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ABSTRACT

The prefrontal cortex has been extensively linked to several cognitive domains that are 
severely compromised in schizophrenia. It has therefore become a key region for studies 
on the disabling cognitive dysfunction commonly observed in patients with schizophrenia. 
The absence of effective treatment options for cognitive deficits makes the identification 
of novel drug targets urgent, and this search is largely dependent on validated animal 
models. Administration of the NMDA receptor antagonist phencyclidine (PCP) has proven 
effective in mimicking several features of schizophrenia, including disrupted information 
processing and aberrant prefrontal cortex function. Previous studies show that a range of 
cognition-related behavioral deficits induced by PCP in experimental animals, including 
impaired pre-attentive information processing as measured by prepulse inhibition (PPI), 
can be blocked by inhibiting the production of nitric oxide (NO). The aim of the present 
thesis was to study the role of prefrontal NO signaling in the effects of PCP on information 
processing. Measurements of NO and its main effector, cGMP, were performed using in 
vivo voltammetry and microdialysis. This was combined with PPI and locomotor activity studies 
following pharmacological modulation of NO and GABA signaling. Systemic administration 
of PCP to mice disrupted PPI, which was blocked in a dose-dependent manner by inhibiting 
substrate availability for NO synthase using L-lysine, and by microinjections of an inhibitor 
of cGMP synthesis into the mouse medial prefrontal cortex. Furthermore, PCP caused an 
increase in prefrontal cGMP levels that was blocked by the NO synthase inhibitor, L-NAME. 
Similarly, prefrontal NO release, as measured by a novel microelectrochemical sensor, was 
increased by PCP, and this increase was blocked by pretreatment with L-NAME in the rat. 
Finally, systemic pretreatment with a combination of sub-threshold doses of the GABA

B
 

agonist baclofen, and L-NAME, increased PPI per se, and prevented the effects of PCP on 
PPI. On a regional level, prefrontal microinjections with baclofen fully blocked the effects 
of PCP on PPI in mice, and NO levels in the rat prefrontal cortex were decreased following 
systemic baclofen administration. In conclusion, the present thesis presents biochemical 
and behavioral support for the involvement of a prefrontal NO/cGMP signaling pathway 
in the effects of PCP. Furthermore, this mechanism may partly be explained by a decrease 
in inhibitory power of GABAergic interneurons, followed by increased NO signaling in the 
prefrontal cortex. Thus, studies of GABA/NO interactions in the prefrontal cortex may 
prove valuable when searching for novel treatment targets for cognitive dysfunction in 
schizophrenia.

Keywords: schizophrenia, nitric oxide, prepulse inhibition, phencyclidine, prefrontal cortex, 
cGMP, baclofen, cognition
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This thesis is based on the following papers,  
which will be referred to in the text by their Roman numerals;
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L-lysine blocks the disruptive effect of phencyclidine on prepulse inhibition in mice. 
Psychopharmacology (Berl) 192(1): 9-15.

II. 	 Fejgin K, Pålsson E, Wass C, Svensson L, Klamer D (2008). Nitric oxide signaling in 
the medial prefrontal cortex is involved in the biochemical and behavioral effects 
of phencyclidine. Neuropsychopharmacology 33(8): 1874-1883.
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Increased cortical nitric oxide release after phencyclidine administration. Under 
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B
 

receptor activation attenuates phencyclidine-induced impairments of prepulse 
inhibition: Involvement of nitric oxide. Under revision

All previously published papers were reproduced with kind permission from the publisher.
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PREFACE

“Men ought to know that from the brain, and from the brain alone, arise our pleasures, 
joys, laughter and jests, as well as our sorrows, pain, grief, and tears, ... “

Hippocrates, 5th century BC

Although the underpinnings of consciousness and personality probably have been a 
debated topic since the beginning of our civilization, little doubt now exists that the brain 
is the organ that executes all functions that we consider as human and unique. The urge for 
separating the body and the soul as different entities is for some people a necessary means 
to be able to look at the world without a feeling of emptiness and fatality. Nevertheless, 
to me it is not a problem that my personality is the product of an amazingly complex 
interaction between different signaling networks that is constantly modulated by my genes, 
my environment and the present situation I am in. On the contrary, I feel that this is a 
fascinating situation, where a combination of biological, psychological and epidemiological 
studies of the brain may lead to novel insights into what really defines an individual.

Not being a clinician, I have limited personal insight into the lives of patients with brain diseases 
such as schizophrenia, but it is clear that these persons face many challenges. A major 
obstacle probably lies in coping with the constant bombardment of difficulties arising from 
their condition, such as problems with hallucinations, delusions, anhedonia and cognitive 
deficits, all pushing them toward a social and functional isolation in society. Antipsychotic 
treatment, and to some extent behavioral therapy, have in one way revolutionized the 
everyday life for many patients, although many also suffer from side effects and/or the 
treatment resistance commonly observed for negative and cognitive aspects of the disease. 
Unfortunately, it is obvious that not much progress has been made in the field since the 
introduction of chlorpromazine, about half a century ago. Although advances in tolerability 
and safety of antipsychotic drugs have been substantial, the fact that the etiology of schizo
phrenia is not known, has complicated the search for novel treatment options in both 
medicine and psychology. However, I am convinced that this lack of knowledge should 
be viewed as an absence of evidence rather than the evidence of an absence.

Many would consider the phenomenological nature of the diagnosis a core problem, but no 
one would deny that we have to make progress regardless of this limitation. Schizophrenia 
has to be studied at different levels, using different approaches, in different disciplines. The 
challenge that lies ahead is to integrate this research, come to new conclusions, and find 
common grounds for advances. Although the present thesis is based on purely preclinical 
work in animal models, the past 4 years have been very enjoyable much due to the mix 
of disciplines involved in schizophrenia research. It has allowed me to be a reductionist in 
one situation, and almost philosophical at other times. For this I am very grateful.

Göteborg, November 2008
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INTRODUCTION

Schizophrenia

Background
Schizophrenia is a disabling brain disorder (or cluster of disorders) that debutes in early 
adulthood and severely affects the lives of the affected individuals. It was first called 
dementia praecox (“early dementia”) by Emil Kraepelin, who defined it as a disease of the 
brain that was separated from affective disorders (Kraepelin, 1907). About a decade later, 
Eugen Bleuler coined the term schizophrenia (originating from the Greek words schizein 
“to split” and phren “mind”), giving special emphasis to the alteration of thinking and the 
relation to the external world (Ban, 2004).

The prognosis of schizophrenia is generally poor, with approximately two thirds of the 
affected individuals suffering throughout their lifetime (Saha et al, 2005). This chronic and 
relapsing disease has a similar incidence across continents (Saha et al, 2006; Sartorius et al, 
1986) but a slightly higher incidence has been associated with urban living (Kirkbride et 
al, 2006; Lewis et al, 1992), migration (Fearon et al, 2006), and lower social-economic 
class. Currently, the lifetime risk of developing schizophrenia is estimated to 0.7% (McGrath 
et al, 2008). Interestingly, schizophrenia is more common in males (Aleman et al, 2003; 
McGrath et al, 2008), who tend to have both an earlier age of onset (Seeman, 1982) and a 
slightly poorer outcome (Loebel et al, 1992). 

The concordance of schizophrenia in monozygotic twins has been estimated to roughly 
50% in comparison to 20% in dizygotic twins. This translates into a strong heritability of 
schizophrenia, reaching a value of approximately 80% (Sullivan et al, 2003; Tsuang, 2000). 
Although this points to an important genetic predisposition, no strong candidate gene for 
schizophrenia has been identified, but rather a number of genes that all contribute to a smaller 
extent (for review see Harrison and Weinberger, 2005). This indicates that schizophrenia has 
a complex polygenetic background in which environmental factors also play an important role.

Symptomatology
Schizophrenia is diagnosed in a phenomenological manner, using either the “Diagnostic 
and Statistical Manual, Fourth Edition” (DSM-IV) (APA, 1994) or the “Tenth Revision of the 
International Classification of Diseases (ICD-10) (WHO, 1992). These diagnostic manuals 
have high inter-reliability (Peralta and Cuesta, 2003), and use a similar approach to sub-divide 
schizophrenia symptomatology, with the major difference that DSM-IV requires a duration 
of illness of 6 months (vs. 1 month for ICD-10) and social or occupational dysfunction 
(not required in ICD-10). 

Three broad classes of symptoms characterize schizophrenia; positive symptoms, negative 
symptoms and cognitive dysfunction (Andreasen, 1995). Positive (psychotic) symptoms relate 
to aberrant behavior that is additional to normal function such as hallucinations, paranoid 
delusions, and disorganized behavior. These symptoms are commonly the cause for the 
patient’s first encounter with psychiatric care, and typically vary in intensity throughout 
the duration of the illness. Positive symptoms are very disabling, but are often satisfactorily 
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alleviated by antipsychotic treatment. Negative symptoms are characterized by loss of function 
such as social withdrawal, anhedonia (lack of pleasure), flattened affect (lack of emotional 
responses) and alogia (lack of words). These symptoms are pervasive and do not fluctuate 
over time as much as positive symptoms. Cognitive dysfunction, sometimes viewed as a 
sub-category of negative symptoms, is strongly associated with functional impairment 
(Green et al, 2000) and was already considered a core symptom of schizophrenia by 
Kraepelin. Cognitive dysfunction is relatively common in schizophrenia (90% of patients 
show deficits in at least one cognitive domain) and is normally manifested as problems 
with information processing such as learning and memory, attention, concentration, executive 
function, and cognitive flexibility (for review see Green, 2007). The cognitive performance 
of patients with schizophrenia appears to be in the range of 1.5 standard deviations lower 
than controls (Bilder et al, 2000; Saykin et al, 1994) and subtle cognitive deficits can be 
detected already in childhood (Maccabe, 2008). Additionally, improvement in these deficits 
has been shown to be a better predictor of social and functional outcome than improve-
ment in psychotic symptomatology (Green, 2007). Compared to premorbid functioning, a 
cognitive decline can be observed at the onset of the disease, but then remains relatively 
stable over time (Saykin et al, 1994). How these deficits are linked to functional outcome 
is not known, but a putative intermediate link may be an impaired social cognition including 
deficits in social perception, emotion processing and theory of mind (Brekke et al, 2005; 
Green et al, 2005; Penn et al, 1997; Sergi et al, 2006). Since cognitive dysfunction predicts 
functional outcome and is only modestly improved (or sometimes compromised) by currently 
available antipsychotic treatment (Woodward et al, 2005), the search for novel treatment 
targets has become a task of highest priority in schizophrenia research.

A person with schizophrenia can suffer from symptoms belonging to each of the three 
classes mentioned above simultaneously. This may reflect that these symptoms relate to 
pathological changes within schizophrenia, rather than distinct sub-classes of the disease 
(Liddle, 1987). However, the validity of the schizophrenia “construct” is often debated, given 
the striking heterogeneity in pathophysiological findings, and the amount of interindividual 
difference that is allowed for in the diagnosis.

Pathophysiology
Despite almost a hundred years of research since Bleuler’s introduction of the term schizo
phrenia, its underlying pathophysiology remains to a large extent unknown. A wide array 
of possible mechanisms has been suggested throughout this period, including both envi-
ronmental and genetic factors. Although the formation of a credible “unified theory of 
schizophrenia” appears very distant at the moment, the findings described below are 
rather consistent and comprise some of the key pathophysiological findings in schizo-
phrenia research to this date.

Morphological findings
In addition to a general decrease in brain volume and enlarged third and lateral ventricles 
(Johnstone et al, 1976; Nesvag et al, 2008; Van Horn and McManus, 1992), a reduction in 
grey matter volume of subjects with schizophrenia has been demonstrated. These regions 
include the hippocampus, the thalamus and the prefrontal cortex (Davidson and Hein-
richs, 2003; Galderisi et al, 2008; Shenton et al, 2001; Weiss et al, 2005; Wright et al, 2000). 
These findings indicate widespread but subtle morphological changes that are present at 
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the onset of disease, and may be either causative or a reflection of an aberrant function in 
certain signaling networks. Schizophrenia is not generally considered to be a degenerative 
disease, although some evidence from clinical studies suggests that both symptoms and 
morphological characteristics of the disease worsen over time. For example, aberrant brain 
morphology appears to be more frequent and of greater magnitude in chronic multi-episode 
patients than in first-episode patients. It remains to be shown whether such differences 
occur because chronic patients are more severly affected from the beginning, or if it is a long-
term consequence of having the illness. Nevertheless, the limitations of current methodology 
suggest that it may be premature to conclude that a neurodegenerative process does not 
contribute to the pathophysiology of schizophrenia (Lieberman, 1999).

Affected Signaling systems in schizophrenia
Several neurotransmitters have been proposed to be involved in the pathophysiology of 
schizophrenia including the dopaminergic, glutamatergic, GABAergic, nitrinergic, cholinergic 
and serotonergic signaling systems (for review see Abi-Dargham, 2007; Bernstein et al, 
2005; Laruelle et al, 2003; Lewis and Moghaddam, 2006; Raedler et al, 2007). Out of these 
systems, the first three have been studied most extensively and are generally considered 
to be involved, at least to some extent, in the pathophysiology of schizophrenia.

Dopamine
The discovery of the first useful pharmacological treatment for schizophrenia, chlorpro-
mazine (Delay et al, 1952), revolutionized psychiatry half a century ago. About a decade later 
the characterization of dopamine in the brain and the role of monoamines (Carlsson, 1959; 
Carlsson and Lindqvist, 1963; Carlsson et al, 1957; Carlsson et al, 1958) lay the foundation 
for the dopamine hypothesis of schizophrenia, which stated hyperactivity of the dopamine 
system as playing a key role (van Rossum, 1966). This theory gained further support by 
the finding that there was a strong correlation between the clinically effective dose of any 
given antipsychotic and its ability to bind to dopamine D

2
 receptors (Creese et al, 1976; 

Seeman and Lee, 1975).

The dopamine system
Apart from its fundamental role in motor control and endocrine signaling, dopamine plays 
an important role for many behavioral functions, including reward and drug abuse, attention, 
motivation, and different aspects of cognition (Ahlenius et al, 1975; Arias-Carrion and Poppel, 
2007; Castner and Williams, 2007; Larsson and Engel, 2004). Dopaminergic neurons are 
distributed in four discrete dopamine systems in the brain named after their origin and 
terminal region; the mesolimbic, the mesocortical, the nigrostriatal, and the tuberoinfundibular 
dopamine system. Five sub-classes of G protein-coupled dopamine receptors are currently 
known and each subtype belongs either to the D

1
 family or the D

2 
family. The D

1
 family 

(D
1
 and the D

5
 receptors) activates G

s
, thus stimulating the production of cyclic adenosine 

monophosphate (cAMP) by adenylyl cyclase, whereas the D
2
 family (D

2, 
D

3
 and D

4
), which 

activates G
i
, inhibits cAMP production (for review see Girault and Greengard, 2004). All of 

these receptors can be found post-synaptically, although the D
2 
and

 
D

3
 receptors also are 

situated pre-synaptically, where they act as autoreceptors and inhibit transmitter release.

Dopamine and schizophrenia
The classical dopamine hypothesis of schizophrenia has undergone several modifications 
since it was first postulated and currently states that (1) a hyperactive, subcortical dopamine 
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system (mainly involving D
2 
receptors) is primarily responsible for positive symptoms of 

schizophrenia, whereas (2) the negative symptoms and cognitive dysfunction to a large extent 
originate from a hypodopaminergic state (resulting in decreased stimulation of D

1
 receptors) 

in cognition-related regions such as the prefrontal cortex (for review see Goldman-Rakic 
et al, 2004; Toda and Abi-Dargham, 2007). 

Imaging studies performed in patients with schizophrenia have consistently shown a 
hyperactive D

2
 system in subcortical regions both at rest (Farde et al, 1990; Laruelle, 1998; 

Lindstrom et al, 1999; McGowan et al, 2004; Meyer-Lindenberg et al, 2002; Zakzanis and 
Hansen, 1998) and following amphetamine administration (Breier et al, 1997; Laruelle and 
Abi-Dargham, 1999), which is well in line with the earlier mentioned findings of the 
importance of D

2
 receptor occupancy for antipsychotic effect. Furthermore, a correlation has 

been found between the increase in psychotic symptoms and dopamine release following 
treatment with the indirect dopamine agonist amphetamine in patients with schizophrenia 
(Abi-Dargham et al, 1998). In non-schizophrenic subjects, amphetamine can induce both 
paranoid psychosis and a sensitization to psychotomimetics in analogy to what has been 
observed in patients with schizophrenia (Angrist and Gershon, 1970; Yui et al, 1999). In 
addition, a large number of post-mortem studies show an increased density of striatal D

2
 

receptors (for review see Laruelle, 1998), further emphasizing that this receptor may play 
a particularly important role in the positive symptoms of schizophrenia.

At the functional level, the role of prefrontal dopamine (acting on D
1
 receptors) for cognitive 

function has been extensively documented in preclinical studies (for review see Goldman-
Rakic et al, 2004). Indirect evidence for a hypodopaminergic state in the PFC of patients 
with schizophrenia comes from studies showing a beneficial effect of dopamine agonists 
on prefrontal activation (Daniel et al, 1991; Dolan et al, 1995), and the correlation of low CSF 
levels of the dopamine metabolite homovanillic acid with poor performance on cognitive 
tasks (Kahn et al, 1994; Weinberger et al, 1988). Interestingly, a schizophrenia-associated 
allele (val/val) of the gene coding for the dopamine-degrading enzyme, cathecol-O-methyl
transferase (COMT), appears to predict both performance on PFC-dependent tasks and D

1
 

receptor occupation. This occurs in both healthy subjects and patients with schizophrenia 
(Bilder et al, 2002; Diaz-Asper et al, 2008; Goldberg and Weinberger, 2004; Slifstein et al, 2008; 
Tan et al, 2007). Although the evidence for altered D

1
 receptor occupancy in schizophrenia 

is inconclusive (Abi-Dargham et al, 2002; Karlsson et al, 2002; Okubo et al, 1997), these 
findings suggest that a hypoactive prefrontal dopamine system may have negative effects 
on cognitive function in patients with schizophrenia.

Glutamate 
In the 1950s, phencyclidine (PCP) was developed as a dissociative anesthetic. Interest-
ingly, it was soon found that this non-competitive NMDA receptor antagonist could induce 
a state in humans that closely resembled schizophrenia, including positive symptoms, 
negative symptoms and cognitive dysfunction (Javitt and Zukin, 1991; Luby et al, 1959; 
Yesavage and Freman, 1978). PCP possesses abuse liability and has frequently been used 
as a recreational drug (e.g. under the name of “Angel Dust” or “Horse”). Chronic PCP abusers 
could initially be misdiagnosed with schizophrenia (Morris et al, 2005), and schizophrenia 
patients using PCP experienced an exacerbation of their symptoms (Itil et al, 1967). These 
striking effects of a single compound, acting primarily on the glutamate system, spurred 
investigations of the role of this transmitter in the pathophysiology of schizophrenia.
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The glutamate system
Glutamate is an amino acid that acts as the main excitatory transmitter in the mammalian 
brain, and is primarily released by pyramidal neurons and astrocytes. The glutamatergic 
synapse consists of a presynaptic terminal, a postsynaptic spine, and the astrocyte end-foot; 
all closely connected to form a tightly regulated unit (Araque et al, 1999; Coyle et al, 2002). 
Glutamate is synthesized from glutamine that is supplied to the neuron by the astrocytes, 
and released glutamate can act at both pre- and post-synaptic targets. Post-synaptic effects 
are mediated by three families of ionotropic receptors that allow Na+ and Ca2+ to enter, and 
K+ to exit the intracellular compartment: (1) widely distributed AMPA receptors that play a 
primary role in generating fast excitatory post-synaptic currents (EPSCs); (2) selectively 
distributed kainate receptors that to a large extent resemble AMPA receptors; (3) widely 
distributed NMDA receptors that contribute to slow EPSCs and are essential for synaptic 
plasticity such as long-term potentiation (LTP) but also have been shown to be involved 
in excitotoxicity (Liu et al, 2007). Pre-synaptic effects of glutamate are mediated through a 
class of G protein-coupled receptors called metabotropic glutamate receptors (mGluRs). 

The NMDA receptor is a tetramer consisting of two different subunits, NR1 and NR2. NR1 
is essential for channel function, contains a glutamate/NMDA recognition site, and has 
high permeability for Ca2+, Na+ and K+, whereas NR2 (A-D) affects pharmacological and 
biophysical properties of the receptor (Lynch and Guttmann, 2001). A prerequisite for 
activation of the receptor is a depolarization of the membrane, which removes the Mg2+ 
that blocks the channel at resting potential. This has to co-occur both with the simultaneous 
binding of glutamate at its recognition site, and glycine / D-Serine at the glycine modulatory 
site. The NMDA receptor is expressed in all brain regions, but can be found in particularly 
high densities in the nucleus accumbens, the hippocampus, and the frontal cortex (Monaghan 
and Cotman, 1985).

The mGluRs are actually situated both pre- and post-synaptically. Eight receptors have 
been identified in this family, one example being the pre-synaptic mGluR3 receptor that 
inhibits glutamate release (Xi et al, 2002), and the postsynaptic mGluR5, which is coupled 
to the inositol triphosphate transduction system and modulates NMDA receptors (Nakanishi 
et al, 1998).

Glutamate and schizophrenia
The interest in a dysregulated glutamate signaling as an underlying factor for schizophrenia 
stems from several observations in patients and healthy volunteers. An initial finding dem-
onstrated decreased levels of glutamate in the CSF of schizophrenic patients (Kim et al, 
1980), but this could not be replicated in later studies. Later, a PCP-related dissociative 
anesthetic and non-competitive NMDA receptor antagonist, ketamine, was shown to produce 
PCP-like behavioral alterations in normal volunteers, particularly negative symptoms and 
cognitive impairments (Adler et al, 1999; Honey et al, 2003; Krystal et al, 1994; Newcomer 
et al, 1999). In addition to these findings, subjects with schizophrenia appear especially 
susceptible to ketamine. Thus, challenge with this compound may act on neurocircuitry 
relevant for schizophrenia and mimic negative symptoms and cognitive dysfunction (Lahti 
et al, 2001).

Further evidence for the involvement of glutamate in the pathophysiology of schizophrenia 
can be derived from studies on kynurenic acid, an endogenous non-competitive NMDA 
receptor antagonist at the glycine modulatory site (Kessler et al, 1989). Kynurenic acid has 



16

been shown to be elevated both in the CSF (Erhardt et al, 2001; Nilsson et al, 2005) and in 
the prefrontal cortex of subjects with schizophrenia (Schwarcz et al, 2001). Furthermore, 
glutamate carboxypeptidase II, the enzyme that converts the endogenous NMDA receptor 
antagonist N-acetylaspartylglutamate into N-acetylaspartate and glutamate, has been shown 
to be reduced in the temporal cortex, the prefrontal cortex and the hippocampus of subjects 
with schizophrenia (Tkachev et al, 2007; Tsai et al, 1995). A deficit in glutamate metabolism, 
as evidenced by an increase in glutamine/glutamate ratio, has also been recently demon-
strated in patients with schizophrenia (Hashimoto et al, 2005). 

On the synaptic level, alterations in the expression of glutamate transporters and interacting 
proteins have been demonstrated in the prefrontal cortex and thalamus of patients with 
schizophrenia (Bauer et al, 2008; Huerta et al, 2006). A recent smaller scale tracer study 
provides the first in vivo evidence for reduced NMDA receptor binding in medication-free 
patients (Pilowsky et al, 2006). In addition, several studies point to a relationship between 
changes in gene and protein expression of glutamate-related genes in various brain regions 
of patients with schizophrenia, including the subunits of NMDA, AMPA and kainate receptors, 
D-serine and glycine transporters, PSD-95, neuregulin 1 and the vesicular glutamate transporter 
1 (Harrison et al, 2003; Harrison et al, 2005; Ohnuma et al, 2008).

Importantly, recent clinical evidence implicates a key role for the glutamate system in 
schizophrenia, as glycine agonists and partial agonists have been shown to improve negative 
symptoms (for review see Javitt, 2008). In addition, the mGluR2/3 agonist LY2140023 has 
shown comparable efficacy to olanzapine in ameliorating positive and negative symptoms 
of schizophrenia (Patil et al, 2007).

γ-Aminobutyric acid (GABA) 
GABAergic interneurons maintain the complex functional balance of the cerebral cortex 
by regulating synaptic integration, temporal precision and network oscillations. Given the 
prevalent findings of aberrations in the GABA system in clinical and post-mortem studies 
of patients with schizophrenia (see below), altered GABA signaling has received much 
interest as a potential contributing factor in the pathophysiology of this disease.

The GABA system
GABA is the major inhibitory neurotransmitter in the CNS and is released from several 
types of interneurons displaying different morphological and functional characteristics. It 
is widely distributed, much like glutamate, and participates in both afferent and efferent 
pathways in virtually all brain regions. However, GABA is most abundant in telencephalic 
regions such as the cerebral cortex (Jones, 1987). In the neocortex, these interneurons 
constitute up to 30% of all neocortical neurons (for review see Markram et al, 2004). 
GABA is synthesized from glutamate (derived from astrocytic glutamine) by glutamate 
decarboxylase (GAD), and mediates a biphasic response in analogy to many other neuro-
transmitters. The early (fast) components of this response are mediated by the ionotropic 
GABA

A
 and GABA

C
 receptors (Macdonald and Olsen, 1994), which depolarize the cell 

membrane due to the inward passage of chloride ions. The later (slower) component of 
GABA-induced inhibition is dependent on signaling through the G protein-coupled GABA

B
 

receptor. This receptor mediates hyperpolarization of the post-synaptic membrane and also 
inhibits neurotransmitter release from presynaptic terminals as an auto- or heteroreceptor. 
In addition to their obvious role in inhibiting other cell types, GABAergic interneurons are 
involved in several important functions including the regulation of synaptic integration, 
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the timing and probability of action potential generation, and plasticity in neuronal net-
works (Huang et al, 2005).

GABA and schizophrenia
One of the most consistent findings in post-mortem studies of patients with schizophrenia 
is the reduction of the 67kD form of the GABA-generating enzyme GAD (GAD

67
), especially 

in the dorsolateral PFC and hippocampus (for review see Lewis et al, 2005). Additional 
post-mortem studies have also revealed reductions in cortical GABA levels and in the 
mRNA expression of the GABA membrane transporter (GAT) in the prefrontal cortex (Volk 
et al, 2001). The majority of the observed changes lie in the concentration of GABA-related 
proteins such as GAD, GAT, and the calcium-binding protein parvalbumin, although there 
is a modest reduction in the number of interneurons (Lewis et al, 2006). Approximately 
25% of all GABAergic interneurons express parvalbumin and can be distinguished from 
other interneurons by their fast-spiking firing pattern and morphological features (Hashi-
moto et al, 2003; Lewis et al, 2005). The consistency and abundance of these findings have 
been interpreted as a compromised inhibitory function in schizophrenia, which has also 
been demonstrated using transcranial magnetic stimulation (Daskalakis et al, 2002). A pos-
sible reflection of this inhibitory deficit can be observed in the axon initial segments of the 
parvalbumin positive chandelier neurons in the DLPFC of patients with schizophrenia. In 
this region, GABA

A
 receptors are upregulated, perhaps in response to deficient GABA release 

(Lewis et al, 2005). Further support for the pathophysiological mechanisms described 
above comes from a recent study that shows beneficial effects of a novel benzodiazepine-
like drug acting on GABA

A
 receptors. This drug improves behavioral and electrophysio-

logical measures of prefrontal function in patients with schizophrenia (Lewis et al, 2008).

Nitric oxide (NO)
The NO system

Early observations suggested the existence of an NMDA-related signaling molecule that 
could be substituted by exogenous NO and was important for cell-cell communication 
(Garthwaite, 1985; Garthwaite and Garthwaite, 1987). In parallel, the endothelium-derived 
relaxing factor (EDRF) that was present in blood vessels was identified as NO (Furchgott, 
1999; Ignarro et al, 1987; Palmer et al, 1987). Since these initial findings, NO has been 
implicated in a number of physiological functions both peripherally and in the CNS, 
including learning and memory formation, feeding behavior, sleep, reproduction, smooth 
muscle relaxation, and sensory function (for review see Garthwaite, 2008).

The intercellular messenger NO is synthesized (Fig 1) from L-arginine by nitric oxide synthase 
(NOS), following a Calcium/Calmodulin – dependent activation of the enzyme. One route 
for this activation is the influx of Ca2+ following NMDA receptor stimulation by glutamate, 
but also other co-factors such as molecular oxygen and tetrahydrobiopterin have to be present 
for NO production. Three isoforms of NOS are currently known; neuronal NOS (NOS I/
nNOS), endothelial NOS (NOS II/eNOS), and inducible NOS (NOS III/iNOS) where the 
two first isoforms are constitutive. nNOS is the predominant isoform in the brain showing 
a wide but uneven distribution much like classical neurotransmitters (Bredt et al, 1991; 
Vincent and Kimura, 1992). eNOS is expressed in endothelial cells both peripherally and 
in the brain. Apart from its dilating effect on blood vessels, eNOS-derived NO also appears 
to have a signaling function in the brain, since eNOS can be found in microcapillaries where 
no smooth musculature is present (Garthwaite, 2008). Finally, iNOS has been associated 
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with pathological inflammatory processes and is predominantly found in macrophages 
such as microglia (Brown, 2007).

NO is an unconventional signaling molecule in the sense that it can be synthesized both pre- 
and post-synaptically (and also mediate simultaneous signals between these two elements), 
diffuses freely from its site of production, and has a half-life in the range of seconds. The main 
receptor of NO signaling is soluble guanylyl cyclase (sGC) (Karatinos et al, 1995), which 
generates cyclic guanosine monophosphate (cGMP) by cleaving guanosine triphosphate 
(GTP). The effects of NO may also be mediated through other routes such as cAMP formation 
and protein nitrosylation. The second messenger, cGMP, then mediates the downstream 
effects of NO primarily by activating protein kinase G (PKG) and downstream phosphor-
ylation/dephosphorylation cascades (Garthwaite, 2008). Although some differences in NOS 
distribution can be observed between species, the expression of sGC is complementary to 
that of nNOS (Gotti et al, 2005; Southam and Garthwaite, 1993), and the NO/sGC system 
appears to be comparable between rodents and primates (Pifarre et al, 2007).

Figure 1. Overview of NO metabolism in the brain. CAT=cationic aminoacid transporter, cGMP=cyclic guanos-
ine monophosphate, NO=nitric oxide, sGC=soluble guanylyl cyclase.

NO has been demonstrated to have effects on storage, uptake and/or release of most neuro
transmitters including glutamate, GABA, dopamine and serotonin. Thus, it is well positioned 
to play an integrative role in brain function and pathology (Bernstein et al, 2005; Garthwaite, 
2008; Prast and Philippu, 2001).

NO and schizophrenia
Apart from its above-mentioned ability to affect transmitters implicated in the pathophysi-
ology of schizophrenia, metabolites of NO have been shown to be increased and sometimes 
also decreased in the blood (Das et al, 1996; Das et al, 1995; Herken et al, 2001; Srivastava 
et al, 2001; Suzuki et al, 2003; Taneli et al, 2004; Yanik et al, 2003; Yilmaz et al, 2007; Zoroglu 
et al, 2002), and CSF (Lee and Kim, 2008; Ramirez et al, 2004; Yao et al, 2004) of patients 
with schizophrenia. Interestingly, polymorphisms in the nNOS gene have been associated 
with both schizophrenia and PFC dysfunction in schizophrenic patients (Reif et al, 2006; 
Shinkai et al, 2002). The influence of aberrant NO signaling for cognitive dysfunction is 
further advocated by the findings of (1) abnormal distribution of nitrinergic neurons in the 
frontal and temporal cortex (Akbarian et al, 1993a; Akbarian et al, 1993b), (2) an increase in 
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prefrontal nNOS mRNA (Baba et al, 2004) and (3) a decrease in prefrontal nNOS activity 
(Xing et al, 2002) in patients with schizophrenia. In line with these findings, single nucleotide 
polymorphisms in the gene for the nNOS related protein CAPON have been associated 
with schizophrenia and performance on PFC-dependent cognitive tasks (Brzustowicz et al, 
2004; Zheng et al, 2005).

The above listed clinical findings propose a complex role for NO in schizophrenia, such 
that both a hyper- and a hypoactive NO system may be of importance, potentially dependent 
upon brain region, time-course, severity of the disease and antipsychotic treatment. Thus, it 
remains to be shown whether interference with this signaling system may prove beneficial 
in the treatment of schizophrenia.

System interactions
Dopamine and glutamate interactions

As dopamine- and glutamate-containing neurons communicate extensively in the brain, it 
is likely that the above-mentioned deficits in these two transmitter systems (and likely others) 
are interrelated. A highly influential theory was suggested by Carlsson and colleagues, in 
which glutamatergic projections from the PFC and/or other areas modulate midbrain 
dopamine neurons through a direct activating (glutamate) pathway, and an indirect inhibitory 
(glutamate-GABA) pathway (Carlsson and Carlsson, 1990). A hyperdopaminergic condition 
is proposed to result from prefrontal NMDA receptor hypofunction, with reduced inhibition 
of midbrain dopamine neuron firing as a consequence, and may thus precipitate positive 
symptoms (Kegeles et al, 2000). On the other hand, excessive stimulation of D

2
 receptors 

can inhibit the glutamate-mediated information flow at the level of the striatum, thus 
inducing deficits in an already compromised NMDA signaling system (Laruelle et al, 2005). 
Interestingly, the D

1
 receptors, which are the dominant dopamine receptor subtype in the 

PFC, instead facilitate NMDA transmission (Levine et al, 1996). These findings suggest the 
presence of a complex interaction between dopamine and glutamate signaling.

GABA-glutamate interactions – the concept of disinhibition
The earlier mentioned evidence for dysregulation of both GABA and glutamate signaling 
in schizophrenia also points to some potentially important interactions between these two 
signaling systems. An important link may be that NMDA receptors are more important for 
the excitation of GABAergic interneurons than for the excitation of pyramidal cells, which 
are known to rely more on AMPA receptors for the generation of excitatory postsynaptic 
potentials (Grunze et al, 1996; Jones and Buhl, 1993; Lei and McBain, 2002). In fact, 
interneurons are about 10 times more sensitive to NMDA receptor antagonism than pyramidal 
cells, and inhibition of these cells in turn reduce their inhibitory output (Greene et al, 2001; 
Grunze et al, 1996; Olney and Farber, 1995). 

In addition to the earlier mentioned compromised function of fast-spiking interneurons in 
schizophrenia, recent studies show that the NMDA receptor subunit NR2A, which is known 
to regulate parvalbumin and GAD expression, is decreased in prefrontal interneurons of 
these patients (Woo et al, 2008; Woo et al, 2004). Such a profound decrease of inhibitory 
power should increase pyramidal cell firing, thus creating a disinhibition. This theory is 
supported by both clinical and animal studies showing an increase in cortical activity fol-
lowing NMDA antagonist administration (Breier et al, 1997; Gozzi et al, 2007; Jackson et al, 
2004; Lahti et al, 1995; Moghaddam et al, 1997). In line with this, a recent study shows that 
NMDA receptor antagonism decreases the activity of fast-spiking interneurons in the PFC, 
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causing a subsequent disinhibition of pyramidal cells (Homayoun and Moghaddam, 2007). 
In addition, several preclinical studies demonstrate disruptive effects of NMDA receptor 
antagonists on cortical interneurons (Abekawa et al, 2007; Behrens et al, 2007; Cochran et 
al, 2002; Cochran et al, 2003; Cunningham et al, 2006; Keilhoff et al, 2004).

The proposed activation of pyramidal cells may in turn be excitotoxic. Olney and Farber 
reported swelling and signs of cellular stress following PCP administration (Olney et al, 
1995; Olney et al, 1989), which may be a consequence of disinhibited glutamate signaling. 
Interestingly, several studies have shown a regional metabolic hyperactivation in the brains 
of schizophrenic patients (Friston et al, 1992; Heckers et al, 1998; Malaspina et al, 2004) or 
healthy volunteers receiving NMDA antagonists (Breier et al, 1997), possibly reflecting 
such a disinhibition (see also “the concept of hypofrontality in schizophrenia”). These 
findings point to a possible interaction whereby glutamate output is increased, possibly to 
excitotoxic levels, due to a disrupted inhibitory output in the brains of patients with 
schizophrenia (Lisman et al, 2008).

Neurophysiological deficits in schizophrenia

Pre-attentive information processing
Prepulse inhibition 

Early clinical observations showed that patients with schizophrenia are unable to filter 
irrelevant sensory stimuli in an optimal manner (Bleuler, 1911/1950; Kraepelin and Robert-
son, 1919; Venables, 1964), leading to the theory that these patients suffer from “gating 
deficits.” The prepulse inhibition (PPI) model was developed as a paired-pulse paradigm, 
assessing pre-attentive information processing (Braff et al, 1978). PPI is defined as the 
phenomenon by which a weak prepulse attenuates the response to a subsequent (30–500 
ms later) startling stimulus (Fig 2). The startling stimulus commonly used is acoustic, and 
the acoustic startle response (ASR) can then be measured. To induce the gating process, 
acoustic, tactile, and visual (light) prepulse stimuli can be used (Swerdlow et al, 2008). PPI 
was first shown to be reduced in schizophrenic subjects in 1978 (Braff et al, 1978), and 
this finding has then been replicated in a number of studies involving both medicated and 
drug naive patients (for review see Braff et al, 2001; Swerdlow et al, 2008). 
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Figure 2. Schematic drawing showing the generation of a normal PPI response in a paradigm for assessing  
PPI in human subjects, defined as the reduction of reflex response to a strong stimulus (“pulse alone”) when  
preceded by a weaker prestimulus (“prepulse+pulse”). Patients with schizophrenia typically show a larger  
response to the prepulse+pulse condition (black area) compared to controls, thereby generating a lower PPI.

PPI deficits are not unique to schizophrenia, as they can also be observed in other brain 
disorders, such as obsessive-compulsive disorder (Swerdlow et al, 1993b), Tourette’s syndrome, 
attention deficit hyperactivity disorder (Castellanos et al, 1996), and Huntington’s disease 
(Swerdlow et al, 1995). This suggests that PPI is a neurophysiological tool for assessing 
filter mechanisms rather than useful for the diagnosis of schizophrenia. Although longitudinal 
studies of PPI in schizophrenia are scarce, some correlations between PPI levels and 
aspects of cognitive function and global functioning have been observed in this patient 
group (Karper et al, 1996; Perry and Braff, 1994; Swerdlow et al, 2006a). It was recently 
demonstrated that PPI levels correlate with the degree of grey matter volume loss in the 
frontal cortex of patients with schizophrenia (Kumari et al, 2008). However, correlations 
between PPI and positive or negative symptom scores have been harder to obtain. In healthy 
individuals, positive correlations between PPI and cognitive function, such as working 
memory, have been demonstrated (Bitsios et al, 2006; Csomor et al, 2008).

Antipsychotic treatment, particularly with atypical antipsychotics such as olanzapine, has 
been reported to increase PPI both in schizophrenic subjects and healthy but “low gating” 
controls (Swerdlow et al, 2006b; Vollenweider et al, 2006; Wynn et al, 2007). However, a 
recent study on drug-naïve patients with schizophrenia did not show an improvement in 
PPI after appropriate antipsychotic treatment, suggesting that PPI rather may constitute a 
stable vulnerability indicator (Mackeprang et al, 2002).

The prevalence of PPI deficits in many brain disorders, and the fact that unaffected siblings 
of patients with schizophrenia display decreased PPI (Kumari et al, 2005), suggests that 
PPI deficits represent a “trait” rather than a “state” marker of a disrupted gating mechanism. 
Nevertheless, given the high test-retest reliability in both healthy volunteers and subjects 
with schizophrenia (Abel et al, 1998; Geyer et al, 2001), as well as the presence of this 
reflex in all mammals, PPI measurements constitute a robust, translational experimental 
tool for investigating genetic and biological factors underlying information processing 
deficits in schizophrenia.
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The PPI circuit
The primary ASR response (Fig 3) is present in all mammals and some additional species. 
It has a relatively short latency of approximately 10 ms (from tone onset to muscular con-
traction), indicating that the underlying circuit consists of a limited number of synaptic 
connections (Ison et al, 1973; Koch, 1999). As revealed by a combination of anatomical 
and functional studies, the auditory input from the cochlear nerve reaches the cochlear 
nucleus complex (Coch), which is forwarded to the caudal pontine reticular nucleus (PnC), 
and relayed to spinal interneurons and lower motor neurons (Davis et al, 1982; Koch, 
1999; Lingenhohl and Friauf, 1994). The response is proportional both to stimulus intensity 
and interval, and can be modified in both a positive and negative direction by these and 
other factors (Koch, 1999). 

Two important processes emerging from the modulation of the ASR response are habituation, 
which is defined as a decreased response due to repeated stimulus presentation (Pilz and 
Schnitzler, 1996), and PPI. The latter process potently inhibits the primary startle circuit by 
output from the pedunculopontine nucleus (PPTg) that mediates PPI through its impact on 
the PnC. This mediatory PPI circuit can then be modulated by signals from the cortico-striato-
pallido-thalamic system (Fig 3) (Koch, 1999; Swerdlow et al, 2001). The fact that PPI remains 
intact following decerebration in the rat, demonstrates that PPI is mediated at the level of 
the pons or lower, and thus does not include any part of the forebrain (Davis et al, 1982; 
Fox, 1979).

Figure 3. Schematic and simplified overview of the pathways that mediate or modulate PPI of the acoustic 
startle response. Hip=hippocampus, nAcc=nucleus accumbens, GP=globus pallidus, PFC=prefrontal cortex, 
PPTg=pedunculopontine nucleus VTA=ventral tegmental area, PnC=caudal pontine reticular nucleus. Bold arrows 
represent projections responsible for ASR, dashed arrows represent inhibitory projections that are important for, 
or proximal to the generation of PPI. For the sake of simplicity, additional arrows may indicate both excitatory 
and inhibitory projections and do not always represent a single synaptic connection (Based on Koch, 1999; 
Swerdlow et al, 2001; Zhang et al, 1999).



23

Modulation of the PPI response
The high test-retest consistency for PPI observed in both healthy volunteers and patients 
with schizophrenia indicates that PPI does not involve learning processes that change the PPI 
response after repeated testing. Apart from the potentially beneficial effects of antipsychotics 
on PPI in schizophrenic subjects (see above), many preclinical studies show beneficial effects 
of these compounds on disrupted PPI in animal models of schizophrenia. PPI disruption 
following pharmacological (e.g. PCP or d-amphetamine administration), developmental 
(e.g. ventral hippocampus lesions), and genetic (e.g. NR1 knock-down) challenge in rodents 
and primates, can all be blocked or attenuated by pretreatment with clinically used anti
psychotics (Bakshi and Geyer, 1995; Fejgin et al, 2007; Linn et al, 2003; Swerdlow et al, 2004). 
In general, classical antipsychotics only block deficits induced by modulation of the 
dopaminergic systems, whereas newer antipsychotics are effective against PPI disruptions 
induced both by dopaminergic and glutamatergic modulation, although several studies 
challenge this view (Fejgin et al, 2007; Geyer et al, 2001; Johansson et al, 1995; Swerdlow 
et al, 2008).

An extensive body of evidence shows that PPI can be modulated by several brain regions 
that do not participate in the mediation per se, including the nucleus accumbens (nAcc), 
hippocampus (particularly the ventral portion), the amygdala, and the medial PFC (for 
review see Swerdlow et al, 2008). The latter region has received much attention given its 
involvement in the cognitive deficits in schizophrenia. The PFC is likely three or four synapses 
away from the primary startle circuit (Fig 3). It can still potently modulate the PPI response 
since lesions or dopaminergic blockade of this region decrease basal PPI (Afonso et al, 
2007; Day-Wilson et al, 2006; Shoemaker et al, 2005). However, such manipulations are 
more likely to alter the sensitivity to pharmacologically induced PPI-disruption (de Jong 
and van den Buuse, 2006; Schneider and Koch, 2005; Schwabe and Koch, 2004).

The similarity of the PPI reflex and the parameters used to assess it across species (Swerdlow 
and Geyer, 1998) provides an excellent framework for the development and evaluation of 
hypotheses for compromised information processing in certain brain disorders.

Other measures relating to sensory information processing
A seemingly similar method of estimating the processing of sensory information in schizo-
phrenia uses the suppression of the P50 event related potential (ERP, EEG response 50 ms 
after stimulus delivery) in response to a click stimulus following the introduction of a click 
500 ms earlier (Brenner et al, 2004) This filter mechanism is lower or absent in subjects 
with schizophrenia (Judd et al, 1992) and is not consistently modulated by antipsychotic 
treatment (Adler et al, 2004; Arango et al, 2003). Despite the apparent similarity to PPI, 
these two measures do not appear to be correlated when estimated in the same patient 
population (Brenner et al, 2004; Light and Braff, 2001; Schwarzkopf et al, 1993), with the 
exception of one study (Oranje et al, 1999). Thus these two paradigms appear to assess 
separate neural mechanisms, possibly relating to different aspects or stages of information 
processing (Brenner et al, 2004).

Additional neurophysiological deficits
In addition to the altered PPI and P50 gating in schizophrenia, a number of stable neuro-
physiological deficits have been observed. Although a detailed description of these deficits 
is not within the scope of the present thesis, a brief overview of the measures frequently 
used in schizophrenia research may be of value. Abnormalities in smooth pursuit eye 
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movements have consistently been reported in patients with schizophrenia and their relatives 
(Calkins and Iacono, 2000; Holzman, 2000; Levy et al, 1994), and appear to be correlated 
to primarily negative symptoms. Mismatch negativity, a negative ERP (using scalp EEG) 
that follows introduction of a “deviant” stimulus after series of similar stimuli, is also 
impaired in schizophrenia (for review see Michie, 2001). This measure is thought to reflect 
error signaling, and deficits in mismatch negativity correlate to both negative symptoms 
and social independence (Catts et al, 1995; Light and Braff, 2005). Recently, deficits in the 
communication between local and distributed neural circuits through gamma-band EEG 
oscillations have been shown to be disturbed in schizophrenia (Brenner et al, 2003; Gallinat 
et al, 2004; Light et al, 2006). These oscillations may play a role in the cognitive dysfunction 
of schizophrenia as they appear to be of importance for information selection (Salinas and 
Sejnowski, 2000), selective attention (Fries et al, 2001), and working memory (Howard et 
al, 2003). In summary, these measures all appear to be independent physiological deficits 
that may form valuable endophenotypes when searching for pathophysiological pathways 
in schizophrenia.

Pharmacological treatment options for schizophrenia 
Based on the timing of introduction to the market and pharmacological profiles, antipsy-
chotics are commonly divided into three main categories: first generation, second generation, 
and third generation. Despite this subdivision, all currently effective antipsychotics inhibit 
signaling through the dopamine D

2
 receptor to varying degrees.

First generation antipsychotics
First generation antipsychotics, also referred to as “typical” include early-developed substances 
with a strong dopamine D

2
 receptor antagonism. Drugs of this class, such as haloperidol 

or chlorpromazine are effective at reducing positive symptoms in most, but not all patients. 
D

2
 receptor occupancy above 70% in the striatum is usually required for an antipsychotic 

effect of these substances, but at 80% occupancy, the risk for side effects such as extrapy-
ramidal symptoms (EPS) starts to emerge (Kapur et al, 1996; Sedvall et al, 1988; Zipursky 
et al, 2005). 

Second/Third generation antipsychotics
Clozapine is the prototype drug for the “atypical” or second-generation antipsychotics 
with some unique properties. It has a higher efficacy than first-generation antipsychotics 
in treatment-resistant schizophrenia (Kane et al, 1988). Furthermore, clozapine is thought 
to be able to mediate its antipsychotic effect at a D

2
 receptor occupancy of only 50% 

(Farde et al, 1994), although this matter is under debate (Seeman and Tallerico, 1998). 
Clozapine is considered superior to the first generation antipsychotics in that it has some 
beneficial effects on both negative symptoms and cognitive dysfunction, as well as a low 
incidence of EPS (Claghorn et al, 1987; Galletly et al, 2005; Kane et al, 1988; McGurk, 
1999). In addition to its effects on all types of dopamine receptors, clozapine has high 
affinity to other receptors such as noradrenergic receptors (α

1
 and α

2
), serotonergic recep-

tors (5HT
1
, 5HT

2
, 5HT

7
) and histaminergic receptors (H

1
) (Hertel et al, 1999; Meltzer and 

Gudelsky, 1992).



25

Because of the ability of clozapine to induce the lethal condition of agranulocytosis in 
some patients, it is prescribed with caution. This side effect has led to the search for safer 
“clozapine-like” compounds with similar receptor profiles (e.g. olanzapine, sertrindole, 
risperidone, quetiapine). In general, these drugs are well tolerated and do not induce EPS, 
but may instead cause other side effects such as weight gain, insulin resistance, and 
sedation.

Recently, a third generation of antipsychotics has emerged, the “dopamine stabilizers,” 
aiming at normalizing dopamine transmission by stabilizing both the hyper- and hypo-
dopaminergic state that may be present in schizophrenia. A representative of this class 
that has reached the market is aripiprazole, a partial D

2
 receptor agonist with high affinity 

and low intrinsic activity underlying its dopamine-stabilizing properties (Burris et al, 2002; 
Tamminga and Carlsson, 2002). In addition, aripiprazole has affinity for serotonergic, 
adrenergic and histaminergic receptors (Keck and McElroy, 2003). Aripirazole has now 
been evaluated in a number of controlled trials, and appears to improve positive and 
some negative symptoms in patients, while avoiding prolactin secretion or EPS to the 
same extent as first generation antipsychotics (Kane et al, 2002). Many dopamine stabilizers, 
both partial agonists and partial antagonists, are under development, but it remains to be 
seen whether any of these compounds alleviate negative symptoms and/or cognitive deficits 
to any larger extent. At the moment, the main asset of dopamine stabilizers appears to be 
their lower propensity to cause EPS, agranulocytosis, or other severe side effects.

Current limitations 
Treatment with atypical antipsychotics has been documented to improve cognitive deficits 
in schizophrenia to a greater extent than typical antipsychotics in both clinical studies and 
meta-analyses (Keefe et al, 2007a; Keefe et al, 2007b). However, the proposed effect of 
these compounds on cognition is currently debated due to (1) the common lack of control 
groups which makes it impossible to account for practice effects in cognitive tests; (2) the 
potential bias of patients switching from cognition-impairing treatment to the test drug; (3) 
industry sponsorship (Goldberg et al, 2007). The notion of practice effects as an important 
confounder in treatment-studies of cognition in schizophrenia has recently gained support 
by the CATIE study (Clinical Antipsychotic Trials in Intervention Effectiveness), where no 
difference in cognitive performance could be observed between first and second generation 
antipsychotics after 2 months of treatment (Keefe et al, 2007a). A similar picture has been 
observed in a smaller randomized study of atypical compounds (Keefe et al, 2007b). Two 
recent studies (one clinical study and one meta-study) using healthy controls show that 
neurocognitive improvement in patients with schizophrenia is nearly identical to what is 
observed in controls (Goldberg et al, 2007; Szoke et al, 2008). Thus it is very clear that 
practice-related bias has to be taken into account, both in the evaluation of currently available 
treatment options and in the development of novel compounds targeting cognitive deficits 
in schizophrenia.

The prefrontal cortex (PFC)
In the cerebral cortex, the prefrontal regions are considered to organize behavior in relation 
to time. Thus, this brain region has to integrate sensory and motor information in a way 
that permits the individual to initiate a behavioral sequence that promotes survival (Uylings 
et al, 2003). Briefly, such a temporal organization is based on initial detection of a reaction-
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requiring situation, followed by attention to the specifics of that situation, while recalling 
past experiences to then plan and execute an appropriate behavioral sequence (Fig 4) 
(Moghaddam and Homayoun, 2008; Uylings et al, 2003). Accordingly, the PFC has been 
implicated in cognitive functions such as attention, working memory, and executive function 
(planning and monitoring of behaviors), all demanding a dynamic interaction between 
several brain regions (Elvevag and Goldberg, 2000; Fuster, 1997; Sawaguchi and Goldman-
Rakic, 1994). The PFC is extensively interconnected to the rest of the brain including 
nearly all cortical and sub-cortical areas. It receives its main input from the basal ganglia, 
which reaches the PFC through reciprocal connections with thalamic nuclei, particularly 
the mediodorsal thalamic nucleus (Leonard, 1969; Uylings et al, 2003; Uylings and van 
Eden, 1990). In primates, a common sub-division can be made of the PFC into a dorsolateral, 
medial (anterior cingulate), and orbital region that are associated with different cognitive 
functions (Barbas and Blatt, 1995). Interestingly, a similar division has emerged from studies 
of the rodent PFC, where the major functionally and anatomically defined regions are the 
medial PFC (similar to primate dorsolateral), the anterior cingulate region, and the orbital 
frontal cortex (OFC, similar to primate orbital subdivision) (Uylings et al, 2003). 

Figure 4. Overview of the PFC and its general sub-divisions and their corresponding function in primates and 
rodents. dlPFC=dorsolateral PFC, mPFC=medial PFC, nAcc=nucleus accumbens, OFC=orbitofrontal cortex, 
VTA=ventral tegmental area.

The concept of “hypofrontality” in schizophrenia 
Working memory deficits have consistently been demonstrated in patients with schizo-
phrenia (Barch et al, 2001; Park and Holzman, 1992) and are relatively resistant to treatment 
with currently available antipsychotics (Goldberg and Weinberger, 1996). The dorsolateral 
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PFC (dlPFC) is known to be highly involved in working memory in non-human primates, 
and has therefore become the focus when studying this cognitive domain in healthy volunteers 
and schizophrenic patients (Cohen et al, 1996; Manoach, 2003). Neuroimaging studies 
have showed a hypoactive dlPFC both under resting conditions (Ingvar and Franzen, 1974; 
Weinberger et al, 1986) and during working memory tasks (Andreasen et al, 1992; Barch et 
al, 2001; Menon et al, 2001; Weinberger et al, 1988). These findings led to the theory of 
hypofrontality as a characteristic trait of schizophrenia. 

Interestingly, recent findings have demonstrated either an equal (Curtis et al, 1999; Honey 
et al, 2002; Volz et al, 1999) or a hyperactive dlPFC during working memory tasks in 
patients with schizophrenia (Callicott et al, 2000; Manoach et al, 2000; Manoach et al, 1999; 
Ramsey et al, 2002). This apparent paradox can likely be attributed to differences in group 
averaging, choice of working memory tasks, motivation differences between patients and 
controls, and medication status (Manoach, 2003). In addition, recent studies suggest that 
patients with schizophrenia are more heterogeneous than controls in their activation of 
dlPFC (Manoach et al, 2000). Given that the human dlPFC does not have any precise 
boundaries, differences in anatomical definitions between studies may affect the outcome 
when averaging the activation during task performance. Furthermore, patients and controls 
do not appear to differ in dlPFC activation under conditions of matched performance, sug-
gesting that hypofrontality is the likely outcome only when working memory load does 
exceed the capacity of patients but not controls (Callicott et al, 2000; Honey et al, 2002; 
Manoach, 2003; Perlstein et al, 2001). At low cognitive load, schizophrenia patients instead 
need to activate their dlPFC to a greater extent than controls, which can be interpreted as 
a compromised efficiency (Callicott et al, 2003). This “inverted U”-shaped response (Fig 5) 
may help to explain how both hypo- and hyperactivity can be seen as related rather than 
discrepant reflections of PFC dysfunction in schizophrenia. 

Figure 5. Hypothetical, inverted-U-shaped, relationship showing dlPFC activation in controls and patients  
with schizophrenia during increasing working memory load. At lower working memory load, patients may  
show a hyper activation or “ineffiency” whereas a high load (that exceeds the patient’s capacity) may render  
a hypoactivity (Modified from Manoach et al 2003 and Callicott et al 2003).

Structural and developmental aspects of PFC dysfunction
PFC sub-regions have a later maturation and synaptic pruning period compared to other 
parts of the brain, which is similar in temporal aspects to the disease development of 
schizophrenia (Rakic, 2002; Weinberger, 1987). As mentioned earlier, the PFC is also one 
of the brain regions where grey matter volume is reduced in schizophrenia (see “morpho-
logical findings”) and several studies map aberrant glutamate, dopamine and GABA sign-
aling to this area (see “affected signaling systems in schizophrenia”).
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Together, the above-mentioned findings suggest that PFC function is severely compromised 
in many, but not all, patients with schizophrenia. Studies of this cortical network may elucidate 
key pathways that may be of interest when aiming to understand the cognitive deficits in 
this disorder and to find suitable treatment targets.

Animal models of schizophrenia
In the search for pathophysiological mechanisms and new treatment strategies, schizo-
phrenia research relies heavily on animal models to generate novel ideas, form hypotheses 
and then test them. A major limitation of these studies is of course that schizophrenia is 
uniquely human, and affects many higher cognitive functions that may not be present in 
rodents or even non-human primates. It is thus important to clarify that any animal model 
used in schizophrenia research, can at best mimic one or a few aspects of the disease. 
Given these obvious shortcomings, it is quite striking how successful the use of animal 
models in neuropsychiatric research has proven. The development of currently existing 
antipsychotics, which originated in the seminal discovery of dopamine as a transmitter 
(Carlsson, 1959), has been heavily based on animal studies.

The relevance of models for schizophrenia is constantly debated, and caution is needed 
when evaluating their relative validity for this disorder. Willner proposed a classification 
system of animal models for neuropsychiatric conditions based on different concepts of 
validity (Willner, 1984). This system states that a given animal model can be mapped on to 
each of the following dimensions:

1)	 Construct validity; how well the model mimics the underlying neurophysiological 
basis of the disease.

2)	 Face validity; how similar the measurement endpoints are between the clinical situation 
and the experimental model.

3)	 Predictive validity; how the sensitivity to pharmacological modulation of the model 
compares to clinical studies.

By nature, developmental models such as neonatal lesions may have relatively high con-
struct validity, whereas acute pharmacological models have high scores on predictive, and 
sometimes face validity. Logically, a model cannot rely only upon a pharmacological or 
developmental insult, but is also dependent on the use of an output measure with some 
relevance for the disease. Some of the most frequently used animal models of schizophrenia 
are described below, with a special emphasis on PCP administration combined with PPI 
studies, as this has been the focus of the present thesis.

Developmental models
Schizophrenia is hypothesized to be the consequence of aberrant neurodevelopment in 
both cortical and subcortical systems. A number of approaches have been used to induce 
such deficits with some success, including adult or neonatal lesions (Lipska, 2004; 
O’Donnell et al, 2002; Schwabe et al, 2004; Tseng et al, 2007), virus inoculation (Engel et 
al, 2000; Pletnikov et al, 2002; Shi et al, 2003), and social isolation (Geyer et al, 1993; Jones 
et al, 1990).
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In addition, the search for genetic factors underlying schizophrenia has highlighted many 
potential genes of interest that have been targeted by developing knock-out or knock-
down mice. Several of these genetic models mimic important aspects of schizophrenia, 
such as reduction in grey matter volume, decreased PPI, deficits in long-term and spatial 
memory and disturbed social interaction (for review see Carpenter and Koenig 2008). 
Interestingly, many of these genes are closely linked to the glutamate system, including 
Neuregulin 1/erB, DISC 1, NR1/NR2 and dysbindin (Boucher et al, 2007; Clapcote et al, 2007; 
Kamiya et al, 2005; Li and He, 2007; Mohn et al, 1999; Murotani et al, 2007; Roy et al, 2007). 
In addition, knock-out mice targeting the dopamine transporter (Trinh et al, 2003) and the 
GABA

A
 receptor (Yee et al, 2005) display schizophrenia-like phenotypes. 

The recent development of methodologies for creating conditional knock-out mice will 
probably expand this field further, and allow specific questions to be asked about critical 
time windows and brain regions involved in the development of schizophrenia (Bannerman 
et al, 2008; Miyakawa et al, 2003; Wallén-Mackenzie et al, 2008, manuscript).

Pharmacological models
Dopaminergic models

Based on the earlier mentioned connection between disrupted dopamine signaling and 
preferentially positive symptoms of schizophrenia, direct or indirect dopamine agonists 
such as apomorphine (APO) and d-amphetamine (d-AMP) have been used to model 
aspects of schizophrenia. When administered acutely or in a sensitizing regime, these 
compounds typically induce hyperlocomotion, deficits in PPI (Johansson et al, 1995; 
Mansbach et al, 1998; Swerdlow et al, 2001), habituation (Davis et al, 1975; Klamer et al, 
2004c), latent inhibition (Ellenbroek et al, 1997; Weiner et al, 1984), social withdrawal 
(Sams-Dodd, 1995) and also attentional set-shifting (Featherstone et al, 2008). These effects 
have been used to evaluate novel dopamine-targeting compounds with antipsychotic 
potential, particularly in PPI studies (for review see Geyer et al, 2001; Swerdlow et al, 
2008). A striking example of the predictive validity of this model is that the ED

50
 of typical 

and atypical antipsychotics for reversing APO-induced PPI disruption in the rat, correlate 
with their clinical potency (Swerdlow et al, 2008). 

Despite the proven disruption of the dopamine system (such as increased sensitivity to 
d-AMP administration) following neurodevelopmental insults (for review see Lipska, 2004), 
models based on dopamine disruption do not, in general, mimic the cognitive dysfunction 
observed in schizophrenia to the same extent as glutamate-based models (for review see 
Javitt, 2007; Jentsch and Roth, 1999). In addition, dopamine alterations have been suggested 
to result as a consequence of upstream pathophysiological events, such as alterations in 
GABA or glutamate signaling. Nevertheless, systemic administration of D

2
 receptor agonists, 

and systemic and prefrontal administration of D
1
 receptor antagonists to rats disrupts PPI 

(Ellenbroek et al, 1996; Swerdlow et al, 2001; Swerdlow et al, 2005), suggesting that 
dopamine signaling is involved in the regulation of pre-attentive information processing. 
In addition, prefrontal depletion of dopamine levels decreases PPI, further emphasizing 
the role of PFC in the modulation of this filter mechanism (Bubser and Koch, 1994). A 
potential drawback of dopaminergic models is that they tend to be susceptible to false 
positives (Pouzet et al, 2004). They are also very sensitive to dopamine antagonism, thus 
promoting the development of drugs similar to currently available antipsychotics, which 
do not alleviate the negative and cognitive aspects of the disease to any greater extent. 
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Thus, in order to discover novel targets suitable for the treatment of cognitive dysfunction 
in schizophrenia, additional models are needed.

The PCP model
The schizophrenia-like behavioral effects of PCP in humans, which mimic both positive and 
negative symptoms as well as the cognitive dysfunction in schizophrenia (see “glutamate 
and schizophrenia”), have made administration of PCP to research animals widely used to 
model these aspects of the disease (for review see Jentsch et al, 1999; Morris et al, 2005). 

Pharmacology of PCP
PCP acts primarily as a channel blocker on the NMDA receptor (Anis et al, 1983) and has 
an affinity for this receptor in concentrations consistent with the plasma levels of PCP in 
chronic abusers (Bailey, 1979; Morris et al, 2005). It also inhibits other ion channels including 
voltage-dependent sodium and potassium channels (ffrench-Mullen and Rogawski, 1989; 
Vincent et al, 1983). In addition, PCP acts as an agonist at serotonergic (5HT

2
) and dopamin-

ergic (D
2
) receptors, and also inhibits both the dopamine and the noradrenaline trans-

porter (Garey and Heath, 1976; Kapur and Seeman, 2002; Pubill et al, 1998; Rothman et al, 
1989; Seeman and Lasaga, 2005). Despite this rich pharmacology, PCP primarily acts on 
NMDA receptors, as the effects on other receptor systems appear to be less potent (Morris 
et al, 2005).

Relevance to schizophrenia
PCP and other non-competitive NMDA receptor antagonists such as dizocilpine (MK-801) 
and ketamine, have been shown to induce both behavioral, morphological and biochemical 
alterations that resemble schizophrenia:

1)	 Acute, systemic administration of PCP, and its analogues, dose-dependently disrupts 
PPI in both rodents (Fejgin et al, 2007; Klamer et al, 2001; Mansbach and Geyer, 
1989) and non-human primates (Linn and Javitt, 2001; Linn et al, 2003). These deficits 
are not alleviated to any greater extent by antipsychotic pretreatment, particularly 
not by typical antipsychotics (Bubenikova et al, 2005; Cilia et al, 2007; Fejgin et al, 
2007; Linn et al, 2003). This suggests that the PCP model may be used to distin-
guish between different types of antipsychotic effects, and thus possibly has a 
potential to detect principally novel treatment targets. In addition to the effects on 
pre-attentive information processing, acute PCP treatment induces hyperlocomo-
tion and cognitive deficits that affect long-term memory, working memory, social 
function, non-associative learning (habituation) and selective attention (latent inhi-
bition) (Adams and Moghaddam, 1998; Corbett et al, 1995; Klamer et al, 2004c; 
Palsson et al, 2005; Sams-Dodd, 1995; Wass et al, 2006a; Wass et al, 2006b). 

2)	 Repeated administration of PCP (in subchronic or chronic dosing regimes) to rodents 
and primates does not typically disrupt PPI or affect locomotion but instead targets 
cognitive functions that rely heavily on PFC integrity such as attentional set-shifting 
and working memory (Egerton et al, 2008; Jentsch et al, 1997a; Jentsch et al, 1997b; 
Pratt et al, 2008; Rodefer et al, 2008). Furthermore, repeated PCP administration 
causes reduced activity in specific brain regions such as the PFC and hippocampus 
suggesting that this treatment regime affects neurocircuitry in a different way than 
acute administration (Cochran et al, 2003).
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Both of the above mentioned treatment regimes appear to affect the prefrontal cortex in 
particular, as evidenced by studies based on electrophysiology, immunocytochemistry, 
microdialysis, and gene/protein expression analyses (Abdul-Monim et al, 2007; Adams et 
al, 1998; Anastasio and Johnson, 2008; Cochran et al, 2003; Egerton et al, 2005; Molteni et 
al, 2008). Interestingly, acute administration of NMDA antagonists to both humans and 
animals may cause both an increase (Breier et al, 1997; Gozzi et al, 2007; Jackson et al, 
2004; Lahti et al, 1995; Moghaddam et al, 1997) and a decrease (Cochran et al, 2003) in 
cortical activity depending on treatment regime. In general, hyperactivation is seen after 
acute administration and hypoactivation after repeated treatment, in analogy to the con-
flicting findings when studying cortical activity of patients with schizophrenia (see “the 
concept of hypofrontality in schizophrenia”). As mentioned earlier, NMDA antagonists 
also have profound effects on interneuron integrity and function; thereby further support-
ing the validity of the PCP model as a useful tool in schizophrenia research (see “GABA-
glutamate interactions – the concept of disinhibition”). In summary, the PCP model is able 
to mimic several aspects of schizophrenia depending on experiment design. Further, this 
model has recently been shown to have predictive validity for detecting principally novel 
mechanisms as evidenced by a recent clinical study with the first antipsychotic drug that 
exclusively targets the glutamate system by agonist activity at the mGluR2/3 (Moghaddam, 
2004; Patil et al, 2007).

Nitric oxide and PCP
Several studies have shown that the ability of PCP to induce schizophrenia-like behaviors 
in rodents can be blocked by administering the non-selective NOS inhibitor, NG-nitro-l-
arginine methyl ester (L-NAME), or nNOS selective inhibitors. This has been shown for 
PCP-induced deficits in PPI and hyperlocomotion (Johansson et al, 1999; Johansson et al, 
1997; Klamer et al, 2001, 2004b; Klamer et al, 2005b; Wiley, 1998), habituation (Klamer et 
al, 2004c) and latent inhibition (Klamer et al, 2005c; Palsson et al, 2005). Furthermore, 
PCP-induced deficits in several aspects of spatial memory (as assessed by the Morris 
watermaze) are also blocked by NOS inhibition. These include learning and memory 
(Wass et al, 2006b), working and reference memory (Wass et al, 2006a) and cognitive flex-
ibility (Wass et al, 2008b). Interestingly, NOS inhibition does not appear to attenuate defi-
cits induced by d-AMP to the same extent as it ameliorates the effects of PCP (Johansson 
et al, 1998; Klamer et al, 2004c). This suggests that the NO system is involved in a broad 
range of behavioral effects of PCP and that it may constitute a novel treatment target for 
particularly the cognitive deficits in schizophrenia. 

The mechanism by which L-NAME interferes with the effects of PCP remains to be eluci-
dated. However, it is not likely caused by direct interference with the PCP site of the NMDA 
receptor as evidenced by a recent binding study (Klamer et al, 2005d). Further support for 
the aforementioned role of nNOS in PCP-induced deficits stems from several studies on 
knockout mice lacking the nNOS gene. These mice are not sensitive to the stimulatory 
effects of PCP on locomotion or PPI (Bird et al, 2001; Klamer et al, 2005a; Wiley et al, 
1999). Other means of interfering with the NO system have also been investigated. Meth-
ylene blue, a NOS and guanylyl cyclase inhibitor blocks the effects of PCP on PPI in mice 
(Klamer et al, 2004a) and has a beneficial effect when given as an adjuvant to patients 
with schizophrenia (Deutsch et al, 1997). Tentatively, this adds translational potential to 
the concept of interference with the NO system as a novel target for treatment of 
schizophrenia.
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In combination with the clinical evidence for NO dysregulation (see “nitric oxide and 
schizophrenia”), the above listed findings appear very promising. However, they do not 
reveal much about: (1) how effects downstream or upstream of NO release relate to the 
effects of PCP; (2) the regionality of these effects, i.e. where in the brain these NO-
dependent mechanisms are situated; (3) the temporal and qualitative dynamics of NO 
signaling in different brain regions; (4) if NO signaling interacts with other major transmitter 
deficits in schizophrenia apart from glutamate. To further understand the putative role of 
the NO system in schizophrenia, these are key questions that need to be addressed from 
a preclinical perspective. Obviously, clinical studies using subtle modulation of the NO 
system would be an indispensable tool to test these hypotheses.
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Aim of thesis
The general aim of this thesis was to use the PCP model to investigate the role of prefrontal 
NO signaling for biochemistry and information processing in schizophrenia.

Specific aims
1. To outline the principal NO-related components participating in the effects of PCP by 
selectively interfering with the NO pathway, both upstream and downstream of the enzy-
matic step where NO is generated by NOS.

2. To study the role of prefrontal NO signaling for the behavioral effects of PCP and 
characterize the temporal and qualitative dynamics of NO release in this brain region in 
real-time.

3. To investigate the relation between prefrontal NO and GABA signaling in the PCP model. 
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MATERIALS AND METHODS

Animals
NMRI mice (Charles River, Germany, paper I and II, or B&K Universal, Sweden, paper I, 
II and IV, 28–40g), Male Wistar rats (UCD, Ireland, paper III, 280–400g), and Sprague-
Dawley rats (Taconic, Denmark, paper III and IV, 280–400g) were used in the present 
thesis. These strains are commonly used in behavioral pharmacology mainly because they 
are outbred and therefore display a greater interindividual variance, thus being somewhat 
more representative of a population, than inbred strains. The initial body weights corre-
spond to an age when the animals have passed puberty according to breeders.

Animals were allowed to acclimatize for at least one week prior to surgery or behavioral 
testing and were housed nine mice per cage or four rats per cage, in a colony room under 
constant temperature (20±1°C) and humidity (50±5%). After surgery, animals were housed 
individually in standard plastic cages until the experiments were terminated. The daylight 
cycle was maintained artificially (lights on from 0600 to 1800 hours) and behavioral exper-
iments and biochemical measurements were conducted during the light phase. Food and 
water were available ad libitum. All experimental procedures used in the present studies 
were approved by the National University of Ireland Maynooth Ethics Committee for Animal 
Experimentation (Paper III) and the Ethics Committee for Animal Experiments, Göteborg, 
Sweden (Paper I, II, III, IV).

Drugs
All drugs for systemic injections were dissolved in saline (sal, 0.9% NaCl) and adminis-
tered either intraperitoneally (i.p., in mice) or subcutaneously (s.c., in rats). Mice were 
always injected a volume of 10 ml/kg and rats 2 ml/kg. For local injections, R-baclofen 
was dissolved in Ringer’s solution and ODQ was dissolved in 100% DMSO and then 
stored in batches at –20°C and diluted in Ringer’s solution on the day of testing, reaching 
a final DMSO content of 1%. All local injections were bilateral reaching a final volume 0.5 
(paper II) or 1.0 µL (paper IV) per side.
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Table 1. Overview of drugs used in the present thesis.

Surgical procedures
In vivo microdialysis (paper II)

The mice were anesthetized with isoflurane (Isofluran Baxter; Apoteket AB, Sweden), 
placed in a Kopf stereotaxic instrument (David Kopf Instruments, Tujunga, CA, USA), and 
kept on a heating pad to prevent hypothermia. The skull was exposed and two holes, one 
for the dialysis probe (either right or left hemisphere) and one for the anchor screw were 
drilled. The dura was removed using a sharp needle, and the guide cannulas and the 
anchor screw were secured with dental cement (Dentalon plus, AgnTho’s AB, Lidingö, 
Sweden). The coordinates used for the medial PFC region relative to the bregma were as 
follows: anterior +1.8 mm, lateral to midline ±0.8 mm, and ventral –1.6 mm from the brain 
surface (Franklin and Paxinos, 1996). After surgery, the mice were administered 1.0 ml of 
saline, s.c., to avoid post-operative dehydration. 10 mg/kg/ml of ketoprofen was adminis-
tered s.c as a prophylactic analgesic. The mice were then allowed to recover for 2 days 
before the experiment. They were housed individually in standard plastic cages (Macrolon 
III; 400 x 250 x 150 mm). 

Microinjections (paper II and IV)
As for in vivo microdialysis, but two holes for the guide cannulas (stainless steel, length 10 
mm, with an o.d./i.d. of 0.6/0.45 mm), and one hole for an anchor screw were drilled. The 
coordinates used for the medial PFC region relative to the bregma were instead: anterior 
+1.8 mm, lateral to midline ±0.8 mm, and ventral –1.0 mm from the brain surface (cannula 
was inserted the additional 0.6mm at the test day). Mice were allowed to recover for 3–4 
days prior to behavioral testing.
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In vivo voltammetry (paper III and IV)
The rats were anesthetized with isoflurane, placed in a Kopf stereotaxic instrument and 
kept on a heating pad to prevent hypothermia. An incision was placed down the midline 
of the skull and the bone was exposed. Four holes for the anchor screws, two holes for 
the reference (8T Ag wire, 200-µm bare diameter; Advent Research Materials, UK) and 
auxiliary (8T Ag wire) electrodes and one hole for the sensor electrode was drilled. Electrodes 
were then implanted following a previously described procedure (Lowry et al, 1997). The 
coordinates used for the medial PFC relative to bregma were as follows: anterior +3.2 mm, 
lateral to midline ±0.8 mm, and ventral –4.2 mm (experiment 2, paper III; paper IV) or 
–5.2 mm (experiment 1, paper III) from the brain surface. The electrode was inserted into 
the brain and connected to a pedestal that was secured to the anchor screws with dental 
cement. Sensor placement was balanced between the left and right hemispheres through-
out the experiment. During surgery, the rats were administered 2.0 ml of saline (s.c.), to 
reduce postoperative dehydration and an analgesic (carprofen or buprenorphine) to 
reduce post-operative pain. The animals were allowed to recover for 2–4 days before 
commencing experiments. They were housed individually in standard plastic cages.

Figure 6. Schematic view of surgical preparation for electrochemical measurements of NO levels by in vivo vol-
tammetry.

Probe and sensor placements
After termination of the local injection and voltammetry experiments the mice and rats 
were decapitated. The brains were removed and either frozen at –80°C or fixated (Accus-
tain, Sigma-Aldrich, Stockholm, Sweden). Injection or sensor placement (Fig 7) was veri-
fied by sectioning the brains using a cryostat or vibratome and an atlas of the mouse or rat 
brain for reference (Franklin et al, 1996; Paxinos and Watson, 2005). Animals with errone-
ous cannula or sensor placement were excluded from the experiments.
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Figure 7. Overview of probe, cannula and sensor placements in the present thesis. Left frame: Approximate 
location of (a) microdialysis probe and (b)cannula placements in the mouse mPFC (Paper II). Right frame: Actual 
sensor placements in the rat mPFC in Paper IV (also representative of sensor placements in Paper III).

Prepulse inhibition of the acoustic startle

Apparatus
Paper I and II

Acoustic startle was recorded by a MOPS 2b startle response recording system (Metod och 
Produkt, Svenska AB, Göteborg, Sweden). The animals were placed in small wire-mesh cages 
(10 x 5.5 x 5.5 cm) made of stainless steel, which were suspended at one point at the top 
to a piston in such a way that they could move freely under the piston (Fig 8). A sudden 
movement of the animal inside the cage caused a displacement of the piston, the accelera-
tion of which was converted to an analogue signal by a moving coil transducer. This signal 
was sampled and digitized with a 12 bit analogue-to-digital (A/D) resolution by a micro-
computer, which also served to control the delivery of acoustic stimuli. Startle amplitude 
was defined as the maximum signal amplitude (A/D units) that occurred during the first 
40 ms after delivery of the startle-eliciting stimulus. Three cages were used simultaneously 
and each cage was housed in a separate, dimly lit and sound-attenuated cabinet (52 x 42 
x 38 cm). The cages were calibrated for equal sensitivity before testing and a mouse tested 
in one cage was always tested in the same cage at subsequent tests. The acoustic signal 
consisted of white noise delivered to the animal by two high-frequency loudspeakers built 
into the ceiling of the cabinet. Each test lasted approximately 24 minutes.

Paper IV
As described for Paper I and II, with the following exceptions: Acoustic startle was recorded 
using a newly developed MOPS 3 startle response recording system (Metod och Produkt 
Svenska AB, Sweden). The animals were placed in small plexi-glass cages (10 x 5.5 x 6 cm), 
the acceleration was registered by a piezo-electric accelerometer and startle amplitude 
was defined as the maximum signal amplitude occurring 8–30 ms after the startle-eliciting 
stimulus. Four cages were used simultaneously and each cage was housed in a dimly lit 
and sound-attenuated cabinet (52 x 42 x 38 cm).
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Figure 8. Schematic drawing showing the technical setup for prepulse inhibition experiments.

PPI paradigms
Paper I and II

Each test session started with a 10-min adaptation period containing only white back-
ground noise 62 dB(A). The background noise was interrupted at stimulus presentations 
by a burst of white noise with a rise/decay time of less than 1 ms. Startle pulse intensity 
was set to 105 dB(A) and prepulse intensity to 70 dB(A). Startle pulse duration was set to 
20 ms and prepulse duration to 60 ms. The prepulse was presented immediately before 
the startle pulse. After the 10-min adaptation period, the animals were presented with a 
series of five startle pulse-alone trials followed by a series of five prepulse-alone trials. The 
pulse-alone trials served only to accommodate the animals to the sudden change in stimulus 
conditions and were omitted from the data analysis and the prepulse-alone trials were 
analyzed only to ensure that these stimuli did not evoke any startle responses on their own. 
Thereafter the animals were presented, three times repeatedly, with a series of five prepulse-
pulse trials followed by a series of five pulse-alone trials, i.e., a total of 30 trials. The time 
between trials was always 10 s and the time between any series of trials was 70 s.

Paper IV
Each test session started with an 8-min adaptation period containing only white back-
ground noise at 62 dB(A). Startle pulse was set to 105 dB(A) and prepulse intensities to 9, 
12 and 15 dB(A) above background. Duration of acoustic stimuli was set to 20 ms for both 
prepulses and startle pulses and interstimulus interval (ISI) was set to 40 ms. After the 
adaptation period the animals were subjected to a series of 5 startle pulse-alone trials that 
were omitted from the analysis since they only served to accommodate the animals to the 
sudden stimulus onset. The animals were then subjected to a pseudo-randomized combi-
nation of 3 prepulse-alone trials for each prepulse intensity, 45 pulse-alone trials and 15 
prepulse+pulse trials for each prepulse intensity. Trials were separated by 5–15 s intervals 
and all these intervals included a measurment of intertrial activity (ITA). This served as a 
general marker of basal animal activity (not stimulus-evoked) throughout the experiment. 
The full PPI test lasted approximately 24 min including the adaptation period.
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Table 2. Overview of the main differences in startle recording procedures between paper I + II (MOPS 2b) and 
paper IV (MOPS 3).

Locomotor activity
Apparatus

Locomotor activity of the mice (defined as accumulated number of crossed photocell 
beams) was recorded using eight box-shaped Plexiglas devices with a floor area of 42 x 
42 cm. The activity boxes were housed in dimly lit and sound-attenuated cabinets (420 x 
420 x 45 cm). A computer-based system determined the horizontal location of the animal 
at all times using five times five rows of photocell beams.

Experimental layout

Biochemical measurements
In vivo microdialysis – cGMP immunoassay

The animals were divided into 4 treatment groups: sal+sal; sal+PCP; L-NAME+sal; 
L-NAME+PCP. They were connected to the microdialysis apparatus via a liquid swivel 
(FEB-tubing, CMA/Microdialysis AB, Stockholm, Sweden) and were able to move freely during 
the experiment. The dialysis probes were perfused with Ringer solution, at a constant rate 
of 1.5 µl/min, for a 60 min habituation period to establish a stable baseline. Thereafter, 
dialysate samples (135 μl) were collected over two 90 min periods (Vial Plastic 300 ml, 
CMA/Microdialysis AB, Stockholm, Sweden. Saline (10 ml/kg) or L-NAME (40 mg/kg/10 
ml) was administered 80 min after the start of the first of these sampling periods, followed 
by saline (10 ml/kg) or PCP (5 mg/kg/10 ml) 10 min later. The dialysate samples were 
stored at –35°C until assayed for cGMP using an enzyme immunoassay. 
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The cGMP amount was assessed using a commercial enzyme immunoassay kit (CG-201 
cGMP Enzyme Immunoassay Kit, Sigma-Aldrich). The acetylated version of the protocol of 
the manufacturer was followed with a single modification. The standard range was shifted 
from 100–0.16 pmol, to 20–0.032 pmol. The assay is based on the competition between 
sample cGMP and a fixed quantity of cGMP, with an alkaline phosphatase molecule cova-
lently bound to it, for a limited number of binding sites on a cGMP-specific antibody. A 
fixed amount of substrate is then added and after a short incubation period the enzyme 
reaction is terminated and the intensity of the resulting yellow color is read on a micro-
plate reader at 405 nm. The intensity of the bound color is inversely proportional to the 
amount of cGMP in either standards or samples. All standards and samples were analyzed 
in duplicates and the mean readings were used to calculate cGMP content. 

Electrochemical measurements of nitric oxide
Prefrontal cortex NO levels were determined using a NO selective amperometric micro-
sensor. The microsensor is a Nafion®-modified Pt disk electrode (patent no. S2007/00774). 
The sensor design has been validated for in vitro and in vivo NO sensitivity (Brown et al, 
2005; Finnerty, 2008) and in vitro selectivity against ascorbic acid, uric acid and dopamine 
(Brown and Lowry, 2003). The NO oxidation current (electrode potential of +0.90 V against 
a Ag reference electrode) was detected using a low-noise potentiostat (Biostat II, Electro-
chemical and Medical Systems, UK) and converted using an A/D converter (PowerLab, 
ADInstruments, United Kingdom). The digital signal was then recorded using Chart software 
(v5, ADInstruments) running on a PC. Each animal was connected to the in vivo voltammetry 
equipment on the day before an experiment to allow the NO oxidation current to reach a 
stable baseline. All experiments were carried out with the animal in its home cage. 

The current over time (sampling rate 4/s) recorded in Chart was used as data. The mean 
of an approximately 5 min long sampling period just before drug treatment was used as 
baseline. The mean current change from baseline was calculated for a 5 min sampling 
period surrounding the time points of 30, 60 and 90 min after injection.

Behavioral testing
Prepulse inhibition

In most PPI experiments involving systemically administered compounds only (paper II 
and IV), a balanced cross-over design was used, where each animal received all treatment 
combinations (veh+sal, pretreatment+sal, veh+PCP and pretreatment+PCP). Each test was 
separated by a 3–4 day long wash-out period to minimize any potential carry-over effects. 
PCP was always administered at a dose of 5 mg/kg (i.p.), 15 min prior the onset of the first 
startle stimulus in the PPI test. 

As an exception to the above procedure, animals in paper I (both acute and subchronic experi-
ments) were matched into four homogenous groups according to PPI and startle amplitudes. 
For the acute experiments each group received one of four possible treatment combinations 
(veh+sal, L-lysine+sal, veh+PCP and L-lysine+PCP). In the subchronic experiments the mice 
received an injection with the assigned pretreatment once daily, for four consecutive days. 
In the morning of the fifth day, all animals were injected with saline and tested for PPI for 
the first time. Three hours later all groups were administered PCP (5 mg/kg) and tested a 
second time. The reason for the alternative experimental layout in the acute experiments 
of paper I was that this specific design removed the potential confound of long-term 
effects of L-lysine and facilitated comparisons with the subchronic experiment.
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In experiments using prefrontal microinjections the animals were matched into four treatment 
groups with comparable basal PPI and startle reactivity (based on pre-test): veh+sal, 
pretreatment+sal, veh+PCP and pretreatment+PCP. At the day of the experiment a dummy 
cannula was inserted and retracted from the cannula guides to reduce the risk of spreading 
depression. After this, the animals were allowed to rest for 60 min before a first PPI test. 
The mice then received a bilateral injection of either 0.5 µl ODQ (paper II), 1 µl baclofen 
(paper IV) or vehicle (Ringer’s solution): The local injection lasted 1 min and the cannula 
was left in place for another 45 s to allow diffusion of the drug. Immediately after the local 
injection the animals were administered PCP (5 mg/kg) or saline systemically, and 15 min 
later the second PPI test commenced.

Locomotor activity
The animals (n=30) were divided into 4 treatment groups: veh + sal (n=6); veh + PCP (n=8); 
ODQ 0.1 mM + sal (n=8); ODQ 0.1 mM + PCP (n=8). After the insertion of a dummy cannula 
(as described above) to control for spreading depression, the mice were placed in the 
activity boxes and allowed to habituate for 60 min before injection. The animals were then 
administered either ODQ (0.1mM) or vehicle in analogy with the PPI experiments and 
placed in the activity boxes for 10 min before an i.p. injection with either PCP (5 mg/kg) 
or saline. After this, the mice were placed in the activity boxes and their locomotion, 
defined as the accumulated number of crossed photocell beams, was recorded for 60 min. 
The first 30 min of this recording period were excluded from the analysis, to reduce the 
influence of injection-induced hypermotility and to allow PCP to exert its effect. Verification 
of cannula placement was performed as described above for the PPI experiments.

Statistical analysis
Statistical analysis was performed using different variants of ANOVA with Bonferroni’s 
post-hoc comparisons where appropriate (see Table 3). Detailed descriptions of statistical 
procedures can bee viewed in each corresponding paper (see appendix).

Biochemical measurements
In vivo microdialysis – cGMP immunoassay

The consecutive cGMP contents of the dialysis samples were used as data. The cGMP content 
of the second sample (90–180 min) was divided by the content of the first sample (0–90 
min) and multiplied by 100 to obtain the change in cGMP level relative to the baseline.

Electrochemical measurements of nitric oxide
The current over time (sampling rate 4/s) recorded in Chart was used as data. The mean 
of an approximately 5 min long sampling period just before drug treatment was used as 
baseline. The mean current change of the sampling period from 15–45 min after each treat-
ment, compared to baseline was calculated from the Chart data (paper III)- Alternatively, 
the mean current change from baseline was calculated for a 5 min sampling period sur-
rounding the time points of 30, 60 and 90 min after injection (paper IV).

Behavioral testing
Prepulse inhibition

The mean response amplitude for pulse-alone trials (P) was calculated for each mouse 
and test. This measure was used in the statistical analysis to assess drug-induced changes 
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in acoustic startle response. The mean response amplitude for prepulse-pulse trials (PP) 
was also calculated and used to express the percent prepulse inhibition according to the 
following formula:

Prepulse inhibition (%) = 100 – [(PP/P) * 100]

Using this formula, a 0% value denotes no difference between pulse-alone and prepulse-
pulse response amplitudes and consequently no PPI. 

Locomotor activity
Locomotor activity was defined as the accumulated number of crossed photocell beams 
during 60 min. The fist 30 min were omitted from analysis to avoid the potential confound 
of injection-induced stress and to allow the effects of PCP to fully appear.

Table 3. Overview of methods used and differences and similarities in statistical approach in paper I – IV.  
MM=mixed model, RM=repeated measures, LMA=locomotor activity, PPI=prepulse inhibition.
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RESULTS AND DISCUSSION

Overview
The present thesis is based on four papers, investigating different parts of the NO pathway 
in relation to the biochemical and behavioral effects of PCP (Fig 9). Previous studies have 
investigated the role of NO in the effects of PCP using systemic administration of NOS 
inhibitors and mice with a genetic deletion of nNOS. In brief, these findings were expanded 
by: (1) interfering with NO synthesis by reducing substrate availability for NOS; (2) inves-
tigating the role of cGMP signaling downstream of NO; (3) real-time measurements of NO 
release in the medial PFC in response to PCP and the NOS inhibitor, L-NAME; (4) studying 
the role of GABA

B
 receptor signaling in NO release and the behavioral effects of PCP.

Figure 9. Overview of the NO pathway, indicating the different approaches used to investigate NO signaling 
in the present thesis. CAT=cationic aminoacid transporter, cGMP=cyclic guanosine monophosphate, NO=nitric 
oxide, sGC=soluble guanylyl cyclase.
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Paper I. The amino acid, L-Lysine, reduces the disruptive 
effect of phencyclidine on prepulse inhibition in mice.

The substrate for NO production, the semi-essential amino acid L-arginine, is predomi-
nantly localized in glial cells and thus needs to be transferred to the neurons to refill neuronal 
L-arginine pools (Grima et al, 1997). Furthermore, L-arginine is not synthesized de novo in 
the brain (Wiesinger, 2001), suggesting that transport across the blood-brain barrier may 
be a limiting factor for NO synthesis. The transport of L-arginine across membranes is governed 
by the cationic amino acid transporter (CAT) (White et al, 1982), which also is responsible 
for its passage over the blood-brain barrier (O’Kane et al, 2006). The CAT system is used 
in a parallel and competitive manner by two other cationic amino acids, L-lysine and 
L-ornithine (White et al, 1982). In line with this, L-lysine has been shown to deplete intra-
cellular L-arginine stores (Closs et al, 1997) and may thus serve as an indirect regulator of 
NO synthesis by competing with L-arginine for CAT. 

Figure 10. (A) Effects of acute pretreatment with L-lysine (800 mg/kg, i.p.) on PCP-induced (5 mg/kg, i.p.) PPI 
deficits in mice. (B) Effects of subchronic L-lysine treatment on PCP (5 mg/kg, i.p.) induced PPI deficits in mice. For 
details see Paper I.

The main finding of Paper I was that systemic pretreatment with the amino acid, L-lysine, 
blocked the effects of PCP on PPI in a dose-dependent manner. Acute pretreatment with 
L-lysine partly attenuated the effects of PCP (Fig 10A), whereas subchronic L-lysine blocked 
the PCP-induced PPI disruption at the two highest doses used (Fig 10B). Given that the 
depletion of L-arginine is not likely to be a fast process, it is feasible that the subchronic 
treatment regime was more effective than acute administration of L-lysine in ameliorating 
the effects of PCP due to more profound depletion of L-arginine. However, the above-
mentioned effects could, at least partly, be explained by some other effects of L-lysine 
than inhibition of the L-arginine-NO pathway. L-arginine is known to play a role in several 
metabolic pathways coupled to neuromodulation, including the formation of the NMDA 
receptor antagonist and NOS inhibitor agmatine (Reis and Regunathan, 2000), which 
recently has been shown to attenuate the effects of PCP on PPI (Palsson et al, 2008). 
Nevertheless, L-lysine has been shown to inhibit both NO release from rat synaptosomes 
(Lopes et al, 1994) and to reduce the NMDA-induced cGMP response in rat brain slices 
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(Grima et al, 1998), lending further support to its dampening effect on NO synthesis. In 
addition, preliminary data indicates that acute systemic L-lysine administration decreases 
NO levels in the medial PFC (Fig 11), whereas the opposite can be observed after L-arginine 
administration (Finnerty, 2008).

Figure 11. Preliminary data showing the effects of L-lysine on NO levels in the rat medial PFC. (A) Representa-
tive voltammogram of NO oxidation current after acute systemic administration of L-lysine (400 mg/kg, i.p.).  
(B) Average change in NO oxidation current after saline (2 ml/kg, i.p., n=5) and L-lysine (400 mg/kg, i.p., 
n=3) treatment. Data represented as mean current +/– SEM, = p<0.01, Students t-test (adapted from  
Finnerty 2008).

Given the involvement of NO in many physiological processes other than neuromodulation, 
such as regulation of blood-flow and inflammation (for review see Beckman and Koppe-
nol, 1996), direct targeting of NOS involves risks for adverse side effects. Depletion of the 
substrate for NO synthesis using L-lysine may thus offer a novel strategy for stabilization 
of NO signaling in the brain. Based on our preclinical findings, we have recently per-
formed a small placebo-controlled pilot study with L-lysine as an add-on treatment to ten 
patients with schizophrenia. L-lysine, at a dose of 6 g per day for four weeks, was toler-
ated well and caused a decrease in symptom severity as measured by the Positive and 
Negative Syndrome Scale (PANSS). Furthermore, L-lysine increased the capacity for prob-
lem solving and cognitive flexibility as measured by the Wisconsin Card Sorting Test 
(WCST), suggesting potential beneficial effects of L-lysine on cognitive dysfunction in 
patients with schizophrenia (Wass et al, 2008a, manuscript). Although these effects may be 
related to the observed increase in L-lysine plasma levels, they have to be confirmed in a 
larger, double-blinded study. Nevertheless, this preliminary study points to the transla-
tional value of the PCP model in generating novel putative targets for treating cognitive 
dysfunction in schizophrenia.



46

Paper II. Nitric oxide signaling in the medial  
prefrontal cortex is involved in the biochemical  

and behavioral effects of phencyclidine.
The downstream effects of NO release are primarily mediated by formation of the second 
messenger, cGMP, catalyzed by sGC. This has been demonstrated in several studies, and is 
supported by the absence of NO-mediated vascular relaxation following genetic deletion of 
sGC in mice (Friebe and Koesling, 2003). These “NO receptors” are readily activated by NO 
without observable delay, suggesting a very efficient and sensitive transduction mechanism. 
sGC appears to be distributed throughout the CNS of both rodents and humans in a com-
plementary way to nNOS, suggesting a close relationship between these two proteins (Gotti 
et al, 2005; Southam et al, 1993). In Paper II, the importance of prefrontal cGMP signaling 
for the effects of PCP was investigated using the sGC inhibitor, ODQ, by a combination of 
microdialysis and behavioral experiments.

Prefrontal cGMP release was increased following systemic PCP administration and this 
increase could be blocked by pretreatment with the NOS inhibitor, L-NAME. Furthermore, 
prefrontal microinjections with ODQ completely blocked the effects of systemic PCP on 
PPI (Fig 12), but not the PCP-induced hyperlocomotion. These results indicate that a NO/
sGC/cGMP signaling mechanism is present in the medial PFC, which plays an important 
role in the effects of PCP on cognition-related behavior such as PPI, rather than on behavior 
more related to mesolimbic dopamine transmission.

Figure 12. Local pretreatment with ODQ (0.01, 0.1, 1 mM) in the medial PFC of mice blocks PCP-induced disruption 
of PPI in a dose-dependent manner. PPI ratio = drug treatment PPI / baseline PPI. See Paper II for details.

One of the major limitations of microdialysis experiments, apart from the rather low tem-
poral resolution, is the fact that only molecules present in the extracellular environment 
can be detected by this technique. Since the second messenger, cGMP, is both produced 
and has its main targets (e.g. PKG) situated intracellularly, it is reasonable to ask what the 
cGMP levels measured in Paper II reflect. Several studies have demonstrated that intracellular 
cGMP can be extruded in the extracellular milieu through ATP-dependent efflux pumps, 
which is thought to serve as a means of terminating intracellular cGMP signaling in addition 
to the effects of phosphodiesterases (Adachi et al, 2002; Jedlitschky et al, 2000; Tjornhammar 
et al, 1986). Thus, the extracellular level of cGMP corresponds to intracellular changes and 
may serve as a measure of endogenous NO formation that can be assessed by microdialysis 
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(Pepicelli et al, 2004; Vincent et al, 1998). However, cGMP efflux may also serve an additional 
signaling role, since extracellularly applied cGMP has been shown to affect ion channels 
such as the Na+/H+ exchanger and the kainate receptor (Poulopoulou and Nowak, 1998; 
Touyz et al, 1997).

The normalization of prefrontal cGMP levels caused by L-NAME, while not affecting basal 
cGMP levels, is at variance with previous findings. Laitinen and colleagues (1997) could 
demonstrate a decrease in cGMP levels in the rat frontal cortex following L-NAME 
administration. This discrepancy is likely explained by the highly efficient degradation of 
cGMP by phosphodiesterases in this brain region (Pepicelli et al, 2004). Actually, to observe 
effects of L-NAME on cGMP, Laitinen and colleagues had to increase the basal levels of 
cGMP by the use of the non-specific phospshodiesterase inhibitor, isobutylmethyl xantine 
(IBMX) (Laitinen et al, 1997). An earlier study, that did not use IBMX, could not detect any 
decrease in frontal cGMP levels (Laitinen et al, 1994). Thus, the relatively long sampling 
period used in Paper II (90 min) was necessary to assess basal cGMP levels in the presence 
of a high phosphodiesterase activity in the prefrontal cortex.

The strong effect of prefrontal sGC inhibition on the PPI-disruptive effects of PCP can be 
interpreted as if cGMP plays a major role in mediating the effects of PCP-induced NO 
release. However, the effects downstream of cGMP are less clear as this second messenger 
may transduce its effects through several mechanisms in addition to PKG activation 
(Garthwaite, 2008). For example, cGMP can block the hydrolysis of cyclic adenosine 
monophosphate (cAMP), thereby increasing the concentration of this second messenger. 
In line with this, a potential role for cAMP signaling in the effects of PCP was demon-
strated in an earlier study, where PCP caused an L-NAME-sensitive increase in hippocampal 
cAMP levels that was temporally associated to the disruption of PPI (Klamer et al, 2005b). 
Possibly, some of the effects observed in Paper II were mediated through the indirect 
modulation of cAMP release by cGMP, although this was not investigated specifically.

In summary, the ability of prefrontal sGC inhibition to ameliorate deficits in cognition-
related measures, such as PPI, indicates that the NO/sGC/cGMP pathway plays an important 
role in preserving PFC function after PCP treatment. The similarities between the sGC dis-
tribution in rodents and primates indicate that the role of the NO system is translatable across 
species (Pifarre et al, 2007) and thus that the present findings may be applicable to humans.

Paper III. Increased cortical nitric oxide  
release after phencyclidine administration.

Studies of the NO system in the brain have for a long time been limited to secondary 
measures of NO release such as cGMP and metabolic by-products such as citrulline, nitrate 
and nitrite. In addition to the restricted specificity of these methods, the time resolution does 
not allow for dynamic assessment of NO signaling in vivo. The recent development of micro
electrochemical NO sensors has opened up new possibilities of real-time in vivo measurements 
of NO in the brain (Finnerty, 2008; Wang et al, 2006). In paper III, we measured NO levels in 
the rat prefrontal cortex using a NO selective amperometric microsensor with high selectivity 
and specificity. This specific setup is unique in that it allows measurements of NO levels 
in awake and behaving animals (Brown et al, 2005; Brown et al, 2003; Finnerty, 2008).
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Systemic administration of PCP caused a robust increase in NO oxidation current. This 
increase was attenuated by pretreatment with the NOS inhibitor, L-NAME, at a dose identical 
to that which previously has been used to block several PCP-induced behavioral deficits 
in rats (Johansson et al, 1998; Klamer et al, 2005b; Klamer et al, 2005c; Wass et al, 2006a; 
Wass et al, 2006b; Wass et al, 2008b) (Fig 13). 

Figure 13. (A) Representative voltammograms showing change in NO oxidation current in the rat medial PFC after 
PCP (2 mg/kg, s.c.) and L-NAME (10 mg/kg, s.c.) treatment. Data is expressed as current (pA) over time (s).  
(B) Mean change in NO current compared to baseline following drug treament. Data expressed as mean +/– SEM 
change in current (15–45 min post injection) compared to saline. See Paper III for details.

Based on in vitro calibrations of the sensors, the rise in NO oxidation current caused by 
PCP in Paper III corresponds to a NO concentration in the range of about 13–24 nM. This 
suggests that the NO concentration in the vicinity of the sensor is at least ten times higher 
than what is believed to be the typical NO concentration in the synaptic cleft following 
continuous NMDA receptor stimulation (Garthwaite, 2008). An increase in NO levels of 
this magnitude is therefore not likely a consequence of exclusively synaptic transmission, 
but may possibly reflect the activation of additional sources of NO, such as eNOS. Given 
that most of the eNOS in the brain is found in the capillary circulation, which is devoid of 
smooth muscle cells, it is possible that eNOS-derived NO serves other purposes than dilating 
vessels such as “vasculoneuronal” communication (Garthwaite, 2008). This is supported to 
some extent by the fact that eNOS knockout mice have both altered GABA release and 
impaired synaptic plasticity in hippocampus, cortex and striatum (Doreulee et al, 2003; 
Haul et al, 1999; Kano et al, 1998; Wilson et al, 1999). In addition, both the magnitude 
(∼10–20 nM) and temporal profile (maximal NO peak 30–40 min post injection) of the 
increases in NO levels resemble those of an earlier voltammetry study, which investigated 
the effects of systemic cocaine administration on prefrontal NO release in anesthesized 
rats (Sammut and West, 2008). Regardless of the source for the high NO levels observed 
in Paper III, it is clear that PCP stimulates NO release in the PFC, and that this increase 
may underlie the behavioral deficits induced by this drug.

These real-time measurements correspond to previous behavioral studies on the interaction 
between PCP and NO by using an identical dosing regime. Furthermore, the peak in NO 
levels at 30–40 min coincides with the peak effect of PCP on PPI (Klamer et al, 2005b). NO 
signaling may of course be altered in several brain regions following PCP administration. 
Given that PCP causes a substantial activation (as measured by pharmacological MRI) of 
cortico-limbo-thalamic circuitry (Gozzi et al, 2007), it cannot be excluded that other brain 
regions may follow the same pattern. Nevertheless, Paper III strongly supports the involvement 
of prefrontal NO signaling in the effects of PCP, and that in vivo voltammetry may become 
a useful biochemical tool when studying the role of NO for cognitive function.
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Paper IV. Prefrontal GABAB receptor activation  
attenuates phencyclidine-induced impairments  

of prepulse inhibition: Involvement of nitric oxide.
Most NOS containing neurons in the PFC of both rats and primates synthesize GABA, indi-
cating a close relation between these two transmitter systems (Gabbott and Bacon, 1995; Yan 
et al, 1996). Furthermore, GABAergic interneurons appear to rely on NMDA receptor signaling 
to a larger extent than pyramidal cells (Grunze et al, 1996; Jones et al, 1993) suggesting a 
high susceptibility to NMDA receptor antagonism. This theory is supported by numerous 
studies showing increase in cortical activity following acute administration of NMDA-
receptor antagonists, which likely arises from a decrease in inhibitory power (Breier et al, 
1997; Gozzi et al, 2007; Jackson et al, 2004; Lahti et al, 1995; Moghaddam et al, 1997).

In paper IV, the ability of the GABA
B
 receptor agonist baclofen to restore PPI was investi-

gated in animals treated with PCP. Pretreatment with systemic baclofen normalized both 
the PPI deficits and the hyperactivity caused by PCP. This attenuation of PCP-induced PPI 
deficits did not seem to be explained by a true interaction with PCP, as systemic baclofen 
treatment increased PPI per se. Interestingly, prefrontal microinjections of baclofen fully 
blocked the effects of PCP on PPI, without affecting baseline values (Fig 14A). This suggests 
that impairments in prefrontal GABA

B
-mediated inhibition may be important for the effects 

of PCP on information processing and that restoration of inhibitory signaling through 
these receptors in the PFC is sufficient to normalize PPI. 

Figure 14. (A) The effects of bilateral baclofen treatment (BAC: 1 mM) in the mouse medial PFC followed by 
systemic PCP administration (5 mg/kg) on prepulse inhibition (PPI). (B) Change in prefrontal NO release 30, 60 
and 90 min after systemic baclofen administration (2.5, 5, 10 mg/kg) in the rat. See Paper IV for details.

These results corroborate previous findings showing that baclofen attenuates both sponta-
neous PPI deficits in mice and deficits induced by the NMDA receptor antagonist MK-801 
in rats and mice without affecting baseline PPI (Arai et al, 2008; Bortolato et al, 2004; Bor-
tolato et al, 2007). However, systemic administration of baclofen increased basal PPI, 
which is at variance with studies from other laboratories. Tentatively, this may be the 
result of differences in the timing of baclofen administration in combination with strain- or 
species-dependent factors.
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In combination with the above-mentioned studies, these findings point to a putative anti
psychotic potential of baclofen. In fact, baclofen was initially shown to have beneficial effects 
in the treatment of schizophrenia (Frederiksen, 1975; Schopf and Hucker, 1977) although 
later studies could not replicate this finding (Beckmann et al, 1977; Bigelow et al, 1977; 
Gulmann et al, 1976). Given the wide distribution of GABA

B
 receptors in the brain both 

pre- and post-synaptically and their molecular diversity (Bettler et al, 2004; Bettler and 
Tiao, 2006; Blein et al, 2000; Bowery et al, 2002), it is not surprising that a general stimulation 
of these receptors may result in different findings depending on dosing regimes and output 
measures. In addition, it remains unlikely that systemic administration of GABA

B
 receptor 

agonists would improve cognition, given that baclofen disrupts both recognition and spatial 
memory in the rodents (McNamara and Skelton, 1996; Pitsikas et al, 2003) and that GABA

B
 

receptor antagonists improve cognitive performance in various animal models (for review 
see Bowery et al, 2002) and humans (Froestl et al, 2004). However, genetic deletions of 
GABA

B
 receptors in mice impair learning and memory, suggesting that these receptors 

also are essential for baseline cognitive function (Gassmann et al, 2004; Schuler et al, 2001). 
Furthermore, systemic administration of baclofen blocks amphetamine-induced deficits in 
successive discrimination in the rat, suggesting that baclofen may have beneficial effects on 
some aspects spatial ability (Ahlenius et al, 1975). Taken together, it is possible that both 
positive and negative modulation of the GABA

B
 system may become useful in a clinical 

setting following the development of selective modulators that target distinct subclasses of 
these receptors.

In the present experiments, baclofen was primarily used as a tool to investigate the role of 
prefrontal GABA

B
 receptors for the behavioral effects of PCP in relation to NO signaling. 

The combination of baclofen and the NOS inhibitor, L-NAME, was more effective than 
either compound by itself, both in attenuating the effects of PCP, and in increasing basal 
PPI. This opens up the possibility that these two drugs act on a common pathway involving 
glutamate, GABA and NO. In line with this, baclofen decreased NO levels in the PFC in a 
dose-dependent manner (Fig 14B) suggesting that NO release is under the influence of 
GABA

B
 receptor signaling in this brain region. A relation between these two signaling systems 

has earlier been described where release of both glutamate and the formation of the effector 
of NO signaling, cGMP, are decreased by baclofen but increased by GABA

B
 antagonists 

(Fedele et al, 1997; Harte and O’Connor, 2005; Waldmeier et al, 2008). Thus, antagonism at 
these receptors or removal of their endogenous agonist GABA may elevate NO levels. 
Given the earlier mentioned potent inhibitory effect of NMDA receptor antagonists on 
interneurons (see introduction), a possible consequence would be a decrease in GABA 
release and a subsequent decrease in GABA

B
 receptor activation. Such a loss of inhibitory 

power (disinhibition) would in turn lead to an increased activity of pyramidal neurons, 
and stimulate glutamate release. This could elevate NO through the stimulation of Ca2+-
permeable non-NMDA receptors, such as AMPA receptors lacking the GluR2 subunit (see 
below “Glutamate, GABA, NO and disinhibition”).

In summary, Paper IV proposes a role for GABA
B
 receptor signaling in the effects of PCP, 

possibly with altered NO levels as a downstream mediator. Thus, NO may play an important 
role as an effector of a disinhibited cortex that can be of relevance for cognitive deficits in 
schizophrenia.
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GENERAL  
CONSIDERATIONS

The PCP model of schizophrenia 
Accumulating evidence suggests that both acute and chronic PCP administration can be 
used in rodents and primates to produce a pattern of neurochemical, structural and behavioral 
changes that closely resemble those observed in patients with schizophrenia. This implies 
that PCP acts on a similar neurocircuitry to that disturbed in the disease, and that use of 
the PCP model may elucidate pathophysiological mechanisms underlying the disease, or 
at least the dysregulated neurotransmission responsible for some of the symptoms.

Importantly, PCP given to rodents has been shown to induce neurotoxic effects such as 
vacuolization and degeneration in regions including the hippocampus, retrosplenial cortex, 
cingulate cortex (Ellison and Switzer, 1993; Gao et al, 1993; Olney et al, 1989; Schroeder et 
al, 1998), and at very high doses, the striatum (Mitchell et al, 1998). These alterations have 
not been observed in patients with schizophrenia, suggesting that long-term administration 
of high doses of PCP is not a suitable approach to model this disease (Morris et al, 2005). 
However, given that these effects are predominantly seen following sub-chronic or chronic 
treatment or at doses higher than used in the present thesis, neurotoxic effects of PCP are not 
likely to underlie the behavioral changes presented here. In addition, the concentration of 
PCP in the rat brain appears to peak approximately 30 min after s.c. or i.p. administration 
(Kalinichev et al, 2008; Schroeder et al, 1998), which coincides with the time they are 
tested for PPI. Behavioral deficits due to neurotoxic effects would likely emerge after, rather 
than during, this maximum response. Nevertheless, long-term effects involving neurotoxicity 
could explain part of the differences observed between acute and sub-chronic PCP 
administration.

Given that PCP also has affinity for D
2
 receptors and the dopamine transporter, a reason-

able question is whether behavioral disruption by PCP really can be attributed to its NMDA 
receptor antagonism. First, PPI deficits caused by NMDA receptor antagonists such as PCP 
or MK-801 are relatively resistant to antipsychotics with a strong D

2
 receptor antagonism 

such as haloperidol (Fejgin et al, 2007; Keith et al, 1991; Linn et al, 2003) suggesting that 
the effects of PCP are not primarily mediated by the dopamine system. On the other hand, 
second-generation antipsychotics, that generally have a mixed pharmacological profile, 
block PCP-induced PPI deficits to a certain degree (Bakshi et al, 1995; Bakshi et al, 1994; 
Bubenikova et al, 2005; Fejgin et al, 2007; Wiley, 1994) lending further support for the 
involvement of transmitter systems other than dopamine. Second, the doses of NMDA 
receptor antagonists needed to disrupt PPI tend to reflect their affinities to this receptor, 
rather than their effects on the dopamine system (MK-801>PCP>ketamine) (Mansbach et 
al, 1989). Even if the involvement of dopamine signaling in the effects of PCP may depend 
on the behavioral paradigm investigated, increases in corticolimbic dopamine transmis-
sion do not appear to explain the effects of PCP on locomotor activity or working memory 
(Adams et al, 1998).
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As mentioned above, the PCP-model is able to distinguish between first and second-gen-
eration antipsychotics, something dopaminergic models of schizophrenia fail to show. 
Furthermore, PCP differs in that it induces negative symptoms, cognitive deficits, auditory 
hallucinations and flattened affect in human subjects, thus mimicking a more comprehensive 
spectrum of schizophrenia symptoms than e.g. amphetamine (for review see Steinpreis, 
1996). Since MK-801 is only used preclinically, current clinincal studies of the behavioral 
effects of NMDA receptor antagonists in humans have been restricted to the administration 
of ketamine. Ketamine produces somewhat similar effects to PCP in humans, such as hal-
lucinations and cognitive deficits (for review see Gunduz-Bruce, 2008; Krystal et al, 1994). 
However, psychotomimetic doses of ketamine do not disrupt PPI in human subjects 
(Oranje et al, 2002; van Berckel et al, 1998), but have in fact been shown to increase PPI 
in several studies (Abel et al, 2003; Duncan et al, 2001; Heekeren et al, 2007). This is in 
contrast to the effects of ketamine in research animals, where PPI is disrupted in both rats 
and mice (Brody et al, 2003; Chan et al, 2008; Swerdlow et al, 2008), and raises questions 
regarding the translational value of preclinical studies on ketamine- and PCP-induced PPI 
deficits. However, ketamine has been shown to disrupt other measures of sensory gating 
as measured by EEG (Boeijinga et al, 2007) lending at least some support to a disruptive 
effect on information processing in humans. Importantly, several differences between the 
effects of ketamine and PCP in humans have been demonstrated. For example, ketamine 
has both a lower potency and a shorter duration of action than PCP, making continuous 
drug infusions necessary in clinical studies (Rainey and Crowder, 1974). Furthermore, 
ketamine induces visual rather than auditory hallucinations humans and thus does not 
mimic schizophrenia as well as PCP in this respect (Krystal et al, 1994). Finally, a higher 
degree of CNS depression is observed for ketamine than for PCP, which is probably 
explained by its effect in potentiating GABA

A
 transmission in the cerebellum (Hevers et al, 

2008). Whether PCP would disrupt PPI in a clinical setting will remain an unanswered 
question due to ethical considerations, but it is possible that the qualitative differences 
between ketamine and PCP also reflect differences in their ability to disrupt PPI.

Prepulse inhibition and cognition
A deficit in pre-attentive information processing may theoretically lead to a stimulus overload 
and a subsequent cognitive fragmentation in schizophrenia (Braff et al, 1978). However, 
PPI deficits are not pathognomonic for schizophrenia as suggested by their presence in other 
brain disorders and by the overlap in PPI levels between healthy controls and patients 
with schizophrenia (Swerdlow et al, 2008). As PPI is sensitive to parametrical differences, 
gender (Kumari et al, 2004; Swerdlow et al, 1993a), instructed attention to prepulses 
(Hazlett et al, 2003; Kedzior et al, 2007), antipsychotic medication (Quednow et al, 2006; 
Wynn et al, 2007), and a number of other factors, it is not surprising that robust relationships 
between PPI and specific symptoms of schizophrenia have been hard to detect. Further-
more, the neurocircuitry involved in the regulation of PPI is rather distributed, suggesting 
that deficits in several brain regions and transmitter systems may cause similar changes in 
PPI levels. 

Interestingly, PPI deficits have been detected in prodromal patients and relatives of patients 
with schizophrenia (Kumari et al, 2005; Quednow et al, 2008), indicating that alterations in 
PPI may be more of a “trait” than a “state” phenomenon. Importantly, PPI has been shown 
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to correlate with several cognitive functions in patients with schizophrenia, including 
thought disturbance (Perry et al, 1994), and attention (Karper et al, 1996), although other 
studies have shown correlations with global functioning but not cognitive deficits (Swerdlow 
et al, 2006a). Adding to the relation between PPI and cognition, studies on healthy volunteers 
have shown associations to social cognition (Wynn et al, 2005), strategy formation (Bitsios 
et al, 2006) and execution times for cognitive tasks (Csomor et al, 2008). 

Tentatively, some of these associations may be explained by alterations in the cortico-
striato-pallido-thalamic circuitry since such a network is involved both in cognitive func-
tion and regulation of PPI. In support of this, a recent study by Kumari and coworkers 
shows positive correlations between PPI and grey matter volume in the dorsolateral pre-
frontal, middle frontal and orbital/medial prefrontal cortices of patients with schizophrenia 
(Kumari et al, 2008). Other indirect evidence for the relation of PFC signaling and PPI 
comes from studies showing that healthy controls with the val/val genotype for COMT 
display lower levels of PPI (Roussos et al, 2008). This polymorphism in the COMT gene 
has been associated with schizophrenia and appears to be functionally related to dopamine 
signaling in the PFC and cognitive functions such as working memory (see introduction 
“dopamine and schizophrenia”). In addition the COMT inhibitor tolcapone, improves both 
working memory and PPI in healthy subjects with the val/val genotype (Giakoumaki et al, 
2008). This suggests that PFC function is important for both cognitive function and PPI in 
patients with schizophrenia and healthy controls, and that these interactions are well 
worth studying when trying to understand the pathophysiological mechanisms underlying 
cognitive deficits in this disease.



54

GENERAL DISCUSSION

Glutamate, GABA, NO and disinhibition
In the present thesis, evidence is presented that NO signaling in the PFC is important for 
the biochemical and behavioral effects of PCP. The observed increase in NO levels is sug-
gested to be the consequence of an increased glutamate release resulting from disinhibited 
pyramidal cells. A putative chain of events that explain this phenomenon may be as 
follows:

1)	 GABAergic interneurons are particularly sensitive to NMDA antagonists such as 
PCP since they rely more on NMDA receptor signaling for their activity than pyramidal 
cells. In addition, a recent study of PFC function shows that inhibition of NMDA 
receptors preferentially decreases the activity of fast-spiking interneurons (Homayoun 
et al, 2007).

2)	 Such a removal of inhibitory power appears to cause a disinhibition of pyramidal 
cells as evidenced by the increase in cortical activity and glutamate levels following 
administration of NMDA receptor antagonists in both clinical and preclinical studies 
(Breier et al, 1997; Gozzi et al, 2007; Jackson et al, 2004; Lahti et al, 1995; Moghaddam 
et al, 1997).

3)	 An increase in cortical glutamate efflux, may then stimulate NO synthesis by 
increasing intracellular Ca2+ concentrations. This may be mediated by non-NMDA 
glutamate receptors with Ca2+ permeability such as AMPA receptors lacking the 
GluR2 subunit. 

Interestingly, most neurons in the temporal and frontal cortex of rats and primates that 
express this subtype of AMPA receptor and/or produce NO are GABAergic interneurons 
(Gabbott et al, 1995; Jonas et al, 1994; Szabadits et al, 2007; Yan et al, 1996; Yin et al, 1994). 
A similar situation is seen in humans, where NOS expressing neurons of the temporal cortex 
are GABAergic, and express lower levels of GluR2 (Gonzalez-Albo et al, 2001) indicating 
that these cells may increase NO production following glutamate-induced Ca2+ influx 
through the AMPA receptor. This suggests a close interaction between glutamate, GABA 
and NO signaling in the cortex, and also that these circuits may be similar across species. 

The attenuation of the disinhibitory effects of PCP on pyramidal cells by baclofen may 
have several possible explanations. The most obvious effect would be the activation of 
postsynaptic GABA

B
 receptors situated on pyramidal cells leading to an increased inhibition 

of these cells. Another option is that baclofen activates presynaptic heteroreceptors, thus 
decreasing glutamate release and counteracting the increase in cortical activity.

Both these alternatives require pyramidal GABA
B
 receptors to be more affected than the 

GABA
B
 receptors on interneurons. Tentatively, the latter option could explain the dose-related 

“inverted U” shaped change in NO oxidation current observed in Paper IV. Low doses of 
baclofen may possibly engage pyramidal heteroreceptors that block glutamate release, 
whereas the highest dose of baclofen also engages autoreceptors on interneurons causing 
a decrease in GABA release that antagonizes the the effects of heteroreceptors on glutamate 
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efflux. Although GABA and glutamate release appears to be governed by different isoforms 
of presynaptic GABA

B
 receptors (Waldmeier et al, 2008), all currently known modulators of 

the GABA
B
 receptor bind to a domain that is shared by the two isoforms (Bettler et al, 2004). 

The future development of subunit-specific agonists will provide a tool for investigating 
this matter further. 

The effect of the PCP-induced NO increase observed in Paper III provides biochemical 
support for NO acting as a mediator of a disinhibited PFC. The cognition-related behavioral 
effects of such an increase in NO signaling are likely to be mediated by the sGC/cGMP 
system, as inhibition of this pathway in the PFC completely blocks the disruptive effects of 
PCP on PPI (Paper II). Consequently, the apparent role of PFC-derived NO in the effects 
of PCP ties in with current theories regarding disinhibition in schizophrenia (for review see 
Lisman et al, 2008)), and may thus be informative of the aspects of cognitive dysfunction 
that are the consequence of a disrupted prefrontal circuitry in schizophrenia.

NO in schizophrenia
NO is unique in many aspects, given its ability to diffuse freely through membranes, and 
thereby has an important role in neurotransmission, regulation of blood flow and inflam-
mation. This makes the interpretation of the effects of NO on biochemistry and behavior 
even more complicated, and creates difficulties when trying to pinpoint specific underlying 
mechanisms. Our research group and others have demonstrated that inhibition of NOS in 
rodents is sufficient to normalize schizophrenia-like behavioral deficits caused by PCP. These 
include deficits in PPI, habituation of acoustic startle, latent inhibition, spatial learning, 
reference memory, and working memory, which all can be prevented by interfering with 
the production of NO (Johansson et al, 1997; Johansson et al, 1998; Klamer et al, 2001, 
2004a, b; Klamer et al, 2004c; Klamer et al, 2005c; Wass et al, 2006a; Wass et al, 2006b; 
Wiley, 1998)). Although the above findings suggest that an increase in NO may underlie 
these schizophrenia-like deficits, several studies have shown that also NOS inhibition may 
disrupt behavior. Acute pretreatment with NOS inhibitors may potentiate PCP-induced 
stereotypies and induce deficits in spatial learning (Bujas-Bobanovic et al, 2000; Chapman 
et al, 1992; Prendergast et al, 1997). Furthermore, neonatal treatment with NOS inhibitors 
may induce long-lasting deficits in PPI, social interaction, latent inhibition, and increased 
amphetamine sensitivity (Black et al, 1999; Black et al, 2002; Black et al, 2008; Morales-
Medina et al, 2008). In summary, this underscores that both an abnormal increase and a 
decrease in NO signaling can underlie schizophrenia-like deficits. 

The present preclinical findings are in line with the varying results observed in clinical studies, 
where NO metabolites have been shown to be increased (Atmaca et al, 2007; Das et al, 1996; 
Das et al, 1995; Herken et al, 2001; Taneli et al, 2004; Yanik et al, 2003; Yao et al, 2004; Yilmaz 
et al, 2007; Zoroglu et al, 2002) and in some studies decreased (Lee et al, 2008; Ramirez et 
al, 2004; Srivastava et al, 2001; Suzuki et al, 2003) in the plasma and CSF of patients with 
schizophrenia. Specific post-mortem investigations of nitrinergic neurons in the hypotha-
lamus, the striatum and the PFC of patients with schizophrenia, have revealed abnormalities 
such as decreased levels of nitrinergic neurons, aberrant neuronal distribution, and 
decreased NOS activity (Akbarian et al, 1993a; Akbarian et al, 1993b; Bernstein et al, 2005; 
Fritzen et al, 2007; Lauer et al, 2005; Xing et al, 2002). At the same time an increase in 
nNOS mRNA in the PFC and increased cerebellar NOS levels have been detected in schizo
phrenia (Baba et al, 2004; Karson et al, 1996) indicating a hyperactive NO system.
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Figure 15. Hypothetical model of how a disinhibited cortex and a dysregulated NO system may converge to 
form cognitive deficits in schizophrenia. White areas represent pathophysiological changes, grey fields repre-
sent their functional consequences and black areas symptomatology. Black stars indicate novel possible treat-
ment options for cognitive dysfunction along this pathway, that have been clinically validated to some extent. 

Clinical studies have consistently found evidence for dysregulated NO system in schizo-
phrenia that may have relevance for the pathophysiology and/or the symptomatology of 
this disabling brain disease. The underlying cause for such deficits in nitrinergic signaling 
is not known, but may originate in genetic factors, neurodevelopmental insults or even 
inflammatory processes. The present thesis suggests that an increase in prefrontal NO sig-
naling may underlie some cognitive deficits present in schizophrenia, and that this increase 
may be secondary to a disinhibited glutamate system caused by deficits in the inhibition 
mediated by GABAergic interneurons due to NMDA hypofunction (Fig 15). However, the 
present results to not necessarily contradict the possibility that a loss in NO signaling due 
to neurodevelopmental insults may be an alternative route for the generation of similar 
deficits. Future clinical studies that target specific subgroups of patients while accounting 
for the confounding factors mentioned above, will prove helpful when trying to elucidate 
the nature of NO dysregulation in schizophrenia.
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Measuring cognition in animal models
The term cognition is a widely used but vaguely defined term in science, and it’s meaning is 
usually open for interpretation. Cognition generally refers to some aspect of attentive, higher-
level information processing by the brain. The cognitive dysfunction in schizophrenia includes 
deficits in learning and memory, working memory, attention, concentration, executive 
function and cognitive flexibility, and at a more complex level social cognition (for review see 
Green, 2007; Green et al, 2005). Although many of these functions may be perceived as 
uniquely human when it comes to complexity and capacity, corresponding albeit simpler 
aspects of cognition can be found in other species such as rodents and certainly in primates. 
A useful animal model of cognition will never mirror the human situation perfectly, nor does 
it have to. Instead, the aim must be to model a corresponding function that serves a similar 
purpose in both human and research animal. For example, a rat digging for food rewards 
in a bowl while paying attention to dimensions such as odor, digging medium and texture 
is not identical to a human performing the WCST. Nevertheless, both tests can estimate the 
capacity for attentional set shifting and cognitive flexibility while engaging the prefrontal 
cortex. These tasks are different but measure similar mechanisms by putting each species 
in an appropriate salient context, suggesting that animal models of attentional set shifting may 
have both face and predictive validity. The translational value of any attempt to measure 
cognition depends on the choice of appropriate species, tasks and on the interpretation of 
the output. Thus, studies of a simpler system than the human brain may be valuable when 
trying to decipher general and evolutionary preserved cognitive mechanisms.

Another useful approach may be to study mechanisms that are not considered cognitive 
per se, but may be related to, or important for, cognitive function. In the present thesis, PPI 
was used to model pre-attentive gating of sensory information. The putative role of such 
a mechanism is to protect the brain from stimulus overload by gating out irrelevant stimuli. 
A filter mechanism like PPI may constitute important prerequisite for higher-order processing, 
but is also modulated in a top-down manner by higher brain regions. The combination of 
a suitable pharmacological challenge such as PCP administration with a translational output 
measure such as PPI, may constitute a useful model of information processing deficits in 
schizophrenia. However, the validity of such an approach is naturally limited in that the 
findings cannot be extrapolated to all cognitive deficits. One way of addressing this may 
be to validate hypotheses generated by PPI experiments in additional models for cognitive 
function. When investigating the role of NO signaling for the effects of PCP, we have tried 
to apply a “cognitive test battery” including habituation of acoustic startle, latent inhibition, 
spatial learning, and spatial reference memory to see if the NO system relates to cognition 
in a broader sense than PPI. The fact that inhibition of the NO system blocks PCP-induced 
deficits in all these domains, suggests that NO may be important for cognitive dysfunction 
in a general sense rather than limited to specific impairments.

Concluding remarks
To this date, available treatment options for schizophrenia have had limited effects on the 
disabling cognitive dysfunction that is shared by a majority of the patients. A small but 
important difference in treatment effect has been observed between typical and atypical 
antipsychotics, the latter class being more effective in ameliorating negative symptoms. 
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The exact relationship between positive symptoms, negative symptoms and cognitive dys-
function is still not known, although these symptom domains are generally considered to 
be separate and thus reflect distinct pathophysiological entities. If so, the likelihood of 
finding the “ideal” antipsychotic, which improves all aspects of the disease, is disappearingly 
small. A more pragmatic approach could be to develop cognitive enhancers that can be 
used as adjuvants to conventional antipsychotic treatment, thereby addressing additional 
aspects of the symptomatology in schizophrenia.

To discover novel mechanisms suitable for the development of such drugs, the schizo-
phrenia research field has to abandon classical screening models predictive of antipsychotic 
effect, or continue to reinvent the wheel. For example, an animal model based on amphet-
amine-induced deficits will likely not uncover new principles that do not target the 
dopamine system, and a transgenic mice model with a schizophrenia-like phenotype that 
is normalized by clozapine will not necessarily have higher predictive validity for detecting 
new treatment targets, than a model where no improvement by clozapine can be shown.

If cognitive dysfunction is at the core of schizophrenia, the research efforts in the field should 
be even more focused on investigating the mechanisms underlying these deficits. A major 
challenge will be the development and application of a translational cognitive test battery 
with high test-retest validity. To this end, the MATRICS (Measurement and Treatment 
Research to Improve Cognition in Schizophrenia) initiative may prove valuable, as it tries to 
categorize the cognitive deficits into different domains that to a large extent can be modeled 
in research animals. Finally, it is possible that beneficial effects of a drug on cognition cannot 
be expected to reach satisfactory levels without the simultaneous use of an appropriate 
cognitive training program. For example, cognitive remediation therapy where patients 
are taught information processing strategies through exercise, have been shown to improve 
cognitive performance (e.g. in WSCT, non-verbal memory, executive function) in both 
early-onset and chronic patients with schizophrenia (Penades et al, 2006; Wykes and van 
der Gaag, 2001). Possibly, patients would benefit from synergistic effects when subjected 
to a combination of strategy formation exercises and pro-cognitive pharmacological treatment. 
Given the amount of cognitive domains and the complexity of each cognitive function, it 
is not obvious that cognitive enhancers will facilitate cognition in a general sense. Perhaps, 
it is more likely that a specific pro-cognitive drug will target only distinct cognitive functions 
and that future cognition-improving treatment strategies will be tailored to the demands of 
the individual patient.

The present thesis proposes NO signaling in the PFC as a putative target when searching 
for novel treatment options for cognitive dysfunction in schizophrenia. This is based on 
the assumption that the behavioral and neurochemical effects of PCP in humans and ani-
mals relate to at least some aspects of the cognitive deficits in this brain disorder. The 
recently completed clinical pilot study where L-lysine, used as an adjuvant to antipsy-
chotic treatment, was shown to improve psychopathology and cognitive impairments 
(Wass et al, 2008a, manuscript), underscores the translational value of the PCP model. Further
more, this indicates that the NO/sGC/cGMP pathway constitutes a potential treatment 
target for cognitive deficits in schizophrenia.
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SWEDISH SUMMARY

Sammanfattning riktad till familj och vänner
Bakgrund: Schizofreni är en allvarlig och ofta kronisk hjärnsjukdom som drabbar människor 
över hela världen och som har förödande konsekvenser för både patienter och deras 
familjer. Vanligtvis bryter sjukdomen ut i de sena tonåren – en kritisk period i livet för 
personlig utveckling, där identitetskapande och bildandet av sociala nätverk är avgörande 
för framtida utsikter i både relationer och arbetsliv. Diagnosen är baserad på fenomenolo-
giska kliniska observationer eftersom inget objektivt test eller markör kan avgöra huruvida 
en person är drabbad, trots att det är känt att ärftligheten för denna sjukdom är mycket 
hög. Symptombilden brukar ofta delas in positiva symptom, negativa symptom och kognitiva 
funktionsnedsättningar. Positiva symptom, som i hög grad kan behandlas med idag tillgängliga 
antipsykotika, utgörs av exempelvis hallucinationer och vanföreställningar, det vill säga 
tillstånd som läggs till en persons vanliga beteende. Negativa symptom kan bara behandlas 
till en liten del och utgörs av ett frånfall av funktioner, som kan visa sig i en minskad 
drivkraft, svårigheter att förstå och förmedla känslor eller en oförmåga att känna glädje. 
Kognitiva funktionsnedsättningar yttrar sig ofta i problem med uppmärksamhet, svårigheter 
med olika typer av minne och inlärning samt försämrad koncentrationsförmåga och 
informationshantering. För dessa symptom finns det dessvärre inga effektiva behandlings
metoder. Samtidigt påverkar de kognitiva funktionsnedsättningarna hur det går för 
patienten på lång sikt, till exempel vad beträffar möjligheter till att kunna leva självständigt 
i samhället genom att exempelvis arbeta eller ha egen bostad. Behovet av effektiva behand
lingsmetoder som riktar in sig på denna symptomklass är därför mycket stort och det är 
också kognitiva funktionsnedsättningar som står i fokus för den här avhandlingen.

Metod: Ett sätt att försöka hitta nya farmakologiska angreppspunkter för behandling av 
kognitiva funktionsnedsättningar är att försöka skapa en modell av sjukdomen i försöksdjur. 
Det är såklart uppenbart att en råtta eller mus inte kan ha schizofreni, men vissa aspekter som 
relaterar till grundläggande kognitiva funktioner är väldigt lika i alla däggdjur. Den här 
avhandlingen baseras på en modell där gnagare ges en ”schizofrenihärmande” substans, 
fencyklidin, varefter de testas för sin förmåga att filtrera inkommande information (i form 
av ljudimpulser). Denna filtreringsmekanism kallas för prepulsinhibition (PPI) och tros vara 
ett viktigt sätt att begränsa mängden information som når högre hjärnområden. Personer 
med schizofreni har generellt en sänkt filtreringsförmåga, vilket tros kunna orsaka att hjärnan 
drabbas av en informationsöversvämning som i sin tur kan påverka den kognitiva förmågan 
i en negativ riktning.

Fencyklidin framkallar ett tillstånd som är mycket likt schizofreni när det ges till människor, 
med såväl positiva och negativa symptom som kognitiva funktionsnedsättningar. Dessa 
effekter beror framförallt på en hämning av en av de viktigaste aktiverande signalsub-
stanserna i hjärnan, glutamat, som kan ses som hjärnans ”gaspedal”. Antagandet är alltså att 
en substans som kan skapa ett såpass schizofrenilikt tillstånd hos människor också borde 
påverka de hjärnområden och signalsystem som är störda vid schizofreni. Eftersom fencyklidin 
orsakar liknande effekter hos försöksdjur, använder man det ofta som en modell inom 
schizofreniforskningen.
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Kväveoxid (NO) är en signalmolekyl som är speciell eftersom den är gasformig och kan 
frisättas direkt från platsen där den bildas, det vill säga inte bara i synapser. Vår forskar-
grupp har under det senaste decenniet visat att fencyklidins kognitionshämmande effekter 
på försöksdjur kan motverkas om man hämmar hjärnans produktion av NO. Detta är i linje 
med ett flertal kliniska studier som tyder på att NO-systemet är stört hos patienter med 
schizofreni. Ett antal av dessa studier pekar också på specifika störningar i ett hjärnområde 
som kallas prefrontala kortex. Detta område är förknippat med högre kognitiva funktioner 
såsom arbetsminne, uppmärksamhet och olika aspekter av beteendekontroll och kan därför 
ses som hjärnans ”dirigent”. Störningar i prefrontala kortex har logiskt nog också visat sig vara 
en bidragande orsak till de kognitiva funktionsnedsättningar som patienter med schizofreni 
drabbas av.

Syfte: Det övergripande syftet med denna avhandling var att undersöka NO-systemets 
betydelse för förmedveten informationsbearbetning i en djurmodell för schizofreni, med 
särskilt fokus på ett hjärnområde som är viktigt för kognitiva funktioner. På sikt skulle ny 
kunskap om detta signalsystem kunna möjliggöra utvecklingen av nya läkemedel som 
särskilt riktar in sig på kognitiva funktionsnedsättningar vid schizofreni.

Resultat: I första artikeln visar vi att man genom att minska tillgången på den aminosyra 
(L-arginin) som behövs för att NO skall kunna bildas kan motverka fencyklidins effekter 
på informationsfiltrering. Detta görs genom att behandla möss med en annan aminosyra, 
L-lysin, som konkurrerar med L-arginin om att komma in i hjärnan och nervcellerna. 
Resultaten i denna artikel visar att NO är viktigt för fencyklidins effekter på informations-
bearbetning och pekar också på ett helt nytt sätt att reglera nivåerna av NO i hjärnan. 
Dessa prekliniska fynd har lett till att vi har kunnat genomföra en liten klinisk studie, där 
patienter har fått L-lysin som tillskott till sin konventionella behandling med antipsykotiska 
läkemedel. Preliminärt verkar L-lysin förbättra den allmänna symptombilden hos dessa 
patienter och även vissa aspekter av kognitiv funktion.

I den andra artikeln visar vi att man, genom att endast påverka NO-systemet i prefrontala 
kortex, kan normalisera filtreringsförmågan hos möss som har fått fencyklidin. Samtidigt 
visar vi att en budbärare för NO-signalering ökar i denna region efter fencyklidinbehandling. 
Detta innebär att NO i prefrontala kortex spelar en viktig roll för fencyklidins effekter och 
möjligen också för kognitiva funktionsnedsättningar hos patienter med schizofreni.

I den tredje artikeln mäter vi NO-halterna direkt i prefrontala kortex på vakna, fritt rörliga 
råttor. Vi visar här att fencyklidin höjer NO i detta hjärnområde, samt att denna höjning kan 
motverkas genom att hämma enzymet som ansvarar för NO-produktion. Det har tidigare 
inte varit möjligt att mäta NO-nivåer direkt, bland annat på grund av att NO har så kort 
halveringstid, men utvecklingen av nya sensorer har löst detta problem. Effekterna vi såg 
på NO speglar tydligt våra tidigare fynd vad beträffar fencyklidin och beteende. Således 
utgör dessa resultat en biokemisk grund för vår hypotes om att NO-systemet i prefrontala 
kortex är stört vid schizofreni.

I den fjärde artikeln försöker vi koppla ihop NO:s betydelse med andra signalsystem i hjärnan. 
Vi visar här att det i prefrontala kortex verkar finnas ett samband mellan den aktiverande 
signalsubstansen glutamat, den hämmande signalsubstansen GABA och NO. Genom att 
injicera en substans i prefrontala kortex som stimulerar de receptorer som GABA verkar 
på kan vi normalisera den sänkta filtreringsförmåga som orsakas av fencyklidin. Vidare 
visar vi att samma substans sänker NO-nivåerna i prefrontala kortex och således att detta 
är en möjlig förklaring till de normaliserande effekter vi sett på filtreringsförmåga.
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Slutsats: Sammantaget visar denna avhandling att NO-signalering i prefrontala kortex är 
viktigt för informationsbearbetning i en djurmodell för (aspekter av) schizofreni. Dessutom 
verkar NO i detta hjärnområde samverka med andra signalsystem som man sedan tidigare 
vet är rubbade vid schizofreni. Vi föreslår att NO-systemet kan spela en viktig roll för kognitiva 
funktionsnedsättningar vid schizofreni och att det därför också kan utgöra en ny och 
viktig angreppspunkt för utvecklingen av nya läkemedel. Våra preliminära kliniska fynd 
med L-lysin stöder denna hypotes, och bör verifieras i långtidsstudier med fler patienter 
och ett antal dosnivåer.
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