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“Do not worry about your difficulties in Mathematics. I can assure you mine are still 
greater.” 

 
Albert Einstein 
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ABSTRACT 

 
Gene Expression Patterns in a Rat Model of Human Endometrial Adenocarcinoma 

 
Sandra Karlsson 

 
Endometrial cancer develops from the endometrium of the uterus and is the most common pelvic 

malignancy diagnosed in women in the western society. Similar to all cancer diseases, endometrial 
cancer is a disorder that results from complex patterns of genetic and epigenetic alterations involved in 
the malignant transformation. The BDII/Han rat model is unique for spontaneous hormonal 
carcinogenesis since more than 90% of the female virgins spontaneously develop endometrial cancer. 
The possibility to perform global gene expression profiling of tumor cells would likely provide 
important information of the genes and pathways that are aberrant in endometrial adenocarcinoma 
(EAC). The works in the present thesis have been focused on investigating the expression patterns in 
endometrial tumors.  

The findings in this thesis involve the identification of a novel candidate tumor suppressor region 
of rat chromosome 10. This genomic segment contains 18 potential tumor suppressor genes. 
Preliminary microarray data analysis confirmed that this region might contain relevant candidate genes 
as the EACs on average had 3.8 times lower expression of Crk in comparison to the normal/pre-
malignant endometrial tissue cultures. Furthermore, an expression analysis using qPCR, revealed a 
significant down-regulation of Myo1c and Hic. 

We were also able to identify a group of genes associated with the TGF-β pathway that were 
differentially expressed between endometrial tumors and normal/pre-malignant endometrium. These 
results suggest that the TGF-β signaling pathway is disrupted in EAC. This has previously been 
demonstrated in human EAC, although this is the first report on aberrant expression of TGF-β down-
stream target genes.  

Evaluation of Gpx3 down-regulation in the rat EAC cell lines revealed an almost complete loss of 
expression in a majority of the endometrial tumors. From methylation studies, we could conclude that 
the loss of expression of Gpx3 is correlated with biallelic hypermethylation in the Gpx3 promoter 
region. This result was confirmed with a demethylation study of EAC cell lines, where the Gpx3 
mRNA expression was restored after treatment with a demethylation agent and a deacetylation 
inhibitor. We also showed that mRNA expression of the well-known oncogene, Met, was slightly 
higher in endometrial tumors with loss of Gpx3 expression. A likely consequence of loss of Gpx3 
function is a higher amount of reactive oxygen species (ROS) in the cancer cell environment. Since it 
has been proposed that overproduction of ROS is required for the hypoxic activation of HIF-1, we 
suggest that loss of Gpx3 expression activates transcription of Met through induction of the 
transcription factor HIF-1. The loss of the protective properties of GPX3 most likely makes the 
endometrial cells more vulnerable to ROS damage and genome instability.     

We extended the results obtained from the rat endometrial tumors to human material, and 
conducted expression analysis of GPX3 in 30 endometrial human tumors using qPCR. The results 
showed a uniformly down-regulation of GPX3 in 29 of the tumors, independent of tumor grade. We 
thus concluded that the down-regulation of GPX3 probably occurs at an early stage of EAC and 
therefore contributes to the EAC carcinogenesis. These results suggest that there are important clinical 
implications of GPX3 expression in EAC, both as a biomarker for EAC and as a potential target for 
therapeutics.  
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LIST OF ABBREVIATIONS 
 
BASE    Bioarray Software Environment 
BDII    BDII/Han (inbred rat strain) 
BGN    Betaglycan 
BN    Brown Norway (inbred rat strain) 
CAT    Catalase 
cDNA    complementary DeoxyriboNucleic Acid 
CGH    Comparative Genomic Hybridization 
cRNA    complementary Ribonucleic Acid 
Cy3, Cy5   Cyanine3, Cyanine5 
DAVID   Database for Annotation, Visualization and Integrated  
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DNA    DeoxyriboNucleic Acid 
EAC    Endometrial AdenoCarcinoma 
EC    Endometrial Cancer 
EST    Expressed Sequence Tags 
F1    First generation of a cross, first filial 
F2    Second generation intercross (F1xF1) 
FFPE    Formalin Fixed Paraffin Embedded 
FISH    Fluorescent in Situ Hybridization 
FWER   Family Wise Error Rate 
FDR    False Discovery Rate 
GPX3    Glutathione PeroXidase 3 
LOESS   LOcal Scatterplot Smoothing 
mRNA   messengerRiboNucleicAcid 
MET    Mesenchymal-Epithelial Transition factor 
N1    Backcross generation 
NUT rat uterine tumor developed in the backcross (N1) progeny 
NME Non-malignant Endometrium (or Normal/pre-malignant 

Endometrium) 
PCR    Polymerase Chain Reaction 
qPCR    Real time Quantitative PCR 
RNA    RiboNucleic Acid 
RNO    Rattus Norvegicus (rat chromosome) 
ROS     Reactive Oxygen Species 
RT-PCR Reverse Transcriptase Polymerase Chain Reaction 
SPRD-Cu3 Sprague-Dawley-curly3 inbred rat strain 
SOD SuperOxide Dismutase 
TGFB3 Transforming Growth Factor beta 3  
TDT Transmission Disequilibrium Test 
Weka Waikato Environment for Knowledge Analysis 
 
 
Notes on nomenclature: Gene symbols contain letters and Arabic numerals. Human gene symbols are written 
with all capitals, whereas those for rat are in lower case letter, initialized by capital. Gene symbols are italicized 
in the text. Protein designations are the same as the gene symbol, but are not italicized; all letters are in 
uppercase. 
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INTRODUCTION 

Cancer  

Cancer – a complex genetic disease 
Cancer is the general name for a class of more than 200 neoplastic diseases affecting more or 
less all organs and tissues in the body. Although there are many different cancers, they all 
start as abnormal cells growing beyond their usual boundaries. Metastases, the major cause of 
death from cancer, are cancerous cells that have gained the capacity of invading adjoining 
parts of the bodies and are then spread to other organs. According to the World Health 
Organization (WHO), 7.9 million people in the world died from cancer during 2007 and it is 
estimated to cause the deaths of 12 million people in 2030 [1].  
 
Cancer is per definition a genetic disease and during the last decades it has become clear that 
only a minor proportion of cancers are caused by one single highly penetrant gene. The 
majority of cancer diseases are rather caused by intricate interactions among genetically or 
epigenetically altered genes. Single mutations, which might be inherited or spontaneous, are 
generally not sufficient to give rise to cancer, but they may initiate cells to turn to a malignant 
growth. Additional changes in other genes, caused by damages from the environment, 
progress the cells’ malignant transformation [2-6]. Hence, cancer is a multi-step process that 
involves initiation, promotion, transformation and progression. For common epithelial cancers 
development, it has been estimated that 4-7 rate-limiting genetic events are required (Figure 
1) [7].  The last step of the accumulated genetic changes, is the promotion of the pre-
malignant cells to true neoplasias, which are characterized by uncontrolled proliferation, loss 
of normal cell function and morphology, sustained angiogenesis and the ability to metastasize 
and invade tissues beyond the immediate primary tumor location [8].  
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Figure 1. A series of genetic changes that lead to cancer. Cancer develops through a multi-step process of 
multiple genetic changes during an extended period of time. Each change enables pre-cancerous cells to acquire 
some of the characteristics that together produce the malignant growth of cancer cells. This figure illustrates only 
a few genetic changes, but carcinogenesis probably involves about 4-7 changes [7]. 
 
 
The inherited tendency to develop cancer varies among individuals. Highly penetrant 
mutations cause strong genetic predisposition to cancer disorders and confer Mendelian 
patterns of inheritance. More than 200 of such cancer susceptibility syndromes have been 
described, but they are rare in the human population accounting for only 5-10% of all cancers 
[9]. Several population based epidemiological studies have shown that the genetic 
predisposition to the majority of all cancers involves a collective impact of several low 
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penetrance alleles with minor/modest effects. Hence most inherited cancers are considered to 
be complex, polygenic disorders which rarely follow simple Mendelian rules. 
 
The penetrance of mutations associated with carcinogenesis may be dependent on genetic 
background, life style and environmental factors. The genetic heterogeneity present in the 
human population poses the greatest hurdle when analyzing the contribution of low-
penetrance genes to cancer etiology. Similar tumor phenotypes may, for instance, be the result 
of alterations in different genes. It has been shown in mouse models that predisposition 
caused by combinations of weak genetic variants can exert a profound influence on cancer 
susceptibility, thus it is likely that the inheritance of most common cancers is polygenic [9-
12].  
 

Cancer genes 
Generally, there are three classes of genes with great importance in tumor etiology; i.e. 
oncogenes (tumor promoting genes), tumor suppressor genes (tumor inhibiting genes) and 
stability genes (care-taker genes). Oncogenes are mutated normal cellular genes, so called 
proto-oncogenes, whose products participate in cellular growth and controlling pathways. 
Proto-oncogenes are generally activated via i) intragenic gain-of-function mutations that 
might result in a changed protein activity, ii) chromosomal translocations and iii) gene 
amplifications [13, 14]. 
 
In contrast, the activity of tumor suppressor genes is reduced by genetic alterations such as 
miss-sense mutations, mutations that result in truncated protein, deletions and insertions or 
from epigenetic silencing [2].  In addition, tumor suppressor genes usually follow the two-hit 
hypothesis, initially proposed by AG Knudson [15, 16],  which means that both alleles must 
be affected in order to manifest loss of function of the specific tumor suppressor gene. This 
means that mutant tumor suppressor alleles are recessive, whereas mutant oncogenes alleles 
are dominant. The functions of the proteins encoded by tumor suppressor genes involve 
repression of genes essential for cell division, coupling of the cell cycle to DNA damage and 
cell adhesion [17, 18]. One important and well-known tumor suppressor gene is Tp53 (Tumor 
protein 53). Homozygous loss of Tp53 has been found in 70 % of colon cancers, 30-50 % of 
breast cancers and 50% of lung cancers. The anti-cancer mechanisms of TP53 activates DNA 
repair proteins, facilitates the repair system by holding the cell cycle at the G1/S regulation 
point and induces apoptosis [19-21].   
 
The third group, the stability genes, or care takers, include mismatch repair genes, nucleotide-
excision repair genes and genes that control processes involving large portions of 
chromosomes, such as those responsible for mitotic recombination and chromosomal 
segregation. The stability genes thus minimize genetic alterations and decrease mutation rate 
when active [22].   
 

Endometrial cancer 
In the western society, endometrial carcinomas represent the most prevalent neoplasms of the 
female pelvis and are the third most common cause of gynaecological cancer deaths, only 
exceeded by ovarian and cervical cancer. The incidence rate varies worldwide but is highest 
among white women in western populations, post-menopausal women being predominantly 
affected [23]. Endometrial carcinoma refers to different cancer diseases that arise from the 
endometrium, the inner lining of the uterus. Most endometrial cancers are usually 
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adenocarcinomas (also known as endometrioid), meaning that they originate from epithelial 
cells that line the endometrium where they form the glandular cells in the uterus. Roughly, 
endometrial carcinomas can be categorized into two subgroups based on histopathology. The 
most common subtype, the low-grade endometroid type I, typically debuts prior and during 
menopause, and displays a relatively low aggressiveness. They arise in an environment of 
excessive estrogen exposure and are frequently preceded by endometrial hyperplasias. Type II 
endometrial carcinomas on the other hand, usually debut in older post-menopausal women 
and are not associated with increased exposure to estrogen. These tumors are typically of 
high-grade endometroid adenocarcinomas, papillary serous or clear cell types, and generally 
carry a poor prognosis. The most common therapeutic approach is a total abdomal 
hysterectomy with a bilateral salpingo-oophorectomy (i.e. surgical removal of both ovaries). 
Hormonal treatment with progestins and antiestrogens has also been used in the therapy of 
endometrial stromal sarcomas [24-27].  
 

Animal models 
To reduce and control the factors contributing to cancer diseases, it is appropriate to turn to an 
animal model system. Inbred rodent models have contributed enormous to our understanding 
of biology and etiology of a variety of traits and have been widely used for studies of many 
complex diseases. More than 500 different inbred rat strains, carefully characterized with 
respect to genetical and physiological characteristics, are available and many of them 
constitute excellent models of human complex diseases. Compared to the mouse, which also 
is one of the most widely used model system for genetic diseases, the rat model has several 
important advantages. Rat pregnancies are more size consistent, rat cycling is relatively non-
pheromonal (similar to human) and rats can be bred quickly after parturition. The adequate 
size of the rat also allows for many important measurements to be quantified, for example 
invasive procedures [28-31]. After identification of potential disease genes and their function 
in rats, the pathophysiological mechanisms can be elucidated and human genetic counterparts 
can thus be more easily identified.  

 
During the last decades, large amount of genome data from human and animal models have 
been generated, including the complete DNA sequence of rat and human. By employing 
methods such as comparative mapping, it is possible to take advantage of the results from 
experiments performed in rats when analyzing human diseases. It has been estimated that 
approximately 90% of the coding sequences in the rat posses strict orthology to genes in both 
human and mouse genomes [32-34].  
 

The BDII/Han inbred rat model 

Currently, four experimental rat models for spontaneous endometrial tumorigenesis are 
available (Wistar/Han, DA/Han, Donroy and BDII/Han) [35]. However, the BDII/Han strain 
is unique, since the incidence of spontaneously developed EAC is high with more than 90% 
of the female virgins affected. The present thesis is based on studies performed on 
endometrial cell lines from tumors developed in F1, F2 and N1 (backcross) progeny from 
crosses between the BDII females and two non-susceptible inbred strains (SPRDCu3 and 
BN). Since the endometrial tumors in the BDII rat strain are estrogen dependent and their 
histopathology and pre-malignant stages of development resembles human endometrial 
carcinoma, it represent an excellent model for human EAC. 
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Global gene expression profiling 
The advance of the Human Genome project and the availability of genome sequence 
information, have paved the way for gene expression studies on a genome-wide scale. DNA 
microarrays are powerful and versatile tools that allow comparison between different 
conditions across tens of thousands of specific mRNAs in one single experiment. The 
microarray technology is relatively new but has already rendered a great impact on cancer 
research. The applications range from identification of new drug targets, new molecular tools 
for diagnosis and prognosis, as well as for a tailored treatment that will take the molecular 
determinants of a given tumor into account [36].  

 

The DNA microarray technologies are performed on oligonucleotide chips, glass slide cDNA 
arrays or nylon-based cDNA arrays. Microarraying allows the comparison of gene expression 
profiles from two or more tissues or from the same tissue in different biological conditions. 
The technologies have had some drawbacks but continue to develop. Each platform has its 
own specific advantages and disadvantages; however the most important consideration is the 
ability of the technology to address the chosen hypothesis. The two most commonly used 
DNA microarray platforms, customized cDNA microarrays (two-channel format) and 
commercially produced high-density oligonucleotide microarrays (one-channel format), differ 
mainly in the type of solid support on which arrayed elements are immobilized and the 
method of arraying (Figure 2).  

 
In more detail, the two-channel format (cDNA microarrays) employs PCR amplified 
expressed sequence tag (EST) clones, full-length cDNAs or oligonucleotides (50-70mers) that 
are spotted onto glass slides (generally microscope slides). With present technology, up to 
30 000 elements can be printed on one microscope slide. Two differently labeled samples  
(typically Cyanine3, Cy3, and Cyanine5, Cy5) are simultaneously hybridized to one array for 
a period of time, and subsequently the excess labels are washed off and the glass is scanned 
under laser light producing a relative level for each RNA molecule [36, 37]. High density 
arrays (i.e Affymetrix, Santa Clara, CA) contain between 11 and 20 pairs (perfect match (PM) 
vs single mismatch (SM)) of 20-25mer oligonucleotide probes for a target RNA that are 
synthesized in situ by photolithography on silicon wafers. The oligonucleotides used as 
probes on the array are usually designed from nucleotide sequences or expressed sequence 
tags, ESTs, available from public databases (such as GenBank, UniGene and RefSeq) and 
often represent the most unique part of the sequence [38]. The SM probes are identical to the 
PM probes apart from a single nucleotide mismatch at the center position. RNA extracted 
from the biological sample is biotin labeled during the complementary RNA (cRNA) 
synthesis step, hybridized to the array and fluorescently detected through the streptavidin-
phycoerythrin method. The average hybridization signal at each set of PM sequences provides 
a quantitative measure of the specific gene’s transcript. The reduced signals at each of the SM 
locations validate the specificity of the hybridization [36-38].  
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Figure 2.  cDNA microarrays vs high density oligonucleotide arrays. Custom made cDNA microarrays and 
high density oligonucleotide arrays (i.e. Affymetrix) are the two most commonly used DNA microarray 
platforms. They differ mainly in the type of solid support the probes are printed on (glass and silicon, 
respectively) and the method of arraying. cDNA microarrays are in two channel format, i.e. two different cDNA 
samples labeled with different fluorophores (generally Cy3 and Cy5) are hybridized together to one array, 
competing for their complementary target and thus providing relative measurements. The probes are usually 50-
70mer oligonucleotides resulting in high specificity of the hybridizations. High density oligonucleotide arrays 
are on the other hand in single channel format, where only one biotin labeled cRNA sample is hybridized to the 
array, resulting in an absolute measurement. The oligonucleotide arrays contain 11-20 pairs of 20-25mer 
oligonucleotides (perfect match (PM) and single mismatch (SM)), where the SM is identical to the PM except 
from a single nucleotide mismatch at the center position.  The PM/SM design allows for validation of 
hybridization specificity [36-38].    
 
 

Statistical analysis of gene expression data 
A carefully chosen design at the beginning of a microarray experiment is a prerequisite for 
generating high quality data and to maximize the efficiency of the data analysis. One of the 
greatest challenges in microarray data analysis is to distinguish changes in gene expression 
specific for the cell type, from the noise and variability inherent within the microarray 
technique.  
 
There is no standardized way to analyze the vast amount of data generated by a microarray 
experiment and thus the analytical method selected should be directed against the specific 
biological hypothesis tested. However, the fundamental steps in the data analysis can be 
divided into two categories; low level analysis and high level analysis. Hence, the data 
analysis starts with the low level analysis which includes image acquisition, image analysis 
(i.e. exclusion of poor quality spots, background correction etc), data-preprocessing (log-
transformation of the data) and normalization of the data. The low level analysis is succeeded 
by the high level analysis involving statistical inference of differentially expressed genes, 
various exploratory data analysis, classification of samples and pathway analysis (Figure 3). 
[39].  
 
 

PM 
SM 
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Figure 3. General work-flow of cDNA microarray data analysis.  Low level analysis is the first step in the 
data analysis and involves image acquisition, image processing and data pre-processing and normalization. The 
low level analysis is followed by the high level analysis which includes identification of differentially expressed 
genes, exploratory data analysis, other analysis such as pathway analysis and classification. The selection of 
which high level analysis to perform should be directed to the biological hypothesis in the specific experiment. 
The figure is adapted from Leung and Cavalieri, (2003).   
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AIMS OF THE STUDY 
 
The overall aim of this PhD project is to investigate the expression patterns in a rat model of 
human endometrial adenocarcinoma (EAC) by means of global gene expression profiling. 
 
 The specific objectives of this thesis are: 
 

• to compare gene expression patterns between endometrial tumors and other cell 
types from the endometrium in order to identify genes and cellular pathways 
involved in EAC.  

• to identify marker genes that might be used for diagnosis of human EAC.  

• to confirm and evaluate potential candidate genes for EAC carcinogenesis.  
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MATERIALS AND METHODS 
 

Experimental materials 

Animal crosses and tumor material 
Among virgin females of the BDII/Han inbred rat strain, more than 90% spontaneously 
develop EAC during their life span. The two other inbred rat strains (SPRDCu3/Han and 
BN/Han) used in the crossing experiments rarely develop EAC. Crosses between BDII 
females and the non-susceptible BN or SPRD males were made to produce F1 progenies. The 
F1 progeny was subsequently backcrossed to BDII females to produce N1 progenies and by 
brother sister mating, F2 progenies were produced (Figure 4). Females in the N1, F1 and F2 
progenies with suspected tumors were euthanized and tumors were surgically removed and 
subsequently subjected to pathological characterization. Normal tissue from liver was 
collected from the entire progeny for DNA extraction. Tumor tissues were collected for DNA 
extraction and cell culture establishment.  
 
 

 
 
 
The tumors that developed in the N1, F1 and F2 progeny were pathologically classified as 
EAC, or other uterine tumors.  In some cases, no cancer cells were detected in the removed 
cell mass when pathologically analyzed, and these are referred to normal/pre-malignant 
endometrium (NME). In the backcross progeny, the majority of the removed tissues were 
classified as NME, i.e. the tumors did not exhibit the morphological characteristics specific 
for EAC or other uterine tumors.  
 

In this study, global gene expression analysis was performed on cDNA from 12 cell lines 
classified as NMEs, 26 endometrial tumor cell lines and from 7 cell lines classified as other 
tumors of the uterus/endometrium (Table 1). 
 
 
 
 
 
 
 
 

Figure 4. Animal crosses. Females of the EAC susceptible BDII 
rat strain were crossed with one non-susceptible strain (BN or 
SPRD, respectively) to produce an F1 offspring. The F1 progeny 
was subsequently backcrossed to BDII females to produce an N1 
generation or intercrossed to produce an F2 intercross generation.  
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Table 1. EAC tissue cultures used in the gene expression profiling experiments. 
Tissue culture Pathology Genetic background Tissue 

RUT30 Anaplastic carcinoma (BDIIxBN)F2 Uterus 

RUT7 Endometrial adenocarcinoma (BDIIxBN)F2 Endometrium 

RUT12 Endometrial adenocarcinoma (BDIIxBN)F2 Endometrium 

RUT5 Endometrial squamous cell cancer (BDIIxBN)F2 Endometrium 

NUT114 Cervical cell squamous cell polyps (BDIIxBN)xBDII Cervix 

NUT6 Endometrial adenocarcinoma (BDIIxBN)xBDII Endometrium 

NUT31 Endometrial adenocarcinoma (BDIIxBN)xBDII Endometrium 

NUT43 Endometrial adenocarcinoma (BDIIxBN)xBDII Endometrium 

NUT46 Endometrial adenocarcinoma (BDIIxBN)xBDII Endometrium 

NUT50 Endometrial adenocarcinoma (BDIIxBN)xBDII Endometrium 

NUT51 Endometrial adenocarcinoma (BDIIxBN)xBDII Endometrium 

NUT52 Endometrial adenocarcinoma (BDIIxBN)xBDII Endometrium 

NUT81 Endometrial adenocarcinoma (BDIIxBN)xBDII Endometrium 

NUT82 Endometrial adenocarcinoma (BDIIxBN)xBDII Endometrium 

NUT97 Endometrial adenocarcinoma (BDIIxBN)xBDII Endometrium 

NUT98 Endometrial adenocarcinoma (BDIIxBN)xBDII Endometrium 

NUT99 Endometrial adenocarcinoma (BDIIxBN)xBDII Endometrium 

NUT100 Endometrial adenocarcinoma (BDIIxBN)xBDII Endometrium 

NUT127 Endometrial adenocarcinoma (BDIIxBN)xBDII Endometrium 

NUT128 Endometrial adenocarcinoma (BDIIxBN)xBDII Endometrium 

NUT37 Malignant uterus tumor (BDIIxBN)xBDII Uterus 

NUT61 Malignant uterus tumor (BDIIxBN)xBDII Uterus 

NUT48 Non-malignant endometrium (BDIIxBN)xBDII Endometrium 

NUT75 Non-malignant endometrium (BDIIxBN)xBDII Endometrium 

NUT110 Non-malignant endometrium (BDIIxBN)xBDII Endometrium 

NUT118 Non-malignant endometrium (BDIIxBN)xBDII Endometrium 

NUT122 Non-malignant endometrium (BDIIxBN)xBDII Endometrium 

NUT123 Non-malignant endometrium (BDIIxBN)xBDII Endometrium 

NUT129 Non-malignant endometrium (BDIIxBN)xBDII Endometrium 

RUT2 Endometrial adenocarcinoma (BDIIxSPRD-Cu3)F2 Endometrium 

RUT13 Endometrial adenocarcinoma (BDIIxSPRD-Cu3)F2 Endometrium 

NUT7 Endometrial adenocarcinoma (BDIIxSPRD-Cu3)xBDII Endometrium 

NUT12 Endometrial adenocarcinoma (BDIIxSPRD-Cu3)xBDII Endometrium 

NUT39 Endometrial adenocarcinoma (BDIIxSPRD-Cu3)xBDII Endometrium 

NUT41 Endometrial adenocarcinoma (BDIIxSPRD-Cu3)xBDII Endometrium 

NUT42 Endometrial adenocarcinoma (BDIIxSPRD-Cu3)xBDII Endometrium 

NUT47 Endometrial adenocarcinoma (BDIIxSPRD-Cu3)xBDII Endometrium 

NUT84 Endometrial adenocarcinoma (BDIIxSPRD-Cu3)xBDII Endometrium 

NUT15 Endometrial papillary adenoma (BDIIxSPRD-Cu3)xBDII Uterus 

NUT1 Malignant uterus tumor (BDIIxSPRD-Cu3)xBDII Cervix 

NUT18 Non-malignant endometrium (BDIIxSPRD-Cu3)xBDII Endometrium 

NUT56 Non-malignant endometrium (BDIIxSPRD-Cu3)xBDII Endometrium 

NUT58 Non-malignant endometrium (BDIIxSPRD-Cu3)xBDII Endometrium 

NUT89 Non-malignant endometrium (BDIIxSPRD-Cu3)xBDII Endometrium 

NUT91 Non-malignant endometrium (BDIIxSPRD-Cu3)xBDII Endometrium 

* NUT designates tumors derived backcross progeny whereas RUT designates tumors derived from first 
generation and intercross progeny. 
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Human endometrial tumor material  
In paper IV, we investigated the mRNA expression of GPX3, an EAC candidate gene 
identified in paper III, in human endometrial adenocarcinomas using real time quantitative 
PCR (qPCR). A total of 30 endometrial tumors (EACs) embedded in archival formalin fixed 
paraffin (FFPE) were used in the study. All samples were anonymous endometrial 
adenocarcinomas and as reference material, benign endometrial tissue and lung tissue was 
used. A pathologist marked the tumor area at the hematoxylin and eosin slide. Using a Tissue 
Micro Array-equipment (Pathology Devices), 3-4 cores (∅0.6mm) of tumor tissue was 
punched out from the paraffin block. Total RNA was then extracted from the paraffin block 
and used for the real time qPCR.  
 
We compared the mRNA expression between grade I, II and III endometroid tumors. The 
grade of an endometrioid cancer is based on how much the cancer forms glands that look 
similar to the glands found in normal, healthy endometrium. Grade I tumors have more than 
95% of the cancerous tissue forming glands, grade II tumors have between 50-94% of the 
cancerous tissue forming glands whereas grade III tumors have less than half of the cancerous 
tissue forming glands. The latter tumors tend to be more aggressive and carry a poorer 
prognosis than do low grade cancers.  
 
 

Methods 

Global gene expression profiling - cDNA microarray experiments 
In this work, the two-channel cDNA microarray format was employed. The 18K (6000 clones 
in triplicates) rat 70mer oligonucleotide arrays used were printed at the Swegene DNA 
microarray resource center in Lund. Each probe in the probe set (Rat 70mer oligonucleotide 
set, ver 1.0, OPERON ) were printed in triplicates at random positions on the arrays and thus 
serve as technical replicates within the array. The tumor samples used in these experiments 
served as biological replicates since they come from the same tumor phenotype, but from 
different individuals in cross progenies between inbred rat strains.      
 

Design of the microarray experiments 
As a reference for the microarray experiments, we have consistently used a specific Universal 
Rat Reference RNA (Stratagene), comprising a calibrated mix of defined cell lines from 14 
different tissues for expression studies in rat cell lines, as a common reference for all 
hybridizations (Figure 5). In this manner, a high portion of expressed genes will be present on 
the chip and consequently, positive hybridization signals at each probe element are obtained, 
thus avoiding having small, near zero denominators in calculating ratios [40]. 
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Microarray hybridizations 
The general procedure for the cDNA microarray hybridizations, involves extraction of total 
RNA from the biological samples under study. The RNA extracted from the biological 
samples and the universal rat reference RNA were subjected to reverse transcription to single 
stranded cDNA and simultaneously labeled with fluorophores (Cy3 and Cy5). The two 
differently labeled cDNA samples were pooled and subsequently hybridized to one array. The 
array was then scanned by a laser scanner, producing one image for each fluorophor (Figure 
6).  
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Statistical analysis of the microarray data  
Each hybridization produced a pair of 16-bit images (one for each channel), which were 
merged and processed by using the software package GenePix Pro 6.0. The gridding results 
were manually inspected and adjusted when necessary, and poor quality spots were flagged 
for exclusion from subsequent data analysis.  
 
 

Figure 5. The reference design of the microarray 
experiments performed in this study. The use of a 
common reference allows comparisons of a large number 
of experiments performed under different time periods. In 
this work, the expression pattern in endometrial tumor cell 
lines was compared with the expression pattern in NME 
cell lines as well as with the expression pattern in cell lines 
of other uterine tumors. Thus, the universal reference 
serves as an internal control and allows for intra- and inter-
comparisons among the different cell types.  

Figure 6. Workflow of the cDNA microarray experiments. The cDNA experiment begins with extraction of 
total RNA from the biological samples under study. The amount of total RNA required for a single hybridization 
ranges from 5-20 µg. The RNA extracted from the biological samples and the reference are subjected to reverse 
transcription to single stranded cDNA and simultaneously labeled with fluorophores (Cy3 and Cy5). The two 
differently labeled cDNA samples are pooled and subsequently hybridized to one array. The array is then 
scanned by a laser scanner, producing one image for each fluorophor. By merging the images, a ratio between 
the two channels can be calculated and the data is exported for various analyses.   
   

RT and labeling 
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The result files (.gpr files) generated from GenePix Pro 6.0 were imported into the R software 
environment (http://www.R-project.org) (where the R/limma package and limmaGUI were 
used for constructing diagnostic plots for evaluation of the data) and subsequently into 
BioArray Software Environment (BASE) for background correction, normalization, filtering, 
clustering analysis and significance analysis of expression changes. Bad quality spots (flagged 
as “bad” in GenePix) and low intensity spots were filtered out. The arrays were annotated to 
three classes: Endometrial adenocarcinoma, normal/pre-malignant lesions (NMEs) and other 
uterine tumors. The software used for constructing diagnostic plots is freely available from 
the Bioconductor project site http://www.bioconductor.org. The bioconductor packages 
limma, limmaGUI and arrayQuality applied in the present work, employ the free statistical 
programming environment R [41]. MA scatterplots (Figure 9) for all arrays were constructed 
in order to identify spot artifacts and to detect intensity-dependent patterns in the log2 ratios 
M, where Mkj (log2 ratio of background-adjusted intensities for gene k on array j) is plotted 
against Akj (the average of the red and green channels with respect to background-adjusted 
intensities for gene k on array j). For each array k, and each gene j, M and A are calculated as 
follows [42, 43]: 
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The MA scatterplots were also used for the purpose of deciding the normalization algorithm 
(within-slide) to use. Additionally, MA plots for all print-tip groups were constructed since 
there may exist systematic differences between the print tips, such as slight differences in the 
length or in the opening of the tips, and deformation after many hours of printing (Figure 10).  
 
Image plots for all arrays were constructed by using the arrayQuality package in limma 
(Figure 7). M boxplots for all arrays (of raw data, within-slide normalized data and between-
slides normalized data) were constructed in order to compare the distribution of M values 
within (print-tip groups) and between all arrays and to investigate whether scale-
normalization (between-array normalization) was required (Figure 8).   
 
Since the data showed dye bias and a skewed distribution of the M values, the intensity-
dependent normalization method print-tip group loess (implemented in BASE) was 
performed. After normalization, density-, MA-, M box- and spatial plots were constructed 
from the normalized data to reinvestigate the distribution of M values (Figure 7-10). The idea 
behind the print-tip loess algorithm is that each M value is normalized by subtracting the 
corresponding value of the tip-group loess curve from the M value. The normalized log-ratios 
N are the residuals from the tip group loess regressions, i.e, 
 

)( iii AloessMN −=  
 
where loess(A) is the loess curve as a function of A for the ith tip.  
 
By performing a series of local regressions for each point in the scatterplot, a loess curve for 
each print tip group is constructed. Print-tip loess is considered to be the most suitable 
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normalization algorithm for cDNA microarrays and it is recommended to be used as a default 
method by many groups. It corrects the M values for spatial variation within the array and for 
intensity trends [42, 43].  
 
 

       
 
  
Figure 7. Image plots of an example data set/array (NUT97). The spatial image plots display the background 
in the green (Cy3) and red (Cy5) channel using a white-red and green-white color palette (a). A more intense 
background in the top right corner was observed. b) displays the distribution of spots ranked according the their 
M values, pre- and post print-tip loess normalization using a blue-yellow color palette. Higher ranks are denoted 
by blue and low ranks by yellow. The plots displaying log ratios M in the individual print-tip groups pre-
normalization demonstrate an uneven distribution of low ranked spots in the top right corner.  The print-tip loess 
normalization procedure resulted in a balanced distribution of high- and low ranked spots across both arrays.    
 
 

 
Figure 8. M boxplots of the individual print-tip groups pre- (a) and post-normalization (b). The x-axis 
denotes the individual print-tip groups and the y-axis denotes the log ratios, M. Variation in the spread in the log 
ratios of the individual print-tip groups on the array can be seen in a).  The M values are skewed to M<0 in the 
last print-tip groups, suggesting the need for intensity and spatial based normalization. In b) the median of the M 
values are scaled to M=0 post print-tip loess normalization and the widths of the boxes are fairly consistent. 
 
 
 

a) b) 

a) b) 
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Figure 9. MA scatterplots. The loess curves for each print-tip group are represented with different colors. The 
MA scatterplot in a) demonstrates a non-linearity of the loess fits which indicates the need for within-array 
intensity- and location based normalization. Conducting print-tip loess normalization b) resulted in convergence 
of the loess curves and M values centered about M=0.  
 

   
 

Figure 10. MA scatterplots for the individual print-tip groups pre- (a) and post print-tip loess 
normalization (b). The MA scatterplot of pre-normalized data for NUT97 clearly displays variation between the 
individual print-tip groups, which indicates that print-tip loess normalization could be worthwhile. The post 
print-tip loess normalization procedure resulted in scatterplots displaying M values centered around 0 across the 
range of A intensities.  
 
 
The plug-in median/mean centering implemented in BASE was applied in order to scale the 
M values of the data. Centering median was used since it is more robust to outliers than 
centering based on the mean and it was performed for both genes and arrays. The number of 
centering cycles was set to 5.  
 
Spots that were present on less than 30 arrays (of the total 45) were rejected. The data was 
also subjected to variation filtering, i.e. all position-reporter pairs with standard deviation 
(SD) smaller than 0.8 were rejected. After cleaning, filtering and normalization procedures, 
4336 probes/reporters out of 6000 remained.  

a) b) 

a) b) 
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Exploratory data analysis - Hierarchical Clustering 
For an initial exploratory analysis of the microarray data, the hierarchical clustering algorithm 
was applied to all sets of the data. Cluster analysis is a powerful method tool for reducing the 
complexity of the large amount of data generated in microarray experiments, which is the 
chief purpose with this algorithm. Hierarchical clustering is an agglomerative and 
unsupervised technique that in an iterative manner builds clusters of genes that share high 
similarity in the expression pattern and where the number of clusters is unspecified. This is 
accomplished by using a distance metric (also known as dissimilarity measure) that 
characterizes “the distance” between the expression patterns of, for example, different tumors 
[44, 45]. Genes with no difference in expression were filtered out prior to the cluster analysis. 
Euclidean distance was used for the array distance metric and the Pearson correlation 
coefficient was used for the gene distance metric. In this way, both genes and assays were 
clustered. Average linkage was used as the linking distance (the average of all pair-wise 
distances between members of the two clusters). Duplicate/triplicate reporters/spots were 
merged and averaged.   
 
The clustering process does however not test for statistical validation and hence statistical 
inference analysis was applied for this purpose. 

Statistical inference analysis of significantly differentially expressed genes 
Significant differences in expression for reporters between the EAC cell lines and normal/pre-
malignant endometrial cell lines were assessed by applying Wilcoxon Mann-Whitney test and 
a traditional student’s t test, with a significance threshold of 0.05. Wilcoxon Mann-Whitney 
statistics is a non-parametric t-statistic computed, making no assumption that the data is 
normally distributed. It is computed by ranking the expression values of each gene across 
experiments from low to high, disregarding to which class each experiment (array) belongs 
[46, 47]. As multiple testing of thousands of genes usually generate a high proportion of false 
positives and false negatives, it is necessary to perform P value adjustments. Correction of the 
P value was therefore performed using the False Discovery Rate (FDR) procedure [48]. 
Applying FDR, the expected proportion of false positives among the rejected hypotheses is 
controlled. Other conventional methods for P value adjustements controlling the family wise 
error rates (FWER), such as Bonferroni, Holm’s method and the Hochberg’s method, are 
generally to stringent and resulting in an increase of false negatives and hence limit the power 
to identifying differentially expressed genes. The correlation among expression levels 
between different genes is not taken into considerations with the FWER approach [39, 47, 49, 
50].   
 

Classification analysis using Weka 

In order to identify genes that might be used for discriminating between endometrial tumors 
and normal/pre-malignant endometrium, classification analysis using Waikato environment 
for knowledge analysis (Weka, version 3.4.12) was employed [51]. For each of the 29 
samples, a “flag” (1 or 0) was set to signify group membership (cell lines from EAC tumors 
and non/pre-malignant lesions, respectively). The Weka software includes 70 different 
machine learning algorithms, each of which can be used to generate a classifier by learning 
from examples to distinguish between groups.  
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Gene functional classification 

The web-accessible program, the Database for Annotation, Visualization and Integrated 
Discovery, DAVID, was used to obtain an overview of the gene functions of the 50 genes 
with the highest differential expression between endometrial tumors and normal/pre-
malignant endometrium. DAVID provides tools for functional annotation of genes and gene 
functional classification, in which large lists of genes can be rapidly reduced into functionally 
related groups of genes to help unravel the biological content [52]. We wanted to investigate 
whether these genes were involved in pathways/processes contributing to the cancer 
phenotype (increased proliferation, increased apoptosis etc) and thus only cellular processes 
recognized as typical cancer hallmarks were selected. 
 

Transmission Disequilibrium Test (TDT) 
TDT statistics was performed on genotype data (Falck et al. manuscript in preparation) from 
microsatellite markers located adjacent to chromosomal regions harboring the identified 
classifiers and the top 50 genes with the most significant differential expression between 
endometrial tumors and non/pre-malignant endometrium. The TDT statistic is defined as (H-
A)2/(H+A) [53], where H is the number of heterozygous animals and A is the number of 
animals homozygous for the BDII allele. Thus, in the TDT, the number of times that 
heterozygous parents pass one marker allele to the affected offspring is compared to the 
number of times affected offspring have received the other marker allele. The test has a χ2 
distribution with one degree of freedom. TDT statistics were calculated for markers adjacent 
to each gene in the EAC tumors versus non/pre-malignant lesions, and for differences 
between the two backgrounds, BDII/BN and BDII/SPRD, respectively.  
  

Reverse Transcription PCR (RT-PCR) and real time quantitative PCR (qPCR)  
The traditional, semi-quantitative reverse transcription PCR for investigating mRNA 
expression was used for verification of the genes identified as differentially expressed 
between the groups in the microarray experiments. Beta-actin (Actb) was used as an 
endogenous control for the PCR experiments and thus co-amplified in the reactions.     
 
Real time RT-PCR, or real time quantitative PCR (qPCR), was performed to analyze the 
mRNA expression of GPX3 in 30 human endometrial tumors and Glyceraldehyde 3-
phosphate dehydrogenase (GADPH) was used as endogenous control. The advantage of using 
the real time RT-PCR, compared to traditional RT-PCR, is that it enables both detection and 
quantification (as absolute number of copies or relative amount when normalized to DNA 
input or additional normalizing genes) of a specific sequence in a DNA sample and is more 
sensitive when comparing expression levels between samples. In this study, we have 
employed the Taqman assay, which measures the accumulation of a product via a fluorophore 
during the exponential stages of the PCR, rather than at the end point as in the traditional 
PCR. The threshold cycle, CT, i.e. the number of PCR cycles at which a significant 
exponential increase in fluorescence is detected, is determined by the exponential increase of 
the PCR product (Figure 11). The CT value is directly correlated with the number of copies of 
DNA template in the reaction.  
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The comparative CT method (∆CT) was used for assessing the relative changes in mRNA 
expression between the different groups investigated and is calculated as follows:    
 
 

, 
 
where CT,X is the threshold cycle of the gene of interest and CT,R is the threshold cycle of 
the endogenous reference gene (i.e. GAPDH). Test refers to the tumor cDNA sample and 
control refers to the calibrator cDNA sample. 
 
 

 
 
Figure 11. Real time qPCR amplification plot. The cycle number is plotted against the fluroscence emission. 
The red vertical line is the threshold line which is set in the exponential phase of the fluorescence emission 
curves.  
 

Chromosome paint and dual-color Fluorescent In Situ Hybridization (FISH)  
Chromosome paint and dual-color FISH were used to map breaks and deletions on rat 
chromosome 10. FISH is used to detect deletions or amplifications of specific genomic targets 
using probes that are labeled with fluorochromes (usually biotin or with targets for 
antibodies). The single-stranded probe is then applied to interphase or metaphase 
chromosome preparations and incubated for approximately 12 hours, while hybridizing. The 
results are visualized and quantified using a fluorescence microscope. There are different 
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types of probes, each of which has different applications. For detecting locus specific 
deletions, locus specific probes are used, whereas for examining chromosomal abnormalities, 
whole chromosome probes are used (also called whole chromosome paint). By using several 
overlapping probes, it is possible to detect breakpoints of translocations. The application of 
these techniques facilitates analysis of chromosomal aberrations and genetic abnormalities in 
various human diseases including cancer 
 

Mutation screening by DNA sequencing  
DNA sequencing for mutations and analysis of allelic imbalance (AI) was performed to 
investigate the status of Tp53 and for mutation screening of Myo1c in endometrial tumors. 
Briefly, the DNA regions of interest were first amplified by PCR using genomic DNA and/or 
cDNA as template. The PCR products were subsequently purified and subjected to cycle 
sequencing using a fluorescent dye-labeled dideoxy procedure (BigDyeTMTerminator Cycle 
Sequencing Ready Reaction).  
 

Methylation-Specific PCR (MSP)  
Methylation-specific PCR (MSP) was used to investigate whether the loss of 
expression/down-regulation of the Gpx3 gene was due to hypermethylation. Using the MSP 
method, the methylation status of virtually any group of CpG sites within a CpG island, 
independent of the use of cloning or methylation-sensitive restriction enzymes, can be 
assessed.  The assay involves initial modification of DNA by sodium bisulfite, converting all 
unmethylated cytosines to uracil, and subsequent amplification with primers specific for 
methylated versus unmethylated DNA. The primers were designed using the freely available 
web-based program Methprimer, publicly available at http://www.urogene.org/methprimer/ 
(Figure 12).  
 
 

 
 
Figure 12. Results from Methprimer. Two CpG islands were found in the promoter region 
of Gpx3. The first primer sets generated from the Methprimer software were used for 
investigating the methylation status of the Gpx3 promoter.   
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IDENTIFICATION AND ANALYSIS OF GENES INVOLVED IN 
EAC 

Global gene expression analysis 
Previous work with the BDII model system has been focused on finding chromosomal regions 
associated with susceptibility and development of EAC. By means of genome wide screens 
with microsatellite markers of tumors developed in BDII crosses, several chromosomal 
regions associated with susceptibility to EAC were identified. This infers that several 
susceptibility genes with minor, but co-operating, effects are responsible for the EAC 
susceptibility. In the SPRDCu3 background, three chromosomal regions (RNO1q35-36, 
RNO11q23 and RNO17p11-q11) were found to be associated with susceptibility for EAC, 
whereas in the BN background, there was only one region (RNO20p12). Thus, the onset of 
tumors depends not only on the presence of susceptibility alleles from the EAC-prone strain, 
but also on the contribution of genetic components derived from the non-susceptible strains 
[54, 55]. Previous investigations also include studies of chromosomal aberrations that 
occurred in tumor samples of the BDII crosses. By conducting Comparative Genome 
Hybridization (CGH) in tumor samples developed in the crosses, it could be concluded that 
certain chromosomal regions were recurrently engaged in increases or decreases in copy 
number (e.g. hyperploidy/ amplifications or hypoploidy/deletions) [56-58].  
 
Thus, some genetic factors and chromosomal aberrations that might contribute to initiation 
and malignant progression into EAC are known. However, identifying causative cancer-
related genes within recurrent genomic aberrations is not always uncomplicated since the 
affected regions often harbor several hundreds of genes and many of these might contribute to 
the malignant transformation. In order to find genes with aberrant expression and to identify 
expression profiles typical to EAC, thus elucidating crucial molecular events occurring during 
EAC development, we performed cDNA microarray experiments on a set of cell lines 
established from EAC tumors, normal/pre-malignant endometrium and other uterus tumors.   
 
 

Identifying potential tumor suppressor gene candidates on RNO10 (paper I) 
Rat chromosome 10 (RNO10) has been shown to be frequently involved in chromosomal 
aberrations in EAC. By means of cytogenetic studies and CGH analyses of the solid EAC 
tumors  and cell lines, common deletions in the proximal part of RNO10 in EAC could be 
determined [59]. In additional allelic imbalance (AI) studies, three deleted sub-regions in the 
proximal region on RNO10 were identified in several separate EACs [60, 61]. One of the 
commonly deleted regions was located in the central part of the chromosome and since the 
Tp53 gene is located within that region at the border between bands 10q24-q25, it was 
selected as a candidate gene for EAC tumorigenesis. The main aim of paper I was to 
investigate whether the Tp53 gene is the molecular target of the frequent allelic losses in the 
region RNO10q24-q25. To determine the frequency and map position of the chromosome 
breaks along RNO10 presumably involved in the allelic losses, dual-color gene-specific 
fluorescent in situ hybridization (FISH) and chromosome paint analysis were performed. We 
also investigated the mutation status of Tp53 in the tumor materials and combined the results 
of sequencing for gene mutations with the analysis of allelic imbalance results. For a more 
detailed deletion analysis, the FISH study was extended with eight additional probes evenly 
distributed between the Tp53 gene and Thra1.   
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From the measurements described above, we could show recurrent breaks and losses distal to 
Tp53 along with high frequency of allelic imbalance in RNO10q24-q25. 35% of the tumors 
with AI and/or deletions at RNO10q24-q25 did not show any mutations in the Tp53 gene, and 
thus we concluded that RNO10q24-q25 may harbor another tumor suppressor gene with 
important implications in EAC development. We also concluded that this potential tumor 
suppressor gene is located close to and distal of the Tp53 gene. Our conclusions is in 
accordance with earlier studies, since low frequencies of Tp53 mutations accompanied by 
high frequency of LOH at HSA17p13.3 is common in a variety of human malignancies 
including breast, lung and hepatocellular carcinomas and neuronal tumors [62-69].    
 
By comparing the rat and human DNA sequence, it became clear that several intra-
chromosomal rearrangements have taken place in this region during the divergence between 
human and rat. Thus, the conservation with respect to gene order is not very extensive. By a 
reciprocal comparison of the positions of the genes located in the proximity of the break in the 
rat genome, with human gene positions and information from other human cancer studies, we 
could reduce the size of the suggested candidate tumor suppressor region to approximately 
0.64 Mb. This genomic segment contains 18 genes (Table 3). In order to identify potential 
tumor suppressor candidate genes in this region, we investigated the mRNA expressions from 
microarray data. The microarray chips contained 6000 clones but most of these 18 genes were 
not represented. A preliminary analysis however, revealed that the endometrial tumor tissue 
cultures on average had 3.8 times lower expression of Crk in comparison to the normal/pre-
malignant endometrial tissue cultures. This implied that this region might contain relevant 
candidate genes.   
 
 
Table 3. Suggested tumor suppressor candidate region on RNO10q24  

Position in rat sequence Position in human sequence 
Start 
(Mb) Symbol Cytoband 

Start 
(Mb) Symbol Cytoband 

62.23 Est1a 10q24 1.91 EST1A 17p13.3 

62.47 Hic1 10q24 1.91 HIC1 17p13.3 

62.48 Ovca2 10q24 1.89 OVCA2 17p13.3 

62.49 Dph1 10q24 1.88 DPH1 17p13.3 

      1.86 D17S831   

62.50 Rtn4rl1 10q24 1.79 RTN4RL1 17p13.3 

      1.76 D17S1574   

62.61 Rpa1 10q24 1.68 RPA1 17p13.3 

62.66 Smyd4 10q24 1.63 SMYD4 17p13.3 

62.71 Serpinf1 10q24 1.61 SERPINF1 17p13.1 

62.75 Serpinf2 10q24 1.60 SERPINF2 17p13 

62.81 Prpf8 10q24 1.50 PRPF8 17p13.3 

62.83 Rilp 10q24 1.50 RILP 17p13.3 

62.84 Scarf1 10q24 1.48 SCARF1 17p13.3 

62.85 Slc43a2 10q24 1.42 SLC43A2 17p13.3 

62.91 Pitpn 10q24 1.37 PITPN 17p13.3 

62.95 Skip 10q24 1.34 SKIP 17p13.3 

62.99 Myo1c 10q24 1.31 MYO1C 17p13 

63.02 Crk 10q24 1.27 CRK 17p13.3 

63.07 Ywhae 10q24 1.19 YWHAE 17p13.3 
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To conclude, the association between observed patterns of chromosomal deletions and AI at 
the proximal end of RNO10 and Tp53 mutation was analyzed in 27 rat EAC cell lines. 
Together with similar observations in human, the present study provides further evidence for 
the presence of a putative tumor suppressor gene close to, but distal of the Tp53 gene.  
 
Further studies involve expression analysis of the 18 genes presented in Table 3 above, using 
qPCR. These results show a significant down-regulation of Myo1c and Hic in the EAC 
tumors, suggestive of two novel candidate genes for EAC carcinogenesis in RNO10q24 
cytoband (Figure 13).    

  
Figure 13. Scatterplots from the qPCR analysis. The relative expression of Myo1c and Hic1 in EAC tumors, 
normal/pre-malignant endometrium (NME) and other uterine tumors (OM) is shown. Expression is presented as 
fold change of CT (log2).  
 
 
Aberrant expression of genes associated with the TGF-β signaling pathway (paper II) 
Since the cDNA microarray experiments generate a huge amount of expression data, it is 
desirable to get an initial overview of the expression profiles. Cluster analysis is one of the 
most commonly used techniques applied for identification of patterns in large scale gene 
expression data. Hierarchical clustering is an agglomerative and unsupervised technique that 
in an iterative manner builds clusters of genes, which share high similarity in expression 
patterns and where the number of clusters is unspecified [44, 45]. An initial hierarchical 
clustering of the expression data was performed to explore the expression profiles and to 
identify possible subgroups in the tumor material. This clustering analysis revealed two 
significant results; 1) a cluster of genes associated with the TGF-β pathway was found to be 
differentially expressed between the EAC samples and normal/pre-malignant samples. The 
mRNA expressions of several pro-collagens (Col1a1, Col1a2, Col3a1, Col5a1), Ctgf, Ltbp2 

and Tgfb1i1 were decreased in a majority of the endometrial tumors, 2) a few of the 
endometrial tumors clustered together with a majority of the normal/pre-malignant samples 
and a few of the normal/pre-malignant samples clustered together with the majority of the 
EACs.  
 
Furthermore, we performed a separate hierarchical clustering on the TGF-β signaling pathway 
associated genes, and found three distinct clusters of endometrial samples; Group I) contained 
mainly normal/pre-malignant EACs and up-regulated TGF-β associated genes, Group II) 
contained mainly EACs and down-regulated TGF-β associated genes, and Group III) 
contained EACs, normal/pre-malignant endometrial samples and other uterine tumors, all 
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exhibiting a mixed expression pattern of the TGF-β associated genes. This implies the need of 
adjustment of the tumor classification of the endometrial tumors and tissues.  
 
From these data, we concluded that the irregularities found in the TGF-β pathway among the 
majority of the EAC tumor cell lines, have substantial impact on EAC carcinogenesis. Our 
conclusions are supported by other studies that have demonstrated aberrant TGF-β signaling 
in human EAC, due to a decreased expression of the TGF-β receptors I and II at both 
transcriptional and translational levels. In addition, in these studies, a decreased protein 
expression of phosphorylated Smad2 was reported [70, 71]. Smad2 is an indicator of active 
TGF-β signaling and together with Co-Smads, it induces transcription of specific target genes, 
in both early and more progressed stages of EACs [72-74]. The decreased expression of 
Smad2 in both early and late stages, suggests a loss of TGF-β signaling at an early stage in 
EAC carcinogenesis. The TGF-β pathway associated genes found to be differentially 
expressed between EACs and normal/pre-malignant endometrium in this work, are directly or 
indirectly regulated by TGF-β signaling. In addition, some of the genes might activate TGF-β 
signaling (such as CTGF, TGFB1I1 and, LTBP2) and thus the down-regulated expression 
might result in a hampered TGF-β signaling. Our work is the first report presenting 
aberrations in expression of TGF-β down-stream target genes and we propose that the down-
regulation of these genes might be due to abrogated TGF-β signaling. 
 
The TGF-β superfamily of cytokines can be attributed to regulate a wide range of cellular 
processes, including cell growth, proliferation, differentiation, apoptosis and homeostasis in 
adult tissues (Figure 14) [72-74]. The growth suppressor effects exerted by the TGF-β family 
in normal cells makes the members of the TGF-β family potent tumor suppressors that cancer 
cells must escape for malignant evolution. Resistance to the TGF-β growth inhibitory effects 
in early tumorigenesis has been demonstrated in numerous studies on epithelial cancer cell 
lines [70, 75-80]. In tumor cells that are responsive to TGF-β signaling, TGF-β induces cell 
cycle arrest in late G1, apoptosis and expression of cell adhesion molecules, including 
fibronectin, laminin, CEA, collagen and integrins [75]. However, TGF-β signaling has dual 
implications in cancer, since it in some cancer diseases modulates processes such as cell 
invasion and immune regulation that cancer cells may make use of to their advantage. 
Consequently, the output of a TGF-β response is highly contextual in different types and 
stages of tumors [81].  
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Figure 14. A schematic diagram of the TGF-β signaling pathway. The mechanisms for TGF-β signaling 
transduction involves the binding of TGFβ to TGFβ2R which induces phosphorylation and activation of the 
TGFβ1R. The activated TGFβ1R phosphorylates SMAD2 and SMAD3, which in turn form complex with 
SMAD4 mediator. The complex is translocated into the nucleus and regulates gene transcription. SMADs 
regulate transcription in several ways, including binding to DNA, interactions with other transcription factors, 
and transcription corepressors and coactivators, like p300 and CBP. The SMAD signaling cascade can be 
repressed by SMAD-7. The TGF-β pathway also interacts with other signaling pathways, such as the MAP 
kinase-ERK pathway, that modulate SMAD activation.  
 

Another important finding in paper II, as previously mentioned, was that a few of the 
endometrial tumors shared similar expression pattern with the majority of the normal/pre-
malignant cell lines and vice versa. This was shown both in the clustering analysis on the 
global expression data, as well as in the clustering analysis of the expression of the TGF-β 
signaling associated genes. The expression of the TGF-β associated genes was up-regulated in 
the normal/pre-malignant cell types, referred to as group I and down-regulated in the 
endometrial tumors, referred to as group II. We therefore concluded that these samples needed 
to be re-classified, which was also supported by the observations made from the in vitro cell 
culturing. The EAC cell lines that clustered together with the normal/pre-malignant cell lines 
were more similar to the typical non-malignant cell lines when cultured, and the non-
malignant cell lines that clustered to group II, displayed similar morphological and 
physiological characteristics (i.e. increased growth rate, irregular shapes etc) as the fully 
malignant EAC cell lines. We have therefore chosen to focus our continued analysis on the 
two groups representing fully malignant of EAC and normal/pre-malignant respectively.  

 
 
A three-gene signature of EAC (paper III) 
The main objective of paper III was to identify potential marker genes and molecular 
signatures that correlate with early and late stages of endometrial cancer by applying the 
classification tool, Waikato environment for knowledge analysis, (Weka, version 3.4.12) on 
the microarray expression data and conducting a traditional Student’s t test and Mann-
Whitney test for assessing genes with differential expression between the two groups (EAC 
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cell lines and normal/pre-malignant endometrial cell lines). Even when applying P value 
adjustments (False Discovery Rate, FDR [48]), we found a high number of genes (354) that 
were significantly differentially expressed between the two groups. In Figure 15, we present a 
dendrogram from hierarchical clustering of the 200 genes that had the most significant 
differential expression between EACs and normal/pre-malignant samples. As shown, the 
majority of the differentially expressed genes was generally down-regulated in the EAC group 
whereas the majority of the genes was more or less normally expressed in the normal/pre-
malignant samples, implying that these genes are dysfunctional in EAC.  
 
 

 
 
 
 
 
 
Since the number of differentially expressed genes identified was relatively high, we wanted 
to unravel whether some of them were involved in cellular processes known to be frequently 
disturbed in cancerous cells.  By employing the freely available gene function clustering tool, 
the Database for Annotation, Visualization and Integrated Discovery, DAVID [52], of the 50 
genes with the highest differential expression, we found that 30 were involved in cellular 
processes typically aberrant in tumors (i.e. differentiation, proliferation, apoptosis, mobility 
etc). Moreover, several of these genes were involved in more than one process, which reflects 
the complexity of cancer etiology. 

Figure 15. Dendrogram of the top 200 genes with the highest differential expression. The resulting 
dendrogram from the hierarchical clustering analysis of the top 200 genes with highest differential 
expression between EAC cell lines and normal/pre-malignant cell lines.  
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To explore whether a specific gene expression signature for EAC could be generated, we 
applied the Weka classification tool. The Weka software includes 70 different machine 
learning algorithms, each of which, by learning from examples, can be used to generate a 
classifier which distinguish groups from each other [51]. We excluded all algorithms that 
required discrete-valued input data set, since these are not applicable to real-valued gene 
expression data set. The fold change values from the microarray data were imported into 
Weka. In total, 29 samples from group I and II were analyzed, and the group membership was 
signified. The two genes that were most frequently identified as top genes in the classifiers 
were Gpx3 (nine classifiers) and Bgn (seven classifiers). These two genes were also among 
the highest ranked among the 50 genes with highest differential expression. In total, 16 
algorithms derived classifiers could determine the most important gene for classification, 
whereas 26 algorithms used many or all genes for the classification. The majority of the 
algorithms reached accuracies of 97% (a single misclassification) or 100%. We also applied 
Weka using the original histopathological classification, and found a significant low accuracy 
rate of classification. This confirms our previous re-classification of the two groups. 
 
The gene with the highest differential expression was plasma glutathione peroxidase 3, Gpx3, 
and thus considered as a highly interesting candidate gene for EAC carcinogenesis. GPX3 
exhibits a critical role in detoxifying reactive oxidative species and maintaining the genetic 
integrity of mammalian cells. Gpx3 has been found to be either deleted or highly methylated 
in exon 1 in prostate cancer cell lines [82, 83] and in Barret’s tumorigenesis [84] and has been 
suggested to exhibit tumor suppressor activity [82]. The tumor suppressor activity of GPX3 is 
thought to be associated with its ability to repress the expression of the MET oncogene. 
Expression data of Met in the present work implies that samples exhibiting an up-regulation 
of Gpx3 also show a low expression of Met.  

 
Biglycan (BGN) belongs to the family of small leucine-rich proteoglycans [85] and is 
functionally involved in matrix assembly, cellular migration, adhesion, and the regulation of 
growth factors. Several studies have shown that gene expression of Bgn is regulated by TGF-
β signaling [86, 87]. This result is in accordance with our previous hypothesis of a disruptive 
TGF-β signaling, since we have shown down-regulation of several genes controlled by the 
TGF-β signaling pathway. Furthermore, it has been shown that exogenously administered 
BGN, induced pancreatic cancer cells to arrest in the G1 phase of the cell cycle, indicating a 
direct inhibiting effect on proliferation in cancerous cells and thus exhibits tumor suppressive 
activities [88].  
 
Previous work with the BDII inbred rat model included identification of susceptibility regions 
by means of genome wide screening with microsatellite markers on the female cross 
progenies that developed EAC [54, 55]. When we examined the genotyping data in the 
chromosomal regions harboring the 50 genes identified as the most differentially expressed 
between EACs and normal/pre-malignant endometrium, we found only one gene (Tgfb3) to be 
located in a susceptibility region (RNO6q31). Regardless of genetic background, we found a 
significant χ2 value (5.26) from the TDT analysis (p<0.05). This means that Tgfb3 is a 
possible susceptibility gene candidate and implies that the BDII strain might harbor a single 
nucleotide polymorphism, SNP, involved in the initiation of EAC. However, the expression 
data only correlated with grade of tumors, i.e. the expression of Tgfb3 was down-regulated in 
EACs and up-regulated in normal/pre-malignant cell lines regardless of the genetic 
background. Since the TGFB3 protein is involved in multiple cellular processes, the effects of 
genetic variation on mRNA expression may vary during tumor progression due to interactions 
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with other affected genes. Thus, if the hypothesized genetic change in Tgfb3 is inherited, the 
effect on the expression level might be different in early and late stages of EAC. 
 
The mRNA expression of Tgfb3 has been suggested to be stimulated by Collagen 1 through 
the PI3K/ERK pathway in lung adenocarcinomas, [89]. The decreased expression of Tgfb3 

shown here, might be due to the decreased expression of several pro-collagens as we 
previously have demonstrated [90]. Interestingly, it has been shown that TGFB3 expression is 
up-regulated in human EAC and that TGFβ3 exerts promoting effects on invasiveness [91], 
which is contradictive to our results. However, Van Themsche and co-workers [91] used two 
commercial cell lines (i.e. KLE and HEC-1A) originating from elderly women (64 and 71, 
respectively). These cell lines may represent the more invasive and non-estrogen dependent 
type II endometrial carcinoma, whereas our model represents estrogen-dependent endometrial 
carcinoma. This indicates that TGF-β signaling in the more aggressive type II endometrial 
carcinoma has a tumor promoting effects, whereas it in the estrogen-dependent type I 
endometrial carcinoma seem to have a tumor inhibiting role [70, 71, 92]. Further studies are 
needed to clarify the implications of down-regulated expression of Tgfb3 in rat EAC. 
 
In conclusion, we were able to present a three-gene signature that can be utilized as a starting 
point for establishing a panel of endometrial cancer biomarkers.  In addition, the data set also 
provides potential candidate genes that should be further evaluated for possible implications 
in the carcinogenesis of EAC. 
 
 

Evaluation of genes identified from the microarray expression studies 
Confirmations of the gene candidates identified from the analyses of the microarray 
experiments were performed using the traditional semi-quantitative RT-PCR. All gene 
expressions investigated could be verified and rendered almost identical results when 
comparing the two methods.  
 
 

Epigenetic mechanisms responsible for loss of Gpx3 mRNA expression (paper IV) 
In paper III, we identified Glutathione peroxidase 3 (Gpx3) as a potential molecular marker of 
rat EAC by using the Waikato Environment for Knowledge Analysis (Weka) classification 
tool on the microarray expression data. In paper IV, we performed RT-PCR on a larger 
selection of endometrial tumors and found that the expression of Gpx3 was indeed down-
regulated in all tumors. GPX3 is one of three key enzymes, along with catalase (CAT) and 
superoxide dismutase (SOD), involved in the cellular defence against reactive oxidative 
species (ROS). SOD catalyzes the dismutation of the superoxide anion (O2-.) into hydrogen 
peroxide and GPX3 in turn reduces hydrogen peroxide (and other organic hydroperoxides) to 
water using reduced glutathione (GSH) as the electron donor (Figure 16). SOD and GPX3 are 
present in the cytosol and in the mitochondria. CAT, on the other hand, reduces hydrogen 
peroxide in the peroxisomes [93, 94]. It has been shown that cancer cells are constantly under 
oxidative stress and that they produce ROS at a much higher rate than do non-transformed cell 
lines [95]. ROS are known to cause severe damages on DNA, by introducing strand breaks of 
the DNA, altering guanine and thymine bases, and by inducing sister chromatide exchanges. 
The ROS-induced damage to cells also includes alteration of macromolecules such as 
polyunsaturated fatty acids in membrane lipids and essential proteins. The consequences 
might be inactivation of tumor suppressor genes or increased expression of proto-oncogenes. 
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The persistent oxidative stress on carcinoma cells may eventually lead to genetic instability 
which in turn increases the malignant potential of the tumor [96].  
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Figure 16. Oxidative stress pathway.  Glutathione peroxidase 3 (GPX3), superoxide dismutase (SOD) and 
catalase (CAT) constitute the backbone in the cellular defence against reactive oxidative species. SOD and 
GPX3 are present in the cytosol and the mitochondria and reduces superoxide and hydrogen peroxide, 
respectively. GPX3 catalyses the reduction of hydrogen peroxide using reduced glutathione (GSH) as the 
electron donor. CAT, on the other hand, reduces hydrogen peroxide in the peroxisomes.  
 
As epigenetic silencing by hypermethylation of the GPX3 promoter region was previously 
shown in prostate cancer [82, 83] and in Barret’s disease [84], we wanted to examine whether 
the highly down-regulated expression of Gpx3 in the endometrial carcinoma samples was due 
to hypermethylation. We therefore performed methylation-specific PCR on available DNA 
from tumor cell lines (n=12) and found that 91% of the tumors displayed hypermethylation of 
the Gpx3 promoter, and that 9 out of 10 tumors displayed biallelic methylation (i.e. both 
alleles are methylated). This finding suggests that the GPX3 function is impaired in rat EAC, 
and a likely consequence is an increased amount of hydrogen peroxide and other reactive 
oxidative species in the endometrial tumor microenvironment.    
 
Yu et al also found that GPX3 might harbor tumor suppressor activities, since they could 
show that induced over-expression of GPX3 in prostate cancer cell lines decreased 
invasiveness, anchorage independent growth and colony formation [82]. Moreover, 
xenografted prostate cancer cells expressing GPX3, showed reduction of tumor size, 
elimination of metastasis and reduction of animal death. Yu and co-workers findings also 
suggest that the GPX3 tumor suppressor activity involves transcriptional regulation by the 
tumor transforming gene Mesenchymal-Epithelial Transition factor (MET), since the 
induction of GPX3 expression decreased the mRNA expression of MET [82]. Engagement of 
MET induces multiple signaling transduction pathways that regulate cellular processes, such 
as growth promotion, motility and invasiveness (Figure 17) [97-99]. We therefore 
investigated whether we could find a correlation between the expression of Gpx3 and Met in 
the BDII rat model by performing a semi-quantitative RT-PCR of Met as well. We found that 
the expression of Met was slightly higher in the endometrial tumors that had a loss of Gpx3 
expression. When applying a two-way ANOVA on the RT-PCR expression data, we found a 
highly significant (P < 0.0005) interaction between the Met and Gpx3 expression. Thus, 
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besides introducing mutagenic events by potential increased levels of H2O2, this finding 
implies that the down-regulation of Gpx3 presented herein, might result in tumor promoting 
effects by up-regulating the transcription of the Met oncogene.    
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Figure 17. Oncogenic MET signaling transduction. MET engagement by the binding of hepatocyte growth 
factor (HGF) to the MET receptor, results in the activation of several signaling transduction pathways that 
regulates tumor promoting cellular processes such as proliferation, motility and invasiveness [97-99].  
 
 
The transcription of MET involves the binding of hypoxia inducible factor 1 (HIF-1) and AP-
1, to hypoxia responsible elements present in the MET promoter region. In addition, it has 
been proposed that overproduction of ROS is required for the hypoxic activation of HIF-1 and 
thus transcription of MET [100]. A possible consequence of the observed down-regulation of 
GPX3 presented in this work might be a higher production of ROS. In a preliminary study, we 
measured the production of hydrogen peroxide in an endometrial tumor cell line with loss of 
expression of Gpx3 and in two non-malignant endometrial cell lines with Gpx3 expression. 
The results indicate a higher production of hydrogen peroxide in EAC. Hence, the co-
occurrence of loss of expression of GPX3 and induction of MET expression suggest the 
possibility that the GPX3 activates MET transcription through increased levels of ROS and 
thus the induction of HIF-1. Clearly, further functional analyses to elucidate the role of GPX3 
and MET in EAC are required. 
 
   

Expression of GPX3 in human endometrial tumors (paper IV)  
As mentioned previously, animal models are exceptionally valuable when analyzing genetic 
components involved in the pathogenesis of human complex disorders. In the end, however, it 
is important to be able to translate the findings from the animal studies to humans to develop 
new diagnosis tools and/or for therapeutic interventions. We strongly believe that the aberrant 
mRNA expression of Gpx3 identified in rat endometrial adenocarcinoma have important 
implications in the human endometrial tumor etiology as well. Thus, in order to evaluate the 
results from the BDII rat model, we measured the mRNA expressions of GPX3 in 30 human 
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grade I-III EACs. We found that the expression of GPX3 was down-regulated in all 
endometrial tumors, compared to two benign endometrial samples. We could not find any 
differences in expression between the tumor stages. This finding implies that down-regulated 
expression of GPX3 is a universal event occurring at an early stage in EAC. However, since 
only two benign samples from the human endometrium were used as controls, these results 
can not be inferred as statistically significant with certainty. The results do however support 
the conclusions made from the BDII rat model and should be further evaluated.    
 
In conclusion, we propose that the silencing of GPX3 by DNA hypermethylation of cytosines 
in CpG islands located in the promoter region may augment the susceptibility of the 
endometrium to oxidative injury and subsequent carcinogenic transformation. Thus GPX3 
should be considered an important marker gene for human EAC.  
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CONCLUDING REMARKS 
  
Cancer is a complex disease caused by complex patterns of interactions of hundreds of genes. 
Also, the influence of the genetic background/heterogeneity contributes to the complexity of 
tumor etiology. Our still relatively limited knowledge of how tumors develop comes from the 
studies of single genes or chromosome regions. However, the availability of the human 
genome information has rapidly increased the development of high-throughput techniques 
making it possibly to perform studies on thousands of genes at the same time. cDNA 
microarrays provide a powerful and versatile tool for the identification of differences in the 
expression profiles of tumor cells in comparison to their normal counterpart, and thus offers 
an increased understanding of the process of tumor etiology and development. Other 
important implications of cDNA microarrays in cancer research includes classification of 
tumors to different grades, identification of tumor subgroups and the discovery of novel 
diagnostic and prognostic biomarkers.    
 
The main aim of the present thesis work was to investigate the expression patterns in rat EAC 
by the use of global gene expression profiling. The expression patterns of total 26 EAC cell 
lines, 12 normal/pre-malignant cell lines and 7 other uterine tumors were investigated by 
conducting two-channel cDNA microarrays.   
 
The findings from the studies that the thesis is based are summarized below: 
 

I. Identification of a candidate tumor suppressor region on RNO10. In this study, we 
found that the tumor suppressor gene, Tp53, is not probably the only target of the 
chromosomal breaks and deletions demonstrated at RNO10q24-25. We propose a new 
candidate tumor suppressor gene region of approximately 0.64 Mb. This genomic 
segment contains 18 potential tumor suppressor genes. Preliminary analysis of the 
microarray data showed that the endometrial tumors on average had 3.8 times lower 
expression of Crk in comparison to the normal/pre-malignant endometrial tissue 
cultures. This implied that this region might contain relevant candidate genes. 

.   
II. Identification of an expression profile. An initial hierarchical clustering analysis of 

the microarray data aiming to investigate the expression profiles between EACs and 
normal/pre-malignant cell lines, revealed a cluster of genes regulated by the TGF-β 
signaling pathway that were differentially expressed between the EACs and 
normal/pre-malignant samples. These results indicated a disruptive TGF-β signaling in 
the rat EAC cell lines. Previous studies on human endometrial tumors suggest loss of 
TGF-β signaling at an early stage of EAC, thus supporting our results. However, our 
findings provide the first report on aberrant expression of TGF-β down-stream target 
genes. 

 
III. Classification of the tumors. We were able to make minor adjustment of the initial 

pathological classification of the EAC and normal/pre-malignant samples, based on 
the expression profiles from the microarray data and the observations made on cell 
morphology and physiology when the cells were cultured in vitro.  

 
IV. Identification of EAC biomarkers. By applying the Weka classification tool on the 

microarray data, we identified a two-gene signature of EAC (Gpx3 and Bgn). In 
addition, a TDT analysis on the genomic locations of 50 genes with the highest 
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differential expression revealed that only one gene, Tgfb3, was located in a 
susceptibility region. Thus, Tgfb3 become the third part of a three-gene EAC 
signature.  

 
V. Differentially expressed genes between tumors and normal/pre-malignant 

counterparts. Statistical inference analysis of the microarray data resulted in 354 
genes with differential expression between EACs and normal/pre-malignant samples. 
A gene functional annotation tool, DAVID, was used to find out the function of 50 
genes with the highest differential expression. With this analysis we were able to pin-
point 30 possible cancer-related genes among the 50 differentially expressed genes. 
The observation that several of these genes were involved in many cellular processes, 
typically aberrant in cancer, reflects the complexity of cancer etiology.      

 
VI. Verification of the microarray expression data analysis by RT-PCR. All genes 

that were identified as being differentially expressed from the microarray data analysis 
were confirmed by the traditional semi-quantitative RT-PCR, which in most cases 
rendered identical expressions compared to the microarray data. This confirms the 
accuracy of the data produced from the microarray experiments and the results from 
the statistical analyses applied.  

  
VII. Loss of expression of Gpx3 in EAC is correlated with epigenetic silencing. 

Evaluation of Gpx3 down-regulation in the rat EAC cell lines revealed an almost 
complete loss of expression in a majority of the endometrial tumors. From the 
methylation studies, we could conclude that the loss of expression of Gpx3 is 
correlated with biallelic hypermethylation in the Gpx3 promoter region. This result 
was confirmed with a demethylation study of EAC cell lines, where the Gpx3 mRNA 
expression was restored after treatment with a demethylation agent and a deacetylation 
inhibitor. We also showed that mRNA expression of the well-known oncogene, Met, 
was slightly higher in endometrial tumors with loss of Gpx3 expression. A likely 
consequence of loss of Gpx3 function is a higher amount of ROS in the cancer cell 
environment. Since it has been proposed that overproduction of ROS is required for 
the hypoxic activation of HIF-1, we suggest that loss of Gpx3 expression activates 
transcription of Met through induction of the transcription factor Hif-1. The loss of the 
protective properties of GPX3 most likely makes the endometrial cells more 
vulnerable to ROS damage and genome instability.     

 
VIII. GPX3 is down-regulated in early and late stages of human EAC. Since we wanted 

to extend the results obtained from the rat endometrial tumors to human material, 
expression analysis of GPX3 was performed in 30 endometrial human tumors using 
qPCR. The results showed a uniformly down-regulation of GPX3 in all tumors, except 
one, independent of tumor grade. We thus concluded that the down-regulation of 
GPX3 probably occurs at an early stage of EAC. These results suggest that there are 
important clinical implications of GPX3 expression in EAC, both as a biomarker for 
EAC and as a potential target for therapeutic interventions.  
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