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INTRODUCTIONINTRODUCTIONINTRODUCTIONINTRODUCTION    

    
Despite several thousand years of interest in the question, the nature and properties of the 
mind remain obscure, and so do the properties of the interaction between the brain and the 
mind, that is, how thoughts, memories and subjective feelings can emanate from physical 
entities such as proteins at specific positions in the brain. Human beings can learn, feel, reason, 
be creative, be self-conscious et cetera, and sometimes we attribute some aspects of these 
abilities only to ourselves, and not to other animals. All these abilities involve the brain. 
Historically, most theories of mind and behaviour have been formulated in the fields of 
philosophy and psychology. Before Cajal in the beginning of the 20th century proposed the 
brain to be built up of neurons that communicated with each other through spaces between 
cells, the brain was believed to be one big cell.1 The brain is much more complex than other 
organs and it is also more inaccessible for exploration. Still, we have been able to investigate 
several aspects of the mind in action. 
      By studying subjects with brain injuries or specific cognitive impairments, rather than 
healthy subjects, brain regions involved in specific cognitive processes have been identified. The 
famous case of Phineas Gage (1848), who changed after he got a pole stuck through frontal 
parts of his brain, illustrates how certain frontal brain regions are involved in motivation, 
personality and in understanding the consequences of actions.2 The frontal cortex is more than 
four times larger in humans than in non-human primates, and is involved in controlling most 
aspects of human behaviour. There is evidence that the development and growth of the frontal 
cortex is abnormal in autism.3 The influence of factors that may affect brain development is 
investigated in relation to autism in paper VII.         
      The amygdala is a brain region that is crucial for emotional behaviours and that is activated 
by emotional stimuli, especially by fear and threat.4,5 The activity of the amygdala affects or 
depends on mood and anxiety. Amygdala activity during emotional experience in subjects with 
social phobia is investigated in papers I & II.  
      Several findings regarding which neurotransmitters are involved in which behaviours have 
been come across by chance. The plant Rauwolfia serpentina has been ingested for centuries 
and can reduce psychosis and induce suicidal behaviour, effects that are due to the active 
substance Reserpine, which prevents storage and thus release of monoamines including 
serotonin and dopamine. Narcotic drugs also illustrate the involvement of specific 
neurotransmitters in e.g. happinessA or psychosis; when the mechanism of action of these 
substances becomes clear, a specific neurotransmitter can be linked to the emotion or 
behaviour. An aspect of the mind that is perceived as being impaired or abnormal in subjects 
diagnosed with a psychiatric disorder can be studied in those subjects; if that property improves 
with pharmacological treatment or is modified by genetic variation in genes with known gene 
products (proteins), that aspect of the mind may be linked to a neurotransmitter system.  
      The neurotransmitter serotonin is involved in controlling mood and anxiety, as 
demonstrated e.g. by the effectiveness of serotonergic drugs in reducing depressive and anxious 
symptoms, and by the induction of depressed mood when serotonin synthesis is inhibited in 
subjects with family members with depression.6,7 The relationship between genetic variation in 
serotonin-related genes, on the one hand, and mood and anxiety-related traits, on the other, is 
investigated in papers I-V. Sex steroids affect the prenatal development of the brain, and the 
possible influence of sex steroid-related genetic variation on personality traits, autism and 
transsexualism is analysed in papers VI-VIII. 
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      Comparisons of the frequency of genetic variations between subjects with psychiatric 
conditions (cases) and subjects without (controls) are used to find genetic variations that may 
influence the psychiatric trait. The identification of a genetic variant that affects a phenotype 
(the disease or trait) implies the elucidation of the original code underlying the increased 
susceptibility for that phenotype, i.e. one aspect of the aetiology (aitia=cause, logos=discourse) 
of the phenotype that is innate. By the identification of a relationship between a genetic variant 
and a phenotype, that gene, its product, and the pathways this product is involved in, can be 
connected to the phenotype.  
      Almost all psychiatric conditions are partly heritable. The heritability for autism is 
approximately 80% and that for depression and social phobia approximately 50%.8-10 The 
genes that underlie this heritability are still largely unknown. Possible reasons for this are (i) 
that genes interact with each other and with the environment – a genetic variation may give 
rise to increased susceptibility for a disease in one person that carries it but not in another, 
possibly due to different variants on other locations (loci) in the genome or different 
environmental exposure, (ii) that different combinations of genetic variants may give rise to the 
same phenotype, and (iii) that rare variants are common in the genome – one person may have 
an increased vulnerability due to one such rare variant, whereas another person with increased 
vulnerability carries a different rare susceptibility variant. Paper IX introduces a new method 
that detects effects of combinations of genetic variations with increased probability.  
      When searching for susceptibility variants for psychiatric traits it is important to take 
environmental risk factors into consideration – by doing so, genetic variants that interact with 
the environmental exposure can be detected. Similarly, when searching for environmental risk 
factors, it is important to know which genes are involved in the heritable part of the aetiology. 
Risk factors for depression, including stressful life events and possible susceptibility genes, as 
well as the inter-relationship between these, are investigated in paper V. 
      The aims of this thesis are threefold. First, the influence of variation in serotonin-related 
candidate genes on mood disorders, and brain processes that appear to be involved in mood 
and anxiety disorders, as well as the influence of genetic variation in a neurotrophic factor on 
the serotonin transporter, which is important for the function of the serotonergic system, were 
explored. Second, variation in sex steroid-related genes was related to personality traits, autism 
and transsexualism.    Third,    a method that restricts the search for effects of combinations of 
genetic variants to certain patterns was introduced and shown to be better at detecting these 
two-locus effects. 
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BACKGROUNDBACKGROUNDBACKGROUNDBACKGROUND TO GENETICS TO GENETICS TO GENETICS TO GENETICS    
 

    

NATURE & NURTURENATURE & NURTURENATURE & NURTURENATURE & NURTURE    

    
The location of the soul or mind and the influence of nature on our mind were debated long 
before the concept of the genetic code was introduced. Hippocrates (460 BC – 370 BC) and 
Plato (430 BC - 350 BC) were the first to localize the mind in our heads. After them, Aristotle 
(380 BC - 320 BC) placed the rational soul in the heart, and his theories were leading for 
centuries. Descartes (1596-1650) influenced many scientific areas, philosophy of the mind 
being one of them; he placed the link between the body and the mind in the pineal gland. One 
of his successors was Locke (1632-1704), whose ideas were influenced by those of Descartes in 
many ways. Locke is known for the conceptualization of the mind as a “tabula rasa”, a blank 
slate, and is frequently pointed out as the extreme-nurturist that ascribed all influence on the 
mind to nurture or environment, and none to nature or genes. Except for his use of the tabula 
rasa expression, his controversial opinion that Christian moral principles were not innate may 
have contributed to this interpretation. Locke believed that ideas, the components of the mind, 
came from experience (experience of the external through perception and experience of the 
internal through introspection), in contrast to Descartes, who stated that the ideas were innate 
and activated by experience. But, more importantly, Locke believed the mental abilities to be 
innate, i.e. that we are born with the ability to think, memorize and to use our senses. He also 
proposed personality traits and talents to be innate, a notion that is in line with current 
findings of considerable heritability estimates for such traits.11-14  
    

HERITABILITYHERITABILITYHERITABILITYHERITABILITY    
    

Heritability is the proportion of phenotypic variation in a population that is attributable to 
genetic variation. The proportion not explained by genetic variation is believed to be 
attributable to variation in environmental exposure. 
 
Estimation of heritabilityEstimation of heritabilityEstimation of heritabilityEstimation of heritability    
Twin studies have been the major source of information regarding the respective contributions 
of genes and environment to a trait. One way of estimating heritability, is by comparing 
resemblances between monozygotic (MZ) twins, who share all their genes (however see15), and 
dizygotic (DZ) twins, who share on average half of their genes. MZ twins are hence twice as 
genetically similar than the average DZ twin pair, and the heritability is estimated as two times 
the difference in correlation for the trait: 2·(rMZ-rDZ). 
      Even better at elucidating genetic and environmental components, albeit naturally more 
rare, are adoption studies, which compare the similarity between twins or siblings who are 
brought up together with the similarity of those brought up apart. The similarity between 
offspring and biological parents can also be compared to that between offspring and adoption 
parents.        
 
Shared and nonShared and nonShared and nonShared and non----shared environmentshared environmentshared environmentshared environment    
The proportion of variation in the phenotypic trait attributable to the environment is divided 
into shared and non-shared environmental effects. Shared environmental factors reflect 
environmental exposure that makes the two siblings more alike. Shared environment, c2, is 
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estimated by the DZ correlation minus half the heritability (the degree to which DZ twins 
share the same genes), i.e. c2=rDZ - (h2/2). Unique or non-shared environmental variance, e2, 
reflects the degree to which identical twins raised together are dissimilar and is estimated as 
e2=1-rMZ. 
      Historically, clustering of a trait in a family, such as two siblings affected by the same 
disease, was largely believed to be due to the environment they shared, e.g. their common 
upbringing. The contribution of shared environment to complex traits (see below) has however 
often turned out to be very low, whereas the contribution of genes and non-shared 
environment both generally are large.  

    

MODES OF INHERITANCEMODES OF INHERITANCEMODES OF INHERITANCEMODES OF INHERITANCE     

 

Mendelian traitsMendelian traitsMendelian traitsMendelian traits    
Mendel (1822-1884) studied the inheritance of traits in pea plants and found that it follows 
particular laws, which were later named Mendelian laws. The principles of Mendelian 
inheritance are the following: Consider a locus (which is a position in the genome) with two 
possible variants or alleles, A and a, and the trait or phenotype colour, which can take two forms: 
red and green. Assume that the presence of the A allele results in green colour and that the 
genotype a/a is the only genotype that results in red colour. Each parent transmits one of their 
alleles to their offspring. Two red parents will then always have red offspring. However, if one 
of the parents is green, the genotype of this parent can be either A/a or A/A. If this parent 
carries the A/A genotype and gets offspring with a red parent, then all offspring will be green, 
since all of them will carry an A allele. On the other hand, if the green parent carries the A/a 
genotype, offspring will be green and red in equal proportions, half of them will carry the a/a 
genotype and the other half will carry the A/a genotype. The inheritance of a Mendelian trait 
follows this pattern; the proportion of affected individuals can hence be predicted from the 
traits of the parents and grand-parents. For a dominant trait, inherited with a dominant mode 
of inheritance, only one susceptibility allele is required for the trait to appear, whereas for a 
recessive trait, two alleles are required for the trait to be expressed. 
 
Complex traitsComplex traitsComplex traitsComplex traits    
A complex trait does not follow a Mendelian mode of inheritance, and its aetiology depends 
both on genes and environment, including the involvement of different susceptibility genes in 
different subjects and also of combinations of genetic variants (see locus heterogeneity and 
gene-gene interactions below in the GENES section). Most psychiatric disorders are complex, 
e.g. autism, mood disorders and anxiety disorders. Despite extensive research aimed at finding 
genes for complex traits, no strategies have been successful in finding genes that explain the 
high heritabilities. 
 
GeneGeneGeneGene----environment interactionenvironment interactionenvironment interactionenvironment interaction    
Neither genes nor the environment acts in isolation. Instead, genes and environment interact in 
influencing traits. A gene and an environment are said to interact when a gene has different 
effects on e.g. disease risk in different environments. Gene-environment correlation is the 
influence of genes on environmental exposure. For example, exposure to stressful life events has 
been shown to be heritable.16-18  
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GENESGENESGENESGENES    

    
THE INTHE INTHE INTHE INHERITED CODEHERITED CODEHERITED CODEHERITED CODE    

    
DNADNADNADNA    
A deoxyribonucleic acid (DNA) molecule looks like a spiral staircase. The nucleotides or bases, 
i.e. adenine (A), cytosine (C), guanine (G) and thymine (T) bind to each other in a specific 
manner (A-T and C-G), thus forming the base pairs that constitute the steps of the stairway. A 
and G are purines, whereas C and T are pyrimidines. The edges of the staircase are made up of 
sugars called deoxyriboses and of phosphate groups. Humans have 23 chromosome pairs in the 
nucleus of each cell. Each of these chromosomes is a DNA molecule. One member of a 
chromosome pair originates from the mother and one from the father. Although Delbruck 
suggested the chemical structure of the chromosomes to mediate heritable properties in the 
1930s, the structure of DNA was discovered first in 195319. In Figure 1 the chromosome has 
just replicated (duplicated) in the meta-phase of the cell-division cycle (mitosis) – the process 
when one mother cell divides into two daughter cells – and the chromosome is attached to the 
new chromosome copy at the centromer. When the cell is not dividing, DNA is packaged by 
proteins into chromatin to fit in the cell nucleus. Any location, or locus, in the genome, is 
made up of two variants or alleles, one situated on the maternal and one on the paternal 
chromosome of the chromosome pair. A combination of such alleles on the same parental 
chromosome is called a haplotype. 
 

 
Figure 1. One cell nucleus contains 23 chromosome pairs. The chromosome in the figure has just replicated and is 
attached to the new chromosome copy. It consists of DNA, which is built up of the chemicals depicted in the picture, 
i.e. adenine, cytosine, guanine and thymine. 
    
Gene compositionGene compositionGene compositionGene composition    
A gene is composed of exons, which are elements encoding amino acids, the building-stones of 
proteins, and by introns, which are non-coding elements. The regulatory region upstream of 
the gene is called the promoter and contains motifs where transcription factors bind. 
Transcription factors are proteins required for the expression, or transcription, of genes. 
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Transcription is the transformation of DNA to RNA, in which    T    is substituted for uracil (U) 
and the introns are spliced off. The region downstream the gene, the 3’ untranslated region 
(UTR), holds several elements that regulate RNA stability and translation. In the translation 
process, which takes place outside of the nucleus, the ribosome reads codons, i.e. every three 
nucleotides of the messenger RNA (mRNA), and builds the protein from the amino acids that 
these codons encode. 
    

GENETIC VARIATIONGENETIC VARIATIONGENETIC VARIATIONGENETIC VARIATION    
 
Evolution occurs when heritable differences become more common or rare in a population, 
usually because the properties promote or reduce survival and reproduction, leading to a 
natural selection of those best suited for their environment. Genetic variation is thought to be 
under constant evolutionary pressure.20     
 
Crossovers and rCrossovers and rCrossovers and rCrossovers and recombinationecombinationecombinationecombination    
Meiosis is the division of a cell into four gametes. 
A gamete contains one chromosome of each type 
and fuses with another gamete during conception 
in all organisms that reproduce sexually. In the 
prophase of meiosis, the two chromosomes of a 
pair, one of maternal and one of paternal origin, 
replicate and exchange genetic material at 
crossover points called chiasmata. One crossover 
creates new combinations of alleles (haplotypes) 
in half of the gametes (two of the four gametes 
produced by one cell, see Figure 2). Crossovers 
result in increased genetic variation in nature and 
thus enable acceleration of evolution by natural 
selection and formation of new genetically unique 
individuals.  
      Females display approximately 50% higher 
rates of crossovers than men (some species do not 
display crossovers in males). Some regions of the 
genome experience a larger rate of crossovers. Due 
to this and also that selection causes some 
crossovers not to survive, observed regions of 
increased crossover rates, so-called hot spots of 
recombination, are believed to be located in 
regions where presumably either variation is 
important, or conservation is not important. 
                        If crossovers occur in uneven numbers between two loci, so-called recombination events can 
be observed. A recombination between two loci denotes the event that the two different 
grandparents contribute with one allele each at the two loci of that haplotype. When no 
recombination between two loci has occurred, it means that the haplotype contains two alleles 
which originate from the same grandparent. For loci in close proximity, at most one crossover 
occurs per generation, meaning that the recombination fraction directly measures genetic 

Figure 2. One crossover event creates recombined
chromosomes in two out of four gametes.
Figure 2. One crossover event creates recombined
chromosomes in two out of four gametes.
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distance as determined by crossover probability. Recombination events are the basis for gene 
finding strategies such as linkage and association analysis21. 
 

PolymorphismsPolymorphismsPolymorphismsPolymorphisms    
In the year of 2003, the human genome organization (HUGO) succeeded in sequencing the 
whole human genome of one person22. Our genomes are identical to over 99.9% but still differ 
on many locations. For example, one individual could have an ACGTTTTA-sequence in an 
important region of a gene encoding a protein necessary for the function of a neurotransmitter 
system, whereas another individual carries an ACGTTTTT-sequence at the same location, and 
this single nucleotide polymorphism (SNP), polymorph meaning it takes many (=poly) forms 
(=morphus), may implicate an increased or reduced vulnerability for disease. Since 
chromosomes come in pairs, such a polymorphic locus can give rise to three genotypes. An 
individual can thus carry one of the three genotypes AA, AT or TT on that specific locus.  
      SNPs are the most common sort of genetic variation. Other sorts of polymorphisms are e.g. 
insertion/deletion polymorphisms and repeat polymorphisms, so-called variable number of 
tandem repeats (VNTRs). Copy number variations are deletions or duplications of sequences 
that are longer than 1000 base pairs. A population that displays random mating is in Hardy 
Weinberg equilibrium (HWE), i.e. the state in which the proportions of genotypes in the 
population depends only on the allele frequencies. 
      The functional consequences of polymorphisms can be several. An SNP can be situated in 
an exon where it may lead to an exchange of which amino acid is coded for, which in turn can 
affect protein folding and/or function. This sort of SNP is called non-synonymous. In contrast, 
synonymous SNPs are situated in coding regions but do not change the amino acid sequence. 
Repeat polymorphisms in exons can encode stretches of amino acids; a CAG repeat may thus 
encode a repeat of the amino acid glutamine. The length of such a stretch of amino acids may 
affect protein function. Repeat polymorphisms of other sizes, such as the di-nucleotide repeats 
may affect the reading frame, leading to altered amino acid sequence or a truncated protein due 
to a premature stop codon. Polymorphisms can be situated in the promoter region where they 
may affect expression efficiency and protein amount. Polymorphisms in the UTR regions may 
affect RNA stability or they may be located in motifs for microRNAs, which inhibit 
translation. Intronic polymorphisms may influence splicing or other regulatory mechanisms.23 
 

Linkage Linkage Linkage Linkage ddddisequilibrium isequilibrium isequilibrium isequilibrium     
Loci A and B, locus A with alleles A and a and locus B with alleles B and    b, are in linkage 
equilibrium (LE) when the occurrence of e.g. allele A and allele B in    a haplotype are 
independent events, and the haplotype frequency consequently    can be determined as the 
product of the two allele frequencies, P(haplotype A-B)=P(A)·P(B). Linkage disequilibrium 
(LD) is measured by comparing the observed haplotype frequency with that expected if the loci 
had been in LE. When two loci are located closer to each other and are in linkage (see below), 
it is more likely that the occurrence of two of their alleles in a haplotype is non-random. 
Measures of LD do however not only depend on genetic distance, but also on allele frequencies 
and the time passed since the polymorphism first appeared. LD between two loci can also be 
the result of population stratification (see below). 
      D’ is a measure of LD and is determined as the ratio between D and Dmax. Absolute LD, r2, 
is determined as D2 divided by the product of all allele frequencies.    Only when r2 is equal to its 
max value (=1) do two specific alleles always occur together on a haplotype, leading to the 
existence of two haplotypes only; the allele of locus B on a haplotype can then be absolutely 



 10 

determined by the allele of locus A. The locus B allele can not be determined from the allele at 
locus A when D’ equals to its max value (=1) and r2 is smaller than 1.  
    
Haplotypes anHaplotypes anHaplotypes anHaplotypes and haplotype structd haplotype structd haplotype structd haplotype structuuuurererere    
A haplotype is a combination of alleles on a chromosome. The haplotypes that two-locus 
genotypes consist of can be determined when at least one of the two loci is homozygous. Thus, 
for the two-locus genotype composed of the two genotypes A/a and B/B, the two haplotypes are 
A-B and a-B. However, for a two-locus genotype of two heterozygous loci with genotypes A/a 
and B/b, the haplotypic phase can not be determined: allele A can be on the same haplotype as 
allele b, or on the same haplotype as allele B, the two possibilities being the possible phases. 
When calculating LD measures between such loci, the haplotype frequencies need to be 
estimated; this is usually done by means of the expectation-maximization algorithm. 
      Haplotypes consisting of alleles that are in high LD in a population are called haplotype 
blocks. Two haplotype blocks may be separated by hot spots of recombination. Haplotype 
blocks are meaningful entities for association analyses since an allele that is located on a certain 
haplotype, even though it has not been measured, can indirectly give evidence of association. 
The HapMap project has defined so-called haplotype tag SNPs, which are SNPs that are 
supposed to cover the majority of variation in a gene.24 
 

GENE FINDING STRATEGIESGENE FINDING STRATEGIESGENE FINDING STRATEGIESGENE FINDING STRATEGIES     

    

Linkage analysisLinkage analysisLinkage analysisLinkage analysis    
Linkage analysis uses genetic information from families with many affected subjects to 
determine which genomic regions that are inherited together with the disease. In this manner, 
the chromosomal regions harbouring the relevant disease-causing genetic variations can be 
identified.  
      The basis of parametric linkage analysis is the recombination fraction, i.e. the fraction of 
offspring for which recombination has occurred between two loci on a chromosome. Two loci 
are completely unlinked when recombinants and non-recombinants are expected in equal 
proportions (recombination fraction 0.5), as when two loci are situated on different 
chromosomes. Linkage analysis measures how much the observed recombination fraction 
between two loci deviates from 0.5 and localizes the disease locus to a map interval bounded by 
crossovers. Parametric linkage analysis has been successful for Mendelian traits.  
      The basis of nonparametric linkage analysis is the number of alleles shared by affected 
sibpairs that are identical by descent (IBD). For a locus that is inherited with the disease locus 
(or is the disease locus), a sibpair that shares more alleles IBD is expected to have more similar 
phenotypes, e.g. both sibs are expected to be affected by a disease if one of them are. 
Nonparametric linkage analysis measures the deviation of the observed number of shared alleles 
IBD from the distribution that is expected when no disease locus is linked to the investigated 
locus. Non-parametric linkage analysis is used for complex traits but has not been successful.21  
 
Association analysiAssociation analysiAssociation analysiAssociation analysissss    
Association analysis is a comparison of genotype or allele frequencies between cases and 
controls (so-called case-control study) or a comparison of trait means between genotypes, or a 
comparison of the number of times an allele is transmitted or non-transmitted from a healthy 
parent to an affected offspring, the latter often analysed using transmission disequilibrium tests. 
If the investigated locus is close to the disease locus, the disease-related variant is more likely to 
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be transmitted on the same haplotype as the measured locus since it is less likely that any 
crossovers have occurred between the two loci. Association studies with dense markers have 
been used to follow up the results of linkage analysis, to further delimit the region that carry 
the disease-related gene or polymorphism.  
      Association studies can also be performed using candidate genes, i.e. genes whose products 
are linked to the trait. The investigated polymorphisms in these genes may be candidate 
polymorphisms, i.e. polymorphisms that affect protein amount or function, a strategy that not 
is dependent on recombination, or, they may be polymorphisms that are be in LD with 
functional polymorphisms. Association analysis may be a more powerful method than linkage 
analysis for identifying polymorphisms with small to moderate effect sizes on complex traits.25 
 

The studies of pThe studies of pThe studies of pThe studies of papers Iapers Iapers Iapers I----VIII are all association studies.VIII are all association studies.VIII are all association studies.VIII are all association studies. Papers I Papers I Papers I Papers I----III and VI investigate III and VI investigate III and VI investigate III and VI investigate 
continuous outcome variables, whereas papers IVcontinuous outcome variables, whereas papers IVcontinuous outcome variables, whereas papers IVcontinuous outcome variables, whereas papers IV----V and VIIV and VIIV and VIIV and VII----VIIIVIIIVIIIVIII are focused on are focused on are focused on are focused on    
dichdichdichdichototototomous traits.omous traits.omous traits.omous traits. Paper VII also includes a family Paper VII also includes a family Paper VII also includes a family Paper VII also includes a family----based association study.based association study.based association study.based association study.    

 
      Genome-wide association studies are becoming more feasible because of new technologies 
that can genotype many SNPs simultaneously. When many polymorphisms are investigated, 
the effect sizes need to be rather large (the p-valuesB need to be small) for an effect to be 
considered significant, since the multiple testing needs to be controlled for. One test in 20 
becomes significant simply due to chance. A recent genome-wide association study investigated 
seven diseases. Although the sample sizes were relatively large, 2000 cases and 3000 controls, 
the p-valueB needed to be under 5·10-7 to be considered significant, and the power was only 
around 40% for finding variations with relative risks of 1.3, and 80% for finding those with 
relative risks of 1.5 (relative risk = probability of disease when carrying one genotype / 
probability of disease when carrying another genotype).26 The large size of association studies 
may thus affect the chance of finding genes with small effect sizes and increases the need for 
powerful gene analysis tests. 
      Spurious associations can arise due to population stratification. Allele frequencies differ 
between populations, even between regions within Sweden. Population stratification refers to 
the combination of two subpopulations that display different allele frequencies and different 
trait means, leading to spurious association between an allele and a trait. Even if there is no 
factual association between a locus and a trait in either of the subpopulations the trait mean 
can become very different for the three genotypes of the locus when the two populations are 
pooled.27    

COMPLEX GENETICCOMPLEX GENETICCOMPLEX GENETICCOMPLEX GENETICSSSS    
    
AAAAssociation analysisssociation analysisssociation analysisssociation analysis strategies strategies strategies strategies    
Research in psychiatric genetics of the last decade has mostly been devoted to studies of the 
relationship between one polymorphism and one trait, resulting in findings of polymorphisms 
with small effects, explaining approximately 1-5% of the variation in the studied trait. 
Although many associations have been reported, only a few have been replicated so many times 
that they now are considered to be established. Possible explanations for the inconsistencies in 
one-polymorphism-one-disease studies may be interactions between genes and locus 
heterogeneity, but incomplete penetrances, uncertainties in the age of onset for the conditions, 
and the notion that many of the polymorphisms that associations are reported for are probably 
neither necessary, nor sufficient for disease onset, are also of importance. More recently, 
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investigations of complex traits have tried to take the combined influence of several loci into 
account,e.g.28 thus considering the possibilities that different variants are susceptibility loci in 
different subjects, and that genes may interact with each other. 
      A rare disease was previously believed to be related to rare variants, whereas common 
polymorphisms were believed to increase the risk for common diseases (the rare disease – rare 
variant and common disease - common variant hypothesis). This view, together with the view 
that a rare variant more often causes a disease, than merely increases the risk for it, has now 
largely been abandoned. Rare variants seem to increase the risk also for common diseases, 
although different rare variants are present in different subjects with that disease (locus 
heterogeneity), leading to the necessity for huge sample sizes for these variants to be found. 
Similarly, quite common variants can be risk factors for rare diseases, possibly because they 
interact with other susceptibility polymorphisms (gene-gene interaction). 
      Three different approaches used when searching for susceptibility loci for complex diseases 
are: (i) to look at the diagnosis as a whole, ignoring clinical heterogeneity or even pooling 
diagnoses that have overlapping heritability, (ii) to reduce phenotypic heterogeneity by 
investigating phenotypes that are less clinically heterogeneous than are diagnoses, such as 
specific symptoms, and (iii) to investigate phenotypes considered to be more closely related to 
the genetic effect than are symptoms or diagnoses.  
      The first strategy is preferable when the different heterogeneous symptoms of a complex 
disease are believed to arise    from the same genetic aberrations. The second strategy is applied 
when different aspects of disease are believed to be influenced by independent genes.  
                        In favour of a view where one genetic variation can influence several aspects of disease, the 
same rare variants can sometimes give rise to very different autism-related phenotypes29-31 and 
also to different diagnoses.32 Supporting the second strategy, the evidence for the involvement 
of some genes in autism aetiology has been strengthened by reducing phenotypic heterogeneity, 
either by focusing on subjects with language impairment or on subjects with savant skills.C 33,34  
      The third approach has also been fruitful. Based on the assumption that the effect of a gene 
on a protein concentration or on a brain process is larger than that on a specific disease, it has 
become more common to investigate the relationship between one gene and one so-called 
intermediate phenotype, meaning a phenotype that possibly mediates the effect of the gene on 
the disorder. If the intermediate phenotype, e.g. a brain process alteration, is specific for a 
condition as well as heritable and is showing intermediate values for first-degree relatives, it is 
called an endophenotype. This strategy has led to findings of polymorphisms that explain a 
larger proportion of variance in the intermediate trait, compared to the effect sizes of studies 
that focus on diagnoses. If an intermediate phenotype is more common in, but not specific for, 
a certain condition, this does however not imply that a larger proportion of the variance in the 
condition is explained by that polymorphism. For example, hyper-responsiveness of the 
amygdala during observation of emotional stimuliD is an intermediate phenotype that is 
observed with higher frequency in depressive and anxious subjects than in controls, but which 
is not specific for subjects with these diagnoses.35,36 The association of genetic variation in the 
serotonin transporter promoter region with activity within the amygdala has been much more 
consistent than that with clinical diagnoses of mood and anxiety disorders or with related 
temperamental measures.37,38    
    
    
    
Locus heterogeneityLocus heterogeneityLocus heterogeneityLocus heterogeneity    
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A phenotype is genetically heterogeneous when it has a genetically different aetiology in 
different individuals, i.e. when different polymorphisms can increase the risk for e.g. a disease 
independently of each other. One example is Alzheimer’s disease. Mutations in one gene 
(encoding the amyloid precursor protein) lead to a Mendelian dominant inheritance of the 
disease, but are present only in very few Alzheimer families in the world.39 Mutations in 
another gene (presenilin 1) also show high penetrance and give rise to a substantially increased 
disease risk. However, neither of these polymorphisms explains a large proportion of the 
affected individuals (the so-called population-attributable risk). Instead, another more common 
allele (the apolipoprotein E4 allele) increases the risk for sporadic (in contrast to familial) 
Alzheimer’s disease,40 a risk that is further increased by environmental risk factors. Depression 
is yet another condition for which there are rare variants with high penetrance, although most 
cases of depression are not explained by these. Amino acid substitutions in a serotonin synthesis 
enzyme thus have been shown to be much more common in depressive subjects than in 
controls, but they have only been found in very few subjects.41,42Notably, when several steps in 
a disease-related pathway are susceptible to interruption, it is reasonable to expect that locus 
heterogeneity is an important aspect of the genetic part of the aetiology of that disease.    
      One mathematical definition of locus heterogeneity has been described by Risch.43 He 
defines a new sort of penetrances as well as so-called penetrance summands, which are obtained 
by applying the law of total probability to the penetrances-like entities. The penetrance-like 
entities could be interpreted as the probability of being A-affected or B-affected given genotype 
on locus A and locus B, respectively, i.e. P(A-affected|A-locus genotype) and P(B-affected|B-
locus genotype). The penetrance summands could be interpreted as the probability of being A-
affected and the probability of being B-affected, meaning that one disease is subdivided into 
two subdiseases, A and B, with exactly the same symptoms, only that the risk for subdisease A 
is influenced by locus A only, and that the risk for subdisease B is influenced by locus B only. 
This locus heterogeneity model is described like this:   
 
P(affected|AA,BB)=P(A-affected|AA)+P(B-affected|BB)-P(A-affected|AA)·P(B-affected|BB) 
 
P(affected)=P(A-affected)+P(B-affected)-P(A-affected)·P(B-affected). 
 
The subdiseases A and B are only theoretical, and neither their prevalence, nor the penetrance-
like entities can be determined. However, by applying common statistical rules to the above 
formulas, a relationship between two-locus penetrances, the two marginal penetrances and the 
disease prevalence can be found. A conceptualization of gene-gene interaction as departure 
from locus heterogeneity may be considered a reasonable theoretical definition; a test for 
assessing gene-gene interactions may then be designed to search for effects that deviate from the 
relationship expected by locus heterogeneity. 
    
GeneGeneGeneGene----gene interactiogene interactiogene interactiogene interactionnnn    
Gene-gene interactions are possibly one of the reasons why one variant, allele A, causes an 
increased risk for disease in one person, but not in another. Different individuals have different 
genetic backgrounds; the variants that allele A can interact with are therefore different in two 
subjects. Gene-gene interactions are probably major contributors to variation in complex 
disease.44,45 However, although gene-gene interaction analyses are performed more frequently 
and several interactions have been reported, there are, as yet, no established gene-gene 
interactions for psychiatric traits.  
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Definitions 
The definitions and interpretations of the terms epistasis and 
gene-gene interaction are many. The original definition of 
epistasis, expressed by Bateson in 1909,46 was that the effect of 
one locus on the phenotype is masked by the presence of a 
certain allele of a second locus acting on the phenotype. By 
masked was meant that carriers of the masking allele B did 
not have different phenotypes for the three genotypes of the 
masked locus A. If the phenotype is colour, then carriers of 
the A allele are black, whereas a/a homozygotes are white. But 
this is the case only when the genotype of the interacting 
locus is b/b; whenever the masking B allele is present at locus 
B, there is no difference in colour between genotypes at locus 
A (Figure 3). 
      The Bateson definition does not always overlap with that of epistatic interaction or 
epistacy, described by Fisher in 1918 as departure from additivity between the effects of two 
loci.47 As pointed out by Phillips and Cordell,48,49 the definition of epistasis has been widened, 
causing confusion in terminology and interpretation. The expressions gene-gene interaction 
and epistasis are usually used interchangeably and, although the definition usually includes that 
one locus alters the effect of another locus, the precise definition depends on which model is 
used for interaction analysis. The Fisher definition of epistatic interaction was further 
developed in the fifties50 into the present conceptualization of interaction as the interaction 
term in a regression framework.  
      When interactions are synergistic, the effect of one polymorphism is potentiated by a 
genotype of the other locus. In contrast, antagonistic interaction means that the combined 
effect is smaller than the individual effects. Interaction is absent when the effects of two loci are 
independent, i.e. when the effects of the two loci are additive. These different sorts of 
interaction are depicted in Figure 4. 
 

 
 Figure 4. Different sorts of interaction. 

 
Reasons for interaction analysis 
The benefits of analysing interactions are: (i) that a larger proportion of the variance in a trait 
may be explained, (ii) that genes that are not found when ignoring interactions, due to small 
individual effects, may be identified, and (iii) that relevant biological mechanisms may be 
elucidated (although statistical interactions do not imply interactions on a physical or 
mechanistic level). 
      Several authors have pointed out the necessity for separation of synergistic and antagonistic 
interactions.51 For synergistic interactions, detection of the loci involved, i.e. point (ii), is not a 
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principal problem. By including interactions in the models, however, a larger proportion of the 
variance in the complex trait can be explained. It is worth noting that for the original 
definition of epistasis as described by Bateson, the single loci would be detectable without the 
need for interaction analysis. 
      The second point above – stating that interactions may need to be analysed for loci to be 
detected – is particularly relevant for antagonistic interactions. If locus A only has an effect 
when allele B is present at locus B or if locus A has effects in different directions depending on 
B-locus-genotype, then locus A may not be found when the loci are investigated separately. 
Antagonistic interactions are believed to be responsible for inconsistencies across studies, 
including failures in attempts to replicate strong findings.44 For large (i.e. that include many 
polymorphisms) association studies with the aim of detecting all loci implicated in disease, it 
may hence be important to include analysis of such interactions. Since the antagonistic 
interactions are the most statistically challenging, especially when marginal effects are absent 
(so-called disordinal interactions or pure epistatic interactions52,53), statisticians have been 
fascinated by them, and therefore made a point in investigating models with no marginal 
effects, most of them largely non-monotone.52,54-57  
 
Monotone models 
A monotone single-locus model assumes that the alleles within a locus display monotone effect 
patterns, meaning that the penetrance – if the trait is dichotomous – or the mean value – if the 
trait is continuous – of the heterozygote is not outside the interval defined by the penetrances 
or mean values for the two homozygotes. Treating genotype as a covariate – 0, 1, and 2 
representing the number of risk alleles – in a regression analysis restricts the test to this 
monotone pattern of effect. A two-locus monotone model for a dichotomous trait similarly 
assumes that the two-locus penetrance matrix is monotone, i.e. that fij≤fkl for i≤k and j≤l, where 
fij are the two-locus penetrances and i and j designates the number of A-alleles and B-alleles in 
those genotypes.58 A test restricted to monotone models hence does not detect effect patterns 
that are non-monotone, e.g. when the double heterozygote displays the largest penetrance or 
trait mean. 
 

As shown in paper IXAs shown in paper IXAs shown in paper IXAs shown in paper IX, a monotone penetrance matri, a monotone penetrance matri, a monotone penetrance matri, a monotone penetrance matrix always has marginal effectsx always has marginal effectsx always has marginal effectsx always has marginal effects,,,,    
provided thatprovided thatprovided thatprovided that eit eit eit either of the two loci is related to disease risk. her of the two loci is related to disease risk. her of the two loci is related to disease risk. her of the two loci is related to disease risk.     

 
Regression analyses 
Regression analysis is a method for obtaining a regression equation, in which the dependent 
response variable is a function of the independent or explanatory variables. The parameters of 
the function are estimated in a manner as to best fit the different values of the dependent and 
independent variables, usually using the least squares method.59,60 In linear regression, the 
regression function is a line, representing the predicted value for each genotype. In logistic 
regression the dependent variable is dichotomous, representing e.g. presence and absence of the 
trait investigated. The logistic regression equation predicts the logarithm of the odds of being 
affected, i.e. the logarithm of the probability of being affected divided by the probability of not 
being affected. The logistic regression output can be expressed in terms of odds ratios (ORs). 
When the two loci are reduced to two meaningful genotypes each: A and ¬A, and similarly for 
locus B, in a full model including the individual loci and the interaction term, the OR for locus 
A is determined under the reference genotype of locus B (¬B) in this manner: 
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where fA¬B is the two-locus penetrance for the two-locus genotype A,¬B, and hA¬B is the 
probability of being unaffected given that genotype. The interaction term is the ratio, R, 
between the OR for the interaction and the product of the ORs for the individual loci, or 
equivalently, the ratio between the OR for locus A under B as reference and the OR for locus A 
under ¬B as reference: 
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LLLLogistic regression was usedogistic regression was usedogistic regression was usedogistic regression was used in papers II, IV, V, in papers II, IV, V, in papers II, IV, V, in papers II, IV, V, VII VII VII VII a a a and VIII, in paper IInd VIII, in paper IInd VIII, in paper IInd VIII, in paper II    to control for to control for to control for to control for 
thethethethe possible possible possible possible influenc influenc influenc influence of other factors on the relationship between polymorphisms and e of other factors on the relationship between polymorphisms and e of other factors on the relationship between polymorphisms and e of other factors on the relationship between polymorphisms and 
the dependent variablethe dependent variablethe dependent variablethe dependent variable, and in , and in , and in , and in the other papersthe other papersthe other papersthe other papers to explore the possible  to explore the possible  to explore the possible  to explore the possible presence of presence of presence of presence of 
inteinteinteinteractions between polymorphisms. Stepwise backward elimination was used toractions between polymorphisms. Stepwise backward elimination was used toractions between polymorphisms. Stepwise backward elimination was used toractions between polymorphisms. Stepwise backward elimination was used to    
eliminate noneliminate noneliminate noneliminate non----signisignisignisignifififificant varcant varcant varcant variables from theiables from theiables from theiables from the logist logist logist logisticicicic regression equation in papers IV regression equation in papers IV regression equation in papers IV regression equation in papers IV and  and  and  and 
VIIIVIIIVIIIVIII.... 

 
      When regression analysis is used, the interaction between two polymorphisms needs to 
explain an additional proportion of the variance, compared to that explained by the 
polymorphisms alone, in order to be significant. Several methods that claim to analyse gene-
gene interactions do not compare the likelihood of a two-locus combination with that of the 
single-locus model and hence do not have this requirement.54-57 These methods detect joint 
effects, which may or may not be interactive, but they can not distinguish between interactive 
and non-interactive joint effects. When the main goal is to find as many susceptibility loci as 
possible amongst many loci, the definition of interaction is however not a central issue. In 
contrast, the definitions of interaction and non-interaction are important when trying to 
elucidate the nature of the combined effect of two known susceptibility loci. 
      One strategy for finding interactions is a two-step approach, meaning that single-locus 
effects first are ascertained at a less strict significance level than that usually used, and that 
subsequent two-locus effects are analysed only between the loci that have passed step one.44,45 
Antagonistic interactions without any marginal effects will however not be found with this 
method. 
 
Power considerations 
When considering if interactions should be included in the analyses or not, there are also other 
aspects to take into consideration. The most important of these factors is statistical powerB, i.e. 
the probability of finding existing effects. When only considering single-locus effects, the 
number of tests increases linearly with the number of loci included in the study – one test for 
every locus. Since an increased number of tests implies that more of them could become 
significant by chance, the significance level required becomes stricter in a linear manner for 
every locus added to the study, due to control for multiple testing. When considering all 
possible pairs of loci, the number of tests increases quadratically with the number of loci 
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included. For n loci, the number of tests thus is n·(n-1)/2. The number of tests that need to be 
controlled for is hence much larger, resulting in a reduced power.  
      The difference in power between the two courses of action, i.e. either investigating single-
locus effects only, or investigating two-locus effects, depends on the difference in size between 
the epistatic effect and the corresponding marginal effects; the power of finding the loci 
involved in an interaction may be higher when searching for marginal effects if the marginal 
effects of the two loci acting in epistasis are relatively high compared to the epistatic effect. 
However, if the size of the two-locus effect is considerably higher than the single-locus effect(s), 
then the two-locus approach will be more powerful. Marchini et al.45 have found the two-locus 
approach to “win” over the single-locus approach for several monotone two-locus models, in 
spite of the large difference in the number of tests performed.  
 

The needThe needThe needThe need    for tests with infor tests with infor tests with infor tests with increased power was met in paper IXcreased power was met in paper IXcreased power was met in paper IXcreased power was met in paper IX, where a test that is , where a test that is , where a test that is , where a test that is 
restricted torestricted torestricted torestricted to search for search for search for search for monotone two monotone two monotone two monotone two----locus effects is introduced. The power of finding locus effects is introduced. The power of finding locus effects is introduced. The power of finding locus effects is introduced. The power of finding 
monotone effect patterns monotone effect patterns monotone effect patterns monotone effect patterns was shown to increasewas shown to increasewas shown to increasewas shown to increase b b b by approximately 10 percent unitsy approximately 10 percent unitsy approximately 10 percent unitsy approximately 10 percent units, , , , 
compared to an unrestricted test,compared to an unrestricted test,compared to an unrestricted test,compared to an unrestricted test, by using this method. by using this method. by using this method. by using this method. 
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INFLUENCE OF SEROTONININFLUENCE OF SEROTONININFLUENCE OF SEROTONININFLUENCE OF SEROTONIN----RELATEDRELATEDRELATEDRELATED GENETIC GENETIC GENETIC GENETIC 

VARIATION ON THEVARIATION ON THEVARIATION ON THEVARIATION ON THE REGULATION OF EMOTIONSREGULATION OF EMOTIONSREGULATION OF EMOTIONSREGULATION OF EMOTIONS 
 

TRAITSTRAITSTRAITSTRAITS 

 

MOODMOODMOODMOOD & & & & ANXIETY ANXIETY ANXIETY ANXIETY    
 
Symptoms of mSymptoms of mSymptoms of mSymptoms of major depressiveajor depressiveajor depressiveajor depressive diso diso diso disorderrderrderrder    
Major depressive disorder (MDD) is, according to DSM-IV (Diagnostic and Statistical 
Manual of Mental Disorders, fourth edition), characterized by at least five of the following 
symptoms: (i) depressed mood, (ii) diminished interest or pleasure in almost all activities, (iii) 
weight or appetite gain or loss, (iv) insomnia or hypersomnia, (v) psychomotor agitation or 
retardation, (vi) fatigue or loss of energy, (vii) feelings of worthlessness, (viii) diminished 
ability to concentrate and (ix) recurrent thoughts of death (not just fear of) or suicide attempt 
or plan. Either of item (i) or (ii) needs to be present. The symptoms need to be present for at 
least two weeks and most symptoms must be present most of the day, nearly every day.  
 
Symptoms of aSymptoms of aSymptoms of aSymptoms of anxietnxietnxietnxiety disordersy disordersy disordersy disorders    
According to DSM-IV the anxiety disorders include generalized anxiety disorder (GAD), social 
phobia, panic disorder, specific phobias, obsessive-compulsive disorder (OCD) and post-
traumatic stress disorder (PTSD). To what extent OCD should be regarded as an anxiety 
disorder has however been questioned, and it is also often pointed out that GAD may be more 
closely related to depression than to the other anxiety disorders. 
     Social phobia is characterized by excessive and unreasonable fear provoked by exposure to, 
or anticipation of, unfamiliar people in social or performance situations, and includes feelings 
of embarrassment and/or humiliation. GAD is characterized by excessive anxiety and worry 
during most days, lasting for at least six months. At least three of the symptoms restlessness, 
fatigue, concentration problems, irritability, muscular tension and sleep disturbance need to be 
present, and the symptoms must affect social or occupational function. Panic disorder 
implicates recurrent panic attacks, which are characterized by discrete periods of fear in the 
absence of real danger, accompanied by at least four symptoms such as shortness of breath, 
feelings of choking, palpitation, sweating, trembling or shaking, chest pain, a feeling of losing 
control or going crazy and fear of dying. The main features of specific phobia are excessive and 
irrational fear or anxiety provoked by exposure to or anticipation of a specific feared object or 
situation, such as spiders (arachnophobia) or heights (acrophobia). Subjects with OCD suffer 
from obsessions, i.e. anxiogenic recurrent and    persistent    thoughts and impulses, and 
compulsions, i.e. repetitive behaviours that the subject feels driven to perform in response to 
the obsession, and which lead to anxiety relief. PTSD is characterized e.g. by the re-
experiencing of a traumatic event, that, when it occurred caused substantial fear or horror.  
 
Symptoms of pSymptoms of pSymptoms of pSymptoms of premenstrual dysphoric disorderremenstrual dysphoric disorderremenstrual dysphoric disorderremenstrual dysphoric disorder    
Premenstrual dysphoric disorder (PMDD) is characterized by irritable and depressed mood. 
Common complaints during the luteal phase of the menstrual cycle are mood symptoms, 
including irritability, sadness and affective lability, the latter expressed as sentimentality or 
tearfulness, and somatic symptoms including e.g. breast tenderness, bloating and headaches. 
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The DSM-IV diagnosis PMDD requires presence of at least one of the core mood symptoms, 
i.e. irritability, depressed mood, anxiety or affective lability, and also requires for the symptoms 
to be present during the luteal phase and absent during the follicular phase of the menstrual 
cycle and to affect professional, social or family function. The most prominent symptom is 
usually irritability.61 During the luteal phase, the risk for suicidal attempts is increased in 
women with PMDD, and the severity of the mood-induced impairments is of the same 
magnitude as that for patients with MDD during depressive episodes.62 
    
PrevalencePrevalencePrevalencePrevalence of mood & of mood & of mood & of mood & anxiety disorders anxiety disorders anxiety disorders anxiety disorders     
Depression and anxiety disorders are more common in women than in men; the lifetime 
prevalence of depression is approximately 20-40% in women and 10-20% in men.63-66 The 
lifetime prevalence for any anxiety disorder is approximately 17%.67 The 7-12% prevalence for 
social phobia is the largest among the anxiety disorders.63,68-70 The prevalence of PMDD, a 
disorder that only affects fertile women, is approximately 5% in this group.61  
 
ComorbidityComorbidityComorbidityComorbidity between depression & between depression & between depression & between depression & anxiety anxiety anxiety anxiety    
Comorbid anxiety disorders are common in depression, including GAD, panic disorder and 
phobias; as an example, over 70% of subjects with GAD have a history of depression71 and up 
to 90% of patients with anxiety disorders  experience a depressive episode some time in life.72 
High levels of anxiety-related traits, such as neuroticism, have been shown to predict, or at least 
to be strongly related, to depression.73,74 
     
HHHHeritability of mood &eritability of mood &eritability of mood &eritability of mood & anxiety disorders anxiety disorders anxiety disorders anxiety disorders    
The heritability of unipolar depression is under 50%.8,75,76 This is a low heritability compared 
to that of e.g. bipolar disorder, displaying a heritability of almost 90%.77 Non-heritable factors 
may thus be assumed to play a considerable role for the aetiology. Childhood trauma and 
stressful life events are associated with an increased risk for depression78-80; the risk for 
depression is doubled by exposure to childhood trauma and approximately 50% of those who 
suffer childhood trauma display a depressive episode in their lifetime.81-85 The variation in 
vulnerability to trauma between individuals is probably due to genes, a notion that is supported 
by findings showing interactive effects between genetic variation on the one hand, and stressful 
life events just prior to depression onset, or childhood maltreatment, on the other, in 
predicting depression.86 Also the exposure to stressful life events is however heritable,18 and the 
genes of the parents may increase the risk for exposure to stressful life events of their offspring.  
Given that genetic variation can influence environmental exposure, it is possible that some 
alleged gene-environment interactions are instead due to interactions between genes, one of the 
interacting genes being the one that influences the environmental exposure. The predictive 
value of stressful life events for depression is also rendered complicated by (i) the increased 
reporting of life events as stressful when depressed,87 especially when reports of stressful life 
events and depression are given simultaneously,88-90 (ii) the possibility that the same genetic 
variants may increase the risk for exposure to stressful life events and the risk for depression,89 
and (iii) the possibility that personality traits associated with depression, and/or depression per 
se, increase the risk of being exposed to stressful life events.91 Most of the anxiety disorders, 
including social phobia, display heritabilities of approximately 50%9,92 as do anxiety-related 
personality traits 93 and PMDD.94 The heritability for depression has been reported to be partly 
shared with that for anxiety disorders and with that for anxiety-related traits, thus indicating 
that the same genes may affect these different traits.74,95-97 
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PharmacologicalPharmacologicalPharmacologicalPharmacological treatments of treatments of treatments of treatments of mood & mood & mood & mood & anxiety anxiety anxiety anxiety disorders disorders disorders disorders    
The most commonly prescribed antidepressant drugs are serotonin reuptake inhibitors (SRIs, 
see below in the SEROTONIN section), which are effective also for anxiety disorders and for 
PMDD.98-103 These drugs display an approximately 4-week-long delayed onset of 
antidepressant effect and an approximately 8-week-long delay of anxiety-reducing action; 
moreover, during the initial period of administration they may enhance anxiety, particularly in 
subjects with panic disorder.104-106 For PMDD, however, the response is instant and SRIs can 
hence be administered intermittently (i.e. only during the luteal phase of the menstrual 
cycle).101,107 Anxiety-related traits, as measured with the scales harm avoidance and self-
directedness (see PERSONALITY), may also display reductions after chronic SRI treatment, 
the latter also in healthy individuals.108,109 Also anxiety-reducing are benzodiazepines, which are 
agonists on the gamma-aminobutyric acid (GABA) receptor, subtype A, and thus reduce 
excitability of the central nervous system. Benzodiazepines can be used to counteract anxiety-
related symptoms upon initial use of SRIs, and in addition to being anxiolytic, benzodiazepines 
also have sedative, muscle-relaxing and anticonvulsant effects. Longterm use of benzodiazepines 
leads to addiction.  
 
Brain Brain Brain Brain regions implicated in mood & aregions implicated in mood & aregions implicated in mood & aregions implicated in mood & anxietynxietynxietynxiety 
The brain cortex is divided into Brodmann areas (BA), defined and numbered by Brodmann110 
and based on the cytoarchitectural organization of neurons he observed in the cortex (Figure 
5).111 Several regions have been proposed as those responsible for mood and anxiety symptoms, 
including e.g. regions related to fear, emotional memory, stress and reward. Two of these are 
the hippocampus and amygdala, which are depicted in Figure 5 and discussed below.  
 
Hippocampus 
The involvement of the hippocampus in depression has been suggested by: (i) the discovery of 
reduced hippocampal volume in a subgroup of depressed patients,112-117 (ii) the dysregulation of 
the hypothalamus-pituitary-adrenal (HPA) axis, which is partly regulated by the hippocampus, 
in this disorder,118 and (iii) animal studies showing chronic stress and chronic glucocorticoid 
treatment to induce depressive-like symptoms and reduced hippocampal plasticity, including 
e.g. reduced dendritic sprouting and reduced neoneurogenesis,119-122 all of which are reversed by 
different antidepressant treatments.115,123-127 However, several antidepressant treatments are 
effective in animal modelsE also when neoneurogenesis is inhibited115,128; moreover, the 
importance of neoneurogenesis in the adult organism is probably different in rodents and 
humans. The work of Pasko Rakic thus suggests that if new neurons are produced in adult 
human brains, they would probably not be incorporated into established networks129 and hence 
not be of functional importance, possibly because such incorporation would impair longterm 
memory or increase irrelevant connections between neurons.130 Although extensively 
investigated in relation to depression, lesion of the hippocampus causes impairments of explicit 
memoryF but does not induce depressive symptoms,131 thus arguing against the notion that 
hippocampal dysfunction plays an important role in depression aetiology.     
      Since MZ twins discordant for depression are discordant also for hippocampal volume, 
reduced hippocampal volume in depression does not seem to be related to the genetic part of 
the aetiology for depression.132 It may, however, be associated with environmental risk factors 
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for depression, and thus possibly to the environmental part of depression aetiology. Reduced 
hippocampal volume has been reported for first-episode cases,112 suggesting that it is not a 
consequence of depression. The hippocampus reduction has been shown to correlate with 
stressful life events prior to depression onset and the volume has been reported to be more 
reduced in depressed subjects who have experienced childhood trauma than in those who have 
not.133-137 A small hippocampal volume may also be a risk factor for PTSD, since both subjects 
with PTSD and their unaffected relatives display reduced volumes.138 
 

    
                                                        Figure 5. Brain regions.  

 
The amygdala 
The amygdala reacts to emotional stimuli, with largest activation seen for threat and fears.139-144 
It is involved in the acquisition and expression of fear and fear conditioning,E 5,145-148 and in the 
enhanced memory displayed for emotional stimuli, as compared to neutral. The magnitude of 
the amygdala engagement during encoding of emotional stimuli correlates with retrieval 
performance.149-154 A reduced volume of the amygdala may be associated with an increased 
acquisition of fear and conditioned fear response, as well as with an elevated rise of cortisol 
levels to stress.155 Lesions of the amygdala results in social disinhibition, emotional blunting, 
reduced fear conditioning and in the absence of reactions associated with emotional 
states5,156,157, whereas electric stimulation of the amygdala may increase glucocorticoid levels 
and fear-induced attention, vigilance and freezing.158 
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       The volume of the amygdala may be reduced in depression.159,160    The reactivity of the 
amygdala to emotional faces, i.e. the difference in amygdala activity when a person is presented 
with an emotional face as compared to when he or she is presented with a neutral face 
(reactivity = activityemotional–activityneutral), has been shown to be increased in depressive 
subjects36,161-163(however see also164). The amygdala reactivity may be increased during the 
premenstrual phase in women with PMDD.165 Several anxiety disorders including social 
phobia,166-175 specific phobias,167 PTSD167,176-180 and GAD181 also display exaggerated amygdala 
reactivation to emotional stimuli and anxiety provocation, with larger effects seen for aversive 
than for positive stimuli177.    In addition, increased levels of anxiety-related traits and elevated 
anxiety sensitivity have been associated with increased amygdala reactivity to emotional 
stimuli.172,182 Interestingly, the emotionally valenced stimuli need not reach conscious 
awareness to engage the amygdala.36,144,183   
      The exaggerated amygdala reactivity in depression and anxiety disorders has been shown to 
be reduced by antidepressant and anxiety-reducing    treatments, including pharmacological 
treatment, cognitive-behavioural therapy and sleep deprivation,36,69,184-187 an attenuation that 
correlates with response and also is present in healthy individuals,188,189 in whom chronic SRI 
treatment may reduce hostility and anxiety-related traits.109,190,191  
      Depression also appears to be related to increased amygdala metabolism or activity at 
rest,192-196 an intermediate phenotype that may correlate with depression severity.197 Also 
amygdala metabolism appears to be reduced by antidepressant treatment.185  
 

Amygdala reactivity to angry faces is investigated in paper I. Amygdala reactivity to angry faces is investigated in paper I. Amygdala reactivity to angry faces is investigated in paper I. Amygdala reactivity to angry faces is investigated in paper I. Subjects with social phobia Subjects with social phobia Subjects with social phobia Subjects with social phobia 
and controls both displayed enhanced activation when presented with the angry faces; and controls both displayed enhanced activation when presented with the angry faces; and controls both displayed enhanced activation when presented with the angry faces; and controls both displayed enhanced activation when presented with the angry faces; 
however, there was no significant difference in reactivity between thesehowever, there was no significant difference in reactivity between thesehowever, there was no significant difference in reactivity between thesehowever, there was no significant difference in reactivity between these groups. Variation  groups. Variation  groups. Variation  groups. Variation 
in serotoninin serotoninin serotoninin serotonin----related genes wasrelated genes wasrelated genes wasrelated genes was however however however however linked to amygdala reactivity. linked to amygdala reactivity. linked to amygdala reactivity. linked to amygdala reactivity.        

 
The interaction of frontal regions with the amygdala 
Stimulation of regions in the prefrontal cortex (PFC) can impair amygdala-dependent 
processes such as fear conditioning.5,156,157 Reduced inhibitory prefrontal control over amygdala 
activation may be related to the increased response of the amygdala in depression and anxiety; 
moreover, this inhibitory control may be affected by chronic stress exposure.163,180,181,198-200  
      Both the amygdala and the anterior cingulate cortex (ACC) display lower volumes in 
depression,159,201 and a compromised connectivity between these two regions has been 
suggested to be related to depression and anxiety202.    The ACC is activated during induction of 
happy and sad mood203 and during distal threat.204 A circuitry involving connections between 
the amygdala and different parts of the ACC may be important in emotional processing, and 
this circuitry shows lower connectivity in carriers of certain variants of a polymorphism in the 
promoter of the gene encoding the protein responsible for serotonin reuptake, explaining 30% 
of the variation in anxiety-related personality traits.202,205 In depressed patients, the rest activity 
and metabolism of the ACC has been reported to be reduced.185,201 The ACC is also implicated 
in antidepressant response; antidepressant treatment may downregulate the resting activity of 
the subgenual region of the ACC in responders185,206 and stimulation of the subgenual ACC 
has been reported to relieve symptoms of depression.207 
 
Neural correlates of theNeural correlates of theNeural correlates of theNeural correlates of the placebo response in depre placebo response in depre placebo response in depre placebo response in depression and anxietyssion and anxietyssion and anxietyssion and anxiety    
Placebo refers to the beneficial outcome of a treatment known to have no specific effect for the 
condition being treated, but in the efficacy of which the patient believes. Approximately 20 - 
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50% respond to placebo in clinical placebo-controlled studies of antidepressant and anxiety-
reducing effect.208-212 The response to placebo is believed to be due to expectancies.213 It should 
however be emphasized that some of the symptom reduction often attributed the influence of 
placebo in antidepressant drug trials may be due to other factors, such as spontaneous recovery. 
      Placebo administration not only influences behaviour and symptomathology but also 
disorder-related brain activity.214,215 Several of the changes observed after both pharmacological 
and psychological treatment of depression and anxiety,187 are observed also after placebo 
treatment,213,216 e.g. the reduction of activity in limbic regions.215 In addition, subjects 
responding to placebo usually display an increased activity of the rostral ACC, possibly 
reflecting a conflict resolution between expectations and experience.213 Subjective reports of 
unpleasant feelings and amygdala response to unpleasant emotional stimuli can be reduced by 
falsely telling subjects that they are receiving anxiolytics, when they have previously experienced 
the effect of the drug.217     
 

In paper IIIn paper IIIn paper IIIn paper II, amygdala activity during public speaking was measured before and after , amygdala activity during public speaking was measured before and after , amygdala activity during public speaking was measured before and after , amygdala activity during public speaking was measured before and after 
chronic placebo treatchronic placebo treatchronic placebo treatchronic placebo treatment. Rment. Rment. Rment. Responders displayed reduced esponders displayed reduced esponders displayed reduced esponders displayed reduced publpublpublpublic speakingic speakingic speakingic speaking----induced induced induced induced 
amygdala amygdala amygdala amygdala activity activity activity activity after placebo treatment. after placebo treatment. after placebo treatment. after placebo treatment. The The The The reduced amygdala activity was only reduced amygdala activity was only reduced amygdala activity was only reduced amygdala activity was only 
observed in carriers of certain serotoninobserved in carriers of certain serotoninobserved in carriers of certain serotoninobserved in carriers of certain serotonin----related genotypesrelated genotypesrelated genotypesrelated genotypes....    

 

PERSONALITY TRAITSPERSONALITY TRAITSPERSONALITY TRAITSPERSONALITY TRAITS    
    
Personality traits can be assessed by different questionnaires. Two of these are the Karolinska 
Scales of Personality (KSP) and the Temperament and Character Inventory (TCI). Personality 
as assessed with both these scales has been shown to be partly heritable.11,14,93    
    
KKKKarolinska Scalesarolinska Scalesarolinska Scalesarolinska Scales of P of P of P of Personalityersonalityersonalityersonality    
KSP consists of 135 items forming 15 subscales. These subscales are often classified into four 
factors covering different dimensions of temperament: neuroticism, psychoticism, non-
conformity and extraversion.93,218-220     
      The neuroticism factor of KSP measures anxiety and depression-related traits and includes 
the subscales psychic and somatic anxiety, muscular tension, psychastenia, socialization, guilt 
and inhibition of aggression. The psychic anxiety subscale includes items about feeling worried, 
anticipatory anxiety for minor things, bad self-confidence, not speaking up for oneself, being 
easily offended, shyness and insecurity around strangers and acquaintances. Somatic anxiety 
includes restlessness without reason and not feeling at ease, as well as several somatic symptoms 
such as heart pounding loud or sweating and occasional feelings of panic. Subjects scoring high 
on muscular tension are tense and un-relaxed, those scoring high on psychastenia are easily 
fatigued, those with high socialization are satisfied with their life situation and those with high 
guilt often feel remorseful and ashamed about thoughts and actions. Inhibition of aggression 
means that the subject acknowledges when being badly treated and gets upset without saying or 
showing it.  
      The non-conformity factor in KSP is related to anger, and is characterized by high verbal 
and indirect aggression, i.e. easily getting into quarrels, telling or shouting at people when not 
agreeing with them and expressing anger by slamming doors or throwing things. The non-
conformity factor also includes being easily irritated and lacking patience with people, and 
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having low scores on the social desirability subscale, i.e. that it is unimportant for the subject to 
be liked and to be seen as a good person.  
      KSP also includes the personality factors extraversion and psychoticism, the former 
consisting of the subscales impulsiveness and monotony avoidance and the latter of the 
subscales suspicion and detachment.  Impulsiveness measures non-planning and acting on the 
spur of the moment, and monotony avoidance measures how much the subject avoids routine 
and desires action. Detachment means avoiding involvement in others, and a highly suspicious 
individual believes people to laugh at or offend him or her and also wonders for what reasons 
people are nice to him or her (distrusting motives). 
 

TTTTemperament and character inventoryemperament and character inventoryemperament and character inventoryemperament and character inventory    
TCI is based on a self-administered true/false questionnaire and is designed to assess 
personality along four temperament dimensions – novelty seeking, harm avoidance, reward 
dependence and persistence – and along three character dimensions – self-directedness, 
cooperativeness, and self-transcendence.221,222 The original TCI scales have been translated into 
Swedish.223  
      The harm avoidance (HA) dimension    of TCI measures anxiety- and depression-related 
traits and includes questions regarding anticipatory anxiety, fear of uncertainty, shyness, 
behavioural inhibition, fatigability and asthenia; the majority of items deals with anticipatory 
worries and anxiety, especially fear of the unfamiliar (9 items out of 20), shyness and fear of 
strangers and social interaction with strangers (5 items), and lack of strength (3 items). The 
dimensions self-directedness and possibly also reward dependence may also be related to 
anxiety. High scores on self-directedness indicates high will-power and choosing behaviours 
that optimizes the chance of reaching goals, whereas low scores indicate that the subject does 
not believe that he or she is able to control his or her choices, that the subject wants others to 
solve his or her problems and the wish for superpowers. Reward dependence measures the 
degree to which the subjects depends on approval from others and lacks independence. High 
scores are also indicative of a person that is sentimental, talks a lot about his or her feelings and 
is empathic and helpful.  
      The temperament dimension novelty seeking includes questions on impulsivity and 
flexibility, on being outgoing versus reserved, and on the wish to try new things. Several items 
also address wasting money, not liking laws and lying. The temperament dimension persistence 
is a measure of how hard the individual tries to achieve well and works hard even when 
exhausted. High scores on the character dimension cooperativeness reflect a person who is 
accepting, empathic, non-egoistic and who likes to help others. The self-transcendence scale 
consists of questions regarding how much the subject is devoted to a religion or philosophy and 
to what degree he or she believes in supernatural things such as clairvoyance, how much he or 
she has sacrificed for world peace and justice, and how much he or she has experienced feelings 
of spiritual connection with nature when relaxed. 
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SEROTONINSEROTONINSEROTONINSEROTONIN 

    
THE SEROTONERGIC SYSTEMTHE SEROTONERGIC SYSTEMTHE SEROTONERGIC SYSTEMTHE SEROTONERGIC SYSTEM    

    
The development of the serotonergic systemThe development of the serotonergic systemThe development of the serotonergic systemThe development of the serotonergic system    
Serotonergic neurons reside in the raphe nuclei, caudal to the isthmus, and project to most 
parts of the brain. Rostral parts of the raphe, including the nucleus raphe pontis, the median 
raphe (nucleus centralis superior) and the dorsal raphe, project to the forebrain, whereas caudal 
parts, including nucleus raphe obscurus, magnus and pallidus, project to the spinal cord. The 
division of the raphe into caudal and rostral parts displays an approximate overlap with gene 
expression profiles.224 
      An intricate network of essential factors initiates the formation of serotonergic neurons. 
Sonic hedgehog and fibroblast growth factor 8 (FGF8) are essential for the rostral and the 
caudal raphe neurons, respectively, and FGF4 and NKX2-2    for serotonergic specification.225-227 
The interaction between NKX2-2 and NKX6-1 is important for expression of GATA3 and 
GATA2, which encode GATA-binding protein 2 and 3 and which induce the expression of 
LMX1B and FEV (Pet1 in animals). The latter two are required for the expression of enzymes 
of importance for serotonin synthesis – the tryptophan hydroxylases (TPH1 & TPH2) – and 
for the expression of the serotonin transporter.225  
 
Serotonin synthesisSerotonin synthesisSerotonin synthesisSerotonin synthesis and turnover and turnover and turnover and turnover    
The serotonin precursor tryptophan is an essential amino acid that is actively transported into 
the brain. In the rate-limiting step of serotonin synthesis, it is converted by TPH to 5-
hydroxytryptophan (5-HTP), which subsequently is converted into serotonin (5-
hydroxytryptamine; 5-HT) by aromatic amino acid decarboxylase (AADC). 
      In adults,228,229 TPH1 is expressed primarily in the periphery and in the pineal gland,230,231 
whereas TPH2 is brain-specific232,233; its expression is at least fourfold to that of    TPH1 in all 
brain regions except for the pineal gland.232,234 TPH can be inhibited by para-
chlorophenylalanine (pCPA), with serotonin depletion as a consequence.    Serotonin is degraded 
by monoamine oxidase, preferably the A subtype (MAOA), to 5-hydroxyindole-acetic acid (5-
HIAA).     
 
Serotonin receptorsSerotonin receptorsSerotonin receptorsSerotonin receptors    
There are at least 17 serotonin receptor subtypes, all of which are G-protein coupled, except for 
the 5-HT3 receptor, which is a ligand-gated ion channel composed of five subunits. The 
serotonergic autoreceptors of type 1A and 1B – 5-HT1A situated on soma and dendrites and 
5-HT1B on nerve terminals – exert negative feedback on serotonergic neurotransmission. 
Whereas stimulation of 5-HT1A autoreceptors primarily inhibits the firing of serotonergic 
neurons 235, 5-HT1B receptors decrease synthesis rate and release.236,237 Both these receptor 
subtypes are also present postsynaptically where they decrease excitability of the postsynaptic 
neuron.  
 

The serotonin transporterThe serotonin transporterThe serotonin transporterThe serotonin transporter    
The serotonin transporter (also referred to as 5-HTT or SERT) performs sodium-dependent 
transport of serotonin from the synaptic cleft back into the nerve terminal, so-called serotonin 
reuptake, thus determining the duration and intensity of the influence of the transmitter on 
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serotonergic receptors. The serotonin transporter is the target of antidepressant SRIs, which 
inhibit serotonin reuptake from the synaptic cleft.  
                        By inhibiting serotonin reuptake, the SRIs cause an acute, approximately fivefold, increase 
in extracellular serotonin levels,238,239 with the largest elevation observed in the raphe nuclei 
where the density of the transporter is highest.240-244 As extracellular serotonin levels increase, 
the negative feedback system (5-HT1A and 5-HT1B receptors)245 is activated, leading to a 
reduced firing of serotonergic neurons and a reduced synthesis and release of serotonin.235,246-249 
The reduction in serotonergic nerve cell firing induced by SRIs is blocked by 5-HT1A 
antagonists.250 The increased extracellular serotonin levels seen after acute SRI treatment 
represents the net effect of serotonin transporter inhibition and 5-HT1A-mediated negative 
feedback; 5-HT1A thus restrains the SRI-induced elevation in extracellular serotonin levels as 
illustrated by an increased elevation of serotonin when a 5-HT1A antagonist is simultaneously 
administered.251 
                        Administration of SRIs leads to reduced serotonin brain tissue concentration, as measured 
in animals,252 and 5-HIAA levels are reduced after acute or chronic SRI treatment, both in 
lumbar cerebrospinal fluid (CSF)    and in jugular venous blood.253,254  
                        Mice failing to express the 5-HTT, due to genetic manipulation (5-HTT knock-outs), 
display increased baseline extracellular serotonin levels, 50% reductions in the number of 
serotonergic neurons, substantially reduced firing rates in the dorsal raphe, altered serotonin 
receptor function and approximately 50% reduction in serotonin tissue concentrations.255-261 
Similar changes are observed also in heterozygous knock-outs and also for animals with 
transient inhibition of the serotonin transporter perinatally.262  
 

SEROSEROSEROSEROTONIN IN TONIN IN TONIN IN TONIN IN MOODMOODMOODMOOD & ANXIETY & ANXIETY & ANXIETY & ANXIETY    
 
The influence of serotonin on mood & anxietyThe influence of serotonin on mood & anxietyThe influence of serotonin on mood & anxietyThe influence of serotonin on mood & anxiety    
The majority of antidepressants act on the serotonergic system. MAO inhibitors thus block the 
degradation of serotonin and tricyclic antidepressants (TCAs), serotonin and noradrenaline 
reuptake inhibitors (SNRIs) and selective serotonin reuptake inhibitors (SSRIs) all inhibit the 
serotonin transporter (i.e. they are SRIs). Chronic treatment with SRIs is effective both for 
depression and anxiety disorders.    
      Administration of 5-HTP may give rise to an amelioration of depressive symptoms,263 
whereas depletion of the serotonin precursor tryptophanG may induce depressive mood.264 In 
particular, it leads to relapse of depressive subjects in remission265-267 and reduces mood in 
subjects with a family history of depression.6,7,265,268,269 Serotonin depletion by pCPA also 
appears to induce relapse in depressed patients.270 In animals, however, depletion of serotonin 
using pCPA results in reduced anxiety-like behaviour and increased aggression, feeding and 
sexual behaviours271-273 and acute depletion of tryptophan does not appear to affect anxiety-
related behaviour,274,275 whereas repeated depletion may increase anxiety-related behaviours.276    
 
SerotoninSerotoninSerotoninSerotonin----relaterelaterelaterelated biological markers in mood &d biological markers in mood &d biological markers in mood &d biological markers in mood & anxiety anxiety anxiety anxiety disorders disorders disorders disorders    
As yet, no studies aiming to measure extracellular serotonin concentrations in different regions 
of the living human brain have been published. Depression have by some been suggested to be 
associated with reduced plasma tryptophan availability277 and with reduced increase in 5-HTP 
after tryptophan administration.278 In women with PMDD, 5-HTP levels may be lower during 
phases of PMD symptoms.279 
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      The serotonin-releasing agents fenfluramine and mCPP (1-(3-chlorophenyl)-piperazine) 
normally induce a serotonin-dependent increase in prolactin, an increase that has been reported 
to be blunted in depressive subjects,280 in suicide attempters,281 and in subjects with PMDD, 
PTSD and OCD, in subjects with high levels of anxiety-related traits, and in monkeys 
displaying impaired social function.282-287 Serotonin uptake into platelets, the density of 
serotonin transporters in platelets and the MAO activity in platelets have also been reported to 
be abnormal in depression,288,289 and women with PMDD have been reported to have reduced 
density of platelet serotonin transporters.290 
      Levels of the serotonin metabolite 5-HIAA are lower in the lumbar CSF of suicide 
attempters with major depression291-295 and other psychiatric diagnoses.296 This relationship 
may be specific for a violent, aggressive or impulsive subgroup of depressed suicidal patients. 5-
HIAA levels in CSF have been reported to be increased in subjects with depression and in 
subjects with comorbid depression and anxiety.297-299 5-HIAA levels in lumbar CSF may 
however  not be a good measure of serotonin turnover, since it only measures a small portion 
of the 5-HIAA produced in the brain,300 and since several studies have failed to find a 
correlation between ventricular and lumbar 5-HIAA.301 5-HIAA levels as measured in jugular 
venous blood have also been shown to be substantially increasedH in subjects with depression or 
anxiety disorders.302,303  
 

Some papersSome papersSome papersSome papers in this thesis in this thesis in this thesis in this thesis find variation in the genes encoding the  find variation in the genes encoding the  find variation in the genes encoding the  find variation in the genes encoding the TPH2, the serotonin TPH2, the serotonin TPH2, the serotonin TPH2, the serotonin 
transporter, transporter, transporter, transporter, the 5the 5the 5the 5----HT3 receptorHT3 receptorHT3 receptorHT3 receptor and GATA2 and GATA2 and GATA2 and GATA2 to be related to mood and/or anxiety to be related to mood and/or anxiety to be related to mood and/or anxiety to be related to mood and/or anxiety----
related phenotypes (papers Irelated phenotypes (papers Irelated phenotypes (papers Irelated phenotypes (papers I----II, IV, V). InII, IV, V). InII, IV, V). InII, IV, V). In paper III, paper III, paper III, paper III, t t t the density of sehe density of sehe density of sehe density of serotonin trotonin trotonin trotonin tranranranransporters sporters sporters sporters 
and 5and 5and 5and 5----HT1A receptors in the human brain is investigated in relation to genetic variation HT1A receptors in the human brain is investigated in relation to genetic variation HT1A receptors in the human brain is investigated in relation to genetic variation HT1A receptors in the human brain is investigated in relation to genetic variation 
in in in in a neurotrophic factora neurotrophic factora neurotrophic factora neurotrophic factor....        

 
The serotonin transporter in mood & anxiety disorders 
Serotonin transporter availability has been shown to be decreased post-mortem in the PFC and 
brainstem of suicide victims304-307 and in vivo in the raphe of depressed subjects and remitted 
depressed subjects,308,309 as well as in the raphe and amygdala of drug-naïve depressed 
subjects310,311 (see also312). The reduction has in some studies been shown either to correlate 
with anxiety severity or to be more closely related to levels of anxiety than to 
depression.308,313,314 
      The observed low availability of the transporter can be due to a number of factors. It could 
be compensatory to other deficits in the serotonergic system. It could also be due to reduced 
serotonergic innervation and/or to a reduced number of serotonergic neurons. Notably, a 
reduction of the number of neurons in the dorsal raphe has been reported for patients with 
mood disorders315; however, an increased density of the same magnitude has been reported for 
depressed suicides.316 Although one of the above-mentioned studies was conducted on drug-
naïve subjects, it is worth noting that longterm SRI treatment may reduce the expression of the 
serotonin transporter.317-320  
      The reduced serotonin transporter availability could be related to serotonin-related 
heritable factors that increase the risk for depression (see 5-HTTLPR in SEROTONIN-
RELATED GENES), or to environmental factors that increase the risk for depression; early life 
stress has been shown to reduce transporter availability in most parts of the brain including 
raphe, amygdala and ACC in rhesus monkeys.321 A reduced availability of serotonin 
transporters may also be related to depression-induced adaptive changes.  
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      Both single photon emission computed tomography (SPECT) and positron emission 
tomography (PET) with numerous different radioligands are used for in vivo measurement of 
the availability of receptors and transporters in the brain. Some discrepancies between studies 
are expected due to the use of different tracers. The SPECT tracer 123I-β-CIT can measure 
density of both the dopamine and the serotonin transporters but at different time intervals after 
administration.322 The most commonly used PET radioligands for assessment of serotonin 
transporter availability are [11C]DASB (3-amino-4-(2-dimethylaminomethyl-phenyl-sulfanyl)- 
benzonitrile) and [11C]MADAM ([11C]N,N-dimethyl-2-(2-amino-4-methylphenyl 
thio)benzylamine), both of which are selective for the serotonin transporter and display low 
non-specific binding.323-326 Competition with endogenous serotonin has recently been shown 
for [11C]DASB,327 but may be true also for other tracers,323 thus complicating the interpretation 
of the results by implicating  a lower binding when endogenous serotonin levels are high. 
      Since amygdala rest activity and reactivity may be increased in depression and anxiety 
disorders, the finding of low serotonin transporter availability in depression and anxiety is in 
line with the notion that low transporter availability is associated with high amygdala reactivity 
to fearful faces as measured by PET and fMRI in the same subjects.328  
 
The 5-HT1A receptor in mood & anxiety disorders 
The density of 5-HT1A receptors can be measured in vivo using the high-affinity 5-HT1A 
antagonist and PET radioligand [11C]WAY100635.329 The density of 5-HT1A receptors 
appears to be reduced in social phobia330 and panic disorder.331 The results of studies 
investigating the 5-HT1A in depression and suicide diverge: Some report decreased in vivo and 
post-mortem expression of the 5-HT1A receptor in depression and in depressed suicides,332-337 
whereas others report that 5-HT1A density is increased in depression and suicide victims and 
that the increase may correlate with depression severity.304,338-341 In women with PMDD, the 
density of 5-HT1A receptors does not appear to display normal fluctuation during the cycle.342 
SRIs have been shown to reduce 5-HT1A density in several brain regions, but not in raphe.343 
 
TPH2 levels in relation to depression 
Increased TPH2 levels as well as increased TPH2 protein per neuron have been found in the 
raphe nuclei of depressed suicides,344-348 an increase that has been proposed to reflect a response 
to serotonin deficiency.346 Findings in depressed suicide victims may, however, not be 
representative for the whole group of depressed subjects, as illustrated by the increased 5-HIAA 
levels in depressed subjects and decreased levels in depressed suicides.    In animal models, 
chronic antidepressant treatment has been shown to increase levels of TPH2, especially in 
raphe.228,349 
 
Behavioural effects of mBehavioural effects of mBehavioural effects of mBehavioural effects of manipulation of thanipulation of thanipulation of thanipulation of the serotonergic systeme serotonergic systeme serotonergic systeme serotonergic system in mice in mice in mice in mice    
Serotonin transporter gene (5-HTT) knock-out mice exhibit increased depression- and anxiety-
like behaviours and reduced aggressive behaviours,257,350-353 changes that are observed also in 
heterozygous knock-outs and also by perinatal inhibition of either the transporter or 
MAOA.262,354-358 The phenotype invoked by early transporter inhibition can not be reversed by 
adult rescue of 5-HTT expression.262 
     Knock-out mice for the 5-HT1A receptor gene, HTR1A, show anxiety-like behaviours.359-361 
The HTR1A knock-out phenotype can be reversed by partial rescue of 5-HT1A expression in 
the frontal cortex and hippocampus during a critical period in early postnatal development,362 
thus suggesting that serotonergic transmission via postsynaptic 5-HT1A receptors is important 
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during this time and that the effect of the knock-out is due to the lack of postsynaptic 5-HT1A 
receptors during this time. However, by blocking the 5-HT1A early in life, the depression-like 
phenotype in 5-HTT knock-out mice can be rescued.363 Agonists of the 5-HT1A receptor 
display anxiety-reducing effects in animal models,364-366 a mechanism that probably is mediated 
by somatodendritic autoreceptors, thus mimicking the anxiety-reducing effect of serotonin 
depletion. 
      5-HT3 antagonists display anxiety-reducing and anti-aggressive effects in rodents, primates 
and humans. In line with this finding, deletion of the gene that encodes the 5-HT3A subunit, 
HTR3A, produces a phenotype characterized by reduced anxiety.367,368 
 
SerotoninSerotoninSerotoninSerotonin    and antidepressantsand antidepressantsand antidepressantsand antidepressants effect effect effect effect    
The effects of SRIs in depression and different anxiety disorders are apparent first after 
approximately 4 weeks of treatment.103-105,369 Subjects with PMDD, however, show instant 
reduction of irritability after acute SRI treatment.99,101  
      The initial period is sometimes characterized by increased anxiety especially for subjects 
with panic disorder.106 In animal models, acute SRI treatment increases fear conditioning, 
whereas chronic treatment reduces it.370 The increased initial anxiety observed in animals has 
been shown to be inhibited by serotonin receptor antagonists, thus indicating serotonergic 
mediation.371,372 
      There are several theories regarding the delayed effect of SRIs. One suggests the reason for 
the delayed antidepressant response to be that serotonin levels display a gradual increase due to 
desensitization of 5-HT1A autoreceptors, as suggested by studies indicating that 5-HT1A 
desensitization is necessary for antidepressant effect373 and that administration of 5-HT1A 
receptor partial agonists improves or accelerates the antidepressant response of SRIs.374,375  
      Serotonin levels are however substantially increased after acute SRI treatment, as supported 
(i) by studies of extracellular serotonin levels in animals,238,239 (ii) by studies of serotonin in 
cisternal CSF in monkeys,376,377 (iii) by the acute onset of therapeutic effect in PMDD, which 
appears to be mediated by increased serotonin levels,378 and (iv) by the acute onset of 
serotonin-dependent side effects, including sexual side effects and increased nausea.379,380 
Moreover, a marked acute increase in extracellular levels of serotonin, as obtained by means of 
the serotonin-releasing agents mCPP and fenfluramine, does not lead to an instant 
antidepressant or anti-anxiety response. Also, although the 5-HT1A receptor appears to be 
desensitized by chronic SRI treatment,238,381 deletion of 5-HT1A receptors does not seem to 
affect the timing of the antidepressant response.382 In addition, 5-HT1A receptors have been 
shown to retain the capacity to restrain SRI-induced extracellular serotonin levels also after 
chronic treatment with SRIs, and 5-HT1A antagonists hence still add to the increase in 
extracellular serotonin levels after chronic SRI treatment.251  
      Another theory of the delayed therapeutic effect is that the increased hippocampal 
neoneurogenesis, observed after approximately four weeks treatment in rodents,383 reverses 
hippocampal pathology, thus leading to antidepressant-like response. The timing of 
antidepressant response in animal models is however not affected by deletion of new progenitor 
cells382; moreover, to what extent neoneurogenesis takes place, and/or is warranted, in the 
human hippocampus, remains a matter of controversy. Other theories of the delayed 
antidepressant response are based on the notion that serotonin induces an upregulation of the 
expression of so-called neurotrophic factors that facilitate plasticity and restore network 
function384-387 (see the SEROTONIN & BDNF section). 
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      In line with these network-related hypotheses, the findings of Zhou et al.388 suggest that the 
effect of antidepressants is due to structural, as opposed to biochemical, changes in the 
serotonergic system. In this study, increased serotonin fiber density and branching in layers 
four and five of the fronto-parietal cortex and in the limbic regions was found after chronic 
administration of antidepressants. These observations were made in the absence of any effects 
on 5-HTT or TPH2 expression.  
      Also in favour of the notion that antidepressants enhance plasticity, several authors have 
reported increased sprouting of axons and dendrites of hippocampal neurons after treatment 
with several antidepressant treatment methods in animal models,123-125 an increase that is 
accompanied by decreased stress sensitivity.     
 

SEROTONINSEROTONINSEROTONINSEROTONIN----RELATED GENESRELATED GENESRELATED GENESRELATED GENES 
    
Polymorphisms in the Polymorphisms in the Polymorphisms in the Polymorphisms in the 5555----HTTHTTHTTHTT    
The most thoroughly studied serotonin-related gene is the one encoding the serotonin 
transporter, 5-HTT, which is also called SLC6A4, it being the 4th member of the 6th solute 
carrier family. It is situated on chromosome 17q11-12 and consists of 14 exons.389 
      The 5-HTTLPR is an insertion/deletion polymorphism in the promoter region of the 5-
HTT, resulting in one short allele (S allele) with 14 similar repeat units and one long allele (L 
allele) with 16 similar repeat units. An SNP, rs25531, situated in repeat 6 of the 5-HTTLPR, 
was first believed to be located on the L allele of the 5-HTTLPR only, due to different reports 
of breakpoints for the insertion/deletion. However, since it is repeats 7 and 8 that are present 
only on the L allele, also the S allele carries this polymorphism.390-393 Out of those carrying the 
long 5-HTTLPR allele, 10% carry a G allele on the rs25531 locus, resulting in altered affinity 
for the AP2 transcription factor, and thus lower promoter activity, rendering the serotonin 
transporter availability similar to that of carriers of the S allele.394 In addition to this 
polymorphism, another SNP, rs25532 (C/T),    situated in repeat 14 of the 5-HTTLPR, has 
been found; a haplotype with the LAC allele of the 5-HTTLPRrs25531 and 25532 and the C allele of 
rs16965628 located in intron 1 has been shown to constitute a high-expressing haplotype.395 
Association studies of the 5-HTTLPR are described in the next section. 
      A rare gain-of-function mutation, Ile425Val, encoding the transmembrane region 8 of the 
serotonin transporter, has been found in exon 9. The rare Val allele, which is in absolute LD 
with the L allele of the 5-HTTLPR, shows increased serotonin transporter function and has 
been associated with OCD and comorbid disorders including Asperger syndrome and social 
phobia.396,397 The Gly56Ala (rs6355) is a rare gain-of-function mutation in exon 2, for which 
the Ala allele increases transporter function by approximately 75%, and that may confer 
susceptibility to autism.398  
                        Intron 2 of the 5-HTT holds a VNTR polymorphism called STin2.399 It has three 
common alleles of length nine, ten and twelve repeats. The common 12 allele of STin2 may 
display increased transcriptional activity400,401 but measures of the availability of the serotonin 
transporter in vivo in the human brain suggest the 10/10 genotype to be associated with 
increased transporter availability.402 The 12-allele has been associated with anxiety disorders, 
including OCD and GAD,403 and possibly also with increased anxiety-related traits.218 
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Association studies of the 5Association studies of the 5Association studies of the 5Association studies of the 5----HTTLPRHTTLPRHTTLPRHTTLPR 
    
5-HTTLPR and serotonergic transmission 
The S allele of the 5-HTTLPR gives rise to lower in vitro transcriptional activity of the 5-
HTT.404 Three PET and SPECT studies measuring in vivo transporter availability show lower 
availability for carriers of the S allele,402,405,406 although one of them observed the lowest levels 
for heterozygotes. Another study showed lowest availability in SL carriers and highest in SS 
carriers.309 Moreover, some studies have been negative.407 In combination with the rs25531, 
carriers of the S or LG alleles have been reported to display lower availability.394,408 
      The S allele has also been associated with low serotonergic function as measured by a 
reduced prolactin response to serotonin-releasing agents,409,410 as well as with reduced platelet 
serotonin uptake411 The same allele has also been associated with increased 5-HIAA levels in 
both humans and monkeys.298,302,412 
 
5-HTTLPR and depression & anxiety 
Since chronic inhibition of serotonin reuptake by antidepressant drugs reduces depression and 
anxiety, the 5-HTTLPR has been intensively investigated in the context of its possible relation 
to the aetiology of these disorders. Paradoxically, given that SRIs inhibit the serotonin 
transporter and are effective in reducing depression and anxiety, the association for the 5-
HTTLPR is in the direction that the S allele, associated with low serotonin transporter 
function, appears to increase the risk for depression and anxiety. The S allele has thus been 
reported to be associated with anxiety and anxiety-related traits as measured with certain 
scales,218,404,413-415 and the same allele has also been associated with attention bias towards 
anxiety-related stimuli.416 Although several studies have found suggestive evidence of an 
association between the S allele and depression, a meta-analysis found that such an increased 
risk exists for bipolar disorder only,37 and one study showed that approximately 40% of the 
association with depression was mediated by the influence of the polymorphism on anxiety-
related personality traits.417 Notably, several studies support the notion that high anxiety-
related traits increase the risk for depression73 and that they also display shared heritability with 
depression.74,97    
      How the S allele exerts its effect remains uncertain. Since transient inhibition of the 
transporter perinatally increases adult anxiety- and depression-related traits, and substantially 
reduces the density of serotonergic neurons in animals, it has been suggested that the anxiety- 
and depression-related phenotypes observed in carriers of the S allele may be due to low levels 
of the serotonin transporter (and thus possibly increased extracellular serotonin levels) during 
some critical moment in development.262  
 
5-HTTLPR and stressful life events & depression 
Carriers of the 5-HTTLPR S allele react stronger to stress as measured by an increased startle 
response418 and increased fear conditioning.419 The first specific gene-environment interaction 
reported for a psychiatric trait was a synergistic interaction between the 5-HTTLPR S allele 
and stressful life events (SLEs) with respect to risk for depression; subjects who had experienced 
a SLEs between the ages 21 and 25 thus had more depressive symptoms, depression and suicide 
attempts at age 26 only if they were also carriers of the S allele. The enhanced risk was 
increased by increased number of SLEs. The possibility that the gene-environment interaction 
was due to a gene-gene interaction, where the second gene were to increase the exposure to 
SLE, was considered unlikely since no interaction was observed between the 5-HTTLPR and 
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SLEs when the life event occurred after the onset of depression. Also subjects who had been 
maltreated as children had increased prevalence of depression at age 26.86 The 5-HTTLPR-SLE 
interaction was later replicated for the SS genotype420; carriers of this genotype were thus more 
sensitive to the depressogenic    effects of SLEs and had a sevenfold risk of developing depression 
after SLEs, whereas the increased risk after exposure to SLEs for carriers of the LL genotype was 
only twofold. This interaction has also been replicated for depression in children after removal 
from their families 421 and for the genotypic combination of the 5-HTTLPR and rs25531.422 
Carriers of the S or LG alleles also report that they experience more anxious mood on stressful 
days.423 
      Studies in monkeys show evidence of increased neuroendocrine responses, including 
increased ACTH response to stress, in S carriers (of the orthologous 5-HTTLPR). In females, 
this increased response was present only in monkeys who had been reared in stressful 
environments.424 Interaction between the S allele and stressful environments has also been 
reported for related phenotypes in monkeys425 In addition, monkeys reared in stressful 
environments may display increased 5-HIAA levels only if they also carry the S allele.412 
      The majority of the studies reporting an interaction between the 5-HTTLPR and SLEs do 
not observe a main effect of the 5-HTTLPR; to explain this, it has been proposed that carriers 
of the S allele may be influenced by both positive and negative life events,37 a proposition that 
is supported by the notion that depressed children carrying the S allele show increased response 
to social support compared to LL carriers421 and also by findings of increased emotional 
processing in S carriers, irrespective of whether the valence of the emotion is positive or 
negative.426 

 

In paper VIn paper VIn paper VIn paper V, the 5, the 5, the 5, the 5----HTTLPR S alleleHTTLPR S alleleHTTLPR S alleleHTTLPR S allele, in combination wit, in combination wit, in combination wit, in combination with another polymorphism,h another polymorphism,h another polymorphism,h another polymorphism,    is is is is 
associated with an enhanced exposure to controllable associated with an enhanced exposure to controllable associated with an enhanced exposure to controllable associated with an enhanced exposure to controllable SLEsSLEsSLEsSLEs. The S allele is however . The S allele is however . The S allele is however . The S allele is however 
associated with avoidance of controllable associated with avoidance of controllable associated with avoidance of controllable associated with avoidance of controllable SLEsSLEsSLEsSLEs in subjects with high anxiety in subjects with high anxiety in subjects with high anxiety in subjects with high anxiety----related related related related 
personality traits, whereas the correlation between anxietypersonality traits, whereas the correlation between anxietypersonality traits, whereas the correlation between anxietypersonality traits, whereas the correlation between anxiety----rrrrelated personality traitselated personality traitselated personality traitselated personality traits, on , on , on , on 
the one hand,the one hand,the one hand,the one hand, and the number of  and the number of  and the number of  and the number of SLEsSLEsSLEsSLEs experienced during the last year experienced during the last year experienced during the last year experienced during the last year, on the other,, on the other,, on the other,, on the other, is  is  is  is 
positive in carriers of the LL genotype.positive in carriers of the LL genotype.positive in carriers of the LL genotype.positive in carriers of the LL genotype.    

 
5-HTTLPR and reactivity of the amygdala 
The 5-HTTLPR has been investigated in the context of the increased amygdala reactivity seen 
in depression. In healthy subjects, the 5-HTTLPR S allele has thus been associated with 
enhanced activity to emotional faces and words compared to the activity elicited by neutral 
faces or neutral geometrical objects.35,38,199,427,428 Since the S allele may reduce the expression of 
the serotonin transporter, this finding is in line with the negative correlation observed between 
low serotonin transporter binding and enhanced amygdala reactivity.328 The increased 
amygdala reactivity to emotional faces for the S allele, and for the LG allele of the 5-
HTTLPRrs25531, has been shown to be valid for both healthy and depressed subjects, and also 
when the faces are shown for such a short period of time that the perception does not reach 
consciousness.426 The effects of the 5-HTTLPR S allele on emotional perception have been 
shown to be additive with other functional polymorphisms that appear to affect amygdala 
reactivity.429,430 
 
5-HTTLPR and connectivity between the amygdala and the anterior cingulate cortex (ACC) 
Although the influence of the S allele on amygdala reactivity does not appear to explain 
variation in anxiety- and depression-related traits,35 reduced functional connectivity between 
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the amygdala and parts of the ACC during exposure to fearful faces, observed in S carriers, may 
explain 30% of the variance in harm avoidance.202 The S allele has also been associated with 
increased resting metabolism of the ACC431 and low volume of the perigenual ACC.201,202 
Another study showed stronger coupling between an adjacent region, BA10 in the 
ventromedial PFC, and amygdala in S carriers, an increased activity that has been proposed to 
be compensatory to the increased activity of the amygdala.202,428 
 
5-HTTLPR and baseline amygdala activity 
An alternative interpretation to the elevated activation of the amygdala in response to 
emotional conditions compared to neutral ones in carriers of the S allele, proposed by Canli et 
al.432, is that S carriers may display lower activation to the neutral conditions. Indeed, the 
activation to neutral conditions was shown to be lower than that while resting in S carriers. 
This contrast was subsequently shown to be driven by higher activity during the rest 
condition433,434 (rather than lower response to the neutral stimulus). This finding was proposed 
to be due to an increased anticipatory anxiety in carriers of the S allele, which then would be 
reduced when the task begins,435 but was subsequently shown to be independent of state 
anxiety.434 Rest activity (as compared to response to neutral faces) correlated with the number 
of SLEs experienced in S carriers only.433 In LL carriers, this correlation was negative, i.e. the 
more exposure to SLEs, the smaller the rest activity of the amygdala.  
                        In spite of this genetic influence on amygdala reactivity, both in healthy and depressed 
subjects,199,429 and in spite of the fact that increased amygdala activity has been observed also in 
familial depression,193 genetic influence on amygdala reactivity may be unrelated to genetic risk 
for depression and anxiety. When comparing the amygdala reactivity of MZ twins concordant 
and discordant for high and low depression and anxiety risk, it was thus found that a twin with 
high risk for depression or anxiety due to exposure to SLEs, displayed higher amygdala 
reactivity to negative emotional faces compared to its discordant low-risk twin. However, for 
twins concordant for high depression- and anxiety-related traits, amygdala reactivity was low, 
and significantly lower than that for twins concordant for low such traits,436 suggesting that 
amygdala reactivity is increased only in those high-risk subjects that exhibit increased risk due 
to environmental and not genetic factors. The results of this twin study did not seem to be 
influenced by the genotype for 5-HTTLPR. 
 
5-HTTLPR and tryptophan depletion 
For subjects who are in remission from depression, tryptophan depletion has been reported to 
lead to relapse and increased amygdala, hippocampal and subgenual ACC metabolism only in 
LL or LALA carriers437,438; in contrast, non-depressed SS-carriers show more effect of tryptophan 
depletion on anxiety and depression scores than carriers of the LL genotype,438-440 as well as 
impaired recognition of fearful faces.441 An increased effect of tryptophan depletion in carriers 
of the S allele is observed also in healthy subjects who have a family history of depression, 
indicating that the differential effect of the 5-HTTLPR on the effects of tryptophan depletion 
is not related to its possible effect on the aetiology of depression but that it is a consequence 
either of disease or of antidepressant medication; although unmedicated for at least three 
months before tryptophan depletion, these depressed subjects had previously been treated with 
antidepressants. The differential relationship between genotype and tryptophan depletion in 
subjects with and without depression was proposed to be due to different regulatory tone in the 
serotonergic system in cases and controls.438 A differential response to tryptophan depletion in 
healthy S and LL carriers has also been found for motivation; in S carriers, tryptophan 
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depletion thus leads to a reduced motivation and memory performance, whereas carriers of the 
LL genotype exhibit increased motivation after tryptophan depletion.439,442  
 
Polymorphisms in the tryptophan hydroxylase genes Polymorphisms in the tryptophan hydroxylase genes Polymorphisms in the tryptophan hydroxylase genes Polymorphisms in the tryptophan hydroxylase genes TPH1TPH1TPH1TPH1 and  and  and  and TPH2TPH2TPH2TPH2    
TPH1 and TPH2 share approximately 70% amino acid homology and are encoded by genes 
situated on chromosomes 11p15 and 12q21, respectively. Whereas TPH1 is expressed in raphe 
during development,228,229 TPH2 is much more abundant in the raphe and in other brain 
regions, except for the pineal gland, in adult organisms.229-232,234,443 
 
TPH1 
Polymorphisms in TPH1 have been associated with mood-related phenotypes; the A allele of 
the A218C, situated in intron 7 of the gene, has been related to anger, depression, anxiety, 
compromised antidepressant response and suicide.444-451 This influence may be due to the 
activity of TPH1 during development.229  
 
Structure of TPH2 
TPH2 has 11 exons. Strong LD has been found over TPH2, in one study between the 
promoter region (~400 upstream) and intron 5452 and in another from the promoter region 
(~800 upstream) to intron 8453, the latter revealing a structure where every other allele of the 
haplotype was the rare variant, suggesting selection to maintain the ancient chromosomes. The 
212121 (1 for the common allele and 2 for the rare) haplotype was associated with suicide, 
depression and anxiety, and also with lower serotonin turnover as measured by 5-HIAA levels, 
which have been shown to be partly heritable in monkeys and possibly also in humans.454,455    
Haghighi et al. recently found the existence of a truncated form of TPH2, lacking the catalytic 
site encoded by exon 11. This truncated variant was found to be composed of 7 exons only, 
and parts of intron 5 of the long more abundant TPH2 variant belong to exon 6 of the short, 
truncated TPH2 variant. No associations between polymorphisms and the relative amount of 
the two forms were reported.456   
    
TPH2 exon polymorphisms 
In the exon (11) that encodes the catalytic site of the TPH2 enzyme, the Arg441His SNP 
(G1463A) and the orthologous mouse SNP (C1473G; Arg447Pro) have been associated with 
80% lower function of the TPH2, reduced 5-HTP synthesis rate and serotonin levels, and with 
depression in one small elderly American population with treatment-resistant 
depression,41,443,457 thus linking low TPH2 function to depression aetiology. The rare 441His 
variant was, however, not found in other populations with depression, anxiety disorders, late-
onset depression or treatment-resistant depression.452,458-463 Several other rare non-synonymous 
SNPs in TPH2 have been reported, including the exon 6 Pro206Ser (rs17110563), the rare Ser 
variant of which has been associated with reduced serotonin production and bipolar disorder.42 
 
TPH2 intron polymorphisms 
Polymorphisms in intron 5 of TPH2 have repeatedly shown evidence of association with 
mood-related disorders. The rs1386494 SNP, situated in intron 5 at position 19.918 of the 
gene (and haplotypes containing it) was first associated with depression and suicide464,465; the 
common C allele was more common in cases than in controls and the rare T allele was 
considered protective. A recent study of depression, focusing on intron 5, replicated the 
association between the C allele of 1386494 and depression by observing an association with a 
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C-G-G-haplotype composed of the SNPs rs1386494 and 1386493 plus one novel SNP 
(g.22879A>G).456 The CC genotype of the rs1386494 has been shown to be rare in female 
patients with panic disorder466 and possibly to be related to weaker response to antidepressants. 
The latter relationship with antidepressant response was more pronounced for an adjacent 
intron 5 SNP (rs10879346) and also for an SNP in intron 8 (rs1487278).467 A haplotype 
encompassing exon 7-9 has been associated with bipolar disorder468 and SNPs in intron 1 and 
4 have been associated with autism.469 
 
TPH2 promoter polymorphisms 
The promoter of TPH2 contains two polymorphisms that are in high LD and may be 
functional: the rs4570625 (G-703T or G-844T, positioned 703 bp upstream of exon 1 and 
844 bp upstream of the start codon) and the rs11178997 (T-473A). Carriers of the rare -703T 
allele of rs4570625 have repeatedly been shown to have higher amygdala reactivity to 
emotional stimuli compared to carriers of the GG genotype.470,471 Although the above-
mentioned study by Zhou et al.453 showed no evidence of association for either of these two 
promoter polymorphisms with depression or anxiety, and studies of possible association 
between the promoter region and panic disorder and suicide were negative,462,472 another study 
showed haplotypes containing the T allele of rs4570625 to be associated with anxious-fearful 
personality disorders.473 In contrast, the rare TT genotype has been associated with low levels of 
anxiety-related personality traits,474 an observation that may be related to enhanced emotional 
processing in T-allele carriers of both negatively and positively valenced emotional stimuli.475 
      The A allele of rs11178997 has been shown to be under-represented in depression, and has 
been associated with bipolar disorder.42,452 Carriers of the G-T or the T-A haplotype of the 
rs4570625-rs11178997-combination have been reported to display increased risk for bipolar 
disorder.476 
                        One study of the functional consequences of these two promoter polymorphisms has 
shown haplotype constructs containing the T allele of the rs4570625 to display lower promoter 
activity.477 However, this study attributes the lower promoter activity for this allele to the 
adjacent A allele of the rs11178997, the mechanism being that the transcription-enhancing 
transcription factor POU3F, the motif of which contains both the rs4570625 and the 
rs11178997, displays lower binding affinity when the motif contains the A allele of 
rs11178997. Another study also suggested the A allele of the rs11178997 to give rise to 
reduced promoter activity, but showed also the G allele of the rs4570625 to be associated with 
reduced activity.478 
                        The alleles of the rs4570625 and the rs11178997 that have been reported to be associated 
with low amygdala reactivity and low risk for bipolar disorder, respectively, i.e. the G and the T 
alleles, have both been associated with ADHD479,480 and possibly with OCD.481     
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Polymorphisms in Polymorphisms in Polymorphisms in Polymorphisms in HTR3AHTR3AHTR3AHTR3A &  &  &  & HTR3BHTR3BHTR3BHTR3B    
The three genes encoding the 5-HT3 subunits A-C have been found to be expressed in the 
brain. The genes encoding 5-HT3A and 5-HT3B, HTR3A and HTR3B, are clustered on 
chromosome 11q23, whereas the genes HTR3C-E are clustered on chromosome 3q27.482,483  
      Polymorphisms in HTR3A and HTR3B have been associated with depression and bipolar 
disorder and with depression- and anxiety-related traits.220,484,485 In HTR3A, the common C 
allele of the C178T (or C-42T, rs1062613) polymorphism, encoding an amino acid exchange, 
Pro16Ser,485,486 has been associated with enhanced amygdala reactivity to emotional faces487 and 
with increased anxiety- and aggression-related traits.220 The common Tyr allele of the exon 5 
amino acid substitution polymorphism of HTR3B, Tyr129Ser (rs1176744, 386A>C), has been 
associated with depression in women, and this is also the case for haplotypes containing the G 
allele of the adjacent intron 4 polymorphism, rs1176746. The rs1176746 G allele may also be 
associated with bipolar disorder in men.485 The Ser allele (the rare allele, which is also the 
ancestral) of Tyr129Ser seems to have a large impact on receptor function, leading to a 
sevenfold increase in the mean open time of the ion channel as well as an increase in the 
maximal response to serotonin.488 
 
Polymorphisms in Polymorphisms in Polymorphisms in Polymorphisms in GATA2GATA2GATA2GATA2    
GATA2 is located on chromosome 3q21, and has acquired its name due to the binding of the 
protein to GATA sequences in regulatory regions of target genes. Polymorphisms in GATA2 
are expected to affect the differentiation of serotonergic neurons, since deletion of this gene in 
animals leads to loss of rostral serotonergic innervation.489  
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rs1176746rs1176746rs1176746rs1176746 in  in  in  in HTR3BHTR3BHTR3BHTR3B and the 3’UTR  and the 3’UTR  and the 3’UTR  and the 3’UTR rs2713594rs2713594rs2713594rs2713594 in  in  in  in GATA2GATA2GATA2GATA2....    

    
SEROTONIN & BDNFSEROTONIN & BDNFSEROTONIN & BDNFSEROTONIN & BDNF    

 
BBBBrainrainrainrain----derived neurotrophic factor: iderived neurotrophic factor: iderived neurotrophic factor: iderived neurotrophic factor: introductionntroductionntroductionntroduction        
 
The BDNF protein 
Brain-derived neurotrophic factor (BDNF) belongs to the family of neurotrophins and is a 
crucial factor for neuronal differentiation, proliferation and survival, and for the guidance of 
axons to their targets in the developing brain.490,491 It is also involved in activity-dependent 
synaptic plasticity including dendritic growth, the complexity of dendritic arbors and longterm 
potentiation (LTP) (a model of synaptic plasticity) in the adult brain.492-494 
      BDNF is produced and secreted as a long pro-BDNF, which is then proteolytically cleaved 
to the mature 153-aa-long BDNF.495 The mature BDNF protein acts by binding to the TrkB 
(tryptomyosin-related kinase B) receptor, encoded by NTRK2 (chromosome 9q22-23), which 
in turn influences expression of target genes. Mature BDNF mediates hippocampal LTP via 
TrkB.496-498 BDNF-TrkB transmission is required also for hippocampus-dependent learning of 
fear.  
      The pro-domain controls synaptic localisation and dendritic trafficking, for which the 
interaction between the pro-domain and sortilin is important. The long BDNF protein acts on 
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p75NTR, the activation of which appears to suppress dendritic growth, increase NMDA-
dependent longterm depression (LTD) and facilitate apoptosis.499-501 p75NTR is widely expressed 
during development; in adulthood it has, however, been suggested to be restricted to 
cholinergic neurons.502,503  
      Plasmin activation by tPA (tissue plasminogen activator) seems to be critical for the 
regulation of the balance between pro-BDNF and mature BDNF as it is necessary for the 
hippocampal conversion of proBDNF to mature BDNF; knock-outs of tPA thus show reduced 
activation of the TrkB pathway and reduced LTP.504     
 
The BDNF gene 
The gene encoding BDNF, BDNF, is situated on chromosome 11p13-14. The structure of 
BDNF is complex, including use of alternative splice sites and promoters; seven promoters and 
untranslated 5’exons have thus been found, each forming a unique transcript together with the 
common coding 3’ exon.505,506 Different transcripts seem to be expressed in different brain 
regions and cell types507    and to be involved in different functions. Due to its involvement in 
activity-dependent synapse development and LTP, promoter number four is the most 
intensively investigated one.502  
      BDNF holds an SNP (196G/A, rs60760775, previously named rs6265) resulting in an 
amino acid substitution from valine to methionine at codon 66 (Val66Met) in the pro-domain 
of the protein. The rare Met allele has a 19% frequency in Caucasians (44% in Asians) and is 
associated with a reduced efficiency of intracellular pro-BDNF trafficking, pro-BDNF-sortilin 
interaction and dendritic trafficking, and also with reduced activity-dependent secretion of 
BDNF.508-510 The polymorphism only exists in humans but the constructed Met-knock-in 
mouse shows great similarities with the heterozygous knock-outs with respect to the reduced 
dendritic arbor complexity of dentate gyrus neurons and reduced activity-dependent 
secretion.511 
    
BDNF BDNF BDNF BDNF involvement in depression, anxiety and antidepressant actioninvolvement in depression, anxiety and antidepressant actioninvolvement in depression, anxiety and antidepressant actioninvolvement in depression, anxiety and antidepressant action    
The implication of BDNF in depression is based on the notion that BDNF promotes several 
forms of hippocampal plasticity and that antidepressants reverse stress-induced reductions in 
BDNF.497,512-516 The Met allele of the Val66Met polymorphism is also associated with reduced 
hippocampal volume517,518 and with reduced performance on memory tasks and hippocampal 
processing during episodic memory encoding.509,519-521 In animal models, reduced BDNF 
function has been associated with increased anxiety-related traits, aggression and 
hyperphagia,511,522 but BDNF-TrkB transmission has also been shown to be pro-depressive by 
enhancing the depressogenic or anxiogenic effects of social defeat stress on social avoidance.523 
      Antidepressant response has been suggested to be mediated by an upregulation of BDNF-
TrkB transmission. BDNF plasma levels have been reported to be reduced in depressed 
subjects524-528 and in animal models of depression,516,529 and to be increased as a result of 
antidepressant treatment in human plasma,524,525,528 in human brains as assessed post-
mortem,530,531 and in brains of animals532-536; this effect has been suggested to be necessary and 
sufficient for SRI response.537,538 BDNF itself may also display antidepressant effects in animal 
models of depression.539,540 The BDNF protein crosses the blood-brain barrier541 and plasma 
levels of BDNF are similar to those in the CSF,542 suggesting that plasma levels reflect central 
concentrations. The antidepressant-induced increase in BDNF is probably mediated by 
increased extracellular serotonin levels since it is blocked by serotonin depletion543 and since 
agonists of the 5-HT2A and 5-HT6 receptors also increase BDNF expression.544-546 Moreover, 
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serotonin administration increases BDNF mRNA in raphe, an effect that seems to be mediated 
by somatodendritic 5-HT1A receptors.547 
      In animal models, the timing of SRI-induced BDNF upregulation may concur with that of 
antidepressant effect,533,548,549 suggesting BDNF to be involved in the delayed response 
displayed by SRIs. As discussed above, several theories regarding the delayed antidepressant 
response are based on the notion that neurotrophic factors induce hippocampal plasticity, 
which may be required for restoration of network function and ultimately mood.384-387,550 
      Associations have been reported between the Val allele of the Val66Met and psychiatric 
conditions including bipolar disorder551,552 and obsessive compulsive disorder (OCD).553 The 
Val allele has also been associated with childhood-onset depression554 and with the anxiety-
related trait neuroticism (as measured by NEO)555,556. However, also the Met allele has been 
associated with anxiety-related traits and with geriatric depression,557,558 and the Met allele has 
also been shown to interact with environmental factors in increasing the risk for depression. 
Two of the studies showing such an interactive effect between the Met allele and 
environmental exposure on the risk for depression investigated childhood maltreatment and 
childhood experience on childhood and adult depression, respectively 559,560, and a third study 
examined the depressogenic effects of SLEs in Corean elderly subjects.510 The Met allele may be 
associated with enhanced antidepressant response.561 
 

In paper V, tIn paper V, tIn paper V, tIn paper V, the he he he Met allele of the Met allele of the Met allele of the Met allele of the BDNFBDNFBDNFBDNF Val66Met polymorphism Val66Met polymorphism Val66Met polymorphism Val66Met polymorphism, in combination with , in combination with , in combination with , in combination with 
the S allele of the 5the S allele of the 5the S allele of the 5the S allele of the 5----HTTLPR, was shown to be aHTTLPR, was shown to be aHTTLPR, was shown to be aHTTLPR, was shown to be associated with increased exposure to ssociated with increased exposure to ssociated with increased exposure to ssociated with increased exposure to 
stressful life events.stressful life events.stressful life events.stressful life events.    

 
BDNF BDNF BDNF BDNF andandandand    the serotonergic systemthe serotonergic systemthe serotonergic systemthe serotonergic system        
BDNF and its receptor TrkB are expressed in serotonergic neurons within the raphe nuclei.562-

564 BDNF seems to influence the plasticity of these nerve cells. BDNF thus protects 
serotonergic neurons from neurotoxic damage565,566 and BDNF administration increases the 
expression of serotonergic markers567,568 and serotonin axon density.569 In line with this, BDNF 
deficiency introduced by genetic manipulation leads to a reduced density of serotonergic 
axons522 – a reduction that increases with age – and to reduced serotonin brain content,570 a 
reduced number of 5-HT2A receptors571 and possibly reduced 5-HT1A function.572 Although 
BDNF hence seems to improve the plasticity of serotonergic neurons, the presence of the 
protein does however not seem to be required for the survival and maturation of serotonergic 
neurons.569 
      BDNF also seems to promote serotonin transporter function. Reduced levels of BDNF thus 
imply compromised transporter function, a lack of increase in transporter function with age, and 
increased extracellular serotonin levels.573,574 In line with this, BDNF exposure seems to increase 
serotonin transporter function via TrkB,575,576 as judged by a reduced increase in extracellular 
serotonin levels after intracerebral infusion of the transmitter, reduced baseline serotonin 
extracellular levels and a reduced activity-dependent increase in serotonin.575 Heterozygous 
BDNF knock-outs show reduced SRI-induced elevation of extracellular serotonin in 
hippocampus but not in frontal regions and raphe,574 whereas intrahippocampal BDNF 
administration leads to an augmented increase in extracellular serotonin after SRI treatment.577 
However, since the reduction in serotonin brain content observed in 5-HTT knock-outs is 
potentiated by BDNF deletion, the BDNF protein appears to have effects on serotonergic 
function that are independent of its effect on the serotonin transporter570 (see above). 
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The effect of The effect of The effect of The effect of BDNFBDNFBDNFBDNF polymorphisms polymorphisms polymorphisms polymorphisms on  on  on  on serotonin transporterserotonin transporterserotonin transporterserotonin transporter availabi availabi availabi availability was lity was lity was lity was 
investigated in paper IIIinvestigated in paper IIIinvestigated in paper IIIinvestigated in paper III. Several SNPs were associated with . Several SNPs were associated with . Several SNPs were associated with . Several SNPs were associated with transportertransportertransportertransporter availability,  availability,  availability,  availability, 
including the Val6including the Val6including the Val6including the Val66Met polymorphism. C6Met polymorphism. C6Met polymorphism. C6Met polymorphism. Carriers of the Val/Val genotype, associated arriers of the Val/Val genotype, associated arriers of the Val/Val genotype, associated arriers of the Val/Val genotype, associated 
with enhanced BDNF secretion, with enhanced BDNF secretion, with enhanced BDNF secretion, with enhanced BDNF secretion, thus thus thus thus displayeddisplayeddisplayeddisplayed increased  increased  increased  increased transportertransportertransportertransporter availability in most  availability in most  availability in most  availability in most 
brain regions.brain regions.brain regions.brain regions.    

 

SEROTONIN SEROTONIN SEROTONIN SEROTONIN &&&& SEX STEROIDS SEX STEROIDS SEX STEROIDS SEX STEROIDS        
 
There is a large prevalence difference for men and women for several disorders that respond to 
SRIs, women displaying at least a twofold prevalence for depression and anxiety disorders.578 
Moreover, during periods of hormonal fluctuations in women, depressive symptoms are 
common, as illustrated by conditions such as perimenopausal dysphoria, postpartum 
depression, oral contraceptive-induced dysphoria and PMDD. 
      The serotonergic system interacts with sex steroids and appears to dampen the effects that 
sex steroids exert on behaviour. With respect to aggression and sexual drive, androgen and 
serotonin exerts opposite effects. Serotonin depletion thus results in elevated aggression and 
sexual drive, i.e. behaviours that are increased by sex steroids,579,580 whereas androgen 
administration has been shown to decrease amygdalar serotonin release in rats.581 In line with 
the dampening effects of serotonin, one of the most common side effects of SRI treatment is 
decreased libido. In addition there is indicative support for the notion that some conditions 
that respond to chronic SRI treatment, such as bulimia nervosa and OCD, also respond to 
anti-androgenic drugs.582-585 The notion that serotonin dampens the effects of sex steroids is 
also supported by the instant and strong response that women with PMDD show to SRI 
treatment. Both acute and chronic estrogen administration to ovariectomized animals increases 
serotonin levels, tentatively by upregulation of synthesising enzymes and downregulation of 
MAOA.586-593  
      Acute estrogen treatment increases the expression and function of the serotonin 
transporter,594,595 whereas subchronic estrogen treatment during one to four weeks decreases 
transporter expression and function in both ovariectomized females and castrated 
males.592,593,596 Conversely, even longer treatment periods (five months) have been shown to 
increase serotonin transporter expression.593 
      Estrogen administration has also been shown to upregulate frontal 5-HT2A receptors as 
well as to down-regulate 5-HT1A receptor function in limbic regions and raphe.588,594,597-606 
The estrogen receptor subtype β (see below) is co-localized with serotonin607,608 and appears to 
be closely involved in the regulation of the serotonin system, e.g. in mediating the facilitating 
effects of acute estrogen on the serotonin transporter, serotonin-synthesising enzymes and  
serotonergic receptors.595,609 Also progesterone appears to affect serotonergic transmission,610 
and serotonin may inhibit progesterone-induced aggression.611 
 

PAPERS IPAPERS IPAPERS IPAPERS I----VVVV    

 
For thorough presentations of methods and results, and for a detailed discussion of the 
findings, the reader is referred to the enclosed papers and manuscripts. Below will be given a 
brief summary of the main finding of papers I-V; moreover, a number of important aspects will 
be commented. 
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Paper IPaper IPaper IPaper I    
    

GGGGENOTYPE OVER DIAGNOSENOTYPE OVER DIAGNOSENOTYPE OVER DIAGNOSENOTYPE OVER DIAGNOSIS IN AMYGDALA RESPOIS IN AMYGDALA RESPOIS IN AMYGDALA RESPOIS IN AMYGDALA RESPONSIVENESSNSIVENESSNSIVENESSNSIVENESS:::: AFFECTIVE PROCESSIN AFFECTIVE PROCESSIN AFFECTIVE PROCESSIN AFFECTIVE PROCESSING IN G IN G IN G IN 

SOCIAL ANXIETY DISORSOCIAL ANXIETY DISORSOCIAL ANXIETY DISORSOCIAL ANXIETY DISORDERDERDERDER    

    
Paper I is a study of geneticPaper I is a study of geneticPaper I is a study of geneticPaper I is a study of genetic effects on amygdala reactivity to angry faces in healthy  effects on amygdala reactivity to angry faces in healthy  effects on amygdala reactivity to angry faces in healthy  effects on amygdala reactivity to angry faces in healthy 
subjects (subjects (subjects (subjects (nnnn=18) and in subjects with social phobia (=18) and in subjects with social phobia (=18) and in subjects with social phobia (=18) and in subjects with social phobia (nnnn=34). Carriers of the S allele of the =34). Carriers of the S allele of the =34). Carriers of the S allele of the =34). Carriers of the S allele of the 
5555----HTTLPR in the promoter region of the gene encoding the serotonin transporterHTTLPR in the promoter region of the gene encoding the serotonin transporterHTTLPR in the promoter region of the gene encoding the serotonin transporterHTTLPR in the promoter region of the gene encoding the serotonin transporter,,,,    
andandandand/or/or/or/or the T allele of  the T allele of  the T allele of  the T allele of the the the the TPH2TPH2TPH2TPH2 G G G G----703T703T703T703T    promoter polymorphism (rs4570625)promoter polymorphism (rs4570625)promoter polymorphism (rs4570625)promoter polymorphism (rs4570625),,,,    werewerewerewere    
shown to exhibit increasshown to exhibit increasshown to exhibit increasshown to exhibit increased amygdala responsivenessed amygdala responsivenessed amygdala responsivenessed amygdala responsiveness. The react. The react. The react. The reactivity of the amygdala waivity of the amygdala waivity of the amygdala waivity of the amygdala was s s s 
however not significantly larger in subjects with social phobia than in controls.however not significantly larger in subjects with social phobia than in controls.however not significantly larger in subjects with social phobia than in controls.however not significantly larger in subjects with social phobia than in controls. The The The The 
serotoninserotoninserotoninserotonin----related polymorphismsrelated polymorphismsrelated polymorphismsrelated polymorphisms were hence stronger predictors of amygdala reactivity  were hence stronger predictors of amygdala reactivity  were hence stronger predictors of amygdala reactivity  were hence stronger predictors of amygdala reactivity 
than the than the than the than the diagnosis of social phobiadiagnosis of social phobiadiagnosis of social phobiadiagnosis of social phobia....    
 
Two-locus effects 
In our study, the combined effect of the two polymorphisms on amygdala reactivity to angry 
faces appears to be synergistic. Other studies also find the reactivity to emotional stimuli, as 
measured both by the early posterior negativity peak of event-related potentials and by 
functional magnetic resonance imaging, to be highest for carriers of both the S (or LG of the 5-
HTTLPRrs25531) and T alleles, but only to the extent expected if the polymorphisms acted 
independently of each other in an additive manner.475,612 However, since neuroimaging studies 
usually are performed on small samples, there are usually only few subjects carrying each two-
locus genotype, and these studies are hence not very suitable for interaction analysis. Further 
studies will be required to clarify if the S allele of 5-HTTLPR and the T allele of TPH2 G-
703T display a synergistic interaction on amygdala responsiveness or not. 
 
The influence of genes and of diagnosis 
Subjects with social phobia did display a slightly larger increase than controls in amygdala 
activity when angry faces were presented. However, this non-significant difference was partly 
due to the fact that controls carrying LL and GG genotypes did not show enhanced activation 
to angry faces compared to neutral, thus displaying negative reactivation scores. Since other 
studies have shown amygdala reactivity to be increased in subjects with social phobia,167 the 
lack of a significant difference in this study may be due to low statistical power. However, 
differences in amygdala reactivity observed between cases and controls have been suggested to 
be influenced by temporal aspects of the amygdala response; it has thus been shown that the 
response of the amygdala in patients with social phobia is delayed as compared to that of 
controls, possibly due to initial focus on the self rather than on the task.613-617 Another property 
of perception in social phobia, that may have influenced the results, is that subjects with social 
phobia also display sustained amygdala activity regardless of whether an emotional face is 
attended to or not.618   
      This study showed the TPH2 and 5-HTTLPR polymorphisms to influence amygdala 
reactivity to a greater extent than did diagnosis of social phobia. In analogy with this finding, a 
study of ADHD found the G and T alleles of the TPH2 polymorphisms rs4570625 and 
rs11178997 to explain variation in neural correlates of a response inhibition task, while 
diagnosis did not.619 The influence of the genetic variation on brain processing patterns was 
hence larger than that of diagnosis. ADHD had previously been associated with both the 
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neural correlates of response inhibition and with the G and T alleles of rs4570625 and 
rs11178997.480  
 
Serotonergic transmission & amygdala reactivity 
Although the relationships between (i) the 5-HTTLPR and depression & anxiety, (ii) the 5-
HTTLPR and amygdala reactivity, (iii) the 5-HTTLPR and serotonin transporter availability, 
(iv) depression & anxiety and amygdala reactivity, (v) depression & anxiety and serotonin 
transporter availability and (vi) amygdala reactivity and amygdalar serotonin transporter 
availability are all reasonably well in line with each other (see SEROTONIN), it remains to 
establish whether enhanced serotonergic transmission leads to increased or reduced amygdala 
reactivity. Carriers of the S allele, as well as subjects with depression or anxious mood appear to 
have low levels of the serotonin transporter, suggesting that serotonin levels may be increased. 
But the effect of few serotonin transporters may also have been exerted during development, 
possibly leading to a compromised serotonergic system including reduced serotonergic 
innervation.262,357 In the same vein, low serotonin transporter availability in patients with 
depression may reflect a lower density of serotonergic neurons (see below). 
      In line with the first view, i.e. that enhanced amygdala reactivity, in S carriers, is due to an 
elevated serotonergic transmission, reduced 5-HT1A autoreceptor density is reported to 
explain more than 40% of the variation in increased amygdala reactivity to emotional 
stimuli,620 hence linking a weak negative feedback, tentatively leading to an increased 
serotonergic influence on the amygdala, to increased amygdala reactivity. On the other hand, 
in line with the second view, i.e. that enhanced amygdala reactivity is due to a reduced 
serotonergic transmission, serotonin has been shown to reduce amygdala excitation: Electrical 
stimulation of the raphe thus inhibits the activity of neurons in the rat amygdala, an effect that 
is blocked by serotonin depletion and restored by 5-HTP administration, thus indicating 
serotonergic mediation.621 In addition, serotonin has been shown to inhibit neurons of the 
lateral amygdala by exciting GABAergic neurons, which in turn inhibits excitatory input from 
frontal regions to the amygdala,622,623 GABA A agonists mimicking the effect of serotonin. 
Current data on whether the effect of the TPH2 rs4570625 polymorphism on serotonergic 
transmission is enhancing or reducing also remain inconclusive.477,478 
      Arguing against a view where the quantity of serotonergic transmission is closely related to 
amygdala reactivity, both tryptophan depletion438,624,625 and acute SSRI treatment626 may 
elevate amygdala reactivity, the former presumably by decreasing serotonin levels and the latter 
by increasing them. It thus seems that the amygdala may react to endogenous changes in 
serotonin availability. The amygdala also reacts to exogenous change such as unpredictability; a 
recent study revealed elevated amygdala engagement when an unexpected tone was presented 
after a set of predictable tones in both mice and men,627 an uncertainty-induced amygdala 
activation that also affected the subsequent sensitivity to negativity. The 5-HTTLPR and 
TPH2 polymorphisms may then, possibly, have an influence on the flexibility of the 
serotonergic system during change. 
      Different responses to change in S and LL carriers have thus been observed in several 
studies; healthy S allele carriers display increased amygdala activation at rest after increased 
exposure to stress, possibly increased activation of the amygdala after tryptophan depletion, and 
increased depressive/anxious symptoms and reduced motivation after tryptophan depletion. In 
contrast, healthy carriers of the LL genotype display reduced amygdala rest activation after 
increased stress exposure and increased motivation after tryptophan depletion.433,438,439,442 
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Paper IIPaper IIPaper IIPaper II    
        

AAAA LINK BETWEEN S LINK BETWEEN S LINK BETWEEN S LINK BETWEEN SEROTONINEROTONINEROTONINEROTONIN----RELATED GENE POLYMORRELATED GENE POLYMORRELATED GENE POLYMORRELATED GENE POLYMORPHISMSPHISMSPHISMSPHISMS,,,, AMYGDALA ACTIVITY  AMYGDALA ACTIVITY  AMYGDALA ACTIVITY  AMYGDALA ACTIVITY 

AND PLACEBOAND PLACEBOAND PLACEBOAND PLACEBO----INDUCED RELIEF FROM INDUCED RELIEF FROM INDUCED RELIEF FROM INDUCED RELIEF FROM SOCIAL ANXIETYSOCIAL ANXIETYSOCIAL ANXIETYSOCIAL ANXIETY    

    
Paper II is Paper II is Paper II is Paper II is a study of the influence of serotonina study of the influence of serotonina study of the influence of serotonina study of the influence of serotonin----related genetic variation on placebo related genetic variation on placebo related genetic variation on placebo related genetic variation on placebo 
response andresponse andresponse andresponse and its neural correlates its neural correlates its neural correlates its neural correlates.... Amygdala a Amygdala a Amygdala a Amygdala activity during publictivity during publictivity during publictivity during public speaking wasc speaking wasc speaking wasc speaking was    
measured before and after chronic placebo treatment. measured before and after chronic placebo treatment. measured before and after chronic placebo treatment. measured before and after chronic placebo treatment. The placebThe placebThe placebThe placebo response rate in this o response rate in this o response rate in this o response rate in this 
study wasstudy wasstudy wasstudy was 40%  40%  40%  40% ((((responders: responders: responders: responders: nnnn=10=10=10=10;;;;    nonnonnonnon----responders:responders:responders:responders:    nnnn=15)=15)=15)=15).... Responders display Responders display Responders display Responders displayedededed reduced  reduced  reduced  reduced 
public speakingpublic speakingpublic speakingpublic speaking----induced amygdala activity after plainduced amygdala activity after plainduced amygdala activity after plainduced amygdala activity after placebo treatment, ancebo treatment, ancebo treatment, ancebo treatment, and this reduction d this reduction d this reduction d this reduction 
waswaswaswas more pronounced in carriers of the LL and GG genotypes of the 5 more pronounced in carriers of the LL and GG genotypes of the 5 more pronounced in carriers of the LL and GG genotypes of the 5 more pronounced in carriers of the LL and GG genotypes of the 5----HTTLPR and the HTTLPR and the HTTLPR and the HTTLPR and the 
TPH2TPH2TPH2TPH2 rs4570625 rs4570625 rs4570625 rs4570625 promoter polymorphisms promoter polymorphisms promoter polymorphisms promoter polymorphisms, respectively, respectively, respectively, respectively.... The  The  The  The TPH2TPH2TPH2TPH2 polymorphism was  polymorphism was  polymorphism was  polymorphism was 
also significantly associated with placebo response;also significantly associated with placebo response;also significantly associated with placebo response;also significantly associated with placebo response;    oooout of nine placebo resput of nine placebo resput of nine placebo resput of nine placebo respondersondersondersonders (with  (with  (with  (with 
genotype information)genotype information)genotype information)genotype information), eight were, eight were, eight were, eight were homozygous for the G allele of the  homozygous for the G allele of the  homozygous for the G allele of the  homozygous for the G allele of the TPH2TPH2TPH2TPH2    
polymorphism.polymorphism.polymorphism.polymorphism.    
 
The 5-HTTLPR and the TPH2 polymorphisms and treatment response 
Notably, the LL genotype of the 5-HTTLPR has also been associated with superior 
antidepressant response to repetitive transcranial magnetic stimulation,628 to light therapy and 
sleep deprivation.629,630 The response to chronic SRI treatment has also been shown to be 
superior for L carriers of the 5-HTTLR in meta-studies of depression and for subjects with 
social phobia.631-635 Contrary to the enhanced placebo response in TPH2 GG carriers, however, 
one study investigated the TPH2 polymorphism in relation to antidepressant response and 
showed indicative evidence of an enhanced response for T allele carriers.467  
 
Similarities between placebo and active treatments 
In line with our observations, several of the changes in brain activity induced by 
pharmacological and psychotherapeutic treatment of depression and anxiety disorders, 
including reduced amygdala activity,36,69,186,187 have previously been observed also after 
successful placebo treatment.213,215,216 One explanation for this would be that all active 
treatments act by means of a final common pathway, including reduced reactivity of the 
amygdala, and another that amygdala hyperreactivity is a consequence of the disorder, which 
hence may be reduced whenever the symptoms are disappearing, regardless of the reason for 
this improvement. 
    

Paper IIIPaper IIIPaper IIIPaper III    
    

GGGGENETIC VARIATION IN ENETIC VARIATION IN ENETIC VARIATION IN ENETIC VARIATION IN BDNFBDNFBDNFBDNF IS ASSOCIATED WITH  IS ASSOCIATED WITH  IS ASSOCIATED WITH  IS ASSOCIATED WITH SEROTONIN TRANSPORTESEROTONIN TRANSPORTESEROTONIN TRANSPORTESEROTONIN TRANSPORTER BUT NOT R BUT NOT R BUT NOT R BUT NOT 

5555----HT1AHT1AHT1AHT1A RECEPTOR AVAILABILI RECEPTOR AVAILABILI RECEPTOR AVAILABILI RECEPTOR AVAILABILITY IN HUMANSTY IN HUMANSTY IN HUMANSTY IN HUMANS    

    
Paper III is a studyPaper III is a studyPaper III is a studyPaper III is a study of serotonin of serotonin of serotonin of serotonin----related proteins in the brain, as measured by positron related proteins in the brain, as measured by positron related proteins in the brain, as measured by positron related proteins in the brain, as measured by positron 
emission tomography (emission tomography (emission tomography (emission tomography (PET) andPET) andPET) andPET) and single photon emission computed tomography  single photon emission computed tomography  single photon emission computed tomography  single photon emission computed tomography 
(SPECT)(SPECT)(SPECT)(SPECT). B. B. B. Binding of the radioligands [inding of the radioligands [inding of the radioligands [inding of the radioligands [11111111C]MADAM (C]MADAM (C]MADAM (C]MADAM (nnnn=25) and =25) and =25) and =25) and 123123123123IIII----β----CIT (CIT (CIT (CIT (nnnn=18)=18)=18)=18) to  to  to  to 
the serotonin transporterthe serotonin transporterthe serotonin transporterthe serotonin transporter,,,, and of the radioligand [ and of the radioligand [ and of the radioligand [ and of the radioligand [11111111C]WAY (C]WAY (C]WAY (C]WAY (nnnn=53) to the 5=53) to the 5=53) to the 5=53) to the 5----HT1AHT1AHT1AHT1A    
receptor was hencereceptor was hencereceptor was hencereceptor was hence measured and related to v measured and related to v measured and related to v measured and related to variation inariation inariation inariation in the gene encoding the gene encoding the gene encoding the gene encoding    BDNFBDNFBDNFBDNF. . . . 
Several SNPs wereSeveral SNPs wereSeveral SNPs wereSeveral SNPs were shown to be associated with serotonin transporter availability as  shown to be associated with serotonin transporter availability as  shown to be associated with serotonin transporter availability as  shown to be associated with serotonin transporter availability as 



 43 

measured by measured by measured by measured by [[[[11111111C]MADAM binding potentialC]MADAM binding potentialC]MADAM binding potentialC]MADAM binding potential, including the Val66Met polymorphism; , including the Val66Met polymorphism; , including the Val66Met polymorphism; , including the Val66Met polymorphism; 
men carrying the Val/Val genotype, associated with enhancmen carrying the Val/Val genotype, associated with enhancmen carrying the Val/Val genotype, associated with enhancmen carrying the Val/Val genotype, associated with enhanced BDNF secretion, ed BDNF secretion, ed BDNF secretion, ed BDNF secretion, thus thus thus thus 
displaydisplaydisplaydisplayedededed increased transporter availability in mo increased transporter availability in mo increased transporter availability in mo increased transporter availability in most brain regions. This finding was partly st brain regions. This finding was partly st brain regions. This finding was partly st brain regions. This finding was partly 
replicated in an independent sample where serotonin transporter had been measured replicated in an independent sample where serotonin transporter had been measured replicated in an independent sample where serotonin transporter had been measured replicated in an independent sample where serotonin transporter had been measured 
usingusingusingusing the  the  the  the 123123123123IIII----β----CIT CIT CIT CIT ligandligandligandligand. There . There . There . There was was was was no difference between no difference between no difference between no difference between BDNFBDNFBDNFBDNF genotypes in  genotypes in  genotypes in  genotypes in 
[[[[11111111C]WAY binding potential. C]WAY binding potential. C]WAY binding potential. C]WAY binding potential.     
 
How BDNF may increase serotonin transporter availability 
Since the Val allele of the BDNF Val66Met polymorphism is associated with an increased 
activity-dependent secretion of BDNF, the observed association suggests enhanced BDNF 
function to be associated with enhanced transporter function. Such a relationship could be due 
either to a direct influence of BDNF on the expression of the gene encoding the serotonin 
transporter – implicating a relationship between enhanced BDNF function and reduced 
extracellular serotonin levels – or to a plastic effect of BDNF on serotonergic neurons565,566 –
probably implicating a relationship between enhanced BDNF function and increased 
serotonergic output. In line with our finding, heterozygous BDNF knock-outs display reduced 
transporter function; moreover, BDNF administration leads to a direct enhancement of 
transporter function.573-575,577 
       
The interaction between BDNF and the serotonergic system in relation to depression 
The notion that BDNF enhances serotonin transporter function also appears to be in line with 
the relationships both between BDNF and depression and between the serotonin transporter 
and depression. Both brain serotonin transporter availability308-311,313,314 and BDNF plasma 
levels appear to be reduced in depression. Treatment-induced elevations of BDNF levels may 
also be involved in the mechanism of action of antidepressants.524,525,528,530-540 Although results 
on the relationship of the BDNF Val66Met polymorphism with depression diverge,554,557 the 
Met allele, which previously has been associated with reduced BDNF secretion,508-510 and 
which is associated with reduced serotonin transporter availability in men in this study, has 
been associated with a dysfunctional stress system636 and with reduced hippocampus volume 
and function,509,517-521 both of which are traits that may be related to depression. The same 
allele has also been associated with the depressogenic effect of SLEs.510,559,560  
 
The lack of influence of BDNF variation on 5-HT1A density 
There was no association between variation in BDNF and 5-HT1A density, either in the raphe, 
or in other regions of the brain. Since 5-HT1A receptors are situated on serotonergic neurons 
in the raphe, this finding may suggest that the potential effect that BDNF may have on the 
plasticity of serotonergic neurons does not have an impact on neuron number in the raphe, and 
hence that the influence of variation in BDNF on serotonin transporter availability is not 
related to the density of serotonergic neurons in raphe. The density of 5-HT1A receptors may 
however be affected by many other factors, rendering the power of finding an influence of 
BDNF variation low. One of these factors is stress. Both BDNF and the serotonergic system 
are influenced by stress. For example, the gene encoding the 5-HT1A receptor, HTR1A, is a 
direct target of the glucocorticoid receptor (GCR).334,637 
    

    
    
    



 44 

Paper IVPaper IVPaper IVPaper IV    
    

AAAA ST ST ST STUUUUDY OF DY OF DY OF DY OF 22222222 SEROTONIN SEROTONIN SEROTONIN SEROTONIN----RELATED GENES REVEALRELATED GENES REVEALRELATED GENES REVEALRELATED GENES REVEALS ASSOCIATION BETWEES ASSOCIATION BETWEES ASSOCIATION BETWEES ASSOCIATION BETWEEN N N N 

PREMENSTRUAL DYSPHORPREMENSTRUAL DYSPHORPREMENSTRUAL DYSPHORPREMENSTRUAL DYSPHORIA AND GENES ENCODINIA AND GENES ENCODINIA AND GENES ENCODINIA AND GENES ENCODING THE G THE G THE G THE GATA2GATA2GATA2GATA2 TRANSCRIPTION  TRANSCRIPTION  TRANSCRIPTION  TRANSCRIPTION 

FACTORFACTORFACTORFACTOR,,,, THE  THE  THE  THE 5555----HT3BHT3BHT3BHT3B RECEPTOR SUBUNIT AN RECEPTOR SUBUNIT AN RECEPTOR SUBUNIT AN RECEPTOR SUBUNIT AND TRYPTOPHAN HYDROXYD TRYPTOPHAN HYDROXYD TRYPTOPHAN HYDROXYD TRYPTOPHAN HYDROXYLASE LASE LASE LASE 2222    

    
Paper Paper Paper Paper IVIVIVIV is a case is a case is a case is a case----control association study of PMDD. control association study of PMDD. control association study of PMDD. control association study of PMDD. The evidence supporting The evidence supporting The evidence supporting The evidence supporting 
serotonergic transmission serotonergic transmission serotonergic transmission serotonergic transmission to to to to be involved in PMDD is strong. For example, tryptophan be involved in PMDD is strong. For example, tryptophan be involved in PMDD is strong. For example, tryptophan be involved in PMDD is strong. For example, tryptophan 
depletion aggravates the symptoms of PMDDdepletion aggravates the symptoms of PMDDdepletion aggravates the symptoms of PMDDdepletion aggravates the symptoms of PMDD, and women with this disorder, and women with this disorder, and women with this disorder, and women with this disorder res res res respond pond pond pond 
instantly to SRI treatmentinstantly to SRI treatmentinstantly to SRI treatmentinstantly to SRI treatment    ((((but but but but not to nonnot to nonnot to nonnot to non----serotonergic antidepressantsserotonergic antidepressantsserotonergic antidepressantsserotonergic antidepressants)))) by displaying  by displaying  by displaying  by displaying 
markedly reduced irritability; moreover, theymarkedly reduced irritability; moreover, theymarkedly reduced irritability; moreover, theymarkedly reduced irritability; moreover, they may also show reduced symptoms after may also show reduced symptoms after may also show reduced symptoms after may also show reduced symptoms after    
administration of serotonin releasers oradministration of serotonin releasers oradministration of serotonin releasers oradministration of serotonin releasers or tryptophan tryptophan tryptophan tryptophan....    In paper IV, 58 polymorphisms iIn paper IV, 58 polymorphisms iIn paper IV, 58 polymorphisms iIn paper IV, 58 polymorphisms in n n n 
22 serotonin22 serotonin22 serotonin22 serotonin----related genes wererelated genes wererelated genes wererelated genes were    investigated in women investigated in women investigated in women investigated in women suffering fromsuffering fromsuffering fromsuffering from PMDD (two  PMDD (two  PMDD (two  PMDD (two 
groups groups groups groups nnnn1111=293, =293, =293, =293, nnnn2222=57) and in controls=57) and in controls=57) and in controls=57) and in controls    ((((nnnn=825=825=825=825). In ). In ). In ). In TPH2TPH2TPH2TPH2, the T allele of rs1386494 and , the T allele of rs1386494 and , the T allele of rs1386494 and , the T allele of rs1386494 and 
the A allele of the rs11178997 were associated with PMDD, the A allele of the rs11178997 were associated with PMDD, the A allele of the rs11178997 were associated with PMDD, the A allele of the rs11178997 were associated with PMDD, as were the G allele of the as were the G allele of the as were the G allele of the as were the G allele of the 
intron 4 rs1176746 SNP in intron 4 rs1176746 SNP in intron 4 rs1176746 SNP in intron 4 rs1176746 SNP in HTR3BHTR3BHTR3BHTR3B and t and t and t and the G allele of the 3’UTR  he G allele of the 3’UTR  he G allele of the 3’UTR  he G allele of the 3’UTR  rs2713594 in rs2713594 in rs2713594 in rs2713594 in 
GATAGATAGATAGATA2222. . . .     
 
Association studies and function of the polymorphisms associated with PMDD 
The C allele of the intron 5 rs1386494 polymorphism in TPH2 has previously been associated 
with depression and suicide, whereas the T allele has been associated with panic disorder.464-466 
The A allele of the TPH2 promoter polymorphism (rs11178997) has been associated with 
bipolar disorder but may be protective against depression.452 The HTR3B G allele has been 
associated with depression, and a polymorphism in the gene encoding the A subunit of the 5-
HT3 receptor has been associated with anxiety- and anger-related traits, as well as with 
amygdala reactivity.220 GATA2 is involved in the development and differentiation of 
serotonergic neurons and variation in GATA2 is hence expected to affect serotonergic 
transmission. 
      The A allele of the rs11178997 has been associated with reduced TPH2 promoter 
activity.477,478 The G allele of the HTR3B rs1176746 is in LD with the Tyr allele of the 
Tyr129Ser (rs1176744) in exon 5, and a haplotype containing the G-Tyr alleles has been 
associated with depression in women.485 The Ser allele of the Tyr129Ser has been associated 
with a sevenfold enhanced 5-HT3 receptor function,488 hence suggesting the G allele of the 
rs1176746 to be related to a reduced function of the 5-HT3 receptor. 
 
The relationship between serotonergic transmission and mood & anxiety disorders 
The antidepressant and anxiety-reducing effect of chronic SRI treatment is often believed to be 
due to an enhancement of serotonergic transmission. However, since the effects of acute and 
chronic antidepressant treatment on several phenotypes, including anxiety, are largely opposite, 
and since acute SRI administration clearly increases serotonergic output, this view prompts 
reconsideration.   
      Acute SRI treatment thus increases anxiety in anxious subjects, the recognition of fear, the 
processing of anxiety-related stimuli and amygdala reactivity to emotional faces in healthy 
subjects and fear conditioning in animals,105,106,370,626,638-640 whereas chronic SRI treatment is 
antidepressant, anxiety-reducing, reduces amygdala reactivity to emotional stimuli, and reduces 
fear conditioning in animals.36,186-188,190,370 Although extracellular serotonin levels are increased 
also after chronic antidepressant treatment, it is possible that the high serotonin levels induce 
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adaptations of the serotonergic system, possibly leading to a reduced serotonergic output in 
spite of increased extracellular levels. The recent finding that jugular 5-HIAA levels are high in 
depressed subjects and in subjects with panic disorder302,303 – an increase that is normalized by 
antidepressant treatment – supports the notion that depression and/or anxiety disorders are 
related to enhanced serotonergic transmission. The increased TPH2 levels observed in 
depressed suicides may also support this notion. On the other hand, there is a large body of 
data that support the notion that serotonergic transmission is reduced in depression and 
anxiety, including the association between loss-of-function TPH2 polymorphisms and 
depression,41,42 depression relapse after tryptophan depletion and a reduced prolactin response 
to serotonin-releasing agents in depressive and anxious subjects.6,7,265-269,280 The fact that some 
side effects related to low serotonergic transmission are present also after chronic SRI treatment 
also contradicts a view where chronic SRI treatment is associated with a reduced serotonergic 
output. 
      Although the relationship between depression and anxiety disorders, on the one hand, and 
serotonergic transmission, on the other, thus is difficult to elucidate, the influence of 
serotonergic transmission on PMDD seems to be more clear-cut. A large body of evidence 
strongly suggests PMDD to be related to a deficiency in serotonergic transmission. A disorder 
that is due to a deficiency in serotonergic transmission would be expected to be accompanied 
by abnormal levels of serotonin-related biological markers; examples of reported differences 
between women with PMDD and controls are thus reduced 5-HTP levels during phases of 
PMD symptoms279 and reduced density of the serotonin transporter in platelets in women with 
PMDD.290 Symptoms of a disorder related to low serotonergic function would also be expected 
to increase by serotonin or tryptophan depletion; animals do display irritability when serotonin 
is depleted, and tryptophan depletion and serotonin receptor antagonists do induce an 
aggravation of PMD symptoms, in particular irritability.378,641 A disorder that is due to a 
deficiency in serotonergic transmission would also be expected to be ameliorated by drugs that 
increase serotonin levels; both acute SRI treatment and serotonin-releasing agents reduce PMD 
symptoms,642,643 as do tryptophan and a TPH co-factor (pyridoxine).101,102,288,644 Notably, 
amongst all SRI indications, PMDD is the one displaying the most rapid response to these 
drugs, as well as the largest effect size,99,101,102 especially for the irritability-related symptoms. 
The findings of the present study, i.e. that alleles that have been linked to a reduced function of 
the TPH2 and of the 5-HT3 receptor are associated with PMDD, are hence perfectly in line 
with a large number of other observations supporting the view that PMDD is related to 
deficiencies in serotonergic transmission. 
    

Paper VPaper VPaper VPaper V    
    

PPPPOSSIBLE EFFECTS OF IOSSIBLE EFFECTS OF IOSSIBLE EFFECTS OF IOSSIBLE EFFECTS OF INTERACTIONS BETWEEN NTERACTIONS BETWEEN NTERACTIONS BETWEEN NTERACTIONS BETWEEN THE SEROTONIN TRANSPTHE SEROTONIN TRANSPTHE SEROTONIN TRANSPTHE SEROTONIN TRANSPORTER ORTER ORTER ORTER 

POLYMORPHISM POLYMORPHISM POLYMORPHISM POLYMORPHISM 5555----HTTLPR,HTTLPR,HTTLPR,HTTLPR, THE  THE  THE  THE BDNFBDNFBDNFBDNF    VVVVALALALAL66M66M66M66METETETET POLYMORPHISM AND AN POLYMORPHISM AND AN POLYMORPHISM AND AN POLYMORPHISM AND ANXIETYXIETYXIETYXIETY----
RELATED PERSONALITY RELATED PERSONALITY RELATED PERSONALITY RELATED PERSONALITY TRAITS ON CONTROLLABTRAITS ON CONTROLLABTRAITS ON CONTROLLABTRAITS ON CONTROLLABLE STRESSFUL LIFE EVLE STRESSFUL LIFE EVLE STRESSFUL LIFE EVLE STRESSFUL LIFE EVENTSENTSENTSENTS    

    
Paper VPaper VPaper VPaper V    is a study of the interis a study of the interis a study of the interis a study of the inter----relationship between controllable stressful life events relationship between controllable stressful life events relationship between controllable stressful life events relationship between controllable stressful life events 
(SLEs), current and past depression, anxiety(SLEs), current and past depression, anxiety(SLEs), current and past depression, anxiety(SLEs), current and past depression, anxiety----related personality traits and related personality traits and related personality traits and related personality traits and the 5the 5the 5the 5----
HTTLPR and HTTLPR and HTTLPR and HTTLPR and BDNFBDNFBDNFBDNF Val66Met polymorphisms. Previous studies have shown an  Val66Met polymorphisms. Previous studies have shown an  Val66Met polymorphisms. Previous studies have shown an  Val66Met polymorphisms. Previous studies have shown an 
interaction between the S allele of the 5interaction between the S allele of the 5interaction between the S allele of the 5interaction between the S allele of the 5----HTTLPR, the Met allele of the Val66Met and HTTLPR, the Met allele of the Val66Met and HTTLPR, the Met allele of the Val66Met and HTTLPR, the Met allele of the Val66Met and 
SLEs to increase the risk for depression, a fiSLEs to increase the risk for depression, a fiSLEs to increase the risk for depression, a fiSLEs to increase the risk for depression, a finding that we, however, couldnding that we, however, couldnding that we, however, couldnding that we, however, could not replicate.  not replicate.  not replicate.  not replicate. 
HowHowHowHowever, the 5ever, the 5ever, the 5ever, the 5----HTTLHTTLHTTLHTTLPR and the PR and the PR and the PR and the BDNFBDNFBDNFBDNF polymorphism did show polymorphism did show polymorphism did show polymorphism did show an interactive effect  an interactive effect  an interactive effect  an interactive effect 
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on exposure to controllable SLEs in men, carriers of SS and Meton exposure to controllable SLEs in men, carriers of SS and Meton exposure to controllable SLEs in men, carriers of SS and Meton exposure to controllable SLEs in men, carriers of SS and Met----containing genotypes containing genotypes containing genotypes containing genotypes 
displaying the highest number of SLEs. There was an interactive effect also between the displaying the highest number of SLEs. There was an interactive effect also between the displaying the highest number of SLEs. There was an interactive effect also between the displaying the highest number of SLEs. There was an interactive effect also between the 
5555----HTTLPHTTLPHTTLPHTTLPR and anxietyR and anxietyR and anxietyR and anxiety----related personality traits on reports of controllable SLEs, such related personality traits on reports of controllable SLEs, such related personality traits on reports of controllable SLEs, such related personality traits on reports of controllable SLEs, such 
that men with the SS genotype had experienced that men with the SS genotype had experienced that men with the SS genotype had experienced that men with the SS genotype had experienced lesslesslessless SLEs if they had high anxiety SLEs if they had high anxiety SLEs if they had high anxiety SLEs if they had high anxiety----related related related related 
traits and that men with the LL genotype had experienced traits and that men with the LL genotype had experienced traits and that men with the LL genotype had experienced traits and that men with the LL genotype had experienced moremoremoremore SLEs if they scored high  SLEs if they scored high  SLEs if they scored high  SLEs if they scored high 
oooon anxietyn anxietyn anxietyn anxiety----related traits. The previously observed synergistic interaction between SLEs related traits. The previously observed synergistic interaction between SLEs related traits. The previously observed synergistic interaction between SLEs related traits. The previously observed synergistic interaction between SLEs 
and the 5and the 5and the 5and the 5----HTTLPR on risk for depression was only observed in men with low anxietyHTTLPR on risk for depression was only observed in men with low anxietyHTTLPR on risk for depression was only observed in men with low anxietyHTTLPR on risk for depression was only observed in men with low anxiety----
related traits. related traits. related traits. related traits.         
    
Interactions between stress & serotonin 
An increased stress sensitivity in S carriers of the 5-HTTLPR has previously been shown by an 
increased startle response,418 by an increased HPA axis response to stress,645 by increased fear 
conditioning,419 and by the synergistic interaction between the S allele and SLEs, or childhood 
maltreatment, on depression risk.86,420 This increased stress sensitivity in S allele carriers has 
been proposed to be mediated by the amygdala, which shows enhanced reactivity and rest 
activity in S carriers. The enhanced rest activity of the amygdala, observed in S carriers, has 
been reported to be further increased by the exposure to SLEs,38,433 whereas LL carriers have 
been reported to display a negative correlation between the number of SLEs and amygdala rest 
activity. The present study suggests that the correlation between anxiety-related personality 
traits and controllable SLEs also depends on 5-HTTLPR genotype; SS carriers thus display a 
negative correlation between the number of controllable SLEs reported for the last year and 
anxiety-related personality traits, while this correlation is positive in carriers of the LL 
genotype. Whether or not causality is involved in these relationships remains uncertain. High 
anxiety-related traits in S-allele carriers could lead to an active avoidance of controllable SLEs 
(harm avoidance), or, the interaction could reflect that LL carriers develop increased anxiety-
related traits as a consequence of controllable SLEs, whereas carriers of the SS genotype 
somehow are protected against such an influence. 
      In this study, the interaction between the S allele and controllable SLEs, which previously 
has been demonstrated by several researchers,86,90,420,422 was observed only in men with low 
anxiety-related personality traits. One possible explanation for this observation may be that 
self-reported depression, as well as self-reported SLEs, may be more robust and reliable, and 
less influenced by personality traits, in subjects with low anxiety-related traits than in those 
displaying high anxiety-related traits.646 The notion that stressful events interact with a 
polymorphism that affects serotonergic transmission is not surprising given the extensive body 
of data that suggest serotonin to affect the stress response362,478 and stress to affect the 
serotonergic system.321,647-655 The interaction that other groups have shown between the 5-
HTTLPR and SLEs could reflect an enhanced effect of stress on the serotonergic system in S 
carriers, or an effect of the S allele on the serotonergic system, which in turn affects the stress 
response.  
 
Interactions between stress, serotonin and BDNF 
Three studies have reported a three-way interaction between environmental exposure and the S 
and Met alleles on depression.510,559,560 Two of the studies on this subject investigated the 
influence of childhood maltreatment and childhood experience on childhood and adult 
depression, respectively,559,560 and the third study examined the depressogenic effects of SLEs in 
Corean elderly subjects.510 The notion that a polymorphism in BDNF interacts with the 5-
HTTLPR-SLE interaction observed for depression is also not surprising, given that the BDNF 
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Met allele has been associated with dysregulation of the HPA axis,636 and that BDNF largely 
interacts with the serotonergic system (see paper III and the SEROTONIN & BDNF section). 
In addition, overexpression of glucocorticoid receptors has been shown to increase BDNF 
levels and to reduce the depressogenic-like effects of SLEs in mice.     
      Our study did not include an assessment of current depression by means of diagnostic 
interview. By using standard cut-offs on the depression scale,656 we could however not replicate 
the finding of an interaction between SLE exposure in adulthood, the 5-HTTLPR and the 
Val66Met polymorphism on depression risk.510 Previous studies of the relationship between the 
BDNF Val66Met polymorphism and depression- and anxiety-related phenotypes are however 
inconclusive. A study aiming at investigating the neural correlates of emotional processing has 
thus found the    reduced connectivity between the amygdala and the ACC, observed in 5-
HTTLPR S carriers,202 to be present only in carriers of the BDNF Val/Val genotype, possibly 
suggesting the BDNF Met allele to be protective against 5-HTTLPR-S-induced effects on 
emotional processing and anxiety-related traits.657 In addition, association studies of the BDNF 
polymorphism with respect to depression- and anxiety-related phenotypes report both the Val 
and Met alleles to be associated with such traits.554-558 
      We did observe an interaction between the 5-HTTLPR and the BDNF polymorphism on 
the number of controllable SLEs, male carriers of the SS genotype and Met allele reporting the 
highest numbers of controllable SLEs. Since this interaction was present also when all subjects 
that could be depressed were excluded, it is not likely that life events were perceived as stressful 
because of ongoing depression in these individuals.  
      Overlapping heritability between SLEs and depression has been suggested to be a 
confounding factor in studies aiming at elucidating the relationship between SLEs and 
depression.89 The notion that the same genotypes that have been reported to interact with SLEs 
in increasing the risk for depression, also increase the risk for exposure to SLEs, may influence 
the interpretation of the former finding and may also explain why we did not observe the 5-
HTTLPR-BDNF-SLE-interaction for depression in our study. It may also be considered as 
support for shared heritability between depression and SLEs.  
 
The inter-relationship between factors that have been related to depression 
Although there is evidence that serotonin, stress, hippocampal atrophy and BDNF may be 
involved in depression pathophysiology, it is worth noting that neither cortisol administration, 
nor hippocampal lesions, nor neoneurogenesis inhibition, nor serotonin depletion, nor BDNF 
inhibition consistently give rise to depression in healthy individuals.265,273,538,658 6,115,128,131,659    It 
would be interesting to know whether the same subgroup of depressed patients that displays 
dysregulation of the HPA axis also has reduced hippocampal volumes660 and if these subjects 
are those who drive the interaction between the 5-HTTLPR S allele and SLEs. A normalization 
of the hippocampal volume after remission has been correlated with a normalized HPA axis 
regulation, and the volume reduction of the hippocampus is larger in depressive subjects who 
have experienced SLEs or trauma.134,137 Although the S allele has been associated to an 
enhanced HPA axis response to stress,645the interaction between the 5-HTTLPR and SLEs has 
not been related to either HPA axis regulation or hippocampal volume. 
 
Sex differences related to stress, serotonin and BDNF 
We only observed genetic effects in men. Although the interactive effect between SLEs and the 
5-HTTLPR on depression has previously been demonstrated for both men and women, factors 
that affect this association may be different in men and women. Both the behavioural and the 
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molecular response to stress may differ in men and women. In animals, exposure to stressful 
events appears to facilitate learning in males and impair performance in females, a difference 
that is prevented by perinatal testosterone administration to females or inhibition of the action 
of androgens during prenatal development in males.335,661-663 Rearing environment also affects 
male and female animals differently; whereas females display more dendritic sprouting than 
males when reared in enriched environments, the relationship is the opposite when the animals 
are reared in normal householdings.664 In addition, the serotonergic systems of men and 
women may display differences that can influence the interaction.665 666 667-669 670 The finding 
that the interaction between variation in the genes encoding the serotonin transporter and 
BDNF was present only in men is consistent with animal studies suggesting the interactive 
effects between the genes encoding the serotonin transporter and BDNF to be reduced by 
female gender or estrogen administration.570 
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INFLINFLINFLINFLUENCE OF SEX STEROIDUENCE OF SEX STEROIDUENCE OF SEX STEROIDUENCE OF SEX STEROID----RRRRELATED GENETIC ELATED GENETIC ELATED GENETIC ELATED GENETIC 

VARIATION ON PERSONALITY, AUTISM AND VARIATION ON PERSONALITY, AUTISM AND VARIATION ON PERSONALITY, AUTISM AND VARIATION ON PERSONALITY, AUTISM AND 

TRANSSEXUALISM TRANSSEXUALISM TRANSSEXUALISM TRANSSEXUALISM     

 

TRAITSTRAITSTRAITSTRAITS 

 

AUTISMAUTISMAUTISMAUTISM    
Autism characteristicsAutism characteristicsAutism characteristicsAutism characteristics    
 
Autism and autism spectrum disorder (ASD) 
Autism, first described in 1943, is a disorder characterized by social and language impairments 
as well as restricted, repetitive behaviours and interests. Autism spectrum disorder also includes 
Asperger syndrome, pervasive developmental disorder (PDD), child disintegrative disorder, 
Rett syndrome and PDD not otherwise specified (PDD-NOS). The level of cognitive function 
in autism spans from severe mental retardation to a superior IQ and even savant skillsC. 
According to DSM-IV, mental retardation is characterized by an IQ under 70 as well as by 
adaptation impairments during childhood. The proportion of autistic individuals who meet the 
criteria for mental retardation has been reported to be in between 25 and 70%.671 The 
prevalence of autism and ASD may be as high as 0.5% and 1%, respectively672,673 and autism 
and ASD are at least four times more common in men than in women.674-676 
 
Heritability of autism 
Autism aetiology has a large heritable component. The heritability thus is approximately 
80%,10,677,678 with highest heritability estimates obtained for a broad phenotype. The difference 
in concordance between MZ and DZ twins is large; the concordance is over 80% in MZ and 
under 10% in DZ twins,679,680 and the risk for autism when a sibling is affected is increased 25-
75 times.681,682 The three aspects, i.e. social function, language and repetitive and or restrictive 
domains, are all highly heritable but show low covariation; distinct genetic influences have 
been identified for all three components.678 
       
Syndromic forms of autism 
Approximately 5% of autism cases co-occur with known genetic syndromes, which usually are 
accompanied by facial dysmorphia and sometimes other somatic phenotypes. The actual 
number may be higher since new syndromes are detected continuously.683 Two examples of 
such syndromes are the Fragile X syndrome, caused by mutations of the fMR1 gene located on 
chromosome Xq27, and Rett syndrome, caused by mutations of the MECP2 gene located on 
chromosome Xq28. The fMR1 mutations results in failure of the production of the fragile X 
mental retardation protein (FMRP), which is required for normal development and 
transcriptional repression.  Mutations, the large majority of which are de novo mutations (i.e. 
that appear in the parental germ line), in MECP2 cause Rett syndrome, a disorder that 
exclusively affects girls. MECP2 encodes the methyl CpG binding protein 2, which is involved 
in transcriptional repression and chromatin remodelling. The chromosomal regions 15q13 and 
22q13 are also implicated in syndromic forms of autism.684-686 
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Theories of autismTheories of autismTheories of autismTheories of autism    
Deficits in autism include impairements in comlex processing,687 executive function,688 central 
coherence689 and joint attention.690 Subjects with autism display impairments in theory of 
mind (TOM) (also called mentalizing or empathizing), which is the ability to attribute mental 
states to self and others with the role of making sense of their thoughts and behaviour, and the 
capacity to show emotional reactions appropriate to the mental states of others.691 The reaction 
to irrelevant stimuli appears to be increased and the filtering of incoming information – with 
the role both of protecting the brain against information overload and of letting the 
information that is most relevant to get more attention – appears to be impaired.  Abnormal 
brain growth, especially of frontal white matter, and reduced frontal activity when performing 
the above-mentioned tasks as well as reduced functional connectivity between brain regions has 
also been reported.3,692-710 Several overlapping theories have been proposed for why and how 
cognition is different in subjects with autism and ASD.  
      The Central coherence theory suggests an exaggerated focus on details at the expense of a 
limited ability to generalize and to see the bigger picture, to be the core issue in autism. The 
increased focusing on details is described as a cognitive style, since it gives rise to both talents 
and impairments.689 It has been proposed to be due to poor connectivity between different 
brain regions.711 It may also be related to the increased risk for autism in males, since males and 
subjects with smaller 2D:4D (indicative of larger prenatal androgen exposure) have been shown 
to display increased performance on tasks that require focus on details. Another autism theory 
is the Complex information processing or Executive function theory, which suggests fronto-
parietal developmental impairments to result in problems with e.g. flexibility and planning, 
thus causing social difficulties and repetitive behaviours.687  
      The systemizing-empathizing theory for psychological sex differences712 has been extended 
to the Extreme male brain theory for autism.675,713 This theory is based on the similarities 
between sex differences, on the one hand, and autism case-control differences, on the other, 
with respect to empathizing and systemizing behaviours, and also on the differential prevalence 
for autism observed for men and women. On average, women are better at empathizing tasks 
such as emotion recognition, while men are better at systemizing tasks such as the embedded 
figures task.703,714-717 Similarly, subjects with autism have a delayed development of TOM and 
joint attention, both related to empathizing, and they also display restricted interests and 
obsessions that are often related to systemizing, e.g. regarding lawful systems and machines. 
Such findings are the basis of the hypothesis that increased testosterone exposure during 
prenatal development may increase the risk for autism and ASD.675,713  
 

In paper VII, the association between polymorphisms in the androgen receptor and ASD In paper VII, the association between polymorphisms in the androgen receptor and ASD In paper VII, the association between polymorphisms in the androgen receptor and ASD In paper VII, the association between polymorphisms in the androgen receptor and ASD 
iiiis investigated, showing evidence for an influence of an allele that increases androgen s investigated, showing evidence for an influence of an allele that increases androgen s investigated, showing evidence for an influence of an allele that increases androgen s investigated, showing evidence for an influence of an allele that increases androgen 
receptor function on autism spectrum disorder in women.receptor function on autism spectrum disorder in women.receptor function on autism spectrum disorder in women.receptor function on autism spectrum disorder in women.    

 
Genetics of autismGenetics of autismGenetics of autismGenetics of autism    
The genetic background of autism appears to be largely heterogenetic. Linkage analyses have 
revealed peaks on several chromosomes, and larger genetic aberrations have also been found on 
many chromosomes.718 In addition, several rare genetic variants have been shown to be 
associated with autism; some have been exclusive for autism, while others have been associated 
with different autism spectrum diagnoses, as well as with other diagnoses and some have also 
been found in healthy parents.29-32,719,720  



 51 

      Rare variants including cytogenic abnormalities, e.g. deletions at 15q11-13 and 22q11-13, 
as well as copy number variations (CNVs), have been found to be common in autism and 
ASD684,685,718,721-726; these include several de novo deletions (appearing in the parental germ line) 
that may be causal.718 Together with the syndromic forms of autism and the known rare 
mutations, these genetic aberrations probably explain around 20% of autism cases.718,726-728 
Notably, the notion that de novo mutations are common in autism is in line both with the large 
difference in concordance between MZ and DZ twins and with the increased autism incidence 
with increased parental age.729 Rare genetic variants associated with autism have also been 
found in the genes encoding neurexins and neuroligins, interaction between which controls 
synapse formation,29,30,33,730-738 and in the gene encoding the β3 subunit of the gamma-
aminobutyric acid (GABA) A receptor (GABRB3).739 
      Although several associations between common alleles and autism have been reported, 
none has been consistently replicated across studies and is considered to be established 727. The 
fact that no common gene variants have been confirmed as risk factors for autism may be due 
to a large genetic heterogeneity, including the possibility that rare de novo variants are more 
important than previously expected.  
 

TRANSSEXUALISMTRANSSEXUALISMTRANSSEXUALISMTRANSSEXUALISM     

    

Transsexualism is characterized by a gender identity in conflict with the assigned sex, and a 
strong identification with the opposite sex. The prevalence of transsexualism ranges from 
1:3.000 to 1:100.000.740-742 Both aberrations in early sexual differentiation and psychosocial 
factors have been proposed as possible aetiological factors.743 A large familial co-occurrence of 
transsexualism suggests a hereditary component744-746; the heritability has thus been considered 
to be over 50%.747  
      Differences between transsexuals and controls have been observed in volume and structure 
of different brain regions,748,749 and the brains of male-to-female transsexuals have been 
reported to respond to the same odours as do female brains.750 Female-to-male transsexualism 
has been associated with disorders accompanied by hyperandrogenemia, such as polycystic 
ovary syndrome and congenital adrenal hyperplasia,751,752 and also with testosterone aromatase 
insufficiency.753 It is hence not far-fetched to suggest that the early organizational effects of sex 
steroids may be involved in the aetiology of transsexualism (see SEX STEROIDS). In DSM-
IV, the term gender identity disorder (GID) replaced the term transsexualism.754 
 

The results of paper VIII suggest that sex steroidThe results of paper VIII suggest that sex steroidThe results of paper VIII suggest that sex steroidThe results of paper VIII suggest that sex steroid----related genetic variation related genetic variation related genetic variation related genetic variation 
influences the risk for transinfluences the risk for transinfluences the risk for transinfluences the risk for transsexualism.sexualism.sexualism.sexualism.    
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SEX STEROIDSSEX STEROIDSSEX STEROIDSSEX STEROIDS    

    
INTRODUCTION TO SEX STEROIDSINTRODUCTION TO SEX STEROIDSINTRODUCTION TO SEX STEROIDSINTRODUCTION TO SEX STEROIDS    

    

Estrogens and androgens pass the blood-brain barrier. Synthesising enzymes, co-activators and 
receptors are expressed in brain regions such as the hypothalamus, the hippocampus, the limbic 
system and the PFC.755,756  
      Testosterone is produced from the precursor cholesterol, and acts both via androgen 
receptors (ARs) and, through the conversion by aromatase to estrogen, via estrogen receptors 
(ERs) of the subtypes α and β. The AR and ERs are ligand-activated transcription factors. 
When the ligand binds to the receptor, they dissociate from chaperones, dimerize and migrate 
to the nucleus.  The receptor-dimer then binds to its motifs in the promoter regions of target 
genes and, together with co-activators, initiates the expression of these. The promoter regions 
of the target genes contain estrogen response elements (ERE; two palindromic half sites 
5’AGGTCA3’ with three nucleotides in between) and androgen response elements (ARE; 5'-
AGAAGA and TGTACA-3' with three nucleotides in between). The ERα and ERβ receptor 
subtypes have similar affinity for the most potent estrogen, i.e. estradiol, as well as for the ERE 
of target genes. Estrogens and androgens can thus act via receptors, but also via membrane-
bound steroid receptors or via direct, protein synthesis-independent mechanisms, on ion 
channels or second messenger systems.757  
      The ERα receptor is expressed primarily in the amygdala, hypothalamus and PFC, whereas 
the ERβ is more abundant in hippocampus, entorhinal cortex and brainstem.758 ERs of the α 
type seem to be closely related to several functions related to cognition, including dendritic 
spine growth and the mediation of the effect of estrogens on neuroprotection and memory.759-

762 The effect of estrogen on cognition is however not unambiguous, since estrogen,  in estrous 
cycle phases characterized by high estrogen levels, appears to interfere with the spatial ability of 
rats, an influence that is prevented by inhibition of the ERα.759 The ERβ receptor is involved in 
serotonergic function (see SEROTONIN & SEX STEROIDS above); ERβ knock-out animals 
thus display altered serotonergic function and morphological and neural abnormalities 
including neuronal deficits.763 
                        The differential prevalence in men and women for several psychiatric disorders suggests 
that sex steroids may be involved in the aetiology of these conditions. Whereas autism, 
alcoholism and ADHD are    disorders that are more prevalent in men,674-676 serotonin-related 
disorders such as depression and anxiety disorders are more common in women (see above). 
During development, males are exposed to large amounts of testosterone at different stages: in 
the second trimester in utero,    perinatally and during puberty, and there are also hormonal 
differences in e.g. levels of androgens and estrogens between men and women later in life that 
may underlie differences in the prevalence for different conditions.   
 

PRENATAL ANDRPRENATAL ANDRPRENATAL ANDRPRENATAL ANDROGEN EXPOSUREOGEN EXPOSUREOGEN EXPOSUREOGEN EXPOSURE    
 

Effects of testosterone in utero are believed to primarily be mediated by estrogen receptors 
(ERs), via the conversion of testosterone to estrogen by aromatase (cyp19). Androgen receptor 
(AR) function, however, also appears to be important,764 e.g. for the expression of aromatase in 
the hypothalamus during embryonic development.765 
      Androgen exposure during prenatal development may be estimated retrospectively using 
the second to fourth digit ratio (2D:4D), which is negatively correlated with prenatal androgen 
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exposure.766-768 Women exposed to androgens during prenatal development, due to male co-
twins, thus display smaller 2D:4D,769 and    women with polycystic ovary syndrome (PCOS) and 
congenital adrenal hyperplasia (CAH), disorder characterized by increased prenatal androgen 
levels, also display a 2D:4D indicative of increased androgen exposure in utero.770-772 
      Adult testosterone levels may not be a good measure for prenatal androgen exposure, since 
men with effective ARs may display compensatory reductions in testosterone levels as adults. In 
fact, prostate cancer has been associated with high AR expression and low levels of 
testosterone773 and an allele associated with high AR activity may be associated with reduced 
testosterone levels in men.774,775 In addition, men with low 2D:4D (indicating high prenatal 
androgen exposure) may display lower adult testosterone levels,776,777 although several studies 
do not find this relationship.778-782 A relationship between high AR function and a 
compensatory reduction in testosterone levels does however not seem to be valid for 
women.778,780 
      An influence of prenatal androgen exposure on behaviours displaying differences between 
males and females, such as aggression and sexual behaviour,  gains support from numerous 
findings: (i) Whereas female rodents exposed to testosterone during prenatal development 
develop adult male sexual behaviour,783,784 anti-androgen treatment of males during the same 
period counteracts male-specific behaviour in the adult animal.785 (ii) Women who tentatively 
have been exposed to increased prenatal androgens, by having male co-twins, may display 
enhanced aggressive and sensation-seeking behaviour.786,787 (iii) Women with CAH, a 
condition accompanied by elevated foetal testosterone,771,772 display increased aggression as well 
as interests typically preferred by males.788-790 In line with these findings, female animals 
exposed to androgens during early development, as well as women with male co-twins, display 
masculinized neural connectivity and brain lateralisation.791,792 
      The notion that prenatal androgen exposure affects behaviour is also supported by 
indicative evidence of a relationship between prenatal androgen exposure and autistic traits. 
The extreme male brain theory of autism states that increased prenatal masculinization of the 
brain increases the risk for autistic traits such as increased systemizing and narrow interests and 
decreased empathizing and social behaviours.675,713 This theory was first based on similarities 
between sex differences and differences between subjects with autism and controls, as indicated 
in the AUTISM section. Interestingly, 2D:4D has been associated with performance on spatial 
tasks that display both gender differences and differential performance in subjects with autism 
and healthy controls.780,781    In favour of the extreme male brain hypothesis of autism, a small 
2D:4D, indicative of increased prenatal androgen exposure, has been associated with autism 
and autistic traits in both men and women793,794; moreover, parents of autistic children display 
intermediate 2D:4D. In children, there is also a positive correlation between prenatal androgen 
exposure and restricted interests, and a negative correlation between prenatal androgens, on the 
one hand, and social relationships, as well as the frequency of affective statements in intentional 
propositions (I believe, I think), on the other.795-798 In addition, women with autism display 
more androgen-related traits, including differences in sexual identity or orientation, 
dysmennoré, PCOS, acne and epilepsy,799 and girls with CAH display autism-like traits to a 
higher extent than their unaffected sisters.800 Prenatal masculinization of the brain has also been 
proposed to increase the risk for tic disorders, as suggested by the finding of an association 
between tics and gender dysphoria in women.801 
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THE MENSTRUAL CYCLETHE MENSTRUAL CYCLETHE MENSTRUAL CYCLETHE MENSTRUAL CYCLE     
    

The follicular phase is the phase during which follicles in the ovary mature. During this phase, 
estrogen levels are increasing slowly, reaching their maximum level just before ovulation. 
During ovulation, estrogen levels decrease markedly. After ovulation, the luteal phase begins by 
the initiation of the formation of the corpus luteum. Estrogen levels display a mild increase, 
followed by a subsequent decrease. Progesterone levels, having been low before the luteal phase, 
display a marked increase, followed by a marked decrease. The luteal phase ends with 
regression of the corpus luteum and menstruation. 
      PMDD is related to the fluctuations of the sex steroids estrogen and progesterone over the 
menstrual cycle. This notion is supported by: (i) gonadotrophin-releasing hormone (GnRH) 
analogues can prevent symptoms by disrupting hormonal cyclicity, (ii) ovariectomy also 
abolishes PMDD, and (iii) after depletion of endogenous sex hormones, administration of both 
progesterone and estrogen can induce PMD symptoms, but only in women who previously 
experienced PMD symptoms, indicating an increased vulnerability to the effects of hormonal 
fluctuations in these women.802 Whether progesterone or estrogen is most important for the 
pathophysiology of PMDD is unknown. Milder premenstrual symptoms, including both sad 
and irritable mood and somatic symptoms are common also in women without PMDD. 
Irritability and aggression are observed also in female non-human animals, who display 
aggression and irritable behaviours during the metestrous and diestrous phases of the estrous 
cycle, i.e. the phases when the animal is sexually non-receptive. 
    

SEX STEROIDSEX STEROIDSEX STEROIDSEX STEROID----RELATED GENESRELATED GENESRELATED GENESRELATED GENES    
    
The AR gene The AR gene The AR gene The AR gene     
The AR gene (AR), situated on chromosome Xq11-12, holds three polymorphisms in exon 1, 
encoding the region of the protein involved in transcriptional activation of downstream 
genes.803 Two of these are repeat polymorphisms; the CAG repeat encodes a polyglutamine 
stretch and the GGN repeat encodes a polyglycine stretch. Situated between these two repeats 
is the StuI SNP (rs6152, G1733A), so called because of its recognition by the restriction 
enzyme StuI. The rs6152 does not affect the amino acid sequence.  
      Shorter CAG repeats are associated with a higher activity of the AR as a transcription factor 
since they increase the interaction between the AR and co-activators.804-811    Shorter CAG repeats 
are also associated with a reduced 2D:4D, indicating an elevated prenatal androgen exposure. 
The 2D:4D is in fact largely genetically determined, displaying a heritability of 80%.769,812 
      In accordance with the increased AR activity displayed by shorter CAG repeats, the short 
CAG repeat has been associated with somatic phenotypes related to increased androgenic 
activity, such as PCOS and prostate cancer.813-817 Both short and long repeats have been 
associated with cognitive impairment,818,819 and short AR CAG repeats have shown modest 
association with psychiatric traits including depression.817,820 A recent study showed large effects 
of short CAG alleles on violent crime.821    
      The functional consequences of the GGN repeat remain uncertain. Three studies indicate a 
positive correlation between repeat length and protein amount or activity.808,822,823 One of these 
also shows longer repeats to have higher activity per protein molecule, and that the largest 
difference in activity is between the two most common repeat lengths, i.e. 23 and 24.822 In 
contrast, another study shows the most common 23-repeat allele to have highest transactivating 
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capacity,824 and a fifth study showed that shorter repeat lengths are associated with a larger 
protein amount.825  
      Some association studies of the GGN repeat in men have indicated that a shorter repeat 
length is associated with higher androgenic activity, as reflected by an increased risk for prostate 
cancer826,827 (although a meta-study was negative828), increased risk for baldness829,830 and 
increased fertility.831 Other studies, however, show a positive correlation between the length of 
the GGN repeat and fertility and prostate cancer,824,832 indicating a reduced androgen function 
for the short repeat.    One study indicates that shorter GGN repeats are associated with 
increased androgen function in women, as illustrated by a smaller risk for endometrial cancer 
(androgens displaying a negative effect on cell proliferation in the endometrium).833 The 
common G allele of the rs6152 polymorphism has been associated with baldness,829,834 
indicating an enhancing influence on the AR. 
 

In paper VIIIn paper VIIIn paper VIIIn paper VII, the relationship between genetic variation in the, the relationship between genetic variation in the, the relationship between genetic variation in the, the relationship between genetic variation in the    ARARARAR    and autism was and autism was and autism was and autism was 
examined. A short CAG repeat length was associated with increased risk for autism examined. A short CAG repeat length was associated with increased risk for autism examined. A short CAG repeat length was associated with increased risk for autism examined. A short CAG repeat length was associated with increased risk for autism 
spectrum disorder in women, a finding that is in line with the theory thatspectrum disorder in women, a finding that is in line with the theory thatspectrum disorder in women, a finding that is in line with the theory thatspectrum disorder in women, a finding that is in line with the theory that the risk fo the risk fo the risk fo the risk forrrr    
autism is increased by preautism is increased by preautism is increased by preautism is increased by prenatal androgen exposure, sincenatal androgen exposure, sincenatal androgen exposure, sincenatal androgen exposure, since shorter CAG repeat length shorter CAG repeat length shorter CAG repeat length shorter CAG repeat lengths ares ares ares are    
associated with increased AR function. associated with increased AR function. associated with increased AR function. associated with increased AR function.     

 
The ERThe ERThe ERThe ERβ gene gene gene gene 
The ERβ gene (ESR2), situated on chromosome 14q22-24, holds a CA repeat in intron 5. 
Although the functional effect of this polymorphism remains uncertain, longer repeats have 
been associated with increased bone mineral density,835 whereas shorter repeats have been 
associated with higher androgen levels and depression.820,836,837. These findings may suggest that 
longer repeats are associated with enhanced estrogenic function.  
 
The aromatase geneThe aromatase geneThe aromatase geneThe aromatase gene    
The aromatase enzyme catalyses the conversion of testosterone to estrogen. Longer repeat 
lengths of the tetra-nucleotide TTTA polymorphism, situated in intron four of the aromatase 
gene, have been associated with breast838 and endometrial cancer,839 indicating that long repeats 
enhance estrogenic activity. Polymorphisms in the same gene have also been associated with 
estrogen levels.840,841 
 

In paper VIII, the In paper VIII, the In paper VIII, the In paper VIII, the ARARARAR CAG r CAG r CAG r CAG repeat, the epeat, the epeat, the epeat, the ESR2ESR2ESR2ESR2 repeat and the aromatase repeat were  repeat and the aromatase repeat were  repeat and the aromatase repeat were  repeat and the aromatase repeat were 
investigated in relation to maleinvestigated in relation to maleinvestigated in relation to maleinvestigated in relation to male----totototo----female transsexualism. Long female transsexualism. Long female transsexualism. Long female transsexualism. Long ARARARAR CAG repeat lengths  CAG repeat lengths  CAG repeat lengths  CAG repeat lengths 
were more common in subjects with transsexualismwere more common in subjects with transsexualismwere more common in subjects with transsexualismwere more common in subjects with transsexualism. Subjects carrying short CAG repeats . Subjects carrying short CAG repeats . Subjects carrying short CAG repeats . Subjects carrying short CAG repeats 
displayed a very small risk fordisplayed a very small risk fordisplayed a very small risk fordisplayed a very small risk for transsexualism if they also transsexualism if they also transsexualism if they also transsexualism if they also were carriers of short  were carriers of short  were carriers of short  were carriers of short ESR2ESR2ESR2ESR2 or or or or    
aromatase alleles.aromatase alleles.aromatase alleles.aromatase alleles.        

 
 

PPPPAPERS VIAPERS VIAPERS VIAPERS VI----VIIIVIIIVIIIVIII    

 
For thorough presentations of methods and results, and for a detailed discussion of the 
findings, the reader is referred to the enclosed papers and manuscripts. Below will be given a 
brief summary of the main finding of papers VI-III; moreover, a number of important aspects 
will be commented. 
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Paper VIPaper VIPaper VIPaper VI    
 

IIIINFLUENCE OF ANDROGENNFLUENCE OF ANDROGENNFLUENCE OF ANDROGENNFLUENCE OF ANDROGEN RECEPTOR REPEAT POL RECEPTOR REPEAT POL RECEPTOR REPEAT POL RECEPTOR REPEAT POLYMORPHISMS ON YMORPHISMS ON YMORPHISMS ON YMORPHISMS ON     
PERSONALITY TRAITS IPERSONALITY TRAITS IPERSONALITY TRAITS IPERSONALITY TRAITS IN MENN MENN MENN MEN    

    
In paper VI, the relationshIn paper VI, the relationshIn paper VI, the relationshIn paper VI, the relationship between the androgen receptor gene (ip between the androgen receptor gene (ip between the androgen receptor gene (ip between the androgen receptor gene (ARARARAR) CAG and GGN ) CAG and GGN ) CAG and GGN ) CAG and GGN 
repeats, encoding polyrepeats, encoding polyrepeats, encoding polyrepeats, encoding poly----glutamine and polyglutamine and polyglutamine and polyglutamine and poly----glycine stretches, and personality traits, as glycine stretches, and personality traits, as glycine stretches, and personality traits, as glycine stretches, and personality traits, as 
measurmeasurmeasurmeasured by the KSP and TCI scales, ised by the KSP and TCI scales, ised by the KSP and TCI scales, ised by the KSP and TCI scales, is investigate investigate investigate investigated. Shorter CAG repeat lengths wered. Shorter CAG repeat lengths wered. Shorter CAG repeat lengths wered. Shorter CAG repeat lengths were    
associated with more extraveassociated with more extraveassociated with more extraveassociated with more extraversion (as measured by KSP) onrsion (as measured by KSP) onrsion (as measured by KSP) onrsion (as measured by KSP) only when the GGN repeat ly when the GGN repeat ly when the GGN repeat ly when the GGN repeat 
length was long, a finding that walength was long, a finding that walength was long, a finding that walength was long, a finding that was replicated in an indeps replicated in an indeps replicated in an indeps replicated in an independent sample. The association endent sample. The association endent sample. The association endent sample. The association 
wawawawas found to bes found to bes found to bes found to be significant for both subscales,  significant for both subscales,  significant for both subscales,  significant for both subscales, i.e.i.e.i.e.i.e. impulsiveness and monotony  impulsiveness and monotony  impulsiveness and monotony  impulsiveness and monotony 
avoidance. A tendency for increasedavoidance. A tendency for increasedavoidance. A tendency for increasedavoidance. A tendency for increased neuroticism, including the subscales somatic anxiety  neuroticism, including the subscales somatic anxiety  neuroticism, including the subscales somatic anxiety  neuroticism, including the subscales somatic anxiety 
and muscular tension, in caand muscular tension, in caand muscular tension, in caand muscular tension, in carriers of the short CAG allele, warriers of the short CAG allele, warriers of the short CAG allele, warriers of the short CAG allele, was also observes also observes also observes also observed, although d, although d, although d, although 
this association didthis association didthis association didthis association did not survive correction for not survive correction for not survive correction for not survive correction for multiple testing and only showed multiple testing and only showed multiple testing and only showed multiple testing and only showed a trend  a trend  a trend  a trend 
for significance in the sefor significance in the sefor significance in the sefor significance in the seconconconcond sample. The short CAG repeat wad sample. The short CAG repeat wad sample. The short CAG repeat wad sample. The short CAG repeat was also associated with s also associated with s also associated with s also associated with 
selfselfselfself----forgetfulness and spiritual acceptance, both of which are subscales of the selfforgetfulness and spiritual acceptance, both of which are subscales of the selfforgetfulness and spiritual acceptance, both of which are subscales of the selfforgetfulness and spiritual acceptance, both of which are subscales of the self----
transcendence transcendence transcendence transcendence subsubsubsubscale of the TCscale of the TCscale of the TCscale of the TCI. This I. This I. This I. This finding almost reachedfinding almost reachedfinding almost reachedfinding almost reached significance in the  significance in the  significance in the  significance in the 
second sample. second sample. second sample. second sample.     
 
Sex steroid-related genetic variation and the personality traits extraversion and self-transcendence 
In line with our results, another sex steroid-related polymorphism, which previously had been 
associated with increased testosterone and estrogen levels, was recently related to both self-
transcendence and the extraversion-related subscale novelty seeking.842,843 As in our study, the 
allele that was associated with high scores on novelty seeking was also associated with high self-
transcendence. The self-transcendence susbscale has previously been associated with CAG 
repeat length.844 
 
Effects of androgens on extraversion-related behaviour 
In men, adult testosterone levels have been correlated with extraversion-related behaviours, 
including novelty seeking, sensation-seeking behaviours and propensity to engage in aggressive 
behaviours in response to provocation or threat.845-847 Testosterone administration has been 
shown to mildly increase manic and punishing behaviours in men,848,849 and also to increase the 
response of the amygdala to conscious threat.850,851 
      Androgens also exert early organizational effects.852 Notably, brain regions that differ in size 
between men and women are typically those rich in sex steroid receptors.153,853-856 In men, but 
not in women, prenatal exposure to androgens, as estimated by the 2D:4D, has been associated 
with the propensity to engage in aggressive behaviours,857 thus suggesting an organizational 
effect of androgen exposure on related traits. 
 

Paper VIIPaper VIIPaper VIIPaper VII    
    

PPPPOSSIBLE ASSOCIATION OSSIBLE ASSOCIATION OSSIBLE ASSOCIATION OSSIBLE ASSOCIATION BETWEEN THE ANDROGENBETWEEN THE ANDROGENBETWEEN THE ANDROGENBETWEEN THE ANDROGEN RECEPTOR GENE AND  RECEPTOR GENE AND  RECEPTOR GENE AND  RECEPTOR GENE AND     
AUTISM SPECTRUM DISOAUTISM SPECTRUM DISOAUTISM SPECTRUM DISOAUTISM SPECTRUM DISORDERRDERRDERRDER    

    
The extreme male brain The extreme male brain The extreme male brain The extreme male brain theorytheorytheorytheory suggests  suggests  suggests  suggests that that that that the risk for autismthe risk for autismthe risk for autismthe risk for autism is increased by  is increased by  is increased by  is increased by enhanced enhanced enhanced enhanced 
prenatal androgen exposure. This theory is based on the higher prevalence for autism in prenatal androgen exposure. This theory is based on the higher prevalence for autism in prenatal androgen exposure. This theory is based on the higher prevalence for autism in prenatal androgen exposure. This theory is based on the higher prevalence for autism in 
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men than in women, the similarities between sex differencesmen than in women, the similarities between sex differencesmen than in women, the similarities between sex differencesmen than in women, the similarities between sex differences,,,, on the one hand on the one hand on the one hand on the one hand,,,, and  and  and  and 
differences between subjects with differences between subjects with differences between subjects with differences between subjects with autism spectrum disorder (autism spectrum disorder (autism spectrum disorder (autism spectrum disorder (ASDASDASDASD)))) and controls and controls and controls and controls,,,, on the  on the  on the  on the 
otototother, and also on the association of autism withher, and also on the association of autism withher, and also on the association of autism withher, and also on the association of autism with androgen androgen androgen androgen----related disordersrelated disordersrelated disordersrelated disorders in women in women in women in women. . . . 
In paper VII, the In paper VII, the In paper VII, the In paper VII, the possible possible possible possible relationshrelationshrelationshrelationship between ip between ip between ip between androgen receptor gene (androgen receptor gene (androgen receptor gene (androgen receptor gene (AR)AR)AR)AR)    
polymorphismpolymorphismpolymorphismpolymorphisms and ASDs and ASDs and ASDs and ASD is examined using case is examined using case is examined using case is examined using case----control (control (control (control (nnnn=267 cases and =267 cases and =267 cases and =267 cases and nnnn=617 =617 =617 =617 
controls) and famcontrols) and famcontrols) and famcontrols) and familyilyilyily----based (based (based (based (nnnn=118 families) association analyses. A short CAG repeat =118 families) association analyses. A short CAG repeat =118 families) association analyses. A short CAG repeat =118 families) association analyses. A short CAG repeat 
length, which previously has been linlength, which previously has been linlength, which previously has been linlength, which previously has been linked to increased AR activity, wasked to increased AR activity, wasked to increased AR activity, wasked to increased AR activity, was associated with  associated with  associated with  associated with 
increased risk for ASD in women, a finding that increased risk for ASD in women, a finding that increased risk for ASD in women, a finding that increased risk for ASD in women, a finding that is in line with theis in line with theis in line with theis in line with the extreme male brain  extreme male brain  extreme male brain  extreme male brain 
theory of autitheory of autitheory of autitheory of autism.sm.sm.sm.    ThisThisThisThis relationship between short CAG repe relationship between short CAG repe relationship between short CAG repe relationship between short CAG repeats and ASD waats and ASD waats and ASD waats and ASD was observed in s observed in s observed in s observed in 
the casethe casethe casethe case----control study. Exploration control study. Exploration control study. Exploration control study. Exploration of the familyof the familyof the familyof the family----based sample showedbased sample showedbased sample showedbased sample showed over over over over----transmission transmission transmission transmission 
of one specific short, quite rare allele to female ofof one specific short, quite rare allele to female ofof one specific short, quite rare allele to female ofof one specific short, quite rare allele to female offspring. The GGN repeat displayedfspring. The GGN repeat displayedfspring. The GGN repeat displayedfspring. The GGN repeat displayed an  an  an  an 
increaincreaincreaincreased transmission of short alleles to female offspring and an increased transmission sed transmission of short alleles to female offspring and an increased transmission sed transmission of short alleles to female offspring and an increased transmission sed transmission of short alleles to female offspring and an increased transmission 
of long alleles to male offspring.of long alleles to male offspring.of long alleles to male offspring.of long alleles to male offspring.    
 
Possible influence of androgen exposure on brain development 
Autism is a genetic disorder that displays several signs of neurodevelopmental abnormalities. In 
line with an influence of prenatal factors, such as early androgen exposure, on autism aetiology, 
the abnormal growth of frontal brain regions during the first years of life, that is observed in 
autism, is believed to be compensatory to some other primary pathology present at 
birth.3,695,710,858 A possible long-distance under-connectivity and local over-connectivity, caused 
by abnormal brain development, has been suggested to account for the social difficulties and 
narrow interest characterizing this condition.692,695,698,699,709,711,859,860 These aspects of the 
disorder have also been proposed to be influenced by enhanced prenatal androgen 
exposure.675,713 
 
Possible influence of prenatal androgen exposure on synaptic plasticity    
Sex steroids appear to affect synapse formation in adult animals. Estrogens thus enhance 
synaptic plasticity via estrogen receptors861 and the reversal of the castration-induced reduction 
of synaptic contacts and dendritic spines by testosterone and non-aromatizable testosterone 
suggests ARs to mediate a part of the synaptogenic action of androgens in adult animals.862-864 
Also prenatal androgens appear to affect plasticity, as illustrated by an association between the 
2D:4D and hippocampal structure in women.865 In addition, males and females display 
differences in dendritic organization. These differences may be prevented by prenatal androgen 
administration to females.866 An inhibiting effect of testosterone on synapse formation in utero 
has been suggested by the finding that the increased number of afferent synapses on some 
neurons in females is reduced to the level of that of males by prenatal androgenisation.867 
      The possibility that the effect of genetic variation in the AR on autism is mediated by an 
effect on plasticity is supported by the fact that several studies have found mutations in genes 
encoding neuroligins and neurexins in individuals with autism and ASD.29,30,33,732-736 The 
interaction between neuroligins and neurexins leads to adhesion between axons and dendrites 
and subsequent synapse formation, enabling memories to be formed.730,731  
     
Sex differences in association studies 
In this paper, as well as in paper III and V, the genetic effects are observed only in women or 
only in men. Although the phenotypes studied in this paper and in papers III and V, i.e. 
autism, serotonin transporter density and depression and SLE reportings, all display sex 
differences, it is worth noting that the absence of sex differences with respect to a certain 
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behaviour does not imply that differencesI in brain processing or in the mechanism by which 
the behaviour is controlled, are absent.868 Selection may have affected mechanisms in men and 
women differently. Interestingly, it has been suggested that some differences observed on the 
neural level are compensatory to sex steroid-induced developmental differences between men 
and women, and that these compensatory effects may have the role of preventing large sexual 
dimorphism in behaviour.869 

PaPaPaPaper VIIIper VIIIper VIIIper VIII    
    

SSSSEX STEROIDEX STEROIDEX STEROIDEX STEROID----RELATED GENES AND MARELATED GENES AND MARELATED GENES AND MARELATED GENES AND MALELELELE----TOTOTOTO----FEMALE TRANSSEXUALISFEMALE TRANSSEXUALISFEMALE TRANSSEXUALISFEMALE TRANSSEXUALISMMMM    

    
Animal experiments suggestAnimal experiments suggestAnimal experiments suggestAnimal experiments suggest interactions between testosterone, estrogens,  interactions between testosterone, estrogens,  interactions between testosterone, estrogens,  interactions between testosterone, estrogens, the the the the aromatasearomatasearomatasearomatase    
that converts testosterone to estradiolthat converts testosterone to estradiolthat converts testosterone to estradiolthat converts testosterone to estradiol, androgen receptors (ARs) and estrogen receptors , androgen receptors (ARs) and estrogen receptors , androgen receptors (ARs) and estrogen receptors , androgen receptors (ARs) and estrogen receptors 
(ERs) to (ERs) to (ERs) to (ERs) to be necessary for be necessary for be necessary for be necessary for the the the the sexual differentiationsexual differentiationsexual differentiationsexual differentiation of the brain of the brain of the brain of the brain. In paper VIII, the . In paper VIII, the . In paper VIII, the . In paper VIII, the ARARARAR    
CAG repeat, an intron 5 CA repeat in the gene encoding ERCAG repeat, an intron 5 CA repeat in the gene encoding ERCAG repeat, an intron 5 CA repeat in the gene encoding ERCAG repeat, an intron 5 CA repeat in the gene encoding ERβ ( ( ( (ESR2ESR2ESR2ESR2)))),,,, and an intron 4  and an intron 4  and an intron 4  and an intron 4 
tetratetratetratetra----nucleotide repeat in the aromatase genenucleotide repeat in the aromatase genenucleotide repeat in the aromatase genenucleotide repeat in the aromatase gene,,,, are investigated for association with male are investigated for association with male are investigated for association with male are investigated for association with male----
totototo----female transsexualism (female transsexualism (female transsexualism (female transsexualism (nnnn=29 cases and =29 cases and =29 cases and =29 cases and nnnn=229 controls). A long CAG repeat, indicative =229 controls). A long CAG repeat, indicative =229 controls). A long CAG repeat, indicative =229 controls). A long CAG repeat, indicative 
of reduced AR activityof reduced AR activityof reduced AR activityof reduced AR activity,,,, was associated with increase was associated with increase was associated with increase was associated with increased risk for transsexualism, but only d risk for transsexualism, but only d risk for transsexualism, but only d risk for transsexualism, but only 
when the repeat lengths of the ERwhen the repeat lengths of the ERwhen the repeat lengths of the ERwhen the repeat lengths of the ERβ and aromatase polymorphisms were and aromatase polymorphisms were and aromatase polymorphisms were and aromatase polymorphisms were short, indicating  short, indicating  short, indicating  short, indicating 
low estrogenic function. Longer ERlow estrogenic function. Longer ERlow estrogenic function. Longer ERlow estrogenic function. Longer ERβ repeat lengths and longer aromatase repeat lengths  repeat lengths and longer aromatase repeat lengths  repeat lengths and longer aromatase repeat lengths  repeat lengths and longer aromatase repeat lengths 
are associated with an increased risk for transare associated with an increased risk for transare associated with an increased risk for transare associated with an increased risk for transsexualism, but only when the sexualism, but only when the sexualism, but only when the sexualism, but only when the ARARARAR CAG  CAG  CAG  CAG 
repeat length is short. repeat length is short. repeat length is short. repeat length is short.     
    
Influence of sex steroid-related genes on masculinization 
In our study, dysfunctional masculinization when the AR CAG repeat length is short appears 
to require the presence of aromatase and ESR2 alleles that are associated with increased 
estrogenic function (see Figure 6). The association between longer CAG repeat lengths in the 
AR and transsexualism was recently replicated in a much larger sample (n=101), showing the 
mean CAG length in transsexuals to be larger than that in controls.870 In our sample, the 
majority of long CAG repeats are more common in transsexuals, but the mean length 
difference did not reach significance, probably due to the low number of transsexuals. Notably, 
recent sequencing revealed that the cut-off for the short and long categories of the CAG repeat 
in this study is the same as for the personality and autism papers. The 18-repeat length in paper 
VIII is actually 21 repeats long. 

 
                          Figure 6. The allele category distribution for paper VIII.    
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ON THE DETECTION OF ON THE DETECTION OF ON THE DETECTION OF ON THE DETECTION OF TWOTWOTWOTWO----LOCUS LOCUS LOCUS LOCUS     

GENEGENEGENEGENE----GENE EFFECTSGENE EFFECTSGENE EFFECTSGENE EFFECTS    

    
Paper IXPaper IXPaper IXPaper IX    

    

DDDDETECTING ETECTING ETECTING ETECTING TTTTWOWOWOWO----LLLLOCUS OCUS OCUS OCUS GGGGENEENEENEENE----GGGGENE ENE ENE ENE EEEEFFECTS FFECTS FFECTS FFECTS UUUUSING SING SING SING MMMMONOTONISATION OF THEONOTONISATION OF THEONOTONISATION OF THEONOTONISATION OF THE    

PPPPENETRANCE ENETRANCE ENETRANCE ENETRANCE MMMMATRIXATRIXATRIXATRIX    

 
In paper IX, a new mIn paper IX, a new mIn paper IX, a new mIn paper IX, a new method for assessing twoethod for assessing twoethod for assessing twoethod for assessing two----locus effects that display a monotone locus effects that display a monotone locus effects that display a monotone locus effects that display a monotone 
pattern, such as synergistic genepattern, such as synergistic genepattern, such as synergistic genepattern, such as synergistic gene----gene interactions or additive effects, is introduced. The gene interactions or additive effects, is introduced. The gene interactions or additive effects, is introduced. The gene interactions or additive effects, is introduced. The 
test is 10 percent units more powerful at finding monotone twotest is 10 percent units more powerful at finding monotone twotest is 10 percent units more powerful at finding monotone twotest is 10 percent units more powerful at finding monotone two----locus effect patterns locus effect patterns locus effect patterns locus effect patterns 
than unrestrictedthan unrestrictedthan unrestrictedthan unrestricted tests. tests. tests. tests.    
 
Different types of two-locus effects 
When searching for two-locus effects amongst a number of polymorphisms, the number of 
tests is dramatically increased compared to the search for single-locus effects only, implicating a 
reduced power, i.e. a reduced probability of finding an effect that exists. The number of 
possible patterns for a penetrance matrix representing the nine two-locus effects is high. 
Detected effect patterns may sometimes be discarded    because they are considered unlikely. For 
example, when genotype A/A displays the largest phenotypic value in the single-locus analysis 
for locus A and genotype B/B in the single-locus analysis of locus B, a two-locus effect pattern 
showing a small increase in risk for the a/a-B/b-two-locus genotype may be considered to be 
unlikely and uninteresting.  
 
The power of tests restricted to monotone effect patterns 
The power of a single-locus test of finding effects that are monotone, i.e. where the phenotypic 
value of the heterozygote is not outside the interval defined by the phenotypic value for the two 
homozygotes, can be increased by treating the genotype as a covariate in a linear regression 
analysis (the middle value representing the heterozygous genotype). Similarly, a two-locus test 
can be restricted to search only for monotone effect patterns in a two-locus penetrance matrix, 
thereby increasing the power of finding such effects. In paper IX, the need for tests with 
increased power is met by the introduction of a test that displays 10 percent units enhanced 
power by being restricted to search only for monotone two-locus effects. It is however worth 
noting that such a test would not detect largely non-monotone effects. 
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SSSSAMMANFATTNING PÅ SVENSKAAMMANFATTNING PÅ SVENSKAAMMANFATTNING PÅ SVENSKAAMMANFATTNING PÅ SVENSKA    

 
BakgrundBakgrundBakgrundBakgrund    
Både neurotransmittorn serotonin och könshormonerna östrogen och testosteron är viktiga för 
hjärnans funktion. Serotonin är bland annat kopplat till stämningsläge och ångest, vilket 
illustreras av att läkemedel som agerar på det serotonerga systemet genom att hämma 
serotonintransportören, och därmed serotonin-återupptaget från synapsen, utövar antidepressiv 
och ångestlindrande effekt. I hjärnan agerar neurotransmittorerna genom att binda till 
receptorer på andra neuron än dem som de kommer från, vilket leder till att signalen 
vidarebefordras. En aktiv serotonintransportör gör att serotonin får utöva effekt under kortare 
tid på sådana receptorer, d.v.s. att signalen minskar. Blockeras återupptaget fås därmed en 
förstärkt signal. 
      Könshormoners roll för stämningsläge illustreras av att de flesta depressions- och ångest-
relaterade sjukdomar är vanligare hos kvinnor än hos män, och att sänkt stämningsläge är 
vanligt under perioder då hormonnivåerna är i förändring. Könshormoner är också viktiga för 
hjärnans tidiga utveckling, och härigenom sannolikt av betydelse t.ex. för könsidentitet. 
      Neurotrofa faktorer ökar hjärnans plasticitet, det vill säga till vilken grad som neuronens 
kopplingar till varandra kan ändras vid t.ex. inlärning. En sådan faktor är brain-derived 
neurotrophic factor (BDNF). Just denna neurotrofa faktor verkar vara nära kopplad till det 
serotonerga systemet. 
      DNA är en molekyl som finns i varje cells kärna i form av 23 stycken kromosom-par. En 
gen är en bit DNA som kodar för ett protein. Dessa proteiner kan vara t.ex. receptorer, 
transportörer, eller enzymer som är nödvändiga för syntesen av neurotransmittorer. DNA-
sekvensen består av fyra olika kemiska substanser som förkortas A, C, G och T. Även om 
människors DNA-sekvens är identisk till minst 99.9% så finns det viss variation. På vissa 
positioner, eller loci, i genomet bär olika människor således på olika varianter. Dessa loci är 
alltså polymorfa och kallas därför polymorfismer. En människa kan ha varianten, eller allelen, T 
på en speciell position, där en annan har allelen C, och det kan leda till att proteinmängden 
eller proteinfunktionen påverkas.  
 
SyfteSyfteSyfteSyfte    
I denna avhandling undersöks (i) vilket eventuellt inflytande variation i serotonin-relaterade 
gener har på ångestrelaterad hjärnaktivitet, premenstruell dysfori, nedstämdhet och 
personlighetsdrag och (ii) vilket eventuellt inflytande variation i könshormonsrelaterade gener 
har på personlighetsdrag, autism och transsexualism. Alla dessa drag eller fenotyper är till viss del 
ärftliga. 
 
ResultatResultatResultatResultat    
Amygdala är en hjärndel som tidigare visats reagera mer än normalt på emotionella stimuli, 
som t.ex. bilder av arga ansikten, hos människor som lider av depression eller ångestsjukdom. 
Dessa förändringar normaliseras av antidepressiv behandling. När vi undersökte polymorfismer 
i gener som kodar för serotonintransportören och för ett enzym som är nödvändigt för 
serotoninsyntes i förhållande till aktivering av amygdala, hos patienter med social fobi och hos 
friska kontroller, visade det sig att polymorfismerna hade ett starkare inflytande på den 
aktivering av amygdala som induceras av arga ansikten än vad diagnosen social fobi hade. 
Samma polymorfismers relation till aktivering av amygdala före och efter placebo-behandling 
undersöktes också hos individer med social fobi som fick ligga och hålla tal för en grupp 
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människor samtidigt som deras hjärnaktivitet mättes. Resultatet av denna studie var att de 
varianter som inte var associerade med ökad amygdala-reaktivitet vid presentation av arga 
ansikten däremot var associerade med huruvida dessa patienter hade svarat på behandling med 
placebo, och framförallt med hur mycket aktiviteten hos amygdala sjönk under 
placebobehandlingen.  
      Vi har också mätt antalet serotonintransportörer i hjärnan, och visat att mängden 
transportörer hos män är relaterad till variationer i den gen som kodar för den neurotrofa 
faktorn BDNF. Detta samband kan vara av betydelse för tolkningen av resultat som visar att 
interaktioner mellan BDNF och det serotonerga systemet påverkar emotionell reglering. Vi 
visar också att polymorfismer i generna som kodar för serotonintransportören och BDNF 
verkar samverka i att öka risken för att utsättas för stress, vilket i sin tur skulle kunna öka risken 
för depression. 
      I en annan studie undersöks sambandet mellan flera seroronin-relaterade gener och 
premenstruell dysfori, en allvarlig form av premenstruellt syndrom. Fyra olika genvarianter 
visade sig vara vanligare hos kvinnor med premenstruell dysfori än hos dem utan. Funktionella 
studier visar att åtminstone två av dessa varianter leder till en minskad serotonerg transmission, 
vilket är i linje med att premenstruell dysfori lindras av behandling som förstärker den 
serotonerga aktiviteten och förvärras av att man stänger av bildningen av serotonin.  
      Under prenatal utveckling påverkas hjärnan av testosteron. Manliga foster utsätts för mer 
testosteron än kvinnliga. Autism är mycket vanligare hos män än hos kvinnor, och vissa 
beteenden som är vanligare hos män än hos kvinnor (på gruppnivå) är också vanligare hos 
personer med autism än hos kontroller. I tre studier undersöktes den möjliga betydelsen av 
polymorfismer i gener vars produkt skulle kunna påverka hur stort inflytande könshormoner 
får på hjärnans utveckling.  
      Varianter som leder till en ökad aktivitet av den receptor som testosteron agerar via var 
30% vanligare hos kvinnor med autism än hos kontroller. Samma variant var också associerad 
med vissa personlighetsdrag hos män. Varianter som ger minskad aktivitet av samma receptor 
var relaterade till en ökad risk för transsexualism i XY-individer.  
      För båda de sista resultaten så var effekten bara tydlig då en speciell variant var närvarande 
på en annan position i antingen samma gen eller i andra könshormonsrelaterade gener. 
Fenomenet att en polymorfisms effekt är olika beroende på vilken variant som personen bär på 
ett annan locus kallas gen-gen-interaktion. Styrkan hos ett statistiskt test för att hitta två-locus-
effekter, inklusive vissa sorters gen-gen interaktioner, kan ökas genom att man sätter vissa 
restriktioner på två-locus-effekternas mönster. En metod som använder sådana restriktioner 
introduceras i det sista arbetet. 
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METHODSMETHODSMETHODSMETHODS    

    
MethMethMethMethods for assessing genotypesods for assessing genotypesods for assessing genotypesods for assessing genotypes    
    
Amplification 
Before genotyping and sequencing, the relevant sequences of DNA need to be amplified. This is done by polymerase 
chain reaction (PCR). After denaturation or separation of the two DNA strands from each other at 95°C, the two 
primers anneal to the their target sequences on one DNA strand each at approximately 60°C,  a step that is followed by 
elongation at 72°C, catalysed by a DNA polymerase, leading to an identical copy of the original DNA sequence. In the 
next cycle, this doubled amount of DNA is again doubled, leading to an exponential increase in DNA amount. The 
finding of the Taq polymerase, named after the Thermus aquaticus bacterium from which it was originally isolated, 
revolutionized DNA amplification since it is thermophilic and hence is unaffected by the high temperatures required 
for DNA denaturation. Before the Taq polymerase was found, DNA polymerase needed to be added to the PCR 
reaction after each cycle. 
 
Agarose gel separation 
The 5-HTTLPR has been genotyped by means of the length difference between the amplified sequence of the short 
and long alleles. DNA is negatively charged and thus moves in an electric field. DNA placed on an agarose gel in an 
electric field moves faster when the fragment is shorter. The 14-repeat (short) and the 16-repeat (long) alleles differ in 
length by approximately 40 basepairs and the short repeat can hence travel faster on the gel. The gel is supplemented 
with ethidium bromide, which allows for visualization of the genotypes by ultraviolet transillumination.  
 
Pyrosequencing 
Pyrosequencing is a sequencing-by-synthesis method that relies on the luminometric detection of pyrophosphate 
release upon nucleotide incorporation via an enzyme cascade. Hybridisation of the sequence primer to the target 
sequence is followed by addition of A, C, G and T in a specific dispensation order to the reaction. Depending on 
genotype, different nucleotides will hybridise with the target sequence at the site of the polymorphism, and the 
nucleotide incorporated causes the release of pyrophosphate (PP). ATP sulfurylase converts PP, to ATP, an ATP 
molecule that drives the luciferase-mediated conversion of luciferin to oxyluciferin, hence generating light in an 
amount proportional to the amount of ATP. The light is detected by a charge-coupled device camera and visualized as 
peaks.871 872 
 
Sequenom 
Sequenom is a genotyping tool based on multiplex PCR, i.e. several sequences can be amplified simultaneously, 
followed by a single base primer extension reaction per polymorphism and a MALDI TOF mass spectrometry analysis. 
After the PCR, one extension primer per polymorphism, as well as nucleotides, are added to the PCR product mixture. 
These primers anneal to their target sequence, extension is initiated and advancement of the extension depends on the 
allele present, the difference between the alleles being the mass of one nucleotide. The different masses are separated by 
a MALDI TOF mass spectrometer, thus producing a spectrogram where the different genotypes can be visualized.873 

    
Methods for asMethods for asMethods for asMethods for assessing brain activity, serotonin transporter and 5sessing brain activity, serotonin transporter and 5sessing brain activity, serotonin transporter and 5sessing brain activity, serotonin transporter and 5----HT1A availabilityHT1A availabilityHT1A availabilityHT1A availability    
 
Brain activity can be measured using positron emission tomography (PET) with radioactively labelled water (H2

15O) as 
tracer. The binding potential correlates with regional cerebral blood flow (rCBF). Comparisons of two conditions are 
often used (reactivity) to prevent biases introduced by other factors than those controlled for. Regional CBF can be 
measured also with single photon emission computed tomography (SPECT) with the radioligands 99mTechnetium-
hexamethylpropanolamine oxime (HMPAO) or Technetium-99m-ethyl cysteinate diethylester (99mTc-ECD). 
      When using PET, the radioactively labelled tracer binds to its target in the brain. When the isotope decays it emits 
a positron that collides with an electron nearby the location where the tracer binds its target, resulting in release of 
energy in the form of two gamma rays travelling in the exact opposite direction. The position from where the collision 
took place can be determined by detection of the two gamma rays around the head, taking the temporal aspect into 
account. The signal is hence proportional to the number of collisions in a brain region. A short halftime of the isotope 
is favourable since less time then is required for positrons to leave the tracer molecule and since the temporal resolution 
of PET is determined by the time needed for detecting a sufficient number of signals. When using radioactively 
labelled water (shortest halftime of O2: 2 minutes), signals need to be recorded for 30 minutes to become large enough 
for reliable detection. Rapid fluctuations in brain activity can hence not be measured using PET. 
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      Several different measures are used for assessing binding between the tracer and its receptor. Binding potential is 
estimated as Bmax divided by Kd, where Bmax is the number of binding sites and Kd is the dissociation constant, 
determined as the ratio between the dissociation rate constant and the association rate constant. 
      Using PET, the density or availability of the serotonin transporter can be estimated by the binding potential of the 
tracer [11C]MADAM ([11C]N,N-dimethyl-2-(2-amino-4-methylphenylthio)benzylamine), which displays high affinity 
for the transporter.  A low-affinity tracer can not measure density since it competes with the endogenous 
neurotransmitter, resulting in lower binding when endogenous levels are high. 
       The SPECT radiologiand 123I-β-CIT (2-beta-carbomethoxy-3-beta-(4-iodophenyl)-tropane labelled with 
123iodine) is a potent ligand for both dopamine and serotonin reuptake sites and can be used to estimate the availability 
of both of these proteins, the serotonin and dopamine reuptake sites being separated by means of differences in the 
time of 123I-β-CIT uptake. For the serotonin transporter, the uptake of the ligand is expected to be maximal at the 1-h 
recording, and this assessment can be corrected for concomitant dopamine transporter uptake using the later SPECT 
measurements. 
      No competition with serotonin has been shown for either of [11C]MADAM or 123I-β-CIT. Manipulation of 
serotonin levels has however been shown to affect binding of the PET radioligand [11C]DASB (3-amino-4-(2-
dimethylaminomethyl-phenyl-sulfanyl)- benzonitrile) to the serotonin transporter. [11C]DASB displays a similar 
affinity and specificity for the serotonin transporter as [11C]MADAM.874 Tryptophan depletion has been found to 
decrease [11C]DASB binding, a finding that does not suggest competition with serotonin, but instead serotonin 
deficiency-induced internalisation of serotonin transporters.875,876 Increasing serotonin levels by 5-HTP administration, 
however, leads to reduced [11C]DASB binding potential, a finding that suggests the [11C]DASB ligand to compete with 
endogenous serotonin over transporter sites.327 The density of 5-HT1A receptors in the brain can be estimated by the 
high-affinity radioligand and 5-HT1A antagonist [11C]WAY100635,329 which does not appear to display any 
competition with endogenous serotonin. 
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FOOTNOTESFOOTNOTESFOOTNOTESFOOTNOTES    
 
AAAA    DrugsDrugsDrugsDrugs affect the emotional state of individuals. Examples of this are the following: Ecstacy or MDMA (3,4-methylenedioxy- N-
methylamphetamine), which turns the serotonin transporter around, thus leading to substantially enhanced serotonin levels, induces 
euphoria and intimacy and reduces fear. Angeldust or PCP (phencyclidine) may induce psychotic symptoms by inhibiting the 
glutamatergic NMDA receptor. 
 
BBBB    The The The The pppp----value: value: value: value: The output of a test that compares groups with regard to various characteristics (e.g. genotype frequency) is accompanied 
by a significance level, a p-value. The p-value is the probability that the observed data would differ more from the null hypothesis (H0) 
than they do, given that the H0 is true. For the H0 to be rejected, this probability needs to be low, since a high probability for the 
observed deviation from the values expected by H0 suggests H0 to be true. Before H0 is tested, a threshold (α) is set on the significance 
level. If the test results in a p-value smaller than this value, then H0 can be rejected and the alternative hypothesis (H1) can be accepted. 
The evidence for rejecting H0 is considered to be sufficient when α is 0.05 and the p-value obtained by the statistical test thus is smaller 
than this threshold (the probability that the data differ as much as they do from H0 is less than 5% if H0 is true). The value α is the type 
I error, which is defined as the probability that H0 is rejected given that H0 is true. When it is set too high, false positives, i.e. rejections 
of the H0 in spite of the fact that H0 is true, will occur with a higher probability. However, if α is set too low, the power of finding true 
effects, i.e. the probability that H0 is rejected given that it is false, will be compromised meaning that the type II error, β, increases (P(H0 

accepted| H0 false)). The statistical power of a test is defined as 1- β and is hence the probability the H0 is rejected given that H0 is false, 
i.e. the chance of finding a true effect.    
    

C C C C Savant skills:Savant skills:Savant skills:Savant skills: In between 0.5 and 10% of individuals with autism spectrum disorder display unusual abilities, such as extraordinary 
memory performance,877,878 such as extraordinary memory performance, the ability to read two pages of text simultaneously, the ability 
to determine complicated mathematical calculations as fast as computers, and the ability to remember all details of a picture after being 
presented with it for a short period of time. There is evidence for brain morphology and processing differences in subjects that display 
savant skills, including smaller corpus callosum and the use of posterior brain regions associated with unconscious, procedural 
memories, when solving complex tasks, for which others require large activation of frontal regions associated with complex mental 
processing. 
 
DDDD        Studies aiming at measuring emotional perception often use the Ekman facesEkman facesEkman facesEkman faces. In the sixties, the psychologist Ekman found, by 
showing photographs from unfamiliar cultures to an isolated tribe, that facial expressions of the six emotions anger, fear, disgust, 
happiness, sadness and surprise are not culturally determined, as many anthropologists believed at the time, but universal to human 
culture and thus biological in origin.879 
 
EEEE    Animal modelsAnimal modelsAnimal modelsAnimal models for depression and anxiety:    Fear conditioning is sometimes used as an animal model for assessing anxiety- or 
depression- related.    Fear conditioning is the association of a neutral stimulus (the conditioned stimulus, CS, e.g. a light) with an 
intrinsically aversive stimulus (the unconditioned stimulus, UCS, e.g. a footshock), which generates conditioned fear of the CS. 
Increased fear response to the CS is interpreted as increased anxiety-like behaviour. Contextual fear conditioning is fear conditioning 
where the CS is an environment. The lateral amygdala is central in the acquisition of fear conditioning, being the location where the 
neutral and aversive stimuli converge and hence where alterations in synaptic transmission encode the memory according to Hebb’s law, 
stating that Neurons that fire together wire together, originally described as:  When an axon of cell A is near enough to excite cell B and 
repeatedly or persistently takes part in firing it, some growth process or metabolic change takes place in one or both cells such that A's efficiency, 
as one of the cells firing B, is increased. Other animal models for depression and anxiety are (i) the open field test, where the degree to 
which rats avoid open spaces is positively correlated with their anxiety level, (ii) the elevated plus-maze, where anxiety is quantified as 
the avoidance of entering open arms, (iii) the tail suspension test where high depression-related behaviour is considered to be reflected 
by the lack of efforts to escape the situation, (iv) learned helplessness tests, which measures depression-like behaviour as the degree to 
which the animal acts helpless although it has the power to change its unpleasant situation. 
 
FFFF Memories Memories Memories Memories are divided into explicit, declarative or conscious memories and implicit or unconscious memories. The explicit memories 
are further divided into episodic memories, which are memories of episodes (where, why, how), and semantic memories, which are 
memories of facts. The implicit memories include procedural memories such as motor skills and habits and classical conditioning, 
memories that we are unaware of during encoding, and which are demonstrated in our behaviour. Explicit memories are developed later 
in evolution (phylogenetically) and later in the development of the individual (ontogenetically).        
      The hippocampus is required for the formation of new explicit memories. The illustrative HM case131 lost his hippocampus when 
lobotomized for epilepsy, an operation that resulted in anterograde amnesia, meaning he could no longer create any new conscious 
explicit memories. He could however still form procedural memories; when he practiced on tasks requiring motor skills, he improved 
without the conscious memory of ever having performed the task. The HM case thus clearly illustrates that encoding or retrieval of 
conscious memories requires the involvement of the hippocampus, whereas formation of unconscious, implicit memories does not. The 
HM cases did not display depressive symptoms. 
 
G G G G Tryptophan depletion: Tryptophan depletion: Tryptophan depletion: Tryptophan depletion: Tryptophan is actively transported over the blood-brain barrier. When attempting to deplete tryptophan 
from the brain, so-called tryptophan depletion, a mixture that is rich in amino acids that compete with tryptophan is administered. The 
other amino acids thus occupy all available binding sites for transport over the blood-brain barrier and tryptophan can consequently not 
enter the brain.  
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HHHH        Increased CSF and jugular venous blood 5555----HIAAHIAAHIAAHIAA levels in depression does not necessarily imply increased serotonin levels, since an 
increased conversion of serotonin to 5-HIAA (increased levels of MAOA have been reported for depression880), which is not balanced by 
a corresponding increase in serotonin synthesis (reduced serotonin synthesis has been reported for depression881) is a possible scenario. 
 
IIII    Equal behaviour behaviour behaviour behaviour inininin two groups two groups two groups two groups, such as men and women, does not imply that there are no differences on the neural level.    Thus, 
when investigating men and women with superior IQ, men show an increased volume of a part of the visouspatial region of the parietal 
cortex (also large in the brain of Einstein), whereas there are no differences in the morphology between the brains of women with 
superior IQ and women with normal IQ.709 Other sex differences are related to lateralization. Men who have damaged the right PFC, 
and women who have damaged the left PFC, display impairments in decision-making, but not vice versa.868  
      The notion of equal behaviour or performance in spite of processing differences translates to any group differences. Compensatory 
and opposing influence from other systems may either prevent behavioural differences or render the power too low to show an effect on 
behaviour. Examples of this are (i) equal performance on working memory between schizophrenic cases and controls, which, however is 
accompanied by an exaggerated inefficient PFC activation in the schizophrenic group only, an inter-mediate phenotype that otherwise is 
associated with decreased WM,882,883 and (ii) equal performance in predicting the correct response in spite of a reduced prediction error 
signal in schizophrenics.884 However, the fact that differences are not seen on the behavioural level may also be related to power. 
 
 
 
 
 
 
 
 

    
    
 

ABBREVIATIONSABBREVIATIONSABBREVIATIONSABBREVIATIONS    
 
5-HTTLPR Serotonin transporter (5-HTT) –linked polymorphic region 
ACC Anterior cingulate cortex 
AR Androgen receptor 
BDNF Brain-derived neurotrophic factor 
CSF Cerebrospinal fluid 
ER Estrogen receptor 
HPA hypothalamus pituitary adrenal 
LD Linkage disequilibrium 
PFC Prefrontal cortex 
PMDD Premenstrual dysphoric disorder 
SRI Serotonin reuptake inhibitor 
TPH Tryptophan hydroxylase 
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