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ABSTRACT 
Coronary artery disease is the leading cause of death in the western world 
today. Although induction of angiogenesis would appear to be an ideal 
therapeutic strategy, clinical trials of pro-angiogenic factors have proved 
disappointing. Angiogenesis is a complex process involving many signaling 
pathways and mediators, and further insights into the underlying cellular and 
molecular mechanisms are urgently needed. Here, we used two mouse models, 
systemic hypoxia and myocardial infarction (MI), to study the effects of 
hypoxia on angiogenesis in the myocardium, and the cellular and molecular 
mechanisms involved.  

Hypoxia-inducible factor-1α (HIF-1α) is an important transcriptional regulator 
of angiogenesis. Small ubiquitin-related modifier-1 (SUMO-1) has been shown 
to stabilize transcription factors and modulate their activity. In our mouse 
model of systemic hypoxia, we showed that SUMO-1 expression is enhanced 
by hypoxia in brain and heart. Furthermore, SUMO-1 co-localizes and directly 
interacts with HIF-1α under hypoxic conditions, indicating that hypoxia-
mediated increases in SUMO-1 expression could modulate HIF-1α function. 
We combined our mouse model of systemic hypoxia with a model of MI and 
showed that chronic hypoxia protects the heart from infarct injury and 
promotes angiogenesis. A proteomics analysis demonstrated that protein 
disulfide isomerase (PDI) is upregulated in the myocardial capillary endothelial 
cells of mice exposed to chronic hypoxia. Furthermore, PDI knockdown in 
endothelial cells in vitro increases apoptosis and inhibits migration and 
adhesion, indicating that PDI may play an integral role in angiogenesis.  
Endoglin is a co-receptor for transforming growth factor-β. In our mouse model 
of MI, we showed increases in endoglin expression in endothelial cells in the 
heart one week after surgery. Similarly, endoglin expression is increased in 
endothelial cells in vitro after exposure to hypoxia. Furthermore, we showed 
that hypoxia promotes activation of the endoglin/ALK-1/SMAD1/5 but not the 
endoglin/ALK-5/SMAD3 signaling pathway in endothelial cells. The induction 
of this pathway represents another potential mechanism for regulation of 
angiogenic responses in endothelial cells after MI. 
The results presented advance our understanding of the complex pathways 
involved in hypoxia-mediated angiogenesis in the heart. Our findings could 
play a role in identifying new strategies for the treatment of ischemic heart 
disease. 
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1. INTRODUCTION 

1.1. Clinical background 
It has been known for many years 
that the incidence of myocardial 
infarction (MI) is lower in people 
living at high altitudes. Hurtado first 
reported this clinical benefit from a 
study of individuals living 4000 m 
above sea level in Peru (1), and an 
epidemiological study from New 
Mexico showed that even moderate 
elevations (2100 m) could result in 
protection against death from 
ischemic heart disease (2). The 
protective effects of high-altitude 
hypoxia have been confirmed 
experimentally (3-5), and knowledge 
of the underlying cellular and 
molecular mechanisms could identify 
potential therapeutic targets for the 
treatment of cardiovascular disease.  

1.2. Myocardial hypoxia 
Myocardial hypoxia is a state of 
reduced oxygen supply to the heart. 
The most common causes are 
systemic hypoxia, characterized by a 
drop in O2 saturation in the arterial 
blood but adequate perfusion (6), and 
ischemic hypoxia, induced by the 
reduction or interruption of coronary 
blood flow.  
Systemic hypoxia can be physio-
logical, as observed in populations 
living at high altitudes (see Clinical 
background). It is also observed in 
mountaineers and in individuals 
suffering from chronic cor 
pulmonale, cyanotic heart disease and 
chronic obstructive lung disease.  
Ischemic hypoxia occurs in 
individuals suffering from ischemic 
heart disease and, acutely, MI. The 
effects are usually more severe than 

with systemic hypoxia as, in addition 
to the reduced O2 supply, there is also 
a substantial reduction in the 
clearance of metabolites. In contrast 
to systemic hypoxia, which affects 
the whole myocardium, the effects of 
ischemic hypoxia are limited to the 
area supplied by the affected 
coronary artery. 

1.3. Definition of 
angiogenesis 
Angiogenesis is the creation of new 
blood vessels, predominantly 
capillaries (7), from pre-existing 
blood vessels. The term was 
introduced in 1935 by Hertig to 
describe the formation of new blood 
vessels in the placenta, and Folkman 
later described angiogenesis as the 
neovascularization accompanying the 
growth of solid tumors (8). 
Angiogenesis can be both physio-
logical, as observed in fetal and 
childhood growth, formation of the 
corpus luteum and in wound healing 
and pathological, as induced by 
tumors, MI, stroke, chronic 
inflammation, psoriasis and diabetic 
retinopathy (9-12). 

1.4. Angiogenesis in 
systemic hypoxia  
There is considerable evidence to 
show that systemic hypoxia promotes 
angiogenesis in the brain (13, 14), 
retina (15) and lung (16). However, 
the effect of systemic hypoxia is not 
universal. For example, it does not 
result in new vessel formation in 
skeletal muscle (17). Furthermore, 
there are conflicting results regarding 
the development of myocardial 
capillaries in animals exposed to 
hypoxia. Canepa et al. (18) and Smith 
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and Clark (19) found a decrease in 
the capillary density in chronically 
hypoxic guinea pigs and rats. In 
contrast, Miller and Hale (20) and 
Zhong et al. (21) found increased 
capillary density in chronically 
hypoxic rats. Thus, it has not been 
fully elucidated whether and to what 
degree systemic hypoxia induces 
myocardial angiogenesis.  

1.5. Angiogenesis in the 
infarcted heart 
It is well-established that hypoxia-
induced angiogenesis is important to 
promote healing in the infarcted 
heart. New vessels begin to appear in 
the infarcted area three to four days 
after infarction (22-24), and the 
infarcted area is rich in capillaries 
one week post MI (25, 26). The 
newly formed vessels allow increased 
blood flow, thus increasing the 
amount of oxygen delivered to 
affected tissue to salvage ischemic 
heart tissue (27). After four to eight 
weeks, the new vessels undergo a 
maturation process leading to the 
formation of pericyte-coated vessels 
and regression of many capillaries 
(24, 25, 28).  
In addition, preexisting arteriolar 
connections can be recruited to 
bypass the site of occlusion following 
chronic or acute occlusion of a major 
artery (29, 30). This process is termed 
arteriogenesis and is achieved by the 
rapid proliferation of preexisting 
collateral arteries and by the 
maturation of capillaries into mature 
arterioles. These native collaterals, 
which are not used to enhance 
perfusion under normal conditions, 
can thereby dramatically increase the 
lumen to provide enhanced perfusion 

to the jeopardized ischemic regions.  

1.6. Process of angiogenesis 
Angiogenesis consists of an 
activation phase and a resolution 
phase (30) (Figure 1). Pro-angiogenic 
factors such as vascular endothelial 
growth factor (VEGF) are released in 
response to tissue injury or hypoxia 
and activate endothelial cells (31, 32). 
Endothelial cells loosen their contacts 
with their basement membrane and 
their supporting peri-endothelial cells 
(pericytes in small vessels and 
smooth muscle cells in large vessels), 
leading to increased vascular 
permeability and deposition of fibrin 
into the extravascular space, vessel 
wall disassembly and degradation of 
the basement membrane. The 
activated endothelial cells migrate on 
and into the fibrin scaffold and 
invade the underlying extracellular 
matrix towards the angiogenic 
stimulus and proliferate. 

Figure 1. Process of angiogenesis. 
(A) An angiogenic stimulus activates 
endothelial cells (EC), leading to (B) 
degradation of the extracellular 
matrix (ECM) and basement 
membrane (BM), and (C) 
proliferation, adhesion and migration 
of EC. (D) In the resolution phase, 
EC are released, and smooth muscle 
cells (SMC) and pericytes are 
recruited.  
Ultimately, they align to form the 
capillary lumen. Once a new vessel 
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has been formed, angiogenesis enters 
the resolution phase. Proliferation and 
migration of endothelial cells are 
inhibited and a new basement 
membrane is secreted. The junctional 
complexes between the endothelial 
cells as well as with the basement 
membrane mature and peri-
endothelial cells are recruited and 
differentiate. 

1.7. Regulation of 
angiogenesis 
Angiogenesis is mediated and 
regulated by a wide array of 
angiogenic inducers, including 
growth factors, chemokines, 
enzymes, endothelial cell-specific 
receptors, and adhesion molecules 
(30). Hypoxia is known to stimulate 
the release of various pro-angiogenic 
factors, including platelet-derived 
growth factor, fibroblast growth 
factor (FGF) 1 and 2 (33), and 
transforming growth factor-β (TGF-
β) (34). In addition, hypoxia 
upregulates the expression of VEGF 
and its receptors, partly through 
activation of hypoxia-inducible 
factor-1α (HIF-1α) (35).  
Here, we briefly introduce the 
hypoxia-induced pro-angiogenic 
molecules studied in this thesis, 
namely HIF-1α, small ubiquitin-
related modifier 1 (SUMO-1), protein 
disulfide isomerase (PDI) and the 
TGF-β receptor endoglin.  

1.7.1. HIF-1α  
HIF-1 is a heterodimeric transcription 
factor consisting of two subunits: 
HIF-1α and HIF-1β (36, 37). Both 
subunits belong to the basic helix-
loop-helix PER-ARNT-SIM family 
of transcription factors (38), which 

induce gene expression by binding to 
the hypoxia-responsive element 
(HRE) (39, 40). In the presence of 
O2, HIF-1α subunits are modified by 
ubiquitin and thereby directed to 
proteosomal degradation (41-44). By 
contrast, under hypoxic conditions, 
HIF-1α is stabilized, translocated to 
the nucleus, and complexed with 
HIF-1β to promote HRE-driven 
transcription of O2-regulated genes 
(45), including erythropoietin, 
glycolytic enzymes, inducible nitric 
oxide synthase, heme oxygenase-1 
and VEGF (34, 46). 

1.7.2. SUMO-1 
SUMO is a member of the ubiquitin-
like protein family (47-50). It is a 
relatively small protein of around 100 
amino acids. Although it shares only 
18% sequence identity with ubiquitin, 
it has substantial 3D structural 
similarity (51, 52). There are three 
confirmed isoforms: SUMO-1, 
SUMO-2 and SUMO-3.  
Post-transcriptional modification of 
proteins by SUMO (termed 
sumoylation) differs from 
ubiquitination as sumoylated proteins 
are not targeted for degradation. 
Instead, sumoylation appears to 
modulate protein properties such as 
subcellular localization, protein-
protein interactions, protein stability, 
and transcription activities (53-55). 
Studies have shown that SUMO-1 
interacts with various transcription 
factors and modulates their activity 
(56, 57). The β subunit of HIF-1 has 
been reported to be conjugated to 
SUMO and to influence its 
transcriptional activity (58). 
However, an association between 
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SUMO-1 and HIF-1α has not 
previously been reported. 

1.7.3. PDI  
PDI, the first characterized protein 
disulfide isomerase (59), is a member 
of the thioredoxin superfamily. It is a 
highly abundant endoplasmic 
reticulum (ER) luminal protein in 
mammalian cells, and constitutes 
about 0.8% of total cellular protein 
(60). To date, 17 putative protein 
disulfide isomerases have been 
identified in human (61). 
PDI plays a role in protein folding by 
catalyzing the formation of native 
disulfide bonds and disulfide bond 
rearrangement. In addition, PDI is 
essential for cell survival, and 
upregulation of PDI results in 
resistance to apoptosis after hypoxia 
in astrocytes (62) and ischemic brain 
and heart (62, 63).  
PDI has also been demonstrated on 
the surface of numerous cell types, 
including platelets, lymphocytes, 
hepatocytes, fibroblasts and 
endothelial cells (64-68), and hypoxia 
has been reported to increase PDI 
expression in endothelial cells (69). 
However, a role for PDI in 
angiogenesis has not yet been 
established.  

1.7.4. Endoglin 
TGF-β plays an important role in 
angiogenesis by binding to specific 
serine/threonine kinase receptors (70, 
71). The accessory TGF-β receptor 
endoglin is a homodimeric 
transmembrane glycoprotein (72). It 
is predominantly expressed by 
vascular endothelial cells where it 
regulates endothelial cell proliferation 
and migration, processes crucial for 

angiogenesis (73). Endoglin forms 
complexes with two different TGF-β 
type I receptors expressed by 
endothelial cells, activin receptor-like 
kinase-1 (ALK-1) and ALK-5, to 
promote angiognesis by regulating 
TGF-β/ALK signaling (74) (Figure 
2). ALK-1 activation induces 
phosphorylation of the transcription 
factor SMAD1/5 and has been 
proposed to stimulate endothelial cell 
proliferation and migration (75), 
whereas ALK-5 activation 
phosphorylates SMAD2/3, which has 
been shown to inhibit these processes 
(76). Recent reports indicate that 
hypoxia increases expression of 
endoglin in endothelial cells (77, 78), 
and in infarcted mouse hearts (79). 
However, the preferentially activated 
signaling pathway downstream of the 
hypoxia-induced increase in endoglin 
expression has not yet been studied. 

Figure 2. Endoglin (ENG) signaling 
is mediated through two separate 
pathways. 
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2. AIM OF STUDY 
The overall aim of this thesis was to study the effects of hypoxia on 
angiogenesis in the myocardium, and the cellular and molecular mechanisms 
involved. 

The specific aims of this thesis were: 

1. To investigate the regulation of SUMO-1 expression and the interaction 
between SUMO-1 and HIF-1α in mouse brain and heart in response to 
chronic systemic hypoxia (Paper I). 

2. To study the effect of hypoxia-induced angiogenesis on myocardial 
injury in the infarcted mouse heart and the role of PDI in hypoxic 
endothelial cells (Paper II). 

3. To identify which endoglin signaling pathway is activated in the 
infarcted mouse heart and hypoxic endothelial cells (Paper III). 
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3. METHODS AND 
METHODOLOGICAL 
CONSIDERATIONS 

3.1. In vivo studies 

3.1.1. Animals 
C57BL/6 mice aged 8-10 weeks 
(M&B, Ejby, Denmark) were used in 
all the experiments. Animal 
experiments were approved by the 
animal ethics committee in 
Gothenburg. 

3.1.2. Mouse model of systemic 
hypoxia  
Systemic hypoxia produces long-term 
effects that could influence the 
vascular structure and function, 
predominantly in the brain (80-82). 
Many experimental studies have been 
performed to evaluate the effects of 
hypoxia on the cardiovascular 
system, but predominantly 
investigated exposure to acute 
hypoxia (83, 84). Here we used a 
model of chronic systemic hypoxia to 
study the effects of long-term 
hypoxia on heart function.  
Chronic hypoxia has been 
investigated in dogs and rodents (4, 
85-87). Mice are more frequently 
used in experimental studies as they 

Figure 3. Mice in a hypoxic (10% 
O2) chamber. 

are cheap, easy to handle, and 
suitable for human comparisons.  
In this thesis, mice were placed in a 
specially designed hypoxic chamber 
(Figure 3) and exposed to a low 
oxygen level for four days (Paper I) 
or one or three weeks (Paper II). The 
oxygen concentration was 
continuously monitored with an 
oxygen sensor and precisely 
maintained at 10%. Control mice 
were kept in room air.  
Use of this chamber avoided even 
short periods of unwanted exposure 
to room air, e.g., during feeding and 
maintenance. This is an important 
consideration as it has been 
demonstrated that exposure of 
animals to room air for only an hour a 
day substantially reduces the 
myocardial effects of exposure to 
hypoxia for the remaining time (88). 
In addition, we chose to use 10% O2 
because a major focus of our study 
was to examine protein expression. 
Hypoxic stress is known to inhibit 
protein synthesis (89), but 10% O2 
has previously been shown not to 
inhibit protein synthesis (90-93). 

3.1.3. Mouse model of MI  
Preclinical models of myocardial 
ischemia have been reported in 
several large animal species, 
including pigs (94, 95), dogs (94, 96, 
97) and goats (98). The model that 
most closely resembles the response 
seen in humans is the pig ameroid 
model, which has been used in a 
variety of angiogenesis studies (95, 
99). However, the expense and 
practical demands of porcine surgical 
facilities severely limit the extent of 
such studies (99-101). 
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A rodent model of acute MI was first 
developed in the rat (102). The major 
advantage of the rat over the mouse 
for surgery is that it is ten times 
larger. However, the advent of 
sophisticated microdissecting 
microscopes and microsurgical 
instruments has made mouse MI 
surgery as feasible as in the rat (103). 
In the past decade, animal surgery in 
cardiovascular research has now 
largely shifted from the rat to the 
mouse, and C57BL/6 is the most 
common mouse strain used (104).  
Two models in mice have been 
developed by ligation of the left 
anterior descending coronary artery 
(LAD): the ischemia-reperfusion 
model (103) and the nonreperfused 
MI model (105, 106) The ischemia-
reperfusion model is widely used to 
investigate genes involved in 
reperfusion injury (107), and the 
nonreperfusion model has been 
mainly used to study the genes 
involved in wound healing processes 
(108). The nonreperfusion model has 
also often been applied to the study of 
angiogenesis (26, 109) as it is known 
that infarct healing is associated with 
an angiogenesis response leading to 
formation of neovessels in the 
infarcted territory. Therefore, this 
model has proved useful in studies of 
pathophysiologic interactions of 
growth factors in the angiogenic 
response to MI, and is thus the model 
that we have used in this thesis. 
In Papers II and III, MI was induced 
by permanent ligation of the left 
coronary artery (105). Mice were 
anesthetized with an intraperitoneal 
injection of pentobarbital (60 mg/kg) 
and ventilated with room air. A left 
thoracotomy was performed in the 

third intercostal space. A suture (7-0 
prolene) was tied around the main left 
coronary artery. The lung was re-
expanded, the thoracotomy and skin 
incision were closed, and the animal 
was allowed to recover at 30°C. Age-
matched control mice were subjected 
to the same surgery with the 
exception of coronary artery ligation 
(defined as sham surgery).  

3.1.4. Echocardiography  
Transthoracic color Doppler echo-
cardiography was performed on 
isoflurane-anesthetized mice in Paper 
II, as previously described (110). 
Ultrasound scanning was performed 
using a high-frequency 15-MHz 
linear transducer (Sonos 5500, 
Agilent, Andover, MA) that was 
connected to an ultrasound system 
(HDI 5000, ATL Ultrasound, Bothell, 
WA) with a maximum frame rate of 
230 frames/s. Ejection fraction was 
calculated using previously validated 
formulae (111). Coronary flow 
velocity was recorded in the first 
diagonal branch of the ligated LAD 
before and after infusion of adenosine 
(140 μg/kg/min i.v.). 

3.1.5. Tissue preparation  
Mice were killed with an overdose of 
pentobarbital at the end of 
experimental procedures. For 
immunohistochemistry and 
morphometry, tissues were fixed with 
a zinc fixative or 4% para-
formaldehyde (PFA). Fixed organs 
were paraffin embedded and 
sectioned to 5 μm thickness (Papers I 
and III). For confocal microscopy 
(Paper II), the tissues were fixed in 
4% PFA overnight, and sectioned to 
100 µm thickness by vibratome. For 
immunoblotting and proteomic 
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studies, the left ventricles were 
separated, weighed, rapidly frozen in 
liquid nitrogen and stored at -80°C 
until assayed 

3.1.6. Preparation of whole cell, 
cytosolic and nuclear protein 
extracts 
The preparation of whole cell protein 
lysates was performed as described 
(112). Cytosolic and nuclear extracts 
were obtained by following a 
previously described protocol (113) 
with minor modifications (see Paper 
I). Protein concentrations were 
determined by BCA protein assay. 

3.1.7. Immunoblotting and 
northern blotting  
Immunoblotting was performed as 
previously described (114) to 
measure protein expression of HIF-
1α, SUMO-1, PDI and Ang-1 in 
hypoxic hearts (Papers I and II) and 
endoglin, ALK-1, ALK-5, 
phosphorylated SMAD1/5 and 
phosphorylated SMAD3 in infarcted 
hearts (Paper III). Northern blotting 
was performed as described (115) to 
measure RNA expression of SUMO-
1 in hypoxic hearts (Paper I). 

3.1.8. Immunostaining 
Paraffin sections were processed as 
described (116) to determine cellular 
localization of HIF-1α and SUMO-1 
(Paper I), PDI (Paper II), endoglin, 
ALK-1 and phosphorylated 
SMAD1/5 (Paper III). To visualize 
capillary structures, immuno-
fluorescence was used as described in 
Paper II.  

3.1.9. Co-immunoprecipitation 
Co-immunoprecipitation between 
HIF-1α and SUMO-1 in hypoxic 
hearts (Paper I) was investigated 
according to a previously described 
procedure (114). 

3.1.10. Quantification of MI  
Measurements of infarcted left 
ventricular areas in Paper II were 
carried out by light microscopy 
coupled with a computerized imaging 
system (Axiovision 3.0, Carl Zeiss, 
Jena, Germany). Three tissue sections 
(5 μm thick) were taken from the 
apex to the base of the left ventricle 
and stained with Masson’s trichrome 
(117), staining viable areas red and 
necrotic tissues green.  
As infarcts shrink over time, the 
infarcted wall will just be a thin layer 
of scar tissue after three weeks of 
ligation (106). To take into account 
the thinning of the infarcted 
myocardium, we applied the most 
widely used method for measuring 
infarcted size. Thus, we measured the 
epicardial and endocardial 
circumference of the infarction for 
each section, and divided this value 
by the total epicardial and 
endocardial circumference (117-120). 
Infarction size was then expressed as 
the percentage of total left ventricular 
circumference.  

3.1.11. Analysis of capillary and 
arteriolar density  
Capillaries were stained using platelet 
endothelial cell adhesion molecule 1 
(PECAM-1) and arterioles were 
stained with smooth muscle α-actin 
(Paper II). Capillaries (approximately 
<10 μm diameter) were counted in 
five random computer captured 
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frames from left ventricular cross-
sections. All arterioles (approximately 
<50 μm/diameter and ≤1 layer of 
smooth muscle cells) were counted in 
left ventricular cross-sections (26, 32, 
121). 

3.1.12. Proteomics analysis  
Proteomic analysis in hypoxic hearts 
(Paper II) was performed as 
previously described (122). 

3.2. In vitro studies 

3.2.1. Cells  
Human umbilical vascular endothelial 
cells (HUVEC) were cultured in 
EGM-2 medium (Paper II) and 
human aortic endothelial cells 
(HAEC) were cultured in Medium 
200 (Paper III). Cells between 
passages three and six were incubated 
in either 21% O2 (normoxia) or 1% 
O2 (hypoxia). We used 1% O2 as 
apoptosis does not occur with O2 
levels above 0.5% (123). Cells were 
washed twice with cold PBS before 
lysis in RIPA buffer supplemented 
with protease inhibitor. Cell debris 
was removed by centrifugation at 
12,000 rpm for 20 min. Cells were 
exposed to normoxia or hypoxia for 
24 h unless otherwise stated.  

3.2.2. Immunoblotting 
To measure the effect of hypoxia on 
expression of PDI in HUVEC (Paper 
II) and endoglin and ALK-1 in 
HAEC (Paper III), immunoblotting 
was performed as previously 
described (114). 

3.2.3. Quantification of 
apoptosis, migration and 
adhesion  
To determine the effect of PDI 
silencing on apoptosis, HUVEC were 
transfected with either negative 
control siRNA or PDI siRNA and 
incubated at normoxia or hypoxia for 
48 h. Apoptosis was quantified 
according to the manufacturer's 
protocols (Paper II).  
To determine the effect of PDI 
silencing on migration, HUVEC were 
transfected with either negative 
control siRNA or PDI siRNA, seeded 
in a transwell Boyden chamber and 
incubated at normoxia or hypoxia for 
4 h. Cells that migrated to the lower 
face of the transwell membrane were 
stained and counted (Paper II). 
To determine the effect of PDI 
silencing on adhesion, HUVEC were 
transfected with either negative 
control siRNA or PDI siRNA, seeded 
in 96-well plates (Chemicon) coated 
with collagen I, collagen II, collagen 
IV, fibronectin, laminin, tenascin, or 
vitronectin and incubated at normoxia 
or hypoxia for 90 min. Adhesion was 
quantified according to the 
manufacturer's protocols (Chemicon 
ECM cell adhesion kit) (Paper II).  

3.2.4. Luciferase assay  
To measure the effect of hypoxia on 
the activity of the BMP-responsive 
element (BRE) and the SMAD3-
responsive element CAGA in HAEC 
(Paper III), cells were co-transfected 
with plasmid vectors encoding the 
luciferase reporter gene under the 
control of BRE, CAGA, 
constitutively active ALK-1 and 
dominant negative ALK-1. 
Transfection of HAEC was carried 
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out using electroporation by 
nucleofector. Luciferase activity was 
determined using a luminometer.  
3.2.5. Real-time quantitative 
PCR  
To measure the effect of 
overexpression of endoglin and ALK-
1 on expression of bcl-X and Id1 
mRNA in hypoxic HAEC (Paper III), 
real-time quantitative PCR was 
performed according to a standard 
procedure. The following primers 
were used: human bcl-X, 5’-
ACATCCCAGCTCCACATCAC-3’ 
and 5’-TGCTGCATTGTTCCCAT-
AGA-3’; human Id1, 5’-
CTCCAGCACGTCATCGACTA-3’ 
and 5’-CGCTTCAGCGACACAA-
GAT-3’. A TaqMan assay for human 
18S rRNA (Applied Biosystems) was 
used to control quantifications. Each 
reaction was performed in triplicates 
and the standard curve method was 
used for relative quantification of 
gene expression. 

3.2.6. Proliferation assay  
To measure the effect of 
overexpression of endoglin and ALK-
1 on the proliferation of HAEC (Paper 
III), cells were transfected with 
plasmid vectors encoding endoglin 
and/or ALK-1QD or ALK-1KR. Cells 
were counted using a cell counter 
(Beckman Coulter, Miami, FL). 

3.3. Statistical analysis 
Results are expressed as mean 
± standard error of the mean (SEM). 
Differences between the groups were 
tested for statistical significance by 
one-way or two-way analysis of 
variance (ANOVA). A P value of < 
0.05 was considered statistically 
significant.  

4. SUMMARY OF 
RESULTS 

4.1. Paper I  
The aim of this study was to 
investigate the regulation of SUMO-1 
expression and the interaction 
between SUMO-1 and HIF-1α in 
mouse brain and heart in response to 
chronic systemic hypoxia.  

4.1.1. Hypoxia increases 
expression of SUMO-1 and HIF-
1α in mouse brain and heart 
To allow the effects of systemic 
hypoxia to be investigated, mice were 
placed in a hypoxic chamber for four 
days. Immunoblotting and northern 
blotting showed that expression of 
both SUMO-1 protein and mRNA 
was significantly increased in the 
brain and heart from both female and 
male mice after hypoxic exposure 
compared with normoxic controls. 
Immunohistochemical staining 
revealed that the number of SUMO-
1-positive cells was also significantly 
increased in brain and heart after 
hypoxic exposure. Immunoblotting 
analysis of nuclear and cytosolic 
extracts from brain and heart tissues 
showed that HIF-1α expression was 
present in the nuclear fraction from 
mice exposed to systemic hypoxia but 
not in extracts from normoxic 
controls. 

4.1.2. SUMO-1 and HIF-1α co-
localize and interact in hypoxic 
mouse brain and heart 
SUMO-1 has previously been shown 
to interact with various transcription 
factors, including HIF-1β. Because 
the expression patterns for SUMO-1 
and HIF-1α were similar in brain and 
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heart under hypoxic conditions, we 
investigated if these two molecules 
are co-expressed and if they interact. 
Double-labeled immunofluorescence 
analysis showed that both SUMO-1 
and HIF-1α localized in the nucleus 
in neurons and cardiomyocytes in 
tissue sections from mice exposed to 
hypoxia, indicating that SUMO-1 and 
HIF-1α are co-expressed in the nuclei 
at hypoxia. Co-immunoprecipitation 
studies with anti-HIF-1α and anti-
SUMO-1 antibodies showed that 
SUMO-1 conjugated with HIF-1α in 
brain and heart tissue from mice 
exposed to hypoxia.  

4.1.3. Conclusion 
We thus propose that the increased 
levels of SUMO-1 in mouse brain 
and heart observed after exposure to 
chronic systemic hypoxia could 
participate in the modulation of HIF-
1α function. Following the 
publication of Paper I, it has been 
reported that HIF-1α is sumoylated 
by SUMO-1 in hypoxia conditions, 
leading to an increase in HIF-1α 
stability and transcriptional activity 
(124). These studies thus strengthen 
our proposal that hypoxia-mediated 
increases in SUMO-1 in mouse brain 
and heart could participate in the 
modulation of HIF-1α function. 

4.2. Paper II 
The aim of this study was to 
investigate the effect of hypoxia-
induced angiogenesis on myocardial 
injury in the infarcted mouse heart 
and the role of PDI in hypoxic 
endothelial cells. 

4.2.1. Chronic hypoxia 
improves survival and 
myocardial function in a MI 
mouse model 
To investigate how previous exposure 
to chronic systemic hypoxia affects 
myocardial function after MI, mice 
were placed in a hypoxic chamber for 
one or three weeks before permanent 
ligation of the left coronary artery to 
induce MI. We observed that 
exposure of mice to chronic hypoxia 
for three weeks before MI resulted in 
improved survival and myocardial 
function and reduced infarction size 
three weeks after MI.  
To further investigate this protection, 
we quantified the capillaries and 
arterioles by immunohistochemisty. 
Exposure of mice to chronic hypoxia 
for three weeks resulted in increased 
capillary density in the myocardium 
both before MI and three weeks after 
surgery. The arteriolar density was 
also higher in mice exposed to 
hypoxia three weeks after MI.  

4.2.2. Hypoxia increases 
expression of PDI  
To investigate the molecular 
mechanisms involved in this hypoxia-
mediated angiogenesis, we performed 
proteomic studies to identify proteins 
that were regulated by chronic 
hypoxia in the myocardium. PDI was 
among one of the most upregulated 
proteins. Immunoblotting analysis 
confirmed increased expression of 
PDI in the myocardium of mice 
exposed to chronic hypoxia for three 
weeks. Staining of serial cross-
sections indicated that capillary 
endothelial cells were the main 
cellular origin of PDI.  
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4.2.3. PDI knockdown increases 
apoptosis and inhibits 
migration and adhesion of 
endothelial cells 
To study the functional consequences 
of PDI upregulation, we next 
investigated the role of PDI in 
HUVEC. Immunoblotting analysis 
showed increased PDI expression in 
HUVEC exposed to hypoxia for 24 h 
compared with normoxic controls. 
Transfection of HUVEC with PDI 
siRNA resulted in increased 
apoptosis and reduced migration and 
adhesion of HUVEC to all tested 
ligands in both normoxia and 
hypoxia. The PDI inhibitor bacitracin 
also inhibited the migration of 
HUVEC in normoxia and hypoxia. 

4.2.4. Conclusion 
The mouse model used in this study 
allows us to study the impact of 
chronic hypoxia on the infarcted heart 
and to reveal the underlying 
molecular mechanisms. Our results 
demonstrate that chronic hypoxia 
protects the heart from MI by 
promoting angiogenesis. 
Furthermore, we propose that 
hypoxia-induced upregulation of PDI 
in endothelial cells may play a role in 
this protection. 

4.3. Paper III  
The aim of this study was to identify 
which endoglin signaling pathway is 
activated by hypoxia in the infarcted 
mouse heart and hypoxic endothelial 
cells.  

4.3.1. Hypoxia increases 
expression of endoglin, ALK-1 
and SMAD1/5 in vivo and in 
vitro 
To investigate the effect of hypoxia 
on endoglin expression in vivo, we 
induced MI in mice by permanent 
ligation of the left coronary artery, 
and killed the mice one or three 
weeks after surgery. Immuno-
histochemical analysis of left 
ventricle sections showed strong 
endoglin staining in peri-infarct areas 
and in the infarct core one week after 
MI. Co-localization studies indicated 
that endoglin was expressed in 
vascular endothelial cells. Immuno-
blotting analysis showed increased 
endoglin expression in left ventricle 
tissues from mice one week after MI 
compared with tissues from mice that 
were exposed to sham surgery.  
We also used HAEC to investigate 
the effect of hypoxia on endoglin 
expression in vitro. Immunoblotting 
analysis showed increased endoglin 
expression in HAEC exposed to 
hypoxia for 24 h compared with 
normoxic controls. 
We then investigated the effect of 
hypoxia on proteins downstream of 
endoglin both in vivo and in vitro to 
determine which endoglin signaling 
pathway (ALK-1/SMAD1/5 or ALK-
5/SMAD3) is activated by hypoxia. 
Vascular endothelial cells from the 
infarcted myocardium expressed both 
ALK-1 and phosphorylated 
SMAD1/5. Immunoblotting analysis 
showed increased expression of both 
ALK-1 and phosphorylated 
SMAD1/5 in left ventricle 
myocardium one week after MI 
compared with tissues from mice that 
were exposed to sham surgery.  
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We also showed increased expression 
of ALK-1 in HAEC exposed to 
hypoxia for 24 h compared with 
normoxic controls. In contrast, we did 
not observe significantly increased 
expression of ALK-5 or 
phosphorylated SMAD3 in sections 
from the infarcted hearts. 

4.3.2. Overexpression of 
endoglin and ALK-1 activates 
downstream genes and 
promotes endothelial cell 
proliferation 
The SMAD1/5 complex modulates 
transcription by binding to specific 
BRE sequences, whereas SMAD3 
binds to CAGA sequence motifs on 
the promoters of target genes. To 
further investigate the endoglin 
signaling pathway activated by 
hypoxia, we transfected HAEC with 
plasmid vectors encoding BRE or 
CAGA. Hypoxia increased BRE 
activity but did not affect CAGA 
activity. In addition, overexpression 
of endoglin and ALK-1 increased 
BRE but not CAGA activity.  
Our bioinformatics analysis identified 
two genes (Id1 and bcl-X) that 
contain BRE elements and are 
regulated by ALK-1/SMAD1/5 but 
not ALK-5/SMAD3 signaling. Real-
time quantitative PCR showed that 
overexpression of both endoglin and 
ALK-1 increased mRNA expression 
of Id1 and bcl-X mRNA in HAEC 
exposed to hypoxia for 24 h.  
Overexpression of endoglin and 
ALK-1 consequently significantly 
increased the number of HAEC at 
both normoxia and hypoxia, but 
greater increases were seen at 
hypoxia.  

4.3.3. Conclusion 
Our results indicate that hypoxia 
promotes endothelial cell 
proliferation in vivo and in vitro by 
activating the endoglin/ALK-
1/SMAD1/5 but not the 
endoglin/ALK-5/SMAD3 signaling 
pathway. 
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5. DISCUSSION 

5.1. Why do we need further 
treatments for patients with 
MI? 
Despite significant advances in 
myocardial revascularization 
techniques, coronary artery disease 
and MI are still the leading causes of 
death in the western world. The 
currently available pharmaceutical 
therapy is often not effective and a 
large number of patients are not 
suitable candidates for coronary 
revascularization procedures. Thus, it 
is imperative that we develop novel 
treatments for myocardial ischemia.  

5.2. Why do we need to 
identify new pathways 
involved in angiogenesis? 
One approach to treat myocardial 
ischemia is to enhance blood flow 
locally to the area of ischemic insult 
by promoting angiogenesis. Basic 
research on the fundamental 
physiological mechanisms of blood 
vessel development and formation 
has led to the discovery of multiple 
angiogenic growth factors and 
inhibitors (11, 125, 126). To date, 
several anti-angiogenic therapies are 
available for clinical use in the 
treatment of cancer (127, 128), and in 
clinical trials to treat age-related 
macular degeneration (129). 
However, although pro-angiogenic 
therapies (e.g., VEGF and FGF-2) 
showed initial promise in animal 
models and in small uncontrolled 
pilot studies in patients with ischemic 
heart disease and peripheral arterial 
occlusive disease (130, 131), clinical 
efficacy has not been unequivocally 
reported (132). 

There are a number of potential 
explanations for the disappointing 
results obtained in clinical trials, 
including poor study design, 
inadequate mode of drug delivery and 
lack of cell-specific targeting. In 
addition, studies in animals and 
humans have shown that delivery of a 
single angiogenic agent is not 
sufficient to promote functional and 
stable angiogenesis, and 
overexpression of some growth 
factors can cause serious 
complications (133-136). In mice, for 
example, forced VEGF expression in 
myocardium has been shown to cause 
heart edema and formation of 
hemangioma, which may contribute 
to heart failure and even death (136). 
These vascular complications are 
caused mainly by the instability and 
leakiness of the newly formed 
vascular networks. As the 
establishment of stable and functional 
blood vessel networks is a complex 
process that requires several 
angiogenic factors to stimulate vessel 
sprouting and remodeling of the 
primitive vascular network (134), it is 
likely that a combination of 
angiogenic growth factors is required 
to enhance the angiogenic efficacy 
(137, 138).  
Many unanswered questions thus still 
remain, such as which angiogenic 
factor or combination of factors 
should be administered and how 
should they be administered. Further 
clarification of the cellular and 
molecular mechanisms underlying 
angiogenesis could therefore lead to a 
more rational design of therapeutic 
angiogenic strategies. 
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5.3. Why did we investigate 
hypoxia-induced 
angiogenesis? 
It is well established that hypoxia 
regulates a variety of genes that affect 
a myriad of cellular processes, 
including metabolism, cell survival, 
oxygen delivery and angiogenesis 
(139). Chronic hypoxia has been 
known for many years to protect 
against death from ischemic heart 
disease, but the mechanisms involved 
are poorly understood. During MI, 
hypoxia activates multiple signaling 
pathways in an attempt to minimize 
cellular injury and maintain cardiac 
output, and the promotion of 
angiogenesis may play a key role in 
this protection. The link between 
hypoxia and the regulation of 
angiogenesis is an area of intense 
research, and it is essential that we 
further elucidate the underlying 
cellular and molecular mechanisms to 
identify key targets that could be 
ultimately exploited for the treatment 
of ischemic heart disease.  
In this thesis, we investigated the 
effects of hypoxia on cardiac 
angiogenesis using two mouse 
models: a model of systemic hypoxia 
and a model of MI. In our model of 
systemic hypoxia, pretreatment with 
hypoxia for three weeks before MI 
resulted in increased coronary blood 
flow and capillary and arteriolar 
density. In addition, in our model of 
MI, we observed infiltration of 
capillaries and small arterioles into 
the core of the infarcted ventricles 
one week after MI. Thus, both 
models are suitable to investigate the 
cellular and molecular pathways 
involved in hypoxia-induced 
angiogenesis.  

5.4. What are the novel 
findings described in my 
thesis? 

5.4.1. Chronic hypoxia induces 
increases in SUMO-1, which 
may stabilize HIF-1α to promote 
angiogenesis  
We showed that SUMO-1 levels in 
mouse brain and heart increase after 
exposure to chronic hypoxia, and that 
SUMO-1 interacts with HIF-1α in 
response to hypoxia. Thus, we 
propose that hypoxia-mediated 
increases in SUMO-1 expression 
could participate in the modulation of 
HIF-1α function. 

It is well established that HIF-1α 
regulates transcriptional activity of 
many genes involved in a number of 
cellular processes, including 
angiogenesis, cell survival and 
metabolism. A number of studies 
support a potential protective role of 
HIF-1α in cardiac ischemia. For 
example, HIF-1α overexpression in 
the mouse heart reduces infarct size 
and improves cardiac function after 
MI (140). Stabilization of HIF-1α 
with PR39, a macrophage-derived 
peptide, has been shown to increase 
peri-infarct vascularization in MI 
mice (26). Dimethyloxalylglycine, 
which also stabilizes HIF-1α, 
increases VEGF production and 
capillary density in a mouse model of 
hindlimb ischemia (141). HIF-1α is 
sumolyated by SUMO-1 in hypoxia, 
which results in increased HIF-1α 
stability and transcriptional activity 
(124). It is, therefore, possible that 
the hypoxia-mediated increases in 
SUMO-1 observed in mouse heart 
could promote angiogenesis by 
stabilizing HIF-1α activity.  
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5.4.2. Chronic hypoxia protects 
the heart from MI by promoting 
angiogenesis: role for PDI? 
We showed that exposure to chronic 
hypoxia for three weeks before MI 
improves myocardial function and 
coronary blood flow, prolongs 
survival, reduces infarction size and 
increases capillary and arteriolar 
density in the myocardium in mice. 
We also demonstrated increased 
expression of PDI in vascular 
endothelium after chronic hypoxia. 
Inhibition of PDI in endothelial cells 
in vitro resulted in increased 
apoptosis and reduced cell migration 
and adhesion, indicating that PDI 
may play an integral role in 
angiogenesis. 
How could PDI promote 
angiogenesis? PDI has been shown to 
co-localize and interact with the 
endothelial adhesion molecule (142) 
αvβ3 integrin at the surface of 
activated endothelial cells (143). PDI 
may thus promote cell migration and 
adhesion, key stages in the 
angiogenic process, by inducing 
conformational changes in αvβ3 
integrin (143). 

5.4.3. Hypoxia promotes 
endothelial cell proliferation by 
activating the endoglin/ALK-
1/SMAD1/5 but not the 
endoglin/ALK-5/SMAD3 
signaling pathway 
We showed that hypoxia promotes 
endothelial cell proliferation by 
activating the endoglin/ALK-
1/SMAD1/5 but not the 
endoglin/ALK-5/SMAD3 signaling 
pathway in vitro.  

Although it is well known that TGF-β 
is a pro-angiogenic factor (34), an 

aspect that has puzzled researchers 
for years is the bifunctional effect of 
TGF-β on endothelial cells (73). 
Whereas TGF-β-mediated activation 
of the ALK-1/SMAD1/5 pathway 
stimulates the proliferation and 
migration of endothelial cells, TGF-
β-mediated activation of the ALK-
5/SMAD2/3 pathway inhibits these 
processes (70, 75, 144). Thus, it 
seems that expression of genes 
downstream of TGF-β may be 
modulated in endothelial cells 
differently under certain 
circumstances. 
We thus propose that hypoxia 
preferentially activates the ALK-
1/SMAD1/5 pathway by increasing 
endoglin expression in the endothelial 
cells. Thus, the induction of this 
signaling pathway represents a 
potential mechanism for regulation of 
angiogenic responses in myocardial 
remodeling after MI.  
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Figure 4. SUMO-1 stabilizes HIF-1α, 
which stimulates endothelial cell 
proliferation by activating pro-
angiogenic genes. PDI promotes 
endothelial cell adhesion, migration 
and survival. Endoglin promotes 
endothelial cell proliferation through 
the ALK-1/SMAD1/5 signaling 
pathway. 
 

5.5. Concluding remarks 
Promotion of angiogenesis is a 
promising therapeutic strategy for the 
treatment of ischemic cardiac disease, 
but further clarification of the cellular 
and molecular mechanisms involved 
is required to determine the optimum 
therapeutic approach. In this thesis, 
we have made advances in 
understanding the complex network 
of molecules and signaling pathways 
that link the action of hypoxia to the 
protective response of angiogenesis 
(Figure 4). Further research is, of 
course, required to translate the 
significance of these findings from 
the mouse into humans. However, 
basic research in this field is an 
essential step to identify key proteins 
and signaling pathways that can be 
targeted in the future to counteract 
the devastating consequences of 
ischemic heart disease. 
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