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The White Rabbit put on his spectacles. ‘Where shall I begin, please your Majesty?’ he asked. 
‘Begin at the beginning,’ the King said, very gravely, ‘and go on till you come to the end: then stop.’ 

Lewis Carrol

To  S chr umfe n



abst r act

hiv/aids and malaria are two major global infectious diseases. Although better drugs 
against these conditions are becoming more available, dosages may not always be opti-
mal with respect to effectiveness, safety, cost or convenience of administration. This thesis 
aims to quantitate the pharmacological relationship between dosing history, sources of 
variation between individuals, drug exposure and response to selected antiretroviral and 
antimalarial regimens. 

Pharmacometric, i.e. pharmaco-statistical, models were fitted to observed data from five 
clinical studies, using the nonmem software. Several polymorphic genes coding for drug 
metabolizing enzymes and transporters were found to have impact on the disposition of 
the non-nucleoside reverse transcriptase inhibitor efavirenz in healthy Ugandan subjects 
after single dose administration. Moreover, using simulation it was demonstrated that a 
200 mg dose reduction in Zimbabwean hiv-patients with genetically decreased metabolic 
capacity would maintain efavirenz exposure within the therapeutic range during repeat-
ed administration. In a typical clinical trial large amounts of drug response data are col-
lected. However, usually only limited amounts of the recorded data are actually used for 
investigating differences between regimens. Herein, a drug-disease model was developed 
to describe the time-course of repeatedly measured hiv-rna levels in Scandinavian pa-
tients randomized to one of three commonly prescribed antiretroviral regimens. The ini-
tial analysis showed that an efavirenz-containing regimen appeared to be more efficacious 
compared to two protease inhibitor-containing regimens. Antimalarial artemisinin-based 
combination therapy bears many resemblances to antiretroviral treatment. The drugs ex-
hibit variable and complex pharmacokinetics and the diseases themselves bring reasonable 
possibilities for pharmacodynamic assessment. Auto-induction of drug metabolism was 
described after multiple dosing with artemisinin in Vietnamese patients. The frequency of 
recrudescent malaria infection was as high as 37% but could not directly be linked to low 
artemisinin exposure. The elimination half-life of piperaquine, a suitable partner drug for 
artemisinin-based combination treatment, was estimated to 12 days with large between-
subject variability.

The thesis demonstrates the utility of pharmacometric methodology in the analysis of 
clinical data originating from high-income countries as well as resource-limited settings. 
Ultimately it can be a tool for decision analysis and policy making.

Keywords :  hiv, malaria, pharmacokinetics, pharmacodynamics,  
pharmacometrics, nonmem
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swedish summary – populärvetenskaplig sammanfattning

hiv och malaria är två infektionssjukdomar som orsakar stort individuellt lidande med 
påtagliga ekonomiska konsekvenser runt om i världen. Den här avhandlingen syftar till 
att med hjälp av farmakokinetiska och farmakodynamiska modeller beskriva det farma-
kologiska sambandet mellan dosering, variabilitet mellan individer (pga. vikt, kön, njur-
funktion, gener, sjukdom etc.), läkemedelsexponering och effekt av behandling mot dessa 
tillstånd.

Med farmakokinetik avses vetenskapen om hur läkemedel omsätts (absorberas, fördelas, 
bryts ner samt utsöndras) i kroppen. Farmakodynamik är det forskningsområde inom vilket 
sambandet mellan exponering av ett läkemedel och dess farmakologiska effekt/biverkan 
studeras. Tiden till effektens inträdande, dess grad och duration är direkt eller indirekt relaterad 
till läkemedelshalten i blodet. Genom att anpassa matematiska och statistiska modeller till 
experimentellt observerade data kan interaktionen mellan läkemedelskoncentration, effekt 
och sjukdomsförlopp beskrivas kvantitativt. Sådana, så kallade farmakometriska modeller, 
kan användas för att optimera nuvarande läkemedelsterapier eller för att avgöra lämpliga 
doseringsrekommendationer för nya behandlingar. 

Betydelsen av genetiska skillnader mellan individer för omsättningen av hiv-läkemedlet 
efavirenz undersöktes i friska försökspersoner från Uganda. Vidare studerades patienter 
från Zimbabwe för att avgöra om personer med sämre förmåga att omsätta efavirenz bör 
administreras en lägre dos för att, med bibehållet behandlingsresultat, minska risken för 
biverkan. Sambandet mellan antiretroviral läkemedelsterapi och virusnivåer beskrevs 
efter upprepade mätningar i skandinaviska hiv-patienter som inte tidigare stått under be-
handling. Därutöver har de farmakokinetiska och farmakodynamiska egenskaperna för de 
två malarialäkemedlen piperakin och artemisinin beskrivits i två asiatiska populationer.

Både kön och genetik visade sig påverka farmakokinetiken av efavirenz. En dossänkning från 
600 till 400 mg dagligen föreslogs vara möjlig i patienter med dålig kapacitet att bryta ner 
efavirenz. En kombinationsbehandling innehållande efavirenz visade sig vara effektivare än 
två andra vanligt förekommande behandlingar. Artemisinin gav som väntat inte tillräckligt 
god effekt när det gavs som monoterapi till vietnamesiska vuxna och barn. Piperakin skulle 
kunna vara en lämplig partner till artemisinin i kombinationsbehandling mot malaria, men 
dess långa terminala halveringstid bör tas i beaktande då resistenta parasiter kan uppstå vid 
otillräckliga läkemedelsnivåer.

Sammanfattningsvis beskriver detta arbete hur farmakometriska modeller är användbara 
verktyg för att sammanfatta och utvärdera läkemedelsdata som inhämtats såväl i 
Skandinavien som i världens fattigare länder. Företrädesvis bör denna metodik öka 
för att på ett kostnadseffektivt tillvägagångssätt erhålla verkningsfullare och säkrare 
behandlingsalternativ.

Farmakokinetisk och farmakodynamisk populationsmodellering  
av läkemedel för behandling av hiv och malaria
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List of Abbreviations

ACT	 artemisinin-based combination therapy
AIDS	 acquired immunodeficiency syndrome
ALT	 alanine aminotransferase
AUC	 area under the concentration-time curve
AUCdose1	 AUC after the first dose
AUC0-∞	 AUC from time zero to infinity
C	 drug concentration
CDC	 Centers for Disease Control and Prevention
CD4	 helper T lymphocyte 
CI	 confidence interval
CL	 clearance
CLint	 intrinsic clearance 
CV	 coefficient of variation
CYP	 cytochrome P450
D	 duration of zero-order absorption
DNA	 deoxyribonucleic acid
E	 drug response
EC50	 concentration required to achieve 50% of maximal drug response
EH	 first-pass extraction
EM	 extensive metabolizer
EMAX	 maximal drug response 
F	 bioavailability 
FH	 bioavailability across the liver 
FDA	 (US) Food and Drug Administration
FO	 first-order estimation
FOCE	 first-order conditional estimation
fu	 fraction unbound drug in plasma
HAART	 highly active antiretroviral treatment
HIV	 human immunodeficiency virus
HPLC	 high performance liquid chromatography
IC50	 concentration required to achieve 50% of maximal inhibition
ICH-GCP	 International Conference on Harmonisation – Good Clinical Practise
IIV	 interindividual variability
IM	 intermediate metabolizer
IOV	 interoccasional variability
IP	 initial parasitemia
IPRED	 individual prediction
ka	 first-order absorption rate constant
kin	 zero-order production rate constant



kout	 first-order removal rate constant
LLOQ	 lower limit of quantification
MDR	 multi drug resistance
MIT	 mean induction time
NIMPE	 National Institute of Malariology, Parasitology and Entomology
NNRTI	 non-nucleoside reverse transcriptase inhibitor
NRTI	 nucleoside reverse transcriptase inhibitor
Obs	 observed value
OFV	 objective function value
P	 typical parameter estimate
Pi	 individual parameter estimate
PCR	 polymerase chain reaction
PCT	 parasite clearance time
PD	 pharmacodynamics
PI	 protease inhibitor
Pgp	 p-glycoprotein
PK	 pharmacokinetics
PM	 poor metabolizer
PRED	 population prediction
Q	 inter-compartmental clearance
QH	 hepatic blood-flow
R	 viral reproduction ratio
RFLP	 restriction fragment length polymorphism
RNA	 ribonucleic acid
RSE	 relative standard error
SCRIHS	 Secretariat Committee for Research Involving Human Subjects
SD	 standard deviation
SNP	 single nucleotide polymorphism
TB	 tuberculosis
V	 volume of distribution
Vc	 central volume of distribution
Vp	 peripheral volume of distribution
VPC	 visual predictive check
Vss	 volume of distribution at steady-state
WHO	 World Health Organization
WMA	 World Medical Association
γ	 efficacy parameter for PIs
ε	 difference between observation and individual prediction (Papers I-II, IV-V)
ε	 efficacy parameter for NRTIs and NNRTIs (Paper III)
η	 difference between typical and individual parameter estimate
θ	 typical parameter value
σ2	 estimable variance of ε
ω2	 estimable variance of η
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1	 Introduction

1.1	 Background

This thesis encompasses clinical pharmacokinetic (PK) and pharmacodynamic (PD) stud-
ies of drug regimens for the treatment of hiv/aids and malaria. Pharmacokinetics and 
pharmacodynamics are two connected disciplines of pharmacology dealing with the ab-
sorption, metabolism, distribution and elimination of drugs and the relationship between 
drug exposure and pharmacological response (therapeutic and adverse). The time-course 
of drug action is governed by the relationship between the drug’s pharmacokinetic and 
pharmacodynamic properties. Consequently, the onset, magnitude and duration of phar-
macological response are directly or indirectly related to the drug concentration in the 
body [1, 2]. Pharmacometrics refers to the development and application of fitting math-
ematical and statistical models to experimental pharmacokinetic, pharmacodynamic and 
therapeutic outcome data for descriptive, clarifying, hypothesis generating and predictive 
purposes [3]. Recently a broader definition of pharmacometrics as a process facilitating 
translation of complex biological processes to describe interactions between xenobiotics 
and patients in a quantitative manner was proposed [4]. A pharmacometric model can 
be used to quantitatively summarize knowledge about the disease, the pharmacological 
properties of a drug or to provide information for optimized sub-population dosage rec-
ommendations. 

hiv/aids and malaria are two major global infectious diseases. Although better drugs 
against these conditions are becoming more available, dosages may not always be optimal 
with respect to effectiveness, safety, administration convenience or cost. Crucial is that the 
treatment is effective for delaying resistance development [5, 6]. It is given that the phar-
macokinetic and pharmacodynamic properties of antiretroviral and antimalarial agents 
must be further investigated in order to optimize affordable, effective and safe regimens 
in the treatment of hiv and malaria. Within this work, principles of pharmacometric 
methodology were applied to further study the pharmacokinetic and pharmacodynamic 
properties of selected antiretroviral and antimalarial drugs in one Vietnamese, one Scan-
dinavian and two African populations. 
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1.2	 The diseases

1.2.1	 HIV/AIDS

hiv/aids is a global health problem. In 2007 an estimated 33.2 million persons were 
living with the disease, another approximately 2.5 million got infected and 2.1 million 
died from acquired immunodeficiency syndrome (aids) related causes [7]. hiv, human 
immunodeficiency virus, is a retrovirus belonging to a group of viruses called lentiviruses. 
The virus attacks immune function cells such as the CD4+ T-lymphocytes (herein referred 
to as CD4-cells) and macrophages. The virus integrates in the host cell’s DNA leading to 
the production of new virus particles and death of the infected cells [8]. Without treat-
ment, the immune system begins to fail resulting in immunodeficiency and an increased 
susceptibility to opportunistic infections and cancer. The disease progression is typically 
characterized by three distinct phases (Figure 1).
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Figure 1. The typical clinical course of hiv disease progression. Adapted from Fauci et al [15] by permis-
sion of Annals of Internal Medicine.

After an incubation period lasting a few weeks rapid viral replication occurs. hiv-rna lev-
els can reach 107 copies/mL plasma and CD4-cells decrease substantially from their ini-
tial levels [9]. The first clinical manifestations of infection appear within some weeks and 
include fever, diarrhea, rash and influenza-like symptoms. After the acute hiv-infection 
there is a reduction in viral levels to a plateau or pseudo stationary state of 103-105 copies/
mL plasma and the CD4-cells partly recover, accompanied by a period of asymptomatic 
hiv-infection lasting many months to years [10-12]. The asymptomatic period is followed 
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by a symptomatic infection with continued viral replication and gradual decline in im-
mune response [13]. aids is developed when the CD4-cell count falls below 200 cells/µL 
blood or in the presence of certain aids defining conditions [14].

1.2.2	 Malaria

An estimated 300 to 500 million cases and 1.5 to 2.7 million deaths occur each year due 
to malaria [16]. What is more, malaria is directly responsible for around 18% of all child 
deaths in sub-Saharan Africa [17]. Infection by the Plasmodium parasite (P. falciparum, 
which causes the most dangerous infections, P. vivax, P. ovale or P. malarieae) is transmit-
ted by mosquitoes. The complex parasite life-cycle is displayed in Figure 2.

Figure 2. The malaria parasite life cycle in humans [18].

After a bite, sporozoites infect hepatic cells. Subsequently they multiply to merozoites 
ready to invade erythrocytes. The 48 hour cycle of P. falciparum in the red blood cells can 
be divided into 1-12 intervals to account for the transition between ring, trophozoite 
and schizont stages. When the schizont ruptures new merozoites are released [19]. Blood 
stage parasites are responsible for the clinical manifestations of the disease. Symptoms 
usually occur within weeks after the bite and include fever, headache and nausea for un-
complicated malaria or anemia, organ failure and coma for severe malaria. 
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1.3	 Drug therapy

1.3.1	 Antiretroviral drugs

The first antiretroviral compound (zidovudine) was introduced in 1987. Today there ex-
ist several classes of antiretroviral drugs. Nucleoside/nucleotide reverse transcriptase in-
hibitors (NRTIs) incorporate in the viral deoxyribonucleic acid (DNA) during synthesis 
from viral ribonucleic acid (RNA), resulting in chain termination. Non-nucleoside reverse 
transcriptase inhibitors (NNRTIs) directly inhibit the activity of the viral enzyme reverse 
transcriptase. Protease inhibitors (PIs) target the protease enzyme, necessary for post-
translational processing of viral proteins. New classes of drugs block the entry of the virus 
into the cell (fusion inhibitors) or prevent the integration of viral DNA into the host cell’s 
genome (integrase inhibitors), respectively (Figure 3). 

Figure 3. The hiv replication cycle and targets for antiretroviral drugs [20] by permission from  
Nature Publishing Group.

Since the introduction of highly active antiretroviral therapy (HAART), a combination 
of at least three drugs from different classes, treatment of hiv-infection has steadily im-
proved. Antiretroviral combination therapy has decreased mortality and morbidity in 
hiv-disease during the last years [21]. A commonly adopted treatment policy suggests a 
first-line treatment consisting of a combination of two NRTIs and either a NNRTI or a 
PI [22]. 



15

Treatment initiation in the absence of clinical symptoms is usually guided by the CD4-cell 
count. In clinical drug trials, the number of hiv-rna copies, the viral load, is currently 
used as the primary marker for drug efficacy. The decay in viral levels is such a good meas-
urement of drug efficacy that it has the status of a surrogate endpoint of overall survival 
and time to clinical events [23]. Long-term antiretroviral combination treatment in hiv-
infected patients generally results in a decrease of plasma viral hiv-rna levels. The first 
few weeks the decay in viral load is rapid, then the rate of decline tend to slow because of 
virus reservoirs in latently and long-lived infected cells [24]. It is important to notice that 
the initial decay in viral load may also be followed by viral rebound which indicates thera-
peutic failure because of poor adherence to treatment or development of drug resistance. 

1.3.1.1	 Efavirenz 

The efficacy of efavirenz (a NNRTI) based combination regimens has been shown in 
many clinical trials [25-33]. Despite its long half-life, narrow therapeutic window, large 
between-subject variability in drug exposure and toxic side effects, efavirenz is preferred to 
nevirapine due to the more solid efficacy and safety documentation [34]. Efavirenz mid-
dosing interval plasma concentrations below 1 mg/L have been associated with treatment 
failure and may select for viral drug resistance, while concentrations exceeding 4 mg/L 
increase the risk of adverse neuropsychiatric effects [35]. The pharmacokinetic properties 
of efavirenz include auto-induction of drug metabolism and a relatively long elimination 
half-life [36].

1.3.1.2	 Lopinavir, atazanavir and ritonavir

Lopinavir, atazanavir and ritonavir are all examples of PIs. Lopinavir is approved for co-
formulation with ritonavir and has twice daily dosing. Although it is generally accepted 
that there exists a relationship between PI exposure and antiviral response [37, 38], no such 
direct relationship has been observed for lopinavir. Currently applied dosing recommen-
dations may be greater than needed to reach the maximum of the concentration-response 
curve. Nevertheless a relationship between lopinavir exposure to viral susceptibility and 
antiviral response has been proven, using logistic regression [39]. Atazanavir is the first 
and currently the only PI that is registered for once a day administration. A statistically 
significant relationship between viral reductions and atazanavir trough concentrations di-
vided by the number of protease mutations (associated with reduced atazanavir response) 
has been observed [40]. Ritonavir is a so called pharmacokinetic ‘booster’, used because 
of its capacity to inhibit the drug metabolizing enzyme cytochrome P450 (CYP) 3A4. 
Given in a low dose, ritonavir reduces the metabolism of lopinavir and atazanavir, which 
are extensively metabolized by CYP3A4, and thereby also enhancing drug exposure [41]. 
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1.3.2	 Antimalarial drugs

If diagnosed correctly and treated promptly, malaria is a curable disease. However, the 
therapeutic arsenal is relatively old and drug resistance among the parasites is an emerging 
problem. To increase therapeutic success rates and diminish the spread of resistance the 
World Health Organization (WHO) recommends antimalarial drugs in combinational 
treatment [42]. In artemisinin-based combination therapy (ACT) one of the artemisi-
nin derivatives is combined with a drug with another mechanism of action and a longer 
elimination half-life. The aim is to protect the artemisinin drugs from resistance, prevent 
recrudescence and reduce the duration of treatment [43].

The efficacy of ACT in clinical drug trials is usually determined by the therapeutic out-
come such as recrudescence and cure rates evaluated after a 14- or 28-day follow-up pe-
riod. Although not fully correlating to disease severity and therapeutic outcome, parasi-
tological biomarkers, i.e. changes in the parasite load over time, can also be used to assess 
treatment response. Conventionally, parasitological recovery from malaria is determined 
by the absence of parasites in peripheral blood smears. The parasite clearance time (PCT), 
a commonly used efficacy parameter, can be defined as the time required to reach the first 
of two negative smears after initiation of treatment [44].

1.3.2.1	 Artemisinin

The drug, originally used in the Chinese traditional medicine, is active against all blood-
stage parasites. Its structure includes an endoperoxide bridge which has been suggested 
to be essential for the antiparasitic effect. Treatment with artemisinin results in a rapid 
parasitological decline with few adverse effects. If artemisinin is used in monotherapy the 
success of therapy stays low unless administered over seven days. However, when used in 
combination treatment, the duration of treatment is normally reduced to 3 days [45]. 
Due to auto-induction of drug metabolism the relative drug exposure of artemisinin is re-
duced over time during the course of treatment [46]. The original compound artemisinin 
is currently replaced by its more potent derivatives dihydroartemisinin, artesuante and 
artemether.

1.3.2.2	 Piperaquine

Piperaquine, first synthesized in 1966, has been a suggested partner drug to the artemisi-
nin derivatives because of its large volume of distribution, resulting in a long elimination 
half-life and post-treatment prophylactic effect. It is likely that piperaquine inhibits the 
detoxification process of hemoglobin in the parasite food vacuole. The drug, mainly used 
in Asia, is well tolerated and is manufactured at a low cost. To date, only sparse characteri-
zation of the drug’s pharmacokinetic properties is available [47].
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1.4	 Pharmacokinetic and pharmacodynamic 
	 non-linear mixed effects models

1.4.1	 Regression models

Mathematical and statistical models can be fitted to experimental (preclinical, clinical and 
literature) data using linear or non-linear regression methods to explain the time-course of 
drug exposure and response as well as their relationship [48, 49]. Pharmacokinetic/phar-
macodynamic software packages, e.g. nonmem [50], iteratively find the specific estimates 
of a set of predefined model parameters that give the best prediction of the observed data. 
The model performance, i.e. how well the model describes the data can be evaluated using 
various goodness-of-fit metrics, e.g. the objective function value (in the present case equal 
to –2 × log-likelihood of the data under the given model) and through the use of diagnos-
tic plots, such as the visual predictive check (VPC) [51]. If an alternative model with ad-
ditional parameters fits the data better than a reduced nested model, this will be reflected 
by a drop in the objective function value. A more appropriate model does not necessarily 
mean a better fit to the data. In general, it is the purpose of the model that determines its 
appropriateness. In fact, all models are wrong but some may be useful [52]. Ideally a model 
should be mechanistic in nature. This facilitates extrapolation from the experimental con-
dition under which the model was built. Sometimes the use of an empirical model, lacking 
any biological interpretation, but still capable of describing the data, is satisfactory for the 
specific purpose of modeling [53]. 

1.4.2	 The structural model (fixed effects model)

The one-compartment pharmacokinetic model, describing the time-course of drug expo-
sure after an intravenous administration, is one example of a structural model: 

( )expC
V

Dose
V

CL time# #= -
� (1)

C is the drug concentration at any time, Dose is the amount of administered dose, V and 
CL are pharmacokinetic parameter estimates describing the volume of distribution and 
elimination clearance, respectively. The EMAX-model is another example of a structural 
model. It describes the basic shape of a relationship between two variables, e.g. drug con-
centration and response [54]:

( )
( )

E
EC C
E CMAX

50

#
+

=
� (2)

E is the drug response at any drug concentration C. EMAX and EC50 are pharmacodynamic 
parameter estimates describing the maximal response achievable and the drug concentra-
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tion producing 50% of the maximal response, respectively. 

There are also, mathematically and mechanistically more complex, indirect response mod-
els taking temporal delays between drug concentrations and response into account, e.g. 
because of drug distributional delay to the site of drug action (effect compartment or bi-
ophase) or describing the cascade of events that occurs in a biological system due to the 
pharmacological mechanism of action [55, 56]. Pharmacodynamic models described in 
this thesis can be classified as irreversible since they aim to describe the inactivation of 
proliferative cells such as parasites or virus populations.

1.4.3	 The individual model (mixed effects model)

Through the advent of the population approach, there is today software not only quanti-
tating pharmacological data on a population level but, importantly, simultaneously also 
estimating the between- and within-subject variability [57]. Average population PK/PD 
model parameter values as well as their between- and within-subject variability can be 
obtained by non-linear mixed effects regression, even when data are sparse (typically 1-3 
samples per patient) [58]. In fact, a few samples from many individuals can give as accurate 
parameter estimation as rich data obtained from a limited number of subjects. Consider-
ing a general model the observed value in an individual i at occasion j (Obsij) can be de-
scribed by the following equation:

Obsij = Predij + εij� (3)

The individual prediction (Predij) is a function of this individual’s set of specific parameter 
estimates, sampling-times and other fixed input. Any difference between the individual 
predictions and the observations, ε (mean 0, variance σ2), may be due to model misspeci-
fication, sampling errors or within-subject variability. A specific parameter estimate for an 
individual (Pi) may be described as:

Pi = P × exp(ηi)� (4)

P is the typical parameter estimate in the studied population and η is the log-normally 
distributed between-subject variability (mean 0, variance ω2). The differences between ob-
served and predicted data are illustrated in Figure 4.

1.4.4	 Covariates

Sources of variation among individuals can be manifested both in drug disposition and 
dynamics. Some of this variability is predictable whereas other is random. One important 
cause of variability is that of varying expression and function of drug metabolizing en-
zymes across and within populations [59]. The CYP P450 family, and also drug transport 
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membrane proteins, exhibit many allelic variants which may encode defective function 
or no function at all. In addition to genetic factors, other covariate factors such as body 
weight, age, sex, renal function, drug-drug interactions or concomitant diseases can also 
influence drug exposure and subsequently treatment outcome. The effects of a continuous 
covariate, such as body weight on a parameter P may be described as:

Pi = P × [1 + factor × (body weighti – median body weight)] × exp(ηi)� (5)

Here, factor represents a parameter estimate describing the fractional change in the typi-
cal estimate of P with body weight. The effects of a categorical covariate, such as a genetic 
polymorphism, on a parameter P may rather be described as:

Pi = (Pwild-type + Pheterozygous mutant + Phomozygous mutant) × exp(ηi)� (6) 
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Figure 4. An illustration of a pharmacokinetic, pharmacodynamic and PK/PD model fitted to repeat-
edly measured data of drug exposure, response and their relationship, respectively. Observed and pre-
dicted drug concentrations and response are plotted versus time or concentration, respectively. The open 
circles represent experimentally observed measurements in a studied individual. The solid lines are the 
model predictions in the same individual. The model predictions for a typical individual of the popula-
tion receiving the same drug and dose are seen as dashed lines. The difference between the individual 
and typical model predictions symbolizes between-subject variability while the difference between ob-
served and individually predicted data may be due to model misspecification, measurement errors or 
within-subject variability.
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1.4.5	 Drug-disease models and simulation

Pharmacokinetic and pharmacodynamic models as well as models describing disease-pro-
gression [60] can be combined in a drug-disease model describing the links from drug 
administration to treatment outcome in various patient populations (Figure 5) [61]. 

Ultimately the complete drug-disease model or separate modules of it could be used as 
a guidance tool. Simulation refers to the use of a model in prediction [62]. Stochastic 
simulation refers to simulation including the elements of between-subject variability and 
sometimes also uncertainty. Simulations have successfully been performed to investigate 
planned study designs [63], for sample size considerations (e.g. how many patients should 
be recruited to ensure that the population is properly represented) [64, 65], rational dose 
selection (e.g. which drug or drug combination, dose levels, how often and for how long) 
[66], adherence issues (e.g. what is the impact of missed doses or discontinuation of ther-
apy) [67], and for optimal sampling strategies (e.g. when it is most informative to draw 
sparse blood samples for PK or PD analyses) [68]. 

Treatment
and

compliance
OutcomeDrug-disease model

PK PD

Population
- body weight
- gender
- genetics

Disease-
progression

Figure 5. Schematic illustration of a template drug-disease model, describing the links between the 
study population, dosing, pharmacokinetics, pharmacodynamics, disease-progression and treatment 
outcome.
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2	 Aims of the Thesis

The overall aim of this thesis is to highlight the use of pharmacometrics when analyzing 
data collected in anti-infective drug studies performed in resource-limited settings as well 
as in high-income countries. In a further perspective the thesis aims at deriving informa-
tion, facilitating the optimization of existing and novel antiretroviral and antimalarial 
pharmacotherapy, through applied PK/PD modeling and simulation. 

Primary objective

To mathematically describe the pharmacological relationship between dosing his-
tory, between-subject variability, drug exposure, response and/or treatment out-
come in various patient populations for selected antiretroviral and antimalarial 
drugs, using PK and PK/PD models 

Secondary objectives

To search for covariates (demographic or disease-specific) explaining between-1.	
subject variability in the pharmacokinetic and pharmacodynamic parameters 

To specifically examine the effects of pharmacogenetic polymorphisms in drug 2.	
metabolizing enzymes and transporters on the pharmacokinetic and pharmaco-
dynamic properties

Provide rationale for individualized therapy, i.e. dose adjustments by patient  3.	
specific features, to target the desired drug exposure and to improve clinical  
success rates

To demonstrate the utility of specific, empirical or mechanistic, PK- and PD-4.	
models to estimate and report experimental data from studies performed in vari-
ous parts of the world
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3	 Methods

3.1	 Clinical investigations

3.1.1	 Ethics

Observed data were obtained from five clinical studies. All trials were conducted accord-
ing to the principles set down by the International Conference on Harmonisation – Good 
Clinical Practise (ICH-GCP) guidelines, the Declaration of Helsinki, as modified by the 
48th World Medical Association (WMA) General Assembly, Somerset West, Republic of 
South Africa, October 1996 (Paper IV) and the 52nd WMA General Assembly, Edin-
burgh, Scotland, October 2000 (Papers I-III and V) and applicable regulations. Partici-
pants provided signed informed consent prior to study entry. Ethical approval for the first 
study (Paper I) was given by the Uganda National Council of Science and Technology. 
The second study (Paper II) was approved by ethics committees at the Medical Research 
Council of Zimbabwe and by the Joint Parirenyatwa Hospital and College of Health Sci-
ence Research, Harare. The third study (Paper III) was approved by an independent ethics 
committee and the Swedish Medical Products Agency. The forth study (Paper IV) was 
approved by Vietnamese Ministry of Health and the WHO Secretariat Committee for 
Research Involving Human Subjects (SCRIHS). The fifth study (Paper V) was approved 
by the local review board at the National Institute of Malariology, Parasitology and Ento-
mology (NIMPE), Hanoi and the Vietnamese Ministry of Health.

3.1.2	 HIV study designs

3.1.2.1	 Paper I

In the first study, performed in Uganda, the objective was to investigate the impact of 
pharmacogenetics on the population pharmacokinetics of efavirenz. Efavirenz was given 
as a single dose of 600 mg to healthy subjects (52 males and 69 females, 19-59 years of 
age). The participants did not use any other medications including herbal preparations 
one week prior to or during the study period. Blood samples for efavirenz concentration 
determination were collected from 32 of the participants at 0, 4, 8, 12, 24, 48 and 72 
hours after dose. Additional samples were taken at 4 and 24 hours from the 89 remaining 
subjects. Plasma concentrations of efavirenz were analyzed using a reversed-phase high-
performance liquid chromatography (HPLC) method with uv-detection. The lower 
limit of quantification (LLOQ) was 0.35 μM. The study participants were characterized 
for 30 single nucleotide polymorphisms (SNPs) in CYP2B6, CYP3A5, and MDR-1 genes 
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by a polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) 
method. 

3.1.2.2	 Paper II 

The second study, performed in Zimbabwe, sought to investigate the relationship between 
efavirenz exposure and the CYP2B6 516 G>T (CYP2B6*6) genotype in hiv/aids pa-
tients through pharmacokinetic modeling and simulation. Seventy-four hiv-positive pa-
tients (26 males and 48 females, 20-56 years of age) assigned to receive efavirenz (600 mg) 
once a day, in combination with two NRTIs, were included in the study. Single blood sam-
ples were collected at 11-16 hours after reported last dose intake from patients who had 
been prescribed efavirenz for at least 3 weeks. A HPLC assay with uv-detection was used 
for the determination of efavirenz steady-state concentrations (LLOQ = 0.47 mg/L). Pa-
tients were genotyped for CYP2B6*6 polymorphism using PCR-RFLP. 

3.1.2.3	 Paper III

The northiv study was a randomized open-label multi-centre trial performed in Nor-
way and Sweden. The study aimed to compare efficacy, side-effects, and treatment adher-
ence to three commonly prescribed regimens given to antiretroviral naïve hiv-infected 
patients. The objectives of the present analysis were to describe the time-course of antiret-
roviral drug exposure, search for covariates influencing drug exposure and evaluate poten-
tial differences in drug response between the treatment arms, using pharmacokinetic and 
pharmacodynamic models. Patients (158 males and 81 females over 16 years of age) were 
repeatedly followed with respect to hiv-rna levels, CD4-cell count and drug exposure 
for up to three years after study initiation. Patients were randomized to one of three study 
arms; i. lopinavir/ritonavir (400/100 mg), co-administrated with two NRTIs twice daily, 
ii. atazanavir (300 mg), co-administrated with ritonavir (100 mg) and two NRTIs once 
a day, iii. efavirenz (600 mg), co-administrated with two NRTIs once a day. Plasma con-
centrations of lopinavir (LLOQ = 0.25 μM), atazanavir (LLOQ = 0.14 μM), ritonavir 
(LLOQ = 0.50 μM) and efavirenz (LLOQ = 0.47 μM) at weeks 4, 12, 48 and 144 were 
analyzed by HPLC. hiv-rna levels were determined using the Roche Amplicor v1.5 re-
verse transcriptase PCR assay. CD4-cells were counted using flow cytometry.

3.1.3	 Malaria study designs

3.1.3.1	 Paper IV 

In the fourth study the pharmacokinetics of artemisinin and the relationship between 
drug exposure and treatment outcome were modeled. In this observational, non-rand-
omized study, 97 Vietnamese patients (67 males and 30 females, 5-88 years of age) were 
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treated according to then current national recommendations with artemisinin (500 mg) 
administered orally twice the first day followed by single dose administration for the next 
four days. Study intervention was limited to saliva samples for pharmacokinetic evalua-
tion being collected at approximately 0, 2, 4 and 6 hours after the first dose and option-
ally at 4 and 6 hours after any of the following doses. Parasite counts (number of asexual 
parasites) were determined pre-treatment and every eight hours after initiation of therapy, 
until three negative smears. Parasite clearance times were defined as the time from the first 
dose to the first of three negative smears. Patients were followed up on day 21. Cure rate 
was determined as the proportion of patients with no detectable parasites at this visit. 
Artemisinin saliva concentrations were determined using HPLC with post column deri-
vatization and uv-detection (LLOQ = 2 μg/L).

3.1.3.2	 Paper V

This was a pilot study designed and conducted at a time when there was no prior informa-
tion available on human piperaquine pharmacokinetics, despite the drug having been used 
clinically for some time. The principle aim was to obtain basic pharmacokinetic informa-
tion to enhance future study designs and sampling strategies. Twelve healthy Vietnamese 
males were administered 1280 mg piperaquine phosphate orally as a single dose on day 1 
followed by another 640 mg in the morning on days 2 and 3, respectively. Blood samples 
for drug concentration measurement were frequently collected after the first and third 
dose for a total of 29 days. Piperaquine in plasma was quantified by solid phase extraction 
followed by a HPLC method with uv-detection (LLOQ = 7 nM). The complex drug 
plasma concentration-time profiles obtained necessitated a modeling approach to charac-
terize the drug’s irregular absorption profile and long elimination half-life.

3.2	 Model development 

3.2.1	 Software and model building

Pharmacokinetic and pharmacodynamic models were fitted to data obtained from clini-
cal studies I-V, using the nonmem version v or vi software [50] under a Compaq Visual 
Fortran v. 6.6 compiler. 

3.2.2	 Pharmacokinetic and pharmacodynamic HIV models

In Paper I, a two-compartment pharmacokinetic model with zero-order followed by first-
order absorption, which can be interpreted as dissolution rate limited absorption, was 
fitted to the data (Figure 6). Age, body weight, sex, albumin, alanine aminotransferase 
(ALT), urea, serum creatinin and pharmacogenetic polymorphisms in genes (n=30) cod-
ing for metabolizing enzymes and transporters (CYP3A5, CYP2B6 and MDR-1) were 
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covariates considered for inclusion in the model. Pharmacogenetic covariates were tested 
on apparent clearance and on the relative bioavailability parameter (Frel). 

depot Vc Vp

zero-order

D

Frel
�rst-order

ka

CL

Figure 6. Zero-order followed by first-order sequential absorption two-compartment pharmacokinetic 
model. The drug is introduced into a depot compartment through zero-order absorption. The drug is 
further absorbed to the central compartment and distributed to a peripheral compartment. The drug is 
eliminated from the central compartment. D: duration of zero-order absorption, depot: dose compart-
ment, ka: first-order absorption rate constant, Frel: relative bioavailability (set to 1 in wild-type metabo-
lizers), Vc: apparent central volume of distribution, Vp: apparent peripheral volume of distribution, 
CL: apparent clearance.

In Paper II, a linear one-compartment pharmacokinetic model was fitted to the observed 
steady-state drug concentrations. Pharmacogenetic CYP2B6*6 polymorphism was intro-
duced as a covariate on apparent clearance (CL/F). Homozygous wild-type metabolizers 
were assumed to have one typical estimate of clearance. The potential reduction in this 
parameter was estimated for hetero- and homozygous mutant metabolizers. Body weight, 
sex and age were other covariates considered for inclusion in the model. Using the final 
model, it was investigated through simulation whether a priori dose reduction would be 
possible in poor efavirenz metabolizing patients. The size of the dose reduction in steps 
of 100 mg was plotted against the proportion of patients having sub-optimal concentra-
tions (<1 mg/L) and the proportion of patients with toxic exposure (>4 mg/L). If the 
proportion of patients with sub-optimal concentration was <5% the dose reduction was 
considered achievable.

In Paper III, linear one-compartment pharmacokinetic models were fitted to the observed 
steady state drug concentrations of lopinavir, atazanavir, ritonavir and efavirenz. Age, body 
weight, sex, ethnicity, CDC-stage, clinical chemistry variables and exposure to ritonavir, 
which is a potent CYP3A4 inhibitor, were covariates considered for inclusion in the mod-
els. A drug-disease model, where the interaction between CD4-cells, virus, actively and 
latently cells are described through a set of differential equations, was fitted to the repeat-
edly measured hiv-rna levels (Figure 7). 

In brief, the virus infects a pool of CD4-cells which can be either actively or latently infect-
ed. Latently infected cells are sooner or later activated and new virions are produced from 
the actively infected cells. In the presence of drugs the infection rate of CD4-cells is inhib-
ited by drug regimen specific factors ranging from 0 to 100% inhibition. In an extended 
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analysis it will also be evaluated whether drug response can be modeled as a function of 
drug concentration. The reproduction ratio (R), a derived system specific parameter for 
infectious diseases, can here be defined as the expected number of new virions produced 
from a single virus particle introduced among uninfected cells [69, 70]. If R is greater than 
1 or less than 1, the virus population will grow or decline, respectively. In this initial analy-
sis, pharmacodynamic models were fitted to hiv-rna data only. In an extended analysis, 
models will be fitted to both hiv-rna and CD4-cell data. hiv-rna data below the quan-
tification limit was considered using the f_flag functionality in nonmem [71]. 

drugs

virus (V) CD4

actively
infected (A)

latently 
infected (L)

decay cell synthesis

infectivity

cell death

activation

production

cell death

cell death

Figure 7. The drug-disease model describing the hiv-infection and action of antiretroviral drugs. The 
disease model consists of virus, uninfected, actively and latently infected CD4-cell compartments. The 
virus infects uninfected cells, which either become latently or actively infected. Latently infected cells 
can become reactivated. Each cell-type has its natural life-span. The interaction between the cells was 
described by the use of differential equations. The infection rate was assumed to be proportional to the 
number of uninfected cells and the number of virus particles. The infection rate can be inhibited 0-100% 
by drug regimen specific factors (ε).

3.2.3	 Pharmacokinetic and pharmacodynamic malaria models

To account for auto-induction of artemisinin metabolism, a well-stirred pharmacokinetic 
model [72] with stimulation of the enzyme precursor production rate by hepatic drug 
amounts [73] was used in Paper IV (Figure 8). The well-stirred model is described by the 
fraction of unbound drug (fu), liver blood flow (QH), and the intrinsic clearance of drug 
(CLint), which is the enzymatic capacity in the absence of blood-flow limitations and bind-
ing of drug to proteins. FH is the fraction of drug that escapes first-pass metabolism from 
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the liver compartment. If induction of enzymes occurs, an increment of CLint will be seen, 
leading to an increase in hepatic CL and/or a decrease in hepatic bioavailability (FH) de-
pending on the size of the extraction ratio:
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CL
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depot liver sampling

precursor enzyme

Figure 8. Schematic illustration of the artemisinin auto-induction pharmacokinetic model. Artem-
isinin is absorbed from a depot compartment into a well-stirred liver compartment and subsequently 
distributed into the saliva compartment where sampling occurs. The amount of artemisinin in the 
liver compartment is inducing the enzyme precursor levels. The turnover of liver enzymes is described 
through an indirect response model with zero-order formation (kin) of the precursor and first-order 
removal (kout) of enzymes. When enzyme levels are elevated, intrinsic clearance (CLint) is increasing in 
a corresponding manner, leading to an increase in drug clearance (CL) and/or a decrease in the hepatic 
bioavailability (FH).

The relationship between exposure to artemisinin and therapeutic response (PCT and 
cure) was investigated by pharmacodynamic models, using linear, non-linear and logis-
tic regression methods. The PCT was characterized as a function of the area under the 
concentration-time curve after the first dose (AUCdose1) by a linear model or a sigmoidal 
inhibitory EMAX-model with baseline effect. The probability of cure was modeled as a bi-
nary logistic function of the cumulative AUC0-∞. PCT normalized for initial parasitemia 
(IP) was tried as well. 

To describe the atypical absorption profile of piperaquine with multiple peaks, a dual ab-
sorption pathway was modeled in Paper V, implementing a fast and slow absorption proc-
ess (Figure 9). 
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Figure 9. Pharmacokinetic model for piperaquine. Dual pathway absorption was included to account 
for multiple peaks. The absorption of piperaquine to the central compartment was described by two con-
secutive first-order processes, separated by a lag-time. The disposition model was composed of either two 
(solid lines) or three (solid and dashed lines) compartments. Vc: apparent central volume of distribution, 
Vp: apparent peripheral volume of distribution, CL: oral clearance, Q: apparent inter-compartmental 
clearance, Fr: fraction of dose being absorbed in the first consecutive absorption step, ka1 and ka2: first-
order absorption rate constants, tlag1 and tlag2: absorption lag-times.
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4	 Results and Discussion 

4.1	 Efavirenz pharmacokinetics 

The use of mixed effects modeling allowed examining the impact of multiple pharmaco-
genetic and demographic covariates on the single dose efavirenz population pharmacoki-
netics in healthy subjects. Homozygous carriers of the CYP2B6*6 and CYP2B6*11 geno-
types were identified to have a 20% reduction in apparent clearance compared to wild-type 
metabolizers. A novel polymorphism in MDR-1 (c 4036 A>G) was estimated to increase 
the relative bioavailability by 25% and the apparent peripheral volume of distribution was 
two-fold higher in females compared to males (Table 1, Figures 10 and 11). 

Table 1. Parameter estimates for the pharmacokinetic/pharmacogenetic model (Paper I).

Parameter Estimate (95% CI) CV% (95% CI)

CL/F (L/h)
Effect of CYP2B6*6 
Effect of CYP2B6*11 
Vc/F (L)
Vp/F (L)
Effect of sex
Q/F (L/h)
ka (h-1)
D (h)
Frel
Effect of MDR-1 (c 4036)
σprop (CV%)

4.00 (3.47, 4.53)
-0.209 (-0.386, -0.032)

-0.199 (-0.329, -0.0691)
19.1 (7.46, 30.7)
155 (131, 179)

2.08 (1.64, 2.52)
13.7 (6.1, 21.3)

0.146 (0.0558, 0.236)
1.07 (0.758, 1.38)

1 FIX
0.257 (0.0873, 0.427)

13.9 (9.62, 17.1)

14.0 (2.8, 25.2)

99.5 (49.4, 132)
27.9 (14.8, 36.7)

32.1 (20.5, 40.5)
19.7 (8.6, 30.8)

69.7 (15.3, 97.4)
18.8 (11.9, 23.9)

CL/F: apparent clearance, Effect of CYP2B6*6 and *11: fractional change in CL/F for poor metabo-
lizers, Vc/F: apparent volume of distribution of the central compartment, Vp/F: apparent volume of 
distribution of the peripheral compartment, Effect of sex: factor expressing peripheral volume of dis-
tribution in females relative to peripheral volume in males, Q/F: inter-compartmental clearance, ka: 
absorption rate constant, D: duration of zero-order absorption, Frel: relative oral bioavailability, Effect 
of MDR-1: fractional change in Frel for mutant subjects, σprop: random residual error, CI: confidence 
interval, CV: coefficient of variation.

The results are in agreement with other studies that have previously reported poor efa-
virenz clearance among carriers of CYP2B6*6 [74-76]. Although the CYP2B6*11 mu-
tation seems to significantly affect efavirenz clearance, its clinical role and implications 
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need to be further investigated after multiple dose administration. P-glycoprotein (Pgp) 
is coded by the multiple drug resistance gene (MDR-1). There are conflicting suggestions 
on whether efavirenz is a substrate for Pgp and the role of MDR-1 genetic variation in efa-
virenz plasma exposure and treatment outcomes is not clearly defined [77-80]. Favorable 
virological response with MDR-1 3435 C>T has been reported [76] but no systematic 
study has monitored the role of other SNPs in the MDR-1 gene for treatment outcome. 
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Figure 10. Visual predictive check of how the final efavirenz pharmacokinetic/pharmacogenetic model 
predicts the observed plasma concentrations (circles). The study was replicated 1000 times. The solid 
lines constitute a 95% prediction interval around the median predicted efavirenz concentrations. The 
dashed lines are the corresponding percentiles for the observed concentrations.
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Figure 11. The simulated concentration time-course after a single dose of 600 mg efavirenz in four typi-
cal subjects, based on the final model. Wild-type: CYP2B6 516G/G, CYP2B6*11G/G and MDR-1 
c4036A/A (19% of the studied population), homozygous mutant: CYP2B6 516T/T, CYP2B6*11T/T 
and MDR-1 c4036G/G (3% of the studied population).
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The more pronounced distribution of efavirenz, being a very lipophilic drug (logP = 5.4), 
to peripheral tissues in women could be due to higher body fat content or due to sex 
differences in plasma protein binding. However, albumin was not identified to be an im-
portant covariate in the present analysis. So far most efavirenz pharmacogenetic studies 
have focused on a few variant alleles, in particular CYP2B6*6 and MDR-1 3435 C>T, to 
investigate the potential effect of genetic variation in predicting efavirenz plasma exposure 
and treatment response. In addition to the previously investigated SNPs, we selected new 
regulatory and coding SNPs that have not been characterized before but with possible 
functional effect as predicted by bioinformatics tools. However, this study being a sin-
gle dose population pharmacokinetic study, the auto-inductive effect of efavirenz follow-
ing repeated administration could not be considered. There is therefore a need to study 
the effect of pharmacogenetic polymorphism on efavirenz pharmacokinetics at steady-
state, and preferably in a patient population. Anyway, the obtained results indicate which 
pharmacogenetic polymorphisms that may be therapeutically important to study during 
chronic administration. 

The metabolizing capacity of efavirenz in hiv/aids-patients was observed to be de-
creased in carriers of the CYP2B6*6 (516 G>T) genotype (Figure 12). Approximately 
28%, 57% and 15% of the patients were identified to be extensive, intermediate and poor 
metabolizers of efavirenz, respectively. Typical apparent clearance was estimated to 9.4 
(95% CI, 6.2-12.6) L/h in wild-types in contrast to 7.2 (95% CI, 4.3-10.3) and 4.0 (95% 
CI, 2.0-5.9) L/h in intermediate and poor metabolizers, respectively. Furthermore, the 
study suggested a priori dose reduction from 600 to 400 mg once daily in poor efavirenz 
metabolizers (Figure 13).

Individualization of drug treatment becomes desirable when between-subject variability 
in PK/PD parameters is extensive and the therapeutic margins narrow [81]. Monitoring 
of drug concentrations and adjusting the dosage regimen on the basis of these concentra-
tions is a well-known therapeutic intervention defined as therapeutic drug monitoring 
[82]. An alternative and less costly, conceptual strategy has recently been proposed. The 
target concentration approach aims at explaining the between-subject variability in con-
centrations with patient-specific covariate factors such as creatinine clearance, pharmaco-
genetics, age or body weight and to let the individually predicted PK parameter estimates 
guide dosing to achieve and maintain optimal drug exposure and the target effect [83]. 
While therapeutic drug monitoring is an empirical method to predict an optimal con-
centration, offering no explanation why an individual is outlying, target concentration 
intervention uses PK/PD models and mechanistic knowledge about the concentration-
response relationship. Despite this, in the African context pharmacogenetic testing is also 
an economical question. Given the large (76%) remaining unexplained between-subject 
variability in drug clearance, therapeutic drug monitoring may not yet be fully replaced by 
dose individualization based on pharmacogenetic considerations. In this case a priori dose 
reduction of 200 mg was suggested in poor efavirenz metabolizers. After therapeutic drug 
monitoring the dose could be further adjusted.



34

0 5 10 15 0 5 10 15 0 5 10 15

time (h)

1

10

2
3
4
6

2
3
4
6

1

10

2
3
4
6

2
3
4
6

ef
av

ir
en

z 
co

nc
en

tr
at

io
n 

(m
g/

L)

GG GT TT

GG GT TT

MALES MALES MALES

FEMALES FEMALES FEMALES

Figure 12. Overall goodness-of-fit plot of the final model. Observed and predicted efavirenz steady-state 
concentrations are conditioned on sex and genotype. GG: extensive metabolizers, GT: intermediate 
metabolizers, TT: poor metabolizers. Open circles are the observed concentrations. The solid lines are 
the model predictions in a typical individual. The dashed horizontal lines show the optimal concentra-
tion interval (1–4 mg/L).
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Figure 13. Simulations of efavirenz dose reductions from the standard dosing of 600 mg once a day. The 
triangles and circles represent the proportion of patients having sub-optimal and toxic efavirenz expo-
sure, respectively. The dashed line symbolizes a cut-off level where 5% of the patients have sub-optimal 
concentrations. GG: extensive metabolizers, GT: intermediate metabolizers, TT: poor metabolizers.
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4.2	 Pharmacodynamics of antiretroviral therapy

Lopinavir was identified to give a 2.4-fold (95% CI, 1.7-3.1) increase in clearance of 
ritonavir. As expected, ritonavir was found to increase the exposure to both lopinavir and 
atazanavir. The viral load was reasonably well described over time by the pharmacody-
namic model (Figures 14 and 15). The effectiveness of pharmacological intervention was 
evaluated by estimating the inhibiting fraction of the de novo infection rate and the viral 
reproduction ratio. Interestingly, in this initial analysis the efavirenz-containing regimen 
appeared to provide better treatment outcome than two protease inhibitor-containing 
regimens. Twice daily administration with lopinavir was estimated to be slightly more ef-
fective compared to once a day administration with atazanavir, but the differences seemed 
to be statistically insignificant. In the presence of drugs, the mean viral reproduction ratio 
was reduced from 3.05 to 1.04, 1.14, and 0.406 for the lopinavir, atazanavir, and efavirenz-
containing regimens, respectively.

It should be pointed out that only few studies have previously compared once and twice 
daily administration [84]. Once a day administration with atazanavir will give rise to more 
fluctuating drug exposure compared to twice daily administration of lopinavir. However, 
the risk for viral rebound can potentially be balanced by practical advantages in form of 
reduced dosing frequency which itself can increase adherence to the prescribed treatment. 
The available co-formulation of lopinavir/ritonavir also restrains the total daily dose in-
take. 

There have been previous attempts to model the effects of pharmacotherapy on the phar-
macodynamics of hiv-infection [85-92]. Taking hiv-rna data below the limit of quan-
tification into consideration, we present the application of a drug-disease model for the 
evaluation of combination therapy. The same model parameters related to the underlying 
disease were used for all patients. In contrast, treatment specific parameters were assumed 
to vary between the treatment arms and drugs. The application of drug-disease models is 
expected to increase in the future drug development process. The United States Food and 
Drug Administration (FDA) recommends the use of disease-drug-trial models in their 
FDA Critical Path document as a potentially valuable tool to improve the predictability 
and productivity of the drug development process for hiv and other therapeutic areas 
[93].

4.3	 Artemisinin exposure-response and 
	 piperaquine pharmacokinetics 

The saliva concentration-time profiles to artemisinin after the first oral dose could be 
described by a linear one-compartment model. However, predicted data did not match 
concentration-time profiles observed at later doses. A refined model, predicting lower ar-
temisinin saliva concentrations over time due to increased first-pass extraction after in-
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Figure 14. A visual predictive check of how the pharmacodynamic model predicts the observed hiv-
rna data conditioned on treatment group. The study was replicated 1000 times. The red lines are the 
median and the 2.5th and the 97.5th percentiles of the observed hiv-rna data which is presented as blue 
circles. The blue shaded areas are the 95% confidence intervals around the median and the 2.5th and 
the 97.5th percentiles of model predicted hiv-rna levels. The grey line symbolizes the limit of hiv-rna 
quantification set at 50 copies/mL. Observed data below the quantification limit was omitted from the 
plot. The lower panels show the predicted and observed fraction of data below the quantification limit.
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Figure 15. Observations and individually predicted viral levels over time for 16 representative patients. 
The dark blue circles represent hiv-rna observations. Light blue circles represent observations below 
the limit of quantification. The blue lines are the individually predicted hiv-rna levels. The limit of 
quantification (50 copies/mL) is symbolized by the red dashed line.
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duction of metabolizing enzymes [73], improved fits (Figure 16). The enzymatic half-life 
was estimated to 30.7 (95% CI, 30.4-31.0) hours with a mean induction time (MIT) of 
8.21 (95% CI, 8.16-8.26) hours. The observed mean PCT was 40 hours. The observed 
frequency of recrudescence was high (37%). No direct relationships could be observed 
between exposure to artemisinin and drug response. Cure rate could not convincingly be 
related to any measure of exposure, using logistic regression (Figure 17).

time (h)

lo
g 

ar
te

m
is

in
in

 c
on

ce
nt

ra
tio

n 
(μ

g/
L)

0

2

4

6

0 20 40 60 80

Figure 16. A visual predictive check of how the auto-induction model predicts the observed artemisi-
nin saliva drug concentrations. The study was replicated 1000 times. Observed artemisinin data is 
presented as circles. The dashed lines represent the median and the 2.5th and 97.5th percentiles of the 
observed concentrations. The shaded areas represent 95% confidence intervals around the median and 
the 2.5th and 97.5th percentiles of the predicted concentrations (solid lines). The line at 2 µg/L symbol-
izes the limit of quantification.
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Figure 17. Logistic regression model. Predicted AUC values and observed cure rates are binned in 8 
intervals. The solid line represents the probability of cure at varying artemisinin exposure. The dashed 
lines constitute a 95% confidence interval of the median predicted probability based on parameter esti-
mates from 1000 bootstrap samples.
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Similar pharmacokinetic results were reported by Asimus and Gordi after a model-based 
meta-analysis of six clinical studies involving repeated oral administration of artemisinin 
to 54 malaria patients and 33 healthy subjects [94]. The present model was fitted to artem-
isinin concentrations in saliva and not in plasma. Salivary concentrations of artemisinin 
are well correlated with unbound plasma concentrations [95]. Even though this meth-
od has gained little acceptance in clinical practice [96], saliva sampling is a non-invasive 
method, suitable for sampling in children and for field-studies, facilitating the collection 
and handling of samples. This study, performed within routine clinical care, illustrates 
the risk of recrudescence when artemisinin is used in a short course of monotherapy. To 
prevent the development of resistance and increase efficacy, artemisinin or its derivatives 
are today therefore mostly used in combination treatment [97]. 

The dual absorption pathway model gave an adequate fit to piperaquine absorption (Figure 
18) and facilitated estimation of piperaquine elimination half-life which was 11.7 (95% 
CI, 8.3-15.7) days with large between-subject variability (5-31 days). Pharmacokinetic 
parameter estimates are presented in Table 2.

Figure 18. Measured (open circles) and population predicted (dashed lines) or individually predicted 
(solid lines) piperaquine pharmacokinetic profiles in 12 healthy Vietnamese subjects after repeated oral 
CV8 administration. Sampling occurred only after the first and last doses. A different time scale was 
used for the first 100 hours to display the atypical absorption phase.
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The absorption profiles affected how different disposition models with first-order absorp-
tion fitted to the data. It was therefore necessary to allow for some flexibility in the model 
to account for the multiple peaks in order to obtain better fits to the data during the ter-
minal phase. A reliable estimate of the terminal half-life is of particular value in the case of 
piperaquine since it determines the duration of effects after treatment (and as such may in-
fluence the choice of duration of follow-up in clinical trials) and has bearing on the risk for 
resistance development [98]. A more recent study, with sampling up to 63 days after drug 
administration, has suggested an even longer piperaquine elimination half-life of 28 days 
[99]. What now is more relevant to understand, is the relationship between piperaquine 
exposure and response, which includes in vivo estimates of minimum inhibitory concen-
trations (MIC) and values of effective concentrations (IC50) for parasitocidal activity. 

Table 2. Pharmacokinetic parameter estimates (Paper V).

Parameter Estimate (RSE %) IIV (†) or IOV (‡) (CV% (RSE %))

CL/F (L/h)
Vc/F (L)
Q/F (L/h)
Vp1/F (L)
Vss/F (L/h)
ka1 (h-1)
ka2 (h-1)
Fr (%)
tlag1 (h)
tlag2 (h)
σ1 (%)
σ2 (nM)

56.4 (24.8)
82.1 (24.5)
43.9 (20.4)
5920 (21.3)

6002
0.09 (5.8)

0.72 (13.9)
91 (2.5)

0.42 (3.5)
9.9 (0.5)

0.34 (13.2)
29.4 (11.7)

111 (69) ‡
84 (51) ‡
59 (68) †

164 (70) ‡

F: oral bioavailability, CL: clearance, Vc: central volume of distribution, Q: inter-compartmental 
clearance, Vp: peripheral volume of distribution, ka: first-order absorption rate constant, Fr: fraction of 
dose being absorbed, tlag: absorption lag-time, σ1: proportional residual variability, σ2: additive residual 
variability, RSE: relative standard error ((SE/mean)*100%), CV: coefficient of variation, IIV: inter-
individual variability, IOV: inter-occasional variability.
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5	 General Discussion 

Treating hiv and malaria infections is challenging for prescribing physicians. This project 
aims at the identification of better treatment guidelines, taking into account demographic 
variables and the between-subject variability generated by other covariates such as drug 
metabolizing enzymes and transporters. Individualization of pharmacotherapy increases 
the probability that the patient receives the right dose the first time with the expected 
outcome of improving treatment success rates, decreasing the incidence of drug-induced 
toxicity and potentially attenuating resistance development. 

In developing economies efavirenz is more expensive than nevirapine but is nonetheless 
finding increasing use and is usually the preferred drug in patients undergoing hiv and 
tuberculosis (TB) co-treatment [100]. It has been debated whether there is an association 
between efavirenz concentrations and efficacy or toxicity. Sound understanding of clini-
cal pharmacology and evidence of poor virological response in patients with low efavirenz 
concentrations in plasma [35, 101, 102] as well as higher toxicity in patients exposed to 
higher concentrations of efavirenz [35, 103] favor such relationships. 

In this thesis several single nucleotide polymorphisms in genes coding for drug metabo-
lizing enzymes and transporters were observed to have effect on the single dose pharma-
cokinetics of efavirenz in healthy Ugandan subjects. Since efavirenz is known to induce its 
own metabolism [36], extrapolation to long-term treatment cannot directly be made from 
these results. After repeated administration however, Zimbabwean patients carrying the 
CYP2B6*6 genotype were identified to have a 57% reduction in apparent clearance and a 
dose reduction from 600 to 400 mg once a day was suggested in this sub-population. Us-
ing a quantitative drug-disease model, an efavirenz-containing regimen appeared to pro-
vide slightly better treatment outcome compared to two PI-containing regimens in the 
initial analysis of data originating from a treatment naïve Scandinavian population. 

Artemisinin-based combination therapy bears many resemblances to HAART. The drugs 
exhibit variable and complex pharmacokinetics with potential for drug-drug interactions 
[104]. The diseases themselves bring reasonable possibilities to measure disease markers 
(e.g. pathogen load/burden) for pharmacodynamic assessment. Moreover, hiv/aids 
and malaria are two major global infective diseases and in large parts of the world cause 
co-infections. Herein, no direct relationships could be observed between exposure to ar-
temisinin and parasite clearance times or cure rates. However, exposure to artemisinin 
was decreased at each repeatedly administrated new dose due to auto-induction of drug 
metabolism and the rate of recrudescent infection was as high as 37% when artemisinin 
was used in a short-course of monotherapy. This strongly supports the use of combination 
therapy. The partnering drug should provide a long-acting cover and there should not be 
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any pharmacokinetically mediated drug-drug interactions with the artemisinin derivative 
[43]. Piperaquine was demonstrated to have an erratic oral absorption profile with a long, 
but a highly variable, terminal elimination half-life. Combining artemisinin with a drug 
with a longer half-life will increase success rates but caution must be taken since prolonged 
sub-optimal concentrations of the treatment may lead to the development of parasitologi-
cal resistance.

Few attempts have previously been made to address dose optimization of hiv and malaria 
medication. Particularly in the case of malaria, the development of curative drugs and 
dosage regimens have been driven by empirical trial and error rather than by a sound un-
derstanding of the interplay between dosage, pharmacokinetics, pharmacodynamics, and 
efficacy/safety. However, during the last decades, the science of quantitative pharmacol-
ogy and PK/PD modeling has evolved [48, 49, 105] and has also been employed in the 
field of hiv [90, 106]. There are also some examples in the literature of models relating 
malaria parasite killing rates to drug exposure [107-110]. Nevertheless, these reports are 
to our knowledge in minority compared to the evolution of modeling in other therapeu-
tic areas. Barret has suggested that modeling and simulation may be used to identify and 
promote the most beneficial drug therapy in a target patient population and to quantitate 
sources of variability for improved decision making in the development of antiretroviral 
regimens [111]. McKenzie gives an excellent review about how mathematical modeling, 
complementing and extending the scope of classical pharmacokinetic and pharmacody-
namic modeling, can reduce the burden of malaria [112]. 

In the optimization of antiretroviral and antimalarial pharmacotherapy, PK/PD modeling 
and clinical trial simulation, here referred to as pharmacometric methodology, should be 
integrated key components. The utility of pharmacometric modeling and simulation is be-
coming more and more recognized. The objective of pharmacometrics is to transform data 
into knowledge for effective and safe pharmacotherapy [113] through a learn-confirm 
process [114]. Similarly, a model may fill the gap between data collection and compre-
hension [115]. Pharmacometric methodology has had impact on the registration of new 
drugs [116] and continues to advance in the academic setting [117]. Pharmacometrics 
can ultimately be a useful tool for decision analysis and policy making in settings where 
small economical resources are available. However it requires considerable competence 
and there are few trained users [118]. 

Efforts to understand the pharmacokinetics and pharmacodynamics of antiretroviral and 
antimalarial drugs have within this work been extensively based on modeling and simula-
tion activities. Pharmacokinetic and pharmacodynamic models were used to describe and 
report data originating from resource-limited settings (Papers I-II, IV-V) as well as from 
high-income countries (Paper III). It was shown that models are valuable tools to describe 
pharmacokinetic characteristics of drugs (Papers I-V), to identify important covariates 
(Papers I-III), to suggest new dosing strategies (Paper II) and eventually to describe phar-
macodynamic relationships (Papers III and IV). 
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One advantage of the population based non-linear effects modeling approach, requiring 
to be emphasized, is that sparse and rich data can be combined in one analysis, sometimes 
even from different studies [119]. Furthermore, the population method has been shown 
to generate more accurate parameter estimates compared to the standard two-stage meth-
od which provides biased estimates of variability [120]. The replacement of raw data by 
models facilitates the communication of observed experimental data which often contains 
an infinite amount of information [121]. When all, and not only fragmentary data, jointly 
are combined in a model a more robust description is offered [122]. A model may also 
be used for simulation to gain mechanistic understanding of the system under investiga-
tion. Model-based simulations represent powerful tools which may accelerate drug policy 
decision-making as well as prospective confirmatory drug trials [62, 123]. The purpose 
of such simulations is not only to alleviate the need for additional clinical studies but 
also to optimize their design. Anticipated results from simulation should be confirmed 
in prospective directed studies. Nevertheless, forecasting treatment outcome can generate 
insight saving time and resources. 

Some shortcomings of the efavirenz studies (Papers I-III) are that solid relationships be-
tween efavirenz exposure and the risk of having adverse central nervous system effects still 
have not been documented. Although already extensively studied, the benefit to toxicity 
ratio of efavirenz needs to be further studied in association with polymorphisms in genes 
coding for drug metabolizing enzymes and transporters.

Since parasite clearance time was used in Paper IV and no data was available regarding 
parasite densities over time, logistic regression was used to allow for dichotomized data. 
If parasite density data would have been available rather than derived parasite clearance 
times, the pharmacodynamic response could have been characterized over time. Instead 
there was substantial loss of pharmacodynamic information. Thus it is important to state 
the purpose of the modeling before the data analysis and possibly already before the con-
duct of the study (i.e. to enable data collection of needed variables). 

Recent advances in handling data below quantification limits will reduce bias in param-
eter estimates. This has been shown by Beal [124] and more recently by Ahn et al [71] 
when analyzing pharmacokinetic data. Bergstrand and Karlsson have applied the meth-
odology also on pharmacodynamic data [125]. From a retrospective point of view the 
method could with advantage have been used to handle pharmacokinetic data below the 
quantification limit in Paper IV. Instead samples below the quantification limit were ex-
cluded from the analysis, resulting in discharge of information. In Paper III, the method 
was used to handle pharmacodynamic hiv-rna data below the quantification limit of 50 
copies/mL in an informative fashion. Instead of just assuming that the hiv-rna observa-
tion is somewhere between 0 and 50 copies/mL, nonmem is specifying a probability that 
the observation indeed is below the quantification limit and the model may be used to 
predict if a patient is stable in treatment or if viral levels are close to rebound.
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6	 Conclusions

To summarize, in the present work the population pharmacokinetics of efavirenz in 
healthy subjects and patients of African and European origin were described. Moreover, 
the relationship between antiretroviral treatments and reductions in viral load over time 
was modeled. The elimination half-life of piperaquine was quantitated and the exposure-
response relationship of artemisinin was assessed in Vietnamese populations. Notably, 
pharmacological hiv and malaria data originating both from patients resident in low in-
come and industrialized countries were included. Altogether, this research has contribut-
ed with knowledge regarding the pharmacokinetic and pharmacodynamic characteristics 
of drugs indicated for the treatment of hiv and malaria. It remains to be seen whether 
antiretroviral and antimalarial therapy can be further optimized based on information 
derived within the frames of this thesis.
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