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Abstract

By using a novel approach in this paper,
�
�; �2

�
-analysis, we have found

that electricity prices most of the time have increased in stability and

decreased in volatility when the Nordic power market has expanded and

the degree of competition has increased. That electricity prices at Nord

Pool have been generated by a stochastic dynamic system that most often

has become more stable during the step-wise integration of the Nordic

power market means that this market is less sensitive to shocks after the

integration process than it was before this process. This is good news.
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1 Introduction

During the 1990s, the Nordic countries have gone through an extensive dereg-

ulation of their electricity sectors and, at the same time, there has been an

evolution from national markets to a multi-national electricity market. Thus,

Denmark, Finland, Norway and Sweden have all reformed their electricity sec-

tors and have today access to a common electricity market, which consists of

two parts: (i) bilateral trade of contracts between operators; and (ii) the non-

mandatory power exchange, Nord Pool.

The step-wise integration of the Nordic power market gives the opportunity

to investigate several interesting questions that relate to the relationship be-

tween market structure and the behavior of electricity prices. First, because the

aim of the deregulation and integration of the electricity sectors was to develop

a competitive power market, which would bene�t the consumers in the Nordic

countries, one might ask whether the degree of competition has increased over

time during this process? Bask et al [4] examine this question and also �nd that

this, in fact, is the case.

What about the behavior of electricity prices? Has the increased competi-

tion at the Nordic power market a¤ected the volatility of electricity prices in

a systematic way? This issue is under scrutiny in this paper and using a data

set that is similar to the one in Bask et al [4], we �nd that the volatility of

electricity prices most often has decreased when the Nordic power market has

expanded and the degree of competition has increased (see also Lundgren et al

[26]). This �nding is also consistent with the prediction of McLaren [27] who

presents an oligopoly model for a storable commodity such as water, which to

a large extent is used in electricity generation in the Nord Pool area.

The main contribution in this paper is that we take a step further trying

to �gure out the reason for this change in volatility of electricity prices. Of
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course, the natural candidate is that the dynamics that govern the evolution of

electricity prices have changed, but it could also be the case that the nature of

the shocks hitting the Nordic power market has changed. A problem, however,

is that we do not know the dynamics that govern the evolution of electricity

prices, but as will be clear below (especially in Section 3), this problem is only

apparent since we can reconstruct the dynamics using only electricity prices

and, thereafter, measure the stability of the reconstructed dynamics.

Concretely, what we do in this paper is to present
�
�; �2

�
-analysis, which is

a method to contrast the stability of a stochastic dynamic system (�) with the

volatility of a variable generated by this system (�2). Thus, if we focus on the

development of Nord Pool, the method contrasts the stability of the dynamics

that govern the evolution of electricity prices with the volatility of these prices.

What we �nd is that the dynamic system generating electricity prices most often

has increased in stability during the step-wise integration of the Nordic power

market.

There are two dimensions of the �ndings in this paper. The �rst is theoreti-

cal. To the extent that approximating models of the energy sector are developed

in an attempt to understand the behavior of energy prices and how they depend

on the market structure, the stability of the dynamics that govern the evolution

of energy prices should be added as an important dimension in which model

and data should be matched. That is, our �nding that electricity prices most of

the time have increased in stability and decreased in volatility when the Nordic

power market has expanded and the degree of competition has increased should

be properties of a well-formulated model of the Nordic power market.

The second dimension is welfare. That electricity prices at Nord Pool most

often have become more stable during the integration process means that the

Nordic power market is less sensitive to shocks after this process than it was

before it. This, however, does not mean that electricity prices never can change
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a lot from one day to the other, but it does mean that such large movements in

prices are expected to happen less frequently. This is good news.

This is how the rest of this paper is organized: In Section 2, we �rst re-

view the literature on the relationship between market structure and the price

volatility for a storable commodity. Thereafter, we argue at an intuitive level

why
�
�; �2

�
-analysis is useful as a tool to contrast the stability of a stochastic

dynamic system with the volatility of a variable generated by this system. In

Section 3, we formally outline
�
�; �2

�
-analysis and, in Section 4, we use this

tool to investigate how the step-wise integration of the Nordic power market

has a¤ected the stability and volatility of electricity prices. Section 5 concludes

the paper with a discussion.

2 Market structure and stability of prices

The aim of this section is to give a careful introduction to the subject of this

paper, namely, the relationship between market structure and the stability and

volatility of electricity prices. Therefore, in the �rst subsection, we review the

literature on the relationship between market structure and the price volatility

for a storable commodity. We do this to have a better idea of how the price

volatility might be a¤ected at a market with increased competition.

The second subsection is devoted to the relationship between the stability

and volatility of prices or, more correctly, the relationship between the stability

of a dynamic system and the volatility of prices generated by this system. We

spend some time on this relationship since the techniques that we use to measure

stability are not so well-known. Thus, what we do is to the give some intuition

behind
�
�; �2

�
-analysis that we formally outline in Section 3.

Market structure and volatility of prices Since roughly one half of the

electricity generated in the Nord Pool area is produced by hydro plants, it is
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natural to examine what the literature on storable commodities can o¤er regard-

ing the relationship between market structure and the volatility of commodity

prices. However, since most studies within this literature assume perfect com-

petition (see Deaton and Laroque [8]-[9] and Scheinkman and Schechtman [33]),

this relationship is far from fully understood.

One exception is McLaren [27] who develops a model in which the price of

the commodity decreases in volatility when the degree of competition increases.

Speci�cally, McLaren [27] presents a model of oligopolistic commodity specu-

lation with an entry barrier in which the speculators perform non-cooperative

storage in an in�nite-horizon game. The author takes explicit care of the non-

negative commodity stock constraint in the analysis and derives a Markov per-

fect equilibrium of the model in closed form.

McLaren [27] emphasizes three properties of his model. First of all, there

is less storage and more volatile prices than when the commodity market is

competitive. Second, the oligopolistic equilibrium converges to the competitive

equilibrium when the number of speculators becomes large. Third, an increase

in the demand for the commodity lowers storage and increases the volatility of

the commodity price.

Another paper is by Thille [37] who, among other things, investigates the

e¤ect of storage on the price volatility under alternative market structures.

Speci�cally, Thille [37] presents a model of a duopoly in which the �rms perform

non-cooperative storage in an in�nite-horizon game. A di¤erence in this model

compared to McLaren�s [27] model is that production no longer is exogenous.

Thus, the �rms in Thille�s [37] model have market power over both production

and storage, and not only over storage as in McLaren�s [27] model. In the latter

model, production is modelled as random harvests.

Using numerical analysis, Thille [37] �nds that the relative importance of

demand and cost shocks determines whether the price volatility is higher or
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lower under imperfect competition than under perfect competition. The main

�ndings are that when demand shocks dominate, the price volatility decreases

when the degree of competition increases whereas when cost shocks dominate,

the price volatility increases when the degree of competition increases. Thille

[37] looks at three market structures in the analysis: monopoly, duopoly and

perfect competition.

An early paper that examines the relationship between the degree of com-

petition and the price volatility for a storable commodity, which also should

be mentioned, is Newbery [29]. In his random harvests model, the monopo-

list stores more than �rms do in a competitive market, which results in a less

volatile commodity price when the commodity demand is linear in the price.

However, when the price elasticity of demand is constant, the commodity price

is less volatile under competition. Thus, the �ndings are ambiguous as in Thille

[37]. Since Newbery�s [29] model is a random harvests model, the �rms have

market power over storage only as in McLaren�s [27] model.

To summarize, the small theoretical literature that exists on the relationship

between the degree of competition and the price volatility for a storable com-

modity does not give a uni�ed answer. This should not come as a surprise since

the models di¤er from each other in several respects (see Rui and Miranda [31],

Vedenov and Miranda [40], and Williams and Wright [41] for more literature

on this topic). But what about the empirical literature? What does it have to

say on the relationship between market structure and the price volatility for a

storable commodity?

First of all, there are few empirical studies that measure the degree of market

power in the Nord Pool area (see Hjalmarsson [22] and Vassilopoulos [39]) and

almost none of them studies the e¤ect of market expansion on the degree of

market power. One exception, however, is Bask et al [4] who investigate how

the degree of market power has evolved during the integration process at the
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Nordic power market using a conjectural variation method and they �nd that

the degree of competition has increased when the common market has expanded.

Unfortunately, we are not aware of any empirical study on the e¤ects of market

expansion on the degree of market power for some other power market than

Nord Pool.

Then, what about the relationship between the degree of competition and

the volatility of electricity prices at Nord Pool? Lundgren et al [26] take a close

look at how the price dynamics have evolved during the integration process at

the Nordic power market by estimating not only the price volatility, but also the

intensity and size of the price jumps. To be able to accomplish their analysis,

they divide their data set into three parts: (i) when only Norway and Sweden

participate in Nord Pool; (ii) when also Finland has joined the common market;

and (iii) when Denmark too participates in Nord Pool.

If we turn to their results, Lundgren et al [26] �nd that the volatility of

electricity prices increased when Finland joined the Nordic power market, but

that this increase mainly was driven by an increased size of the price jumps.

However, the volatility of electricity prices decreased when Denmark joined the

Nordic power market. In other words, Lundgren et al [26] do not �nd a clear-cut

relationship between the degree of competition and the volatility of electricity

prices. Anyhow, when Finland and Denmark joined the common market, the

intensity of the price jumps decreased.

What we do in this paper (see Section 4 below) is that we �t a battery

of volatility models to the time series in a data set that is similar to the one

in Bask et al [4]. This means that we are able to draw conclusions regarding

the degree of competition at Nord Pool and how this degree is related to the

volatility of electricity prices. What we �nd is that the volatility of electricity

prices most often has decreased when the Nordic power market has expanded

and the degree of competition has increased.

7



Stability and volatility of prices The main contribution in this paper is

that we not only distinguish between the stability and volatility of electricity

prices, but that we also present a method that allows us to measure the sta-

bility of electricity prices. As will be clear below, more stable electricity prices

is not synonymous for less volatile electricity prices. Instead, more stable elec-

tricity prices is a sloppy expression for a more stable stochastic dynamic system

generating electricity prices.

In fact, what we argue in this paper is that one should contrast the stabil-

ity of a stochastic dynamic system with the volatility of a variable generated by

this system using what we call
�
�; �2

�
-analysis. For example, think of macroeco-

nomic models with the purpose of explaining aggregate features of an economy.

At the heart of these models (that nowadays are very popular in the literature),

there is an impulse-propagation mechanism in which impulses are shocks to the

economy, while the propagation mechanism is the means by which these shocks

lead to persistence over time. An economy that is less stable is, therefore, asso-

ciated with a higher persistence of the shocks, meaning that even a small shock

to the economy would have a large e¤ect on it.

To further clarify the fundamental idea behind
�
�; �2

�
-analysis, let �2 denote

the conditional variance of a variable generated by a stochastic dynamic system

and let � denote the stability of this system. Then,

�2 = �2 (�; ") ; (1)

where " is exogenous shocks to the dynamic system, meaning that the condi-

tional variance (�2) is not only a¤ected by the system�s stability (�), it is also

a¤ected by the shocks to the system ("). Speci�cally, the conditional variance

of a variable increases when the dynamic system decreases in stability, but also

when the shocks�amplitude increases in size.

However, because of " in (1), there is no one-to-one correspondence between
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�2 and �, which also motivates
�
�; �2

�
-analysis. To better see this claim, imag-

ine a very simple model of how the electricity price, s, is determined at the

power market:

st = �st�1 + "t; (2)

where " is independently and identically distributed shocks with zero mean and

�nite variance. That is, the model in (2) is a linear autoregression of order one.

If we focus on the deterministic part of the model, it is explosive when j�j > 1,

conservative when j�j = 1 and stable when j�j < 1. Further, if we assume that

the model in (2) is stable, we can decompose the volatility of electricity prices

as follows (see Bask and de Luna [1]):

�2 � var (st) =
var ("t)

1� �2 � var ("t)

1� (exp (�))2
: (3)

Thus, electricity prices are more volatile (�2) when the shocks are more volatile

("), but also when the model is less stable (�). Be aware that for a stable model,

� < 0 since � � log j�j, meaning that � approaches zero from below when the

model in (2) decreases in stability.

The stability concept outlined above can in a straightforward way be gen-

eralized to linear autoregressions of higher orders than one (see, among others,

Bask and de Luna [1] for a careful demonstration and discussion of this claim).

If the model is a linear autoregression of order n, one can characterize the sta-

bility of the model by looking at the modulus of the n eigenvalues that solve

the eigenvalue problem for the model and this is because the eigenvectors of the

model are orthogonal by de�nition.

First, if the autoregression is stable, the contraction of it in n-dimensional

space is dominated by the largest eigenvalue. This also means that the largest

eigenvalue can be used when comparing the stability of two linear autoregres-

sions of order n. This, however, is not the only way to compare the stability of

9



two autoregressions. An alternative is to look at the product of the modulus of

the n eigenvalues since it describes the rate of contraction of an n-dimensional

volume in n-dimensional space. That is, the autoregression with the faster con-

traction is more stable.

But we do not want to restrict the stability analysis to linear systems such

as linear autoregressions. Instead, we would like to have a tool that is able to

determine the stability of non-linear dynamic systems. Unfortunately, this also

means that we cannot use the eigenvalues in the stability analysis since they are

de�ned over linear systems. Fortunately, Bask and de Luna [1] argue that the

Lyapunov exponents can be used in the stability analysis of non-linear dynamic

systems and this is because the Lyapunov exponents for a non-linear system are

the non-linear counterpart of the eigenvalues for a linear system.

We save the de�nition, motivation, estimation and inference of the Lyapunov

exponents to Section 3, but a few paragraphs about the use of the Lyapunov

exponents in the empirical literature should be spent already here. In the early

1980s, a stream of papers started to emerge on the search for chaotic dynamics

in time series data. In the beginning, data were collected from di¤erent kinds of

systems in the sciences, but later on, time series data in economics and �nance

were used when searching for chaotic dynamics (see Urbach [38] for an extensive

although not complete list of papers within this literature).

Two reasons made this stream of papers possible. First, the dynamics that

govern the evolution of a variable must be reconstructed since the dynamics are

not known. In 1981, Takens [36] proved that it is possible to reconstruct the un-

known dynamics using only a scalar time series. Remarkably, the reconstructed

dynamics and the unknown dynamics hidden in the �black box�are equivalent

in the sense that the reconstruction preserves topological information about the

dynamic system such as the Lyapunov exponents. (Unfortunately, even though

the reconstruction theorem by Takens [36] have made an impact on the sciences,
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it is still rather unknown in economics and �nance.)

However, more was needed than the reconstruction theorem by Takens [36].

Speci�cally, a method to calculate the Lyapunov exponents from a scalar time

series was necessary and the �rst such method was presented in 1985 by Wolf

et al [42]. Thereafter, several methods have been proposed in the literature.

Some of the methods only calculate the largest Lyapunov exponent whereas

other methods calculate the whole spectrum of Lyapunov exponents. We will

use one of the latter methods in this paper.

To give a general picture of the �ndings in the search for chaotic dynamics

in time series data, these �ndings have been mixed. To be more precise and if

we restrict attention to the �ndings in economics and �nance, most if not all of

the early studies demonstrated that several time series could be characterized

by chaotic dynamics and that this meant that the predictive ability of these

systems were strongly limited. It could be mentioned in this context that Bask

et al [3] test whether electricity prices from Nord Pool has been characterized

by chaotic dynamics, which also is detected in one of the time series in the data

set (which is the same data set as in this paper).

However, various limitations in these studies were later on revealed (that, in

fact, did not apply in Bask et al [3]) and one such limitation was the lack of sta-

tistical inference. In other words, that a distributional theory for the Lyapunov

exponents was lacking. Further on, it turned out that some of the methods to

calculate the Lyapunov exponents su¤ered from upward bias. Consequently, es-

timates of the largest Lyapunov exponent that had been reported to be positive

in the literature, which is the operational de�nition of chaotic dynamics, could

in fact be negative. Both limitations, especially the lack of a distributional the-

ory for the Lyapunov exponents, had the consequence that the number of new

studies within this �eld diminished over time.

Fortunately, Shintani and Linton [35] provide a distributional theory for the
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Lyapunov exponents. Their framework together with the algorithms in Gencay

and Dechert [17] and Kuan and Liu [25] to calculate the Lyapunov exponents

mean that we have an asymptotically normal estimator of the Lyapunov expo-

nents. This estimator is also used in Bask et al [3] as well as in this paper (see

Section 4 below). However, we do not search for chaotic dynamics in electricity

prices as in Bask et al [3]. Instead, we investigate whether they have changed

in stability during the integration process at the Nordic power market.

As we already have pointed out, Bask and de Luna [1] argue that the Lya-

punov exponents can be used in a stability analysis of a non-linear dynamic

system. To be more precise, in the same way as the product of the modulus of

the n eigenvalues for an n-dimensional linear system describes the rate of con-

traction of an n-dimensional volume, the average of the n Lyapunov exponents

for an n-dimensional non-linear system describes the rate of contraction of an

n-dimensional volume. The reason for this is that the Lyapunov exponents for

a linear system are the logarithms of this system�s eigenvalues.

What we �nd in this paper (see Section 4 below) is that the stability of

electricity prices most often has increased when the Nordic power market has

expanded and the degree of competition has increased. Thus, having the Nord

Pool experience in focus, increased competition at the power market has been

associated with an increasingly stable dynamic system generating decreasingly

volatile electricity prices but without having a one-to-one correspondence.

3 Method:
�
�; �2

�
-analysis

�
�; �2

�
-analysis is outlined in this section. Speci�cally, in the �rst four subsec-

tions, we carefully explain how our stability measure (�) is de�ned, how it can

be estimated and tested from data, but we also motivate why this measure is

useful in a stability analysis. The �nal subsection is about the volatility measure
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(�2).

De�nition of � As we have pointed out several times, Bask and de Luna

[1] argue that the (spectrum of smooth) Lyapunov exponents can be used in

the determination of the stability of a stochastic dynamic system. Speci�cally,

assume that the dynamic system, f : Rn ! Rn, generates

St+1 = f (St) + "
s
t+1; (4)

where St and "st are the state of the system and a shock to the system, respec-

tively. For an n-dimensional system as in (4), there are n Lyapunov exponents

that are ranked from the largest to the smallest exponent:

�1 � �2 � : : : � �n; (5)

and it is these quantities that provide information on the stability properties of

the dynamic system f .

Assume temporarily that there are no shocks and consider how the dynamic

system f ampli�es a small di¤erence between the initial states S0 and S00:

Sj � S0j = f j (S0)� f j (S00) ' Df j (S0) (S0 � S00) ; (6)

where f j (S0) = f (� � � f (f (S0)) � � � ) denotes j successive iterations of the sys-

tem starting at state S0 and Df is the Jacobian of the system:

Df j (S0) = Df (Sj�1)Df (Sj�2) � � �Df (S0) : (7)

Then, associated with each Lyapunov exponent, �i, i 2 [1; 2; : : : ; n], there are

nested subspaces U i � Rn of dimension n+ 1� i with the property that

�i � lim
j!1

loge
Df j (S0)
j

= lim
j!1

1

j

j�1X
k=0

loge kDf (Sk)k ; (8)
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for all S0 2 U i � U i+1. Due to Oseledec�s multiplicative ergodic theorem, the

limits in (8) exist and are independent of S0 almost surely with respect to the

measure induced by the process fStg1t=1 (see Guckenheimer and Holmes [20] for

a careful de�nition of the Lyapunov exponents). Then, allow for shocks to the

system, meaning that the aforementioned measure is induced by a stochastic

process. The Lyapunov exponents have in this case been renamed to smooth

Lyapunov exponents in the literature.

Motivation of � The reason why the spectrum of smooth Lyapunov expo-

nents provides information on the stability properties of a stochastic dynamic

system may be seen by considering two starting values of a system, where the

only di¤erence is an exogenous shock at time t = 0 and that the shocks are iden-

tical at times t > 0 (see Bask and de Luna [1] for the origin of this discussion).

The largest smooth Lyapunov exponent, �1, measures the slowest exponen-

tial rate of convergence of two trajectories of the dynamic system starting at

the two starting values at time t = 0. In fact, �1 measures the convergence

of a shock in the direction de�ned by the eigenvector corresponding to this

exponent. If the di¤erence between the two starting values lies in another di-

rection of Rn, then the convergence is faster. Thus, �1 measures a �worst case

scenario.� (When �1 > 0, the trajectories diverge from each other and for a

bounded stochastic dynamic system, this is an operational de�nition of chaotic

dynamics.)

The average of the smooth Lyapunov exponents,

� � 1

n

nX
i=1

�i; (9)

measures the exponential rate of convergence in a geometrical average direction.

That is, the convergence of two trajectories of the dynamic system in the geo-

metrical average of the directions de�ned by the eigenvectors corresponding to
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the di¤erent exponents. Thus, � measures an �average scenario.�We can, there-

fore, compare the stability of two stochastic dynamic systems via the smooth

Lyapunov exponents since a shock has a smaller e¤ect on the dynamic system

with a smaller � than for the system with a larger �. Since we are dealing with

dissipative systems, meaning that � < 0 by de�nition, a dynamic system is more

stable than another system if � is more negative.

Potter [30] too claims that �1 can be used not only to categorize a time

series as stable or unstable (in the sense it is chaotic), but also that it provides

a measure of the convergence speed to (some sort of) equilibrium (see Shintani

[34] who use �1 when looking at convergence speeds of exchange rates toward

purchasing power parity).

Estimation of � Since the actual form of the stochastic dynamic system f

is not known, it may seem like an impossible task to determine the stability of

the system. Fortunately, it is possible to reconstruct the dynamics using only

a scalar time series and, thereafter, measure the stability of the reconstructed

system. Therefore, associate the dynamic system f with an observer function,

g : Rn ! R, that generates the following scalar time series:

st = g (St) + "
m
t ; (10)

where st 2 St and "mt are an observation in the time series and a measurement

error, respectively. That is, the time series fstgNt=1 is observed, where N is the

number of observations.

Speci�cally, the observations in a scalar time series contain information re-

garding unobserved state variables that can be used to de�ne a state in present

time. Therefore, let

T = (T1; T2; : : : ; TM )
0 (11)
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be the reconstructed trajectory, where Tt is the reconstructed state and M is

the number of states on the trajectory. Each Tt is given by

Tt = fst; st+1; : : : ; st+m�1g ; (12)

where m is the embedding dimension. Thus, T is an M � m matrix and the

constants M , m and N are related as M = N �m+ 1.

Takens [36] proved that the map

� (St) =
�
g
�
f0 (St)

�
; g
�
f1 (St)

�
; : : : ; g

�
fm�1 (St)

�	
; (13)

which maps the n-dimensional state St onto the m-dimensional state Tt, is an

embedding if m > 2n (see below for the intuition behind this condition). This

means that the map is a smooth map that performs a one-to-one coordinate

transformation and has a smooth inverse. Moreover, a map that is an embedding

preserves topological information about the unknown dynamic system such as

the smooth Lyapunov exponents and, in particular, the map induces a function,

h : Rm ! Rm, on the reconstructed trajectory,

Tt+1 = h (Tt) ; (14)

which is topologically conjugate to the unknown dynamic system f . That is,

hj (Tt) = � � f j � ��1 (Tt) : (15)

Thus, h is a reconstructed dynamic system that has the same smooth Lya-

punov exponents as the unknown dynamic system f . (However, since the m-

dimensional system h has a larger dimension than the n-dimensional system f ,

the number of smooth Lyapunov exponents that are spurious is m � n. This

issue is discussed in detail in Dechert and Gencay [10]-[11] and Gencay and

Dechert [18].)
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Then, to be able to estimate the smooth Lyapunov exponents, one has to

estimate h. However, since

h :

0BBB@
st
st+1
...

st+m�1

1CCCA �!

0BBB@
st+1
st+2
...

v (st; st+1; : : : ; st+m�1)

1CCCA ; (16)

the estimation of h reduces to the estimation of v:

st+m = v (st; st+1; : : : ; st+m�1) : (17)

Moreover, since the Jacobian of h at the reconstructed state Tt is

Dh (Tt) =

0BBBBB@
0 1 0 � � � 0
0 0 1 � � � 0
0 0 0 � � � 0
...

...
...

...
@v
@st

@v
@st+1

@v
@st+2

� � � @v
@st+m�1

1CCCCCA ; (18)

a feedforward neural network is recommended to estimate the above derivatives

to derive the smooth Lyapunov exponents and this is because Hornik et al [23]

have shown that a map and its derivatives of any unknown functional form can

be approximated arbitrarily accurately by such a network.

Having shown how to estimate �, an intuitive explanation of Takens� [36]

embedding theorem (or reconstruction theorem as we called it in Section 2) is

in place. For the sake of the argument, assume thatM1 �M andM2 �M are

two subspaces of dimension n1 and n2, respectively, where M 2 Rm is an m-

dimensional manifold representing phase space for the reconstructed dynamic

system. In general, two subspaces intersect in a subspace of dimension n1 +

n2 �m, meaning that when this expression is negative, there is no intersection

of the two subspaces. Therefore, and of greater interest, the self-intersection of

an n-dimensional manifold with itself fails to occur when m > 2n (see Sauer et

al [32] for generalizations of Takens�[36] embedding theorem).
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A problem in this context is that the dimension of the �true�dynamic sys-

tem is not known, meaning that the required embedding dimension according

to Takens�[36] embedding theorem is not either known. However, this problem

can be solved indirectly by making use of a generic property of a proper recon-

struction, namely, that the dynamics in original phase space must be completely

unfolded in reconstructed phase space. In other words, if the embedding dimen-

sion is too low, the dynamics are not completely unfolded, meaning that distant

states in original phase space are close states in reconstructed phase space and

are, therefore, false neighbors in phase space.

There are at least two methods to calculate the required embedding dimen-

sion from a scalar time series: (i) false nearest neighbors; and (ii) the saturation

of invariants on the reconstructed dynamics such as the saturation of the Lya-

punov exponents. The �rst method is based on the aforementioned property of

a proper reconstruction, meaning that by increasing the embedding dimension

enough, the dynamics are completely unfolded when there are no false neighbors

in reconstructed phase space (see Kennel et al [24]).

The second method, the saturation of invariants on the reconstructed dy-

namics, is based on the fact that when the dynamics are completely unfolded,

the Lyapunov exponents and other invariants (such as entropy and fractal di-

mension) are independent of the embedding dimension. If, however, the dynam-

ics are not completely unfolded in reconstructed phase space, these invariants

depend on the embedding dimension. Therefore, by increasing the embedding

dimension enough, the dynamics are completely unfolded when an invariant

stops changing (see Fernández-Rodríguez et al [15] for an example regarding

the largest Lyapunov exponent and a statistical test for chaotic dynamics).

Inference of � First of all, we are not aware of any distributional theory for

�. However, Shintani and Linton [35] show that a neural network estimator of
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the smooth Lyapunov exponents like the one above is asymptotically normal.

Our conjecture is, therefore, that asymptotic normality also holds for a neural

network estimator of � since the eigenvectors corresponding to the smooth Lya-

punov exponents are pairwise orthogonal.

An alternative to Shintani and Linton [35] is to derive an empirical distrib-

ution for � via bootstrapping (see Bask and Gencay [2] and Gencay [16] for the

case of �1). However, as is demonstrated in Ziehmann et al [43], this approach

is not straightforward for multiplicative ergodic statistics since the limits in (8)

may not exist under bootstrapping.

Measuring �2 We will not spend time here on how to measure the volatility

of a variable generated by a stochastic dynamic system. The reason is that an

extensive literature already exists on this topic. Instead, we will return to this

issue when measuring the volatility of electricity prices (see Section 4 below).

4 Nord Pool experience

The Nord Pool experience is in focus in this section. In the �rst two subsections,

we give a short review of the integration process at the Nordic power market as

well as provide some descriptive statistics of our data set. In the two �nal sub-

sections, we use
�
�; �2

�
-analysis when examining how the step-wise integration

of the Nordic power market has a¤ected the stability and volatility of electricity

prices.

Integration process Nord Pool is a multi-national power exchange, joining

the Nordic countries. Norway was the �rst of the Nordic countries to deregulate

their power market and Nord Pool was established in 1993, but then under the

name Statnett Marked AS. Sweden started their deregulation process too in the

�rst half of the 1990s and went step-wise to a deregulated power market. At the
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turn of 1996, the joint Norwegian-Swedish power exchange market, Nord Pool

ASA, was launched.

Finland started a power exchange of its own, EL-EX, in 1996, but joined

Nord Pool in 1997. Denmark Nord Pool Consulting was established in 1998 and

western Denmark joined the common market in 1999. When eastern Denmark

joined in 2000, the Nordic power market became fully integrated. For speci�c

dates in the integration process, see Table 1.

Region Date of entry

Norway January 1, 1993
Sweden January 1, 1996
Finland December 29, 1997
Western Denmark July 1, 1999
Eastern Denmark October 1, 2000

Table 1: Dates in the integration process at the Nordic power market.

Data set used and descriptive statistics The data set used is spot elec-

tricity prices from Nord Pool. Speci�cally, it is the daily average of the hourly

system price during the period January 1, 1993, to December 31, 2005. (The

price is calculated from a bidding process before any bottlenecks are discovered.

Around half of the time, the bidding process price is the price used in the entire

region.) The data set is analyzed both as one time series but also split in parts

with the natural breakpoints when a new region is joining the common market.

The daily average of the hourly system price is presented in Figure 1a and basic

descriptive statistics of this time series are presented in Table 2.

[Figure 1a about here.]
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Statistic Quantity

Number of observations 4745
Minimum 14:8
Maximum 831
Mean 174
Median 158
Variance 7310
Skewness 1:62
Kurtosis 7:53
Dickey-Fuller unit root test �4:55���

Table 2: Descriptive statistics of the daily average of the hourly

system price during the period January 1, 1993, to December 31,

2005. ��� Signi�cant at the 1 per cent level (critical value: �3:44).

As is typical with �nancial time series data, the time series in Figure 1a does

not look stationary and the autocorrelation function (ACF) in Figure 1b also

indicates non-stationary, while the partial autocorrelation function (PCF) in

Figure 1c is harder to analyze.

[Figure 1b about here.]

[Figure 1c about here.]

The Dickey-Fuller unit root test in Table 2 shows, however, that the time series

quali�es as a stationary time series, but the test statistic is close to the critical

value. A positive skewness indicates that the distribution of prices has an asym-

metric distribution with a longer tail on the right side and a positive kurtosis

indicates a distribution with fat tails.

Instead of using the daily average of the hourly system price in the analysis,

we use the logarithmic return of this price. The new time series is presented in

Figure 2a and basic descriptive statistics of it are presented in Table 3.

[Figure 2a about here.]
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Statistic Quantity

Number of observations 4744
Minimum �0:774
Maximum 1:19
Mean 0:000189
Median �0:00450
Variance 0:00936
Skewness 0:895
Kurtosis 19:0
Dickey-Fuller unit root test �23:4���

Table 3: Descriptive statistics of the logarithmic returns of the daily

average of the hourly system price during the period January 1, 1993,

to December 31, 2005. ��� Signi�cant at the 1 per cent level.

The shape of the time series together with the Dickey-Fuller unit root test in

Table 3 and the ACF in Figure 2b indicate that the time series is stationary

(see also the PCF in Figure 2c). Moreover, a positive skewness and a positive

kurtosis indicate that the distribution of logarithmic returns of prices has an

asymmetric distribution with a longer tail on the right side as well as fat tails.

[Figure 2b about here.]

[Figure 2c about here.]

We proceed the analysis by dividing the time series into �ve parts with the

natural breakpoints when a new region is joining the common market. See the

Appendix for descriptive statistics of each of the �ve time series.

Stability of electricity prices We estimate the smooth Lyapunov exponents

for each time series using the algorithm proposed in Gencay and Dechert [17]

and Kuan and Liu [25] using 4, 8, 12, 16 and 20 inputs to the neural network,

respectively, where the number of hidden units runs from 1 unit to 20 units and,

thereafter, we calculate our stability measure, �. It is the � that minimizes the
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Schwarz Information Criterion for each time series that we report in Table 4.

(We have used NETLE, a program developed by R. Gencay, C.-M. Kuan and

T. Liu, when estimating the smooth Lyapunov exponents.)

Region Stability

Norway �0:268
12 inputs

(1/1/1993-12/31/1995) 5 hidden units
Increase

Norway and �0:359
Sweden 8 inputs
(1/1/1996-12/28/1997) 2 hidden units

Decrease
Norway, Sweden �0:168
and Finland 12 inputs
(12/29/1997-6/30/1999) 3 hidden units

Increase
Norway, Sweden, �0:273
Finland and 8 inputs
western Denmark 1 hidden unit
(7/1/1999-9/30/2000)

Increase
Norway, Sweden, �0:275
Finland and 8 inputs
Denmark 5 hidden units
(10/1-2000-12/31/2005)

Table 4: Stability and change in stability of the logarithmic returns

of the daily average of the hourly system price during the integration

process at the Nordic power market.

The general picture is that the integration process at the Nordic power market

most of the time has been associated with more stable electricity prices. How-

ever, we do not test for a change in stability since a distributional theory for �

is lacking.

Volatility of electricity prices Since there is no obvious choice of model to

�t to our data set to be able to determine whether electricity prices have become
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more or less volatile during the integration process at the Nordic power market,

we �t four time series models to the data set, where all of them belong to the

generalized autoregressive conditional heteroskedastic (GARCH) model family

(see Bollerslev [5] and Engle [13] for the seminal contributions in this area).

The �rst model that we �t to our data set is the GARCH (1,1) speci�ca-

tion (see Enders [12] and Hamilton [21] for details on this and the other three

speci�cations we use when measuring the volatility of a time series):

�2t = �0 + �1"
2
t�1 + �2�

2
t�1; (19)

where �2t is the conditional and time-varying variance, and "
2
t is the squared

innovation with "t = zt�t and zt � IID (0; 1). Our volatility measure is �2.

However, we are not primarily interested in the volatility level, but, instead,

to test whether there has been a change in volatility of electricity prices when

the Nord Pool area has expanded in size with a new region. A straightforward

way to perform such a test is to �t the following model to two adjacent time

series:

�2t = �0 + �1"
2
t�1 + �2�

2
t�1 + �3�

2
t�1It�t0 ; (20)

where It�t0 = 1 when t � t0 and zero elsewhere, and t0 is the time point when

a new region is joining the common market.

To be more concrete by giving an example, what we do is to �t the speci�-

cation in (19) to the time series when only Norway participates in what would

become Nord Pool and �nd that �2 = 0:258, which is the volatility of electricity

prices during this period. Thereafter, we �t the speci�cation in (19) to the time

series when both Norway and Sweden participate in Nord Pool and �nd that

�2 = 0:217. Finally, to test if there has been a change in volatility of electricity

prices when Sweden joined the common market, we �t the speci�cation in (20)

to the joint time series and �nd that the decrease in volatility is not signi�cant
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at any conventional signi�cance level. Our �ndings are reported in Table 5 (that

also includes the �ndings for the other three GARCH speci�cations).

Region Volatility Volatility Volatility Volatility
GARCH E-GARCH I-GARCH GJR-GARCH

Norway 0:258 0:974 0:230 0:668
(1/1/1993-12/31/1995)

Decrease Decrease Decrease Decrease
Norway and 0:217 0:935 0:220 0:146
Sweden
(1/1/1996-12/28/1997)

Increase Decrease Increase Increase
Norway, Sweden 0:410 0:686 0:612 0:160
and Finland
(12/29/1997-6/30/1999)

Increase Decrease Increase Increase�

Norway, Sweden, 0:765 0:148 0:905 1:02
Finland and
western Denmark
(7/1/1999-9/30/2000)

Decrease Increase�� Decrease� Decrease
Norway, Sweden, 0:198 0:943 0:174 0:0716
Finland and
Denmark
(10/1-2000-12/31/2005)

Table 5: Volatility and change in volatility of the logarithmic returns

of the daily average of the hourly system price during the integration

process at the Nordic power market. �� and � Signi�cant change at

the 5 and 10 per cent level, respectively.

According to the table, there has not been any signi�cant change in volatility

of electricity prices during the integration process at the Nordic power market.

The second model that we �t to our data set is the E-GARCH (1,1) speci�-

cation and the reason is that this model allows positive and negative shocks to

have di¤erent impact on the conditional volatility (see Nelson [28]):

log �2t = �0 + �1 �
"t�1
�t�1

+ �2 �
���� "t�1�t�1

����+ �3 log �2t�1; (21)
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where �3 is our volatility measure. Then, if we adopt the same idea as above

to test whether there has been a change in volatility of electricity prices when

the Nord Pool area has expanded in size with a new region, we �t the following

model to two adjacent time series:

log �2t = �0 + �1 �
"t�1
�t�1

+ �2 �
���� "t�1�t�1

����+ (22)

�3 log �
2
t�1 + �4 log �

2
t�1It�t0 :

According to Table 5, the step-wise integration of the Nordic power market is

most of the time associated with less volatile electricity prices. However, only

one of the changes in volatility is signi�cant (at the 5 per cent level).

However, as discussed, among others, in Dacorogna et al [7], there is often

a long memory in the volatility of �nancial time series and since we have no

reason to exclude this possibility for electricity prices, the third model that we

�t to our data set is the I-GARCH (1,1) speci�cation (see Engle and Bollerslev

[14]):

�2t = �0 + (1� �1) "2t�1 + �1�2t�1; (23)

where �1 is our volatility measure. Then, again, to test whether there has been

a change in volatility of electricity prices during the step-wise integration of the

Nordic power market, we �t the following model to two adjacent time series:

�2t = �0 + (1� �1) "2t�1 + �1�2t�1 + �2�2t�1It�t0 : (24)

According to Table 5, only one of the changes in volatility of electricity prices

is signi�cant (at the 10 per cent level).

The fourth model that we �t to our data set is the Glosten-Jagannathan-

Runkle GARCH (1,1) speci�cation (see Glosten et al [19]):

�2t = �0 + �1"
2
t�1 + �2�

2
t�1 + �3"

2
t�1I"t�1<0; (25)
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where I"t�1<0 = 1 when "t�1 < 0 and zero elsewhere, and our volatility measure

is �2. The advantage of the GJR-GARCH (1,1) speci�cation is that it provides

a simple way to allow for asymmetries in the conditional volatility. Then, to

test whether there has been a change in volatility of electricity prices when the

Nord Pool area has expanded in size with a new region, we �t the following

model to two adjacent time series:

�2t = �0 + �1"
2
t�1 + �2�

2
t�1 + �3"

2
t�1I"t�1<0 + �4�

2
t�1It�t0 : (26)

According to Table 5, only one of the changes in volatility of electricity prices

is signi�cant (at the 10 per cent level).

Then, which model is the best model? According to the information criteria

that are proposed in Brooks and Burke [6], which are modi�ed versions of the

Akaike and Schwarz Information Criteria designed for GARCH models, the best

model is the E-GARCH (1,1) speci�cation in (21). (To come to this conclusion,

we have �tted all models to the whole and unbroken time series with electricity

prices.) Thus, the general picture is that the integration process at the Nordic

power market most often has been associated with more stable and less volatile

electricity prices, even though a one-to-one correspondence between the stabil-

ity and volatility measures is lacking. Be aware that the lack of a one-to-one

correspondence between these measures motivates
�
�; �2

�
-analysis.

5 Discussion

Denmark, Finland, Norway and Sweden have gone through an extensive dereg-

ulation of their electricity sectors during the 1990s and, at the same time, there

has been an evolution from national markets to a multi-national electricity mar-

ket. Since the aim of the deregulation and integration of the electricity sectors

in these countries was to develop a competitive power market, Bask et al [4]
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examine whether the degree of competition has increased over time during this

process and they also �nd that this, in fact, is the case.

What we have found in this paper is that the step-wise integration of the

Nordic power market most of the time also has been associated with less volatile

electricity prices. The natural question to pose and answer is, therefore, why

these prices have decreased in volatility over time? Of course, the natural can-

didate is that the dynamics that govern the evolution of electricity prices have

changed, but it could also be the case that the nature of the shocks hitting the

Nordic power market has changed.

By using a novel approach in this paper, we have found that the increased

competition at the Nordic power market most of the time also has been asso-

ciated with more stable electricity prices. That electricity prices at Nord Pool

have increased in stability means that the dynamic system generating these

prices has increased in stability during the step-wise integration of the Nordic

power market. This, in turn, means that this market is less sensitive to shocks

after the integration process than it was before this process. This is good news.

To summarize, what we have learned about Nord Pool regarding the rela-

tionship between market structure and the behavior of electricity prices are the

following: (i) the degree of competition has increased over time during the inte-

gration process; (ii) the volatility of electricity prices has most often decreased

over time; and (iii) the stability of the dynamic system generating electricity

prices has most often increased over time. For this reason, one might ask: are

there any theoretical justi�cations for these �ndings?

First of all, there is a small theoretical literature on the relationship be-

tween market structure and the price volatility for a storable commodity such

as water, which to a large extent is used in electricity generation in the Nord

Pool area. One study that our �ndings are consistent with is by McLaren [27]

who develops an oligopoly model in which the price of the storable commodity
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decreases in volatility when the degree of competition increases. When it comes

to the stability of the dynamics that govern the evolution of commodity prices,

the literature is silent on its relationship with market structure and the price

volatility.

Anyhow, we argue that when approximating models of the energy sector are

developed in an attempt to understand the behavior of energy prices and how

they depend on the market structure, the stability of the dynamics that govern

the evolution of energy prices should be added as an important dimension in

which model and data should be matched. That is, our �nding that electricity

prices most of the time have increased in stability and decreased in volatility

when the Nordic power market has expanded and the degree of competition has

increased should be properties of a well-formulated model of the Nordic power

market.

To conclude, we believe that the empirical work in this paper has demon-

strated that
�
�; �2

�
-analysis can be a useful tool in empirical research. It is,

therefore, our hope that future research will provide us with more applications

of this tool than the Nord Pool experience.
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Appendix

Descriptive statistics Descriptive statistics of each of the �ve time series

are presented in Table A.1a-e.

Statistic Quantity

Number of observations 1094
Minimum �0:672
Maximum 0:701
Mean 0:000344
Median �0:000762
Variance 0:0126
Skewness 0:260
Kurtosis 11:0
Dickey-Fuller unit root test �10:7���

Table A.1a: Descriptive statistics of the logarithmic returns of the

daily average of the hourly system price during the period January

1, 1993, to December 31, 1995. ��� Signi�cant at the 1 per cent level.

Statistic Quantity

Number of observations 727
Minimum �0:277
Maximum 0:524
Mean 0:0000261
Median �0:00192
Variance 0:00521
Skewness 1:04
Kurtosis 8:01
Dickey-Fuller unit root test �9:59���

Table A.1b: Descriptive statistics of the logarithmic returns of the

daily average of the hourly system price during the period January

1, 1996, to December 28, 1997. ��� Signi�cant at the 1 per cent level.
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Statistic Quantity

Number of observations 550
Minimum �0:718
Maximum 0:684
Mean �0:00121
Median �0:00921
Variance 0:0127
Skewness 0:431
Kurtosis 11:0
Dickey-Fuller unit root test �8:67���

Table A.1c: Descriptive statistics of the logarithmic returns of the

daily average of the hourly system price during the period December

29, 1997, to June 30, 1999. ��� Signi�cant at the 1 per cent level.

Statistic Quantity

Number of observations 457
Minimum �0:697
Maximum 0:992
Mean 0:000587
Median �0:00514
Variance 0:0109
Skewness 1:47
Kurtosis 23:6
Dickey-Fuller unit root test �6:13���

Table A.1d: Descriptive statistics of the logarithmic returns of the

daily average of the hourly system price during the period July 1,

1999, to September 30, 2000. ��� Signi�cant at the 1 per cent level.
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Statistic Quantity

Number of observations 1916
Minimum �0:774
Maximum 1:19
Mean 0:000470
Median �0:00523
Variance 0:00778
Skewness 1:57
Kurtosis 30:2
Dickey-Fuller unit root test �15:3���

Table A.1e: Descriptive statistics of the logarithmic returns of the

daily average of the hourly system price during the period October

1, 2000, to December 31, 2005. ��� Signi�cant at the 1 per cent level.
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Figure 1a: Daily average of the hourly system price during the period January 1, 1993, to December 31, 
2005. 
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Figure 1b: ACF for the daily average of the hourly system price during the period January 1, 1993, to 
December 31, 2005. 

   



PCF

0 20 40 60 80 100 120
-0.2

0.0

0.2

0.4

0.6

0.8

1.0

 

Figure 1c: PCF for the daily average of the hourly system price during the period January 1, 1993, to 
December 31, 2005. 
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Figure 2a: Logarithmic returns of the daily average of the hourly system price during the period January 
1, 1993, to December 31, 2005. 
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Figure 2b: ACF for the logarithmic returns of the daily average of the hourly system price during the 
period January 1, 1993, to December 31, 2005. 
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Figure 2c: PCF for the logarithmic returns of the daily average of the hourly system price during the 
period January 1, 1993, to December 31, 2005. 
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