92.

[9] Folmer, E. and Bosch, J., Usability Patterns in Software
Architecture. In the Proceedings of the 10th International
Conference on Human-Computer Interaction, HCII2003,
(Crete, 2003.). 93-97.

[10] Gamma, E., Helm, R., Johnsson, R., and Vlissides, J.,
Design Patterns - Elements of Reusable Object-Oriented
Software. Addison-Wesley, Indianapolis, 1995.

[11] Gasson, S., "Human-centered vs. user-centered approaches
to information system design," JITTA: Journal of
Information Technology Theory and Application, 5, 2
(2003), 29-46.

[12] Henderson, A. and Kyng, M., "There's No Place Like
Home: Continuing Design in Use," in Design at Work, J.
GreenBaum and M. Kyng, Eds., first ed. Hillsdale, NJ:
Lawrence Erlbaum, 1991, pp. 219-240.

[13] Ilvari, J. and Iivari, N., Varieties of User-Centeredness. In
the Proceedings of the HICSS '06, Proceedings of the 39th
Annual Hawaii International Conference on System
Sciences, (Hawaii, 2006). IEEE, 176a-176a.

[14] John, B. E., Bass, L., Sanchez-Segura, M.-I., and Adams,
R. J., Bringing Usability Concerns to the Design of
Software Architecture. In the Proceedings of the 9th IFIP
Working Conference on Engineering for Human-Computer
Interaction, (Hamburg, Germany, July 11-13, 2004).

[15] Johnson, B., Woolfolk, W. W., Miller, R., and Johnson, C.,
Flexible Software Design - Systems Development for
Changing Requirements. Auerbach Publications, Taylor &
Francis Group, Boca Raton, FL, 2005.

[16] Juristo, N., Lopez, M., Moreno, A. M., and Sánchez, M. I.,
Improving Software Usability through Architectural
Patterns. In the Proceedings of the ICSE 2003 Workshop
"Bridging the Gaps Between Software Engineering and
Human-Computer Interaction", (Portland, Oregon, USA,
May, 2003).

SERPS 2007, 24-25 October, Göteborg

21

[17] Lukosch, S. and Schümmer, T., "Groupware development
support with technology patterns," International Journal of
Human-Computer Studies, 64, 7 (2006), 599-610.

[18] Nardi, B. A., A Small Matter of Programming -
Perspectives on End User Computing. MIT Press,
Cambridge, 1993.

[19] Pree, W. and Sikora, H., "Design Patterns for Object-
Oriented Software Development," in a Tutorial at the
International Conference on Software Engineering, ICSE
'97. Boston, Massachusetts, USA, 1997.

[20] Schümmer, T., Lukosch, S., and Slagter, R., Empowering
End-Users: A Pattern-Centered Groupware Development
Process. In the Proceedings of the 11th International
Workshop, CRIWG 2005, (Porto de Galinhas, Brazil,
September 25-29, 2005). Springer,

[21] Schümmer, T. and Slagter, R., The Oregon Software
Development Process. In the Proceedings of the XP 2004,
(Berlin/Heidelberg, 2004). Springer-Verlag, 148-156.

[22] Stevens, G., Quaisser, G., and Klann, M., "Breaking It Up:
An Industrial Case Study of Component-Based Tailorable
Software Design," in End-User Development, vol. 9, H.

Lieberman, F. Paternò, and V. Wulf, Eds. Dordrecht,
Netherlands: Springer, 2006, pp. 492.

[23] Stiemerling, O., "Component-Based Tailorability," vol.
Dissertation. Bonn, Germany: Bonn University, 2000, pp.
180.

[24] Tidwell, J., Deigning Interfaces - Patterns for Effective
Interaction Design. O'Reilly, 2005.

[25] Tidwell, J., "Deigning Interfaces - Patterns for Effective
Interaction Design", <http://designinginterfaces.com/>,
(September 13 2007).

[26] Tidwell, J., "UI Patterns and Techniques", <http://time-
tripper.com/uipatterns/>, (September 13 2007).

[27] Tidwell, J., "Common Ground: A Pattern Language for
Human-Computer Interface Design",
<http://www.mit.edu/~jtidwell/common_ground.html>,
(September 13 2007).

[28] Wesson, J. and Cowley, L., Designing with Patterns:
possibilities and Pitfalls. In the Proceedings of the 2nd
Workshop on Software and Usability Cross-Pollination:
The Role of Usability Patterns, INTERACT 2003, (Zürich,
Switzerland, September 2003, 2005). IOS Press,

SERPS 2007, 24-25 October, Göteborg

22

An Industrial Case Study on Visualization of Dependencies
between Software Measurements

Ludvig Johansson

IT University of Göteborg
412 96 Göteborg
ludvig@ituniv.se

Wilhelm Meding
Ericsson SW Research

Ericsson, Sweden
wilhelm.meding@ericsson.com

Miroslaw Staron
IT University of Göteborg

412 96 Göteborg
miroslaw@ituniv.se

ABSTRACT
Managing large software projects requires working with a large
set of measurements to plan, monitor, and control the projects.
The measurements can, and usually are, related to each other
which raise an issue of efficiently managing the measurements by
identifying, quantifying, and comparing dependencies between
measurements within a project or between projects. This paper
presents a case study performed at one of the units of Ericsson.
The case study was designed to elicit and evaluate viable methods
for visualizing dependencies between software measurements
from a perspective of project and quality managers. By
developing a series of prototypes, and evaluating them in
interviews, we get results showing applicability of each
visualization method in the context of the studied organization.
The prototypes were used to visualize correlation coefficients,
distribution dependencies, and project differences. The results
show that even simple methods could significantly improve the
work of quality managers and make the work with measurements
more efficient in the organization.

Categories and Subject Descriptors
D.2.8 [Metrics]: Process metrics, Product metrics.

General Terms
Management, Measurement.

Keywords
Software metrics, visualization, quality management.

1. INTRODUCTION
Using measurements as a mean of monitoring software projects is
a characteristics of mature processes and management practices.
The larger the projects, the larger the data sets used and the more
measurements collected. One of the daily works of quality
managers is to work with measurements to assure the quality of
the final product which involves identifying anomalies in data
sets. Currently, the identification is based on experience and

monitoring of limited number of measurements. Better use of the
measurements in projects requires automated support in
identifying and visualizing dependencies between measurements,
especially when data sets are large. The existing visualization
solutions require extensive customization work in order to be
adjusted to the processes used at Ericsson and to integrate with
existing toolset at the company. In this paper we identified and
evaluated a set of visualization methods which do not require any
initial investments nor entail large customization/integration
costs.

Hence, in this paper we address the following research question:

How can dependencies between measurements be quantified and
visualized in the context of a software development unit at
Ericsson?

We consider both the dependencies between the measurements,
and, to a limited extent, measured entities. Our research is
performed in the context of software development organization,
which in particular means that our work focuses on project and
process measurements.
By dependency we mean such relationship between measurements
in which a change of value of one measurement causes a change
in another measurement.
The results of this study show that simple visualization techniques
integrated with MS Excel and mind mapping tools could
significantly improve the work of quality managers. Using mind
maps to visualize dependencies between the whole (or part of)
sets of variables were found to be the method which suits the
evaluation criteria best, and visualizing correlation coefficients
using colored MS Excel worksheets was found to be the most
useful method.
The paper is structured as follows. Section 2 presents the most
related research relevant for our work. Section 3 presents the
context of the study – measurement systems being used at
Ericsson. Section 4 describes the design of the case study and
Section 5 presents the results from it. Section 6 addresses the
main threats to validity of the study and Section 7 presents the
conclusions.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Conference’04, Month 1–2, 2004, City, State, Country.
Copyright 2004 ACM 1-58113-000-0/00/0004…$5.00.

2. RELATED WORK
In the area of software measurement and measurement
dependencies, the ISO standards ISO/IEC 15939 [1] and ISO/IEC
9126-1 [2] provide a standardized way of structuring the software
measurement process and preserving product quality during the
process. These standards, however, are high level standards and

SERPS 2007, 24-25 October, Göteborg

23

do not give solid theoretical background on how measurements
should be used. Such fundamental application of measurement
theory for software engineering is provided by Fenton and
Pfleeger [3]. This study combines these two views on
measurements, i.e. (a) the measurement theory perspective and (b)
the ISO/IEC industrial standards perspective, in order to develop
methods that are industrially applicable on theoretically solid
ground.
The discussion of introducing measurement systems into an
organization is, however, not covered in this study. Authors like
Clark [4], Kilpi [5] Dekkers and McQuaidfor [6], Pfleeger et al.
[7] and Brökcers et al. [8], describe how to/why introduce
measurement systems in to an organization, and reflect on
problems/solutions that measurements can result in. Their
findings are used in the process of introducing the methods
described in this paper into the organization.
One of the challenges in this study was to quantify measurements
in a correct way – that is, whether it is possible to statistically
compute dependencies: methods for statistic calculations are
presented in [9, 10].
Techniques for visualizing dependencies in other areas have a
wider research base than visualizing measurements in software
engineering. The main focus in the existing studies of
visualization is on program code dependencies, for example [11-
18]. Hence, visualizing measurements dependencies is mostly
about visualizing large groups of information complexes, like
visualization of code dependencies and SQL dependencies,
visualizing techniques provided by Spencer [19] were used as
ground for identifying problems around visualizing information.
Software measurements are used in the process of visualizing

such aspects as code complexity, but then the focus is on the
complexity and not on measurement dependency. In our research
the focus is on the identification of measurement dependencies,
not on complexity or size of source code.

Figure 1, Software Measurement Model [1]

An interesting similarity can be observed between measurements
visualization and neural networks, since both include similar
calculations [20]. The case-by-case comparison (described later in
the paper) is based on analogy-based estimation techniques from
the neural networks [21-23].
More advanced techniques for visualizing large quantities of data
can be found in [24]. Although the methods presented there are
applicable for our context, they required advanced visualization
tools, which contradicted the requirements from the organization.

3. MEASUREMENT SYSTEMS
Ericsson is a world-wide telecommunication manufacturer. Its
projects vary in size, but the majority comprises of large and
long-term projects that involve both hardware and software
components. Ericsson has adopted and further developed mature
methods for developing software and managing projects,
including managing/assuring quality of Ericsson products. The
management use measurements together with expert opinions of
project managers and engineers as the provider for information
and a basis for making decisions – which is a common situation in
mature organizations. In large software projects, however, the
situation becomes hard to manage since the number of
measurements used is very large, which makes it hard to manage
the measurements and therefore several decisions are based on
experience. In order to make the work with measurements more
efficient, the studied organization at Ericsson has adopted the

SERPS 2007, 24-25 October, Göteborg

24

ISO/IEC standard for software measurements – ISO/IEC 15939
[1].
The ISO/IEC 15939 standard defines the elements of the
measurement systems as presented in Figure 1. The measurement
process is driven by an information need (top of Figure 1). The
information need is what the customer (or a stakeholder) of the
measurement system wants to know, for example: ‘Is the project
within budget?’, or ‘Is the project running according to the
schedule?’
In order to satisfy the information need, a series of measurements
need to be examined. The measurements are collected by
measuring relevant entities, for example, a design model, project
status, or a process. An entity is a real world entity which has
measurable attributes. The standard defines an attribute as “a
property or characteristic of an entity that can be distinguished
quantitatively or qualitatively by human or automated means”.
The quantification of the attribute is the process of obtaining a
base measure. Several base measurements can then be merged
throughout a measurement function to a derived measurement. A
measurement function is an algorithm or calculation performed to
combine two or more base measures.
Further, indicators are created from the derived measures to
provide an estimate or evaluation of specified attributes derived
from the real world. It is the indicators that should fulfill the
stakeholder’s information need.
Table 1 presents a definition of an example measurement system
which is based on a working measurement system at Ericsson.

Table 1. Defect reports measurement system - definition

Concept Definition

Information Need How much, compared to the budget of project
X, is the cost of defect reports?

Measurable Concept Budget deviation (budget is fixed, project cost
on the other hand is dynamic)

Entity Budget deviation
Attributes 1. Project X related defect reports

2. Cost of one defect report in project X
3. Budget of project X

Measurement
Method

1. Count total number of defect reports
2. Calculate the number of hours per defect

report based on data from previous projects
[cost]

3. State the budget of project X (no need to
calculate, it’s only a number)

Base measures 1. NoD – Number of Defects
2. DC – Defect Cost
3. PB – Project Budget

Measurement
Function

((NoD times DC) divided by PB) in percent

Indicator Red/Yellow/Green
Analysis Model Green if DM1 < 1%

Yellow if 3% > DM � 1 %
Red If DM � 3%

Interpretation If Red: Situation critical. Re-planning necessary.
Inform steering group
If Yellow: Take actions to avoid budget overrun
and time plan delays
If Green: No action

1 Abbreviation for Derived Measurement

In this example the information need that the stakeholder, in this
case the project manager, is concerned about is how much,
compared to the project X2 budget is the cost of defect reports.
The entity and measurable concept is the budget deviation.
Attributes like project X defect reports [as a number]; Cost [in
hours] of one defect report in project X and Budget [in hours] of
project X are then chosen. These attributes are chosen out of
experience by the developers of the measurement system (who
usually have experienced as project managers). When having
these attributes, a method is created to be able to measure the
attribute, that is, convert the physical attribute to a numerical
value to be used in mathematical calculations. The use of multiple
measurements in a calculation results in obtaining derived
measurements. In this example the measurement methods are: (a)
count number of defect reports for X; (b) cost (in hours) of a
defect report based on empirical experience and (c) budget (in
hours) for project X. In this example, the indicators are set to
green if the result value from the derived measurement is below
1%, yellow if between 1% and 3% and red if it is above 3%.
These values are carefully selected out after a discussion with the
stakeholders and based on experience from former and current
projects.
An instance of this definition is presented in Table 2.

Table 2. Defect reports measurement system - instance

Concept Definition

Values of measurements 4. NoD: 78 [defects]

5. DC: 3 [hours per defect
report]

6. PB: 8000 [hours]

Derived Measurement (DM) ((58*3)/8000) * 100 % = 2,2 %

Indicator value Yellow

Interpretation Yellow: Project was slightly re-
planned, more effort was put into
solving defect before further
development.

The example shows that even constructing simple indicators, one
needs to be concerned with several measurements. Computing
derived measures can require checking assumptions of
measurements independence or dependence. The indicators are
built based on these assumptions – slight deviations from
established dependency relationships could make the indicators
show false alarms or not indicating problematic situations. In the
example above one such assumption is the cost of repairing one
defect – if the cost is much lower than assumed, then this
indicator would raise false alarms; if the cost is much higher than
assumed, then the indicator would not inform in time about
budget problems in the project.

4. CASE STUDY DESIGN
We performed our case study at Ericsson, a world-wide provider
of telecom network equipment. The study was conducted at one
of the quality management departments, working with
measurements and measurement systems on a daily basis. The

2 Project X can be compared to a real project at Ericsson however

questions and values has been altered.

SERPS 2007, 24-25 October, Göteborg

25

data which was used to evaluate the prototypes comes from
several large software projects which the department is
responsible for. The study is performed in a similar context as our
previous studies (e.g. [25]).

The studied organization posed the following high-level
requirements on the solutions which we should consider:

� The solutions should visualize large number of
measurements

� The solutions should be able to compare dependencies
between projects

� The solutions should use and/or integrate with existing
toolset available at the company

� The solutions should follow the standards adopted by
the company

� It should be possible to combine individual solutions
into larger ones

The case study was divided into two parts – identification of
viable visualization methods including elicitation of criteria for
evaluating the methods, and evaluation of the visualization
methods using data from historical and on-going projects at the
studied unit at Ericsson. In short, our research process was:

1. Elicit criteria for comparing visualization methods – for
assessing their applicability for the company.

2. Identify viable visualization methods via literature
study.

3. Develop prototypes.
4. Evaluate prototypes on actual data from the company

and through interviews.

The second author is working at the company and conducting
both research and development in the area of software
measurements. The results of the study are to be used in his work
which makes this study an action research study. The third author
is working closely with the company on the development of
prototype measurements systems and evaluating them at the
company. The first author spent the entire time of the study on
site of the company.

4.1 Interviews
As the first step in the study we performed interviews with a
designer of existing measurement systems, who is a quality
manager with long term experience on working with
measurements, project, and quality management at Ericsson. The
purpose of an interview at the beginning of the study was to elicit
criteria for assessing the usability of the tools. The goal of
eliciting the criteria was to provide a basis for assessing the
applicability of each prototype. By developing the criteria we also
gained more knowledge of the non-functional requirements for
each prototype. After eliciting the criteria the quality manager
was asked to prioritize them using the $100 technique (in which a
respondent is asked to distribute $100 for each prioritized element
– larger amounts should got for the elements which are prioritized
higher).
In the middle and by the end of the study we performed
interviews with the same respondent, to evaluate the prototypes
which were developed during this study. The criteria elicited from
the interviews at the beginning were used to assess the prototypes.
The interviewer made notes during the interviews; the notes were
used later during the study. All interviews were semi-structured as

they contained both closed-ended, open-ended questions and the
interviewee was allowed to make own remarks and comments.

4.2 Prototype development
After identifying the applicable visualization methods we created
a set of prototypes to use these methods at the studied
organization at Ericsson. In particular we developed a set of MS
Excel add-ins using Visual Basic for Applications (VBA) that
could parse the data, produce diagrams/charts, or export the data
to other tools. One add-in was developed per visualization
method.
We considered using dedicated visualization environments, but it
was a strong requirement from the company to work with the
toolset available and already adopted at the company. As a
common ground, MS Excel 2003 was used in developing the
prototypes as the used toolset at the company provided features to
export data to MS Excel.
We used freeware mind mapping tools and hyperbolic browsers in
more advanced visualization prototypes in order to test simple
ways of presenting the information which MS Excel is not
capable of.
The goal of developing the prototypes was to demonstrate the
visualization methods and to provide our industrial partner with
software to be used in their development of measurement systems.

4.3 Evaluation process
To evaluate the prototypes we used them on real data from on-
going and past projects at the company. The results of running the
prototypes on the data were shown to a quality manager who
evaluated how the prototypes fulfilled the criteria.
The data from the ongoing project was a snapshot taken at the
current time – this means that the data was not altered between
evaluations of particular prototypes.
The weighted criteria are presented in Table 3.

SERPS 2007, 24-25 October, Göteborg

26

Table 3. Evaluation Criteria

Criteria Description Weight
Usability
(measurement
systems
developers)

It should be easy to use the
prototypes, e.g. easy to fill in data,
easy to start execution of macros, etc. 0.26

Time for execution Execution should be performed very
fast, that is, in less than a minute 0.24

Easy to overview
and interpret
results

It must be easy to overview and
interpret results, e.g. tables, graphs,
correlations, method.

0.12

Handle large sets
of data

It should be possible to visualize
dependencies in large data sets (e.g.
more than 1000)

0.10

Comparing
projects

Two different projects could be
compared in the prototype showing
how similar the dependencies are
between the projects.

0.08

Parameters It should be possible to use parameters
to select a subset of measurements
which are input to the add-in.

0.04

Maintainability When prototype is finished,
developers should be able to
understand the concept and the code
behind the prototype.

0.04

Magnitude of
variables

If dependencies have different
magnitudes (scale) it shall not affect
the results

0.04

Strength of
correlation

A strength of correlation should be
calculated and shown in the resulting
information

0.04

Usability (expert
users)

The prototype could be used by other
experts on measurements systems
which has no prior experience in the
current measurement system

0.04

During the interview the respondent was asked to assess to which
degree the prototype fulfills the criteria using 5 point Likert scale:
1- totally unsatisfactory, 2- somewhat unsatisfactory, 3- neutral,
4- somewhat fulfills, 5- totally fulfills.
After the assessment we calculated the normalized score of the
prototype. The normalized score was the product between the
scores and the applicable criteria divided by the sum of weights of
applicable criteria.
During the evaluation we recorded also qualitative comments
from the respondents, including information how the prototype is
supposed to contribute to the company.

5. RESULTS
By searching literature on visualization methods, we identified six
viable visualization methods. Despite a significant body of
research on visualization of source code, the methods were not
applicable directly and required customization of the visualization
tools, which in turn contradicting our requirements from the
company.
In a series of interviews we evaluated the prototypes and
identified their strengths and weaknesses. A summary of the
interviews follows the results from the literature study.

5.1 Identified applicable visualization
methods
Through literature study and the initial interview with the quality
manager at Ericsson we identified two main ways of visualizing
the dependencies (dependencies between measurements and
dependencies between measured cases), grouped into three
categories below.

5.1.1 Correlation visualization
The basic dependency between measurements is the correlation
between two measurements. The correlation is an important
indicator of dependency as correlated measurements should not
be used when building predictive models. As the number of
measurements collected in the organization was rather large, one
could not be expected to manually run computations pair-wise.
The rationale behind the developed prototypes was that they
should support the users of measurements in their work by
decreasing the time required to identify correlated variables.
As an extension to correlation visualization we also considered
visualizing the results of Principal Component Analysis (PCA).
PCA, however, had the disadvantage that it was hard to interpret
and required visualization in more than three dimensions which
was hard to obtain using available or freeware tools.
The most basic and well-known way of visualizing dependencies
between two variables (measurements) is using scatter plots. If
produced automatically for a set of variables, the scatter plots
have an advantage that they could be used for more detailed
examination of variables. An example scatter plot is presented in
Figure 2.

0

500

1000

1500

2000

2500

3000

3500

w
1

w
3

w
5

w
7

w
9

w
11

w
13

w
15

w
17

w
19

w
21

w
23

w
25

w
27

w
29

w
31

w
33

w
35

w
37

w
39

Var1
Var2

Figure 2. Visualization of dependencies using a scatter plot

The figure presents a scatter plot of two variables Var1 and Var2,
which are correlated as the growing trends are observed for both
variables.
Another way of visualizing the correlation between measurements
is to use a matrix and a list containing colored cells with values of
the correlation coefficient. An example is presented in Figure 3 as
a matrix.

SERPS 2007, 24-25 October, Göteborg

27

Figure 3. Visualization of correlation coefficients – a matrix

Figure 4 shows a subset of the matrix as a list.

Figure 4. Visualization of correlation coefficients – a list

These prototypes are intended to provide an overview of
correlations within a single data set – e.g. measurements for one
project.
When building measurement systems, however, examining a
single data set is sometimes insufficient. In measurement systems
measurements are used based on assumptions about their
dependencies, which reflect the process followed by the company.
The measurements, nevertheless, tend to change over time and
hence the same measurement system might provide misleading
information when used at two different projects if dependencies
between variables are different.. Therefore a support is needed to
check whether the dependencies between measurements in two
projects are indeed the same. For this purpose we created the
correlation differences prototype, which visualizes the differences
in correlation coefficients between two sets of measurements. An
example is presented in Figure 5. Once again the colors are used
to emphasize the magnitude of differences. The colors are chosen
as parameters of the prototype and therefore highlight differences
important for the user.

Figure 5. Visualization of differences of correlation

coefficients
The result of running the prototype on two sets of data is a list of
pairs of measurements and the differences between the correlation
coefficients of the measurements in the pair in the two projects.
The column labeled sign differ indicates whether there was a
difference in the sign of the correlation coefficient (i.e. actual pair
had the opposite behavior/trend in project B compared with
project A?).
The difference between the correlation coefficient is to be
interpreted manually based on the need. For example, when
predicting quality of the project one uses regression equation
which are built on one data set to predict quality using another
data set. If the correlations between variables in these two data
sets are significantly different, then the predictions might not be
accurate. Therefore, significant differences between the
correlations can be seen as an indicator of small accuracy.

Visualizing dependencies using a matrix or a list does not show a
transitive dependencies – e.g. measurement A depending on B, B
depending on C, etc. Therefore we developed the so-called X-
Centric model prototypes using external freeware viewers:
H3Viewer [26] and FreeMind [27]. This visualization method
shows a network of dependent measurements, centered on a single
measurement (Var1 in the example below). An example output
from the FreeMind tool is presented in Figure 6. The numbers in
the figure are correlation coefficients.

Figure 6. X-centric model visualization - FreeMind

The figure shows Var1 in the center and Var2, Var3, and Var4
which are correlated with Var1 with the strengths given in
brackets – 0.98, 0.974, and 0.751 respectively. Var2 and Var4
(top left-hand corner) are correlated with Var3 with strengths
given in brackets – 0.996, and 0.765 respectively.
An example visualization using the H3Viewer tool is presented in
Figure 7.

Figure 7. X-Centric model visualization – H3Viewer

Visualizing the transitive dependencies is used when building the
measurement systems to identify measurements which can (if
they are strongly correlated) be used interchangeably for some
purposes (e.g. when building prediction models).

SERPS 2007, 24-25 October, Göteborg

28

5.1.2 Distribution visualization
Visualizing correlations between variables shows whether the
trends in the measurements are the same. The measurements,
however, might be of different magnitude and/or distribution. The
differences are important since the indicators in the measurement
systems are built based on the values of measurements. The
interpretation of indicators might depend on the distribution.
Hence we developed a prototype to compare distributions. The
prototype results in a bar chart with distributions of a pair of
measurements and a p-value from the Chi-Square test for
independence. The p-value denotes the probability that the two
variables are indeed dependent.
In order to visualize the distributions between variables we used
simple bar charts for graphical presentations and the chi-square
test for independence to obtain the chi-square value and the
probability of the measurements of being independent. An
example is presented in Figure 8.

0

20

40

60

80

100

120

1 12 23 34 45 56 67 78 89 100 111 122

Fr
eq

ue
nc

ie
s

Var1
Var2

p-value: 0.67

Figure 8. Visualization of distributions – bar chart showing
frequencies for Var1 and Var2

The example shows that the distributions of the two variables are
not different from each other, and that there is a significant
probability that they are dependent on one another.

5.1.3 Case dependencies
Dependencies between the measurements provide only partial
information. The information can be complemented by
visualizing the dependencies between particular cases (or data
subsets in the extended version of the prototype). The idea is that
this comparison can identify two most similar vectors of
measurements. The most similar cases to each other are believed
to be dependent on each other. In this particular context we
perceive this as a variation of analogy-based comparison – i.e.
identifying similar cases by computing a distance between them.
Analogy-based estimation has its foundation in project cost
estimation [23, 28]. There, the elementary belief is that similar
projects are probable to have the same behavior, for example
estimated cost. In our case the rationale is that similar weeks
(w.r.t. test effort) in two projects are probable to have the same
characteristics (e.g. defect inflow). In analogy-based approach the
estimations are derived from historical measurements. A distance
function � is calculated on l number of measurements. Weighting
can be used to alter how much a measurement is supposed to
affect the result. Scaling can be used if the two compared
measurements are of different scale.

The distance is a weighted Euclidean distance �, calculated using
the formula:

�
�

����
l

i
iiii ddswpp

1

22)(),(�

Equation 1, Distance calculation for Analogy-based Estimation [21]

In Equation 1, � stands for distance, p for points, w for weight, s
for scale, d for value of a variable, while i is the index over
measurement values for the data point.

The results of case dependencies is radar plot showing the most
similar cases and the distance between them – an example is
presented in Figure 9.

20

111

152

284

295

432
502

533

588

598

0

100

200

300

400

500

600
51

52

50

49

53

54

48

46

55

47

47

Figure 9. Visualization of case comparison – a radar plot

Figure 9 shows distances of 10 most similar cases to case 47.
Each axis shows the distance between pairs of cases: case 47 and
the case which is used as the name of the axis. In this example,
the most similar case is case 51, as its distance to case 47 is
shortest. The number of cases shown in the plot is an arbitrary
number, which is a parameter in the prototype.
As an extension of comparing a single data point, the developed
prototype provided a possibility to compare a series of data points
and identify the most similar series in a reference data. Each data
point from the series was then visualized separately using the
radar plot. The similarity between the series was visualized using
a colored list, as presented in Figure 10. The result is �/d*100%
using the symbols from Equation 1.

SERPS 2007, 24-25 October, Göteborg

29

Figure 10. Visualization of similarities between series of data

points
The example shows three series of data points (column Case
Original) similar to the given series (column Case Cmp) and the
differences as percentages (Result).

5.2 Evaluation of the methods
The evaluation of the methods is presented in two parts – the
evaluation against the criteria and qualitative evaluation
(including how the method is supposed to be used in the
company).

5.2.1 Evaluation against criteria
The evaluation against the criteria is presented in Table 4. The
evaluation was conducted by the quality manager. The
visualization that was chosen as the best one is the X-centric view
using mind-maps, although its maintainability was very low. The
reason for the low value is the fact that the creation of mind-maps

using the available tools could not be automated and required
manual intervention every time new data points are added to the
data set.

5.2.2 Qualitative evaluation
The qualitative evaluation is a summary of respondent comments
recorded during the interviews when the quality manager
evaluated the prototypes.
The scatter plot prototype could be used directly and for example
be used at project meetings to show how measurements depend on
one another. As an overview it could also be used to compare
different projects which would be of use for project managers that
test various changes to see how these would affect the
dependencies. Today, such comparisons are not done, as the
manual creation of so many plots is very time consuming.
When using the scatter plots on the real data at the company, the
resulting scatter plots had one large disadvantage, namely the
magnitude of the values. If two measurements had values in
different scales, the scatter plot could result in that only one
variable could be seen and the other variable would not be visible
(due to the scaling of the plot itself). Despite this, if a basic
knowledge around the dependencies exists among the
stakeholders, the magnitude problem can be overseen and/or
examined through the other prototypes, making this prototype a
good starting point for identifying correlated measurements. .
The problem of different magnitudes of measurements in scatter
plots is solved by using the correlation prototype. In the prototype
another method for showing correlations was used, the Pearson’s
Product correlation coefficient. Using this coefficient the trends of
the curves were compared while the magnitude was not crucial.
Because of this, the prototype was easier to follow and interpret.
In MS Excel a list with results could easily be sorted given
different criteria, which was a big benefit for the respondent. It
allows easier searches in the data or shows only a subset of
dependencies.
In the matrix result, a full overview of all dependencies could be
seen. This gave the possibility to spot if some dependencies were

Table 4. Evaluation against the criteria (the highest score in boldface)

Criteria Scatter plots Correlation X-centric
(mind-map)

Correlation
compare

Distribution Analogy

Usability
(developers) 5 5 5 5 5 5

Time for execution 5 5 5 5 5 5
Easy to overview
and interpret
results

5 4 5 4 2 4

Handle large sets of
data 5 5 5 5 5 5

Comparing projects N/A1 N/A N/A 5 5 5
Parameters 5 N/A 5 N/A 5 5
Maintainability 3 2 2 3 2 3
Magnitude of
variables 2 5 5 5 2 3

Strength of
correlation N/A 5 5 5 4 5

Usability (experts) 5 5 5 5 2 4
Normalized score 4.77 4.73 4.87 4.79 4.24 4.68

SERPS 2007, 24-25 October, Göteborg

30

of exceptionally high or low correlation by examining the
overview.
This prototype has the potential to improve the measurement
systems being currently built at the studied organization at
Ericsson.
H3Viewer was at an early stage rejected as a solution for
modeling dependencies because of its low configurability.
Strengths and correct colors for the dependencies could not be
included. A hyperbolic browser was created and dependencies
could be visualized, but due to the above limitations we did not
include it in the evaluation.
FreeMind on the other hand, which used XML syntax with full
configurability through the input file, was of good help. The clear
overview with colors and correlation strengths gave a good
overview of the network of dependencies. This could be used to
easily and understandable show the dependency tree on how
measurements were related.
One drawback of FreeMind was when more than two levels of
dependencies were visualized. The resulting image spanned over
a large area which was hard to get overview of when using
computer screen.
Like the scatter plots, this prototype can be used to show an
overview for the surrounding stakeholders during presentations. It
is not certain, however, that the result will be used in the company
to the same extent as the Pearson correlation.
When having a new project and a new measurement system is to
be built upon the assumptions on older projects, this prototype
could be used to see if the dependencies are the same in the two
projects. The task of comparing projects is almost an impossible
task to do by hand.
For project managers the prototype and the method could be used
to track changes in the project progress/behavior compared to past
experiences. When a change is introduced, a new project could be
compared to older projects to see if the changes had any affect on
the measurements. In this way the experts get a support in
answering the question if the measurements measure the same
things in the same way in the new project as in the old projects.
This prototype will, as Pearson correlation, also be useful for the
company. It will be integrated in the core of the measurement
systems. This prototype makes it possible for comparison of large
sets of data and gives an accurate result. Today, to do this kind of
comparison by hand is not possible due to the time it would take.
The comparison of the distribution of values shows how
distributions of two variables could be related to each other as
they have similar distributions.
This method uses the Chi-Square test for independence to obtain
the p-value. During the evaluations the Chi-Square was shown not
to work perfectly on the real data sets since the distributions differ
too much to be compared with the Chi-Square, at least to give a
meaningful result. The implementation of Chi-Square has also a
limitation that it can’t be computed if zero exists in the expected
range. This affected the frequency table to be altered accordingly
to the excepted range of values since it had to be re-configured in
a way that all frequencies had at least one value. This altered
frequency table gave some kind of a manipulated result which
was not sufficiently good.

The magnitude of variables was also a problem. Large projects
could not be compared to smaller projects since this would affect
the outcome of the distribution table. In this case the
measurements need to be standardized first. The magnitude of
differences, however, was found to be important for the company.
Since the frequency table had to be altered to avoid the division
by zero, the result could not be relied on and was difficult to
interpret; hence the prototype will not be used.
The analogy-based comparison prototype had features for scaling
projects to avoid magnitude problems which were found to be
useful. It will be used to find matching groups of weeks in
different projects to identify the most similar weeks. One
drawback with the prototype is that it could be hard to overview
when comparing a large number of weeks.
A particularly useful feature was the comparison between series
of cases, which could help the experts to identify a series of
similar data points (e.g. weeks close to finishing the project) and
the similarity between them.
The prototype will be used by the developers and the analysts of
the measurements systems. It will be used to compare groups of
weeks to adjust the measurement systems, if needed, and could
also be used to find similarities in projects. As the Pearson’s
correlation coefficient, this method will also be a useful for the
company.

6. Validity evaluation
As every empirical research, our case study exposes some threats
to validity. The validity evaluation follows the framework
presented in [29].
The main external validity threat of the results is that this case
study was performed at a single company, at one of its
organizations. Even though the company cannot be regarded
representative for all software industry, the context of this study is
general. The evaluation criteria, however, have not been
generalized to other organizations than the studied one. We are
currently collecting more data from the use of measurement
systems in order to increase the external validity of these results.
The internal validity threat, which seems to be the most
influential, is the fact that the study was performed on a “static”
data set – i.e. a snapshot of the data at a current time in the study.
This was dictated by the time frame of the study. We intend to
further evaluate the prototypes after they are integrated with the
measurement systems developed at the company.
The main construct validity threat is that we developed the
evaluation framework as part of this study. This might bias the
results as there is a danger that the framework is not complete. In
order to minimize this threat we took two measures: (a)
developing the framework before developing the prototypes, and
(b) recording the interview data to identify additional evaluation
criteria (which did not happen).

7. CONCLUSIONS
Working with large number of measurements is a characteristic of
large and mature organizations. As the maturity of the
organizations increases the organizations seek improvements in
their processes, optimizations, and better control. This leads to
using more sophisticated methods for working with data being
collected. In this study we evaluated several basic methods for
identifying, quantifying, and visualizing dependencies between

SERPS 2007, 24-25 October, Göteborg

31

measurements. The identified methods were evaluated empirically
on data from large software projects and through a series of
interviews with the quality manager working with measurements.
During the study we identified a set of criteria used to evaluate
the methods. The criteria reflect the main requirements from the
organization on the toolset used to work with measurements.
The results show that these simple methods are indeed very useful
in working with large number of measurements as they allow
identifying dependencies very efficiently. Using the evaluation
criteria resulted in identifying mind maps as the best visualization
method. Qualitative analysis showed that the expert found
visualization of correlations between large data sets to be useful
method in his work.
Our further work is focused on integrating the presented
prototypes into measurement systems used at the studied
Ericsson’s organization.

ACKNOWLEDGMENTS
The authors would like to thank Ericsson Software Research and
Software Architecture Quality Center for their support in the
study. We would also like to thank managers at Ericsson who
made this work possible and supported us – thank you!

REFERENCES
1. International Standard Organization and International Electrotechnical
Commission, Software engineering – Software measurement process,
ISO/IEC, Editor. 2002, ISO/IEC: Geneva.

2. International Standard Organization and I.E. Commission, Software
engineering – Product quality Part: 1 Quality model, ISO/IEC, Editor.
2001: Geneva.

3. Fenton, N.E. and S.L. Pfleeger, Software metrics : a rigorous and
practical approach. 2nd ed. 1996, London: International Thomson
Computer Press. XII, 638 s.

4. Clark, B., Eight Secrets of Software Measurement, in IEEE Software.
2002. p. 12-14.

5. Kilpi, T., Implementing a Software Metrics Program at Nokia, in
IEEE Software. 2001. p. 72-77.

6. Dekkers, C.A. and P.A. McQuaid, The Dangers of Using Software
Metrics to (Mis) Manage in IT Professional. 2002. p. 24-30.

7. Pfleeger, S.L., et al., Status Report on Software Measurement, in
IEEE Software. 1997. p. 33-34.

8. Brökcers, A., C. Differding, and G. Threin. The Role of Software
Process Modelling in Planning Industrial Measurement Programs. in
METRICS. 1996: IEEE.

9. Walpole, R.E., Probability & statistics for engineers & scientists. 7th
ed. 2002, Upper Saddle River, NJ: Prentice Hall. xvi, 730 p.

10. Anderson, T.W., An introduction to multivariate statistical analysis.
3rd ed. Wiley series in probability and statistics. 2003, Hoboken, N.J.:
Wiley-Interscience. xx, 721 p.

11. Alfert, K., F. Engelen, and A. Fronk, Experiences in three-
dimensional visualization of java class relations. SDPS Journal of Design
& Process Science, 2001. 5(3): p. 91-106.

12. Alfert, K. and A. Fronk. Manipulation of three-dimensional
visualization of java class relations. in The Sixth World Conference on
Integrated Design & Process Technology,. 2002.

13. Hendrix, D., J.H.C. II, and S. Maghsoodloo, The effectiveness of
control structure diagrams in source code comprehension activities. IEEE
Transactions on Software Engineering, 2002. 28(5): p. 463-477.

14. Voinea, L. and A. Telea, Visual data mining and analysis of software
repositories. Computers & Graphics, 2007. 31(3): p. 410-428.

15. Kuhn, A., S. Ducasse, and T. Girba, Semantic clustering: Identifying
topics in source code. Information and Software Technology, 2007. 49(3):
p. 230-243.

16. Umphress, D.A., et al., Software visualizations for improving and
measuring the comprehensibility of source code. Science of Computer
Programming, 2006. 60(2): p. 121-133.

17. Noser, H. and P. Stucki. Dynamic 3D visualization of database-
defined tree structures on the WWW by using rewriting systems. in
Advanced Issues of E-Commerce and Web-Based Information Systems,
2000. WECWIS 2000. Second International Workshop on. 2000.

18. Hing-Yan, L., et al. A multi-dimensional data visualization tool for
knowledge discovery in databases. in Computer Software and
Applications Conference, 1995. COMPSAC 95. Proceedings., Nineteenth
Annual International. 1995.

19. Spence, R., Information visualization: design for interaction. 2nd ed.
2007, New York: Addison Wesley.

20. Abdi, H., A Neural Network Primer. Journal of Biological Systems,
1994. 2(3): p. 247-283.

21. Auer, M., et al. Implicit analogy-based cost estimation using textual
use case similarities. in International Conference on Intelligent Computing
and Information Systems. 2005. Cairo.

22. Bode, J., Decision support with neural networks in the management of
research and development: Concepts and application to cost estimation.
Information and Management, 1998. 34(1): p. 33-40.

23. Sheppard, M. and C. Schofield, Estimating software project effort
using analogies. IEEE Transactions on Software Engineering, 1997.
23(12): p. 736-743.

24. Traina, C., Jr., et al., Fast indexing and visualization of metric data
sets using slim-trees. Knowledge and Data Engineering, IEEE
Transactions on, 2002. 14(2): p. 244-260.

25. Staron, M. and W. Meding. Short-term Defect Inflow Prediction in
Large Software Project - An Initial Evaluation. in International Conference
on Empirical Assessment in Software Engineering (EASE). 2007. Keele,
UK: British Computer Society.

26. Munzner, T., H3Viewer. 2001, Stanford University.

27. Freemind, FreeMind - free mind mapping software. 2007,
Sourceforge.

28. Huang, S.-J. and N.-H. Chiu, Optimization of analogy weights by
genetic algorithm for software effort estimation. Information and Software
Technology, 2006. 48(11): p. 1034-1045.

29. Wohlin, C., et al., Experimentation in Software Engineering: An
Introduction. 2000, Boston MA: Kluwer Academic Publisher.

SERPS 2007, 24-25 October, Göteborg

32

Dependability of IT Systems in Emergency Management at
Swedish Municipalities

Kim Weyns, Martin Höst
Software Engineering Research Group

Department of Computer Science, Lund University
P.O. Box 118, SE-211 00 LUND, Sweden
kim.weyns, martin.host@cs.lth.se

ABSTRACT
In recent years municipalities have become more and more
dependent on IT systems for their responsibilities in a crisis
situation. To avoid unexpected problems with IT systems
in the aftermath of a crisis it is important that these risks
are identified before a crisis occurs and that measures can
be taken to reduce the dependence on systems that could
be unreliable. This report describes the results of two case
studies exploring how Swedish municipalities incorporate IT
systems in their emergency planning. Interviews were con-
ducted with both emergency managers and IT personnel,
and data from the interviews is combined with data from a
large survey. The study focuses especially on how different
actors within a municipality cooperate to analyse the risks
of depending on IT systems in critical situations. The study
shows that today there is much room for improvement, es-
pecially in the communication between IT personnel and
emergency managers.

1. INTRODUCTION
Swedish municipalities have an important active role in crisis
relief. To prepare for these crisis situations, each municipal-
ity employs a number of emergency managers. Their main
task consists of conducting vulnerability analyses and to use
the results of these analyses to improve the municipality’s
ability to offer crisis relief in the aftermath of all kinds of
crises while at the same time keeping their most critical ser-
vices operational.

In recent years municipalities have come to depend more on
IT systems for all their every day workings. For communica-
tions municipalities of course depend on landline telephone
networks, mobile phone networks, webservers, email servers,
etc. Other important systems are used for patient adminis-
tration in health care and social care, school administration
or city planning. Further, a lot of critical information is no
longer stored on paper, but is only available in electronic
format, either locally or even on a server located far away.

In the same way, municipalities now depend on all kinds of
IT systems for their responsibilities in crisis situations. Un-
der normal conditions, an occasional unavailability of most
IT systems is fully acceptable, but during crisis situations
where time is a critical factor in the relief efforts, any un-
expected unavailability can have disastrous consequences.
Therefore it is important that IT systems are an integral
part of all major vulnerability analyses conducted. These
vulnerability analyses are needed to combine information
about the dependability of the different IT systems with
information about how critical the systems are in different
situations. A high dependency is only acceptable on systems
which are highly trustworthy. Less reliable systems can also
be part of emergency plans, but only if alternative solutions
are available, reducing the criticality of the systems.

This vulnerability analysis is not always as straightforward
as it may seem. The main complicating factor is that the
information necessary is spread about over many people.
Conducting the vulnerability analysis is usually the task
of the emergency managers, who also work with the emer-
gency scenarios the municipality is preparing for. Detailed
information about the reliability of the IT systems is often
only known to the manufacturers of the systems and the IT
personnel responsible for the maintenance of the systems.
In many cases this can even be external service providers
that provide the support. In the worst case, when no failure
statistics are systematically collected and little acceptance
testing was done, no dependability information is available.
Further, because reliability information is often expressed in
a technical way, it can be hard to incorporate into vulner-
ability analyses by emergency managers without advanced
knowledge about software reliability.

Detailed information on how critical certain IT systems are
and how they are used in different situations is usually only
available to the actual users who depend on the IT systems,
and who often do not think about the crisis situations that
could occur. They also often base their view of the relia-
bility of the system completely on their own limited past
experience with the system.

A second difficulty with this vulnerability analysis is that
IT systems can exhibit very complex failure behaviour. A
system that has worked perfectly for years, during normal
operating conditions, is in no way guaranteed to work cor-
rectly in special usage scenarios. Unfortunately, these special
usage scenarios are exactly what might occur during crisis

SERPS 2007, 24-25 October, Göteborg

33

situations, which are by definition very rare events. Because
of the complexity of most IT systems, it can be very hard
to predict which combination of environmental and usage
changes can have a large negative impact on system reli-
ability. Even if we manage to understand this relationship
between a changing usage and the dependability much bet-
ter, for example through a detailed study of the sensitivity
of the reliability to usage changes as described in [16, 4],
it would still be difficult to predict which changes in usage
we could expect during certain crisis situations because also
the interactions between IT systems and users can be very
complex.

A third important complicating factor is that IT systems
tend to change very quickly. New systems are added regu-
larly and old systems are almost constantly being updated.
At the same time IT systems are also used for more and more
new functions all the time. Good risk management would re-
quire an updated vulnerability analysis with each important
change in the systems or in the way they are used. Practi-
cally this is usually impossible, but much improvement in
this area is possible.

In this article we present the results of two case studies at
Swedish municipalities about how they include IT systems
in their emergency planning and vulnerability analyses. Ad-
ditionally some results from a survey conducted among the
IT safety responsible at 230 governmental actors in Sweden
are presented. Section 2 presents some general background
information about the role of Swedish municipalities in the
Swedish emergency management system. Section 3 gives an
overview of some related publications. In Section 4 the re-
search methodology used to conduct the case studies and
the survey is discussed. Section 5 discusses the main finding
of the study. Some threats to the validity of the study are
discussed in Section 6. Finally the main conclusions of the
study and a discussion of possible future work can be found
in Section 7.

2. BACKGROUND
2.1 Dependability
In this paper we will use terms such as software dependabil-
ity, reliability and security as they are defined in the work
from Avizienis et al. [2]. This means that dependability is
defined as the most general concept, encompassing the more
limited concepts of reliability, availability, safety and secu-
rity. Reliability is mostly concerned with how often failures
occur in the system. Availability takes into account how long
the system is not functioning when failures occur. Safety is
concerned with the absence of failures causing catastrophic
consequences for its users and the environment, while secu-
rity on the other hand, describes how sensitive the system
is to external threats. Dependability takes into account all
these aspects and corresponds best to the intuitive notion
of how much a system can safely be depended upon by its
users.

2.2 Emergency Management in Sweden
Swedish Emergency management [10] is mainly based on the
principle of responsibility, which means that the in emer-
gency conditions the responsibilities for everyday matters
should still be with those governmental actors that are also

responsible for these matters in normal conditions. Through
the principles of proximity and geographic area responsibil-
ity, emergency management is in the first place a responsi-
bility of the local governments. Practically, this means that
municipalities are the central actor in crisis planning and
crisis relief. Only with major crises that affect many munici-
palities the regional governments are directly involved in an
operative role.

For their emergency planning, Swedish municipalities receive
support from the Swedish Emergency Management Agency
(SEMA, or KBM in Swedish)[1] and the regional govern-
ments. The regional councils have the responsibility to coor-
dinate the emergency management at a regional level and to
systematically review the emergency plans of the municipal-
ities in each region and to report on this to SEMA. SEMA
itself assists the regions and municipalities by supporting
them in emergency planning and by providing information
and guidelines. Unlike in many other countries, SEMA does
not have an operative role in crisis relief.

SEMA defines a crisis as in Figure 2.2. Informally it could
be stated that a crisis is when a combination of events, e.g.
accidents and sabotage, result in a situation that negatively
affect society in a way that hinders vital society functions.
Examples of crises that are included in this definition might
be terror attacks, storms, tsunamis, murders etc.

2.3 Swedish Municipalities
Sweden is divided into 290 municipalities [14]. The popu-
lation of Swedish municipality range from under 2.500 in
Bjurholm to 770.000 in Stockholm. Their geographic area
ranges from 9 km2 for Sundbyberg to 19.447 square km2 for
Kiruna.

The municipalities are responsible for the matters directly
relating to their inhabitants and their geographic area. This
means that their main responsibilities include education,
child and elderly care, street maintenance and emergency
management. Therefore Swedish municipalities are both ser-
vice providers (for social care and education) and supervi-
sory authorities (for environmental issues for example).

There is no standard organizational structure shared by all
municipalities, but some common factors can be seen in
nearly all municipalities. The main regulation governing the
workings of a municipality is called the ‘Local Government
Act’ [3]. The activities of a municipality are lead by a mu-
nicipal executive committee, appointed by the elected rep-
resentatives. The daily work is lead by a municipal director,
who reports to the municipal executive committee.

The main activities of a municipality are usually divided over
a number of administrative units, each responsible for one
or more of working areas of a municipality (social service,
social care, city planning, environmental issues, emergency
services, culture, etc.). These activities are all external ser-
vices the municipality offers to the general public. To sup-
port all these external services there is a need for a number
of supporting activities, also called internal services, such as
economy, technical support, housing or IT.

These internal services can be centralised for the whole mu-

SERPS 2007, 24-25 October, Göteborg

34

”Crises are events that disrupt the functioning of society or jeopardise the conditions that govern the life of the
population. They include serious crises in times of peace as well as war. Such situations demand good emergency
management if they are not to undermine confidence in the Government and authorities and potentially threaten
the national security and democracy of Sweden.”[1]

Figure 1: SEMA’s definition of a crisis

nicipality or divided over the different administrative units,
depending on the organisational structure of the municipal-
ity. Many municipalities have recently brought their IT per-
sonnel into one central IT unit that offers IT services to all
administrative units. This allows for a more efficient use of
IT resources than before when many of the administrative
units had their own separate IT personnel. We further dis-
cuss the consequences of this reorganisation in section 5.1

As said before, one of the responsibilities of a municipal-
ity is emergency management. Therefore most municipalities
have one or more emergency managers who are often part
of the fire department. Their responsibilities usually range
from making emergency plans and conducting vulnerability
analyses to organizing the information flow under an actual
crisis.

3. RELATED WORK
3.1 Emergency Management
In many countries emergency planning is coordinated on
a national level by a federal government agency such as
the United States Federal Emergency Management Agency
(FEMA), Emergency Management Australia (EMA), Pub-
lic Safety Canada or the Russian Ministry of Extraordinary
Situations (EMERCOM). Although the exact roles of these
agencies can differ from country to country, they all support
local governments in their emergency management. Because
emergency management is handled differently in different
countries, most countries published their own vulnerability
analysis methods for use at the local level. In Sweden most
publications on this topic are published in cooperation with
SEMA. A good overview of Swedish emergency planning at
the municipal level can be found in [5, 15]. Hallin et al.[5]
also describe a scenario based method called Municipal Vul-
nerability Analysis (MVA).

In the private sector emergency management is usually called
business continuity management. An important difference
between the public and the private sector in this field is that
governmental actors often have an important, active role in
crisis relief and need to prepare to offer special services in
the aftermath of a crisis. Business continuity management is
concerned with keeping the level of service at a normal level
in crisis conditions, or degrading the level of service grace-
fully to an acceptable level. For a governmental actor on the
other hand, the unavailability of its services might be fully
acceptable on any normal day, but can be critical in crisis
situations. This special role in crisis relief role poses com-
pletely different demands on their emergency management
procedures than those used in the private sector.

3.2 IT Management
A number of international best practice frameworks and
standards have been published to help organisations obtain a

higher dependability of their IT services and systems, among
those ITIL [12], COBIT [7] and ISO/IEC 17799 [6]. These
frameworks are much more suited to be used by large corpo-
rations with very large IT resources. For small municipalities
these frameworks are too large to be of any practical use.

For this reason, SEMA published the BITS (Basic Level for
IT Security) handbook [9]. This short publication is meant
to give Swedish authorities a practical overview of the main
administrative measures that can be taken to achieve a min-
imum level of IT dependability. BITS is based on interna-
tional standards such as ISO/IEC 17799 [6], but BITS is
much more suited for small public actors. BITS is also ac-
companied by BITS Plus, a web based planning tool that
can be used to coordinate the work with the BITS stan-
dard. The main disadvantage with using BITS for achieving
a higher dependability is that it focuses mainly on security
and a lot less on reliability and safety. Most of the chap-
ters focus only on confidentiality and integrity, without dis-
cussing other than malicious threats to the dependability of
the system. Secondly, BITS also focuses mostly on the tech-
nical system level which makes it easy to loose track of the
organisational level and of how critical the systems actually
are for the organisation in different situations. This was also
remarked in the survey described in Section 4.2. Overall this
makes BITS a good tool for systematic work with IT secu-
rity matters, but BITS is only part of the solution needed for
evaluating the dependability of IT systems during a crisis.

Internationally, more and more research is being done on
special systems that can be used in crisis relief, but many of
these systems are only in the development phase. The near
future will almost certainly see a serious rise in the number
of IT systems used in crisis situations. So far most of these
systems are only considered as an extra tool in the aftermath
of a crisis, but as these tools become more common, we come
to depend on them more and more. Just like when people
start using a mobile phone, they first see it as a tool that
just makes some things a bit easier. However, after using a
mobile phone for some time, they can no longer imagine how
they could ever manage without a mobile phone. Therefore,
extra caution is warranted when these crisis relief systems
are ready to be used in real emergency situations. To be able
to use these systems efficiently, and to be able to evaluate
the dependency on these systems, it is even more important
to fully integrate these IT systems into emergency manage-
ment and include them in the vulnerability analyses that are
conducted.

4. RESEARCH METHODOLOGY
The research in this report combines results from three dif-
ferent sources: an elaborate literature study, data collected
from case studies at two Swedish municipalities and the data
of a survey conducted by SEMA among all Swedish munic-

SERPS 2007, 24-25 October, Göteborg

35

ipalities and a series of other governmental actors. The two
case studies are described in Section 4.1 and the survey is
elaborated upon in Section 4.2.

4.1 Case Studies
The main part of this research was conducted in two case
studies at two different Swedish municipalities. The munic-
ipalities were specially selected because they had shown an
interest in the topic of IT systems in emergency management
in previous contacts with SEMA or with other members of
our research project.

Municipality A is a large Swedish municipality consisting of
a major Swedish harbour city and the surrounding urban
areas. Municipality B on the other hand is a small munici-
pality consisting of two suburbs of a large Swedish city. The
two municipalities are substantially different in many im-
portant ways. Municipality A has roughly 6 times more in-
habitants and also employs about 7 times more people. Also
from a vulnerability perspective there are large differences.
Municipality A houses a lot of industry and is an important
national hub for the transport of dangerous goods. During
the last years the municipality has gone through some major
emergency situations of different types. Municipality B on
the other hand has a much lower risk profile and has not
experienced any major emergency situations in the last 15
years.

To understand how these municipalities assess the depend-
ability of their IT systems in emergency situations, a series of
interviews were conducted with emergency managers and IT
personnel at both municipalities. Further a number of doc-
uments concerning IT strategies, organisational structures
and vulnerability analysis were also collected and studied,
both before and after the interviews. Because the nature
of the research was strongly explorative, each consecutive
interview or document was studied immediately and this
information was used to improve the preparations for the
next interviews. The disadvantage with this method is that
it might introduce a bias in the next interviews, but it was
considered that the advantage of a more informed prepara-
tion for further interviews outweighed this disadvantage, es-
pecially since some of this researcher bias is inevitable when
all interviews are conducted by the same researchers.

The interviews were conducted as open interviews [13], with
a lot of freedom for the respondents to give their view on
the issues at hand. All the interviews used the same basic
list of open questions, but they were only used to make sure
the interviews covered all the necessary topics, not to decide
the order of the topics. Because different municipalities have
such different ways of working, it was not possible to compile
a list of very specific questions that could be used for all the
interviews. Often it was necessary for the interviewees to
first explain a number of other aspects before they could
completely answer a certain question. The advantage of this
freedom in the interview is that the respondents had the
freedom to stress the parts they see as the most important.
The main disadvantage is that the analysis of the interviews
becomes harder because there is not standard structure.

For the first municipality, interviews were conducted with
two emergency managers and one former IT manager, cur-

rently working at the social care department as project man-
ager, specialised in IT projects. At municipality B, inter-
views were conducted with one emergency manager respon-
sible for IT safety and one IT technician. At both munici-
palities the emergency managers were interviewed first, since
they are easier to contact for an outsider. They were then
asked to provide contact information to suitable contacts in
the IT department.

For the analysis, all interviews except the first one were
recorded and transcribed in full. During the transcription
they were also translated from Swedish to English to facili-
tate the analysis. As recommended by Robson [13], a number
of coding categories were used to reduce the amount of data
to be studied. For the coding two independent researchers
went through all the transcribed text and coded all passage
that related to one or more of the following categories and
subcategories:

• Organisation

– Organisational structure

– Responsibility for the IT systems

– Organisational changes

• Risk analysis

– Risk analysis activities

– Identification of critical systems

– Prioritisation of IT support

• Communication with the IT personnel

– Ways of communication

– Driving force for communication

• Service level agreements (SLA)

– SLA form

– SLA content

• Practical examples

– Past problems

– Frustrations

– Implemented solutions and practices.

These final categories are the result of a stepwise improve-
ment from an initial set of categories based on the main
concepts in the research. The coding helps us to identify
statements that logically belong together but are spread out
over the text. The coding was not a goal on its own, but an
analysis tool and therefore the categories were not defined
too strictly beforehand and it was left to the researchers
doing the coding to fine tune the categories.

The first category collects statements about the personnel
involved in evaluating the dependability of the IT systems.
The focus of this category is on how the responsibilities are
divided between the different people involved. The second
category contains all data about how vulnerability analysis

SERPS 2007, 24-25 October, Göteborg

36

is performed at the municipalities under study, with spe-
cial focus on how the IT systems are analysed. The third
category collects the information about how and when the
IT unit communicates with the rest of the municipality’s
personnel. The fourth top category is about service level
agreements in the very broad sense, so everything about the
level of services expected from the IT systems at the mu-
nicipalities, and how this is specified or agreed upon. The
last category collects all the practical examples that were
discussed during the interviews that were most illustrative
for the issues discussed in this report.

After two separate researchers, i.e. the authors of this pa-
per, marked the interviews according to this categorisation,
their lists were merged and the excerpts in every category
and subcategory were analysed. Since the interviews often
returned to the same topic, and because different people in
the same organisation were interviewed, a triangulation can
be done to check the consistency of the interviewees’ an-
swers.

For the analysis both within and across the two municipal-
ities the technique of explanation building as described by
Yin [17] was used. Special attention was given to those issues
where the respondents disagreed or gave conflicting answers.
More details on how the conclusions were reached from the
data can be found in the discussion of the study’s findings
in Section 5.

4.2 Survey by SEMA
In May 2005, SEMA conducted a survey among 368 IT se-
curity managers at Swedish municipalities, regional govern-
ments and different public authorities. A first analysis of
the 230 answers to the survey they received was published
shortly afterwards [8].

The survey consisted of between 14 and 30 questions, de-
pending on the chosen alternatives. The majority of the
questions were multiple choice questions where respondents
were asked to rate something on a scale from 1 to 5. A sub-
stantial part of the questions were open questions that gave
the respondents the chance to explain their answers in more
detail.

The goal of the survey was to assess the capabilities of dif-
ferent governmental actors in the field of IT security. Within
IT security the survey focused mostly on the methods and
standards used and how SEMA’s support towards the gov-
ernmental actors could be improved. The respondents were
also asked to make an assessment of the maturity of their
organisation and different members of their organisation in
IT security.

For this report we had access to all the raw data from the
survey, but all names were removed for integrity reasons. It
was still possible to determine if a series of answers came
from a municipality or a regional government, but answers
could no longer be connected to a specific public actor. The
answers to the multiple choice questions were mostly used to
see how common the use of the different methods and stan-
dards is. The answers to the open questions were analysed
in a similar way as the interviews in the case studies. The
main conclusion and a graphical analysis of the multiple

choice questions can be found in the survey report [8].

When considering the validity of the data collected from the
survey we need to keep in mind that the answers only reflect
the view of the IT security responsible at each public author-
ity. To get a complete picture other roles in the municipality
should be included in the survey too. Secondly, it might be
possible that those public actors that have the lowest level
of maturity in IT security did not care to answer the survey,
and this would make that the results can not be generalized
blindly. Further it is important to see that the focus of the
survey and the case studies is slightly different. The survey
focussed on security, while the case studies were concerned
with dependability.

5. FINDINGS
This section contains the main findings from the case stud-
ies and the survey. Each of the next sections discusses the
conclusions that can be drawn from the excerpts that were
coded in to the corresponding categories and subcategories.
Therefore the following sections follow roughly the structure
of the categories listed in Section 4.1, though the order has
been changed to facilitate the discourse.

5.1 Organisation of IT Services
5.1.1 System Responsibility
In both municipalities that participated in the study there
is a central IT unit responsible for the maintenance of the
IT systems. For some systems, the maintenance is done with
the help of suppliers or external consultants. When it comes
to the final responsibility for the system, both municipalities
make a distinction between those systems that are common
for the whole municipality and those that are specific for one
department. The former systems such as the email system,
the network or the operating systems are the direct respon-
sibility of the IT department. The latter systems such as the
economy system or systems used in social care are the re-
sponsibility of the specific departments. This responsibility
means they decide about the acquisition, the updates and
the evaluation of the systems. The maintenance for both
types of systems can be performed by either the IT depart-
ment or by external consultants, for example from the sup-
plier of the system. The contracts with the supplier can be
signed with or without some involvement of the IT depart-
ment.

The main advantage of this approach is that the main re-
sponsibility for all the systems lies with those who have
the most knowledge of the application area of the system.
This approach also has a number of problems, especially in
the cooperation between the IT department and the people
responsible for the systems owned by the different depart-
ments. Because they are in different departments with differ-
ent goals, there is often a conflict relationship between them
prohibiting a good cooperation and exchange of necessary
information.

A first problem lies in the evaluation of the dependability
of the systems. Since the IT department is responsible for
the maintenance they are contacted in case of any problems,
but it is not their responsibility to collect failure statistics,
as expressed in Quote 1. The IT personnel has the ungrate-
ful role of having to maintain these systems while they can

SERPS 2007, 24-25 October, Göteborg

37

not directly influence their administration. The responsible
of the system on the other hand, is then not even notified
of all the problems, and can not get a full picture of the
dependability of the system. In municipality A, the IT de-
partment has a help desk that coordinates the maintenance
work of the IT department. In municipality B, users contact
one of the employees of the IT department directly on their
mobile phone, making it even harder to collect failure sta-
tistics. Further, concerning the service that is outsourced to
external suppliers, some failures are reported directly to the
supplier, while others are reported to the supplier through
the IT department.

Quote 1
We don’t do any organised collection of statistics now,
we just try to solve the problems that pop up. – IT

Technician, Municipality B

A second problem is that most of the systems owned by the
various departments are dependent on the operating sys-
tems and the network administrated by the IT department.
Since both groups have the individual responsibility to de-
cide about major updates to their systems, this can create
problems when these are not communicated well in advance.

A third problem is that in this organisational structure the
IT-departments do not have any own technical personnel
that can advice them on the technical details that are in-
volved in the administration of the systems they are respon-
sible for. To be able to take full responsibility for the systems
not only a good understanding of the purpose of the systems
but also a good technical understanding of the workings of
the system is necessary. This can lead to responsibilities im-
plicitly being shifted to the IT department where they do
not belong, just because the different departments do not
immediately know how to deal with them. This is for exam-
ple complained about in the survey as can be seen in Quote
2.

Quote 2
To define the limits of their area of responsibility to
make sure that the responsibility is where it should be.
This is necessary to avoid that the stress lies on the
technology in stead of the processes. We are not good
enough at explaining that there are some parts where
the different departments must take responsibility. To-
day it is automatically the IT unit that must take re-
sponsibility for IT matters for which no-one else takes
responsibility. This is not good. – Survey answer to

the question: What do you think the IT per-

sonnel could get better at concerning IT de-

pendability?

Another common problem with the organisation of the IT
department is that in old organisational structures IT is still
considered to be a part of the economy department and the
Chief Information Officer (CIO), or a similar function, still
reports to the head of the economy department, and not to
the director of the municipality directly. This is also referred

to as an important inhibitor to a good cooperation between
the IT department and the rest of an organisation in the IT
governance literature, for example in the work by Luftman
[11]. This problem was also visible at municipality B and
was complained about in the survey.

In municipality B, IT safety is a responsibility of one of the
emergency managers at the municipality. The advantage of
this role is that he can lift these safety issues immediately
to the highest levels in the municipality where the legal re-
sponsibility for all safety matters in the municipality lies. On
the other hand, the danger is that the IT department feels
relieved of all safety responsibilities although their expertise
is indispensable for evaluating this safety.

5.1.2 Internal Communication
An often recurring complaint, in the case studies and the
survey, is a lack of real understanding between the IT de-
partment and the users. Users complain that the IT person-
nel does not understand what they expect of their systems,
as for example in Quote 3. The IT personnel on the other
hand complains that the users do not understand the risks
involved with IT systems, especially concerning security.

Quote 3
We have generators and we can provide backup power
to our IT systems very long. Quality of the IT sys-
tems is harder. We have discussed this a lot. Also with
our IT technicians, but they focus often on the wrong
things. – Emergency Manager, Municipality B

This lack of understanding is a consequence of the commu-
nication problems between both parties. Both municipali-
ties under study lacked a forum where the IT department
and the users could discuss important IT issues together, as
discussed in Quote 4. For some major discussions working
groups are created that include representatives of suppliers,
users and the IT department, but this is done too seldom.
In the worst case the only communication occurs when a
failure of a software system occurs and the IT department
has to be notified to fix the problem.

Quote 4
They always want to buy a new server for every ap-
plication, but that is not always necessary. But it is
not us who decides, we just hopefully get asked, though
often too late. – IT Technician, Municipality B

For example, when it comes to communicating about major
updates to the systems, under the responsibility of either
the IT department or the other departments, both munici-
palities admitted that they had encountered problems in the
past. All people involved knew that the best way would be
to discuss any major updates with all parties involved before
the decision to update is made final, but in practice many
decision where made unilaterally and sometimes the other
parties were not even notified in advance of the update.

SERPS 2007, 24-25 October, Göteborg

38

Another common complaint about the communication be-
tween users and the IT department is that the communica-
tion from the IT department is too technical. Outside the
IT department there is not enough technical knowledge to
understand the technical details of the system, while the IT
department does not manage to communicate their message
without resorting to technical details. This adds to the frus-
tration of parties, and results in the IT department not being
consulted as often as necessary for important decisions.

5.1.3 Service Level Agreements
Both municipalities in the study have some service level
agreements (SLAs) with their external suppliers but have
no service level agreements at all with their own IT depart-
ment. In a small municipality it would probably be too te-
dious to write formal agreements that should be considered
as binding contracts. Nevertheless, some written communi-
cation where users and the IT department discuss the level
of service, could bring clear advantages to both parties. For
example in municipality B, the IT department tries to al-
ways have some IT personnel reachable to provide service,
even in weekends and at night in case there is a need for ur-
gent IT support for critical systems. This level of service is
in no way guaranteed to the rest of the municipality, but is
just done because the IT department considers it reasonable.

Without SLAs the IT department is expected to deliver ser-
vices at best effort, but without any specifications what level
this is. In this situation, all failures are considered as faults
of the IT department to deliver satisfactory service. Further
there are no written agreement as to which systems should
have a high availability, and the IT personnel estimates from
experience which systems are most critical to prioritise their
work. Service level agreements would give the IT department
a stronger position when asking for resources to deliver a
necessary level of service and at the same time protect them
from user expecting an impossibly high level of service, as
expressed in Quote 5.

Quote 5
There are 1000 reasons for having a service level
agreement, but the one reason for not having it is
that without one, the IT department is not obligated
to anything. They do not see that it could also be a de-
fence for them that they can not be blamed for not de-
livering something they before clearly stated they could
not deliver. – Project Manager, Municipality A

The advantage of SLAs for the users is that they know what
to expect, and what not to expect, from their IT systems.
This way they can avoid both depending on unreliable sys-
tems and investing in unnecessary backup solutions for suffi-
ciently reliable systems. This problem is expressed in Quote
6 from a project manager at municipality A.

Quote 6
If the IT department can explicitly state that they can
not give us any guarantees, we have good reason to
invest some extra millions on this side to secure our
systems. But now we have no arguments to justify this
cost here. – Project Manager, Municipality A

Even the service level agreements with external suppliers are
often not well planned and not adapted to the level of quality
actually demanded by the users of the systems. For exam-
ple at municipality B, the maintenance contract with their
supplier of routers guaranteed on-site service within 8 hours.
This number was agreed upon many years ago, and nobody
seems to know exactly why it once was set at 8 hours. The
importance of the internal network for the daily operations
at the municipality has definitely increased drastically since
this decision was taken. This example shows there are no
routines in place to regularly re-evaluate important service
level agreements.

Service level agreements are closely connected to measure-
ments. The writing of service level agreements forces an or-
ganisation to think about how the quality of its IT systems
can be measured. Just as both municipalities lack service
level agreement for most of their systems, they also lack the
possibility to measure the quality of their IT systems. Ac-
cess to such measurements would give them a possibility to
concentrate their resources better to improve the weakest
links in their critical systems.

5.2 Emergency Management
Every municipality has a number of emergency managers
responsible for preparing the municipality for possible crisis
situations. An important part of this task is to help all the
departments in the municipality to conduct risk and vulner-
ability analyses and to produce emergency plans. The risk
analyses can only be conducted by the personnel of each
department, because they are the only ones that have the
necessary knowledge about how emergency situations could
influence their work. The emergency managers help them
in this task by instructing them in the methods that can
be used, and reminding them to keep their emergency plans
updated.

The most commonly used methods for risk and vulnerabil-
ity analysis are scenario-based, as for example the method
developed by Hallin et al. [5]. Most municipalities also or-
ganise regular, scenario-based emergency exercises to test
their emergency planning. The emergency management of a
municipality often results in a number of simple measures
that can be taken to seriously reduce the probability or effect
of possible crisis situations.

The emergency managers are also responsible for planning
the specific responsibilities of the municipalities in crisis re-
lief and information spreading during a crisis. All munici-
palities are required to have a crisis central that can be used
to coordinate the relief effort during and in the immediate
aftermath of a crisis. SEMA also assists municipalities in
setting up such a crisis central and analysing which facili-
ties are required. IT systems, and especially communication
systems, are an important part of the equipment available

SERPS 2007, 24-25 October, Göteborg

39

in a crisis central.

Although IT systems can play an important role in the after-
math of a crisis, they are seldom included in the emergency
plans and risk analyses that are conducted. Emergency man-
agers would like to include these systems, but in practice
they do not manage to cooperate with the IT department
to do so. In municipality A, the emergency management
of the social care department is planned to be completely
independent of IT systems. This means, for example, that
all critical information is printed out on a very regular ba-
sis and communication plans are ready that do not rely on
modern technology. As the project manager explained, this
is a safe solution, since it means they are prepared for a
complete failure of all IT systems, but it is also a serious
overhead cost that is only necessary because they do not
manage to analyse the risks of depending on their IT sys-
tems. If they would manage to include the IT systems in the
risk analyses, they would be able to evaluate which systems
are reliable enough to depend upon in different emergency
situations, and they could safely reduce this overhead cost.
Because the IT systems are not part of the emergency plans,
they can also not be used as efficiently in a crisis if they turn
out to be reliable after all.

In municipality B, a crisis central was installed with the help
of SEMA and a number of external consultants. Although
this room contains a number of computers and network con-
nections, the IT department was not involved in the devel-
opment of this room. The systems in this room are meant to
be used in crisis situations and have redundant phone and
internet connections. The IT department also maintains the
systems in this room, but they have no responsibility for
the reliability of these systems and are not involved in any
strategic planning of how the systems in this room should
be updated or replaced.

When the IT department is not involved in emergency plan-
ning, as expressed in Quotes 7 and 8, they are also not
aware of which systems are critical during different crisis
situations and they can not correctly prioritise their main-
tenance work without receiving specific instructions during
a crisis. This also means that IT systems are seldom involved
in emergency exercises. Useful lessons could be learned from
exercises such as regularly trying to restore a system from
backup, or measuring the behaviour of the network when
one or more routers are disabled. When this kind of statis-
tics is available it can be taken into account in the emergency
planning.

Quote 7
We are not involved in making emergency plans. It’s
not something we think about. – IT Technician, Mu-

nicipality B

Quote 8
I don’t know what the rules are for prioritised service
in an emergency. Nobody said that one computer is
more important than the others. – IT Technician,

Municipality B

5.3 Common Problems
In this section we summarize the main problems the studied
municipalities experienced when trying to integrate their IT
systems in their emergency planning.

A first recurring problem is the lack of good supporting
tools or standards. BITS [9], the brochure with guidelines
published by SEMA, is used by 75% of the municipalities
that answered the survey, but BITS Plus, the tool that was
added more recently, was used by only 28%. BITS is more
focused on security than reliability, and the focus is there-
fore more on the systems as separate units, and not on how
the systems fit in to the overall activities of the munici-
pality, as also remarked in the survey as in Quote 9. For
this reason, BITS is not ideal for a complete dependability
analysis, and might even lead to some aspects being forgot-
ten when it is not complemented with other risk analysis
tools or methods that incorporate the IT systems. The in-
ternational standards and best practice frameworks such as
ITIL and COBIT discussed in Section 3.2 are too large and
too much focused on companies to be very useful to most
municipalities.

Quote 9
The main disadvantage of BITS is that it uses an
object-oriented model for IT dependability, instead of
a process-oriented model. This means it sees IT sys-
tems as isolated objects, in stead of starting from the
information processes that are provided or supported
by the system. – Survey answer to the question:

What do you think could be improved about

BITS?

For this reason, municipality B has started developing their
own risk management tool, with special focus on following
up the whole process from identification of possible risks to
mitigation. When the system is completed, it is meant to
be used by all departments in the municipality. At the time
of this research, the systems was however only just being
deployed and was not used for documenting IT risks yet.

A second major problem that was observed at both the mu-
nicipalities was the problem with defining who is responsible
for evaluating the dependability of the IT systems in crisis
situations. This task requires the cooperation between the
emergency managers, the IT department and the depart-
ment owning the system. In practice, because of the com-
munication problems discussed before, this can lead to this
issue being overlooked when nobody takes the responsibility
to organize a working group to tackle this problem. Espe-
cially if the IT department is not involved in the strategical
discussions about the IT systems, they limit themselves to
the daily maintenance of the systems and only perform tech-
nical long-term improvements when explicitly asked. This
can for example be observed in Quote 10

SERPS 2007, 24-25 October, Göteborg

40

Quote 10
– Interviewer: Computers have become more critical
in the last years. Did you recently re-evaluate the 4
hour service agreement with your network supplier?
– No, this is something the users of the applications
should worry about, not us. We only have a respon-
sibility for the maintenance of our systems: the net-
work, the mail servers, and file servers. – IT Tech-

nician, Municipality B

Another problem is the users’ and emergency managers’ lim-
ited understanding of the dependability issues of IT systems.
Especially concerning security, as shown clearly in the sur-
vey, the IT department often complains about the negligence
of the users. Also concerning the reliability, the users do not
have enough technical knowledge to understand the IT sys-
tems. When they want to conduct a risk analysis of the IT
systems they need this technical knowledge to be able to un-
derstand all the threats to the reliability of the system, their
probability and possible consequences. Often it is assumed
that the IT systems can be depended upon in a crisis, even
if there is no evidence of their reliability.

Finally, a typical problem with IT systems is their fast evo-
lution. New IT systems are installed every year and updates
are done even more regularly. Adding new systems or new
functionality to old systems changes both the reliability of
the system and the dependence on the system. When the
municipalities already have some risk analyses of their IT
systems, they do not manage to keep these analyses updated
to reflect the latest functionality of the IT systems. This is
especially important since the dependence on the IT systems
is increasing continuously. At first, after a new system has
been installed, the system is usually only considered an ex-
tra asset that could be useful in a crisis situation, even if it
not critically necessary because the old alternatives are still
available. At this time the dependability of the system is
not critical, but when the user get more used to having the
new system around, the alternative systems are neglected
and the new systems can get more and more critical. When
these changes occur gradually, they are sometimes only no-
ticed too late and systems can become critical without their
dependability ever having been seriously evaluated.

6. VALIDITY DISCUSSION
A number of possible threats for the validity can be identified
for this study. Concerning external validity it is important
to understand that the results of the case studies can not be
generalized in the same way as the results of the survey.

The majority of the 290 Swedish municipalities participated
in the survey, and the results to the multiple choice questions
can be therefore be considered statistically representative.
The open questions in the survey were only answered by few
respondents and can not be generalized in the same way.

The case studies on the other hand, studied only two munic-
ipalities, and can not so easily be generalized to all Swedish
municipalities. This was of course also not the goal of the
study. The goal of the explorative study was to get some un-
derstanding for the problems that municipalities are facing
when trying to include their IT systems in their emergency

management. Even though many of the same problems occur
at both the municipalities under study, this is no proof that
they appear in all Swedish municipalities. When combining
the survey and the case studies, we can at least conclude
that some of the problems are very common, and we can
suspect that some of their causes and effects is probably the
same for many more Swedish municipalities.

An important threat to the validity in this study is the pos-
sibility of researcher bias. All the interviews were conducted
by the same researchers and the conclusions from the first
interviews were used to steer the later ones. Because of the
open form of the interviews, it would be even easier for the
researchers to steer the respondents to certain conclusions.
To minimise the effect of researcher bias, the interviews were
conducted with two researchers present and extra care was
given to let the interviewees tell their own story, without
guiding their answers. In the analysis of the interviews the
possibility of researcher bias was constantly taken into ac-
count when building explanations.

A threat to the construct validity that is often present when
data is collected through interviews is the possibility that
the participants are focusing too much on their own side of
the story and give a distorted view of reality. One reason
for this is that people do not have perfect recollection, and
only remember a part of what happened. A second reason is
that people automatically try to defend their own actions,
and although they would hopefully not lie deliberately, they
might neglect to tell some things that makes them look bad.
Through the use of triangulation, by interviewing different
people at the same municipality and by asking different ques-
tions concerning the same topic, the effect of this can be re-
duced. Overall, the interviewees were not afraid at all to talk
about problems they were experiencing or had experienced
in the past. Because all official documents that are not de-
clared classified are automatically public in Sweden, it was
also no problem to gain access to any documents requested
for analysis.

A final important threat to the validity is that the munic-
ipalities that were studied are listed as good examples of
emergency management on SEMA’s website: municipality
A for using the MVA [5] technique and assisting in the de-
velopment of this technique, and municipality B for the risk
incident reporting system they developed. This is an indi-
cation that both municipalities might be more mature in
handling these issues than most other Swedish municipali-
ties. For this exploratory study this was considered an ad-
vantage, since this allowed us to interview more experienced
participants, but it makes the results harder to generalize.

7. CONCLUSIONS AND FUTURE WORK
In this report we studied how municipalities in Sweden eval-
uate the dependability of their IT systems in possible crisis
situations. A first set of case studies and the results of a
survey have given us a better understanding of the main
challenges involved.

In the case studies we noted a number of problem areas.
The main problem is that the studied municipalities lack a
forum where preventive measures concerning IT dependabil-
ity issues can be discussed. All involved parties do their best

SERPS 2007, 24-25 October, Göteborg

41

in contributing to the dependability of the systems, but no
cooperation to discuss these matters on a strategical level
is present. Therefore, those responsibilities that lie on the
border between different people’s areas of responsibility are
often given too little attention.

Now that we have identified a problem and possibility for
improvement with how municipalities deal with dependabil-
ity of their IT systems, a next logical step is to start working
towards a tool that can help municipalities improve in this
field. In the end this should result in a process improve-
ment model that is simple enough to be applied even by
small municipalities, but that at the same time can make a
big difference. The focus of this improvement model should
be in stimulating the communication about these issues be-
tween the IT personnel, the emergency managers and the
users of the different IT systems in the municipality.

The first step towards this goal is to develop a measurement
scale and tool that municipalities can use to assess how ma-
ture they are in handling this issue and in which areas there
is most room for improvement. The next step is then to eval-
uate this measurement tool in practice and improve it based
on this evaluation.

With the help of this measurement tool we can then start to
develop a process improvement model based on these mea-
surements that helps municipalities reach a higher level of
maturity in dealing with dependability issues and to sustain
these improvements. The final step would then be to eval-
uate this complete maturity model in a practical setting at
one or more municipalities while continuously improving it
based on these experiences and the feedback we receive.

Acknowledgements
The authors would specially like to thank all the participants
in the interview study.

The work is partly funded by the Swedish Emergency Man-
agement Agency under grant for FRIVA, Framework Pro-
gramme for Risk and Vulnerability Analysis of Technological
and Social Systems.

8. REFERENCES
[1] Swedish Emergency Management Agency,

http://www.krisberedskapsmyndigheten.se/.

[2] A. Avizienis, J. Laprie, and B. Randell. Fundamental
concepts of dependability. Research Report N01145,
LAAS-CNRS, 2001.

[3] Finansdepartementet KL. Kommunallag (1991:900), 1991.

[4] K. Goševa-Popstojanova and S. Kamavaram. Software
reliability estimation under uncertainty:generalization of
the method of moments. Eighth IEEE International
Symposium on High Assurance Systems Engineering, 2004.
Proceedings., pages 209–218, 2004.

[5] P.-O. Hallin, J. Nilsson, and N. Olofsson. Krishantering p̊a
svenska: Teori och praktik. Technical report, 2004.

[6] International Organization for Standardization. ISO-IEC
17799: Information technology - Security techniques - Code
of practice for information security management, 2005.

[7] IT Governance Institute, USA. Control objectives for
information and related technologies (COBIT) (3rd ed.),
2000.

[8] K. Kalmelid and J. Gustavsson. Inventering av
kompetensbehov m.m. inom informationssäkerhet i offentlig

sektor. Technical report, Rapport, Informationssäkerhets-
och analysenheten, Krisberedskapsmyndigheten, 2005.

[9] Krisberedskapsmyndigheten. Basic Level for IT Security
(BITS). Technical report, SEMA recommends 2003:2, 2003.

[10] Krisberedskapsmyndigheten. Samhällets krisberedskap -
Inriktning för verksamheten 2007. Technical report,
Planeringsprocessen 2005:3, 2005.

[11] J. N. Luftman. Managing the Information Technology
Resource: Leadership in the Information Age.
Prentice-Hall, 2003.

[12] Office of Government Commerce. Information Technology
Infrastructure Library (ITIL) Version 3, 2007.

[13] C. Robson. Real World Research: A Resource for Social
Scientists and Practitioner-researchers (Regional Surveys
of the World). Blackwell Publishers, 2002.

[14] Swedish Association of Local Authorities and Regions.
Levels of Local Democracy in Sweden. Technical report,
Swedish Association of Local Authorities and Regions,
2005.

[15] Vägledning fr̊an Krisberedskapsmyndigheten. Kommunens
Plan för Hantering av Extraordinära Händelser. Technical
report, KBM Rekommenderar 2004:1, 2004.

[16] K. Weyns and P. Runeson. Sensitivity of Software System
Reliability to Usage Profile Changes. In Proceedings of the
2007 ACM Symposium on Applied Computing, pages
1440–1444, 2007.

[17] R. K. Yin. Case Study Research: Design and Methods.
SAGE Publications Ltd, 2003.

SERPS 2007, 24-25 October, Göteborg

42

����������	��
���

��	����
���	
��	���	���
��
��	���	���

����������	
������	�

�
�
����

	���
���������	�
�	��

��������

���������	������������	����	���
������������
����!���"��#�����

$��%&'(��))��*)�(*�

���+�����	�
�	�,��������+���
�

-
�.	��/�����0��

��������

���������	������������	����	���
������������
����!���"��#�����

�

��������,��������+���
�

/�����1�����

��������

���������	������������	����	���
������������
����!���"��#�����

$��%&'(��))��(�����

�����+
����,��������+���
�
�
�

���������
����� ����	
����� ���
�� �	��
�
��� ���� ���������� �

�� ��� �
������
��
������� ���� �����

�� ������
�� ��� ��
�� �
	���

� ����� �����
���

����
��� ����	
����� �

�
� �
����	��� ��� ����
	����� ���
�����

����	��������������
�
��������	���
���������������

������
�
����	����������������	
������

�
����
������
��
��
������� ����
����������
�������

������
��������������

��
� ��������
���	������ ��	�
��� ��� �
��
� ��� ����
��
��� ����
���������
��
�����������

�����������	
�������������	��������	����
�
�������� ������ ����
������ ��
�� ���������� ����� �����

��
�
��������
�����
!����
�� ���� ��	�
���� "�������
��
� �
�
����
�����
�
�� ����� ��
���� ���� �
�
� �����������
���
�
������ ���
���
�� ����
�
��������������
��������#����������������
����������������������������
�
������������	��������������������

��
���
��
�����������������

�	
��
�����	���������
��������

���
$�%�&�'�
�
�	��������������()�*
�
��	����+����������	
������

�	������	
�����

�����	��������
*
�
��	�����*�
��
�	����� ����	�����,�	
��#
���
��

�� �
����
����� ���	
������ �
��� ������� 	��
��
�� �����

�� ������
�����
����	������

!"
 #$��%�&��#%$��$����'�����
(%���
����� ����	
����� ���
�� �	��
�
��� �

�� ��� ���� �
������ ��
������
�
�������������������
�������
��
���������-���
�
�
���.

�
��'/0(�
������������
������
��

����	��
�
����

�����
	�������������

��
	
�
��
��
�������
��
��������
����

�����
������������
��������
��

������� �	��
�
���� *���� �����

�� �
�
��1
������ ����� ���� �����
����	
�����
��������������
�������

���

����������
��������
�������
����
����� ��� ,��	��

� '2(� 034� ��� ���� �
�
��1
������ ����	
���
�
�������
��
�
�����
���
���
��������-���
�
�
���.

�
��'/0(�524�
����
�
��1
����6���

����
�������

������	
�����
7����
�����������	
��������
���	��
�
����

������
��������
����������
���
���� �������
���
� �
����	�� "�� ����
� �
��
� '/2(� *��
���
���
 ��

���
���
����
��&/4����������	�
������������
����������������
����	
�����
��
��
����	��
���� ����
���
�����

�� �
!��� �
�	� �������� �������

����� ���
�����

�� ������
�8� ������
�� ����
	����� ��� �����

�� ��� ����
���
�
����� ��� �	������� �������� �����	��
��� ����
���	������
������
������
����������
	���
����	��
�����������

��������
���#�
�
���� �
��� 9:� ��

�� ���� ��

�� ��� �����
������
��� �����

�� �
�� �����
�
������ ���������
���� ��� ��������� ������ ���� 	
��
� �

�� ��� ����
�����
������������������

��
�
��1�������������

��
��������
��������
����
����� ���;
�		� '3(�
���<
��� '9(� ��� ��� =:4���� �
���������
������

�� ������ ��� �����
����� ��	��������
��� �����

�� ��� ����
�
�	��	� �

��� ���
�>�� �
�	��	� �

�� ����
���
��
���	
����� 2:�
 ����
���������
���?�����@ �?A�����
������������
��	��������	
���

��� ������
��� ���� ��		����
����� �����
!��

��
�����
�������������� #�
���
�� ���� ���� �����

�� �
���� �����	�� ����� ���
����	�� 	�
�� ��	����� ������ 	
!��� ����	
����� ����� 	�
��
�����������
B���� �	
����
�����	

������������ ����
���	������ ������
����� ����
�����
���
�����������

����������������

��������
��'/3(�'/0(����
��������
��
����	�
��������������
�����
��������	������������

��
������������ ���������� ����
��
� ������
�
������������	
������

�
���
���� �
�
�C�������� ��
� ����������� ����� ����	
����� ����� ��� ���
�����
���
��� ����
������ ����
�� ����
����� ����	
�����	������ �
��
����
�������
���
�����������������	�
����
#
�	�
�
���

��� ������ ��� ������
���
����� ��� 7�
�������
���
�����

�� '/9(�� ���
� 3:4� ��� ���� ����
��� ����� ��� ����

�
� ���
�����

������� ���	
�����
���

�������������

�������
���

������
���������
����	�������������������	
�������
��
����������������

��
�������	����������
�� ���
������	���������
�����������
��
�����
,����
��� ������ '5(�
��� ,������ '/:(�� ����
���	��� 	������

���

��������<���	�
�����

!����'%(�
���7���	����
���<���	�
���'/(�
��� ���	
��������
�
����������
����������B
�!�
�����
��
�
'%/(�� *���� ��� ���� ��
!� �
�� ����� ������ ��� ����������� ����

�

.�
	����������	
!�������
���
��

������������
����
��

������������
!���
�
��
���
���
���
��
��	���������

������������������
���������
���������

��
���� 	
��� �
� ����
������� ��
� �
����� �
� ��		�
��
��
��
��
���
��� ��
��
������� ��

� ����� �������
��� ���� ����� ���
����� ��� ���� ��
��� �
������� �����
����
������ �
�
���������� ��� ����� ��� ��
��
�� �
� ���
�����
������ ��� �������

�C��
����
��
������������
	�������
��D�
�
������
���������������*�����/+%��%::=����������
���������
���
����
�����%::=���*�/E35//9E:::E:D::D:::=FG3�::��
�

SERPS 2007, 24-25 October, Göteborg

43

	�������
��� ��� �����
�� �
���� ����������� ,�����
�� ���
��

��
����������� ��
�� ������
�� ���� ����� ���
���

��� �����
�����
�
�
��1
����
�� ������� �����
�� �
����	�� �
�
���� ��� 	
�
��	����

��� ���������� "�� ���� -
��
�
�
��� .

�
�� �
��
� '/3(� ���� ��� ����
�����������������
���������
��
���	
�
��	��������
�����������������
��� ������ 	�
��
��������� ��� ����� ����	
�����
���

����
��� ��� ��
�
���!�'/=(�H�������
	��
��� ��
������
�� �	�
��������������	
�����
�
������� ���
�� ���
������ ��������
��������
� �����
����	����
�
����

������	
������
����	�
�������
�	
�
��	�����
����	���
������ ���� ��
����� ��� ����� �
��
� ��� ��� ����
��
��� ���� �
���
�� ��
��

������ �����
�
�C����������
�����������������

�����������	
��������
�����	� �������	���� �
������� ���
���	������ ��	
���� ����
������������� ���������� ��
�� �����
��
�����
���������������
��������
����
������ �
���
�� ��
��
������ ���� �����

�� ����� ����	
����� ���
�����	� �������	���� �
������� ���
���	������ ������
��� #�
� �����
��
�����
�������

��
���
����������
�����������
����

��������
��
I������

���
��

�����@I��A�� ����������
��������
������������
���������� ����� ��������
��
��� �
������ 	
�
��
��
��� ����
�
�
��������
��� ��� ���� ����
��
��
��� ����
����� �����	��
 ������
����?����
��I�����

)"
 *��+%�%'%�,�
��� �����
�� ����

�
� ��� ����� ����	
����� �����
����� �����

�� ���
�����	� �������	���� �
������� ���
���	������ ������
�� ���� ���

���

��
�
������������������
���������������C�
���
�����������

)"!
 �	����
�� ��������	�������	��-�	���
	�-�
���� �������
�� ����������
��
�� �����

��
�� ������� �
��� ������
��
����
���

��� C�������� ��� ���
�� �����

��
�� �
��
��
��� ���� ������
�������� ��� �����	��

�� �������� ��������
��� ������������ ���
	
�����
������
���
���
��������
��������
��������	
���
������
����
����� ��� ���� ���!� �
������ ��� J��� '%%(�� ���� ���
���� ���
���������

�� 	���� ��		����� ����� ��� �
��� ��������� �
	����
����	���
������

����
��
���
���� ����
������� ��
���� ����
�
�������
�

�����
�������
�
������
���������
���������������������������
��
�������
�� ���� �
�	

�� ���
��� ��� ���������� ������� ������
�����
������
���
���������������������
���

���
�������������������!�
������ �
���
�� ���� ��	�
���
����
������
��� ������
����� �������
��

����������������
�
���

���
���
!����
��������	�
����,�����
��
����
�����
����������@��	������������
�����������������A���
��������
��� ��� ������������� ���� ��� ��
���
���� ��	��
���
���
��� ����
����	���
����� ���� ���� ����
�
��� !���� ��� ����
	
����� ��
�� ������
����� �
�
����
��� ����
�������� "���
��
� ��� ���
�
��� ����
���
����������
����
�������������������
��
��
�
����
������
���������
���������
�
�
�����������
����
�
�
�
��������
�����

)")
 �	
	��
����
�
��
������ ��������!�
���� ���������� ��� ����
�������� �
�� 	
��� ����� ����� ��� �����
�

���

���
�����������!������������I��6���
�
��1
�����
�������
��
������
���

���
����
!����
��������	�
����B������������
��������
��
�� ��������� �������
�� ����
����� ��� ����
���

���
��
�������
��
����
�����
����
������������
�C���������
!��������	���������
���������
��������������

�����
����������������
��������

������ ���������!������
�"!�����������	
�����
��������
�����
��
�����������
��������
�������
��

���������������

���

���
��������
����!�
��������	�
����
����������

��
��	����

�� ���������
����� ���� ��	�
��� �����
��� ���� ����
�
���

���
�

�����������������������
����
!���
��I��6����������*
���
���
����
 ������
������
�5���

����

����#� $���������!�����
"���
����������
��
���

�����
�����
����������
����������������������
�
�
� ������ ��� ��	�� ��
����
��� ��� �
��
� ���
����� ���E�
��
��		����
������������ ��
� ����� �����

��
�� ����������� ����
�����
�������
��
��������������������
�
���

���
���������

�����
������
��� �
��
� ���
���
�� ���� C�
����� ��� ���� C��������� ��������
��� ���
������
���

���
������
��
����
���
����
������C�����������
���
������
����
��
����"���
������������
����������
����������������������E
���
�����������	�
��
��
�
�	����
����

�
�� ��� ��������� ��
��
��
�
��
	���
��	���������
����������������
���� ����
�������� ��
��
�!��� ��� ���
!� �
�����
����� �
��� ������

�
�
��� 	�
�� ���
����� C��������� ��
�� �����
�!��� ��� ����
����
������� �
�� ���� ����
��� ���	�
�
�
���� "�� ����� �
�� ��� �
��

���
�����
����������
���������
�!���
���������������

�
��
�������
��
���������	�
�������������	�
����	��
�������
�������������������
���������
�������
�
������������

���	��
�
�����

������ $����������
$���������������

������
��
��������������������
�
���
������������
��������	����
����
�������
������������
���������������
�����
�����
������� ��� ��� ����
������� ��
���
��� ����
��
��� ���� �
����	� �
�	�
��������
������6����
�����������
"���
��������
��������
� �
�����
����� ��� ���� ������ ���
��
�����
���������� ��	�� C��������� �
�	� ���� ����
����� ������ ��� ��
�� �����
�����������	�
����������������
��
�����
������������
�������
���� ����
��������
��������������� ����
���

���
���K����
�� ����

���� ��� �������
�
��� ����
�����
��
��� ���� ����
� �
���� ����� ����
����
������,����
������
�'&(���
�����
������
���������
�!�	�
�����
���� ����
�����
��

�� �
������
��� ��
�� ����
	����� ��� ������� ���
C�������������
�
��
�
���������������
������	�
������
	
�����������
�
�������
������������
�������
$�
���� ���� ����
����� ���� ����
������� �
�� �����

���� ��� ���
!�
�
�����
����
�!�
�������
�
�������
������������������E���C���������

���������������,����
������
�'&(����	����	���
���
!���
������
����������
��� ���� ���� ��� �
��� ����
����� ���
�
���
�� ����
����
��������������
����	����
�������
������������
�
�����������
��
��������
�����
��������������
���������������
����������
�������

����� ���� ����������� ��� ���� ������
��� ���� ����
������� ������ ���
�
����������
��� ���� �������
��
���� ��� �����	��

�� !����� ��� ��� �����������

���
��������,����
������
�'&(����������
��������
������
���
����
��� ��
�� ���� ����
�������������� �����	�
����	��
�
���������	����
����������C�����������
��
�!����
��������������
�������������������
��
��� ��� ������ ���� ����
������� ������ �
��� �
����� �
���� ��� ����
����
�����
������� �������
�� ���� ��� ���� ��
��� ����
���� �
!���� ����
�������������	��������������C�����������
$�
������
���
� ���� ����
������� ���� �
�
� ��
��
��������
��� ����
����
������ ��
�� ��		

�1��� ��� ���� ����
���

���
�� ��� �
���
��
	������������
�
�
�������������

)".
 �	
	�	�	� ����
��� ���
�
��� ���� �
������� ��� ����
������� ���� �
�
� ��
��
�
��1���
���

����� ��� ����
���

���
���
���
�
�� ���� ��		

�1���
����
������
��� �
����
�1��� ���� �
�
� ������ ����� �
����
���
L��������M�� ���� �
���� ��
��
�	�����
��� �����
�� �
�!�
�����
����
	
����� ������
��� ����
���� ��� ���� �
�
� ��
�� �
����
�1��� ���

SERPS 2007, 24-25 October, Göteborg

44

����

�� ������� ��
����� ��� ���� ����� ��� ������� �
������� ��� �
���

���

���
�� ���� ���� ������ ��
��
�	���� �������
��� *���� ��� ����
�����
��������
�����
�����
��������
�����������
������������
�����
�
������������������
���

��������������������������������
�����������
���� ������� ������ ������ ��� ����
���

���
� ��
�� ������ ���
��		

�1�����������������������������������
�
���

���
�������
��
������
���������������
������
�����/3����������
N������� ��
�� ����������
���
�������� ��� �����
�
���

���
�� ���
�
��
� ��� ��
���� ���� C�
����� ��� ������
!� �����
��� ���� ������������
�
���� ��� ������
�� �

���
���
�� ������ ���� ����� ��� �
��
� ��� ��
����
��
�� ���� ������� ��
�� ���� 	������
������� ���� ���� ������ ��
��
����	�������������
���

��
����������

)"/
 ����	��-�0���
�
��
������������
�������������������
����������������C�������)�
%�
��������&��!��
������
�����������
������������	
���������&���	�
�������	�������'��������
���	�������������&(�
���� ������

�
����
������������ ���
����
� ����
���

���C���������
�����
����/���
�
�	����!"�1
����	��	��
#�����

�
��

/�� �����
�����	������	
������
�����
���
%�� #
���
����
��
������������������
������	
����
9�� .�������	�
��������������	
����
=�� ?�
���

�
�������������	
����
3�� *������
������������	
����
0�� ���������������������	
�������
!�

�
���
����
�����
���

���C�������������
������
�������
������	
����

�� 	
���� ���
����
��� ����� ������� ��� ��� �����
���
�� �����
��
��
���
���	�
����
�������������������������	
!������	
�����
�

��

��������������	��������
��
�����
���� ��
����� ��������
��� ��	�� ����	
���!� �����������

�
� ��� ���
����� ���� ���� ���� ����	
����� ��
!� ��� ������ ���
��� !���� ���
	������������
������������
��� ��	��
���� ������ ���������� ��� ����
������� ��������� ��� 	
!���� ����	
���� ����� ���� 	�����������
���
���� ��	��
���� ��������
��� ���� ���� ����	
����

��
���
����
��� ���
���	���
����)
������ ��
��
������ ���� ��������
�� ����	
����

�
� �������� ���
������
!���������������������
��
����
���
����
��
�������������
!��
���� ������ �
�� ��� �������� ���� ������
� ������ ���� ��
!� �����
����	
���� �������� ����
� ����	
���������
������� ���� ������ �������

��������������	
��
�6�����������
���������
����
��

������
��
���
��
�����������
���
����
������	
����������
���������
�����
���
����*������ �	�
����!� ���� ����	
����

�
� �������� ��� ���� �
�����
��
������������������	
����@���������
����������A��������
������
��
���������������������
�
��1
����
����
����
��
���������������	
�����
������
����
��

���
�������
��	
!�D
��������������	
�����
����������
���E	
�� ����� "�� ����� �
����� ������ ���� ������ �
�� ��� ��� ���
�����
���� ���� �
���� �����
��� ��		����
�����
��� ���� �
��
���� ����
����	
������
����������
��������
��
����	����������

���� ��
����� ���+�
!��
��
�� ��� ���� ����	
���� ������

�
��
�� ���
����� ���� ���
��� ���� ���� ����	
����

�� ������
��� ��� �����

��
�������
�����������������
������
��������,������
������������	
����

�
��
���������
��
���
������
�
��� ���� ���� ����	
����

�� ���
����� ������
� ���
��

��
��
	
�����
��������
������������
�����������������������	
��
�������

�����������	���������
�����
���������

�
��-��������&������������	
��������"�������������
���� ��	�� ��
�� ���� ����	
�������
!� �
!��� ��
���� ���� ����������� ���
�������
������	
�������������������
���

���������

."
 �+�������%1�2%'2%�����
�%�3%���#%$�
���� ������ ��
�� ����� �
��
� ��� �
���� ��� ���!� ��
���
�� I����� �

�
��
��

����� @I��A��
� �

� ��	�
��� ��
�� �
�� �����
� �

�� ��� ����
I����� �
����� "�� /&&&� I��� �
�� ����� ��� #�
�� *���
� ��	�
���
@#*�A�� ������ ������ I��� �
�� ����� �
�������� =3:�:::� �

�� ��
�
��

�����
���
������
�������	
�������
��

��	

!���
���� 	
�
��� �
�
��1
������ ���� �
���� %�� ��� I��� ������� ��� ���
�������
��� ���
���� ���� ��������
��
��� ���� �
������ �

��� ��� ����
�
�
��1
����� �
��� �����
���� ��������� ���� ������� ��
� ��������
��
�

�� ��� ���� �
�
��1
����� ��������� ��	������� �����8� �������	����
������

�� ��������� ��� ���� �
������ �������� ���� ����
����������
��
�����������
��
����	�

�
������
�
��1
������O����������	���
���

��
��������
�������
�
��1
������

�������
�	�����������
���	
�
��
��
��� �������	���� 	
�
��
��
�� �����
�� 	
�
��
��
�� �����
��� ����
�������� ���� ��� ���� ����
�������� ��
�� ������� ���
��
������ ����
��������
���

����������
�
��1
�������
�
�	����)"�*	
��4�
��	��5	
�
��

�
�
��������
��������
��������������
���������
�����
�������%::2�
���
����������
��������
�������� ���������
������ ��� ������	�
���
���
����� �
	���

���� ����� ���� ����
�
�� �
���
�� ��
�� ������
������ ����
��
!��������	
�������	��
��������������������	�����������
�������
�����
������
���������������
��
�����������
����I����#*����

/"
 �%������#*��#%$����2%'2%�����
�%�3%���#%$�
�	���������
�
��
�	���������
��������	���

�����
����
��������
��
L�
���M�� ��������� ��� ���� ����	
����� ������C����
���
��
�
�����
��������������	�
������������
����������
������
������������.�����
'��!	���� '/:(�
��
�
���
��� �����	���������
����
�
��!&� '%/(� ���

.
������
*
�
��
�

.
������
*
�
��
�

.
������
*
�
��
�

��
���

��
���

��
���

#�������
��
*
�
��
�

#�������
��
*
�
��
�

#�������
��
*
�
��
�

��
���

��
���

��
���

��
���

��
���

��
���

�

���.
������/��

*
�
��
� ���
.
������
*
�
��
��

����

���.
������%�

������ ���������

SERPS 2007, 24-25 October, Göteborg

45

�
��� �
�������� <���� ���/�����
��� �����	/��� '/%(� ����	
����

��
	
�������
��
������������	����
�
����������������	
�����������������
	
!��������	
������
������
���������
��������
�������������
����������������� ����
��
��
��� ����
������
�����	�� ������
���� ?�����
���� ��
��� ��
�� ���� ����
��
������ ���
���������

��������������������
��C�
���
����������
��

����������
��	�
������
��������	
�����������������	����������������I�����
�

���
��

�����@I��A����
���	�
�����
���
���
�������
������
����
���
���	������ ������
���
������ 	
����� ��� 	���
���� ��	��������
��
�	
�����

��������
��������
��������	�
����
����������������
������
�
����� ��� ���� ���
�
����� �������	���� ��� �����

��
���
�����
�������	����������
#��
��������������������������������
����/3�������)��

���
�����
��� ������	�� ����� ��	�
���!� ����	
����
���
��������� <��
���� ��	��
���
����� ��� ��
��C�
��� ���
��

��
������������������	�

��������	
���������
��������

���
��� ����	
����
���
�������� �&� ������ ���'������
���������!�� *�
�� �
����� �
�������

�� ������ �����
�
�
��
����� ������
������� ���� ����	
����
��� ���������� ���
�
��
��
��������

#��
��� ���������
����� ��	�� ������ ��� ����	
���� �
�&� ���	�
���� 	���� ��� ���� �������� ��	�� ��� ���� ����
�������� ��
���
��
��	�
�� ��	�������� �������������������	
���� ���	
!��
���	� 	�
��
���

���� K���
�� �������� ��
�� ����
�������	������
!�	���� ��� ����� ���
��� �
����
��� ��
��
����	������	���������������	
�������
��
���������	����

��� ,
�
!�	���� ����	
����� !�
���
��� ���� �
"��� ��������&��

��� ����	
����� �

�
�� ��
�� ���� ����
�������� ��
���

��
�������
���
�����
���� ��� ����
������� ��� 	
�
��	����
��
�����

0�� +����
����1����	�����	
!������������������!������
�����
����������������
�������	
������

2�� 3
��� ��
�!���� ������

�� ���������� ��� ��
������ 	
!����
����	
�������
!�	�
��������������

4��
��� �
����!� ��� ��	����� ���	� ���� ����	
���� �����
����������&�	
�
!�	���������������������	����
�������
�
������
�����
�������
�����������
�
��1
��������

�����

5�� +���
�����������	
����
�������������
������!
�������������
������
����������������������������'��������	������������
������2�����
�����
����������
�������������	������
!�	����
�����������
����
����

6��
��� ����	
����
���
�������� �&� ���� ���!���
���
	
�
!�	����!�
���������
��������
������
��������������
��	
�������
�������	���	��������������	����������	
������

���� ���������� ��	�
�&� ��������� ��
�� ��� ������������� �����
��		����
���!� ����	
���� ��� ���� ������ ��� 7����),��
8)����,�������	�
�&9��#*�������������
����I����
���
�����

����� �������� ���� ��	�
����� ���
��

�
���� ���
�����
���������
��������
	������������	�����	
�
��	����

��������������

����
����� ���
� �
�"� ��� ��	�������� ���
�������!� �����������
����	
����
�����������������	������������������9�����
��
��� ��	�� ��E������ �������	����
��� ���� ����
��������
��
��� ��
�� ����� ������� ��� ����� �����
��������� �
�����
�
������� ��� �������
���
�� �����
�� ����� ����	
�����
�������
�6�
��������� ��� ���
��1�� ���� �
������ ��������������

������	�
����
��
���
	���
��
����������������	
������
�
�

��

�� ��	�������� ���������� ��� �������
���
,�����
�� ��� ����� ��
����� ��� �
������� ��
� �����

��
�������	�����	
!���� ������������� �������
��
���������
�
�
��������
��

��
�
���
�����
������

���� :�������� �����
�� ��	��
��� ������ ��� ���� ���� �������� ���
����� ����	
����� �������� �
�	� ��� ��	��
���
��
��� ���
�����
���� !����� ��� ����	����� ��
�� ������ ��� ����� ���
�
�����������
��������	
!��������	
������

�#��
��������
��
�"�����������
���������������������
��
���
���'���� �
���� ��� ���� ��!
��;
����� �����!� ���� �
��&�
�������	���� ��
���� ����� ��!
��� ��� ����	
����� ����
����
�������� ��
��� ��
��� ���
���� ���
��

�� ���

���
�������� ��� ���� �����

������ �����
�
��1
������ ���
�� ���
�
�
�!� ��� �����

����� �������� ���	�� 	
!���� ����	
�����
��
!�	�
�������������

����
��� �.�����!� ����	
����� ��	�������� ��� ���� ����� �&� ����
��	�
�&������ ����
�������� ��
��� ��
�� ���
�� ��� ��E������
�������	������������

����	��������
�����
�� ���������
��� �
���

���� ��� ���� ����� ��	�������� ����� 	
!����
����	
������

�0��
�����
���������	������	
���!�������������!&������� ���

� ����� !����� �
����	8� ��� ���
��
��� �
���
� ��� 	
!��
����	
������
��
	���

���	���������

/"!
 ��	� ����
��
-�������
��
�����������
������������������������
��
�
��
���
��������������������
��� ��	�

��� ��� ����
������� ��� ���� ������ ����� ��� -���
�
�
���
.

�
�� '/3(� '/0(� �����
���� ���� ������� ��
��
������ ���� �
������ ���
����� ����	
������ ���� ������ �
�� ����� ��� ���� ��
	� ���
�
C��������
�
���
����
������//%� �����

���
��������
����
���������
���/0��
���
����

��
�����������	
�������
���

�������
��

������
�
�������� ����� ��� �����

�
� ��
�� ������ �
��� ����� ����� ��
� �����
��
�����������
���������������.�
�����
��'/5(�������
��;���������
������ '0(�� ���� ���

	
��
��
��� <
���
��!�� ������ '%:(� �
� ����
��
������ �
����
���
�� '/&(�� ,�����
�� �
!���� ��� �������

�����
�
���
�� �����
�� ���� �
��� ��� ������
������ �
�����
�����
��� ���
���
�������������
������
���	����������������-���
�
�
���.

�
��������
'/3(�'/0(��
������������������	��������
������
��������
��������
���� ������� ������ ��� ���� ������ ����
������ ����� �
��
� ��
��
�
����
�1��� ��� ���� �
	�� 	
���
�
�� ��� ���� -���
�
�
��� .

�
��
�
��
��������������
����������
���

������������	
����'/3(���������
���
��
����
���)���

•� *
�
��	�������������
�����������
����������
�����
•� ?��
���		����
������������
•� .�������� ��
����� ����� ���� ������� �����
�� 	
�����
�����

�
������������
��
����	������������	
����
•� *����������� ������� �������
���� ���� ������� ��
��
������

����������������������	
����
�
�
�
�
�
�
�
�
�

SERPS 2007, 24-25 October, Göteborg

46

�	����."�*	�	�����
���������
��	����

���������
����� �
'�������	���3�	�	��6!78�
*	�	�����
���������
���� �
��	���
��

���
��	
����
/�� ���
��

�� �
����	�� �����

��	�

���� ����	
����
���

��������

"/5��.�
��
	
����
����������6��
�������
� ������
� ����	
����
��
��	���
"5�� -
�!� ��� �
������ ����
���
��	�

��������	
����
���
���
��
��
��
	
����
@"/%��"�
������������������
���
���
����	
�����
����A�

%�� ���� ����	
����

��
��������
��� ����
� �
�������
������������

9�

9�� ������������������	��������
�������	
�����

���
�	�����
	�������������������

9�

=�� *
�
��	���� ����	
�����
��
���

�� ���� �
!���
��
��������

9�

E� "� %=�� -
�!� ��� �

�����
��
	��
�������� ��������	
������
"���
	
����� �����	��
$��

�	����	
�
��	����

�
�	����������������������,
�
!�	�����
����
���
������������
����
9��������������
	����������-���
�
�
���.

�
��������'/3(���
	����
������/��
�����
���������	���������	�
���!�����	
����
������������
��������
��������	��������������
����	���
������������-���
�
�

��� .

�
�� '/3(� ��� ����
� ������ 5�� 3
�"� ��� ���'���� ��������
��	�
���!� ����	
����
���
���
�� ������	
����� ������ /5��
*�����	
���������������������������������������	
���������	����

��������	���������������/%��$�
�����&����������������
�������	
����
�
�������
"������%��
�������	
����
���
���������&����������'��������������!��
9��
�����������������	���������������	
�����
�&����	�����	�������
���� ��������
��� =�� ,
�
!�	���� ����	
����� !�
���
��� ���� �
"���
��������&�� ������ ��� ���� ������ ����
������ ����� �
��
�

�� ������
�
���������������������

��
���
�
�	����/"�&�����
������	
�
����������
��	����

���������
����
���'�������	���3�	�	��6!78�

&���� �
������	
�
�� �������
�
����

�
��	���
��

�
-����
��	
����

3�� ?����

�
�C��
�	������ "/:��.��
��
��	�
�������
����	�
�����������

E� "/2��?��
�6��
�!����
����
��
�������������
�����

�C��
�	�����

E� "/=��#
�C�����
�C�������
�
��
�����������
��

E� "/0��?��
�6��
�!�����
�
�
�
�������������
��
������

�
���

������
������

��������
	��������+������		����
������������
�
������������
����=��	������������������������
�����
�����
��������
���

� ���
� ��� ���� �

� ������
�� ��
�� ��� �
������ ��
���� ����
�������	�����
�� ���
�� 	����� ��� ��� ���� �����

�� ������
��� � ����

������ 3� ������ ��� ���� ������ ����� �
��
� ��� �
���� ���� +����
��
��1����	������ ��� �����
	��� ��� ���� ������ /:�� ��� ���� -���
�
�
���
.

�
��������'/3(��
�
�	����7"�3
��
�����������
��	����

���������
����� �'�������
	���3�	�	��6!78�
3
��
�����������
���� �
��	���
��

���
��	
����
0�� -
�����
������ "%/��N�������������
������������

�
� C�
����� ��� ��
�� �������
����	
����
��������� ��� ���

�
��
!��
��
�
@"/=�� #
�C�����
�C����� ��
�
��
�����������
�A�

2�� ���� �
������ ���
�	�����
�
�	� ���� ����	
���� �����
������������	
�
��	�����

"%:��N�	��
�� ��� �
������ �
�	�
����	
������	
�
��
�

5�� K���	������ ����	
����

��
�
��������
�� ���� �
����� ���
�
��
� ��� ���
���� ���
�������������������
�������

"%%�� .
����
��� �
�	� 	
�
��
���
���
�� �
� ����
�� ��� ���
�
��� �
�

��������������	
���

&�� ��������	
����

��
��������
��� ���� �������
���
	
�
��	������
����

"%%�� .
����
��� �
�	� 	
�
��
���
���
�� �
� ����
�� ��� ���
�
��� �
�

��������������	
���

/:�� $����
���� ��	�
���
�����
�����
������������������
����� ��		����
�����
����	
���� ��� ���� ����
� ���
I����#*���

9�

//�� ���
�� ���
� �
�!� ���
��	�������� ���
���������
�������
�6� ����	
����
���

����
�����

9�

E� "/&��N����
���@�
��
��
!A�

�
 ���� ������� ���� ������� ������ ��� ����� ������

�� ��
	��
���� ���
��������� �����
���� �
�� ��� �
��
� ��� �
���������
������� ���� �
�
�
������������
������������
������������0��3
�����
�!����������2��
���
�
����!� ��� ��	����� ���	� ����	
���� ����� ��������� �&�
	
�
!�	����� ������ 5��:���	������ ����	
����
��� ����������
�� ����
!
��������������������
����������������������������'�����
���������&��

�������	
����
���
���������&��������!���
���	
�
!�	����!�
����

�� �����
	��� ��� ���� ������� ������ ��� -���
�
�
��� .

�
�� '/3(��
���� ���� �������

�� ������
� �������
	���� ���� *������� �������
�
������������
����3���
	����������/:��������������	�
�&����������
��
�� ���������������������������
���!������ ���������� 8),�9�
���
������ //��
����� ��� �
�"� ��� ��	�������� ���
�������!� �����������
����	
����
���������������
�
�
�
�
�
�
�
�

SERPS 2007, 24-25 October, Göteborg

47

�	����:"�*�
-
�
�
� ���������
��	����

���������
����� �
'�������	���3�	�	��6!78�
*�
-
�
�
� ���������
���� �
��	���
��

���
��	
����
/%�� ������������������
��

��	��
������
�������
�����
��
�����������������	
�����
�����
��

"�9��-
�!����
��C�
���
	������������
��������������
�
����	
�����

/9�� ���
�����
��
�!����
���
���
�����������������
��������
��
����
������
�

�����������
�
��1
�����
��
���������

���
�������	������
���������

��������������	
�����

"�=��-
�!�������
���
��������
�����	���������	������������
��
��
����������

��������
�
�

�	�����

��������������������
��
���������������	�����

/=�� �����������������	
�����
��	�����������������������
������	�
����

"�/%��"�
������������������
���
���
����	
�����
�����
"�/9��"������������
�
�����������
�������������������	
���

/3�� ���
��

���
����	��
����	
���������
������������

9�

E� "�3��-
�!������������
���
������
�����
��

����

��������
��������
����	
�����

�
"�����/%����������������
�����������������
����	��
����������������
������������������������	
������������������	�

������-���
�
�
���
.

�
�6��������9�'/3(��,�����
����������
����������������	�������
��
�� ������
�!�	������������
����������
	����������
�
�����
�
���
���� ���	
!�� ����	
����� ���� �
����	� ���	�� ��� ��� ��
�� ����� ����
�����
�����	�
���
� ����� ������
�� ��	��
����� ���
�������
�� ���	�� ���
��������		�����	��
�����
�������
����������
���	��
�������
���
���
�������������������������		����
����������������	�����������������
������� ������ ��� ����� �
����
�� ��
�� �����
	��� ��� ���� ����

��
���
B����� ������ =� ��� ���� 	���������
��
�� ������ ��� ���� -���
�
�
���
.

�
�� ������ '/3(�� ������
�� ��� ���
� ����� !�����
��!� ������
	��������������������

��
��'%(���
/")
 $����������
���� ��������� ��� ����� ������ �	���� ��
�� ���� ����� ��� ������� ���������
-���
�
�
��� .

�
�� '/3(� ������ ��� ��� ��������� ����� 0� ������� ���
�����
�	�

�
������
������
���	������������
�)�
"�/3)����
��

���
����	������	
���������������������
"�%)���������	
����

��
���������������
��
�������������������
"�9)�������������������	���������������	
�����

���
�	�����	����
���������������
"�=)�*
�
��	��������	
�������
���

�������
!�����
��������
"� /:)� $����
���� ��	�
��� �����
��� ��
�� ��� ������������� �����
�����

����������#*���
"� //)� ���
�� ���
� �
�!� ��� ��	�������� ���
��������� �������
�6�
����	
����
���
����
�����
"�����/3��
�����
���������	������	
���!�������������!&�����
������
!�����
��!� ��
�� �
�� ������ ��� ���� ����

��
��� ��� ��� ��
� ��
	����
	������������
�<���	��
��
�'%(��
"�����%��-���	
����
���
���������&����������'��������������!��������
9��
�����������������	���������������	
�����
�&����	�����	�������
�����������
���������=��,
�
!�	��������	
�����!�
���
��������
"���
��������&� ������ ��� ��	�

��� ����� �
����	�� ����
����� ��� �
��

;��������� � �
��
� '0()�<�� ��		��	���� �&� ���������� ��� ���� ��
��

���*������&���������
���� �
����	
����
��
��������� �������� �����
�
��� �������
��
	��������� ��� ������//�� �
��������������������	
���
���

���
���
<
���� ���
�� '=(� ����
���� ��� ����
�

������ �����
��!��
��� ���
�����
����
�������
�����
���� ����� ����� ����
��

������� ����� 	�������
	�
���������
�����	����
�����������	��������������
�������
�����

��������
����
�	��
����������������
��������������������
���� 	
��� �
������ ��� I��� ��� ���� �����

��� ����� ������� ����

	����� ��� �����

�� ��� �

�� ��� �
������� "����� /:�� ���C��� ��� �����
�������
���������//������������������
����������������
�������������

��
�����8� ���� ������� ��� ����
��
����� ��������
� ��	�
���
��� ����
����
�
�������
��
�������������
���	�
���
��������������
����

7"
 �#��&��#%$�%1����&'����$��
2�'#�#�,�
�����������������������������
��������
��
�����
��������
������������
���� �
���
�� ��
��
������ �����

�� ����� ����	
����� ��� �����	�
�������	���� �
������� ��� ����
���	������ ������
��� ���� �
��
�
����������� ���� �
���
�� ��
��
������ �����
�
�C�������� ��
� �����������
�����

�� ����� ����	
����� ��� �����	���������	�����
��������������
����
���	������������
����
����
������� �
�������� ��� ����� �
��
� ��
�� ��	�

��� ���
� ������
�����
���� ���� ������� ��
��
������ ���� ����� ����	
����� ��� �����

��
�������	�����
���������������-���
�
�
���.

�
��'/3(��*
������
���� ������� ��� ����� �
��
�

�� �����
	��� ��� ��	�� ��� ���� ��������

�!��� ������� ������ ��� ���� -���
�
�
��� .

�
�� ������ '/3(��
,�����
����������������
������������
��
��
���

��������
��
��

�
��	�
���������
�����������
�������������
�����	

�����

���	
���
�

��� ���� �
�������

�� 	�
�� ��	�� �
����
�� ��
�� �����	����� ���
��
�
�����
�� �����

�� ��	�
���� ������ I��� ������
� ��	�
��� �����
�
����������
������
�	

����	���
���
���������	����������
�������
�
�
���
���
��
�����������
���������
-��!����
�� ���� ,��������!&� ������� ��� �
�� ��� ����� ��
�� ����
�
�
�C����������
������������������������	�������������	���������
��� ���� ����
��������

�� �������������� ��� 	
!�� ����������� �.�����
'��!	����'/:(����������
�������������������������������

����������
���� ������ /=��
��� �.�����!� ����	
����� ��	�������� ��� ���� ����� �&�
������	�
�&��"���
��
������
��
	�
�
���������

���
��
��������������
�
������� 	���� ��� ����	������� �����
�� �����
��� ����
�������
���
����	
����� ,�����
�� ������ /� ��
���� ��
�� ������
��� ������	�� �����
��	�
���!� ����	
����
��� ��������� O��� ������
���� ��� ��	�

��
����	
���� ����� ����
������� 	
!��� ��� �	��������� ��� ����
��
���
������ @���
��A� �

��� ��� ���� ����	
���� ��
�� ����
����	�����D�����	������@����������/A��"�
��C�
�����	��
���
����������
��������
��� ����
���
����� ������ �
������� ����� ������ ��	�� ����
	
!������	������������!��������	�����
����
������
���
������������
��� 	
!�� ����	
����
��
���

���
�� ��������� ���������� �
����� ���
�������
���������������
��
����
�������

�����������
�
��1
�����	����
���
���� ��� �����

���� ,�����
�� �����

����� ��� ��	����
���� ���
����
� �������� ������ ���

���� ������ 	����� ��� ��
����� ���
��	��������������
����������

�������
$��
��� ��� ����
� �
������� 	����� ��
�� ��� ��
����� ��� ��
���
���
����	
���� @���� ������ %A�� 	�
�� �
� ����� ��
	
������ 	
!���� ����
��	�

����� ��� �

��� ����	
����
���
������� ����� �

��
�� ���� �
���
��
�� ���� ��������
�� ���	� ��� �
�	

���� ��� �����
���� �����
����������� �
���� ����� C�
����� ��	�������� ������ ��
�� ��� ������ =�

SERPS 2007, 24-25 October, Göteborg

48

������ ��
���� ��
�� 	
�
!�	���� ����	
����� !�
���
��� ���� �
"���
��������&���
���� ����
�������� ��
��� ��
�� ���� �������	������
!�	���� ��� �����
�
���
���� ��� 	
���
� ��
�� ���� ����
������ O��� �

�� 	���� ���
����������
����
�������������
����������������
������	
�
��	����
��
��� ��� ����� �
������
��� �
�
��
� ����������� ������ ��
�� ���
�
������������	����������	
��������
��
�������
���������������������
�����
�����������	
�
��	������
���������
�
������������������
���
�
������

��
������������������
�������
�
�����������	
������
���������
������������
��������������+������		����
������
����
��
�
�� ��� ����
����� ��� ���� �
��� ��
�� ���
�� ��� ��� ���

� ���� ���
�
�������	���� ��
�� �
��
������ ���� ����	
����� ���� ���� ���
� ���
�������
��� ��� ���� ��	�
����
��� ����� �
��� �
�� ����� �
!��� ��� ���
�������

����� ��� ������ 0�� � "����� 3��+����
�� ��1����	������ ���
��
�	��
�
��� ������ ��� ��
	�� ��� ����	
����� O��� !�������
��
�� �

���
��
�����
�������������������������
��
	������������!���������
��
�������������	
����
����
�����
��������������������

�
�C��
�	�����
��������!����8� ����
�������
��
���������	
���
���

���
���������

�
����N�C��
�	����� ������
������
B�� �������� ��
�� ���� �
�
�C�������� ��
� ����������� ����� ����	
�����

��
����������
��	������������
�����
���
�����
��
�������
�
�������
�

�
�� ��� ����	
���� ������ ������
��� ��� ���� �����

���� ���
����	
�����	�������������
�
��
������

7"!
 2	����
 ���������
��
����
��������J���'%%(���������������
����������
����������
�����������
�����
���� �
�������� ����
�
�� �
�������� ����
�
�� �
�������
���

���
�������	��������������
�����

0����� �����������
�����&�
����
����� ��� J��� '%%(� �����
���� �
������� ���
�������� ��

����
���

����
��	�
��
��� ��
� ���� �������� ������ ��������� �
��� �
������
�
����������������
�
�����������������
�����
���������
	�����������
	�������� ���
���� ��� ���������� ���
�������� ��
��� ��� ���������
���
�
�����!�������
	
����
����������

�������
���������
���
����
,�������� �������� ��� ��������� ��
�� ������ ������ ��������
��
�
�
�
����
����� @���� ��
��
��
�A�� ����
���

���
�� ��
�� �
������
��
���� ���� �
�
� ������������ $�
���� �
�
�
�
������ �
��� ��� ����

���

���
�� ��
��
	��� ����
�
������ ��� ����
� ����
��� ����
�������
��
�� ��	�

���
���
�

���� K��� ��� ����
���

���
�� �
�� �����
��
!����
�� ���� I��6�� ����� ���*
���
���
���� ������
���� ��
� 5�
��

��� ,�����
�� ���� ����� ���*
���
���
���� ������
���� �
�� ����
�����
� �

�� ��� ���� �����8� ���� ������ �
�� ��
��
	���
�� ����
 ����
�������������	�������

�	�����
���� ��
��� ��� ����������
�� ���
��������
���	
���
����� �
�	� ����
�
��� ������ C���������
��� �
������� ��� ��		

�1��� ����
�������
���
������ ��
�� ��
�� �
���� ��� ���� �
�
�
��� ����������� ���	� ���
�

������������������������
���
��
���������
��
���
���� "�&� �����	
����� ��� ����� �
��� ����� ���
��
���
��
�����
������
�
�	� ���� ������
�� ��������� ���� ������
�����
�� �������� ���
������
����
�����������
��������
����������
���
�����
���
������ ���
��
��
��
��

�����
������������������

0����� $�����
���
�����&�
����
����� ��� J��� '%%(�� ���� ����
�
�� �
�������
�� �	��
�
��� ������
	
����� ��� ����
�
��
�� ��������� "���
�
�� �
������� ��� ���
�
���� ���
���
���������
��
��
��
��
������������
����
�
����������������
�����
����
� ������������ "�� ���� ������ �
�������� ��
�� ���� �
����	� ���
����
���������������������	��
�
��������
�!����
�������������������

������������
���
�����������
�
�����������	
������������������������
������
�
�������
�������6� �
���� ��������
��������
������
���
�����
��� ������������������
�������
�������������
�����
����!�������	��
��� ����
�� ���� ����
������� ��� ���D��
�
����	����
��� ����
���
��
��������������
�
��
�	���������������������
������@!�������
�
�
���
��� ���
������ ��
	������� �
���� ��� ���� ��	����
�A������ ����
C��������� ���� ����
�������� 	����� �
��� �
�� ��
�� �

�������

����
�����

0���#� -.����
���
�����&�
��� ���
�
��� ����
�
�� �
������� ���� ��	
��� ��� ������
� �����6��
��������� �
�� ��� ����

��1��� ������� ��� ���
���������
���
����� ���
J���'%%(�������
������ ��
������������������
������

������������
��
��� ������E�
��� ��������
���
�����
����� ������ ��� 	�������E�
���
���������
����� ������ ���
� �

�� ���
� �

��
�	�������� �
��� ������� ����
�������
���������
���
��������

��1����
�������������������
���
������������
��	������������������
����������
,�����
������
��
����
���
����������
�
���
����������������

�����

�
�
��� ����
���������� ������	��

���������������-���
�
�
���.

�
��
'/3(���
���������������
	�����
��������*
�����	��

������

��������
��
������������������
����������

��1
�����	�������������������

0����� =���
�����&�
��� ���
�
���
���
������� ��� 	���� ��� ����
��� ��
�� ���� ������ �
�� ���

���
���������������
	��
��������
���
��������J���'%%(��
���� �
��� ������ �
�� �

������� ����	������ ��� �
��
� ��� 	
!�� ���
��������� ��
� ��� ��� ���
�����
���� �
��
� ���� ����� ���� �
�
� �
��� �����
���
�������!���������
����������
����������������
�������		

�����
���
������
����������������
�
�
����

:"
 �%$�'&�#%$���$��1&�&���(%���
:"!
 �
������
���
���� ��
����� ��� ���� ������ ��
�� ����� �
��
� ��� �
���� ��� �
�� ���
�����
�� ������
� ���
��

��
��� ����
������ �
���
�� ��
��
������
�����

�� ����� ����	
����� ��� �����	�� �������	���� �
������� ��� ����

���	������������
���#�������������
���
����
�����������������������
�
����
�1���
��,��������!&� ��������,
�
!�	���� �������� *�������
�������
���+������		����
��������������
���� ��������� ��
�� ��	�

��� ��� ���� ��������� ����

��
���
� ������
����� ��� -���
�
�
��� .

�
�� '/3(�� �
��������� ���� ��������� ���
�
������ ��� //%� ����
	
����� �����	� 	
�
��
��
��� ����
�
�
��������
�������
��

����������
�����������������
��
���
��

������
������ ��� ����-���
�
�
���.

�
��������'/3(�� �����
��������
�����
��
�� ����	
����

��
����������� �������������
������� ����������
���
	
�
��	������
��������������
!�����
�����������
��

��
�����������
�����
����� ��	�
��� �����
���
��� ������������� ����� �����

�����
����� ���� ����
� ��� I��� @#*�A�
��� �������
�� ���
��

�� ���
����	
�������
���������
����������������������
�������������
�����
�������������
�
���

��������
��
��
���	��������	�
����������������
	��������
�����

����	������������
�����������	��
�
�����	����������������
������ ��� 	���
����
�� ��	�

��� ��� ����
� !���� ��� ��	���������
���
���
�������������������������������������
������������
��
�

��
������������������
����������
���	��������	
�����

:")
 1�
�����
�;�
<�����
� �

�� ���
� �

��
�� ����
�� ��	�
���
������� ���� �
������ ���
����	
������B������������
����������
������
���������������������
���

SERPS 2007, 24-25 October, Göteborg

49

�������
���������������������
��
���������������������
�������������
�
�����
��	������������������	������
!������
����������
�����
���
�����

����	������������������������������
����

<"
 ���$%('���*�$���
�����
���

����
�����������������������������K�J��
������������
�������������������������������
��
�������
�	����������
���

���
�
��

	�"I���+�"�����������I��������
����������	���
B����������!�������
�!�����I������

���
��

�������
�����������
���� ����
������� ��� �������� ����� �������
��� ���� ����
�������� ��
��
�

�����
�������������������
��
!������	���
�	�����
����������������
����
��
��������������
�����������������!�������
�!�
�����
�����
������
�����
�<P
�������

�� ������������ *
�
��	����
��� ����	���� ���

�	����
��
��
�	�
��?����
���������������������
��
��
������������
��������
��
��������
��

������
�
������
���
���
�����
���.�$����������
��
���� ���

�	���� ��� �����

�� �������
���� ��
� ���� �����
�!� ��
����
�����
���������������
��
���

="
 ��1���$�����
'/(� <���	��<�B��/&&/�������

��
��!�	
�
��	���)�

�
���������
����

��������"�������

���" ��=@/A)���9%E=/�
'%(� <���	��<�B�����

!��<������
���/&&0�������K�K*K�

%�:������

�����������	
�����	����)�����
����
���
���"��
�	�
��
��.
��

		�
��>@2A)���%E/2�

'9(� <
����*��%::0����
���������������	�����������

��
 ������
�����"��.
����������������%5���"���
�
����
��
�����
�������������

�� ������
�����"�� �>:0����99E=%�

'=(� <
�����*���-���
��!�#���-�����
�$���B������$��/&&3����������
�
���
����
�����
��

������
�������������	���)�
����������
�������
���������
	
�����
�����		����
�����������������
NQ$�*
�
��	�����)7�@/A)����99+==��

'3(� ;
�		��H��%::9�������

����������������
������	������
��	�
���+�*
��
���
���������"��.
�����������������%3���
"���
�
����
�������
�������������

�� ������
�����" �
%::9�����=&5�

'0(� �
��;����������*��/&&/��B�����������

��-
��R����
 	��
��
�����������N�
�������
�$��
����������

��
$������	�����"���

��
���������������

�� ������
�����
!<@0A�����35%E3&:�

'2(� ,��	��

��#�7��/&&%�������

�����������	
��������"���
	
�����

��������

��������������./@/:A)����0%2E09&��

'5(� ,������������	
���-������������$� �%:::�� ���
�6������	
����
����
�!���

��������������

���������	�����
��������"��
"���
�
����
��7��
�
�����.
������*
�
��	�����!=@/A�����/9E%/�

'&(� ,������� ������
��<��%::3�� ���
��������
�	������������
��	�E��
����
�������
����������	��
��
�������

���������
�����

"��//���" �"���
�
����
�������

��*��
������	�����	�
@* �N"��S:3A�����%9�

'/:(�,�������N����/&&0�� ���
������	����
��
������	
�����
	�������"��"���
	
�����
��������

��������������.=@%A�����
02E23�

'//(�7���	�����<���<���	��<������
���%::%��$��
��
��
�����

����
���

������������ �������

�
��������K�K*K�
""��"��" ��

��
���������������

�� ������
�����
)=@//A)����/::&E/:%%�

'/%(�7�
��������*��%::=�����E�����
��������	E�������
��
����	
�������������

���������	��������
���"��
"���
	
�����
��������

��������������/:@/A)���9E/0�

'/9(�7�
��������*��������

���*��%::2���������	
����N���������
�����

��$������	��������� ���	
��������������"��" �
�

��
���������������

�� ������
�����..@/A)����99E39�

'/=(�H�������
	��<��/&&0�������

��*��
���)�*�
��
�	������
�
�����

��.
������"	�
���	�����<�
�!�����.�������
���

'/3(�-���
�
����-���.

�
���7��/&&3���
��������"�
���

���
�����

��$������	��������� ���	
�����"��7��
�
�����
�����	��
��������

���.!@%A)����/%3E/9=�

'/0(�-���
�
����-��
���.

�
���7��/&&9��"���
	
����������	��
�����

�����������	
����)�
���

����
�����	�����"��7��
�
�����
"���
	
�����������������=@/A)����%%E99��

'/2(�*��
���������� ��

���7����/&&%���������

���?H�
��
��

������
�����	���������	�
��������������

�������
����	
����������R�+�
���
�����"�� �
���
��7��
�
�����
"���
	
����������	���!@3A)����9//E9/&�

'/5(�.�
���$���I������$���O��
	
!�
��7��/&55��������

�����
�
.�
�����.
������*
�
��	�����"����	����
��
�������&3E
/::�

'/&(���
�������
�����/&&=���
�����������
��
����)DD������
������
������	D�
	���T
���

��D��
��T/&
&=T/�����@%::2E/:E/%��/0)/=A�

'%:(����

	
��
���;�,���<
���
��!������/&&3������	��
��
��

�
��������������

������
������	
���
���

�������"��7��
�
��
��������	��
��������

���.!@%A)����/93E/=/�

'%/(�B
�!�
�����#���7����
���N��/&&&����� 	��
��
�����������
��
����E�
���������

�� ���
�� ���	
������"��
 	��
��
�������

�� ������
�����/�����/93E/35�

'%%(�J���N��%::9���
���������
���

��)��������
���	��������9
��
�����������; �.�����
�������"���������
���K
!�

SERPS 2007, 24-25 October, Göteborg

50

A case study of the interaction between
development and manufacturing organizations with
a focus on software engineering in automotive
industry

Joakim Pernstål
Chalmers

Computer Science and Engineering
SE – 421 96 Gothenburg, Sweden

+46(0)31 325 02 42

pernstal@chalmers.se

Ana Magazinovic
Chalmers

Computer Science and Engineering
SE – 421 96 Gothenburg, Sweden

+46(0)31 772 57 35

ana.magazinovic@chalmers.se

Peter Öhman
Chalmers

Computer Science and Engineering
SE – 421 96 Gothenburg, Sweden

+46(0)31 772 36 64

peter.ohman@chalmers.se

ABSTRACT
As most future automotive innovations will be realized with
software, the automotive industry is facing a transition from
mechanical to software engineering. To achieve successful
product launches, this is also true for manufacturing engineering.

The purpose of this study is to gain a better understanding of the
interaction between the organizations for Research&Development
and manufacturing, specifically focusing on the development of
software and electronics in the automotive industry. It is presented
as a case study with a qualitative approach where data were
collected from documents and in interviews with practioners at a
Swedish automotive company. Three main strategies were used to
obtain validity of the results: 1) prolonged involvement, 2)
triangulation and 3) peer debriefing.

It can be concluded that there are challenges in the research area
since 24 issues emerged from the data. The results may primarily
be used as input for improvements within the company and the
methodology can be utilized by other organizations that are
interested in founding their development of work practice on
empirically observed findings.

Categories and Subject Descriptors

K.2.6 [Software Engineering]: Software Management –
Software development, Software process

General Terms
Management, Documentation, Design, Verification

Keywords
Empirical Software Engineering, Case Study, Automotive,
Manufacturing.

1. INTRODUCTION
 Trends in the automotive industry show that the number of
electrical functions in vehicles is increasing and that they are
becoming more complex Grimm [1] and Broy [2]. Current
vehicles contain a number of Electronic Control Units (ECU) with

the prerequisite software that controls various electrical systems
such as Infotainment and Climate Control. These systems are
mainly realized by software and electronics and Grimm [1]
estimates that 80 percent of all future automotive innovations will
be driven by electronics and 90 percent thereof by software.
According to Broy et al. [9] current premium cars contain about
100 MB of binary code and it is expected that the upper class
vehicles will have up to 1 GB of software in five years time.

This evolution is pressing the automotive industry to
elaborate appropriate processes for the development of software
based systems. The main goal of these processes is to achieve a
quality assured and cost efficient launch of the vehicles in the
manufacturing process when production starts. Further, customers'
demands for a broader range of products with various functions
and tighter scheduling of new model launches involve an
increased number of products and systems that must be developed
in a shorter time.

Consequently, the involvement of manufacturing engineering
in development processes has become imperative since the
increase in software based systems implies a greater number of
product variants and a higher degree of complexity that has to be
managed in the manufacturing processes. Product related items
that influence production are for instance electrical architecture,
software download and diagnostic concepts and file sizes.
Moreover, to ensure that all the systems in the car work correctly
when the car leaves the production line, methods for tests and
verification of functions and components that fit production have
to be designed during the development processes. Thus, to
achieve a successful launch, the product must be harmonized with
the prerequisites for the manufacturing processes, e.g. line speed,
tools, competence and man power which requires a well
functioning interaction between the organizations for
manufacturing and Research&Development (R&D).

This paper presents an exploratory study whose purpose was to
gain a better understanding of the interaction between the
organizations for R&D and Manufacturing, specifically focusing
on the development of software based systems in the automotive
industry, from the point of view of stakeholders in the studied
organization. The authors expect that there are challenges related
to the interaction between manufacturing and R&D during

SERPS 2007, 24-25 October, Göteborg

51

development of software based systems in vehicles. The increase
of software in vehicles and the experience and knowledge of one
of the researchers provide the grounds for proposing this theory.

The research was done as an explorative case study at Volvo
Car Corporation (VCC) where one of the researchers has worked
with electrical manufacturing engineering for eight years. Twelve
interviews were conducted with different stakeholders concerned
with software development, who were selected in order to
constitute a representative sample for the research area. The
outcome of this study will be a number of findings that sets the
outlines for future research.

The paper is organized as follows. Section 2 covers earlier
work related to the topic of this study. Sections 3 and 4 describe
the method and the analysis of data. Section 5 presents the results
and sections 6 and 7 discuss the credibility of this work and the
results. Finally, conclusions and future work are presented in
section 8.

2. Related work
Research covering the specific research area dealt with in this

work seems limited and especially when it comes to empirically
grounded work. However, Grimm [1], Broy [2] and Broy et al. [9]
support the assumed trend of a rapid increase in software and
software based functionality in automotives and discuss
challenges for the automotive industry. Particularly Broy [2]
presents challenges such as the need of building up software
competencies and improving and adapting development processes
so that they support software engineering. Moreover, Broy [2]
discusses the importance of requirement engineering, systems
integration and maintenance e.g. compatibility, diagnosis and
repair, which are issues that have an impact on the interaction
between R&D and manufacturing.

There are a number of software engineering studies
addressing other research areas, which are using a qualitative
approach where the views from different stakeholders are
considered. One example is the study by Jönsson and Wohlin [10]
which investigates how potential issues and uses associated with
impact analysis are seen on three organizational levels. Another
example is the paper by Berling and Höst [8] where the
characteristics of verification and validation activities in the
software development process are studied by analyzing the views
from testers and test managers.

3. Methodology
The overall research method applied here is a case study as

described in Yin [3]. Case studies can be exploratory, descriptive
or explanatory. The lack of previous empirical case studies in the
area of interest motivates the explorative nature of this study. Case
studies are most suitable for investigating research questions of
the types what, how and why. The purpose of this study is to gain
a better understanding of the interaction between the
organizations for R&D and manufacturing, specifically focusing
on development of software based systems in the automotive
industry. Hence, the research question is

What challenges are there in the interaction between R&D
and Manufacturing, specifically focusing on the development of
software based systems in the automotive industry?

The study was conducted using a qualitative research
approach since it, according to Robson [4], is useful when the
purpose is to explore an area of interest, to obtain an overview of
a complex area, and to discover diversities and variety rather than

similarities. This approach was found appropriate because of the
explorative nature of the study with the objective to use the results
for eliciting theories/hypotheses and set the baseline for future
research.

3.1 Case description
This work was conducted at VCC and studied incorporated

processes in the Electrical Development Process (EDP). EDP
originates from the traditional V-model and follows the overall
product development system, with its milestones (gates) for
decision making in a vehicle project.

One key process identified that comprises frequent
interactions between R&D and manufacturing is the software
release process which manages the release of software from
product development to manufacturing.

The strategy for sampling interviewees can be described as
heterogeneous and purposive, see Robson [4]. Thus, the objective
of selecting participants was to pinpoint and cover all the roles
that are involved in the interaction between manufacturing and
R&D. This was achieved by examining the roles in the software
release process together with representatives of the studied
organization. Table 1 gives a concise description of the selected
key roles.

Table 1. Description of selected key roles

Role Org Description

Designer R&D This role is responsible for developing
software and hardware that fulfils
technique, time, and cost

Project Leader

(PL)

R&D This role is responsible for the electrical
content in a car project.

Configuration
Manager (CM)

R&D This role is responsible for that new
software files fulfils requirements for
release in production.

Manufacturing
Engineer (ME)

Man* This role is responsible for development
and implementations of manufacturing
processes for software download and
test/verification of vehicles

* Manufacturing
Additionally, documents describing software development
processes and archival record with project information at the
company were used.

3.2 Case study design
In Yin [3] four types of case study designs are discussed.

This study can be characterized as a single case study with four
embedded units of analysis which consist of the key roles
sampled. The rationales for the chosen design are based on the
fact that one of the researchers is familiar with the case under
study and has access to the organization. Further, the aim of this
study is to explore the area of interest and the results will be used
as a baseline for future research on similar cases.

3.3 Data collection
Six data sources that are most commonly used in case studies are
discussed in Yin [3]: documentation, archival records, interviews,
direct observation, participant-observation and physical artifacts.
The data sources used and found most appropriate for this study
were interviews with identified key roles and pertinent
documentation and archival records at the company.

SERPS 2007, 24-25 October, Göteborg

52

3.3.1 Planning and preparations
The participants were selected on the basis of an expert

judgment by one of the researchers together with company
representatives. The main objective of the selection of participants
was that they should represent all the key roles identified. Further,
it was preferred that the number of participants in each role would
be fairly balanced. However, a balanced distribution was difficult
to obtain since the availability of staff for some roles was limited.
This imbalance was alleviated by selecting three participants at
R&D with experience of manufacturing engineering. Table 2
shows the distribution of participants.

Table 2. Participant distribution

R&D Manufacturing

Designer PL CM ME

5 4 1 2

The organization and the participants were informed about

the study and the measures taken, such as data protection, for
integrity of the organization and participants. The interviewees
were guaranteed full anonymity.

The risks for biases from one of the researchers who works in
the studied environment and is a close colleague to some of the
participants were treated as a major concern during the
preparation. It was difficult to find literature that gives guidance
for this type of research situation. In Robson [4] it is
recommended to work in teams whenever possible because of the
advantages in sharing and assessing data. Further, Berling and
Höst [8] deals with a similar situation by writing a tentative model
of the work place in the preparation phase. This was not feasible
here, however, owing to the magnitude and complexity of the case
studied. To tackle the risks for biases on the part of the
researcher, it was agreed to assist the research project with
necessary resources from the research community. Moreover, it
was also decided that pre-interviews would be conducted where
the bias from the researcher with a close relation to some of the
participants was evaluated.

Another issue that was discussed during the planning was the
number of interviewers. Little literature discussing this issue for
qualitative research within software engineering was found.
However, Hove and Anda [5] presents a number of advantages
and disadvantages of having two interviewers. Based on this and
practical circumstances it was decided to conduct the interviews
with two interviewers, where one was responsible for the
interview process and the other took extensive notes. Moreover,
the use of two interviewers involves two observers which would
enhance the credibility of the results and reduce the risk discussed
above, regarding biases on the part of one of the researchers.

It was also discussed whether the use of tape a recorder
would prevent the participants from expressing their real
opinions. Advantages and disadvantages of recording are
discussed in Hove and Anda [5] who strongly recommend this
technique for research in software development. However, as the
risk for the participants' unwillingness to talk freely and openly
was considered a major threat to this enquiry, it was decided to
mitigate this risk by conducting pre-interviews and evaluating the
usage of a tape recorder.

The interview questions were developed by the researchers
and designed to cover the area of interest and answer the research
question. The questions were designed as open-ended, supporting

a semi-structured interview style described in Robson [4]. This
interview technique was found most appropriate for this study
since it is primarily explorative. Further, in order not to drift away
from relevant subjects during the interviews, it is recommended
that there be a certain level of structure. An interview guide was
prepared and based on the recommendations in Robson [4]

Introduction Interviewer introduces him/herself, explains the
purpose, assures confidentiality and asks for relevant background
information such as roles, experience and projects.

Warm-up Easy, unthreatening questions are posed at the
beginning to settle the interviewee down.

Main body of interview This covers the main purpose of the
interview in what the interviewer considers the logical
progression. In semi-structured interviewing, this order can be
varied, capitalizing on the responses made.

Cool off Usually A few straightforward questions are posed
at the end to defuse any tension that might have built up.

Closure Interviewees may, when the recorder is switched off
or the notebook is put away, come up with a great deal of
interesting material. It is therefore recommended to ask the
interviewee whether there is something that has not been covered
before closing the interview session.

To ensure that the questions were comprehensible,
unambiguous and had the ability to answer the research question,
the interview guide was reviewed by members of the research
community and representatives of the studied company.

3.3.2 Interviews
A pretest was carried out by interviewing participants

representing different roles. The pretest had three major
objectives: 1) check the risk for loss of information when using a
tape recorder, 2) check bias from one of the researchers when
interviewing colleagues and 3) evaluate the interview guide. Four
interviews were conducted by two researchers where two of the
sessions were recorded. Moreover, one of the interviews was with
a close colleague of one of the researchers

The impression was that the interviewees spoke freely and
were not bothered by the presence of the tape recorder during the
session. Further, Hove and Anda [5] strongly recommends the use
of a recording device when software development topics are
discussed; thus it was decided that the remaining interviews
would be recorded.

The risk for bias from one of the researchers when
interviewing a close colleague was judged by the researchers as
impossible to exclude. Hence, the researcher was replaced by
another researcher, familiar with the study, during further
interviews with these colleagues.

The interview guide was slightly modified where the
sequence and the formulation of some of the questions were
changed. Further, the pre-interviews were considered possible to
use in the analysis.

 Twelve participants were interviewed on site over a period
of one month and all the interviews were held in Swedish. Table 3
presents the length of the interviews in minutes.

Table 3. Interview length in minutes

Interviews
Mean

interview time
Std.dev

interview time
Total

Interview time

12 93 17 1120

SERPS 2007, 24-25 October, Göteborg

53

4. Data analysis
The analysis was influenced by the principles of grounded

theory presented in Glaser and Strauss [6] , i.e. theories grounded
in data, since this inquiry has an explorative approach. However,
complementary advice was needed as it is not an easy task to carry
out an analysis based only on the prescriptions for a genuine
grounded theory. In Yin [3] the importance of having a general
analytic strategy is advocated, which is the best preparation for
conducting a case study as it facilitates the analysis. Analysis of
case studies can be based on three strategies: 1) relying on
theoretical propositions, 2) rival explanations and 3) case
descriptions. The first strategy was chosen for the analysis by
relying on the theoretical proposition for this study, which claims
that there might exist challenges regarding the interaction between
manufacturing and R&D during development of software based
systems in vehicles. The data analysis was based on the approach
described by Miles and Hubermann [7] with three concurrent
"flows of activity": data reduction, data display and conclusion
drawing/verification.

4.1 Interview and document analysis
All the interviews were documented with notes taken by one

of the interviewers and ten were also recorded. The recorded
interviews were transcribed before the analysis and varied
between six and ten pages in length. The transcription was done
by one of the researchers since it was not possible to allocate extra
resources for this time-consuming work. Tapes, transcripts and
notes were stored in a case study database as described in Yin [3].
The analysis of interview data was divided into four main phases
where all the phases were iterated several times, see figure 4. The
first phase included filtering of data by extracting statements from
passages in the raw data that could in some way be a potential
issue in the area of interest. In the second phase, the remaining
information was scrutinized, gathered in a list and sorted into
statements with an identification number and a description.
Moreover, to be able to trace the statements, the list also
contained references to passages in the raw data. Phase 3
comprised grouping statements that were displayed as issues at an
appropriate level of abstraction so that they could be linked to
theory and research question. To enhance the credibility of the
results, these phases were carried out separately and in parallel by
two researchers. In phase 4 the two researchers reviewed and
discussed their results together with two other researchers, which
resulted in a number of refined issues. Further, the issues were
sorted into three main categories on level 1 that were based on the
sub processes to the product&manufacturing development process
at the company. Categories on lower levels emerged from the
analysis of data. Figure 1 shows an overview of the interview data
analysis.

Figure 1. Interview data analysis

 The document analysis was guided by the extracted results
of the interviews and covered archival records with project
information and documentation describing processes and
instructions related to EDP. For each of the issues identified,
relevant documentation was examined to check whether it indeed
confirmed the issue. If the documentation contained what was
included in an issue, it was considered to support it. Similarly, if
the documentation contradicted what was included, it was
considered not to support the issue.

4.1.1 Traceability
According to Yin [3] the benefits of six sources of evidence

can be maximized if the study follows three principals: 1) use
multiple sources of evidence, 2) create a case study database and
3) maintain a chain of evidence. Both interviews and documents
were used as data sources in this study. Collected data and
extracted statements made in the interviews about the area of
interest were organized and filed in the case study database.
Further, remaining data were merged into issues with cross
references to tagged passages in interviews and pertinent
documents. Since this study has a flexible design, as discussed in
Robson [4], research procedures and questions that emerged, were
described in a case study protocol based on the recommendations
in Yin [3] and attached to each issue together with the initial
purpose and research questions in the study. This enhances the
possibility to trace any changes concerning procedures and
research questions during the inquiry. Table 4 shows the principal
layout of the case study database.

Table 4 Principal layout of the case study data base

Issue Description Interview
statements

Documents
/records

Procedures and
questions

1 Production
requirements
are unclear and
not easy to
find.

Interview 1
statement 2
(1:2);
1:8;1:9…..

Document.
xxxx

Record
yyyy

Interviews and
documents,
interaction
R&D and
Manufacturing

5. Results
The analysis resulted in 24 issues divided into two groups.

Table 5 contains issues in group 1 that primary address the
research question in this study. Secondary issues that were found
important but have a weaker relation to the scope of this work
were placed in group 2, see table 6. Further, tables 5 and 6

SERPS 2007, 24-25 October, Göteborg

54

present the contribution from the used information sources and
how respective issue was supported by participants at R&D and
manufacturing.

Table 5. Primary issues

Interview
study

Issue
no

Description

R&D Man*

Document
study

1 Production requirements are
unclear and not easy to find

X X X

2 Lack of processes that secure
design for testability in
production

X X X

3 Lack of processes that secure
design for SW download and
Car Configuration in
production

X X

4 Compliance with processes
and instructions for quality
assured release of software
changes in production can be
improved

X X

5 Prerequisites for appropriate
verification of manufacturing
processes that are affected by
SW in vehicles are not
fulfilled

X X X

6 Lack of modeling
possibilities of manufacturing
processes that are affected by
SW in vehicles

X X X

7 There are potential
improvements of the
manufacturing processes that
are affected by SW in vehicles

X X

8 SW-competence can be
improved within the
manufacturing organization

X X

9 Knowledge about
manufacturing within the
R&D organization is
important

X X

10 There is a need of preserving
and facilitating a smooth
collaboration between
manufacturing and R&D

X X

*Manufacturing

Table 6. Secondary issues

Interview
study

Document
study

Issue
no

Description

R&D Man*

11 Working processes and
quality instructions for
development of SW and
electronics are not always
adopted

X X

12 Method of working developed
and tools tends not to be
adapted for development of
SW and electronics

X X

13 Difficult to achieve smooth
transfer of new technology to
product development projects

X

14 Deployment of resources is
not given priority in early
product development phases

X X

15 Decisions and decision
making processes are not
always perceived as clear

X

16 The quality of specified
product requirements needs to
be improved

X X

17 Late changes of product
requirements cause
difficulties in quality assuring
SW functionality

X

18 Methods for
inspection/verification of
requirements can be improved

X X

19 Lack of efficient tools and
working processes for
requirement handling

X X

20 Lack of sufficient tools and
working processes for
modeling SW functionality.

X

21 Appropriate conditions for
supporting and
communicating with supplier
are essential for the result

X X

22 Collaboration with other
brands and internal between
functions/disciplines can be
improved

X X

23 Lack of understanding for SW
engineering outside the units
working with SW

X X

24 The suppliers' experience and
competence are vital for the
quality of deliveries

X

*Manufacturing

Figure 2 shows the categorization of the issues where level 1
has been derived from the sub processes to the
product&manufacturing development process. Underlying levels
emerged from the data set.

SERPS 2007, 24-25 October, Göteborg

55

Figure 2. Categorization of issues

The following subsections present and discuss the primary
issues in table 5 and provide brief comments on the secondary
issues in table 6. Discussions concerning the validity and the
results are provided in sections 6 and 7.

5.1 Primary issues
Issue 1 Production requirements are unclear and not easy to
find:

This issue was agreed upon by all the participants. The
general opinion was that there is a lack of explicit production
requirements particularly considering diagnostics and available
time for software download. It was also mentioned that an official
way of working in handling prerequisites for production is
missing and is mainly based on experience and informal contacts.
One comment was "Production requirements is just something
you hear about or learn the hard way" Hence, experience and a
sufficient organizational network seem essential to managing a
flawless launch of developed software in production.
Issue 2 Lack of processes that secure design for testability in
production:

Design for testability of software based functions in
production means that test methods for functions and components
are developed to meet the manufacturing demands on efficiency
and delivered quality. For example, a visual test by an operator
does not fulfill these goals since the test method is subjective
(judgment of an operator) and requires operator time.

Missing working procedures during product development for
dealing with elicitation of test methods in production was a
recurrent comment among the interviewees. They particularly
mentioned the need for developing and tailoring diagnostics for
manufacturing purposes as well. However, the participants had
deviating views about the organizational aspects, specifically
regarding how responsibility should be distributed between
manufacturing and R&D for driving this task. Table 7 shows the

distribution between the interviewees who commented on this
matter and their organizational affiliation.

Table 7. Distribution of statements on responsibility for
developing test methods in production

Participant
affiliation

R&D should be
the driver

Manufacturing
should be the
driver

R&D 3 2
Manufacturing 2

Not surprisingly, there is disagreement between the
organizations. However, the differing opinions in R&D were
unexpected.

Issue 3 Lack of processes that secure design for SW download
and Car Configuration in production:

This issue was brought up by some of the respondents. They
emphasized the need for implementing an "eye of a needle" in the
development process where software download and configuration
of cars in production specifically were forced to be handled. The
participants experienced a risk for not giving priority to these
issues since they were managed by informal contacts with
electrical manufacturing engineers. Further, it was commented
that procedures for securing traceability for car configurations by
parameter setting were missing.

Issue 4 Compliance with processes and instructions for quality
assured release of software changes in production can be
improved:

The company has established well documented processes
with instructions and rules for securing that software is quality
assured before it is released to production. One of these processes
is the software release process described in section 3. However,
the participants indicated that the stipulated processes were not
always followed. "It is too easy to change software, which leads
to deficient quality assurance" was a comment made by one of the
interviewees. Contradictory, it was also expressed a need for
flexibility to simplify urgent quality issues that could be remedied
by rapid software changes.

One major concern was the importance of correct handling of
change order documents which are central for the documentation
of any product changes. These documents controls what software
will be downloaded in the plants and contains information about
introducing week, car project, variant etc. Further, they also set
the compatibility rules for how software and hardware can be
combined in production and after market as well. Some of the
interviewees experienced deviating knowledge about change order
handling among the developers. Particularly, compatibility
between software and hardware was brought up as a frequent
problem since competence in this area is sometimes insufficient.
The coordination of software changes between projects and
running production was also mentioned as a problem.

Issue 5 Prerequisites for appropriate verification of
manufacturing processes that are affected by SW in vehicles are
not fulfilled:

Verification of the manufacturing processes is a vital phase
in product development where the major part constitutes
verification on physical test objects during pre series building. A
majority of the participants mentioned the problem of insufficient
test objects during pre series. A lack of requisite implementation
of diagnostics and functional deviations were highlighted as the

SERPS 2007, 24-25 October, Göteborg

56

main deficiencies. The occurrence of an information gap between
R&D and manufacturing for communicating product deviations in
pre series was also considered a problem. The combination of
defective test objects and insufficient information about the
building status makes it difficult to verify the manufacturing
processes.

 Another consideration that was brought up was the
importance of an appropriate feedback system for reporting
software related concerns in production.
Issue 6 Lack of possibilities to model manufacturing processes
that are affected by SW in vehicles:

 Development of scripts for software download and electrical
testing constitutes a major part of the preproduction engineering
activities for the manufacturing processes that are affected by
software in the vehicles. For the time being this work is conducted
in the late phases of the product development due to the
availability of physical test objects. The general opinion among
the interviewees was that modeling manufacturing processes
would be supportive during product development. However, the
advantages of modeling were not obvious to all participants since
some of them had doubts about the potential benefits and how it
could be implemented. Specifically, they expressed an uncertainty
about how downloading software to physical cars could be
replaced by modeling.

 Issue 7 There are potential improvements of the manufacturing
processes that are affected by SW in vehicles:

The main tasks in the manufacturing processes that are
affected by the software in vehicles are downloading software and
electrical testing that secure that the vehicles are correctly
assembled. The interviewees emphasized three areas of
improvement for these processes.

First was mentioned, the need for common processes for
downloading software and testing in the production units at the
Ford Motor Company (FMC). A lack of communality has an
impact on the car projects since the design of software has to be
adapted to fit all FMC's plants. One considerable deviation is that
software download is not available in all FMC plants. Much effort
and a great deal of resources are used to harmonize the design for
the different production conditions.

Secondly, most of the interviewees that belonged to the R&D
organization expressed their wish to be able to download more
software in production since it implies a number of advantages.
Rapid handling of quality issues that could be solved with new
software and the possibility to reduce the amount hardware
variants were particularly mentioned.

The third improvement was expected and deals with the
importance of obtaining robust manufacturing processes. Critical
factors such as reliable and user-friendly tools, qualified and
obliging suppliers of equipment and flawless releases of test
scripts were brought up as factors for accomplishing this. The
need for automatization and in that way eliminating errors caused
by the human factor was also mentioned.

Issue 8 SW competence can be improved within the
manufacturing organization:

The increase in software related activities will force the
automotive manufacturers to adapt the traditions in mechanical
engineering to software engineering. Thus the ability to build up
software competencies in the automotive industry will become
essential and is presented as one of the challenges in Broy [2].

The general opinion among the participants was that the level
of software competence varies in the manufacturing organization.
To be able to take the right decisions and make the right priorities
in software related issues in production, some of the interviewees
emphasized the importance of sufficient software knowledge on
the management level. Further, the overall level of software
engineering know-how influences the possibility to obtain the
right understanding of and attitude towards quality assured
handling of electrical faults in the plants.

Another factor that was brought up was better procedures for
transferring competence between trained operators used in new
model pre series and operators in running production. One aspect
named by some interviewees was that there was not dedicated
time for educating the running production staff since trained
operators are utilized too early for productive tasks. This was
reflected by a low First Time Through (FTT) rate for a while after
the start of production due to electrical assembly faults.

Issue 9 Knowledge about manufacturing within the R&D
organization is important:

 Most of the interviewees highlighted the importance of
understanding and having insight into the prerequisites for
manufacturing vehicles. One of the participants said, "A software
designer without knowledge about production of vehicles can
cause more damage than usefulness"

The software related manufacturing processes can be divided
into two main activities: 1) software download and 2) electrical
testing that secures that the vehicles are correctly assembled.
Additionally, the interviewees were asked to rate the importance
for software designers to have knowledge and understanding
about of these activities. The rating was set according to an
ordinal scale 1-5, where 1= no importance, 2= less important, 3=
important, 4= great importance and 5= very great importance.
Table 8 shows the distribution of the responses.

Table 8. Distribution for importance of manufacturing process

knowledge

Number of responses for
each rating

Process

1 2 3 4 5

Total Median

Software download 3 1 1 6 11 5

Electrical testing 1 2 7 10 5

The responses in table 8 show that a high degree of
comprehension of the manufacturing processes among software
designers is an essential part of their technical know-how.

Issue 10 There is a need of preserving and facilitating a smooth
collaboration between manufacturing and R&D:

The ME role described in section 3 involves electrical
preproduction activities by maintaining a close e co-operation
with R&D. Most interviewees had good experiences from the
collaboration between R&D and ME considering software
development. However, they stated that it is based mainly on
personal contacts and some interviewees highlighted the necessity
of preserving and creating organizational opportunities for proper
cooperation. One of the interviewees mentioned that the
collaboration between R&D and manufacturing at VCC has a
higher prioritization than at the other brands in FMC. Further, a
reorganization that was carried out whereby ME and R&D were

SERPS 2007, 24-25 October, Göteborg

57

separated was considered by one of the participants to be a threat
to maintaining a proper co-operation.

5.2 Secondary issues
I11 considers the fulfillment of stipulated routines and

instructions for quality assuring development of software. Some
of the interviewees experienced differences in the method of
working between software developers. The methods were often
based on how the one who held the post before and that person's
colleagues carried out their work. Further, there were different
opinions among the participants considering the knowledge about
these processes..

I12 highlights the importance of developing product
development systems that are adapted for software engineering.
Most of the interviewees mentioned that processes for the
development of automotives were mainly designed for developing
hardware components. Thus, explicit processes for development
of software based systems are not always defined and have to be
developed and incorporated into the product development
activities.

I13 and I14 consider the ability to smooth the transfer of
new technologies to product development projects and allocation
of resources in project phases. Some of the interviewees
experienced that new technologies introduced in car projects are
not mature and have to be developed simultaneously with the new
vehicle.

The general opinion among the participants was that most of
the resources are spent in late phases of the projects. Some of the
interviewees mentioned that 70-80% of the project activities are
allocated to the industrialization phase. Although the aim is to
concentrate the resources to the early project phases, they claimed
that disposable engineering hours must be deployed in high
priority assignments in late project phases due to a lack of
resources and necessary competencies.

I15 considers decision management which was commented
upon some of the participants. One of the interviewees
emphasized the importance of making the decision structure clear
between the project and line organization for software related
issues. Thus, project members are sometimes confused about
whether a decision concerned their assignments or not. Further, it
was mentioned that the harmonization within FMC increases the
complexity of the decision-making process and makes it more
difficult for the personnel to take in and implement decision
related to software.

I16 to I19 concern requirement engineering. I16 deals with
ambiguous product requirements from pre studies in car projects
that imply difficulties in interpreting and implementing correct
functionalities when they are realized. One of the interviewees
thought that this might be caused by not fully understanding and
being aware of the possibilities for a new function or changes in
the external environment. I17 considers the ability to manage late
changes in requirements. To be able to follow the rapid
development of software based functions in vehicles, some
interviewees highlighted the importance of having agile
requirement processes that are adapted for handling late changes
in a quality assured way. In I19 the interviewees brought up the
need for improving tools and working processes for managing
requirements. Most of the interviewees thought that word is not a
sufficient tool since it among other things is not a common tool in
FMC and does not support reuse of requirements. Further, some
participants experienced that requirements are distributed over

many locations and it is difficult to find and obtain a survey of all
the requirements. I18 deals with validation of requirements. The
general opinion among the participants was that inspection and
verification of requirements are inadequate. The needs for better
test methods and tools and imperative processes for validation of
requirement compliance were mentioned by some of the
interviewees.

I20 considers modeling of software based functions. The
weaknesses of modeling today and its potentials are discussed in
Broy [2]. To meet the customer demands for more functions with
an increased level of complexity and shorter product cycles, most
of the interviewees thought that modeling will become a necessity
and has a large potential. However, some of the interviewees
experienced that today's tools and stipulated working processes
are not sufficient for supporting an efficient and quality assured
model based development. This complies with the weaknesses of
modeling discussed in Broy [2]. It was also mentioned that a
greater involvement of modeling will raise the demands on
experience and competence among software developers.

I21 deals with the interaction between VCC and its suppliers
of software based systems. Some of the interviewees emphasized
the importance of having a close and well functioning relationship
with the suppliers since this has an impact on the suppliers' ability
to fulfill their assignments. One of the interviewees said that "As
it is difficult to write explicit requirements for everything that
must be delivered, it is important to have a close communication
with the suppliers so that they understand what we want". The
sourcing of projects was also commented upon since the price
negotiation sometimes resulted in delays in deliveries and unclear
commitments. Some participants also highlighted that the
suppliers did not have access to the internal database for
following up software deliveries.

I22 comprises the co-operation between VCC and other
FMC brands and the interaction between functions/disciplines in
VCC. The general opinion among the interviewees was that the
harmonization with the other brands often causes an increased
work load. Moreover, one of the participants experienced
difficulties in understanding how the assignments and
responsibilities are delegated between the brands. There were
different opinions among the interviewees regarding the
collaboration between functions/disciplines. Two of the
participants claimed that it is sometimes difficult to receive the
necessary involvement of other functions/disciplines when
software related issues had to be solved together. In contrast, one
of the interviewees did not consider this a problem.

I23 considers the general knowledge of SW. A recurrent
comment among the participants was that knowledge about SW
outside the units that frequently work with SW can be improved
in some cases. Specifically, the interviewees highlighted a lack of
understanding of the complexity of SW. "They believe that it is
only SW and thereby it is easy to change" was mentioned
frequently by the participants. This mindset sometimes results in
deficient quality assurance of SW changes that are released, which
implies a risk for creating other faults.

I24 focuses on the importance of contracting suppliers of
software based systems that have the necessary competence and
experience in software engineering. According to some of the
interviewees this issue has a great influence on the end result. One
of the interviewees said that "experienced suppliers simplify the
implementation since they already have knowledge about the
basic concepts". However, another participant said that it was

SERPS 2007, 24-25 October, Göteborg

58

often the same suppliers that failed to deliver sufficient quality
despite of their experience. Further, deficient processes at
suppliers for quality assurance of the software they deliver were
also mentioned.

6. Validity evaluation
Four tests to establish the quality of case studies can be

discussed in terms of construct, external and internal validity and
reliability, according to Yin [3].

6.1 Construct validity
Construct validity concerns establishing correct operational

measures for the concepts being studied. One major concern in
this study is the impact of one of the researchers' background that
was discussed in section 3. The threats can be expressed as
respondent biases and researcher biases that were mitigated by
utilizing different strategies discussed in Robson [4], see table 9.

Table 9. Strategies used to deal with threats to validity

Strategy Research bias Respondent bias
Prolonged involvement Increases threat Reduces threat
Triangulation Reduces threat Reduces threat
Peer debriefing Reduces threat No effect

Prolonged involvement means to learn the culture and to

building trust. One of the researchers has worked eight years with
electrical manufacturing engineering. This strategy was used to
guard against respondent bias.

Triangulation involves the use of multiple sources that
enhance the rigor of the research. In this study data were
triangulated with interviews, archival records with project
information and documents describing processes related to the
studied case. Further, observer triangulation was utilized since
two researchers conducted the interviews and had the possibility
to discuss and analyze the outcome from the interviews.

Peer debriefing means that analysis and conclusions are
shared and reviewed by other researchers. This was obtained by
conducting the analysis with two researchers and gathering
discussion groups where analyses and conclusions were discussed
with both research colleagues and members of the studied
organization who were familiar with the study. They all agreed
with the conclusions of the study.

To evaluate the correctness of the prepared interview guide
and analyze the bias from one of the researcher's close relation to
colleagues, four pre interviews were conducted.

To maintain a chain of evidence, links between research
questions, propositions, issues and raw data on tape and in
transcripts were established in the case study database, see table 4

6.2 Internal validity
Internal validity concerns establishing causal relationships,

whereby certain conditions are shown to lead to other conditions,
as distinguished from spurious relationships according to Yin [3].
For example, the interviewees may not express their real opinions,
because they feel restricted by the recording of what they say on
paper, and this is a threat to the internal validity. This threat can
be limited by participants being guaranteed anonymity by the
researchers in interviews. Further, the pre interviews were used to
analyze the impact of using tape recorder. The impression was
that the interviewees spoke freely and were not disturbed by the
recording device. However, this study is primary explorative and
according to Yin [3] internal validity is mainly a concern in
explanatory case studies.

6.3 External validity
It is not possible to generalize the results of this study to

studies at other automotive companies. However, the study was
performed at VCC which has a leading role in development of
software based systems in FMC that is one of the major
automotive manufacturers in the world. This should strengthen the
possibility to generalize. The purpose of this study, however, is
not to generalize the results since a similar study at another
automotive company would most likely result in other findings.
Nevertheless, it can be discussed whether some of the findings
can appear at similar case studies at other automotive companies
and may be generalized. Moreover, the used research method
may be applicable to other similar case studies.

6.4 Reliability
According to Yin [3] the objective is to be sure that if a later

investigator followed the same procedures as those used by an
earlier investigator and conducted the same case study all over
again, the later investigator should obtain the same findings and
arrive at the same conclusions

 To ensure reliability two tactics in case studies are discussed
in Yin [3]. The first tactic is to establish a case study protocol
with a complete record of all the various activities carried out in
connection to the study. This will enable the possibility for
another investigator to repeat the case study. The second tactic is
to develop a case study database where all the collected data are
stored and structured.

To increase the reliability of the results, these tactics have
been used in this study. The established case study database
contains all data collected together with a complete description of
the case study procedures.

7. Discussion of the results
Overall, the results support the proposed theory in this study

which anticipated that there are challenges related to the
interaction between manufacturing and R&D during development
of software based functions in vehicles. The data analysis resulted
in 24 issues. These were divided into ten primary and 14
secondary issues mainly depending on their importance to the area
of interest in this study and how they were supported by the
sources of information.

The accuracy of dividing the findings into primary and
secondary issues can be discussed since it is based on the
judgment of the researchers involved and members of the
organization under study. An extensive investigation may be
needed to gain a more solid basis for this division, for example by
conducting an inquiry where a number of stakeholders give
priority to each issue with regard to their importance to the
research area.

Eight of the primary issues in table 5 are supported by both
R&D and manufacturing, which indicates concordant views from
both organizations for these issues. Contradictory, issue I3 (lack
of processes that secure design for SW download and Car
Configuration in production) and issue I7 (there are potential
improvements of the manufacturing processes that are affected by
SW in vehicles) are only supported by R&D. However, by
considering the views from three of the participants from R&D
who had experience from manufacturing engineering, also these
issues are supported by manufacturing. It can be discussed
whether this observation allow to conclude common views also on
these two issues. Nevertheless, it gives grounds for such an

SERPS 2007, 24-25 October, Göteborg

59

assumption, which can be verified by extended interviews with
participants from manufacturing,

Table 6 shows that a majority of the secondary issues are
only supported by R&D. However, by considering three of the
participants' backgrounds as above, all of the secondary issues
become supported by manufacturing. A natural explanation might
be that these issues have a stronger relationship to the software
development at R&D than the primary issues. It can also indicate
that there is a lack of insight and knowledge about the software
development processes among the participants from
manufacturing.

The categorization in figure 3 shows that 12 of the issues
discovered had a connection to management & control activities
in areas such as project control, competence and collaboration.
Although, the other 12 issues were placed in other categories,
most of them have some relationship to management. Since this
study deals with the interaction between to organizations, it is not
a surprise that a majority of the findings can be related to
management issues within areas like project control, competence
and collaboration.

The results of the study cannot be directly generalized since
an inquiry that investigates a similar case in another organization
would probable not yield the same findings. In order to enhance
the possibility to generalize, it can be discussed whether the issues
could be displayed on a higher level of abstraction. However, the
risk for presenting too abstract issues which are difficult to link to
the research area and not possible to put into practice in the
studied organization were considered. Nevertheless, based on the
experience from this study, it seems that the research method used
is capable of exploring an area of interest and eliciting relevant
findings in a structured way. Since the results are valid only for
the studied environment they may primarily serve as input for
improvements of the activities in the studied case. However, the
study may also be useful to other organizations that are interested
in founding their development of their work practice on
empirically observed findings. To enhance the external validity of
the results, more case studies should be conducted on similar
contextual conditions.

This study can best be characterized as exploratory and as
having as its aim to set the baseline for future research as there is
currently a lack of previous empirical case studies in the area of
interest. Hence, the report does not provide closer analyses of the
results that may explain the findings and be used to investigate
possible dependencies between the issues. This could be achieved
by extending the study with a questionnaire that contains more
structured questions created on the basis of the findings of this
study

8. Conclusions
This paper presents an explorative case study of the

interaction between R&D and manufacturing focusing on software
engineering in the automotive industry. Due to the explorative
nature of the study, a qualitative research approach was found
most appropriate where data were collected from pertinent
documents and in semi-structured interviews. Twelve interviews
were conducted with employees at VCC who represent identified
key roles that are involved in the interaction between R&D and
manufacturing. To enhance the validity of the results, three
primary strategies were used: 1) prolonged involvement, 2)
triangulation and 3) peer debriefing.

It can be concluded that the results support the proposed
theory in this study since the data analysis resulted in 24 issues.
These were divided into ten primary and 14 secondary issues
depending on their importance to the area of interest in this study.

 The results may primary serve as input for improvements of
the activities in the studied organization and the study can be
useful to other organizations that are interesting in founding their
development of work practice on empirically observed findings.

A majority of the discovered issues can be related to
management & control activities as this study focuses on the
interaction between two organizations.

9. ACKNOWLEDGMENTS
The authors would like to express their gratitude to all those
somehow involved in this study and especially the interviewees at
VCC.

10. REFERENCES
[1] Klaus Grimm, Software Technology in an Automotive

Company – Major Challenges, Proceedings of the 25th
International Conference on Software Engineering, IEEE
2003.

[2] Challenges in Automotive Software Engineering, Broy,
Manfred (Institut fur Informatik, Technische Universitat
Munchen), Proceeding of the 28th International Conference
on Software Engineering 2006, ICSE '06, 2006, p 33-42

[3] Yin R (2003) Case study research: design and methods. 3rd
edn. SAGE Publications, Inc., Thousand Oaks,

[4] Robson, C., Real World Research: A Resource for Social
Scientists and Practitioners-Researchers, ,Second edition,
Blackwell, 2002.

[5] Experiences from conducting semi-structured interviews in
empirical software engineering research, Hove, S.E.; Anda,
B.;Software Metrics, 2005. 11th IEEE International
Symposium 19-22 Sept. 2005 Page(s):10 pp.

[6] B.G. Glaser and A.L. Strauss, The Discovery of Grounded
Theory:Strategies for Qualitative Research. Aldine
Publishing, 1967.

[7] M.B. Miles and A.M. Huberman, Qualitative Data Analysis:
AnExpanded Sourcebook, second ed. Thousand Oaks, Calif.:
Sage, 1994.

[8] A case study investigating the characteristics of verification
and validation activities in the software development
process; Berling, T.; Host, M.;Euromicro Conference, 2003.
Proceedings. 29th 1-6 Sept. 2003 Page(s):405 –

[9] Engineering Automotive Software
Broy, M.; Kruger, I.H.; Pretschner, A.; Salzmann, C.;
Proceedings of the IEEE
Volume 95, Issue 2, Feb. 2007 Page(s):356 – 373

[10] Jönsson, P. and Wohlin.C (2005b): Understanding impact
analysis: an empirical study to capture knowledge on
different organisational levels. In proceedings of the
International Conference on Software Engineering and
Knowledge (SEKE05), pp. 707-712, July 2005, Taipei
Taiwan

SERPS 2007, 24-25 October, Göteborg

60

An Empirical Evaluation of Domain-Specific Language Tools in the
Context of Service-Oriented Architectures

Ola Lindberg, Peter Thorin, Miroslaw Staron

IT University of Göteborg
Gothenburg, Sweden

d02ola@ituniv.se, thorinp@ituniv.se, miroslaw.staron@ituniv.se

ABSTRACT
The new initiative of Microsoft – Software Factories – is gaining
popularity as it is often perceived as an alternative realization (to
Model Driven Architecture) of the vision of model-driven
development. In this paper we evaluate Software Factories from
a perspective of their usability in software projects. In particular
we focus on the effort required to develop a specific software
factory and then compare a developed solution to the existing
ones developed using UML-based technology. The results show
that Software Factories further improve the practice of software
development by decreasing the time to design a software factory
and by decreasing the effort required to develop software using
the developed factory. The study is done in the context of
modeling of web services.

Categories and Subject Descriptors

D.2.2 [Software Engineering]: Design tools and techniques –
Computer Aided Software Engineering (CASE), Object-oriented
design methods.

General Terms

Design, Languages.

Keywords

Domain Specific Modeling, UML, case study

1 INTRODUCTION
The principles of Service-Oriented Architectures (SOA) make it
possible to create loosely coupled applications in dynamically
changed environments which supports flexibility in applications
with changing requirements [1]. One of the intended benefits of
using SOA is the shift from development of proprietary
components to creating networked, pluggable, and reusable units
of functionality. This shift to networked and dynamic
environments requires new methods for developing software. In
particular, the development companies need to be able to
quickly customize their services or produce new ones which
fulfill new requirements. The services are required to operate on
various platforms and integrate various technologies, which in
consequence require high portability.

Software Factories [1] seem to be one of the potential
solutions to the above demands. The main idea behind
software factories is that there exist a set of integrated
domain-specific modeling languages (DSLs) which allow
modeling a particular part of software and generating full
source code for that part. By exchanging the generators the
users of software factories can rapidly adapt their services for
other environments or produce services with extended
functionality.

An alternative approach is to model services using the Unified
Modeling Language (UML, [2]) and utilize its extension
mechanism – profiles. This approach is the core of the
OMG’s initiative – Model Driven Architecture [3, 4]. In the
course of this paper we intend to use a pre-defined UML
profile to model a reference system and then repeat it using a
created software factory. The case study presented in this
paper is aimed at evaluating how usable software factories (in
particular its main component – DSLs) are from the
perspective of their users. Therefore we address the following
research question:

How usable are software factories from the
perspective of their users during software
development?

In this case we focus on line software development which we
define as the development of core business systems in the
company. In particular, it is not our intention to evaluate
software factories from the perspective of language
engineering (c.f. [5]). Nevertheless we analyze the time
required to create a simple language in order to provide initial
data for performing the cost-benefit analysis of using software
factories.

The results of our case study show that software factories
decrease the time required to develop these core business
systems while at the same time decrease the time required to
develop the software factory. This is compared with the
baseline development using UML profiles.

The paper is structured as follows: Section 2 presents the most
related work in the area. Section 3 presents the concept of
software factories. Section 4 presents the design of the study
and Section 5 presents the results from the study. Section 6
contains conclusions.

SERPS 2007, 24-25 October, Göteborg

61

2 Related Work
Voká� and Glattere [6] have created a UML-based DSL which is
specifically targeted at SOA. It consists of a UML Profile to
provide the domain-specific elements in UML models. They
have also created a generic code generator for generating code
from profiled models. The authors of that paper did not use
software factories and their experiences show that it took a
senior developer two years to develop the UML Profile, the code
generator and associated tools [6 pp. 500, 502].

Wada and Suzuki [7] developed a complete Model-Driven
Development Framework for SOA called mTurnpike. In this
framework, a DSL is defined as a “metamodel that extends the
UML 2.0 standard (superstructure) metamodel with UML’s
extension mechanism” (UML Profiles). mTurnpike has
separated the two tasks of creating Domain-Specific Models
(DSM) and Domain-Specific Code (DSC) so that modelers and
programmers do not need to know how Domain-Specific
Concepts are implemented and deployed in detail ([7], pp. 587-
588). Even though the mTurnpike is not specifically targeted at
SOA, Wada and Suzuki [7] have created an example DSL for
modeling SOA. In software factories both DSM and DSC are
used as part of a single factory.

Staron and Wohlin [8] conducted a case study at Telelogic AB
in Malmö, Sweden. The goal of the study was to elaborate
industrial criteria for choosing between UML Profiles and UML
metamodel extension (which are used as DSLs in that context).
The problem is that modelers at small and medium companies
needs help to decide whether to use UML Profiles, which are
relatively cheap, or the more costly (and more powerful) UML
metamodel extensions in order to provide required
customization of the language, which effectively means creating
a DSL. The case study resulted in nine different industrial
criteria, where three where of a business nature and the
remaining six are of a technical nature. However, the most
interesting part of the case study with relation to this study is the
Section on effort and resources [8], which states that it takes
approximately 3-4 weeks for several engineers to extend the
UML metamodel, whereas it takes approximately 1 week to
create a UML Profile for a single developer. In this paper we
intend to contrast that result with the results of our case study.

3 Software Factories
The initiative of Software Factories [1] originated as a means of
using DSLs in order to improve productivity and quality of
software product lines. The overview of software factories is
presented in Fig. 1.

Factory schema Factory template

Software factory Software product

is used to create

is used to
instantiate

is
ba

se
d on

Fig. 1. Overview of software factories

In order to develop a set of software products in a short time
the developers use a software factory during their software
development tasks. The factory is based on a factory template
which describes how a particular factory is created. The
factory template is an instance of a factory schema, which
describes what kind of elements can exist in software
factories and what the dependencies between them are.

The core of software factories is the DSL technology – i.e. a
technology for creating and using small, dedicated DSLs in
the course of software development. The structure of software
factories in the .NET technology is presented in Fig. 2.

Domain
Model

Designer
Definition

Shapes and icons

Code generator

Domain-Specific Language

Fig. 2. Components involved when using DSL Tools

A complete software factory contains a created DSL and a set
of associated elements built into the Microsoft Visual Studio
2005 SDK. It is a unit of deployment for developers who use
the factory to create the core business assets for their
companies. Domain model and Designer definition constitute
the abstract syntax of the DSL, shapes and icons constitute the
concrete syntax and the code generator defines translational
semantics of the language (c.f. [9]).

In this paper we focus only on evaluation of creation of
software factories – i.e. instantiation of a factory template and
software development using a particular factory. In the case of
our paper we use an example factory for creating web service
based application. In this research we do not consider the
creation of factory schemas therefore, we have the following
elements:

� Software product – an example system – driving
direction web service application

� Software factory – web service software factory

The web service software factory contains a DSL and a code
generator to WSDL (Web Services Definition Language,
[10]). It is developed as part of the case study presented in
this paper. The details are presented in Section 4.

DSL Tools

Microsoft Visual Studio
SDK 2005 Software factory

Microsoft
Visual Studio 2005

SERPS 2007, 24-25 October, Göteborg

62

4 UML Profiles
UML contains a definition of stereotypes, and specifies them as
one of the possible extension mechanisms of the language. In
UML, the stereotypes are a way of adding a new semantics to
the existing model elements. They allow branding the existing
model elements with new semantics, thus enabling them to
“look” and “behave” as virtual instances of new model elements
[8, 9]. During the evolution of UML (from version 1.1 [8] to 1.5
[9]), the definition of stereotypes in the UML metamodel has not
changed significantly, although underwent minor revisions due
to the changes in the definition of other extension mechanisms
(mostly tagged values, which evolved from being merely
additional information for code generators in UML 1.1
specification towards virtual links between metamodel elements
in UML 1.3 and later). With a growing UML tool support for
this mechanism (as opposed to the lack of support for
metamodeling) the stereotypes are beginning to play a major
role as a means of visualizing the provision of UML as a family
of languages rather than a one-fits-all modeling language.

The notion of profile appeared for the first time in the UML
specification version 1.3. Since its introduction, the profiles
provide a way of organizing UML extension mechanisms to
some extent. Firstly, they provide a means for defining new
languages that are based on UML. A set of stereotypes which
are mutually dependent and connected (which is expressed in a
set of constraints attached to stereotypes definitions) can be
closed under a specific profile. Such a profile forms a complete
whole and enables using UML as some other notation (for
example the Entity Relationship Diagrams Profile allows to use
UML class diagrams as Entity Relationship Diagrams).
Examples of such profiles are the UML Data Modeling Profile
[12] and the Entity Relationship Diagrams Profile [13].
Secondly, the profiles allow to group elements which are not
tightly interrelated, thus providing libraries of modeling
elements. Such profiles do not define constraints on using the
elements, i.e. there are no constraints attached to stereotypes. An
example of such profile is the UML Profile for Business
Modeling [9].

5 Evaluation method
We chose to perform an experimental development of a simple
language for modeling interaction between web services – i.e.
software based on service oriented architecture. The
requirements for the language – the elements which needed to be
included in the language were identified by prioritizing a set of
elements found in literature describing SOA. The results of the
prioritization (elements in the language) are presented in Table
1. The priority is the number of literature sources where the
element was used. The higher the priority the more important
the element is.

All elements with priority larger than 4 are included into the
DSL for SOA – herein referred to as SOLA. From these
prioritized elements, a requirement specification for SOLA was
created. Some of the elements, even though they had different
names, were duplicates. Since there was no standard definition
for SOA that could be used as a guideline, these duplicates had
to be grouped into unique elements. The grouping was done by
analyzing the context of the sources.

Table 1. Language elements for SOA

Element Literature Sources Priority
Service [7, 12-19] 9
Service Interface [7, 11-17, 19] 9
Message [7, 11-17] 8
Service Description [7, 12-16, 19] 7
Service Client [12, 14, 16-19] 6
Service Repository [12-16, 19] 6
Service Aggregator [7, 12, 13, 17, 19] 5
Service Provider [12, 16-18] 4
Service Data [11, 14, 16] 3
Service Operation [12, 14, 17] 3
Service Logic [14, 16] 2
Service Connector [7, 17] 2
Service Protocol [12, 17] 2
Message Attachment [17] 1
Port [13] 1
Service Bus [14] 1
Service Gateway [17] 1
Service Partition [17] 1
Service Stub [14] 1

The data collection was made by Lindberg and Thorin as a
part of their Bachelor Thesis. They had both worked with
UML in several student projects and attended UML courses,
but neither had any previous experience of DSL or SOA
development. The rationale behind using the number of
references as a prioritization technique was that we wanted to
identify the most commobly referred elements in the literature
– the more authors discuss a particular element, the more
important it is in the SOA domain.

5.1 Data Collection

During the study we collect the following data:

� Effort required to learn the new technology (person-
hours1)

In order to assess the effort required to understand and
start using the new technology we counted the hours
needed to start using software factories and modeling
service oriented software.

� Effort required to develop a modeling language (person-
hours)

To evaluate the effort of using SOLA, it was compared
to using a UML 2.0 Profile for Software Services [17]
developed by IBM, further referred to as the IBM
Profile.

Tasks are timed using Work Timer. In order to compare
that to the IBM Profile we use the data from an industrial
case study at Telelogic by Staron and Wohlin’s [8].

� Effort required to model the example system using both
SOLA and the IBM Profile (person-hours)

An example system was modeled in both IBM Profile
and in SOLA. The modeling was timed in order to
facilitate comparison. Modeling is defined as the task of
creating a model according to a specification, as opposed
to the creation of a specification of a model.

1 We shall round the total time to full person-hours.

SERPS 2007, 24-25 October, Göteborg

63

� Expressiveness of the language

o Number of available concepts

The number of elements which are available in the
language (e.g. Service, Service Provider).

o Number of available relationships

The number of relationships between elements (e.g.
Service consumption).

o Number of available properties

The number of properties of each language element.

� Number of elements used to model the same software

The number of elements of the language instantiated to
model the example system.

The time was measured by task and individually for each
participant. Pair-development was utilized for all of the tasks
with the exception of literature reviews. At the end of the study
the time spent on each task was summed and the individual
times for each participant were combined to person-hours.

Voká� and Glattere encountered the problem that screen area
was soon consumed due to how their UML Profile was
implemented, which in itself was due to how UML is
implemented [11]. The problem was that one cannot create
relationships between the properties of a concept, and therefore
they created concepts for these properties, which were linked to
the main concept with a relationship. This meant that the
properties could be reused, but also that the number of visible
elements on the screen increased significantly since more
concepts had to be visible. The only solution to the problem they
could see was to use a tool that was built to handle DSL.

5.2 Comparison of usability of SOLA and the IBM
Profile

The IBM Profile was used in IBM-Rational Software Modeler
and SOLA was used in MS Visual Studio 2006. The modeling
of the example SOA was split into three different increments, to
avoid or minimize that all learning was done in only one of the
tools and therefore affect the result when using the other tool. In
the first increment, the first tool to be used was SOLA (Fig. 3)
and the second tool was IBM RSM. This changed in increment 2
so that IBM RSM was used before SOLA.

Fig. 3. Incremental process used while modeling

The completeness of the model increased throughout the
increments, i.e. increment 3 started with the result of increment
2, and increment 2 started with the result of increment 1. The
models were not recreated from the beginning in each
increment.

6 Results
Section 6.1 presents the data collected when developing SOLA
and developing the example system, as described in Section 4.

6.1 Development of SOLA

The development of SOLA required the execution of a
number of tasks, both theoretical and practical. The first tasks
were theoretical and entailed learning several theories and
models, such as SOA principles and DSL engineering. The
effort required to learn the associated technologies is
presented in the chart in Fig. 4. The literature review
performed to define a SOA took 32 person-hours. A literature
review on DSL was also conducted and DSL Tools had to be
learnt. The literature review took 11 person-hours and
learning DSL Tools took 28 person-hours. In total, the
learning effort was 72 person hours.

32

11
10

1

0

4

9

14

19

24

Literature Review
SOA

Literature Review
DSL

Learning DSL Tools Learning IBM
Rational Software

Modeler

Learning WSDL

P
er
so
n-
ho
ur
s

2828

33

Fig. 4. Person-hours assigned to learning tasks

In comparison to the 28 person-hours spent on learning the

rstandable since the DSL
technology is new of new concepts
compared to UM

DSL Tools, it took only 10 person-hours to learn IBM RSM
to the same extent. The learning outcome of this process was
to be able to develop a simple DSL (or a profile in case of
IBM RSM) and to be able to use the DSL (or the profile) for
modeling a simple system (but not the system which is used
in this case study). It seems that using UML Profiles requires
less training effort, which is unde

 and contains a number
L Profiles. Fig. 5 shows the effort in person-

veloping abstract and concrete syntax, ahours for de nd the
code generator for WSDL.

SOLA 1 IBM RSM 1 IBM RSM 2

23

6

0

4

9

14

19

24

28

Abstract and Concrete Syntax, and Semantics WSDL Code Generation

P
er
so
n-
ho
ur
s

Fig. 5. Person-hours required to develop SOLA

In comparison to that we us

e the data from a case study
lar technology maturity to the

logic by Staron and Wohlin [8]
performed in 2005 (i.e. at a simi
current situation) at Tele
which contains the effort required to develop comparable

SOLA 2 SOLA 3 IBM RSM 3

SERPS 2007, 24-25 October, Göteborg

64

(w.r.t.
comparison is presented

functionality and size) metamodels and profiles. The
 in Fig. 6.

29
40

140

0

20

40

60

80

DSL Tools (SOLA) UML Profile (Staron &
Wohlin. 2005)

UML metamodel extension
(Staron & Wohlin, 2005)

P
er
so
n-
h

100

ou
rs

120

140

160

ML metamodel [8] (c.f. Fig. 6.). In order to

a UML
Profile are acceptab LA and the UML
Profile cre
exceed n
extension of the UML metamode ust be implemented the

 required to create the UML Profiles, one

Fig. 6. Person-hours required to develop DSL

The effort required to create SOLA, 29 person-hours, is
comparable with that it takes approximately 40 person-hours to
develop a UML Profile and approximately 140 person-hours to
extend the U
understand these numbers, it is important that we realize what
the different approaches entail. The excerpt of the resulting
definition of SOLA is presented in Fig. 7. When using DSL
Tools, it is possible to define the characteristic for each element
without the limitations which the mechanism of UML Profiles
sets on the language. If the limitations set by choosing

le, the effort to create SO
ated in [8] is somewhat similar. But if the needs

the possibilities provided by UML Profiles and a
l m

effort required to create the DSL in UML increases dramatically.
Instead of the one week
might have to assign several engineers for approximately 3-4
weeks, as in the case studied by Staron and Wohlin [8].

6.1.1 Language Size
A basic characteristic of both SOLA and IBM Profile for
modeling web services is presented in Table 2.

Table 2. The number of available elements in SOLA
and the IBM Profile

SOLA The IBM Profile
crete Abstract Concrete Abstract Con

Relationships 8 13 16 1
Properties 20 18 18 19
Concepts 7 12 8 12
Total Elements 35 46 27 44
The number of elements for the abstract syntax in SOLA (46)
was counted from the definition of the abstract syntax in DSL
designer. The number of elements for the abstract syntax in
the IBM Profile (44) was counted on an UML 2.0 metamodel
of the profile included in the documentation of IBM RSM
[17]. The names of the relationships in the IBM Profile
metamodel were not counted as properties, since the SOLA
metamodel has no comparable names.

SOLA (35) was counted in the
specificat the
concrete syntax in the IBM Profile (27) was counted in the
specification for the IBM Profile.

T that S ns m
UML Profile for modeling web services. The functionality of
both SOLA and this UML Profile are almost the same, with
s rega graphical notation, which are
d derlyi chnology (DSL vs. UML).

As it is presented in Fig. 8, the number of elements for the
concrete syntax in

ion for SOLA. The number of elements for

he results show OLA contai ore elements than the

mall exceptions
ictated by the un

rding
ng te

Fig. 7. Excerpt from the definition of SOLA

8

16

1

13

20

18

0

5

10

15

20

SOLA Concrete SOLA Abstract IBM Concrete Syntax IBM Abstrac

E
l

18
198

25

em
en
ts

7

12
12

35

40

45

50

30

t Syntax

Concepts
Properties

Syntax Syntax

Relationships

Fig. 8. Number of available elements in SOLA and the IBM
Profile

6.2 Developing an example system using SOLA and
the UML Profile

The modeling of the example system was divided in
incremental parts in order to avoid so called bias effect, as
described in Fig. 3. The system was a system for creating
driving directions through a set of web services.

Not all elements in the IBM Profile exist in SOLA. This is
due to the fact that those elements were not highly prioritized
when the requirement specification was created. This may
affect the result of the measuring of the available elements. In
the increments 1 and 2 it was possible to model the same
elements in both tools, but in increment 3, the Service
Repository was not available in the IBM Profile; as it is
presented in Fig. 9.

SERPS 2007, 24-25 October, Göteborg

65

Increment 1; 0,23

Increment 1; 0,07

Increment 2; 0,17

0,00

0,05

0,10

0,15

Modeling IBM Modeling SOLA

Fig. 9. Person-hours spent on modeling example SOA

Increment 2; 0,20

Increment 3; 0,03

Increment 3; 0,07

0,20

0,25

0,30

0,35

0,40

0,45

0,50
P
er
so
n-
ho
ur
s

It took a total of 0.3 person-hours to model all increments in
person-hours in the IBM Profile, which can be

Prof

requ

pres

SOLA, and 0.47
seen in Fig. 9. This means that there is a difference of 0.17
person-hours when modeling SOA using SOLA and the IBM

ile. However, this small amount constitutes more than 35%
percent of the modeling time, and that indicates a significant
difference when a real system would be implemented and the

ired time is more than half a person-hour.

The number of elements used to model the example system is
ented in Table 3.

Table 3. Number of elements used to model the example
system

 SOLA The IBM Profile
Relationships 16 5
Properties 38 40
Concepts 15 9
Total Elements 69 54

A has a larger amount of elements, 69 vs. 54. The main
rences are in the number of relationships and concepts. The
n for this is because in the IBM Profile several

ionships are not shown as lines in

SOL
diffe
reaso

at

7
In t
pe The focus of this
evaluation was to compare using DSLs with using UML Profiles
which can be seen as an alternative to DSLs. The evaluation was
done by comparing two parts – building an example DSL (or a
UML Profile) and using the DSL (or the UML Profile) to
develop an example system.

The results from the evaluation show that the effort of
development of a DSL can be compared to the effort of
development of a UML Profile. However, if the needs exceed
the possibilities provided by UML Profiles and an extension of
the UML metamodel must be implemented the effort required to
create a DSL is approximately three times shorter (less than one
person week to develop a DSL compared to 3.5 person weeks to
develop a metamodel extension). Using the DSL seems to lead
to shorter development times than using the UML Profile.
However, the example system was rather small and the
difference was negligible. Our further work is focused on further
evaluation of DSLs in an industrial context to obtain more
detailed data on the effort required to develop systems using
DSLs.

how
UML
same
elem y the

whic
expe

that

evalu
two
expe

1.
ith patterns, models, frameworks, and

2.
sion 2.0. Vol. 2004.

3.

7

5.

orkshop in Software Model

6. omain-Specific

(eds.): Model

7.

 Model Driven Engineering Languages
and Systems: 8th International Conference, MoDELS
2005. Springer Verlag, Montego Bay, Jamaica (2005)
584-600

8. Staro�, M., Wohlin, C.: An Industrial Case Study on the
Choice between Language Customization Mechanisms.
Improving Modeling with UML by Stereotype-based
Language Customization, Vol. 2005:08. Blekinge
Institute of Technology, Karlskrona (2005) 95-126

9. Clark, T., Evans, A., Sammut, P., Willans, J.: Applied
Metamodeling - A Foundation for Language Driven
Development. Xactium (2004)

10. Bardram, J.E., Christensen, H.B.r., Corry, A.V., Hansen,
K.M., Ingstrup, M.: Exploring Quality Attributes Using
Architectural Prototyping (2005)

11. Voká�, M., Glattere, J.M.: Using a Domain-Specific
Language and Custom Tools to Model a Multi-tier
Service-Oriented Application — Experiences and
Challenges. Model Driven Engineering Languages and
Systems: 8th International Conference, MoDELS 2005.
Springer Verlag, Montego Bay, Jamaica (2005) 492-506

12. Papazoglou, M.P., Georgakopoulos, D.: Service-
Oriented Computing: Introduction. Commun. ACM 46
(2003) 24-28

rel the model but as
embedded or hidden properties of the concepts.

Conclusions and Future Work
his paper we evaluated software factories from the

pective of the users of this technology.rs

The expressiveness of the DSL created in the case study,
ever, was much lower than the expressiveness of the
 Profile. More DSL elements were required to model the
 system than what would have been required when using
ents from the UML Profile. This could be caused b

fact that in our comparison we used an existing UML Profile
h was developed by a company with significant
rience in this field.

In conclusion the case study presented in this paper indicates
the DSL technology from Microsoft is a promising

alternative to model driven software development based on
UML and its extension mechanisms. However, further

ations are needed since the differences between these
technologies are not as eminent as one could have
cted.

References
Greenfield, J., Short, K.: Software factories : assembling
applications w
tools. Wiley Pub., Indianapolis, IN (2004)
Object Management Group: Unified Modeling Language
Specification: Infrastructure ver
Object Management Group (2004)
Mellor, S.J., Kendall, S., Uhl, A., Weise, D.: Model-
Driven Architecture. In: Bellahsene, Z. (ed.): Object-
Oriented Information Systems, Vol. 2426. Springer-
Verlag, Montpellier (2002) 290-30

4. Miller, J., Mukerji, J.: MDA Guide. Vol. 2004. Object
Management Group (2003)
Evans, A., Maskeri, G., Sammut, P., Willians, J.S.:
Building Families of Languages for Model-Driven
System Development. W
Engineering, San Francisco, CA (2003) Np
Vokac, M., Glattetre, J.M.: Using a D
Language and Custom Tools to Model a Multi-tier
Service Oriented Application - Experiences and
Challenges. In: Briand, L., Williams, C.
Driven Engineering Languages and Systems, Vol. 3713.
Springer-Verlag, Montego Bay, Jamaica (2005) 492-506
Wada, H., Suzuki, J.: Modeling Turnpike Frontend
System: A Model-Driven Development Framework
Leveraging UML Metamodeling and Attribute-Oriented
Programming.

SERPS 2007, 24-25 October, Göteborg

66

13. Curbera, F., Khalaf, R., Mukhi, N., Tai, S., Weerawarana,
S.: The next step in Web services. Commun. ACM 46
(2003) 29-34

14. Krafzig, D., Banke, K., Slama, D.: Enterprise SOA.
Pearson Education, Inc., Upper Saddle River, NJ (2005)

15. Fabio, C., Eric, S., Umeshwar, D., Ming-Chien, S.:
Business-oriented management of Web services. Commun.
ACM 46 (2003) 55-60

16. Jørstad, I., Dustdar, S., Thanh, D.V.: A Service-Oriented
Architecture Framework for Collaborative Services. 14th
IEEE International Workshops on Enabling Technologies:
Infrastructure for Collaborative Enterprise. IEEE (2005)

17. Johnston, S.: UML 2.0 Profile for Software Services.
Vol. 2006. IBM developerWorks (2005)

18. Littlewood, B., Fenton, N.E., City University Centre for
Software Reliability: Software reliability and metrics.
Elsevier Applied Science, London (1991)

19. Thanh, D.v., Jørstad, I.: A Service-Oriented Architecture
Framework for Mobile Services. Advanced Industrial
Conference on Telecommunications/Service Assurance
with Partial and Intermittent Resources Conference/E-
Learning on Telecommunications Workshop. IEEE
(2005) 65-70

SERPS 2007, 24-25 October, Göteborg

67

Evaluation of Automated Design Testing using Alloy
Johannes Andersson

Lund University
Dept. Computer Science
Box 118, SE-221 00 Lund

+46 76 136 16 38

johannesa@gmail.com

Per Runeson
Lund University

Dept. Computer Science
Box 118, SE-221 00 Lund

+46 46 222 93 25

per.runeson@cs.lth.se

��������
�� � �������	
 � �� �
���� � ��� � ��
�
���� � ��
 � ��������
 �
� � �
���

���
���
 ��
����
�� � ���
�
�� ������ ���
 ��
�����
�
�
�	���������
�

���������������������������
���������
�����
��
��
���
������
�
�
��

��
 � ���
��� � ������ �
�
 � ���
 � �
	��
� � ���
�
�� � ���
 � �����
���

���������	���
������

���
����	�
��������
����������

�����
��

���
�������
�����	�����
���
�������
�
�����������������
����	���
��

�������� �
�����

�� ��������� ���
��
���
�������
���
������
	
����

���
���
�����
�
����
�
��
���

�
	������	�
�����	��������������

�
� �
�����

� � �		������ �
� � ��� � ��
��� � �
 � 	�� � �
 � ���� � ��

�
���
	
��
����	��
��
������
�
��
������������
���	��

�
����
��
�
�

���	
�������
������������������������������
���
����
����	��	���
��

��
 � �
 � 	����
� ��

 �
��
 �	��������� � ��� �
��� � 	��
��� �
� � �
����

������ �������

�� � �
 � �� � ���� � 	��	���
� �
��
 �
�
 � �
�
��
� ���
��

�
�����������
!
���
�����
�������
����������
���������	���
����
��

���
��
��
������"��
��������
�
�
���
��
��	�
����
��������
��	
�����

��

�
� ������ � �
�
���� � �� ���
����
� ����
�
 ��	��
����
�
 � �
����

	����
���
�
��
�
��
�
��
�������������������������
���
����������

��	
��
�
����������
�	��
��
��	�
�
��#�# ��
���� � "���� � ��� � "
	��� �
�� ���#�$ � %��
���
&'�������

(
����	�
����

�
�

����

��
�
������)	�����	���*
�������
���+������
���(
����	�
����

�
���
��
������������
���	��

�
�����	
�	����
���
���
�����
���

� !"��#�$��!#"
�� � ���
���
 � �
�
����
�
� � ������� �
�
 � ����
 � �
���� � ���
��	
�����

	������
�����
��
�����
�
��
�������������
�
�
�
�������	��
���
����

���
���
��
�	��
��
���
�����������	�
�������	��
�
�
��
����������

��������
��
�
��
��	�����
��
�����
��	�
�
��
���������
��
��
�
�
�

������������
��,��
�������
���������	�
�������
��������
���
���	�
�	��

����	���
	
�
��� �-��	����
��
� �� ������
��
��
�
�
����
�
����
�
�

���	
����
���
��
���	��
�
�
�
�����������������
����������
� �
���

�����	
� � �
 � �
 � � � �
��	
�� � �
���� � ����
� � ���	
�� � ��	� � �� �
�
�

��

����� � �

��� � �� � �� � �

��
��
 � ���	
�� � ��	� � �� �
�
�
�
�

������������ ./0� ���
 �����
 �
�
�
 ������
��������
�
���� � ����

�
���
��
��
�	��������
 ����	�
�
������������
������
�
�
���
��
��

���� �
��
 � �

 � � � ��
� � �
���� � ��� � ������

 � � � �
���� � ��
���
�

����
�
�
�����
���
���
�
�
��
�����
�������
�
��
�
����

� � ���
���� � �
���� �
��� � ��� � �
 � �����
��
��� � �
	���
 � �
�

�������������
����	�
��������	���
	
��������
���������
�
�
�������

���

�����
�� ��������
� ���
���
�	������
�������
 ����

�����
��

�����
����
�
��
	
��
 � �����

	
������� ���

��
�	 ��
�
	
� �
����

�
 ����������������������������
�
�
�
�����1��
�
���
���
������

���� � �

����
 �
�
 � ���	
�	�� � ��
����
�� � ��� � ��		
�� � ��� ��	� � ��

�����"�
�����
� �������	����
��
��������	���
����������	�
�������

�
 �
���� � ��� �
�
 � �
	���� � ������	� � ���	
�	�� � �
�
��
 � 	�� � �
�

���
��
��������������
�
�
����

"��� ����
� ���
�
�
� ����
�����
����������
�������
�
��������

����	��

� � �������� �
��� � 	���
� � ����� � .2� � 30� � ����� � ��� � �

��

�
�
���
� � �� � ����
� � 4�	���� � ��� � ��� � �
�
��	� �

�� � �� �
�
�

���
���
��
�
����
�
��������
�5�"���		�������
��4�	������������

��� � �

� � ��
	���	����� �
����
� �
� ����
� � ��� � �����6
 � ���
���
�

���
��	
����� ����� �
 ���� ��

����		
����������
�� �� �������
� ����

���
��	
�� � ��� �
�����
� �
� �
�����
 � ���
 � ���

� � ���	�����6�
����

����	�
��.70��
�������������
	����������
�����
	���
�����
�	���.80��

����
�����
�����	
��
��.790��

���
������
�	�
������������
��
���
����
�
��
�������������
���
�

	�����
�
 � �� � � � '���!
�!
��� � �����	�
��� � ��� � �����
 � ����
���

�
�
���
� � �
 � "
�
	� � 5����
 � �� � %�
�
�� � "�
 � '���!
�!
����

�����	�
��� � �
�
�� � �� � ���
 � �� � ��
�

� � ����
���� � �
�
���
� � �
�

"
�
	� �5����
 � 	���
� � �5%� � �' �5��
��
��� � %�����

�� � ���	��

����
�
�
� ��
��� ��
���
���
�������
 �����
�����
�������

��

�

	���
	
������

���������
�����

�����
�����
�
��
���
�������
�
��
�������
�
�

'���!
��
���������	�
�����:�
��������
�
�
����
	
��
���
�����������

������ � ��	� ��� ��������
 � ������
�
�
� � ��
�
���
� ���� ������
���

���	��
�
�� � 	�����
�
� � �� �
�
 �
�����
���� � ��
 � ���� �
�
 � 	��
 � ���

��� � �� �
��
 � ��
� �
� � �	��
�
 �
���
 � �
���
�� � ;�� � �� � �����
���

	��

�
���
�����
��
��
���������
��
�
�������������	�����

�����

	��
��
�����������
��
�	����	��
�
�

"�
�
�����
�����������
���������
 ���������

�<� �
�
��� ����

��
����
�
 ���
���� � =4�����
�>� �1�� ���	�������� �� � �� �	����

��

�	�
�	
�
����

�������
������	���������
���
��
�
����
�
� �����

�
�����������	
��
�������������������������
������
�
�
��
��
����
�
�

���

�<��
�
�����"�����
����
��
�
�
��
���
�����
�
�
�����
��������

'
���������
�����
�����
�����������	���
���������������
����
�������������

�
����������	�����������
��������

����
���
��

�������
��
��
�	���
����
�

��
����
�������
����

�����������
����	���
�	���������
��
�����
��
�	���
��

�
���
������
�	
�����
�
������	�
�
�������
�
�����
����
��"��	�����
�
����
�����

�
���������
�����
�����
��
������
���
���
����

�
�����
����
 ���
����������
	���	�

�
������������&������

�

��������	
��
��
����

SERPS 2007, 24-25 October, Göteborg

68

�
�����	�
��
����
��
���������	��
������
�����������������
������
�
�

��
	
������������
��

% &#�!'��!#"��"��#�()��!')

���
�
���

��
��
 ��
�����
���������
��
�������
�7� �����

��
� �
��

�����

������������
�
�	��

�
����
�
���������
������������
���

	��

�
��
�
��������"�
��������������
�
�
�����
�����
�	���
�����

�������
�����
���

����
�
�
����	
�	�������
������������
�������!

�!�����������
�����
���
��
�
����
�
������������
���� ��

�����

� � 	���
 �
�	
 � �� �
��� � �� �
��
 �
�
�
 � �� � �� � �

��
 �
� � ���� � ��

?�
��
	
������
�@�
��
�����

���������
������

���"
�
	��������
��

��������
������
 �������
�����
��
�����
�����

�����
������
���

��
�
�
�����

�������6
������
�
��
���
����
�����
�����������

��

��
�����
 �
�

����
���"�
����	
�	����

������
�
������
���	��

�
�

��
�
����������
�6
����
��
�
��

������
�
��
��������
�
����
������

�����������6�
�����"�����
����
��
�
�
��
��������
�
���������	��

���
�������
�����
�����������
���
��
����	
��
�����	
�������	
�	���

�������
�����
�
�
���������	��

�
���
���
�
���
���
�������������� �

��
��
�

"�
����	
�	���	��

�
�����������
�	
���
�
���
	����������
�

����
 � �
���� � "�
 �
���

 � ����� � ��� � ����� � ��
�� � �� � ?��������@�

�
�
���
��� � ��
� ����
���
 �
����

�� � �������������
���

�����
��

������
 �
�
 � ���
���
 � �
�
����
�
 � ���	
��� � ��
 � ��
���
 � ����

���
�
�
������6
� � ������
 � �� �
�
 � ���� � �� �
�
��� � �� � �������	��
�

�	��
��	��	�����������
�
���
�����
�
��
���

����=���
����	��
�

�����>� � "��� � ��������� � ���
	
� �
�
 �
���	�
�	� � �� � ��� � �

�����

��
	��������
��������
�
�
 ����������	����
���
 ��
�
����
�
 ����

���������
��
������������
����
�
���A
	
��
�
����	
�
�������������	���

�

��� � ���
 �
���	�
�	� � ��
���
 � � � ����
 � ��
!
���
��� � ������
�

�
��	
��
��)��������
�
�����������
�
���
����
����������
����
�����

��������

������������
�����A��������
��
������������
	���
��
�

	����
 � �
 � �����
� �
��
 � � � �
�� � ����
 � �
	
��� � �� �
�
 � �	
��
�

�������	
����
�
����
���
������
���
����������
�
���
�
��������

* ������#$"�

* � ��	���	
��'

�+���	����&
	,���
���
��� ����
�� ����?��
���

� ��
����	�
�����

���@� �� ����

����

��
 � 	�� � �
 � ��
� �
� � �
���� � ��
	���
� � 	���
	
�
�� � ����
�
�
��

��
���
�	������������
��������
���"��
��������

����
��
�����������

��

�
��������
�
�����
��
��������
�����������
�����
��������
������

��
���
 � ����� � ��

��
�
���� � "��� � �� � �� � 	��
���
 �
� � ��

��	
��
�

�

���� �
��
 � 	�� � �
 � ��
� �
� � �
����� 	���
	
�
�� � ����
�
�
� � ��
�

�
 ���
 � ����
 � ���� � � � �����
� � ����� � ��
��
�� � ������ �
�
�

�
����	�
��� � ���	
��� � 5��
 � ����
 �
�
 � ����
�
�	
 � �

�

��

��

��	
��
 � ��� � ��
���
�	 � �

���� � 	�� � �
 � ����� � �� �
�
�

��
����	
����
��B����
!%	����������.#0�

* % -
��

	�
���+���	���	���'

�+���	����

&
	,���
����� � �� � ��
 �
��� �
��
 � 	�� � �
 � ��
� �
� � �
����� � ��
���
�	�

�
����	�
��������
��������
���
������"�
�
���
�������
������
�
��

�������������
� � ����
�����
�%'�:�.$0�����C''��+�.D0� �E���
�

����������
�
��
�
��
�����
�	����
�����
�
�
�����������
	���	�������

�	���

�
�����
��� ��
��������
�
�������	�����
�
�
�� �;���
 �
�
��

�������
���
����
�����������
	���	�
�����������
��"�����������
�

7 �'
�����
������
	
��
��#992

���
��
���
��
��	�
�

������
�����
�
��
�����
���
��
����
�������

����
	�������
 �����
�
�
� �
���
����� �%
	���� �
�
�����
�
�
�����

?����
@���	��	
�
�
��
��������
��������������������������

����	
�

������	�� �"��
 � ��� �
�
��

�
 �
��
 ������
������
�
������� ���������

�������
 ��
�

� �
��
 �� ����
� �	����

��� ���
��� ��� ����

� ��	��
��

)��	
������
��	��
���������

���
��������
����
��
�
��

�������

�
 ��
������
���"�
��
�
�����
����������	��
����
�
�� ����
��
�

�
���6
����
�
������
�����
��
��
�
�����

��������
���������
��
�

�
�
�
�������
������
�

��
���
�

�

��������
����������

��

�� �
�
 � ��

��
��
� �
�� � ���
������ � �������� � �

���� �
��
�

����
���
���
�	����
���
����	�
�������
��

����
�
���
���"�
�
�

�

���� � ��
 ���	��
 ��������� ��� ����� =����
�� � ��
���������
�>�

�������� �5��
��	�
	����� ��������
� ��
����������
��	��
���������

����� � �� � �
�

 �
�����
���� � ��� � 	�
	�� � ��

�
� � � � �
 �
�

��

����
�
� � ����� � ��� � ��� �
�����
����� � ;�� � ���
 � �

���� � �� �
�
�

�
	����	� �������
� �	�
	����� � �

 �B����
!%	���������� .#0� �%�"�

�������� �
 ���
� �
��
 �
�
 ��
�

 ����
�
 ����
� ��
 �	���
�

� �
� ���

�����
 �����
���
���
������ ���%�"�����
� ����� �
�
� ��
���
��
��

�

��
�
�������������
��	
���
�
�
�
�
���
���������
��
�

��
�����
�!	�
	�������� �%�"!��������
�����
 � � � ���	
 ����

�
�

� � ����
 � ����
�
�
� � ��
 � �
���
� � ���� � ����	�� � ����������

�		������ �
� � 4�	���� � .20� � � � ���
� � 	�
	���� �
��� � ��� � ���

�������
��� � ��� � ��� �
��� � ������ � ��
 � �
 � ����� � ���
� � 	�
	�����

�������	�
�
 � ��� � �����6��� � ���
���
 ����
��� � ���

�� ������� ��
��

%�"���������
�������6
��
�����
����

�
 � ��� � ���� � �

� � ����� �
��
 � %�" �
���� � 	�� � �
 � ��
� �
��

������
�
�
 �
���	�
�	��������
�!	�
	����� .770� �"�
 ����
��	
����

�

�

��%�"����������������
��	�
	��������

����������
�
�
�

��
	
�����	�������������
�	���������������

�������������
�	�����

�����
�����������������
���������
��������
�������1��
�
������	
�

��� ����
� � �� �����������	��	
��
� ���
� �
�����
����
�
 ����	
�	���

�������
� � �� � ������ � � � ���
 � ��!�
�
� � �
��� � �� �
�
 �

	���	���

����
�
�
�����
�
�
��

������������
��
������
���
�
�

��� ��� ��������
�� �
�
 ����� ��
�
��
 � ���
�
�
 ��

���� � �� � ���

	����
�
�
����
�����
�
���
���

���
����	�
�����"�
�
���
����
�

����
�
�����
����
�	��
�
���
����
�
���
���6
�
�������
���-�
����

�
�
 � ����
�
����� �
�
 � �����	��
� � �� � 	���
��	
��� � � � ���
� � ����

�������� �
�
���
 �����
�
�
� �
���
����� ���
 ��
���
� � �� �
��� ����
���

���
�
� � ����
�
��� � �� �
��
 � ���	
 �
�
�
 ��

���� ��
���6
 � � ����

!

���	
 � ������	�� �
�
�
 � �� � ���� � �� � ���
�
�
 � ����
�
��� � �� �
�
�

	����
��
����������
���
��
 �	����
��
����
�� ���	��
���
�
�
����

����
 � ��� �
�	���

�
� � �� � �
�	���
� � �� � 1����� � .80 � ��
�
 �
�
�

���
� � �� � � � �
	���
� � ���
�	�� � ��� � ����
��� � ���	���
 � ��� �
� � �
�

��������
��
���������
����	�
������
��
�
������������6
��

"�
��
���
�����
�
������������
�������
���

���

���������

�
�
��
����
��

�
�����%��	
�
�
���������������	��
�������������

����
����
�
��
������������	���
	
�
�������

��������������������
��

�
�

����
�
����
�������
�
���
����
����
�
��	��
����
�
���������� �

"�
 � ����
�� �
�

 � ����� � �� � 	���
� �� ���������������� ��� � 	�� ��
�

 ��

 � ��
��� � ��� � ������� � �� �
����� � �� �
�
 � �����
�
 � ����� � ��

	���

�
�����
�����������������
�

�
��
�	����		�����������

��

��
� � � � ��
	���	 � �
����� �1��
�
�� � �������� � 	�� � ������ � ����
�

	����
��
��	
�
�����������
�����
��������
���������
�	�
�������

����
	���	��	���
	
���
��
�����
�

��"��������������
��
����
��
����

���	
������
����
�C''��+�.D0�����������.20��

��
���

���
����	�
�����

��������
��

����
�����������

��

�� � �����	�
����� � ��� � ��
 � ��
 � ����

� �
� �
�����
��� �
����	�
�

SERPS 2007, 24-25 October, Göteborg

69

���
���
�����������
��
������ ������������
�
�
���

������	�
����

	�� � �
 � ���
�
� � �� � �� � ���������

 � �������
� � ��
���
�	�

�
����	�
��� ����� �
 � ��
� �
� �

�
 � ����
�
�
�� � ;�� �
�����
F �
�
�

�
���� � ��� � �������� � ��� � � �
�� � 	��
����
� � ��� +������ � .7#0 � ����

���
�����
�
 ����	
�� ���� � � �
��
�
 �������
��������� �
��	�
����

�����������E����	
�.790�

. �//#0
���
�����
����� ��
��
�
����
	�������	
��
���
��!�"���
#�����

$����
.�
�5�"0
 !��
����� ���
��	���
"������
��
�����%
�
������

����������
��	�����
 ��������
 ����	
 ��
 !����&��	��
 �����'
 ���

����
���
��������
���������
�!
����������%
��������
���
���������

�!
����������
 (����
 �����
	�!���	
 ����������)%
 ��	
 �����
����&

�����!��	
����������
�!
�
��	��'�.30,

���
�
���
����	
����
��������������������.20��4�	�����
������

��

���
�
������
��	
����
�
����
��	
�����
��
����
���
��������
�������

1
�	������
��
�����������
�������
���
����	��
�
������
���
	���
�

����
�����������
����
� ���
����
����
��		
�� �
��������
���

��

���� �
� � �
���� �
�
 � 	���
	
�
�� � �� � ���&�
� � ������
����� � ��

��������
������
�
��
�
��������������
��
��
����
���	�����
������

�
�	��
��
���
������&�
�����
����
��������
�
���4�	���������
��

��
 � 	��
� �� � � � ��� ��
�����
��
�����
 ��
���� � ����
� � ���
�
���

���	
�	��
�	��
���� ��� ��
 ���� ����
�
�
�
�����
��

���

���� �
��
�

���	��
�
�
����
��������
�������
�����
�
������
�����	����
��
��

��������� � �

� � �
����
� �
� � ���
 � ���
���
 � �
�
���
�� �
�
�

���
��
��
�����
��
���������
���������
�����
��	
�������������
�

���	�
�
�����
����������
���������

���������
���
���������������

� � �

 � �
� � ��
�� �
�����
 � ��� �
�

����
���

�
 � ���
��	
���� � �� � ��

�
���� ��
���
 � �	
������ 	����

��� �������� �
 �
� � ����
�
�
�
����

�
�
��	��
�

"�
 ������� �������
 � �� � ���
� � ��� ����
!���
� � ����	 � ��� � �

�

�
��������������
�����=�������
����	
�����> ���������
�
� ���
��

��A
	
 � ���
�

� � �������
� � ��	� � �� � 4��� � ��� � BGG� � �
� � �����

������������	�����
 ��
�������� �
��
����� ��
	���
�����
����� ���

�����
��
�
�
�
��
��
��������������
������
���
���������

���

���

�
��
���� � ��
 � ��
� �
� � 	��
��
 �
�
 � ����
�
�
� �
��
 � �
��� � ���

�
��
��
��	����
��
��
�
�
������
�����
����
�������
��	
��
�����

����
�
�
� � �� � �

��� � "� � ���
 �
�
 � �������
 � ����
 � ���
� � ����

�����6���
��
�
�
���
����
�����
�
�����
�����
�	����
�
���
��
���

���
�����
����
��
��
��
�����	��������
����
���
�
���
�������
�

��
��
��
�����
���
�
���
��
�����

�
���� �

�
���� �� �������	����
� �������������
� � ��
��
��

�

�

����;���
���������
�����	�
�

�����
�
��������������
�����	�����

	�
	�
���������
�	
�	�����
��
�	�����

�	���%
	�������
�������
��

���
��������
�����
�
������������6
����
�����
���
������
��
����

%�"� ����
� � 	�� � ���
��
��� � ��� � �����6
� � "������� � �� �
�
 � %�"�

����
��	��������������
�����
��������
�
���	��
������������	�������

������
�����������
��
�
�
�
�������
�
�����������
���������
���
���

�
��
��
�����������
���������������"��
�
�
�%�"�����
����������

����
��� � 	�� ��
 � �
���
� � �� � ��
 � �
�
����� ������

�
� � ���� ��
�

���������������
�����
����
�
	�
�������

�
�����������
��������
�

�
�����	��
	����	����
�
�
����
��

1)'�/$��!#"�-/�"
"�
�������
����
�
�
�����
�������
��
�����
�������	��
��
�����

����
 � �� ��

�
��
��
������������������	
�	
� ��������A
	
��
����

�
�
���
���
 ���

�
	������	�
�����	������� �"�
�
�����
�������

����� ��

��
� �
�����
������
���
��������
 ��
�
��
� ���
�����
���

�������
������
���������
��������
�
�	���

�
��

1 �)2����	����&
	,��
"��� �
�����
��� � �� � ���
� ����
�
 � 	��	
�
 ���� �	
��� � �
�
��	� � ���

�
�	���
�����1H�
�

�����.I0��"�
�	��	
�
�����	
�����
�
��	��	����
�

���������
�	���
�����������

��,

• '����J���
�
�����������
�������
��	���
�

• ���J�'�����
������������	
�����
������
�
�
������
�

•)�����

�J�B�
	��
��
�����
�

���	
������
��
��

������
�
�
�

• +
����J�5��
���
����
�
������
��
�����
�����
�
��
����

������
�
����&����
	��
���
��
��	
���

"�
�
�����
�������
��
��������
������
�
�����
��

�������	
�
�
�

���� ���	������ ��

�����
�����
���������� �����
�
 ��
��
 ����
�
�

����� �"����
�
 ��

� ���� ��
�
��������������
����� �������������

����
��� � �� � �
����� � �����
�	
� � �� �
�
 � ��	
 �
��
 � � � �����
��

	����
���
 ���
� � �� �
�����
��� � ��������� ��� �
� � �
 � ������ �"�
�

�
	�
�������������
�����
����������
����	��
�
�����%
	
����D�#�

B���

�� �3�8� �����I���	��
�
�
�
�������

������
�
��	
�����

�
�
��	���B���

� �3� ����
�	���
��
�
����	
�	���?��@��

���	���

��

8���	��
�����
�
�
�����
��������I�����
��������

�������
�
�
�����
������������
	������
�
����
�
����	��
�
�

�
 � ���	
��� �"�
�
 � �
	���� � ��

 ����
 ���� � ���
 �
�	� ����� ����

���
�	��	���������
�
��
�	�
�����
�
����	
���

1 %�)2����	����-����3�-
��	����
"�
����	
�	�� ���������
��� ���������
��
�����

 ���

�
� ����������

��
��� � ���� ���������������
���
 ��
����� �����
��� � �� �
�

�������

��������� �
�
 � ���	
�� � ��� ���
���
 � �
�
����
�
� � "�
 � �����
��

��
�
���
� � �� �
�
����	
�� ���� ���
���
 ��
�
����
�
 ��
 �"
�
	�� ���

�
�
��������
�
����A
	
�����������
�����

�������
	���	�����=�

�

B���

� �2� ��� � �

���� � ����
 �
�
 � ���A
	
> � �� �
��
 � �
���� � ����

�
��	
��
 ����� ����
� � ��
 �
� �
���
 �
��
 � 	���
����
�� � �
��������

����
��
�
����
�
�	�	�
���"�������	
���
�
����
�
�

����
�������

� � ����
�
�
�
���� � ��� � 	�� � �
�� �
� � �����
�� � ��
� � ���
���
�

 ����
���"�
������
������ ����
������
���
��
��
������������������

��
� � �� �
�
 � ����
 � �
����� � �� � �� � �����	�
���� � ��
 � 	�� � �
 ����
�

�����
���
���
��
�

�����������������	�
�������
�
���
����
�

�����	��
�
��
������

��?����
�@�

�����������
��
���
����
�
��
�����������
���
�
��
�������
����

�
 � ����
 � �
�
���
� � ����
�
�
�
��� � ���	
��� � � � ��
	
 � ���

���
���
 � ���
 � �� � � � ����
� � ���

� � �� � �
���
� � ��
� � ������ � "�
�

���
���
 � �� �

�

� ����������������������� ���
 ������

��
���
�

�
��	
��
�#� ������
��
��������
��
� ���
���� � ����
�� �"�
� �
�
����

��,�B����������
���
�
����	
�������

	
���������
�����������
�
�

������
�
�
�����
�
��
����K�"�������
�����

���������
�
�
����

������������
�����
�
����
���
������
�
���		
�������
����
�����

�����
����
�
���
���

����
���
�����%
	
����D�/�

�?"���
��	
��@�������
�����
��������
���
��
�
����
�
�
���
���

�
�
����������
���

�������
���
������
	
�������
���
�������
�
�

��� � �
����� � �� � � � �
��
��� � ����
� � "�
 � ����� � �
����� � ��

� � ��

�
��	
������������
��

����
�	��
��������	��
�

SERPS 2007, 24-25 October, Göteborg

70

1 *�)2����	����!	
��
"��

���
���

�����
���
��
�
�
�����
������
���
�
���
�,�

• ���	� �
��� ���
� �
�
 ����
��
� �	��
 �����
���6�����������

"�����

���������������
��
����
����� ���
�
�
��
���
��

��� � ����
� � �
�
���� � ���
, � ?1�� � ��	� �
��
 � ����

�

�
��
���	��
�
�LK@�

• -
��	�����

���	���
������
��
�
����
��
���
�
��
�������

������
��� ����
�
��
���
����� �����
�� �
�
�������	����,�

?E��
 � ������
�
�
� �
� �
�
 � ����
�
�
�
��� � �
�
�

��
�
���
� �
����� �
� � ������ � ��� � =���&���> � ��
 �
�
��

�������	��
K@

• �
�

���	������2�����	���
�	���
��
�
��
�
����
�����
�
�

��
�������
�����"��
���� ����
 �����
�
�
����
���
	���	�
��

�
��
���
���
��������������������	���
�
��
���
�����
����

�
�����
������������������	�
���K

4 � -�#()���������#$"�
"�
 � ���
���
 � �
���
� � �� �
��� � ���A
	
 � �� � ���
� � �
�
����
�
 � �
�

"
�
	� � 5����
<� � 5���H � ����	
 � �� � %�
�
�� � "
�
	� � 5����
�

������
� � ���
���
 � ����
���� � ��� � �
���	
� �
� �
�
 ������
 � �
��	
�

�����
�����������
� �"
�
	��5����
 ��
�
��������
���
�����
�����

���������
�����
������������
�
���
���
���������������	������

�����
������	�
��������
�
������
���
�����
�����-�����

"�
����
���
����A
	
��
���
������������
�
�
�
���������*�='���!

�!
��� ���
��B
������> �
��
 � �� ����
 ����
�
� ����
� �"
�
	���5%�=�'�

5��
��
����%�����

�>����A
	
��

'�B � �� � � � �
���	
 �
��
 � ������ � � � ��
� � �� � � � 	
��!����
 �
��

	������	�

���
����
�������
��
�
��	
��!����
���
��������������

� ���

�� ���� �
������� �1��
�
�� ��
 ����
 ���
��
���� � �� �� �'�B!

�
����������
�����
���
�
��
��-
�
����
�����������
����
��������

���
�
�����
�����
�
��	
��
���
��
��
����������

"�
�
���
�������
����������
���
������
���
�������������

'�B�����
�����-�
������
������

�������������������	���
	
����

������
��
�����
����������
�
�����
��
�	��
������
	��
����	
���
��

� � � � �����
 �
��
 � 	�� � �
 �
��
	
��
�� � �
�
 � ��
� � � � �����
 � ��
��

	���
	
���� � �� �
�
 � �
���� � �
���
� � �� �
��� � ���A
	
� �
�
�
 �
���

�����
�����
 �	���
��� ����
� �
��

�
�� �"�
� �
����� ����
��� � �� �
��

������
�	��
�����	
���
��
���
��
�
����
�
���
��	���
	
������
��

��

�
����

����
��
����������	
��
������
	
��
����
��
���
� ��	����

�
	��
��

����� � �� � ��
� �
� � �
��� �
�
 � ������	� � �� � 	��
������� �
�
�

��

��	
�����

�

���
�����������
	
��������
�������
����
������

�
	����������
�	����������������
�������
����
�
��
�
����������
�

�	�
��
�	����
�
��
�����	����
��

���
�������2�

5���

�� �,
��	���
���	�	
����,��
�����	���������	����

���	
6	

"�
��
������
���
�����
����
�����
�������
�
�����
����
����	��
����

�����
������
�

!��	���
������

������
�
�

�����B!	��
��"�
�

�
�

 � ��	���
 � �� � ��
� �
� � 	������	�

 � ��
� � ��� � 	��
��� �
���

	��	���
�
��������������
���
������
��
��
���
���
�����
�
�'�B�

�
���	
� �"�
�	������	�
������������
����
���������� ������������

�
 � �������� � � �
 �
�
!�
�����
 � ����� ���
�
 �
�
 � �
�

 ���	���
�

�
�������
 �
�
�
��
�
�
�����
�
�
��������
������
�
���
	
��
����

�
�����
 � ����	�
��� � �� �
�
 �
���

 � �����
 � ��� � �

���
� �
�
�

�
 �
�

���
�

� �"�
��
�

���	���
�������
	
��
����������	��
����

������� � �������
��� �
�
 � '�B ������
� � "�
 � ���
 �
��
 � ������ ���

�����
��
�����
�
����	
������
�����
�
��
�

!��	���
�	��
��������
�
�

�
����������
�
�
���������
������
��

"�
�*"'������
������
���
��!
��
�	������	�
���������
��

��� � �� � �� � ����
�
�
�
��� � �� �
�
 �
��� =*
��!
��
 � "�������
�

'��
�	��>� � "�
 � BB% � �����
 � �����
� � 	��
	�/� ��� � ������

	����
�����������
	����
������������������
���
�
���������
��

������ ������� �*"'�	���
	
������� �� ���	������
� �"�
�
 �
���

�����
� � ���� � 	���
�� �
��

�
� �
� � ������
 � �� �
���	�
�
 � ��
�!

�����
���
���	
������
�	���
�
������
	
������
�
��
�
���
�������

�
�	���
	
��
�

�
�����	
����

"�
�?�
�

@����
�
��
�

!��	���
�����������
�����
������
�
����

���

�� � �
 � 	����
 � �

� ��� � � � �
	��� � ��� 	������	�
��� � �

�

��

�����
��������
����
�
�'�B������
�����
�����
	����
�
��
�

����

�����	
� ��
�
���������
�
 �	��

�
 ���� ��	�������
����
�� ����

��	�������
����
�	����
����
�����
��������
����
�
�
���
�

�����

�����
�� ����	� �

��� �
��
 �
��
 ������
 � ��		

�
� � �� � ����
� � ���

�

�������
�
 � �
 �
�

� ��
�

� � �
 � 	���������
�� �	��
��� ��
����
�

����������
�
�
�'�B������
�

7 � �//#0�&#�)/�

!&-/)&)"���!#"
"�
 � ����� � ���
�� � �� �
�
 � ���

� � �
�
 � ��
 � 	��	
��
� � ����

����
�
�

� � �� �
�
�� � ����� � ���� � ���� �
�
 � �
��
 � �� �
�
 � �
�����

/ ���	��
	����������
��
�	��
����
�������
������
�����
��������
�

������������������
���
�
������
��
��
�
��
������
����������	
�

��� � 	�� � �
 � �
��
� � �� �
�����
��
� � ���
 �
������ � ��
 � �
��� � �
�

�		
��
� � ����� � �� � �
� � �������� � ���� � �� � �
	������ � %��
�

�����
�, � 4')M� � ��	
��
 �
�	������ � 5'/� � ����� �
�	�������

L(�������
���
�
���
�	������

SERPS 2007, 24-25 October, Göteborg

71

���

����
�
���
�
���
�������������)�	���
�����
���������
�����

�
�
��
��
�	
�����
�����������
�
�
����
�
���
������������"��

���
 � � � �
����
��
��� � �� �
��� � ���	
��� �
�
 � ���

� � ���
� � ���

�
��
�
�

� � �� � �
�
��� � ���
��	
 �
�
�
�
� � �
��
�
�
��� �
�
 ���A���

�
��
�����
����
����
�����"�
����
�����
����
�
�����
�
�
��
�
�
��

�
�
�	���
��	

�����
��
�
�
����
�
�?����
@����
�������
�

7 �� &��
������	
"��

 � ���
��	
 � ����	
� ��
�
 � ��
� � �� � ����
 ���
� � 	�
�
��� �
�
�

���
��,

• �
�������	��
�
�

• �
�
���
������

• B��

)�	�� ����	
����� �
� � �����
�	
 ����
�
 �	�
�

� ����
��� ���
 �
�
��

����
����������
��	
�� �"�
��
�������	��
�
�����
������
���
��

���
�
 � �
��	
��
 � ���
�
 � �
���
� � �
�

 ���	���
 � ��� �
�
 � ���	
���

��

��	
����� � ��
 � ��	�
� � ��

���� � �

���� � "��� � �
��
 �
��
 �
�
�

�
�������	��
�
���
�
���
����������
��
��������
����
��������	�
�
�

�����
�
�
���

� ����
�������"�
�	��
�������
������
 �����

�����

����
���

���������
�
�
���������
������
�
���
���
��������
�����

�
 � ����
�
�
�
��� � ��� � ��������
 � �� � ��

 �
� � ������
 � ��	��

	����
�
�
�����������
����

7 %� &��
����3��������	�	
�&��,��

��������
��
����
	
�
����

�����
����
�����������������
��
�
�
�
�

�� ����
����	�
 ��
	����	 �
� ��
�	���
 �� � �
�

 ���	���
� �"�
 � ����
�

���
��	
 ����
� �	�
�

� ���� �
�
�
���
 �
��
�
������ ���
��
���
�
�

��
��
�
�������������������
��
�
�
�
����������
�

���	���
�
��
�

�������
��
������

��
�����
��
�
�'�B��
������"���
��	
����
��

��6
��
�
�	���	
��������
�
�����������
�

!��	���
��
��
�
�
����

�
��
�

���������
�
�	��
	������
�����
�
����
����6�
�������
����
�
�

�
�����

"�� � ���
��	
���� � �
�
 � ���
���

�� � �

�
�F � � � ��� �
��

�
��
�
�
�����
	���	��
�

������������
���
��
�
�
����������
��
�

�

�����
���� �;���
�
�����
� �
�
�������	��	
�
����
�
������
��
 �����

��
� �
� � �
��
�
�
 �
�
 � ���
��	
 � �
�

�� ���� �
�
 � �����
��
 � �
����

�
��
�
�
��� �
�
 � �
�

 ��
�
 � ���
 � ��� � � �

 � �� � �����
��
� � 	���
��

�������?%
�

"@� �"��� ����
� �
 �
����
�� �
��
�
�
 �
�����
����� ����

�	���
�

������
��
�	�����	��
��������������
��
����������
�
���
��

���

�����
�

��
��
��
��
�
�

��
�
��������
�
�����
���������
�
���,

����������	
������
�

�����������������������������

�

�	����������������

���������������������������������	��

�

�� � �	
��� � �
�

 � ����� �
�
� � �
 � �
��
�
�

� � �� � �� �
�

������

�����
��
����
�
���,

�	
���� �!�
�
 !"#"
��$���%�������
�

��

�	����&���� �!�
�
 !	�'���� �!�
�
 !(�'�
)� '���� �!�
�
 !�

�*�+�����	,()��-���%���������������� �
	�%	�	%��� � ������ � ��% � ��	� � ����% �

	����%��"#"
�	������*�

�

E�
��
�
�����
��������
������������
 �������� ��
�

�� ��
 ����������

�
���
����
���
�	���
�
�
�	����
�����
�

���
��
��
����
�
���	
,

�����
����	�	�����

�������������.���%�����/0�1������2�&�
��%���$��/�0�1

�23�������������	��
�3������������3�	���

�

������ ��

������������
�
�� �
�������
��������
��������
�
�������

���� ���� � �� � ��������� � �
	���
 �
�
 ����
� � 	�� � ����� �
�	
 � �� � ��

��
��	
���
 ������
��	
��� �����
�� � �������� ��
� �
�	
� � �����
����� ���

�
 � �
��
 �
��
 � ��� � �
�	����
 � �
�

� ����
 ��
 � �� �
�
 � �

 ���������

�
�

����
	���
��
����
������
��
�
������������
��
�
���
����
����

�
�

�������
���
������
�����
����
�����
�

���
�	���������������

�
���
�
�
����
���
��
���
����
����
���������N

1��
�
���
�
����
��������
��
�

����� ����
�������
��
����

��
�	���
�����������	
����������
���
�����
�
��
��	
��
����
�
�

�
�

���	���
��%

�3�#��
����

5���

�% �� �	�	
 ����,��
 �

�

�
�	��� � 	,
 � �	�	
 ��+ � 	,
�

���
�������

SERPS 2007, 24-25 October, Göteborg

72

7 *� &��
��%�3���������
�2
���	�	
��,���
�

E���
 � 5��
� � 7 � ����
 � 	�� � �����	
 � � � ���� � ������	���

�
��
�
�
�
��������
�

� �����
�����
����� ���
�
����
�� � �
� ��	
����

���	
������
�����
�
�
�
�������

���"��	���
���
��
�
�
�
�
��	
����

���

�� �
�
 � 	��	
�
 � �� � ������� � ��� � ��
����	
� � �� �
�
 � �
	����

���
��	
����
���%��������
��
�
�
�
�
�����
�
��������
��
������
�
�

���

�� ������ � �� �
�
 � ���

�� �� � �� � �
�

 �%7� ��� � ��	�������������

%��7�������������
���
��
�����
������
����
�
����

���������
�

�

%#�����
�
���
�����
����
�
�����
����������		���

���
���

�����
��
������
�
����
��
��
�
������
��
�����
�	��

�
�

�
���
�	���
����
���������
�
��
�

�	��������
,

�	
���� �!�
�
 !4�
!5"�
��$���%�������
���

�

�	����&���� �!�
�
 !� �
6�7!� ��"�#��'�
��� �!�
�
 !�6 �
 �!86�9"5

�	
�����&��	
!
����%��5	���.:�

/�	
!��������%��8���	���'��	
!����	����0

�

"�
��
����
����	
������������������
��
�����

�

��
����

�����

���������"�
�����
 ��

����
�
��
��
����	���
�������
��
�
����	
����

��	������������� �
��
 �
��� � �
�

 �	����		
�
� �����
�
��
	�����

�

	���
������ �
� � ������� �
��
 ������
 � �
�
 ����
�
 � ���

�� �� �
����

�
�

�����	��A��	
������
��
�
�������
�� ��	����
�������
������
��

�������

����
�����
�
����

��������
������
��������������������

�
�

�

"�� ��	���
�

 �
�
 �
�����
���� � �� �
��� ����
�� ��� �����
������
�

	����
���

 ���� ���
� ���
 ���
� �
��� � �� �5��
� �7� �;���
 �������� ���

����	 � ��	
 � �
����

� �
�
 � ����
�
�
 � �
�

� � �� � ���
�� � ��	� � ���
�

�
���
����
����������
�	���
�

���
�
���	��
	�����������������
���

�
 ����
�����
�
��
�����
��	�

����
��
� ���
�
��
�����������	�
	��

��
�
�
��
�

�����<�����
�	����
�������,

����������
����	�	�����

�������������.���%�����;<�1������2�& �
��%���$��;�<�1

�3���
�	�
�	
����	����%���	
����&:
��%��
����	�	���;�,�2<

�

���%���%��
����	�	����/�,�2�������0��

�23�������������	���3������������3�	���

�23	����	�
�	
����&��3���
�	�
�	
���

�23���
�	�
�	
��� � 	� � �23������������3 �
�	
����;�23	����	�
�	
���<

�

���
�
���
��	�

���%��
����	�	����
��

��

�����
�	�
	�
��

��
 ��
�	���
�
�
�
�����
�����

�

��
���	��
	��
�

�� �;���
 �
�
�

��� � 	�
	� �
��
 � �O � �� � �
�	����
 � ����� � � �� � �
�����
�� � "�
� �
�
�

��	�������������=�
���
��������
�����
>�
���O�����

�
��
�
����
����

�
���
�������������=�
���
��������
 �
�
>���������"�
��
�
��
��

��
����������������	���
�������
�
����������
�
� ���������
����
�
�

�

������������
��
���������O�

"��� � �
��� �
��
 �
�
 � ���
� � �� � ���� � �� �
�
 � �
��
 �
��
�

����

����
����	���
����
�

�
�����
�����������������
�
��
����
����

������
�

����
����
�����
���
�����
��
�	������
��

�
��������������
�

�
����������,

���%����-�����
�"�������/0��

������&���%��	����;<�1

�3�������������&���� �!�
�
 !"#"

������2�������1�

�23������������&�
��� �!�
�
 !"#9�!�

�

�������-�����
�"�����������=

���
�
����

������
��
�
���
����
�
����������
�
�����
��
�

��:�"�
��

�
��
�

 � �:;-P%)"� ���2�
�����
���� ���� �
��� �����������	����
�

���� � �� �
�����
 ���
� � �
 �
��
� �
� � �����6
 �
�
 � ����
� �
�
�
 � ���

���

�������������
�����
����
����������
��

C����
���

���
�������
������
�����	��
�
����
��
���
��
��

���5��
��7��E���
�5��
��#�������
��		���

��
	���
��
���	���
��

�������� � �
 � �� � ���� � 	����

��� �
�
�	� � ��� � �� � ��	���
	
 � �
�

 � ���

�
�

&���������������������
�
���
����
��
����	�
�������
�
����

��

����������
�����

7 .� &��
��*�3��
���
�
�&��
�
"�
�
��������
���� ���������
��	�����

���
�
�	��	
�
�����������

����
� � �
�

 � 	����
�� � ��
 � ��
� � ���� ���
� ����
 � �� �
�
 � �
�
��

�
	����	�������
�
����
 �
������
��� � ���
�
��
����	
����
�� ���

�
�

 � �� ���� ����
���������
��
 � �� �
�
����������
�� ���
 ���
�
� ���

	���
	
��������
����	
�� �3�$��
�����
��	
��
�
�	��	
�
����	����
�

����
��
�
�
�
��������
�

�

5���

�* �,
�

���
�
����
�

����������
�

���������
��
�
�

����
��
�
�����������	��
,

�	
��������

SERPS 2007, 24-25 October, Göteborg

73

�����%����������������%��6������������,

���	����	�
�	
�����������	
���

�

E�
�
���%��6��������������������������

�����
����	
�,�

�	
���%��6��������������

����>6�����������������%��6�������

�

��
�����
�����

�

���
�

��	���
�����
��
�	���
���������
��������

�
�

���������
����	
�������
�
�	���
�
��
�

�����
�
�	��
�����
����

���
�������
��	�

������

�����������
�
���	���
�������
�
��
�

�

?����P�

@�����������������,

���%���%��!�����!	���!
���
/�����%��6������������0��

��3�>6���������&���%��5	��6��������'

� ��%��8���	��6��������'�
��%��"���4��6�������

�

"�����
����
��
�
�
��

��>6������������
�	��
����
��	
���
�
�

��

��

������
����	
������
�������
�����
��
������
�
���	���
�
��

�
����
�
��
�

�?����P�

@�������
��
�
��
�

�����������������
��
��

�
���
��
�
��
����	
��

�����
������
����	�
�������
�
��������
�
�

��
����
�
����
� ��������

 ������
�����
��
��
����

�	����
������

;���
�����
����%��5	��6��������������

����
��
�	�����
�����

�������
��
��������������
��
 ���%��5	��6�������� ��������
�

������
�
���

����
�
����
�����������
��
�
�
���
��
���
��
����
��

����
�
���%��5	��6����������������
����
�
��
�
���

�

E�
� �
��� � �
� � ��� � �� � �
��
�
�
��� � �
�

� � �
����� � ��
��

��	������������� ��
	��
�����
 �	����
�� �:���
�
�
 � �� �����

�

�
��
�
�
����
�
��������������
��
�

�
���
�
�������

����
����
�

��	�
	�����
��
�

�
�
���	���
������������
�
��
���
���

��������

��	����� � ������ � ���
	
� �
��
 � �
�

� � "�� ����
 �
��� � �����
�� �
�
�

�
����	
����
� � 	��
���� � ��
��	�

� �
��
 � 	����
 � �

� ��� � �������

�����
����"�
��
�	���
��
�
�
�
�
������
�����
�
���	���
�
���
�	
�

����
�
��
����������� �"��	����
����
 ������
� �
����
� ��������
�

��������������������
�������
����
��	�

������
����	
�,

���%���%��
����	�	����/�,�2�������0��

�3	����	�
�	
����	���"4!
����%��5	���&:
	����	�
�"4!
����%��5	��;�,�2<

�3	����	�
�	
��� 	�

�"4!��������%��8���	���&:�
	����	�
�"4!��������%��8���	��;�,�2<

�*�333�9������������	�����	
����333�*�

�

;���
�������
�������
���
�����
��
�
�
��
�
�	���
�
��
�

�������2�

�
 ��
�
 ��
�

� �"�
�
 � �� ���
������� ������������
��	�

 � ����
�	��

�������
�����
������������
�	��
��
���������������
��
�
�

�������

�

�
��
�������A���
�������
�
��
��
���������������������
������
�
�

��������"4!�����%��"�����������
�
�

������������,

���%�	����	�
�"4!�����%��"���/�,�2������0��

�������&��3��%��������1��

��%��!�����!	���!
��;��<�&:�
�

�23��%�������3�>6���������&�
��3�>6���������' ��%��"������6�������

��������

�23��%�������3�>6���������&�
�3�>6���������

�23	����	�
�	
����&�
����"4!%�����>��%��8���	��

�

�

�

1
�
 ��
 �	�� � �

 �
��
 �
�
 � ������ ������
� �
��
� �
��� �
�

�� �
�
�

	���
�
� ��� � ��� �
�
 � ���������� ��2� � �
 �
�
� � ����� � �
 �
�
�

��%�������� �� �
�
 � 	���
�
 � �
�

� � ���	� � �
��
�
�
� �
�
�

�
����	
�����
�
��
����	
����
�����
�
��
�

!��	���
������	�
	���

����
���
� ����� �
�����
�

 �
���		
�
�
��� �������� �"�
�
���
����
�

�
�
��
�	�
�����
�
��
������

��
��
����
��
��

�����
�
��������
��

�
 � �
���� �-�
 � ��	� � �
�
��
�	�� �� �
��
 �
��"���� ���
 � 	��
�

�
���
 ����"���� �"��� ��
��� �
��
 � ��� �
�
 � ������ � ����
 �
� ��
�

�
���� ��
 � ���
 �
� � �
 � �� �
�
 � �
�

 ��
�
 ��
 � ���
 � �
	
��
� �
�
�

�
����	
�
��"�����

�� ��
��	�

 � �� � ��
� �
� � �

����
 � �� �
�
 ���	���
 � �� � �� � ��

��
	���	��
�

������
���
����
�
�	���
	
��
�

�
�
��

������
����	
����

���
��
��
�
�	��
	%
�

�����
�
�	�������
�

��2������
���
���
����

�
 �	���
	
 � �
�

 ����
�
�� ��
 �	���
 �
� �

�����

 ���� ���	������

�����
������������������
�
��
�
��
�
��
�

�

7 1� &��
��.�3�5�������	
�

"�
 � ����
� � ���
� �
��
� �
�
 � �

� � ��
� � ���� � ���	
������
� � ���

������
� ����
��� ����A
	
� � �
 �
���� ���
 �
��
 �
�
 � �
����	
����
��

�
�	���
���������
	
��� �3�$� ��� ��

�
����
���������
������������

%������
 �
�
�	��
���
��� �
����
��$99����
� � ���
��� ����
�� �����

��
� � D99 � ��
� � ������� �

�
� � ��	���
�� �
�
 � 	����
��
� � �� �
�
�

�
	����	� � ��
� � ��
 � ��	�
��
 � �� � ��	�� � "�
 � ���� � ����
�
�	
�

	�����
��
��
�
����
 ����
�����
��
 ��
�	��������
���� �
�
���������

��
����
	
�
�
��
�

����
�
����
���"�����
����
��
��
���	���
��
�
�

�
�

������
�A��
�
�
�	��
	������
����
������
�
�*"'������
�����

�
���

������
�

�����
�
�'�B������
�

-�
 ������ � ���
��	
��� � ���
� �
� �
��
 � ���5��
� � /� � �� �
��
�

�
����	
� ���
 ������
�� ��
�������������		�������
��
�
�����
�
�
�

�����
� �����
 ��
�

 �
�
�� �
��
�
�
� �"��� ���
� ���
� 	����
�
�
�

���	
���������������	��
��������

������
����	
����
��
���������
��

��

�� � ���
� � �
���� � ��
 � �
 � ��
� � ����� � ���
 � ��
��	�

� �
� � �
�

��������
����
���
���	����
��	���
��	
���������
�����������
������

������ ��� �
���
� ���
���
����� �
���
� �������	����� � ������	��
�
�

���
��
������

SERPS 2007, 24-25 October, Göteborg

74

"�
 � ����������� � �� � �
��
�
�

� � �� � ����� � �� �
�
 �
��

�

�
����	
��������
��
��
����
�������
����
�
��
�����
�
��������

�������
,

�	
��������

�����%����������������%��6������������,

������������������6
86������������,

������������������8
�6������������,

���	����	�
�	
�����������	
���,

��������	�
��-��������?�����

�

)�	�����
�
����	
����������������
���
��
�
�
�����

����

�
����	
�������
��

�
����
��
�
���	���������������������
�	���
��

�
����	
�������
�

����
�
����

���"�
���
�
�	
�
����
��
�������
�
�

���

������������
����������������
������
�
����

��	����
����

�
�
�����
�

��
��
���
�������������
�����"�������������
�
��
���

���

����
	���
���	
����
�����������
��

����
�������	
��
��

	����

��
���
��
���

��
��
����
�
�
����

����
����
��

E���
�
�
���
��	�

��
��
�	��
�����
�

�
�����
�������
����
���
�

���
 � 	����
�� �
�
� � ����
� � ��

�
 � ���� �
���
 � ��
�
�

� � �� �
�
�

�
����	
����
������
��������
	
����3�$��

"��� ����
� �	��
���� ����
����
��	
�����
��
 ���
�

�
���
 ����

������ � "�
 �

�
� � �
�
���
� � 	��	
�� � ������ � �
�	������
� � ����

������
�� � ����
�
�
�� � �� �
��� � 	��
� � �
�	������
� � �
�
�� �
� �
�
�

����
�
��
��
���������
��
�����
�

��
���������
��������
�
���
�	����

��
	���
� �
�� � �
�

 � ��� � ��	� � ������ � %�����
�� � �
�
�� �
� �
�
�

����
�
��
��
��
�����
�������
��
�����
�

��
����������
��
��������
�

���
�	��������������
�

���������������
�

�

������������
�	������
��

�
�
�������
�
���
������
,

���%����-5��

����	�/0��

������&���%��	���;<�1�
���!�����!	�	�!�����;�<

�������������1����!%���	���	��!�%%�%;�<

�

�������-5��

����	�����������������

1
�
��
���
	����
��
�
�
�����
��
�

����
�
����
�����������
����
�
�

���
��� � �
�

� � �� � �
���
� � �� �
�
 � ��
��	�

�

�

���������������
���"�
���
�����
��
����
����������

�
����	
��������
�
��
�
��

���
�

�����������
	��
�
���
��	�

�

�������������	�������� � "��
 � ��� � �
 � ������ � �
�	� �
�
�

	���
����������
�

��������
�
�������
�����E�
��
�
�������
����

��������������
�����
�����������
�
���
��������
���������
�
���
�	��

�
��
 �
�

���
�

������
�
�����
��

���
����	��
��
�
��
 �
�

���
�

�	���
�������
��
�
����
��
�

��

��
����� � �
����	
����
��
���� �"��� ����� �
��
� ��

 ����
���

����

��
��
�	�����
�
�
��������������6
��
���

�
��	
������
��

���
�
�

������
����
����
���
�	���
��������

"�
�
���
����
�����
�

�
���
���������
�	������
����	���
��

�� �
�
 ����
�� ���
 �
�
 �����	���
 � �� � ������ �
�
 � ���
 ��� � ��� �
�
�

����
�

�
� �"�
�

�
 ����������
����
 ���
�������
���
�����
�
�
�

	��� �
� �:����
 ������
�
������
�������
��
 ��
<� ��������
 �
��
�

�
 � ���

�� �� � ������ � �
 ����
 � �
 � �������
 �
� � �
 � 	
�
��� �
��
 � �
�

	����
��
	��
����������������
�
����
�
���
�

�
�����
������"��

�
�
�����
�
�������	��	
�
�������
�
���������
������������,

����������!
��%!�����!���%�!��!
��%!�������

�����������.��%�����;<�1������2�&�
��%���$�;�<�1�

�

�������;�<�&:��������;�2<

�

�

����� � ���!
��%!�����!���%�!��!
��%!������
������������������

%��	
�������
�
���������
��
��	�
	��
��
������������
����
��	
�����

��
�
��	��
�	��������
���
� ��
����
�����
�
�����
��
����
��
����

�����
�

 ��� ���������
�
��
 ���
�
�
�����
�
���
��	�

 ����������

�
��������
��������	�����
�
��
�

���

�����-�������
�������
�

��

�� �� �	���
	
 � �
�

� � �
�

 ��+,� ���
 �������
�	���
	
� �*�������
�
�

	��
������������
�����	��
����#��
�

� �������
��
 ���������
�

�

��
�� ���

� ��
���
�����
�
� �������
�

� ����	��
����#��
�

� � ���

�������� �
��� �	��
��
	���
�
�
��
��
�����
�

 � �� ���
��
�
��	

�� �

���	���
����
��
������������

�
�����������
�

������
�
�����
��
�

�

���%��	
�����������������	�
	�������������
�
�����
������������������

���
��� � �
�

�� �
��� � ������ � 	��
� �
�
�� � �����
 � �������
 � �
�

�

�����
�����������������
�

�
�������
�
��

8 �)'�/$��!#"��)�$/���

3��#�����"���)")5!��
"����	���

���
�	���
��
�
��
���
�����
�
��
�����������	��
��
�����

�
�
��
� � �
���
	
��
� � %
	
��� �8�7� 	��
�� �B��
 � ��� � %
	
��� �8�#�

'��	
�	�� � �
���
�� � �� �
�
 �
�����
��� � �

�� � ��
�
���
� � �� �%
	
����

D�/�

8 �� ���	��+��
�����
�	
"�
����
��� �
��
 ��

 �����
 � ����������
�
 �����
�����������
 �����

���	
�	��� ���
� ���������� � ����
 � $�D ��

�� � �� �
�
�� � ��
� �
�
�

������� �����
� ����
�
 �
�
��� ������ �"��� �
��
 � ��	���
� � �
������

4�	����<�����������
�������.20�����������������
��
�
�	��
�����
�

��
� ����� ��	���
�
��
���
�
��������
�������������
	
����
��

��
��

�
�
�����
��������
��������
�
�
�
�������
�
����
������B���

��

3�

�������
�
�����
�
�
�
��������
�����
�$��

���������
�
�

����������
���������*���������������
����
��
�������
�
���
����

���
��������
��������
�
����������
��� ���	���

� �3����
���
�
��

�����������
�����
�������
	���	�
������������������
	
����
��

��
��

�
 ��
����� �"��
 � ��� � ����
�� ����
 �� ������
������
 ����
 ��

��

	�
�������	��������
�
��	
�������
������
� ���������������
�	�
����

"�
�
��
 ���
�
 �
�� �
����
�
�
�
 � ����
� � �� ������	�����
�
� �
��
�

��
�
��
�������������

SERPS 2007, 24-25 October, Göteborg

75

"�
�
��
���
�
��
�����������
�
�
�
�����
�������A
	
������
��

�
�������������
�#��

������
�
����"��

�
����
��
�
�����
��
�
�

����������
���
�	������
������
���
�	���
�
�
�
�
���	��
����
��
�
��

�	��
�
�
�
��
���
�����	���

��3,

����
���3����
���
�	��
�
���������������	,
��
��
�	� �

�����	��
���
�	��������
�
�	�	���

����� '��A
	
 ����
�
�
�
��� "�
��

"��
�=�

��> 2�D # # 79�D

"�
�����
�������
����"���
�7��
��
�
�
��
��
	
��
���
��
���
�
�

�
�������������������������
��
����������
�
����A
	
��������
��

����
�
�
�
���� �E���
 � ��
� �

� � �

�� � ��
�
 � ��� �
�
 � ����

��

�
���
���	��
�
�����
����
�
����	����
�	�����
�
�������
����	
�
��

������������
��
��
�	
����������
�����
��������������������A
	
��

����
������
���

��������������
���
��
����
��
�	���������������
�

�
��	
��
���A��
�
�
�#��

����

�
����������
�
�
�
�����"����	���

�
 �	��������

� ���
� �
�
 ���

� � �����
�
 � ����
�
�
�
��� � ������

=���
�����
�	���
�����%
	
����D�7>����
�
�����
�
�
�
���������

��

�
�	���
���������
������
���
 �
�
�����������
�����		���
����
��

����
��������

���������
���
������
����
� �1��
�
�� � �
 � �� ���
�

	�
�� � ��� � ��	� �
�
 � ���	
�� � �� � �������� � ��
 � ��� �
� � ���
��

���

�����������
����
��
��
��
�	
�

�
 �	���
��
 � ��

 �� � ��
 ����
��
 �
�� �
��� ������������	 ���
�

������������
���
�
��
	
��
��%������	��
�
��
�	���������
��

�
��

� � ���
��
��� � �� � ����
�
�
�
��� � ���� �
����� �
� � �
 � ���
 �
��

���
� � �
 � =
��� �
��
 � �� � �� � 	����
 � �
�
��
�
 � �� �
�
 � ��
	���	�

����
�
�
�
��� � ��� � �
� � ��	��
�
�
���>� � 1��
�
�� � �	
������

����������
�������������������������
���	����
��
��
��
�������
�

��� � �
�����
������� � ��	
 �
�
 � �
 ���
� � �����
��
 � ��� � �

��

�	 ���
��

8 %� -
��	�����

���	�
"�
 � �
���
� �
�����

� � ���� �
�
 � �
���
	
��
 � �� � ���
�����
� � ����

���������
�
	
��������������
������������
��
��������
�����

-'.',
 #����������
��	
/	����!����
#�!����
"���

�����
"�
����	
�	����
���
�����
�
�����������
�
�
�
�����
�
�����

�����

�����
��
	
� ���������
�
	
���
�
�������
���������������������� �

"�
�����
���	
�
��
�����
�
	
���
�
��������	����
���
�
�������������

���
�
�
��������
��
�����,

7� "�
��
���
���
�

���	���
�����
�
	
���

�

#� "�
����
�������
��

���
��
����������
�����
�
�������

�

����
��	�
	�������

/� "�
�������

�
����
����
���
��
�
����
��

$� �����������
����

������
�
�
��
������	��
���������
��

�
���
��

Q$�����
������
�
����
��
�
���
����
�
�������
�������E���
�
�
�
�

�������������������
�����
��������
�

���	���
��������������
�

�

��	���
��
�������
��������
������
������������
��	
���F��
	
��
���

�����������
�
��������
�
�
��
�

������
������
�
����
��
�

��"�
�
�

������������
���	��
��

�
�����
�
�
����
��
	����	������������
�

�
�

 � ��	���
� � '
����� � ������� � �
 � � � ����
� � ���

� � ��	�������

�
�
�����
�

���	���
������
�
�� ��
�
��
�	�
�����������
��

��

���
 � �
�
���
 � �� �
��� � 	��
� � ��
 �
�
� � �
 � �� � ���
���
��
 � � ����
��

	�
	�
� � ��
� � �� �
����	�
 � ��
�
��� � ��� � ��

�!�
�
��
�
 � �
�

�

��	���
��������
���6
������
��
���������	����
��
�����������
�

�

�����

��	���	
�

-'.'.
 #�����
/�����������
��	
������!�������
"�
��
���
�����

�������������
�
�
���������
�

���
�
�������
�

���
 � ��

�
�
��� �
� � ����� �
� �E���
 � 	���
��	
��� �
�
 ����
�� � ���

B���

��3��
����������	�
���
��
��������
����	�
��
�

��
��
�����
�

�������
���
�
�
�
���	������������������
�
�
�������	���
����
�

������
���	�
�
 � �������������

��� � �
 ��������
���
���� �
�����
��

�
�

�������

�����
�

��������
�������
����	
������	�����
�������
�

�
�
����
�������
�
�	��������������
����	
����
�
�����
�
�
�
�����

"��� � �
�� �
� �
�
 � ����
�
��� � �� � �
���	��� �
�
 �
����	�
 � �
�

�

��	���
���
�����	
��������������
�	���
�

���
�������
������	�
�

�
�

 ���	���
 � ���
� � �� � ���	
���� � �������� � ������� � ���

�� � ���

�
�

���

E���
 �
����	�
 � ������!�������� � ��� � ��
 � ����
�
�

� � ���

���	
�	
 � �� � 	��
� � �
 � ��� � ���	���
� ���
� �
�
 � �
���� ���� � ����

����
�
�

�������
����
��
�
�	��
��
�"
�
	��������
������
��
�

�
 ���� �	�����
�
� � � � ������ � �������� �������	� �����
�� � ��� �
�
�

����������
��������
�	����
�
�
����
�����	��
�

���	���
��
�����

�����
����
�
��
��
�	�����	����

�
�
�����
�
�
�
�������
��
��

C����
���

�����
�
����
��
����
�
�
�����
�����"
�
	�����
��
�
���

����
 � �
������6�
���� � ��� �
�
 � �
���
���� ���� � �
�
� �

�

� � ���

���	
�	
�

�
�����������
�
��
�������������
��	���������
�	�����
�	
����

�
������	�����
����������

���

 �������	���������
���������������

����
����
��
��������
�
��	����
�
��
���������
�����
������
	���	�

�����
�������
�
���
�

����
�
�����������
����������
������
���
��

����
 � �
 � ��

�� �
�
� ���
� ����� � 	�����
�	
 � ����

��� � � � �
��	
�

�
�����
�����
 ���
��

-'.'0
 1�	������	���
�
#�����
��	
2�	�����
��
-�
����
�
���
��������
�
�
���������������
�������
��
��������

����

�
�
������	��������
�
�
����
��
�
��
�������
�����������
�����"����

�
�
��
 � �� � ��
��� � ��
� � ��
� � �

��
��� �
� � ���
��
��� � ��� �
��

	���
	
������
�����
���
�����
������

���
����������
������
����
�������������������
�
��
�
�
��
�

�

��	���
������

���
���6
��	���
	
�����
	���
��
�����
����
��

�
�

��
���������������
	���	�
���
����� ����
�
��
�

 ����	
� �%
�
����

�����
����������	���
���
����������
�
����
���
�
�
������������

����	���
	

��
������
��
�
������
��
��������

������

��
�������

�
��
�
	�
����

�

��
����
��	�
�

������
��������
����
�����
����
�
��
�

��������
��
��������������
�
����

������������
�	�
����
	���
�

�
�
������

�
�����������������
�
�����������������
�������������

��
����
��
��� ����
������
�� �
������
��	���
	
�����������	�����

�
�	���
������
������� ��
 ����� �
�
�
����
�������
����� ����
�����
�

������
��
�������	����
��������

9 � -�#�/)&��)")��/!�0��"��

'�/!�!�0�#5��)�$/��
"�
����������
��	�
�

�����
�����
��������������
��	��
������
�

!

���	
���6
��	�����
������
��������
����
��	
������%��	
�����������

�
��
 �
��

�
 ����
���
 ����
��	
�����.20�������
�
�
��
��	
��
 ����

	��
��
�
�����
�����
��������
������������
��
��
���������
��
���

����

��
�

� � �
���
� �
��� �
���
 � ���	���
� � �� � %
	
��� �8�#� � ����A���

�
���� � ��� �
��� � �� �
��
 � � � �
�

!��	���
� � ���	� � ��� �
�
 � 	��
�

SERPS 2007, 24-25 October, Göteborg

76

���
��	
��� � ���
�
 ��
���� � �
���
�� � �� � � � �
��� �����
 ����
��	
����

��
���
��

�
���
�����
�
�
���E�
��
�
����
����
�
�'�B������	�
����

�
���
� � �� �
��� �
�
���� �
�
�
 ��
�
 � ������

���������
�� �
� ��
�

���������
�������������
�	��
����
������
�
���
��
�
����	
�����
����

�������
 �
��
 � �
 ������ � �
 �
���
� �
� � �����	
 � �������	��
 � �
���
��

��
� � ����� � ���
�
���
��� � � � �
���� � ��
� � ���
 � 	����
��

���
��	
������

������������������	����
��
�
��
	

��
���
���?����	�����@�

�����
���
�����	������	��
�
��������
����������������
���������
���

����	��
��������������

��
�������
�
���
��
�����	���
�����������

�����������������
������	������
�������
�
�����
�����	��
����

=	��
� �
��
�� � 	��
!���
� � �
��	
������

	�>� ���

���
��
��� �������

	������
���
��
���
�
�����
���
��������
��	
��������
�
���
������

�
���

���������
����	
��
�����
����
��������	��
�	����
��

�: � �#"�/$�!#"�

"�������
���
�	���
�����
�����
�����������

��
�
����
����������

���
�
��	��
�����������
�
�
�
��������
�
��
�
����
�
����	
���

�
 � � �

�
	������	�
���� � 	������� � "�
 � ��A
	
��
 � �� �
�
�

�����
��������
��������������������
�������	��
�������

������

�
 �������������	������	�
��������
�	������ �� �� �'���!
�!
����

�����	�
���� �"�
�
����������
	���	������
���������
�����
�����

��
 � �����
�� � ��� � �

� �
��
��
�	
� � ��
� �
�
 � �
���� � �� �
�
�

�����
�����"����
�
���

�
�����
���
����
�
����

����
��
�
��
���

�� � ������ ��� � �

 � �� � ��� ��
���
�� � 	���� � �
 � ����� � �� � ��
����

������
�
�
������
�

��

E��
���������������
��
��
�	���
��
�����
����
��
�����
����
�

� � �
��� �
� � ���� � ��
� � ������ � -�	
 � ���
���� � ��� � ���
�����

���
�
�������������
������
���������
�
���������
�����
�����
��
�

�����������
�
�����
�������
�������
���
�����
���������������

��

������
�
�
���������������
�
���������
��
�
���
����������

"�����

����
��
	
���������
���
��
�������	����
����
����
��

�
� � ��

�
��� � �� �

��� ���� �
��� � ���
 �
� � ������
 � ��� ��
����� ���

���
�����
����������
��
��
�����������
�������	
��
�
��
�
��
���
�����

����	��

�
��
��
����
��������������
�
��
��
�������A
	
��1��
�
���

�
��

���
��
�
�
�
���
����
��
��������������A
	
�����������
���
�

���
� �	�����
����� ��� ���
 � �� ��
����	�
��� ����
����	
�
�
� �"�
�

���������
���
�
���
�����
��
����
���
�����
�������������
� ��

�

����	�
 �����	��
�
�
�����������
���
���
��������
��������
� �"��
�

��� �
�
�
 ����
 ��
����
��������
 �������

�
�
�������
��	
����� ���

���	
 � �
	���
 � ������ ��
� � ��
 � ���
�� � �
�� � ��
��� �
� �

�
 �
�
�

����
�
�
�
��� � �� � �
�� � �����
 � ���
��	
���� � ��	� � �� � � � �����
�

�����
��
�

���	���
�

;�� � ��
��
 � ����� � �
 � �� � �
	���
��
� �
��
 � ��� � ��������

�����
��������
�
�	��
����
��
�����
�
���
�������������
�����
�
�

������
��
	���������
���
�������
���
����
���
��
���
���"���
������

��������
��������
 �
��
���������
���
 ��
	��������������A
	
 ����

��
	
 � �� � ���
���
 �
� ����
� � ��� � �
���� ���
� ������,� "��
 � �
 � ���

�������
 �
�� ��
�
�������
�	�
�� ��
��������
��	
�����
��
 �	����
�

���
�
������
��
 ��
 � �� ��������
 �
����
�
�������
���
	���	�����
��

��
�	����
�

�

������
�
�
���
�
���
�����
��	
���������
���������
�

�������
� ����
�
����
�������
�����
���

��������
��
�
������
��

�����A����
��	
�������������������A
	
�������
�������
��
�����
�

�
� � �
���� � 	���	
�� � �� � �
�
�
� � �� �
�
�
 � 	����
���� � 	�� � �
�

�
������
�����
�
�� �
�
�
�����������
��
�
�
��
����	����
�	�����

���
�
��	��	������������
�������
����
������
�

�� � ���"#;/)��&)"��
E
������ � ���
 �
� �
���� �����
� � 4�	���� � ��� �;
��� �B����� ����

�
����� � ����
 ������������� �B����
���
� �E���������"
�
	� � ����

��	�������
��	
���
��
�
�'�B�����
�
�
�
����

�% � �)5)�)"�)�
.70 "��� � :��

� � #99#� ����������
 3���������
 ��������� �����

"���
4����"�����
2�	�����
��	
����������5�"�5��

���
�
�����

.#0)������5��B����
���
���!1���
��%	�����������#997��2�	��

*�������� � 1������� � �� � ��
���

� � �
�������� � �� � 72/D!73I9��

)��
��
��'���������

./0 *�� � 4
����
�� � ��� � ���
����� � B�

 � 1
����	����� � #997��

�������
�����������
/�������	��������!E
��
�

.$0 1��6������M
�����4��7II3� ����
��	��
�������
��/5���)))�

"�����	
��������%��
���
�)����

�����#/=D>,�#3I!ID���)))

.D0 1��
������%�����+���
���+�����7II3��3�����
2�	�����
��	

��������
�!
��
��	��67�	��
��������8
��
/�	�������
*���
���	�

1����
1����4�

.20 ����
� � 4�	����� � #992 ���!�"���
 ������������� � B�������
��

5����	���

�,�"�
�5�"�'�
��

.30 �

�,&&��������
�
��������
����
� ��

�����#993�97�7I

.80 ����
�1�������#99$��4������
������	
�����
�����
��
!�������

�����!�
24�&�*�
 ������	
 ��������
������������� �'��	

����� ����

�
 � #99$ � �B5 � �������� � �� � ;����� � �

���� � �� � �
	���
��

����

���������82!ID���B5�'�
����:R��C%�

.I0 5��
���1H�
���AH���*
��
����'
��*��
�����#992� ����
��!9��

����
���������������%
��
�
��

��
��

.790 B���� �E����	
� � #99/� �1����
 �����
 ��
 �������
 ��	�������

�������
��������%��
���
�"
	��������$D����79/7!79$/��)��
��
�

.770 ����� � ��
�
� � ��
������� � B���

�� �)����� � B����
� � ����

R�������S��� �7II3� ���������
2�	��
*�������
"������
:##���

+
	
��
�:�

�����B����

��%	�
�	
��(���7D3I���
������%�����
�!

(
����

.7#0 5������+������� �'����'

�������E����R���#997� �3�����

	�����
��	
��������
�!
�
����
����������� �%"""�!���

���
������

4������ � ���%��
���
 �"���� � ��� �"
	��������"�����
�� � %�����
�!

(
����

SERPS 2007, 24-25 October, Göteborg

77

A simple quantitative failure prediction model
 Hanna Scott

School of Engineering
Blekinge Institute of Technology
SE-372 25 Ronneby, Sweden

+46 (0)457 385800

hanna.scott@bth.se

ABSTRACT
Failure prediction has been dominated for a while by Reliability
Growth Models (SRGM). SRGM’s are used very late in a
software project when it can only be used to govern the late
testing of the software and estimate the reliability of it. The
number of failures possible to provoke in software governs the
time spent testing, thus it would be desirable to have a prediction
earlier in a software project, to get a sense of the resources needed
for testing. There are also some basic issues connected to
SRGM’s, like prerequisite statistical knowledge in order to
understand how it works. The lack of understanding of the
mechanisms and factors used to make predictions with SRGM can
make its results harder to trust. In this paper a model, called the
Q-I model, is presented as a complement to software reliability
modeling. The model works as a first step toward introducing
quantitative measuring at companies who have expert based
prediction. The model a non-complex, easy to understand and
easy to use failure prediction method. The paper also contains a
first case study of the model in action, which shows it can predict
results as close to the actual number of failures as 24%.

Keywords
Failure prediction, case based reasoning

1. INTRODUCTION
Failure prediction today is usually done by using reliability
growth modeling, i.e. the failures themselves are not predicted so
much as the rate of decrease among failures. The reliability
growth model creates predictions during testing, which means that
the use of the predictions is limited to the test phase. Some
companies use fault prediction to predict the number of failures.
The problem with making failure predictions using faults is that
very little is known about the fault-failure correlation.

Another problem with reliability predictions is that they cannot be
used early in a project, because there is no failure data to build on.
The test budget is set at the beginning of a project, and the test
budget is directly dependent on how many failures are found in
testing. In order to set a test budget, there is a need for failure
predictions at the beginning of a project.

In this paper we present a model for predicting the number of
failures expected to be found in the software during system test.
The model is called Q-I, and it allows the first predictions of
failures to be done before there even is code. The model is of a
quantitative nature, and is built on how the number of failures
relate to the time spent introducing and uncovering the faults

causing them. The Q-I model aims at helping people predict the
future by remembering the past but without loosing focus on the
current project’s specific type and circumstances.

The model is a first attempt at creating as objective project size
ratios as possible of the current project, based on previous
projects using project similarity, and the first rough estimates
made in planning. The model is to be used as decision support for
people who estimate in the planning phase, and can be used again
and again throughout the project as follow up.

The quantitative failure estimation model is based on percentage
divisions between the efforts spent in previous project on the
phases of: Planning, Design, Implementation and test. Together
with the number of failures found in old projects, these percentage
divisions create a structure for estimating either project phase
efforts, or the number of failures that can be found in system test.
Before presenting the model, some of the research in effort, fault
and failure estimation is presented in the related works section.
After that the model is presented, followed by an industrial case
study of its use, where a customization method for the model is
exemplified. The paper is concluded by a short discussion of the
case study results and some conclusions that can be drawn from
it.

2. RELATED WORK
This section contains research contributions which relates to
methods for estimation of failures and effort. The largest two
parts of this section covers the “Case Based Reasoning”
techniques and different ways to perform failure estimations. Case
Based Reasoning is a method used to establish similarities
between cases, and failure estimation models can work as a
complement to the quantitative failure estimation model presented
in this paper.

2.1 Effort estimation methods
The quantitative model presented in this paper produces two kinds
of output: failure estimates and effort estimates. There has been a
lot of research done in the field of effort estimation, and the
methods researched can be divided into algorithmic approaches,
such as COCOMO, and non-algorithmic approaches, such as
Background Propagation or Case Based Reasoning (CBR) [1][2].
Algorithmic approaches encompass such methods as linear
regression, stepwise regression etc., and the non-algorithmic
approaches are mainly divided into machine learning methods,
and analogy comparison methods. There is no clear line dividing
machine learning from analogy comparison since analogy
comparison can be used with or without tools, where the tools

SERPS 2007, 24-25 October, Göteborg

78

could be of CBR type, and since analogy comparison itself is sort
of the generic parent method of case based reasoning type [2].
The analogy comparison approach is a generic method for
comparing the characteristics of an item, against the
characteristics of items in a set, to find as close a match as
possible. First, CBR is a method primarily used in machine
learning, but the method itself is a specific way to use analogy
comparison. Second, CBR is a method of comparing new
problems with old problems, in order to reuse the solutions to old
problems, especially where the factors influencing the solution are
obscured or in other ways unknown [3]. Finally, CBR is in other
words simply an analogy comparison method used for problem
solving. The analogy approach is often used in software
engineering to find similarities between projects for the purpose
of estimation, where the approach can be divided into three steps
[2]:

1. Defining what characteristics can be used to compare
projects.

2. Defining what constitutes as similarity between two projects,
and with what confidence it can be called a similarity.

3. Defining how to use the known values of the old project
found to be similar, to help the estimations for the new
project.

Analogy comparisons between projects for the purpose of
estimation are generally very computationally heavy since the
datasets used are large [4], and therefore the analogy comparison
can be greatly eased by the use of an analogy comparison tool like
ANGEL [2] or ESTOR [4]. The performance of analogy
comparisons using the ANGEL tool, measured in the Mean
Magnitude of Error (MMRE) unit, ranges from 37 to 78 percent
so it performs better, or at least with less varying results, than
some algorithmic approaches like stepwise regression that ranges
from 45 to 252 percent (MMRE) on the same datasets [4].

The Q-I model does not use an analogy comparison tool because
such tools require a large case base which is one of the problems
with large quantitative models that the Q-I model is trying to
solve; allowing companies which lack large case bases to still be
able to use their historical project measurements to help in failure
estimations. The quantitative model does however use the analogy
comparison technique, but without the tool support.

2.2 Failure prediction methods
The quantitative failure estimation model presented in this paper
does not calculate an estimation of total number of failures for a
software system, but the amount of failures testers can expect to
find in a system, using stable processes. The discrepancy between
all possible failures for a software system and the found failures is
not addressed in this paper. The reason for including a section of
failure prediction methods is to see what factors quantitative
failure estimation models usually base their predictions on.

The first and most commonly known way of estimating the
amount of failures is to use software reliability growth models
(SRGMs), and see where the cumulative failure curve seems to
flatten out. SRGMs use failure data, mainly time of occurrence
(i.e. time between failures) and amount of failures (i.e. amount of
failures up to time x), together with statistical methods for failure
distributions [5]. Two of the predecessors and most basic,

commonly known models for software reliability growth, is the
Jelinski-Moranda model, which is based on a simple binomial
distribution, and the Goel-Okumoto model, which is based on a
Non-Homogeneous Poisson Process distribution. The number of
SRGMs has grown a lot since the 70’s, and now encompasses
over 50 different models, and SRGMs can now be seen in
statistical tools like Weibull++, RGA software, Relex reliability
prediction, SMERFS, CASRE and so forth [6-10], making it easy
to draw the conclusion that using failure data to predict number of
failures that will occur in system execution has had some success.

A more recent method of predicting software failures is to use
what is called a Markov Bayesian network model [11]. A widely
used way to depict a system is to use graph models where the
system states are depicted as nodes, and the changes in states are
depicted by edges. The Markov Bayesian network model actually
consists of two combined models that use the edges and graph
depiction of system states and state changes, to model the
probabilities of each system state in order to get a holistic view of
the probability of failures occurring system wide [12]. The two
models combined in the Markov Bayesian network model are
called Markov chains and Bayesian networks. The special trait of
the Markov chain method is that it does not take the probabilities
of any other states than the current one into consideration, and the
Bayesian network method is characterized by considering system
state dependencies [12].

3. METHOD
In this section, the Q-I model’s design is presented. The model is
a loose structure of ratios between project phases, where all
measurements use the person hour measurement. The model was
based on the mathematical rule of division and reformulation of
division. In the formula below, you can see a division and the
inverse of the same division.

3.1 Method overview
The basic idea is to get ratios from an old, similar project and by
multiplying them with one or more estimates of phase effort, get a
rough estimate of subsequent phase efforts and the number of
failures the system test phase was likely to encounter using the
“company standard” test process. The use of the method requires
preparation, initialization and follow-up, and was divided into six
major steps:

1. The classification of old projects into project types.
2. The selection of a set of projects of matching project type.
3. The subsequent selecting of a specific historical project.

SERPS 2007, 24-25 October, Göteborg

79

4. The gathering of available measurements from the selected
historical project.

5. Initializing the model structure using measurements from the
selected historical project.

6. Give the model a phase effort input, and calculate the failure
estimates.

3.1.1 Step 1: Classify old projects into project types
To simplify the decision of from what historical project the
constant values for the model should be gathered, the historical
projects were first classified according to project type and project
size. The project types were company specific, and consisted of a
set of project types that represented the main development project
types at the company. The division of finished projects into
project types, and what those types are, is up to the quality
managers at the company. The division is subjective, thus the
factors to consider may vary. A lot of companies only have small
case bases, i.e. sets of historical projects, so it was important that
the classification should be general enough to allow similarities
between projects to be found, because a too narrow classification
scheme may result in no project similarities being established. For
larger companies, a good example of a classification scheme for
project type could be: “new development project”, “subsequent
release project” and “maintenance project”. If the company is
constantly focusing their efforts on the same type of projects in
the same problem domain, it is possible that the classification is
unnecessary. The important thing is that the company uses a
project classification that is representative for their development.

3.1.2 Step 2: Select a set of projects of matching
project type
Once the classification was made, the new project type was
decided, and the entire set of old projects of the same project type
was selected.

3.1.3 Step 3: Choose the historical project with the
size closest to the new project
The size classification chosen is not discrete but continuous,
meaning that the project closest in size is chosen, no matter how
far from target it is, which is an especially good method when
working with a very small case base, because it always results in,
at least, one project being selected. It is well known that, as the
size of a software system grows, the more failures it is likely to
exhibit in execution. The number of hours spent on the project is
closely related to the number of lines of code in it, because in the
generic case, more lines of code means more functionality, which
in turn means a longer requirements extraction, analysis and
design phases. It is important to keep in mind, that complexity of
the software also plays a great part in determining the size of a
software project, which is what we are trying to pinpoint by
letting company representatives classify both the old projects, and
the project to estimate.

3.1.4 Step 4: Get available measurements from the
historical project
When the project has been selected the measurements collected
from it needs to be inserted into the structure of the Q-I model.
Preferably the measurements should not have to be collected but

should be chosen so the readily available measurements can be
used. The one measurement that has to be present is number of
failures found in the software during test. The rest of the
measurements should ideally encompass the effort measurement
of all development phases, as well as from all separate test
activities, which would include: effort of planning phase, effort of
design phase, effort of implementation phase, effort of unit test
phase, effort of integration test phase, and effort of system test
phase. It is also possible to add failure correction time in person
hours as a phase even if it is spread out over the test phases.

These measurements are then used to construct ratios:

� Hours of design per hour of planning.

� Hours of implementation per hour of design.

� Hours of unit test per hour of implementation.

� Hours of integrations test per hour of unit test.

� Hours of system test per hour of integration test.

� Failures found per hour of system test.
In Figure 1 below, the model structure, the ratios are used in, can
be seen.

However, the model can work with as few as two effort
measurements together with the number of failures. It is important
to keep in mind, that even though it is possible in reality to
calculate a failure estimate based only on one effort measurement
and number of failures, this option is not included in the model
paths shown in Figure 1, because unfortunately the phases
preceding the test activities have a weaker connection to the
number of defects than the test activities. The recommendation is
that at least one of the two effort measurements be of test activity

Figure 1. The Q-I model in full form.

SERPS 2007, 24-25 October, Göteborg

80

type in order not to loose too much precision in the estimate, but
at the same time allowing the need of as early failure estimate as
possible to determine the other effort measurement type. The
measurement used for any effort should be person hours, since it
is the only measurement all phases have in common.

3.1.5 Step 5: Initializing the model structure using
measurements from the selected historical project
Some companies do not have all measurements seen in Figure 1
available from all their old projects. The Q-I model was built so it
can be customized down to a need for only two phase effort
measurements. The recommendation is that one of the phase
effort measurements is a test activity effort, because it is more
tightly coupled with the number of failures than most other effort
measurements. Using one test effort estimate ensures some
stability in the outcome of the model, in most cases.

The two effort measurements have to be complemented by the
number of failures found during system test, because otherwise
the model cannot produce failure predictions. A reduction down
to two effort measurements will result in a less reliable prediction
than if more phase effort measurements are used, and so will the
use of effort estimates in phases far apart. In Figure 1 the structure
of the full blown model with all phase effort measurements is
shown. Figure 2 shows an example of a maximum reduced model
of that in Figure 1. It is important to mention that nodes can be
removed from a path—it just diminishes the reliability of the
prediction. The model can also be expanded with nodes, if other
effort measurements are available.

This means that for the maximum reduced model, the ratios
“Failure correction/System test” and “No. of Failures/Failure
correction” needs to be created, thus we need the three
measurements from the historical project: Person hours spent on
system test, person hours spent on failure correction and the
number of failures reported.

3.1.6 Step 6: Give the model a phase effort input,
and calculate the failure estimates
The input to the model is a project phase measured in person
hours. To ease the understanding of how the model is initiated
and used, we again turn to the maximum reduced form of the
model. In Figure 3, all tasks are visualized.
First, the measurements from the historical project are collected,
then ratios are calculated from the measurements collected from
the historical project, third and last, the model is combined with
the input to calculate the estimate for number of failures expected.

3.1.7 Step 7: Updating the failure estimates
The Q-I model can be used at several points in time during a
software development project in order to accommodate new
information. One example for the model seen in Figure 2 and 3 is
to make a new estimate when system test is done using the actual
number of work hours spent on system test. The accuracy of the
input does influence the accuracy of the output, thus it is
important to use what information is available.

4. Method validity
In literature, some Bayesian Belief Network research supports the
existence of a correlation between test effort, problem complexity
and faults detected [13]. One threat to the validity of the
quantitative model presented in this paper is that the environment
and its limitations forced an assumption that the project
complexity can be represented by the described project
classification scheme used for the case based project selection
method.

There is a risk that the characteristics (project type) are not
representative when seeking similarities between projects

Effort estimates and number of failure estimates are intertwined—
it is possible that even the attempt at measuring the test effort and
number of faults will influence the testing process—this in turn,
could make the model less accurate since the model attempts to
estimate faults expected to be found using a specific test effort is
based on the stability of the test process.

Data aging is always an issue when using historical data to create
models and it requires that changes made to factors the
quantitative model is built on—such as development process—
does not impact the quantitative model too much. A model based
on historical data is tied to the stability of processes from which
the data was collected.

Figure 3. All tasks of model initiation.

Figure 2. The Q-I model in maximum reduced form.

SERPS 2007, 24-25 October, Göteborg

81

The model has no statistical validity with such a small case base.
In order to have statistical validity there has to be at least eight
projects to draw any statistically valid conclusions.

5. CASE STUDY
In order to make a first evaluation of the quantitative model
presented in this paper, a case study of its application at a
software development company was conducted. This section is
divided into four sections where: the first contains some
background information on the environment, the second is a
description of how the implementation was done and the third
contains a description of validity issues identified for the case
study. The result of the case study is presented in the last section.

5.1 Background
The company participating in the case study had approximately
150 developers at the start of this study, and the company
develops mobile platforms and applications. The company
development processes were fairly stable at the beginning of the
study, but changes to processes are becoming more common. The
test process consisted of; testing of integrated features, regression
test, system testing and usage based testing. The project selected
for the case study evaluation of the quantitative model presented
in this paper, is a subproject of a medium-sized project, and was
mainly selected because of two reasons: primarily because the
start of the project was close in time to when the model was ready
for evaluation, and secondly because it was a project which
seemed to have a representative mix of new development and old
code. This was important because it meant it was an average
company project, thus if it worked in that project, it was more
likely to work in other projects at the company as well.

5.2 Implementation of the model
The case study was divided into seven steps starting with the
classification of old projects and how an old project was chosen to
initialize the quantitative model. Thereafter the model structure
was modified to fit the measurements available from the historical
project chosen. Then the initialization of the model was described
and how the estimation calculation was conducted. The result of
the case study is presented in a separate section.

5.2.1 Step 1: Classify old projects into project types
To decide from what historical project the values for the model
were to be collected, the three historical projects from which data
was available were classified into three different project types:
Platform development, platform functionality changes, and
platform application development. The classification of the
projects was mainly done by company management personnel.

5.2.2 Step 2: Select a set of projects of matching
project type
The new subproject chosen was found to be of type “platform
application development” by the company quality manager, so
therefore the data for the model structure was chosen from the
only historical project of that type.

5.2.3 Step 3: Choose the project with the size closest
to the new project
Because the company only had data available from three old
projects of different project types, there was only one project
selected when matching project type of the new project and old
projects—this also meant that the step of size matching was not
needed.

5.2.4 Step 4: Modification of the model structure
The measurements available at the company are not directly
represented by any of the paths in Figure 2. The reason was that
one of the paths needed to be shortened to create a direct
connection between the measurements the company had
available. The easiest way to do this was to create a path
according to the method used to create the paths presented in
Figure 2. The path was created in the following way:

1. The project phase effort measurements the company had
available, for the company we studied were:

a. PreFC, which was what they call everything that
precedes “functional complete”, so in other words all
person hours spent up until the start of system testing.

b. System test, which was the testing of the entire system
according to the function specifications.

c. Failure correction, which was not a phase at the
company, but rather intertwined with system test. It was
however possible to use, since the person hours were
reported to a separate budget for this task.

d. The number of failures found during system test and
user tests. Only failures found to be failures the
customer is likely to encounter have been included.

2. The measurements were sorted into chronological order, with
the phase that came first in the project, on top. All those
measurements were to be the bottom-halves of the ratios. In
Figure 4 these are: PreFC in the top ratio, system test in the
second to top ratio, and failure correction in the second to
last ratio, and the number of failures is alone at the bottom.

3. Each of the measurements was given a roof in the form of
the divisive line seen in all ratios in Figure 4.

4. Then the closest following phase effort measurements
available were put on top of each of the measurement that
had a roof. In Figure 4, system test closest follows the PreFC
phase, meaning that it forms the top for PreFC. Failure
correction closest follows system test, so it forms the top for
system test. Number of failures can only be extracted
correctly at point of delivery, so therefore it forms the top for
the failure correction measurement.

SERPS 2007, 24-25 October, Göteborg

82

The result of the path creation for the case study measurements
can be seen in Figure 4.

5.2.5 Step 5: Insert the measurements from an old
project into the model structure
 The historical measurement types which were available from the
historical project were:

� Hours of implementation per hour of system test.

� Hours of implementation per hour of system test failure
fix.

� Hours of implementation per failure.

� Hours of system test per failure.

� Hours of system test fault fix per failure.

The measures taken from the historical project were put into the
model structure. Once the nodes had been created, each node ratio
was calculated by dividing the upper measurement with the lower
measurement.

5.2.6 Step 6: Calculate the failure estimates
In order to produce a result from the model, an effort estimate was
needed. The input effort estimate was a coarse effort estimate for
the implementation phase of the project which was produced by
the project management at the beginning of the planning phase, in
the same way that they usually do, through subjective estimation.
This of course gives the result the model produces an element of
possible inaccuracy that needs to be kept in mind when making
comparisons of the result to some other estimate or results.

As soon as a rough estimate of the first of the measurements was
available, in this case the “preFCPreFC” effort estimate, usage of
the modified path was begun. This is the formula for how the
calculations were conducted:

5.2.7 Step 7: Updating the failure estimates
The estimate the model produced could be updated as soon as
more information about the values of the measurement types
became available. This meant that the estimates could be
recalculated at least when the project phase changed, to give as
correct a result as possible. The update was done by replacing
estimates with actual values when multiplying the ratios.

5.3 Threats to the case study validity
The largest validity issues of the case study were the classification
scheme and the length of the path chosen. The classification of
historical projects at the company could contribute to making
generalizations harder because there were basically one
representative historical project for each project type, meaning
that it was impossible for external people to tell if this means that
the classification was so hard that it would continue to create
project type categories for each new historical project which was
added to the case base or not. In turn, this raises questions on
whether or not all companies would classify their projects in the
same manner, thus causing the situation where a historical project
match cannot be found to initialize the model structure.

The length of the path chosen, pinpoints the weakness of the
model structure itself, but also raises questions of whether or not
the results of the case study evaluation can be generalized further
than to exactly the same modified model structure when in use at
other companies.

5.4 Case study results
The result of the model is presented as relative to the deviation of
old subjective predictions at the company. The comparison was
made to subjective estimates in two old projects.

Figure 4. This case study’s specific model structure.

SERPS 2007, 24-25 October, Göteborg

83

The first old project, which was called project X, was estimated
without an estimation model, using expert subjective estimates.
The initial estimate was 88.4% higher than the actual resulting
number of failures. It is possible that intermediate estimates were
made in follow up, but they could not be traced in the
documentation. Project Y, which the second project was called,
underestimated the initial estimate with 87,5%. The estimate for
number of failures was redone six times before the end of
implementation, and the estimate became more and more
accurate compared to the actual number of failure each time, until
the last estimate, only underestimated by 35.1%.

The estimates in the case study were done only twice—once at
beginning of the planning phase, and once at the end of
implementation. We will call the project used in the case study
project Z. The estimate made during the planning phase, using the
experts’ subjective estimates of the size of the project until end of
implementation, underestimated by 70.4%. The estimate at end of
implementation showed that the project had been expanded. There
were no data available that could tell us how much of the change
in time was due to the expansion decision, and how much, if any,
was due to over- or underestimation by the experts in the planning
phase. The second estimate, made at the end of the
implementation phase, now with numbers on the size expansion
of the project, only underestimated by 24.0 %.

6. DISCUSSION
The theory of the quantitative model was that it should: i) be
easier to discuss its results than subjective estimates, ii) be easy to
adapt to project characteristics, iii) not require large amounts of
historical projects, and last but not least iv) be easy to learn and
easy to use. The case study has shown that it was easy to use, but
perhaps not as easy to understand as hoped for. It was relatively
easy to adapt to project characteristics, but choosing the
characteristics to take into account was a lot harder than expected.
One of the largest problems with the models has been shown to be
the input. If the input estimate is inaccurate, the model’s result
will be inaccurate. The problem of “bad input data, bad output
data” is however a well known problem, for instance, if a
reliability growth model is used together with failures who are not

collected from the type of testing that imitates actual use, the
reliability prediction will not be correct [5].

 The Q-I model is change sensitive, changes to test techniques is
what the model is most sensitive to, since testing has the closest
connection to the ratios containing number of failures. However,
changes from the level of development process down to the level
of work environment changes can affect the model, and as of yet,
little is known about how different changes affect the model. In
addition one might add that changes to already established test
techniques is only done carefully and in most cases while running
the new technique in parallel with the established one. This way
one will be able to receive data and compare the two test
techniques for some time and, hence, better face changes to test
techniques which the model is sensitive to.

The model seems attractive to people who estimate because once
the model has been customized and initialized it calculate
numbers which are easy to use, which was part of the reason why
the company chose to use the model instead of their normal
estimation method during the evaluation project. The company
has now chosen to use the model in two more projects, and the
personnel who perform the estimation seem pleased with this first
test run.

7. CONCLUSIONS
It is hard to draw any conclusions of the method’s result validity
based on just this study. The greatest achievement for now is that
the Q-I model is being used, so that it can be further evaluated in
the future. However, some more general conclusions can be made.
The Q-I model does not require the user to have statistical
knowledge in order to make predictions. The Q-I model is
unusual in its construction because it conforms to the reality faced
by software companies in terms of data available, both in terms of
amount of cases as in types of data. In most other models for
failure estimation the companies have to conform to the model
rather than the other way around, so the flexibility of the Q-I
model input has been well received.

8. ACKNOWLEDGMENTS
This work was partly funded by The Knowledge Foundation in
Sweden under a research grant for the project "Blekinge -
Engineering Software Qualities (BESQ)"
(http://www.bth.se/besq).

9. REFERENCES
[1] Lionel C. Briand and Isabella Wioczorek, Resource

Estimation in Software Engineering, Wiley and Sons Inc,
2002.

[2] AR Gray, SG MacDonnel and MJ Shepperd, Factors
systematically associated with errors in subjective estimates
of software development effort: the stability of expert
judgment, Sixth International Software Metrics Symposium
proceedings, 1999, 216-227.

[3] Ross Jeffery, Aybüke Aurum, Claes Wohlin and Meliha
Handzic, Manageing software engineering knowledge,
Springer Verlag, 2003.

[4] Fiona Walkerden and Ross Jeffery, An Empirical Study of
Analogy-based Software Effort Estimation, Empirical
Software Engineering, 4, 2, 1999, 135-158.

SERPS 2007, 24-25 October, Göteborg

84

[5] Michael Lyu, Handbook of software reliability engineering,
McGraw-Hill, 1995.

[6] William Farr, SMERFS - Statistical Modeling and
Estimation of Reliability Functions for Systems. 1982,
Available from: http://www.slingcode.com/smerfs/.

[7] John Musa, CASRE Software Reliability Engineering
program, 2004, Available from: http://members.aol.com/
JohnDMusa/CASRE.htm.

[8] Relex Reliability Studio, 2006, Available from:
http://www.relex.com/products/index.asp.

[9] Weibull ++ 7, 2006, Available from:
http://weibull.reliasoft.com/.

[10] Reliasoft RGA 6. 2006, Available from:
http://rga.reliasoft.com/.

[11] C.G Bai, Q.P Hu, M Xie and S.H Ng, Software failure
prediction based on a Markov Bayesian network model,
Journal of Systems and Software, 74, 3, 2005, 275-282.

[12] J.B Durand, O Gaudoin, Software reliability modelling and
prediction with hidden Markov chains, Statistical Modelling,
5, 2005, 75-93.

[13] N Fenton and N. Ohlsson, Quantitative analysis of faults and
failures in a complex software system, IEEE Transactions on
Software Engineering, 26, 8, 2000, 797-814.

SERPS 2007, 24-25 October, Göteborg

85

�

�� �����	�
��� ������
��� ��	� ������
��� ����������
���
�����
���
������������
���
������������

������������	�
��
���� ���
�!����������

"���#���������������������
�$%&'(')*����� ���
*��+�	���

,-.�()�/'(0&1�

�����2�	�#���#���

�������������
$���������3�
45"���5��

�$%&'((/*����� ���
*��+�	���
,-.�()�/'-..&�

������#�����2��������#����

��	�����3��
�
���� ���
�!����������

"���#���������������������
�$%&'(')*����� ���
*��+�	���

,-.�()�/'/'.0�

��	6�2�	�#���#���
�

���������
�	
	��
�� ��� 	�
�����������	
���� ���
��� ��� ������� ���	
���
��
�
��	
��� ������������ 	� ������� ��� ����� ���
����� ������������ ���
���
��������� ��
������� �
��
��������� ���� ��
��	
����� �
����������

������ 	���
��
����
��� �	
	��
�� ��� ���������� ���
���� ��� ������
��
���
��	
� ��
���
������� ��
�������
� 	�
���
���������������� 	���
!��"#
���� $�������
�� %������ �������
�� ���	
�� 	�� 	�	
���� ���
��������� 	
&� '���
��
�� (�	'�)�
�� ��
������ ���� 	�	
���� ��� 	�
�����
� ��� 	�� ��
�����*� ������� ������
���
�� �������
� �����

�	�
����� 	�����
� ���	�� 	
����� 	�
���� ��� �	
	��
�� ��
�������
��
���
����
	
���*������������������������
�
������������
����������*�
�	��
���� �	��� ��	����� ���
�����
��������	
���
�� 	���������
������
	�	
����	������*�
����������
�������
������
���������������
���

��������� 	��� ������
��� ��� ���� 	
� ���������� ���� ���
��� ������ ���
�����
�	�
�������
������	�� 	
��������
�����
�����*���	���
������
��
���
��� +
��$�,�	����
������� *����� *�� ����� 	�� 	� ����������

�����������	����������	��������������
��	��������������
������������
����� ���
���	�	
�������
�*�������
���������� ������	
�������
���
�	
���
�����
�����
��	���
����	%�����������������
������	�� 	
�������
������
�� ������ �-
�	���
��� ����� ���
��� 	�	
���� ���
�	������ ���
��
�������
���

�����	
���������
������.���
���	
��
��/�0� 1�	����
�� �������
���23� 4	�	�����
� 5� ���
� ����
��
�������
�����
������
�����������
�6
���������
����
��

7���
�����
���
4	�	�����
��4�	�������
���������	�����8������	
�����

9���	
���
�	
	��
��� ���:����
���	�� ����������
���
������� ��
�������
��
	�	
�����

;�� <��!."�� !<�
�����	
	��
�����	� ���
*	���
�����
� �����
���	�� ��
��
	�
���������
�	�
��� 	��� *�
��
�	
� 	� ���
��	�� ������ ��� �	���:��	��� ���
*	���
����������������	��������������
�-
��	�
������	����������
��
�������
���
����*�
�� ��*��
����
�
��������������	���
�	��	�
�������
�	����
*�
��������
�
�������� 	�	��	����
�� 	��� 	
�
��� �	���
����	���*� ����
��	�	����
���
�	
� ���� ��
*��"� �� �� 	��� ������� ��� ������������
��
���*�� ���������� ���
���� ���
� ���
�
��� ������ ��� ��
��
��	�=��
��
��"��	������	��
������*=���*�������	���
�	
�������	
	��
��
��� 	�*	��� �������� ��
�� ���
����� ��� �	��*��
��� ���
��� �� ��� 	���

�	��	�
�����
��� �������� ������ ��
������� �	
	��
�� ��� 	�� ������

�������
��� ��
���� ����:������ ���
��� ���
��� 	��� *�
���� �	���
������
���
�
��%��
��
>�*���������
����
���
���	������
��������������	���:��	������
*	���
������
���
�� ����� 	�� #$�� 1?2�� 	���
���	����� ������
�	
��� ���
���������������
���	��
����������	���
�	
��	
	��
���	����
�������:
����
���	�� ����������
�� $%@#�&�� ��
��� �����
�� ��� 	��������� ���
�
���� ��	���� ���� %@#� @�	��*��"� 1A2�� ���� �-	�
����
��������
������	
���������*�
���������
������	��������������
��
���������
����
������ 	���
���������� ��� ��*�
��
�����
�
������	���� 	���
�	"��
�����
��������
���	��
��	���
�����
���*�
����
��������

����
���
*	����������	����������������$���&�102��
��������� '�� 	��� !��"#
���� $�������
�� ������
��� 	�� ��
�����*�
������� 1(2�
�	
� �������� ��� �	
	��
�� ��� ������
�� ����
���� �����

�	�
����� 	���
������� �	�"������� "��*������ ���� �	
	��
��
��
�������
�� �
� ����	����
�	
� �	
	��
�� ����������
�� 	��� *����
�������
��� 	����� �
���� B��	�	�
����
���C� ��� (DDD:
	����
�������
���+��	������������	���
������	����	
	��
������������
��
	���*����"��*�����
���	��������	��3�

��
�� ������	
��� 	�	�� ��� 	��� �������
��� ����������
�� ���
�����
��	����������������������
�����
	
����	���
��
���E�

��
�� �������
��� ��	������
�� ���
��� ����������
�� ������
���
����
�	��
�� �����
���
�������� ����	��� 	��� �
��
��
� �����
��� �����
��	������
	�
�	�	�����E�

��
�����	
��
��
��
�	
��	��������	
��������	�"�
�����������������*�
������E�	���

��
�� �������
�	
� 	��� ��
��
	�
� ������	
���� ���
�����
� *����
����������	���
�����������
��	���
	"����

�

����	�	���������
�����
�����*��	
���	��	���
��������
�	�
�����
�	
�
�	�� ����� ����
������ ����
��
��� ������	
���� ��� (0���������� 	
&)
'���
��
�� $����&�� ������ *���� 	��	����� ��� F� ��������
����������
	
&)'���
��� ������ ��	
'���� ��
������
�� ������ 	��� ��
��
	�
�
	�
��
�� 	��� ������ *���� ������
���� ���� �	
	��
��� 	�� 	� ����
� �
�
�

�*	����	��B'�	
��������	
	��
�������������C��'�����
������ ��� ������
� *��"� 1/2� ��� ��
�����
����
��� �����
�� ���
���
��
�����*� ������� 	�� 	� ��
����
���:���
��
��� ����
���
�������
@�	��*��"� ��
@�� 1G2� 	�� 	�� �-
������� ���
���+
��$
,
	���� 1H2�
���
*	���
�������� �
@� ��� 	� 	��
*	���
������� ������������
4�
	������ ���
��,����� �����	
��� ����
� ���
�
� ���
��� ����
���
@�	��*��"������ ����
���
���� ���
�����
����
���:��� ���
����
���

�� 	� ���
����� ������
	������ ���
��� ���	
������
�� 	����� �	
���
*������	"����
��	�����
���������
����	
���������
��	��	�	
�������
�	
	��
�������������������
���:���	����	�
��	��	�
��	�����	��
����

�� ���*� ��*� �
����
��������� ����� 	��
����� �����*��� ���
����
����	�����	������-
������*�
��
����	
�������	�	
����	���*�����

SERPS 2007, 24-25 October, Göteborg

86

�

����
��	������
�����������
�	����
���
�
��	���
������
	����*�	��	��
��
������������
����
�
����
�����������
�������
��
���
����
	
���*��
�����
�
����	
���
���	�	
�����	��������	�������
��
�
����� �	��� �
������� ��*� �
� �	�� ��� �����
�� 	������ ���
*	���
������
�������	�� 	
����=�	����
����
��������
������	
	��
���
���� ���	������ ���
����
	
��� ��� ���	�� ��� 	�� �����*��� 	��
���� /�

��������
����	�"����������	���������
�-
�	�����
���������	���
	��
����A�����������
����	
��	���
���	�	
�����	��
����F�
�����
��

��� �	��� �
������ 	���
����� �����
��� *����� 	��� 	�	�� ��� 	���
���������� ���	��
����G��@��	����� ������������ 	��� ��
����*��"� 	���
����	�� ������	��
����?��

��� ���97���<.�
��;� �������������������������
�������
���������������
�� �	���:��	����������
�����������	
�������
����
����	�����	���	�"�
���	
	��
�����	�����
������
���
��
	�
���	��
��
�	�
���� 	��� �	�� ��� ���������� 	��
��� �	-����� ������� ���
�����
	������ ������������
�	
� ���� 	� �������
�����������	
����
���
��� ����
	���
�� 1F2��
�� A�I��� 4	-��� ����
������
�
�
�
�	��	�
�����
��� �������� ��� ��� ������� ��
����
�
�	�� ������ ����
���
�����
����� ���
�����
���� ��� 	�� �

��� ����
� ���� *�	
� ���
	���

	���� ���� 	� �������
�	��	�
����� 	��� �	-��� ���� �	
	��
�� ���

���� 	��� 	���
��	-��� ����
�������������
�	��	�
�����*�
����
���
���
�����
���� ����
�� >������ �	
	��
�� ��� 	� �	���*��� �����

�
�	��

�����
��������
������	�����
'�	
������ 	���
�
��	�� 	
� ��������� 	��� 	��� ����� ��� ��������
�

�	��������
�	
���������
�	�
�����	��	�	
���������
�����
�����
���	��
	������
���
*�:���������	����	
�����*������
������������
*����
�
�����'�
�
��	���-	�
��� �����
������������
������":�
����
��

�	��*�	
� �	����� ����� ���
	�	����� 	��� ������������ ���
��	��
	�
���
J�� �	��� �����
��� 	�	
���� �����

�
�� ���
�
������� ��
�������
�����
����
�����-
�
�������	��	�
��	

	����

���� ��!���"�#�����$���
�����	
	��
��	��:
��������� ��	
��� 	��� ��
����	���� ��������� ���

���������
�	
�
����	���
��������
����	��	�	�����������	����
�����*�
������� ��� �	
	��
�� 1�2������ ������� ��������� �I�
�	�
�
������� 	
� F�
��������
� ��������� ��
��� ��� 	*������ 	���
��� 	�	������ ���
���
��
�����*��	
���	�� �����
��� ��� �0��	
��
�	
� 	��� ���������� ���
���
�����*�������
�����
���� 	�	
���� ����	������ ��� 	��� ��� 	� �����
� ��� ���� 	�	�����������
�	
	������
����	�����/���A�	����F�	������
���������
��������	�����

���
�������������

����������
��������������
�	��
�����
�����
���
*�
�� ����� �:�	��� ��������	
���� *�
��
���
������� �*������%��

������� �*����� �	��� �	��
��� �

��
���
��
�� ������
� �
��� ����
������

����� ���� 	��������
�� �	�� ��� ���*��� 	�� 	� ��
� ��� �-
��
�
�����*�� ��� 	�	��	����
��������� *�
���
� ���
	�
� *�
��
�������
�*����� 	���
�	�
�
�������� ����� �	�� ��
�� �
�� 	��	�
	���� 	���
���	��	�
	���������
��������� �	�� ��
�� ����� 	�
�	�� 	�
���
���� ���

��%��
�� ��� ��
� ����� ��� �������
	����������-
� �
�
���� �����
��	
����
�	�� ���
�� 	������ 	�
�	��
�	�
���� ���
��� ���������� ���	�� 	
������
�	��� �
�����G� ��� ��
������ �	���� ���
����������	
���	�� �����
���
*���� J�� 	��� ������ 	*	��� ���
�	
�
��� �	���� �/:�F� �	���
� ���
��
���	
���*�
���
���
�	��
�	�������

&�� �'��������<.��'���<��� K�
&�;� ����������$�(�
�������
����

���� ��
�����*� ������� 1�2�
�������� �	
���	�� ����� *����� *��
����
������ 	��� �������
��� *�	
�
�	�
����� 	��� ������	��� *����
������
���� ���� �	
	��
��� 	��� *�� ����
������ �����	�� ��
����� ���
	���������
�����	���	���*��"����
�������������������
�����*����

�
���
��	���
���������	�����
�-
������*�
��������
������	
	��
���
����	�	���������*���
�	
����������������
&)�������������������
��
��������������*����������
���������	
	��
�3�
��� ����������������
������������
�������
���	����
��
����
��	
��

	���
�����
� ���
��� �	
	��
��� ��������� �����
�	�
����� �����
�
���� ���:
������� 	��	�� 	��� ���
��� �-���
���� ����������
�
��	�������
��������	�����
�����
��	
�������
����	������������

������,	������
������
����

/�� �����)��������� 	
������	
���� 	��� ���������
� ��� �	
	��
��
����������
��
�� ��
	����� ������� �
������	
���� 	��� ���
����
��
��
�����
	
����������������
	�����"��*���������
������
��=��
��
���	���
���
�����

A�� ���$
���������� �$���#���������	���
�� ���	���
��� ���
���
����� 	� *��
�� ��-�
���
��
���� 	���
�� �������� �
�� ��
���	��
�
���
�������������
����
������	
	��
�����
�����	������
�������
@����-	�
�����	��*	��������������	������

��� ������������
��
��
����� �	
	��
�� *�
���
� ����� �������	
����� ��
� *�� 	����
��	��
�� �	
���� ���
���� ������	
���� 	���
���� ��
�
�
��
�
���������� �����
���� *�
�� ���
����� �

��� 	
����� �����"�
��
�����	������	��
������������	����������������
�
�
����
����

F�� *�
�)��������� �	
	��
�� ����������
�� 	��� �����	���� "��*�� 	
�

��� ���
��� ������ 	���
��� 	

���	
���� ������� ����
���	���
�����������������
����������
�������
��	
	��
�����
����
���������

�	
�
��� ����������
���	���������	
������� ���
��� ���
���
�����
����	���� ����
������������������ ��
�������
����'
�
���� �
	���

������
����	���������������������	���	�"���-�
���
��
����
��
�����	����*�
��
��
��	�����

�	��� ���:
������� 	��	� ���
	���� �����	�� ������������ �����

�	�
�����������	�
���
�����*�����	���	���
�����
������
�
�������	������
	��� ���
���� ���������� ���
��� �����*���� ���
������%�
����
�	
�
���
�	
��$%H� �B���
���������
�	����� �	
	��
�� 	�
���
���C�� �	�� ��
�
���������������������
������������
��
���*��"����	�������	
	��
��
1�21/2�������
�������
�*	��
	�
����
�����
�����*������
���

&��� ����������������
���������
*�+��� �	��+�,���
�����������������,���
����	����
��
��������
�*�
����	���	������
��	
���
�	
��	����������
����
��� �	����	
���� ��� �	����
�����
����� ��� �	
	��
�� ��� �	����

���	���������	�������-
��������	�����
	�����"��*���������	������

������
���������
���4�	�������
�������
���
����
�������������
���
�	"�������
��	
����	���
�����
������������
��
	�
�
�	��	����
����
���
��� ��	�������
��
�	
� 	��� ������
��� 	��� ���������� ���
���
�����*���� ���
������ '�
�
��	�� �-	�
��� ���
�� ��������
��� 	�
�	��
���	�����������	���
	���������
����
����	����	
������*�������	���

�	
� 	

���	
���� ���������� ��
� 	� ����� ���	� ���
��� ���
� 	�����	
���
*�
��
��� ����������
�	
�����
����
������ @��� ��������� ���
�����
����� 	��
�����������	
���� ���
�����
����*����� ��
��� ������
����
��	�������
�� ���� ��	�:
���� �
��	
���� ���
��� ���+	�� �	�����
����	���
	�������
��	
������������
��	�����
���

*�+�+� �	�++�'����������������
������	��������	��	

��	�����
�	
��	��������	��
�����
�����������
��
�	�����������
�����	�������
����
����
�����	����
�
��'
���	�
�
���
�����*����	

��	����������
���������������3�

SERPS 2007, 24-25 October, Göteborg

87

�

��� 	������ �-�����
������� 	� �	���� ����� ���
����� �	����	
����
	

��	���
�� �	
	��
�� ��
��	
���� 	���
�����
����� ���������
��	�������
�� �	�� ��� ��������� *�
�� ��	�������
�� ���

����
����� ��� ������
�� ���	
�� �	
	��
�� ��
��	
��� ���� �	������
�
��	
�����	���
�������������������	���
������
�
��

/�� $�����6
�
���-�����
���	����	
����
*��"��	
	��
���-
����������
���	����

A�� '

������ 	� ���
������������� �����������������,���� ���
�������
���
��� ��������	�� ������	���'���������� ��������	���
������
�
��

�� ��� 	����
��
�����
�
��� �	
	��
�� 	�� ���
�	��
����� �
� ��� 	����
��������	��
�� �	"�� ���� ��� �
�����
��
����
����� ��� ������
��
�����	
�� ���
��� ���	����3�
���
���� �	�� ��� �����
�� �����
���
���
���
�����
��	
����������������	���*���	
����
�����	����
��

�����
��	
	��
���

F��
���������� ����� ���-��� �������� ���.� ���������
�� ��� 	����
��

�����
��	
	��
���

G�� ,���������$4!���	��	������
���
�������������������
���
�
	�
���
���� �-����������� ��
� 	��� *���� ���
��� ���� ��
��	
����
����
%	
��	�������	��	������	
���
���	���������
�����
����
��
�����
�	�� ��� ����� ��� ������
���
� 	�� *����� +�� ��������
���

��������
���� ���
��� �,/� '������� ���� 	�-��
��&�����0�
'��������������������1�D2�����������������������

�

���"��;.�����������$�(�
������������� �

1.� ���"��
�	��� 4�	�������
����
����
�����
�	�/�
�����
����������
�	�A� $4!��������-
��������
	
���� $�����
�������������
�����	
	��
������������
��
��

��������
������	
����
	
��/� �	
	��
�������
������������
����	�����*�*	����
	
��A� '�����
����������������*�
�����������	
	��
��

����������
��
	
��F� ���
��	����
����������
���������������
�����
����

	����-���
���
�$%��
������������	����	�������
�
�$%/� 2����	�������������	�������
�
�$%A� $���
���������
������
����	�����	������������
�
�
��
�$%F� $�����	�������
��
����������������	
����
�$%G� $���
���������
���������	
	��
����
�������
�
�$%?� 4�	�������	��
�����
��
��	����
�$%I� ��������
	�"�������
�$%H� ���
���������
�	������	
	��
��	�
���
����
8���� �	
	��
������������
�������������������	
����	���

������
����
8��/� �	
	��
��
��
��	����	���
��
�����������
����������

��
�����
����	����-���
����������
���
8��A� 4��
�
�����	������	������-���
���
8��F� �	
	��
��
��
������
��
	�
����
��%��
���
��
����

�

�+�� �	�*+��,/��������3���������
���� ���	�����-
�������������$4!�����������
���	�����
�����	����

�� ���
�
�� ������
	��� ������
����� ����"�� ��� 	��������'��
����
�

����*��������
���	����
	
��
���
�����
���������
�
�
��
�	
�*�������

	����-
�	�	

��
����
����
������	
	��
���
������	����	���	����
������	
���
���������*��������������	
	��
�3�

���
����� 	����
�� ������
��� �	
	��
�� ���
��� ������
� 	

���	
����
����	����

/��
����� 	����
�� ������
��� �	
	��
�� ���
��� ������
� 	

���	
����
����	��������������
�	
���������
���	��
���

A��
����� 	����
�� ������
��� �	
	��
�� ��� ���
�
��� ����	���� ��� 	��
��������
	��������
���
�����������
��

�

���� �	
	��
�� ������	
����
�	
� ��� ���
� ��
��
	�
�
�� ��
�����
� ���
������������ ���������
���������������������������
������
�
��������

	�"�
�,��������� ���
�����
����� 	��� ���������� ��� �����
@��
���������
������
� ��
��
	�
� $4!� ��	��	���
�� ���
	���
����
������	
���� 	���
��� $��� �	���� 	��������� ��	���� 	
	
��� 	���
4�
������
���	��	����

&�&� �����)��������
���� 	'���+�����������������������������������
��6
���������������������������������
�
� ��� �����
�	��
�	
� �	
	��
�� ����������
�� 	��� ��������
�� �������
�
������	
����� 	��� ���
����
�� ��
�����
	
���� ��� 	� ���	����
������
����*	���+
���*����
��������	�������������"�
�	
�
������
�
	

��
��	
�� ���
��� 	����
��
���� 	��� 	����
	������ �������
	�
���	
����� 	��� ��
� �������� ���������
��� �-	�
��� ����������
�
B�-�� ������ ���.��5� �-���� �
������ *+666� ������� �-�� ��3��
��
�
�&��� ��� ����-&���� ���� ����� ���78�C����� �������� �
	
��� ���
���
����������
��
�������������������������������������	���	��*	������
���
*	��� ����
������ ���
���
	�
�
��������
���	���� 	��� ����� �	
	�
�
���
�����
�	
��	�������	������
������
�������
���������	
�����������

��� �������� 	��� ��
��
	�
� ������� ������	
����� ������ �	
	��
��
������	
���� ��� 	� �����	�� ���
��� ����������
� ��� �����
�	�� ���� 	�
���������
���	"��
��� ����
� ���������� 	������
���� ��
�����
��� ���
��������
������	
������

��+� 	'��++����������&
����������
&�������������
��.�.�����
��� �	
	��
�� ����������
�� 	��� �������� �
� ��� �����	����
��������
��
�
��������������������
�����	��������������
$�
����������������"��
��
��"��	����,+��	����
���@����-	�
����
�������	���
���������
�
�	�� ��� ���
����
��� �����
��� ���� ���
���� ��� 	��� ��������
���������
���� ����
���	��
�� ������ 	��
����
����� ��� 	� ��������

�	
������ ������ 	����
	������ B�	
	��
��
�����
	��C� ���
�	
�
	

���	
���� ������
���� �	��
������� �	
	��
�� �����
� ���������
��
>�*������
�����������������
��������
�������	
	��
������
��������
�
���*�������
���	�����
��	
��������
�����	
� ���
�����
����
��
���
�������������
����������
������������	�*	��
�	
��	����������
���
��

���������
	���
�	
�
����	�������
���������
���	��
�����	���	����
����������
��

��*� 	'��*+��
���������������������.��-���������
�����������6
���������
J���� �	
	��
�� ����������
�� �	��� ����� ��������
�� �������
�
������	
����� 	��� ��������� �����
�� �	��� ����� ���	
��� �
� ���

��������
�� 	���
	
�� ������� ������� *�
��
��� �
�������� �	
	��
��
����������
����-	�
����	�������
��������$4!��
��	���
����������
��������������� ��������	�����	��	����
��������
�	��
��������������
��	��	����	��������������
�
����
�������	�����	��	����'���-	�
���
���
��� �	

��� ��� B��
������������	
���
�C� ���
�	����� B��
�� LC��
*����� ����������	
���
�� ��� �����
��� ���"���
��
���
������
�������	

����
�� ���
���$����	��������� �*�����
���	�
�	��
������� ��� �
���������� ����� �	
� ���	
�� ��������
�� �	�A� �B$4!�
4������-
�������C��������	
��A����	�
���������
������������	����

SERPS 2007, 24-25 October, Göteborg

88

�

�� ������ �	
	��
�� 	��� ����
��� ������� ���� ��
��	
���� 	���

�����
����
��
������

��8� 	'��8+�����������������
&����������������0�
�����������0������3��
����
����	
	��
������������
��	�����������	����
��������	���������
��
���
	����� �
� ��� 	���� �	�����
�� ���	
�� �����
��
� �	�����%	
��	����� �	���
���� ���
��� ������� ���
��
��� ��
� �
� ���
�����	����
�	
�
��� ����
���
���� 	��� �	��������
��
��� *�
�� ���
��
�
��
��� ����	��� ���
���
����������
��� ���� �	
	��
�� ��� 	�� �-���
	���� ���
� ��� *�	
� ��	����
�	

����
�����
�������

&�/� ���$
�����������$���#�
*�8��� ��!�+�'�������������������
�������
4�	�������
���������� ��	�� ��� �	������ ������� �
���������� ��	����
�	�"�� ���
���� ��� �����
�	��
�� ��� 	����
�� ���
����
��
���������� 	��
������
�� �

��	�� 	��
���������4�	�������
�� �	��
������� �����
��

����
��� ���
��� ���
�	
�
���������� ��� ���
����
��� 	�� ������� 	��

��������	�����
����������
���	����	�����	�����������	������
����
���
�� ���
����
���� 	����� �����	��
����������� @��� �-	�
����
���
��
���� ���
�������
� 	�
� 	�� ��� ��	����� ��	���� ����� ��� 	�����
� ����

����������	���
���
������	
	��
��	�	��	�������������	���������	��
�	�� ��	��
�� ��������	�
� �	
	��
�� ��
�������
�� ��� ��	����� ���

�������������
����
�����

*�8�+� ��!++�0�����������
��������
�������
���� ��	������� �����
���
�������� �	
� �	�M	��� ������M���
�-
������
�� ����	��� �
���� ���������� 	�� *���3����� �
��� 	
���� ���
���������,+�������������	�������	��������
���	����
	�	��
����	���
�����	����	�:
����+	�	

����
���*����	���
�����	����
�����������
���

�	
�������� �����
���	

���	
������-	�
�������
��� �	

���	�����*�
������
�
	"�������	����
	�������	���
��
��
	�	
��
�������
������
���
	��� ��*� �����
�	����� ��� ���	���� ��� ��������� 4�	�������
�� ��"��

����� 	��� �������
�� ������
	��� ��*�
������ 	���� ��	*�
��� ����
�
������������� 	��� *�
��
�	
� ��� 	����
�� ������������
��� ���
��� 	��
*���� 	��
��������� 4�	�������
� �	
	� �����
���� �
�
�
��������
�	��	���� �����	�"�
��	
��/� �C�	
	��
�� �����
� ���� ���� ���
����
	�����*�*	���C��
�� �����	���
�����	��
�����
���
�����
����������
��	�/���

�8�� ��!*+�����������������������������������
���
�����-��������

������������	�*���:"��*��	���
�*������*	�����	�	�� �������
*	���
���
����*���������
�
�
���
�����-
������������	�������
������"���
���������
�������*��������
��������
�	
����
����
���
��������
��
����

�	
���

�����"�� �	����� 	��������'�
�
��	�� �-	�
��� ��� ������
����
�
	
��
���� ��� ����
���� �	���� 	��� �-���
����
����� >�*������ ���
���
����
������
������
��������������
���������������	���������������
����	���
	������ 	��� ���
�-
� �*�
������ ������� ��� ����������� 	��
*����� ��
���	���� ���
��� �	��� ��� ��������� ������� 	�� ���
�
���
�����
	
���� ��� ��
� 	�*	���
��������� ��
����
������� ���������
	���	��� �	�� 	� ��
� ��� "��*������ ���	������
��� ���� ���
���������

����������������
����
������
�������
���*��"����4���1I2��

*�8�8� ��!8+���������
��������������,��
������
�������
4�	�������
��� �
��� 	
���� ���
���������� 	��� �
���� ����������

�������� ������� ������	
���� ���	������
��� ���
��=�� �
	
����	����
��	�������
�� �	�� ��� ������� ��� �����
�� ���	
��
������� ��
��
���

��
�����
�����
������������ ��� ���������

��� ����������
�� ����
���
��-
� ����	������
�
�����	��	������������
��������������
���������
�
���
���� ���� "��*������ ���	������� ������
��������� ��	�� �������
���������
�����������	
��������-
���	��
	�	��
���������	��
�������

�����
���� 	�����*�������� ��� �����������*	�� ��
�������
�� �	��
���	��������*�
���
����
����������

*�8�9� ��!9+���������������������,�����������
�����,������

���������
��������������	
����
�	
������	
���*�����	�
�	����	�����
��� ����� �	�� ��� ������������ �
� ��� ��������
�	
� ����� ���
�����
	�����	
���
�� ��

�����"�� 	��� �
����� ��
�������
� �	����	
��� ����
���
�������� ����	���� 	��� ������� ���
�	���� 	�	���
�
��� �-
��
���
���
� ��� ��
�����
	
����� >�*������ �����
������ 	� �
������� ����"�
�	�� ����� ����
������ 	�� 	� ��
�
�
�
���
	�"� ��� ��
�������
��� �����
�	�����������
����
	�
���
	�
��
�	
��������	����������
����	����������
*�
����
�������"��	��*�����������	�	�� ����
����	����	���
��
������
������������������	�����������
��	
������

*�8�7� ��!7+�,���
���6
��������������������
J������	�������
���	����������
���������
����	���������
����
�
��
��	�����
��� ��	��
�� ���
��� �	
	��
��
��
� �	����������� 	��� �����	��
�
�	
������
�� 	

���� ��
� 	������ ����� �����	��� �	����
���� 	���
�
	
��
��	���������	����	���
���	����
������
���
��
	�
�������*	��

��� �������	
����
������� �	�� ��� ���������� 	���
��
� �	���� �	�� ���
���������
�� �����	���
��� ����� �����	��� ������ ��� ������	����
>�*������ ���
��� ���������
���
��
����
���
�	����� ��-���
�	
� 	���
�����
�� ������ ��	���
���� 	��� ����	���
���� ��	�� �����
����� 	��� ���
�
���	�� ��
����
�� ���
���� 	��� ��
�*���:���
���
��� �	���� ��� �	
	��
��

��
�����������
����
'��
����	�
��
����
��
��	�����	��
�����������*�������	�������
�����
	����
������
��
�����������
������
�	�*	�����	���������������
���������

�� ��	�� 	� ���
���
�� 	� ��	���
��� �-
��
�� ���� ���
����� �	��� *�
����
��������������
��
����
	�
��������
����*�
����	���	������*���	���
���
�������
��
��
����*��������
����*�
�����������	��
�	��*������������
�	���� �����	��
���%	
��	�����
��� �	

����������������	�����	����

���

��
������	��
���

*�8�:� ��!:+�"�,��,�����5�������
�������	
�������	�
	�"�������������
��������
���	���
��������	������
�����
������ ���
��� �
	��	��� *	�� ��� ��	����� *�
�� �����
� �	
	��
��

�������� �	��� �
���� �����
�
�������� 	�� *������ >�*������
���	�� ����	�
	�"�������
�	
�	�	�� ���
������
���	���
�����������

��%��
�����������	�������	
����
�	��	���-��

������
������	���	����

�� ��������
�	
� ����� �����:����
���	�� �
���	���
�
�	��� �	��� �����
��	�����
���	���	����������	
���
���
������
	�
�*������
�������
�

���
����
������
����������
�
�����
���
��
������
�������
���

*�8�;� ��!;+�������
�
���������������������
����,������
'�
���
���� ���	
���
�� �	
	��
�� ������� ��� �-
����
��� �
	
��� ���
���

��%��
�
�	���	����-	�
�������������	
����
����������	��3�

�� *�	
���	��������	������	�����*��
�� ��*�	���*������	�������
����	�����������
��
����
������
����
�� ��*�
���
�	�����
	�"���������	��������������	���
��
�� �
������
��� ���
��������
���� 	���
��� 	�
���
���� ���
���
	�"�

�������
�

SERPS 2007, 24-25 October, Göteborg

89

�

&�1� *�
�)��������
*�9��� 2�#�+������������6
����������������0�
����
�������0�����
����������
8	���� ���
��� ������ �	
	��
�� ����������
�� 	��� ����	���
	�� ����
����������
�	
� 	� ���
��� ��������� �
�� ��������� �	
	��
��� ���
�� 	������
*�	
� ������
�� ��� ��
������� ����� ��	���
�	
�
��� ������� ���
�����
	������ �������������
	�"	����
��� ������� �
��� ���
� ���
���	���� �
	
��� ���
��� ����������
���'�	���
�� 	���
��
���� �����
��
���
��	
�� ��� �������
���� ����������
�� ��� 	�����:�
��� 	�
��	�
���
������$����	�����	��	���	���	����
	��������	�	�
����
�������������
	����	�
���������
�����
����
������	
�����	
'��

*�9�+� 2�#++������������������������������
��,����������������0������������0������3��
����
���6
������
8	�����	
	��
������������
�������
�����
�	�����������
���	����
��
�
�	����
�	
� 	��� �������
��� �-���
��� ��� 	� *���� ���
���
��
�
����������
�� B@������
��C� ��� ��
��
	�
�� ������ ����������
��	�������
�� ��	�����
���
��������
��
��
���
� ��
� �	
	��
��

�������� ���	
������ �	�����������
���
��
� ����������
����
�	���*�

��
����
��
������� ������
���� *�
�� �	
��� �����	�"� ���	������
�	
	��
��
��
� �����
��� >�*������ 	�� ��
��
	�
� ���	�"� ���
�	
�
����
�������
���
�	���
��������������������������
��	����������*��"��
��������	�������
��	������	���
�
�������*	�
���
������
���*�
��
����������	
	��
���

�9�� 2�#*+�,
�����������������������3��
����
���� �
��	
���� �����
����� �	�� �	��� 	� ��
� ���� 	� ���
������� ������
�-
��
��� 	��� ���-
��
��� ��	�� �����
���� �	��	
������
��
� �	����
�����
���������
���
���	����-���
������������	��
�	�������-���������
���
������
�*	��
���������
�	
�
�������	������
����	
	��
�� ��������
����������
�
�����	��� ��	�����
���-���
����
	�	
��$����	����	���
����	����� ��� ����	
���� 	�� *�����
�� ������
�	
�
���
	�
�� ���
���
���
���
�	
� 	��� 	�����	
���
�� 	� �
������� $��� �	��� 	��� �
�������
��	������	���
������	���
�	
���
�
�
��	�����

�����"��	����	�����
��
����
����� ����� �	
� ���
���
��
�
�	�=�� �������� 	���
��� �	���

������� ���
��
�������
�	�������-���
�	
�������
��� �	��	
����� ���
��	��
���

*�9�8� 2�#8+������������������
���������������<����
����������
��
��������� �	
	��
��
��
� ��
��
���� ��� �
	��	��� ������
���
�

���������� �
��� ���
���
�� ���������� ������� �
���� ������ ������
��
�	
	��
��
��
����	�����	�����
���
��������
��
�� ��	������
���������
������	������
��
�����-
����������������	"���
���
��%��
��	�	����
������� ��������� ��� �����������
��� ����
� �	
	��
�� 	���
��� �	
�
���	
��� ��������
�� �����	�� ���
��� �	
�� ���
��� 4�	�������
� 	���

�������	
'������	��
����A�F���

&�3� ������������)������������#����
��#�
������ 	��� �����	�� ��	����� ���� ���
�� ����
���
� 	�� 	�	
���� ���
�	
	��
�������������3�

�� ���� 	�	
���� ��� 	� ���	�� 	���
��	�����	�� 	

��	���
�	
� ���
*�������
��	��*�
����
���������������	�� 	
�����

�� ����	�	
�����	����������
��	������	�����	�� 	
���=��	����
����
*�
�� ���
��
�
�� �	
	��
�� 	�� *���� 	��
��
��
���
�
��� ���
�
���
	���� ��
�������
� �����
��� �
� ��� ��"����
�� ��������
�	
�
���
	��������
����
��	
�����	�� 	
�����
�������������
�������
���
	���
�	
�
���� 	��� ��� ����
�������
��� ���
� ��
��
	�
�

��
�������
� 	�
����� *�
�� 	� ��	������
�	��
�� ��	���
��� ��-
�
��������

�� ���� 	�	
���� 	���� ��� ���
������� ��
�������
�� ��� 	�
�	�����
�	������ '�������� �	
�� ��	��� ��� �	��
	����� ��� ���
����
������
���
�	�����
����

���	�
���
��� ��
�������
�
��%��
��
@��������"�

����
���	����
������

�

���� 	�	
���� 	�� �����*	�� ����
���
������ ���
���� 	�	������ ���
���
�	
����������	
������
����
*�����	
��*�����	�������������������
	��� �
���	�� ��
�	����*	��
	���
��*������	
�� ���
����
��
��
���
���������
�����
�����	
�������� �����
��� ���
���	�	
�������*�� ���
@������ ��� ��� *�����
��� ���������
� ��� 	� �	
� ��� ��
�����
� ���
���
����
����������
����	
��	�����
���
	
��
����
�
������������
���
	���*�����@�������������	������	���B���
����
���
�C������	�	
����
�
	
���
�	
�8�����B�	
	��
������������
�������������������	
����
	��� ������
���C�� �	
��	����
�������� �	
	��
�� ��
�������
��
>�*�������
��������������������
����	���
�	
����	�� 	
�����
�	�
����
�
�����	
�������
������8���������
������������
����	�	
�����
������������������	�����	����
����������
�	��	�*	��
��� ����	�� ����
��� �	
��� ���	
������
�� 	����� �	
��� 	���
	��������
������	
����������
�������������	���

��
������
�������
�������
���	"���
�	��B'�	
��������	
	��
�������������C��'����

�	
� ��� ������� ����
�	������
��� ��
�������
� ���
��������� *�
��
���
��
�
���	
	��
����������
�	��
*���
�
�����
�����
�����	��������

�������
����
����	����
�������������������	��
����F��*����	���
�
��
A� 	��� F� 	��� ����� ���
�	�� ������
�����
�	
� �	��� ��
� ��
� �����
��	��	
��������
��
������
�
�����'���	��3�
��� ����������� ��� �	'�� ����� �������� ������������� ��� ����������

'������ �	
�� *�
�� ���
��
�
��
������� ������

����� ��� 	�
�	��
������
���
��	�� �	��� *�� �	��� ������	��� 	��������
���	����
���
������� ������

����� 	��� 	�
����:��	��� ��	��� �����	��
����
F��� ��
� 	��������
�� �	���� ��� ��	��
�	�
���� 	��� ����� ����:
��	�������	����	�������������	����
���������

+�� �����������
��� ��� �-�����������@�����	�����-����
���	�	
����
*�
��	��������
�	
� ��
�����
��
�����	���
�	
�
����	
� ������
��
�	�� ����� 	�������� ���
��� ���
�-
�� @������ /� ���
�	���
���
	��������
��������	����/����
����	����
�����������	��
����F���

�	�"���
�����
����	���A���	
������������������������
�����
��
��	���/� ��	
�
	�
��� ���������� 	���*��
�� ��������
������	�� ��
��	�������	
���
�����������

*�� "�������� �����,������ ������� ��
�������
� 	��	�� �	�� ���
����
�����������
���	�	
�����������	�����
��
�����������������
��
*���� ��	���� 	��� ��� �
���	�� ��
����
� 	��� ���� ����� ��������
��
*������	�����	�����	���/�������
�����
������
�����

��������
��� @������ /�� �
� ���*��
�	
� 	
��A�� �$%A�� �$%?�� �$%/��
8��F�� 	��� �	��� 	���
���	��� �	����	
���
�� 	������� ���
���
�	���
	���
����
���	����
���	����
���������	�����
����	���/��

8�� ������
��� �����,������������ �
� ��� ��
���
��� �	���
�	
� ��
� 	���
��
�������
� �	����	
��� �	�� ��� 	���������� J�� ������
�
�	
�

��� 	�	
���� �	�� 	��� ���
���
�����
� 	
���� 	���
�	
��	
��
�	
�
	��� ��
��
	�
� ���� ��

��
���� �
���� �	
�� 	��,��� ����"��
���

��������
��
������� B������C� ����������
�����
� ���� ���@������
/��
����������������
�����	���	���8��F�	��
�
��	����	
�������
��
�������
�� *����� *�� 	���� �������� ��� �������	�
� *�
��
��
��
���� *���� ������������
��� ��	
�� ���
��� ��

��� ������'��
�

����*��������
�� 	���� 	����$%/� 	���	
��A�
�� �	������
�
��
�������
� �����
�� ��� 	��� �	
'��� 	�����
��� �	
'��
������
���� *����
�� ������
���� ��	���
�	
� �-	�
��� ����
��
�������
������
����	��������
���	���������

SERPS 2007, 24-25 October, Göteborg

90

�

�

=�#$
��;.��!���
����������������)������������#����
��#�
�

���"���.����������
��������

1.� ���������� ������������ �
#���>��������>�� �
��$���"�)����"�� ���"�����
��� ��
�����*�� 	����	�� 8	������ 8	������ 8	������
�/� 4�����
���
�

���	�� 	
����
�	����
	���	
	
���� N�GDD� ���
�	�� D�

�A� 4�����
���
�
���	�� 	
����

+
��	
�����'������
�	
�����
4	��
��	����	���
������������

O�/DDD� 4	��
��	���� O��G�

�F� 4�����
���
�
���	�� 	
����

4��
�����	�	��
���� N�GDD� 4�����
���
� N�G�

�G�
������� :� :� :� :�
�

7$4(#������������8=��
	�����	*������������	*�
��	���	������	��

7$4/#���������������������
��	������������������
	�����	*�����������	���	�
�9�����	����8��������

7$4)#�������������	�
�����������9�����	��

7$4-#�����������������������
�����������:������������
��

�!;'#��������������
������	����������
������������

�!;1#� �������� ����� ������
��

�!;.#� �������� 8�������
���������������

�!;&#�!�����������
����
	��������������
�������������

�!;-#� !����������������
���	����������
���������

�!;)#�!�����������
� ��� �	�������
��	�����������	��
���������

�!;/#�<�������
����������������������

��$�)#���
�����	�
	���
����	���+��
�������	�
�����������8�����������

$��(#����������������
�����������

$��/#����	���������	����

$��)#�!�����	����9���������

�!;(#� ���������
� ���	�
�������������

��$�-#������������������	��
��6%�������	���
��	*� �����%
�����	*���	��9�����	��

��$�/#����������6�	
���
������6�����������	�
	�+�+��	���

��$�(#�!�	������	�
�����������������������
��8�������������	���
��
���������������

SERPS 2007, 24-25 October, Göteborg

91

�

�
=�#$
���.�1�����)���������)����
�4�����������������$���#��!�������������!�������������)
������

�

/�� �'����������.1���
���� �	
� 	��������
� �	�� �����
����� ��
� ���
����� �	��� �
������
���������� ����� �	���� ���
�
	��� ��:�G� ����� �	���� /��� �����
���

���
��
�������
���������
�������
3�

�� ��� ��� 	�� 	��������
� ���
��� ��
�����*� �����
�� 1�2� �����*�����

���	�	
�����	�������������
��������������������
���
�����
�
	��������������
���
�
���������
����
�	��
���	�
�	������������
����������
�����
	�	
��������������	�� 	
�����	
��������
����

�� �/:�F� �	��� ��
�����
� ��
	�	
�� ������
���
� ���	�� 	
�����
*�
���� ��������� ��/� 	����A�*���� 	����
	�
� ���
��� ��
�����*�
�������
�	
�����
�
�
��������

�� �G� ��� 	�� 	��������
� ���
��� +
��$
,
	����
������� 1H2������
������
���
����	��	
	��
����
����
���:���
��+
��$
,
	�������
�������������1/2��

�

@��� �	��� ���
��� �	���� �/:�G�
���
������� ��� ���
�� �	�� �����
�����*��� 	��� 	��������*�
�� ���
��
�
��
����	
���������*�� �	���

���"�������	�
���
���������	��
��
����	
�����
���	�	
��������	������

����	���������
����*�����������	����	���
���
������������	����������
�	
��	��������	
��������
�����������/��
	�
����������������A��������
���������� 	���
��� �����
�� 	��� ���*�� ����	���� A� 	��� ���@������A:
@������ I� ����*�� ��� ��� �
���	�� ���
��� ������
�	
� �
� ����� ��
�
��
�����
�	��������
�����������
�	���
���	��������
�����	�������
���
�����
�� ���
��� ��
�����*� ������� ���������� �����	�� ������
���
�
���	�� 	
�����*�
����������
�������
���
�
���������������
������

���	

���	
�������
���	�	
�������
���	����������	�
������	�����/:
�G��
���
���������������	���	�����G�������
����
�����������
	������
��	������

7$4(#� ��������� ��8=��
	�����	*������������	*�
��	���	������	��

7$4)#���������������������
��	������������������
	�����	*�����������	���	�
�9�����	����8��������

7$4/#� ��������� ���	�
�����������9�����	��

7$4-#���������������
�������������������:����
��������
��

�!;'#��������������
������	����������
������������

�!;1#� �������� ����� ������
��

�!;.#� �������� 8�������
���������������

�!;&#�!�����������
����
	��������������
�������������

�!;-#�!����������������
���	����������
���������

�!;)#�!�����������
�����	�������
��	�����������	��
���������

�!;/#�<�������
����������������������

��$�)#���
�����	�
	���
����	���+��
�������	�
�����������8�����������

$��(#� ������������ ���
�����������

$��/#����	���������	����

$��)#�!�����	����9���������

�!;(#����������
� ���	�
�������������

��$�-#����������������
��	����6%�������	���
��	*�
�����%�����	*���	��9�����	��

��$�/#����������6�	
���
������6�����������	�
	�+�+��	���

��$�(#�!�	������	�
�����������������������
��8�������������	���
��
���������������

SERPS 2007, 24-25 October, Göteborg

92

�

���"��&.��������$���
��$"���

1.� �;� ��� �&� �/� �1�
�	��� /� �� �� /� ��
�	�/� �� /� /� �� ��
�	�A� �� �� �� �� ��
	
���� /� /� /� /� /�
	
��/� /� /� /� �� ��
	
��A� �� �� �� �� ��
	
��F� �� /� A� /� ��
�$%�� A� /� /� �� /�
�$%/� /� �� /� �� ��
�$%A� /� �� /� �� ��
�$%F� �� �� �� �� ��
�$%G� �� �� /� �� ��
�$%?� �� �� /� �� ��
�$%I� �� �� /� �� ��
�$%H� �� �� /� �� ��
8���� A� A� A� /� A�
8��/� /� /� A� /� /�
8��A� /� /� A� �� ��
8��F� �� �� /� �� /�
 ���.� ��GH� ��FI� /�DD� ��/?� ��A/�

�

=

(

/

)
$��(

$��/
$��)

��$�(

��$�/

��$�)

��$�-

�!;(

�!;/
�!;)�!;-

�!;&

�!;.

�!;1

�!;'

7$4(

7$4/

7$4)
7$4-

�
=�#$
��&.��;�
��$"���

�

=

(

/

)
$��(

$��/

$��)

��$�(

��$�/

��$�)

��$�-

�!;(

�!;/
�!;)�!;-

�!;&

�!;.

�!;1

�!;'

7$4(

7$4/

7$4)

7$4-

�
=�#$
��/.����
��$"���

=

(

/

)
$��(

$��/

$��)

��$�(

��$�/

��$�)

��$�-

�!;(

�!;/
�!;)�!;-

�!;&

�!;.

�!;1

�!;'

7$4(

7$4/

7$4)

7$4-

�
=�#$
��1.��&�
��$"���

�

=

(

/

)
$��(

$��/
$��)

��$�(

��$�/

��$�)

��$�-

�!;(

�!;/
�!;)�!;-

�!;&

�!;.

�!;1

�!;'

7$4(

7$4/

7$4)
7$4-

�
=�#$
��3.��/�
��$"���

�

=

(

/

)
$��(

$��/

$��)

��$�(

��$�/

��$�)

��$�-

�!;(

�!;/
�!;)�!;-

�!;&

�!;.

�!;1

�!;'

7$4(

7$4/

7$4)

7$4-

�
=�#$
��5.��1�
��$"���

�

SERPS 2007, 24-25 October, Göteborg

93

�

1�� �<�6K�1���<.�.1�����1�<�
'�� ����	��� ������	
���� ����� @������ A:@������ I� ���
�	
� 	��� �	����

����
�� ��	���
�����
�	"�� ���
��� B���������C� ��� �	��� �	
'��
���������� ���� ���
	����� ��� ����� @������ A��
�	
� ���
�	��� �
�� ���
�
��	�������
������
�	��
	�
������	����	
'�	�����	������
��
�	"������
�$%�� 	���8���������� ���������������	���-
��
�����
�����������
�	
�� 	��� �����	���� 	��	����� ���
��� ������ ��� �����	������	
���
��
*�
�����	����	
'����
���	�����-
��
��� ���
�������	����������
� ���

��� ��
�����*� ������� �����*�����
���	�	
�����	�����������������
���� 	�	
���� ����� @������ ��� 	���� ���*��
�	
� ���
� ���
�	�� �	
��
�����
���������������	�����
���
	
��
���	������
�������
����
��������
	��	������	
���
'��
���� �����	�� ������	
���� ���
�	
�8���:/� 	��� �	
���������
� ���
	����
� 	��� �	����� �������	
�� ������ ���
��� 	����
��
�� �������
���
�	
	��
������������
���������	���������
����������
���	
��	�3�@���
��
�
������
����������
���
����������������
��
�	
��	���
����
��
����	���
��������
��
��������	
	��
���	��
�����
��
	����*�������	��	��������

����� ��� 	� �
�����
���� ���� �����
����� �����
��
����� ���
	����
��
8���:/��	
���:/��	����
� ���������	

��
����
��
����	����-
��
��
	
���:/� ��� 	���
� ��������	
����
��� �
������	
����
�� ��������
*���������������	����
��
	�
�	����������	
����*�
��
��
�����+���
�	��������
����	
��	���
�
�����	��������
��������	
�����J����"��
��

���"�
�	
�
���
�	���
���� ����������
�:������� ��� 	� �	����� ���	�
���
��	�������
�	��
���
�	���
���� ����������
�:
��
���� ���
��� �	���
����������	��
�	�
�����	�������� ����
������	
����	���
��
�����������

���
������� ����������
�:������� ��� ����� 	��	

��� ��� ����
�	
����
	������	
���
���
�/� ����� @������F�� ��� ����� �����	��
�����������	%�������������� ���

�	
���� ��� �
������� ��� 8������	
����� >�*������ ����
��
��� �����
�
	�	

	
���� ���
��� ������
���
�
�������
�� ������
���
�����
����
�	����
���� ���	
�� 102��
����	�/��	
� �B
�����
���������C�� ����/�
��������
��� ���
���	� ���� ��	��� A� ��� ����������� ��� ����	
�����
%����
���������
��	������������	����������	���/�����
��
����	
=��
���	
������
� *�
�� �$%F� �B$��� ��	�������
��
�� ������
��������	
���C���������	�������
�	
�
�����	�������
������$%F�	���
�������
���
�	
��
���
�����
����������	����	"�� �
�������� ���
���
��-
�������
���
��
�
���
������
����
����
����
�����
�������
�	
�
����
��� ��
�
����/� ���	�� 	
���=�� B�	��
C� ��������	�������
�� �����
��
���
�������� ����� 	��
���� ���	�� 	
���� ��	������
���
�	
��������
*����� �/=�� 	

���	
���� ��� ����
��� ����� �������
	���� ���
����
��������
��
�	
��	
	��
��������
��	�������	��������������
����
�����
�������������
����
����
���
�A����
����	���*�
��
������
��	
�����	��	���	������������
������	���
/�������	����/���*�����������	��������������������
	�����
�����	�
�
����	������
�	���� ���@������G�*�
��
�����	�
�����	�������
����
����
�	������������� ������������ 	���
���8������	
����	���4�	�������
�
	�����������	
'��� ����*������A�������
�	
���	�
�������
�	
� ���
��������	���� ��

��� 	�	

���
�� �	
	��
��
�	��
��� �
���� �	���=�

���������	���������A�
����������
	�
����	�����
��������	������
���
8������	
���� �	
'E� �����
��� ��	��� /� ��� 8��F� �B�	
	��
��
��
�
�����
��
	�
� ���
��%��
� ��
��
���C��
�����
�� �
� ����� ��	������
���
��
�����������
����
����	��	��4����������	������
�����	��������
/�
�� A� ��� 8��F� ������� ��� 	� ���	
������ �	��� ��
�������
�
��
	����
������
'����	�������*�	�*��"���	����������
��	
��������������A�*�
��
���
���
��	
����
�����
������
�����	���
��������
�����-
�	��������
���
�����
�
���������:������������
�	
�
���	�����	��	�����������������
�����
� ��
�
�
����
�	��
��������
��� ����

�������
���
�����
��@���
�����	

���	
�����
�������
�����	���*	�����
������:�00D=���

������
�	�
�
���A��
����F��	��������@������?���	��
���
�������
�	
�
��	�������
� ����������	
	��
��	�	

	
�����	��� �
� ��� ��	���	����
��
��������
�	
� 	��	%��� �-
�	�	
���� ���
�	
�
���
�����
� ��� ���	
������
��*��%���	
����
����	����	�������	��������
�����	���A����
���"��

��� �
���� �	����
���
�	"�� ���
����F�
������� 	��� ��	����� ����
���
���
�	���	
������	����	
'��
�G� ����� @������ I���
��� +
��$
,
	����
������� 1H2� ���*��
���

��
��
����
�	
�
���B
	���C�
	�
����
����	�����
����3�����
�������
�������
��� �	����
	�
�� ��� 	��� �	
'�� �-��

� ��
��	
���� 	���

�����
���������*������
��	�������

��
�	
�	����>�*������
�����	���
�-
��
��������
��������
���
������������
������
����������	����
����
	���� �-
�������� 	��� 	�� 	���	��� ���
������
����� ��� ������
� *��"�
*�
�����	
����	��	
	��
����
����
���:���
��+
��$
,
	����1/2��

	���� ���
���������	
����� 	�������������� 	�����*����������
�	
�
���� 	�	
���� ��� ��������� ���
��� ������
�	
�
��� ������ ��
*����
���
��������
� �	
�� ��� �	����� �����*��� ��� ���� �	��� �
������� ����
�-
�	�	
����� ��� ���������� 	��� ���-
��
��� �����
�� 	��� �	��� ���

��������
����	
���
�����
���
�����
�	���
������
���
�	�� ��������
�������������*����������
�	
�	��	�	
����	���	����
�����	
�������
��
��� 	����
	�����*�
�� ������	
�������*�	
�
���������
������������
���
��������
����	�	����	�
�����@������A:@������I�*���-
��
�	��
��	��

	

�����������":*���������
������
'�
�
��	�� ���	�� 	
���� ��� ���
�	�� �
	���*�
�� 	� ��*�
�����
� �
	�
��
*�
��
�������
��	
�����	������
����	
'�����
����������	�:	
��:
�$%:8��������������������������
�������
����
�������	����
���
��	������
�������
��	
��	��*����	���
	�
�������*
��������:������
�
�	
������	���	��	��
'�����	�� 	
�������������
�����
	��������������"����
���	"�������
���� ��� ���� 	�	
���� 	��� 	����
	��������
������������� 	����
��
���	
�� 	� �
�
*����� ���
��� ��� ��
�������
�
�	�� �	���� ���
	���������
������	���
'��	
�������	�� 	
����*�
��	��	
����
�����
������
�����
�������A�
��������	�����	����	�����	�� 	
�������*������������	����	
'�����
�
�	������
���	�	
��������
�	
�����	������
���������������	�����
�	��
��
��	
������ @��
�����
���� ���	�� 	
���� �	��
	"��
��� ��	�������
��
���	
��������� 	���
��������� �������������
��� ���	�
������
*����
����������
��	�����������2�����
������
�����	��
��	����*��"����
����� 	�� ���	�� 	
����
����� ��� 	�� ��������� �����
���� ���
���
��	
� ����
�����

3�� ��<�6��1�<���<.�=������?��9��
�	������ ����	���� �	�� �������� ��
����	���� ��������� �	
	��
�� ���:

�����������	
���
�	
�	���������	���
�� ��
������������	�� 	
�����
�����

���
�� ������� ����:
���� ����������
�� ��� �	
	��
��� ���
����

	
��� *�� �	���
�	����
����	
�� ��� 	�� 	�	
����
�	
� ������
�� ���
*�	
� ������ 	�� ���	�� 	
���� �	�� �	
��	���� 	�������
��� ��������
�
�	
��������	�	
�����	������������
�����������
���������
���
����
�	
�� ���
����� ��������
� �	��� �
������ ���������� ����� �	����� +���
����������� ���
�	
� ���
��� 	�	
���� ��� ���
�����
��� *�
��
������	
���� ���
����	
���
�� ���
��� ���	�� 	
���� 	���
���
�����
��

����
��� 	�	
���� ��� 	� �������
���� ���� ����������� ��	�:*������
�����������
������� ���
�	
������ ���
���� 	���� �	�� ���
�	���������
��
����	
����"��*����������
����	�����
����������
����*��"��

5�� ��9<�?6�.7� �<���
J��
�	�"�
���
	�
���
	
���� ������� ���	�� 	
����� ���� ���������
	������
��
�����
���������� �����
��%��
� *	�� ������� ��� ���������
'
��
���	*������@����	
��������	
�	
���������	�����	���8�����	��

SERPS 2007, 24-25 October, Göteborg

94

�

7�� ��=���<����
1�2�
�����'���4��
	
����	���@��		��	����P2����
�	�
����	���

��
�������
�4��������>	��������	
	��
������������
�����
!	����������������	
����	��
���P�����
���'��������������
�-���8�-�"����"�������������#�6
���������������������
�����������(#�Q67���

��/FG:/GD��4����	
������$	'��	�

�
��:�G��/DD?�

1/2�
�����'���4��
	
����	���@��		��	����P��
���	
����	��
��
�������
�4��������>	��������	
	��
������������
��
*�
��+
��$
,
	����
������P��'���������������-��
"�������������.��5������������������#�6
���������
�����������+�8�
�������������	���.����R
������(#�8	RQ6:)��
�����������%��*	���S������:�/��/DDI��

1A2� �������!���
��'��%�-�������A���	���S��4���
�������!��)
8
���������#�6
������������	���.�����������������@��*���
'�	������
�����������
��
����/DDD��

1F2� 4	�����'��4��	���.����#�6
��������+�$&<����0�8
��������
����	�������
���
����>	����$

���		������������%S���00A��

1G2� �

3,,***�����
������,�
�,������
���
�������@�	��*��"�

��%��
���
@���	���������A�	�

������/DDI��

1?2� @����
����
���-��#����������������'������+����"�����
�������
	�����������'������:J���������	������4'��/DDD��

1I2� 4����S���	���4���	����B$������-���
������	���4	
	�
��
��
�����4��
����
���	��
���C��	���.���T'��������U�
�3���������������A/�����0��

��HH0:0D?��S����/DD/��

1H2� �

3,,***�����
������,�
�,�
���
V���
����
,�
���
V����
-�
�
��+
��$
����
����
��	���������A�	�

������/DDI��

102� 	��
�����$���	���!�2��J����	����'�����������	��
���������
'���������0
����������������#�������,�0�	�����&���	���.�����
'������:J�������/DD/��

1�D2��

3,,***��������,
���������,�������
�,����	�,�������	�
���
���
���$4!�
�����������	�����	����
���
������	�����	���
������	���������A�	�

������/DDI��

�

�

SERPS 2007, 24-25 October, Göteborg

95

Evaluating Software Evolvability
Hongyu Pei Breivold
ABB Corporate Research
721 78 Västerås, Sweden

+46 21 323243

hongyu.pei-
breivold@se.abb.com

Ivica Crnkovic
 Mälardalen University

 721 23 Västerås, Sweden
+46 21 103183

ivica.crnkovic@mdh.se

Peter Eriksson
ABB AB

721 78 Västerås, Sweden
+46 21 344310

peter.j.eriksson@se.abb.com

ABSTRACT
Software evolution is characterized by inevitable changes of
software and increasing software complexities, which in turn may
lead to huge cost unless rigorously taking into account change
accommodations. This has intensified the need on evolvable
software systems that can correspond to changes in a cost-
effective way. Nevertheless, although software evolvability is one
of the most important quality attributes of software, it is not
precisely defined today. Besides, the lack of evolvability model
hinders us from analyzing, evaluating and comparing software
systems in terms of evolvability. To address these issues, we
distinguish software evolvability from maintainability in this
paper and outline a suggestion for an evolvability model which
analyzes software evolvability from various perspectives, as well
as an evolvability evaluation method. The model and the method
are evaluated through its application in an industrial automation
system. The contribution of this paper is the initial establishment
of an explicit definition of software evolvability, an evolvability
model and an evolvability evaluation method that can be applied
for large complex software-intensive systems.

Keywords
Software evolvability, maintainability, quality model

1. INTRODUCTION
Software maintenance and evolution are characterised by their
huge cost and slow speed of implementation [3]. The ability to
change and evolve software quickly and reliably has become a
challenging issue for both software engineering community and
industry.

Industry rarely develops new products from scratch [11]. New
features, constraints and enhancements of most new products are
usually built on top of the earlier versions of software products.
This is due to the fact that in most cases, the cost of evolving
software is lower than developing from scratch [20]. Typical
examples are industrial automation systems. Since industrial
automation systems are often long-lived software-intensive
systems that can have a lifetime of 20-30 years, they are subject to
changes and may undergo a substantial amount of modifications
in order to be responsive to the constantly changing demands
from the marketplace, stakeholders, business requirements,
environment or technologies during their lifecycles. This implies
that these software-intensive systems become more and more
complex and may contain up to several million lines of code as
the software is enhanced, modified and adapted during the
software evolution process. Complexity increases unless work is
done to maintain or reduce it [15]. These phenomena in

continuing change and increasing complexity were recognized by
Lehman and expressed in his well-known laws of software
evolution [15]. The properties of large software systems noted by
F. P. Brooks [6], e.g. software complexity, inevitable changes of
software systems and invisibility in terms of software structure
representation, further confirm the software evolution
characteristics and exhibit the intensified need on evolvable
software systems that can be long-lived and correspond to
changes in a cost-effective way.

One way to ensure that any software system does not deteriorate
as it is evolved is to provide feedback to the development team
about the evolvability. Statistics have shown that the largest part
of lifecycle costs for long-lived software systems is concerned
with the evolution of the software [2] to cope with the challenges
of the continuing change, increasing complexity and the tendency
of declining software quality. Therefore, the systems’ capability to
cost-effectively adapt to and accommodate various changes has
become essential for companies to survive in the competition and
maintain a leading position among competitors. The inability to
effectively and reliably evolve software systems means loss of
business opportunities [3]. Consequently, there is strong demand
to carry out software evolution efficiently and reliably, thus, to
prolong the productive life of a software system.

Today, software needs to be changed on a constant basis with
major enhancements within short timescale, through coping with
the changing environments and the radically changing
requirements. All these put critical demands on the software
system’s capability of rapid modification and enhancement. In this
sense, software evolution is one term that can express the software
changes during software system’s lifecycle and software
evolvability is an attribute that describes the software system’s
capability to accommodate these changes with the condition of
having the lifecycle costs under control. As software evolution
activities are performed, essential characteristic software
evolvability must be considered. Nevertheless, although software
evolvability is one of the most important quality attributes or
characteristics of software, it is not precisely defined today. It is
not explicitly defined in any well-known quality models that we
have investigated, e.g. McCall’s quality model, ISO/IEC 9126,
etc. Because of the lack of a standard definition, many people use
software evolvability as synonymous to software maintainability.
Although both have similarities in many senses, software
maintainability and evolvability have specific focus, which has
resulted in confusion in understanding and applying similar
concepts designated differently. Furthermore, software
evolvability is affected by many factors and it is difficult to
quantify.

SERPS 2007, 24-25 October, Göteborg

96

Thus, in this paper, we intend to (i) show differences between
software maintainability and evolvability, (ii) define a software
evolvability model, (iii) identify the required subcharacteristics of
software evolvability based on the analyses of several well-known
quality models and comparisons between evolvability and
maintainability, and (iv) evolvability evaluation method. This
evolvability model is established as a first step towards
quantifying evolvability, a base and check points for evolvability
analysis and evaluation as well as evolvability improvement.
Further we demonstrate the model and the method through an
industrial case study.

The rest of the paper is structured as follows. Section 2 analyzes
several existing well-known quality models, compares
evolvability with maintainability and gives a definition of
software evolvability and proposes the evolvability model.
Section 3 presents evaluation of software evolvability using the
model and relates it to different architecture evaluation methods
that may be adapted for evolvability evaluation. A comparison
between the evolvability model and the related methods is also
addressed in this section. Section 4 presents a case study in
applying the evolvability model and evaluation method. Section 5
concludes the paper and outlines the future work.

2. SOFTWARE EVOLVABILITY MODEL
To be able to define the evolvability model we start with a short
analysis of different quality models in which we can find the
elements of evolvability. In particular we analyze
subcharacteristics of maintainability and defined the
subcharacteristics of evolvability. Based on this analysis we
provide the evolvability model.

2.1 Analysis of Quality Models
A quality model provides a framework for quality assessment. It
aims at describing complex quality criteria through breaking them
down into concrete subcharacteristics. The best known quality
models include McCall [17], Boehm [4], FURPS [18], ISO 9126
[13] and Dromey [10]. The quality characteristics that are
addressed in these quality models are summarized in Table 1. As
shown in Table 1, although several quality attributes are
correlated to software evolvability, e.g. adaptability, extensibility
and maintainability, the term evolvability is not explicitly
addressed in either of the quality models. On the other hand, this
table provides useful inputs for the establishment of the software
evolvability model, e.g. the identification of subcharacteristics of
evolvability.

2.2 Evolvability
We define software evolvability as follows:

Definition: Software evolvability is the ability of a software
system to adjust to change stimuli, i.e. changes in requirements
and technologies that may have impact on the software system in
terms of software structural and/or functional enhancements,
while still taking the architectural integrity into consideration

Software evolvability is both a business issue as well as a
technical issue, since the stimuli of changes can come from both
perspectives, including change of business models and business
objectives, changes in environment, quality requirements,
functional requirements, underlying technologies as well as
emerging technologies.

Since maintainability is covered in most of the well-known quality
models and it is generally considered as most related to
evolvability, we will study the definitions of maintainability in
order to make the definition and features of evolvability
distinguishable. A summary of the definitions of maintainability
in various quality models is presented in Table 2.

Table 1 Quality characteristics addressed in quality models

Quality
Characteristics

M
cC

al
l

B
oe

hm

F
U

R
P

S

IS
O

91

26

D
ro

m
ey

Adaptability x
Supportability

x Portability

Compatibility x
Supportability

Correctness x

Efficiency x x x x

Extensibility x
Supportability

Flexibility x

Human
Engineering

 x

Integrity x

Interoperability x x Functionality

Maintainability x x x
Supportability

x x

Modifiability x x
Maintainability

Performance x

Portability x x x x

Reliability x x x x x

Reusability x x

Supportability x

Testability x x x
Maintainability

Understand-
ability

 x x Usability

Usability x x x x

SERPS 2007, 24-25 October, Göteborg

97

Table 2 Definitions of maintainability in quality models

Quality
Models

Maintainability Definition Focus

McCall The effort required to
locate and fix a fault in the
program within its
operating environment

Corrective
maintenance

Boehm It is concerned with how
easy it is to understand,
modify and test.

Understandability,
modifiability and
testability

FURPS Implicit Adaptability,
extensibility

ISO 9126 The capability of the
software product to be
modified. Modifications
may include corrections,
improvements or adaptation
of the software to changes
in environment, and in
requirements and functional
specifications.

Analyzability,
changeability,
stability, testability

We intend to distinguish software evolvability from
maintainability from a collection of aspects that characterize them,
such as software change stimuli that trigger the changes, type of
change, impact on development process and type of scenarios
used in analysis, etc. The differences are summarized in Table 3.
Table 3 Comparisons between evolvability and maintainability

Characteristics Evolvability Maintainability

Software
Change
Stimuli

Business model,
business objectives,
functional and quality
requirement,
environment, underlying
and emerging
technologies, new
standards, new versions
of infrastructure

Defects, functional
requirement,
requirements from
customers

Type of
Change

Coarse-grained, long
term, higher level, [19]
radical functional or
structural enhancements
or adaptations

Fine-grained, short
term, localized
change [19]

Focus Activity Cope with changes Keep the system
perform functions
[21]

Software
Structure

Structural change Relatively constant

Analysis
Scenarios

Growth scenarios
(change scenarios)

Existing use case
scenarios

Development
Process

May require
corresponding process
changes

Relatively constant

Architecture
Integrity

Conformance is required Conformance is
preserved

2.3 Software Evolvability Model
Since software evolvability is a multifaceted quality attribute, we
propose a software evolvability model with identification of the
required subcharacteristics that a software system needs to possess
in order to easily adapt to various changes during software
evolution. The subcharacteristics that are identified and selected
for the evolvability model are based on their importance for
software developing organizations in general and their relevance
for evolving software in a cost-effective way.

The process of identifying and selecting subcharacteristics is
based on the earlier mentioned maintainability and evolvability
analysis as well as the mentioned quality models. Evolvability-
related subcharacteristics are identified and classified into six
aspects. This classification is based on all the quality
characteristics that are covered in the previously mentioned
quality models. Each aspect addresses a set of quality
characteristics that are covered in the well-known quality models
as illustrated in Table 4. Besides, we have followed ISO 9126
standards and checked their quality attributes against our
classification for completeness. Apart from the development
quality attributes that are explicitly addressed in the evolvability
model, the operational quality attributes, such as performance,
reliability are also indirectly addressed in the sense that the
improvement of these attributes are handled through e.g.
analyzability and changeability. Portability and extensibility are
explicit in the classification because they are essential for software
evolvability. One may argue that extensibility and changeability
are closely related with each other. The reason we make
extensibility explicit is that additional feature enhancement is one
of the essential activities in software evolution. As a result, these
identified subcharacteristics are relevant for evolution of software-
intensive systems and cover the ranges of potential future changes
that a software system may encounter during its life cycle.

Table 4 Classifications of Evolvability-Related
Subcharacteristics

Classification Quality Characteristics in Quality Models

Analyzability Human Engineering, Understandability

Changeability Flexibility, Modifiability

Integrity Reusability

Extensibility Extensibility

Portability Adaptability, Compatibility, Interoperability

Testability Correctness, Efficiency

The proposed evolvability model provides a base and a catalog of
check points for analyzing and evaluating software evolvability.
The subcharacteristics that evolvability incorporates and their
motivations are explained below.

Analyzability The capability of the software system to enable the
identification of influenced parts due to change stimuli (adapted
from [13]). The change stimuli include changes in business
model, business objectives, functional and quality requirements,
environment, underlying technologies and emerging technologies,
new standards, new infrastructure, etc.

Analyzability is important since a software system must have the
capability to be analyzed and explored in terms of the impact to

SERPS 2007, 24-25 October, Göteborg

98

the software by introducing a change. Many perspectives can be
included in analyzability dimension, e.g. decisions on what to
modify, analysis and exploration of emerging technologies from
maintenance and evolution perspective, etc.

Integrity The capability of the software system to maintain
architectural coherence while accommodating changes.

Integrity is a key element that may be easily ignored during
software evolution. It is mostly related to understanding and
coherence to the previous architectural decisions and adherence to
the original architectural styles, architectural patterns or strategies.
Insufficient understanding of the initial architectural constructs
may have indirectly negative consequences on software structures
and lead to evolvability degradation in the long run. However,
taking integrity as one subcharacteristic of evolvability does not
mean that the architectural constructs are not allowed to be
changed. On the contrary, it helps in recognition, extraction and
documentation of these architectural constructs as well as prevents
unconscious violations against architectural principles. As a
result, any necessary changes to the architecture can be conducted
in a controlled way. The software architecture of an evolvable
software system should allow considerable unanticipated changes
in the software without compromising system integrity and
invariants and can evolve in a controlled way [3].

Changeability The capability of the software system to enable a
specified modification to be implemented [13].

Changeability is important since a software system must have the
ease and capability to be changed without negative implications to
the other parts of the software system or in a controlled way. The
changeability of the software should be analyzed in
correspondence to various evolution categories, e.g. new version
of infrastructure or meeting business objectives. Thus,
changeability is correlated to extensibility and portability in the
sense that any re-factoring candidates identified in them will be
eventually justified through changeability. Changeability is
closely related to coupling, cohesion, modularity and software
complexity in terms of software design and coding structure [14],
though it is often constrained by business and economical factors.

Portability The capability of the software system to be transferred
from one environment to another [13]. Portability is an example
of a property that is not a subcharacteristic of maintenance but it
is essential for evolvability.

Portability is one important characteristic for long term
development due to the rapid technical development on hardware
and software technologies. It is concerned with hardware and/or
software changes, including interface and platform aspects.
Therefore, it is one of the key enablers that can provide possibility
to choose between different hardware and operating system
vendors as well as various versions of frameworks. Portability
analyses need to be made from evolution perspective, e.g.
exploration of emerging technologies that may affect portability,
analyzing the effect on the software architecture in terms of
portability, etc.

Extensibility The capability of the software system to enable the
implementation of extensions to expand or enhance the system
with new capabilities and features with minimal impact to existing
system. Extensibility is a system design principle where the
implementation takes into consideration of future growth.

Extensibility is important since a software system must have the
ease and capability to add on extra functionality and features,
extra components and services to keep up with the plethora of
standards, customer requirements, market requirements, etc. In
order to keep its competitive edge, a software system must
constantly raise the service level through supporting more
functionality and providing more features [5]. This property is
also characteristic for evolvability, but not for maintainability.

Testability The capability of the software system to enable
modified software to be validated [13].

Testability is concerned with the verification of a software system
since software modification may lead to errors and side effects,
e.g. changes to one part of a system may have an unintended
effect on another part of the system. Therefore, every step in the
transformation and changes of software constructs need to be
tested. Test cases that cover both the original and emerged
changing requirements need to be identified to ensure that the
system still can fulfill the original requirements and perform its
intended function while meeting the new requirements.

From the list of the subcharacteristics we could assume that
maintainability is a subset of evolvability, but this is only partially
true. Evolvability and maintainability have different goals
(changes vs. preservation as explained in Table 3) and the
subcharacteristics will be evaluated in relation to these goals.

Analyzability and integrity are the center subcharacteristics and
base for evolvability evaluation. The reason is that analyzability is
the first core step to identify the influenced parts due to change
stimuli; whereas integrity investigation helps to gain
comprehensive understanding of architectural constructs related to
other evolvability subcharacteristics of the software system, such
as changeability, extensibility, portability and testability, so as to
guarantee that any re-factorings made to the system will be well-
planned instead of unconsciously violating existing reasonable
architectural decisions.

During the software evolution process, there may be shifted focus
among portability and extensibility depending on the types of
emerging changes. Nevertheless, analyzability, changeability,
testability and integrity are the main subcharacteristics that are
required in all circumstances.

3. EVALUATING EVOLVABILITY
Software evolution and software evolvability can be examined in
different phases of systems lifecycle, e.g. requirement phase,
architectural phase, detailed design, and implementation and
integration phases [9]. In this paper, we focus on assessing
software evolvability at architectural phase. This is because
software architecture is a key asset in software systems and it has
tight connection to the system’s quality requirements in the sense
that software architectures allow or preclude nearly all of the
system’s quality attributes, or vice versa, the quality attributes of a
software system are determined by its architecture [8].

3.1 Evaluation Method Supporting the
Evolvability Model
In order to address the evolvability subcharacteristics
systematically, we have generalized an approach for evolvability
evaluation from an industrial case study. The application of this
method and the evolvability model will be examplified in more

SERPS 2007, 24-25 October, Göteborg

99

details in a case study in section 4. The approach comprises two
phases.

Phase 1: Analyze the implications of change stimuli on software
architecture

This phase addresses analyzability subcharacteristics as shown in
Figure 1, and includes the following two steps:

Step 1: Identify requirements on the software architecture

Step 2: Prioritize requirements on the software architecture

Inputs
• Documentation
• Software Elements
• Knowledge about business and

architecture

Outputs
• Decision of modification candidates (analyzability)
• Identification of architectural defects
• Planning of software improvement

Activities
• Code smells
• Anti-patterns
• Architecture analysis methods
e.g. Quality Analysis Workshop,
ATAM…

Activities
• Code smells
• Anti-patterns
• Architecture analysis methods
e.g. Quality Analysis Workshop,
ATAM…

Figure 1 Software Analysis Process (Phase 1)

Phase 2: Analyze and prepare the software architecture to
accommodate change stimuli and potential future changes

This phase addresses integrity, changeability, extensibility,
portability and testability subcharacteristics as shown in Figure 2,
and includes the following steps:

Step 3: Extract architectural constructs related to the identified
issues from phase 1

Step 4: Identify re-factoring components for each identified issue

Step 5: Identify and assess potential re-factoring solutions from
technical and business perspectives

Step 6: Identify and define test cases

Step 7: Present analysis results

Inputs
• Results from phase 1, i.e. identified

and prioritized requirements on the
software architecture

Outputs
• Identified software design related to

evolvability perspectives
• Identified re-factoring candidates that need

enhancement or adaptation
• Feasible re-factoring solutions

Activities
• Identify and extract software design
(integrity)
• Identify re-factoring candidates
(changeability, extensibility, portability related)
• Identify re-factoring solutions
• Assess re-factoring solutions (changeability)
• Identify and define test cases (testability)

Activities
• Identify and extract software design
(integrity)
• Identify re-factoring candidates
(changeability, extensibility, portability related)
• Identify re-factoring solutions
• Assess re-factoring solutions (changeability)
• Identify and define test cases (testability)

Figure 2 Software Improvement Process (Phase 2)

To summarize, the outputs of software evolvability evaluation
include (i) Identified and prioritized requirements on the software
architecture (ii) Established base for common understanding of
these requirements from stakeholders within organizations (iii)
Identified re-factoring candidates that need enhancement or
adaptation (iv) Feasible re-factoring solutions and (v)
identification of test cases.

3.2 Other Methods
There exist many architecture evaluation methods today. Some of
them may be adapted to analyze software evolvability. Following
is a brief description of these methods.

ATAM The Architecture Tradeoff Analysis Method (ATAM) [8]
is a method for evaluating software architectures in terms of
quality attribute requirements. It is used to expose the risks, non-
risks, sensitivity points and trade-off points in the software
architecture, therefore to achieve better architecture. It aims at
different quality attributes and supports evaluation of new types of
quality attributes.
SAAM The Scenario-based Architecture Analysis Method
(SAAM) was originally created for evaluating modifiability of
software architecture. The main outputs from a SAAM evaluation
include a mapping between the architecture and the scenarios that
represent possible future changes to the system, which provides
indications of potential future complexity parts in the software
and estimated amount of work related to the changes.

ALMA The Architecture Level Modifiability Analysis [1] is a
method for analyzing modifiability based on scenarios. The
outputs from an ALMA evaluation include maintenance
prediction to estimate required effort for system modification to
accommodate future changes, risk assessment to identify the types
of changes that the system shows inability to adapt to, and
software architecture comparison for optimal candidate
architecture.

EBAE Empirically-Based Architecture Evaluation [16] defines a
process for defining and using a number of architectural metrics to
evaluate and compare different versions of architectures in terms
of maintainability.

ABAS Attribute-Based Architectural Styles [4] build on
architectural styles by explicitly associating with reasoning
frameworks, which are based on quality attribute-specific models.

3.3 Correlations among Evaluation Methods
Among the related evaluation methods, ALMA and SAAM focus
more on modifiability (changeability), EBAE on maintainability
using metrics such as coupling, size and complexity, and ATAM
supports multiple attributes. Since software evolvability is a
multifaceted attribute, incorporating changeability among other
subcharacteristics, ALMA, SAAM and EBAE will not be
sufficient enough to evaluate software evolvability. Regarding
ATAM, although it can support multiple quality attributes, it has
one liability in dealing with future changes due to the limitation of
the scenario generation process, since some evolvability scenarios
may be missed which may result in wrong judgments about the
current architecture [7].

The software evolvability model that we have outlined is
appropriate for evolvability analysis because it pinpoints the
dimensions that software architects and analysts need to consider
in carrying out software evolution activities during the software
evolution process. As illustrated in Figure 1, we see also the
benefit of using ATAM as a basis for architecture analysis in
combination with the evolvability model for evolvability
evaluation.

SERPS 2007, 24-25 October, Göteborg

100

4. CASE STUDY
The application of the proposed software evolvability model and
the evaluation method was carried out on a large industrial
automation system at ABB. During the long history of product
development, several generations of automation controllers have
been developed as well as a family of software products, ranging
from programming tools to varieties of application software that
support every stage of the software system life cycle. The case
study was focused on the latest generation of automation system.

4.1 Evaluated System
The software system in the automation controller today has a
tremendous huge code base, consisting of several million lines of
code with support for a variety of different applications and
devices. All the source code is compiled into a monolithic binary
software package, which has grown in size and complexity as new
features and solutions are added to enhance functionality and to
support new hardware, such as devices, I/O boards and production
equipment. Besides, the software package also consists of various
software applications, aiming for specific tasks that enable the
automation controller to handle various applications in painting,
arc welding, spot welding, gluing, machine tending or palletizing,
etc.

Due to long life of products and continuous improvements of the
products, software evolvability is one of the most important
properties that is of interest.

4.2 Goals
The aim of the case study was to analyze software architecture of
the automation system with respect to its evolvability through
applying the software evolvability method. The motivations to this
case study came from the emerging critical issues in terms of
software evolution, which are:

- How to improve software system quality?

- How to improve the ability to enhance functionality in
existing software system?

- How to build new products for dedicated market within
short time?

- How to enable the ease and flexibility of distributed
development of products?

Of all these questions, the root challenge is how to evaluate
software evolvability and analyze whether the software system has
the capability to quickly accommodate to changes. This is the
necessary step towards improving software evolvability and
preparing the software system for potential evolution.

4.3 Applying the Evolvability Evaluation
Method
How to evolve the current monolithic automation controller
software? Is it possible to evolve the controller software to meet
the business objectives? We applied the software evolvability
evaluation method and checked against the evolvability model to
address theses issues.

Step 1: Identify requirements on the software architecture

Any change stimuli result in a collection of requirements that the
software architecture needs to adapt to. The aim of this step is to
extract requirements that are essential for enhancing and preparing
the software architecture to cost-effectively accommodate change

stimuli. Workshops and scenario-based architecture analysis
methods can be used for this purpose. In our case study, several
workshops were conducted for requirement identification.

The change stimuli in this case study came from the business
objectives, i.e. time to market, quality improvement and enabling
distributed development process. The main idea to accommodate
to the change stimuli was to cope with the monolithic-related
issues through developing base software for domain-specific
applications to build on. The base software consists of a software
kernel which is the mandatory building block for all applications,
as well as common extensions which are commonly used by all
the applications. The base software can be packaged into software
development kit, which provides necessary tools and
documentation for application development. The domain-specific
application parts will be separated from the base software and any
application-specific extensions can be built on top of the base
without the need of access to source code. This implies that the
base software and domain-specific applications can be developed
independently and have separate release cycles. Application
developers can work more freely than before without being
constrained by the release cycles of the base software. To achieve
this, corresponding requirements were identified to enable the
migration of monolithic architecture to modular one.

Step 2: Prioritize requirements on the software architecture

All the requirements identified from the first step need to be
prioritized. In the case study, the priorities for requirements were
ranked into three steps: (i) enable build of existing types of
extensions, i.e. to fix all interfaces that prevent from building
existing extensions after building the kernel (ii) enable new
extensions and simplify interfaces that are difficult to understand
and may have negative effects when implementing new extensions
(iii) scale kernel.

Step 3: Extract architectural constructs related to the respective
identified issue

In this step, we mainly focus on architectural constructs that are
related to the previously identified issue. Take portability issue for
example, the evaluated system is the latest generation of
automation controller software, which is an evolutionary step
based on earlier generations. One of the main initial design goals
was to make the software portable across different target operating
system (OS) platforms, as well as to run it in form of a “Virtual
Controller” hosted on a general purpose computer, such as a
UNIX workstation or a PC. The architecture style for the current
generation automation control software is layered architecture,
and within the layers object-oriented architecture. The main
enabler for portability is the portability layer in the architecture.
The portability layer provides interfaces for application software
in the controller, including OS abstraction, POSIX file API,
device driver interfaces, basic services and reusable class library.
To summarize, this step is necessary to help us understand the
system related to the problem issue and to discover any
architectural defects around it.

Step 4: Identify re-factoring components for each identified issue

In this step, we identify the components that need re-factoring in
order to fulfill the prioritized requirements. For example, in the
case study, to achieve the build- and development-independency
between kernel and extensions, the low-level basic services were
identified as one of the re-factoring components.

SERPS 2007, 24-25 October, Göteborg

101

Step 5: Identify and assess potential re-factoring solutions from
technical and business perspectives

Technical assessment takes into consideration of change
propagation and the effect of re-factoring on quality
characteristics such as complexity and maintainability of the
software. Business assessment estimates the cost and effort on
applying re-factoring. In some cases, the solution to a certain re-
factoring component is straight forward and we know how to re-
factor with local impact. Otherwise, when the implementation is
uncertain and may affect several sub-systems or modules, we need
to make prototype and investigate the feasibility of potential
solutions as well as the estimation of implementation workload.

Step 6: Define test cases

The test cases or scenarios can be defined based on the prioritized
requirements on the software architecture. Meanwhile, the
software system still needs to fulfill some of the original
requirements besides the new required changes. To do this, we
need to identify the original test cases as well as the emerging new
test cases that cover the affected component, modules or
subsystems during the software evolution process. For example, in
the case study, we identified test scenarios that enable separation
between kernel and extension which are new test cases, and test
scenarios for validating if existing domain-specific applications
can still work as before without being affected after building the
kernel.

Step 7: Present analysis results

The analysis results are transferred to the implementation team for
further execution. In fact, the communication between analysis
team and implementation team started already during the
evaluation process in order to achieve mutual understanding about
the re-factoring decisions.

4.4 Analysis
In this case study, we applied the evolvability model to an
industrial automation controller and analyzed the software
system’s evolvability from a collection of dimensions. As stated in
[12], software architecture that is capable of accommodating
change must be specifically designed for change. Therefore, the
application of the evolvability model is a necessary step in
analyzing software evolvability and preparing the software system
for future changes. The results of the analysis are achieved
through applying the evaluation method and are presented as
follows.

4.4.1 Analyzability
The knowledge of analyzability is achieved through the first two
steps in the evaluation method. In this perspective, we analyze the
capability of the software system to enable the identification of
influenced parts due to change stimuli. The following lists the
most essential activities that were required in the case study for
identification of influenced parts due to change stimuli.

(1) Investigate public interfaces This improves both quality and
understandability of the current system. It is error-prone to have
interfaces defined as public when they should in fact be internal,
e.g. application-specific software should not expose public
interfaces. All public interfaces should be clearly defined and
documented; including the context they can be used. In this way,
there will be less and well-defined interfaces, thus to increase
software quality and simplify the process of product testing.

(2) Investigate kernel and extensions This provides input to the
explicit definition of the scope for kernel, common extensions and
application-specific extensions.

(3) Investigate build dependencies The separation between
kernel and extensions determines that domain-specific
applications will always be built last. The build order should start
from kernel, common extensions towards application extensions.

(4) Investigate impact on development process The restructuring
of the automation controller software will affect the product
development processes in the sense that roles, reponsibilities and
working procedures, such as product interaction, verification and
testing, need to respond to the change stimuli in a corresponding
way.

4.4.2 Integrity
The knowledge of integrity is achieved through the third step in
the evaluation method. We gained good understanding of the
software architecture, although we also discovered minor
violations that have taken place on the code level before the actual
re-factoring work. This intensified the need of good
documentation of architectural constructs and especially rationale
behind each design decision.

4.4.3 Changeability
The knowledge of changeability is achieved through step 4 and 5
in the evaluation method. In this perspective, we analyze the
capability of the software product to enable a specified
modification to be implemented. The underlying assumptions
throughout the re-factoring process in this case study were that the
applied re-factoring preserves behavior and that the consistency
between re-factored artifacts and other software artifacts in the
system can be guaranteed, in the sense that requirement
specification, architectural design documentation, software code
and test specification, etc. should match with each other.

Based on the identified re-factoring components, the respective
solution and roadmap for implementation were identified and
implementation workload was estimated as well. It became
apparent that some modifications were easy to be implemented,
while some re-factoring components may lead to considerable
change propagation. It is still ongoing work to make
comprehensive analysis and judgment of potential alternative
solutions.

4.4.4 Extensibility
In this perspective, we analyze the capability of the software
system to enhance the system with new functions and features. In
the case study, it was desired that domain-specific application
developers can create their own application extensions on top of
the kernel software in order to respond quickly to market
requirements and get rid of the tight constraints from the release
cycles of the automation controller software. Therefore, the
system is being prepared through executing step 4 and 5.
Meanwhile, it became clear that training is necessary so that the
domain-specific application developers can easily create their own
applications.

4.4.5 Portability
In this perspective, we analyze the capability of the software
system to be transferred in case of environment change. The
portability issues in this case study include portability analysis

SERPS 2007, 24-25 October, Göteborg

102

across various target operating system platforms and portability
analysis across hardware platform, thus to prepare the software
system for potential environment change. It is still an on-going
project around this issue, but so far, we have discovered some
aspects that need to be addressed, e.g. training for software
developers in writing code that enables portability, documentation
of guidelines/rules and code examples, proper use of conditional
compilation in case of environment switches, etc.

4.4.6 Testability
In this perspective, we validate if the modified software system
can still fulfill the original requirements as well as the new
required changes. To do this, we identified emerging new test
cases that cover the affected component, modules or subsystems
as well as the original test cases that the software still needs to
fulfill. The possibility of being able to run the program on virtual
controllers simplifies a lot for testing.

5. CONCLUSIONS AND FUTURE WORK
In this paper, we propose a software evolvability model and an
evolvability evaluation method. We contend that the evolvability
of a software system can be analyzed in terms of a collection of
subcharacteristics. This evolvability model is established through
a systematic analysis of several existing well-known quality
models and comparison analysis of distinguishable characteristics
between software evolvability and maintainability. We have
shown how the evolvability evaluation method and evolvability
model can be applied into complex industrial context through a
case study, which revealed the structured way of evaluating
evolvability as well as the feasibility of using the proposed
evolvability model as base and check points when evolving a
software system.

Future work remains to be done to further establish the
evolvability model to a hierarchical one; we need to further derive
the identified subcharacteristics of evolvability to the extent when
we are able to quantify them and/or make appropriate reasoning of
the quality of service that a software system provides in terms of
various sub-characteristic. We need to provide a catalog of
guidelines and checkpoints for each sub-characteristic that can be
applied in conducting evolvability analysis. We also need to
analyze the correlations among the subcharacteristics with respect
to constraints and trade-offs. Further we plan to establish a
process framework which will enable a consistence analysis when
analyzing different subcharacteristics, and when analyzing the
evolvability in different phases of the product lifecycle.

6. REFERENCES
[1] Bengtsson. P. O. Architecture-Level Modifiability Analysis.

Ph.D Thesis, Blekinge Institute of Technology, 2002.

[2] Bennett, K. Software Evolution: Past, Present and Future.
Information and Software Technology 38 (1996) 673-680.

[3] Bennett, K. and Rajlich, V. Software Maintenance and
Evolution: a Roadmap. 2000.

[4] Boehm, B. W. et al. Characteristics of Software Quality.
Amsterdam, North-Holland, 1978.

[5] Bosch, J. Design and Use of Software Architectures –
Adopting and Evolving a Product-Line Approach. Addison-
Wesley. 2000.

[6] Brooks, F. P. No Silver Bullet. IEEE Computer, Vol. 20, No.
4, 1987.

[7] Ciraci, S. and Broek. P. Evolvability as a Quality Attribute of
Software Architectures. 2003.

[8] Clements, P., Kazman, R. and Klein, M. Evaluating Software
Architectures: Methods and Case Studies. Addison-Wesley.
2002.

[9] Cook, S., Ji, H. and Harrison, R. Dynamic and Static Views
of Software Evolution. Proceedings IEEE International
Conference on Software Maintenance ICSM, 2001.

[10] Dromey, G. Cornering the Chimera. IEEE Software
(January): 33-43, 1996.

[11] Graaf, B. Maintainability through Architecture Development.
EWSA, LNCS 3047, pp. 206-211, 2004.

[12] Isaac, D., McConaughy, G. The Role of Architecture and
Evolutionary Development in Accommodating Change.
Proc. NCOSE’94, 1994.

[13] ISO/IEC 9126-1. International Standard. Software
Engineering – Product Quality – Part 1: Quality Model,
2001.

[14] ISO/IEC 9126-3. International Standard. Software
Engineering – Product Quality – Part 3: Internal Metrics,
2003.

[15] Lehman, M. Laws of Software Evolution Revisited. Software
Process Technology, 5th European Workshop EWSPT, 1996.

[16] McCall, J. A., Richards, P. K. and Walters, G. F. Factors in
Software Quality. National Technical Information Service,
1977.

[17] Ortega, M, et al. Construction of a Systemic Quality Model
for Evaluating a Software Product. Software Quality Journel,
v11, n3, p219-42, Sept 2003.

[18] Pfleeger, S. L. The Nature of System Change. IEEE
Software, 1998.

[19] Weiderman. N. H. et al. Approaches to Legacy Systems
Evolution. Technical Report CMU/SEI-97-TR-014, 1997.

[20] Yang, H. and Ward, M. Successful Evolution of Software
Systems. Artech House Publishers, London, 2003

[21] Loomes, M. J., Nehaniv, C. L. and Wernick, P. The Naming
of Systems and Software Evolvability. IEEE Workshops on
Software Evolvability 2005.

SERPS 2007, 24-25 October, Göteborg

103

