MEASURING THE POWER OF
ARITHMETICAL THEORIES

JORGEN SJOGREN



ii



Abstract

This thesis discusses the possibility to measure the power of extensions of
Peano Arithmetic, PA. It consists of three parts, an introduction and two
separately written papers. In the introduction we present the problem and
briefly give an account of van Lambalgen’s and Raatikainen’s criticism of
Chaitin’s efforts to measure the power of theories. The first paper contains
generalizations of two versions of Chaitin’s incompleteness theorem, and
reinforces the above mentioned criticism. The second paper is the main
paper of the thesis, and here, using the modal logic G L, we design a measure
of the power, in terms of the capacity to prove theorems, of an important
set of extensions of PA.
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1 Introduction

1.1 The Problem

This thesis for the licentiate degree deals with the possibility to design a
measure of the power of extensions of elementary arithmetic. There are
several ways to specify what is to be meant by ‘the power of a theory’,
where a theory is understood as the set of its axioms. We shall see below
that Chaitin equates ‘power’ with ‘information content’, but it is perhaps
more basic to view the power of a theory as its capacity to prove theorems.
A theory S is a subtheory of a theory T, if T' proves everything that S
proves, in symbols S 4 T. One possibility, then, is to say that T is at
least as powerful as S if and only if S 4 T. Here we will be interested in
elementary arithmetic, Peano Arithmetic, or PA for short, and it is then
natural to study the set 7 = {T": PA 4 T}. This set is partially ordered by
the subtheory relation, and we shall study it, considered as the Lindenbaum
algebra of PA, in section 3.

We would like to but cannot expect that a measure m simultanously
satisfies the following conditions:

1. m takes its values in a linearly ordered set of numbers.
2. m is computable for every T' € T, i.e. m is recursive.
3. ST if and only if m(S) < m(T)

If such a measure existed, the theories in 7 would be linearly ordered by
the subtheory relation, and we know that this is not the case. We would,
furthermore, have a decision procedure for theoremhood in e.g. PA. To see
this let ¢ be any sentence, and let PA 4+ ¢ be PA with ¢ added as an extra
axiom. If m(PA) < m(PA + ¢), then PAt/ ¢. If m(PA) = m(PA + ¢),
then PA & o.

A natural question, then, is which of the conditions we must exclude.
All three are problematic. The function m can perhaps not have as range a
set of linearly ordered numbers since the set 7 is partially ordered. Thus, it
may be more natural to let m be vector-valued. There are several reasons
why m might not be recursive, if m is to have 7 as its domain. There
are e.g. theories in 7 whose axioms are not recursively enumerable, which
means that we cannot know which the axioms of these theories are. And,
finally, we may perhaps have to stay content with the ‘only if’ clause of the
third condition, because two theories with the same measure need not be
comparable with the subtheory relation. What then can be done?



Most well-known of earlier attempts to create a measure of the power
of theories use Chaitin’s incompleteness theorem, and identifies the power
with the information content, defined as the Kolmogorov complexity, of a
theory. ! Chaitin announced his celebrated incompleteness theorem in the
early 1970’s. The theorem states that for every sound, formal theory S
containing elementary arithmetic, there is a constant ¢, depending only on
S, such that S does not prove any true propositions of the form K(n) > c.
Here K (n) is the Kolmogorov complexity of the string n, and is a measure
of the difficulty of specifying n. A string has low Kolmogorov complexity if
it has a short description, and a high one if it has no short descriptions. The
notions above can be made precise in different ways, and depending on how
this is done, the theorem and its proof take different forms. The number ¢
is a natural number and Chaitin and his adherents interpret this constant
as a measure of the information content of the theory S, and claim that this
is an adequate measure of the power of 5.2 In [Cha82] Chaitin says that

I would like to measure the power of a set of axioms and rules
of inference. I would like to be able to say that if one has ten
pounds of axioms and a twenty-pound theorem, then that theo-
rem cannot be derived from these axioms.

In the same paper Chaitin says that

traditional proofs of Gédel’s incompleteness theorem show that
formal axiomatic systems are incomplete, but they do not sug-
gest ways to measure the power of formal axiomatic systems.

Chaitin’s argument runs in two steps. In the first he proves the in-
completeness theorem. In the second step he draws the extra-logical, or
philosophical, conclusion that there is an intimate relationship between the
information content of a formal system, and the constant in his theorem.
This interpretation, or use, of Chaitin’s theorem has been critized by van
Lambalgen [vL89] and Raatikainen [Raa98].

The main goal in this thesis is to use other means to construct a measure
of the power of an interesting class of extensions of elementary arithmetic.

'In [Cha82] Chaitin presents three other possibilities to measure the information con-
tent of a theory, but since we focus on the above mentioned idea, we will not discuss these
other possibilities.

%See e.g. the introduction of [Raa98] for some comments on the reception of Chaitin’s
claims.



The structure of the thesis is as follows. The rest of the introduction
presents van Lambalgen’s and Raatikainen’s arguments against Chaitin’s
interpretation. A brief discussion of the possibility to draw extra-logical
conclusions from theorems of logic follows, and finally there is a summary
of two previously unpublished papers, that constitute the main part of the
thesis. The first of these papers reinforces the criticism of the standard
interpretation of the constant in Chaitin’s theorem. The second paper, the
main paper of the thesis, is of a more positive nature, and there we show how
to construct a measure of some extensions of Peano Arithmetic. These two
papers are separately written, and they contain some overlappings. There
are also some overlappings between the introduction and the two papers.
This has the advantage that the introduction and the two papers can be
separately studied, but the disadvantage of some tiresome repetitions. We
apologize for that.

1.2 Some Arguments Against the Received Interpretation
of Chaitin’s Theorem

That the philosophical conclusion of Chaitin’s theorem is problematic, is
one of the themes in an excellent paper by van Lambalgen [vL89]. In this
paper he assumes that to every formal system S, which contains elementary
arithmetic, there is a minimal constant cg, the characteristic constant of
S, such that S does not prove any theorem of the form K(n) > cg, in
symbols S t/ K(n) > c¢g, or more exactly a formula representing the relation
K(n) > cg. As above K (n) is the Kolmogorov complexity of the string n.?

In the paper referred to above, van Lambalgen shows that there is no
connection between the information content of a theory S and the char-
acteristic constant cg associated with the theory. Where Chaitin usually
defines the Kolmogorov complexity with concepts like ‘abstract computer’
or ‘Turing machine’, van Lambalgen in his discussions uses partial recursive
functions, but this change of concepts does not affect the argument.

Here we will briefly sketch a proof by van Lambalgen showing that the
characteristic constant depends on the Gddel numbering of the partial re-
cursive functions. Let ¢, be the partial recursive function with index e,
and define K, (n) = min{l(p) : pc(p) = n}, where I(p) is the length of the
binary string p. It is easy to define a bijection between binary strings and
natural numbers. This makes it possible to speak of the complexity of a

3Concepts, as e.g. different ways of defining Kolmogorov complexity, are explained in
more detail in the sections following.



number. If the p in K, (p) is a number, then I(p) = p.*

This function, then, determines a minimal p that inserted in ¢, outputs
n. To define the Kolmogorov complexity of n, K(n), we use a universal
Turing machine U that takes inputs of the form g = 0¢1p, i.e. a string of e
zeros followed by a one followed by the string p. The machine U simulates
the action of ¢, on p, and we define K(n) as Ky(n). As a lemma van
Lambalgen notes that for any partial recursive function ¢, and for all n,
K(n) < Ky (n)+e+1°

To prove the desired result, van Lambalgen presupposes a listing of the
proofs in PA, and defines a partial recursive function ¢, by the following
condition:

we(m) = n if and only if n is the k in the first proof in PA of a
sentence of the form ¢,,(m) # k.

He then proves that @.(e) is undefined. Suppose p.(e) = n for some n.
Then PA F ¢e(e) # n, and since PA is sound @.(e) # n, and this is a
contradiction. Thus ¢¢(e) # n for all n. From the definition of ¢, it follows
that PA I/ @c(e) # n, and thus PA 4 {pe(e) = n} is consistent for all n.
But then, by the definition of K and K, , and the lemma mentioned above

K(n) <Ky (n)+e+1<e+e+1=2e+1.

It follows that PA + {K(n) < 2e+ 1} is consistent, and consequently PA t/
K(n) > 2e+ 1. The constant ¢ = 2e + 1 then depends on the Godel
numbering of the partial recursive functions and

(t)he above argument shows convincingly that there is no a priori
reason to expect that cg and the information content of S ... are
related in some interesting way [vL89].

Now, elementary arithmetic, PA, is, according to Chaitin, associated
with a constant cp4. The arithmetical fragment of ZF, the standard ax-
iomatization of set theory, is associated with a constant czr. According to
van Lambalgen, we do not even know whether czr > cpg or cpa > czF.
If ST, then § + X is an axiomatization of T' over S, if X is recursively
enumerable, and 7" and S + X have the same theorems, 7'+ S+ X. Citing
a theorem of Kreisel and Levy [KL68], saying that the arithmetical frag-

ment of ZF is not finitely axiomatizable over PA, van Lambalgen concludes

“In section 2.1 we define a bijection between strings and numbers, but there I(p), where
p is a number, equals the number of binary digits in the associated string.
5A result akin to this is briefly discussed in section 2.3.



that there are infinitely many theories S,, where n = 0,1,..., such that
PA S, 48,41 1 ZF, proper, and since both cp4 and czp are finite natu-
ral numbers, infinitely many of the different theories S, must be associated
with the same constant.

Finally, van Lambalgen points out that Chaitin’s misconceptions may
be seen as a confusion between object language and metalanguage. What
Chaitin’s incompleteness theorem states, is that there is a constant cg such
that St/ K(n) > cg, and that K(n) > c¢g is true. For infinitely many n the
string n is a representation of the Godel number of a sentence ¢, where
typically is a finite conjunction of axioms of S, so S F ¢. The Kolmogorov
complexity of ¢ might be large, while the complexity of K(n) > cg is small.
Even if ¢ is a sentence that is not a conjunction of axioms, it may very
well be the case that S+ ¢ and S I/ K(n) > ¢g with ¢ having high and
K(n) > cg low Kolmogorov complexity. Furthermore, nothing at all is said
of the information content of the formula K(n) > cg.5

This paper by van Lambalgen has been ignored by Chaitin, who has con-
tinued to argue for the claim, now known to be unfounded, that cg is a mea-
sure of the information content of S.7 In frustration over this Raatikainen
has published a paper [Raa98], where he elaborates and extends the criti-
cism of van Lambalgen, and presents van Lambalgens arguments even more
clearly.

Where van Lambalgen is a little bit cautious and says e.g. that “Chaitin’s
matematics do not support his philosophical conclusions”, Raatikainen is
straightforward and claims that he shows “conclusively that the received
view is false”.

After a presentation of some preliminaries, the incompleteness theorem
and Chaitin’s philosophical claims, Raatikainen first constructs codings such
that the characteristic constant cg gets the value zero, respectively can be
chosen arbitrarily large. The codings Raatikainen constructs are somewhat
artificial, but they are acceptable in the sense that given a standard num-
bering ¢., as e.g. in [Men87], a numbering 1, is acceptable, if there are
recursive functions f and g such that ¢y, = ¥, and Ygu) = ¢g. This
means that it is possible to go effectively from the standard numbering to
an acceptable one and vice versa. There are of course no preferred way to
construct a coding, and Raatikainen shows that the constant c¢s can be given
any value whatsoever.

Raatikainen uses a slightly different definition of Kolmogorov complexity

6See below for further discussion of this observation.
"See e.g. [Raal1].



of a string p than both van Lambalgen and Chaitin, but this does not affect
the main ideas of his arguments. Using ¢.(p) ~ n meaning that the partial
recursive function with index e takes the value m with the argument p,
Raatikainen defines K (p) = pe(pe(0) ~ p). Here uzf(z) is the least number
a such that 6(a).

His arguments are as follows. He uses the same numbering of Turing ma-
chines as for the partial recursive functions, i.e. the Turing machine 7T, com-
putes the partial recursive function .. For this enumeration Ty, T1, 15, ...
he defines a permutation 7™ on the indices with

0, ifx=mn
™(z)=¢ z+1, ifz<n
x, ifz>n

The algorithmic complexity in relation to this new coding, K™, is
K"™(z) = pz(Fy(r"(y) = 2 ATy |= x)).

With T, |= = we understand that the Turing machine with index y
outputs = and stops with empty input. This corresponds to the formula
¢y(0) ~ z used in the definition of K(z) above. The constructions are
arithmetical, i.e. they can be coded into arithmetic. It is then possible to
effectively find a Turing machine T,, in the initial coding, that searches for
the least number z such that there is a number p and z is (the G6del number
of) a proof in S of (the Gédel number of) a formula representing K™ (p) > 0,
and when it finds such an z, if there is one, T},, outputs p and stops.

The problem now is to find a machine that operates like this and have
its initial code number as the parameter n in K™. This can be accomplished
with the fixed-point theorem of recursion theory, and we let e be such a
number. It then follows that this Turing machine never stops, and so there
is no proof in S of K™(p) > 0 for any p. Consequently cg = 0.

To show that c¢s can be chosen arbitrarily large, and that the theory
S can prove theorems that have complexity larger than the theory itself,
Raatikainen, very sketchily, argues as follows. Let Ty be a Turing machine
that prints the axioms of S and then stops. The complexity of the axioms
of this theory is thus zero. Then let the Turing machines 71,75, ..., T, be
‘uninteresting’ machines for arbitrarily large n, and let T}, 1 output 1. Then
K (1) > n, and so the characteristic constant of S is even larger than n, while
the complexity of the axioms is zero, i.e. ¢g > n.

Raatikainen then proceeds to identify exactly how the constant ¢ gets its
value. We saw above how van Lambalgen showed that K (n), with his defini-



tion, depends strongly on the enumeration of the partial recursive functions.
Raatikainen shows that K (n), with his slightly different definition, is just

the smallest (by its code) Turing machine which does not halt,
but for which this cannot be proved in S.

Let e be the smallest index such that =327, |= x is true and unprovable in
S. Next let n > e and m be arbitrary. It is then impossible to prove in S
that

Thl=mAVYz < n-T, |l=m

It is, thus, not provable in S that a number has a complexity larger than e.

Of course, there is no reason to believe that this code number has any-
thing to say about the power of the theory S.

Like van Lambalgen, Raatikainen identifies the origin of the misuse of
the incompleteness theorem by the confusing of object language and met-
alanguage, but he discusses this in terms of ‘use’ and ‘mention’. In the
following sentence about the dog Fido, the first occurrence of ‘Fido’ is used
and the second is mentioned.

Fido has four legs, and ‘Fido’ contains four letters.
Raatikainen says, concerning sentences K (n) > m, that

the sentence expressing (used) that a particular object has a very
large complexity, e.g. ‘K (n) > m’ (for a very large m), may itself
have a quite simple (when mentioned) syntactical form.

When Chaitin says that ten pounds of axioms cannot prove a twenty-pound
theorem, he confuses the complexity of axioms as mentioned and the com-
plexity asserted by a theorem when used.

In his criticism Raatikainen presupposes that the information content of
a theory is closely related to its power to prove theorems. He points out that
his criticism is valid even if the information content, or power, of a theory is
the algorithmic complexity of its axioms. A theory S is called an extension
of T, if T 4 S. Now, start with e.g. PA, and add sentences {¢1,...¢n}
to PA such that PA + {¢1,...¢n} proves the same theorems as PA, and
choose the sentences ¢; such that they have high Kolmogorov complexity.
Then the axioms of PA+ {¢1,...¢,} are more complex than the axioms of
PA, but the two theories prove the same theorems.

Raatikainen’s last argument is that if Chaitin’s constructions give a min-
imal constant cg, then the halting problem is solvable. As mentioned above,
the value of c¢g is the smallest Turing machine which does not halt, and for



which this is unprovable in S. Start with e.g. PA. We can then find a con-
stant cp, and this is the smallest Turing machine, by its code, that does not
halt, and for which this is unprovable in PA. Note that it is provable in PA,
that Turing machines with smaller index than ¢y that do not halt, do not
halt. Then, add to PA the true sentence =3z, (0) ~ z. This new theory
is associated with a minimal constant c¢;, and we proceed in the same way.
In this way we get an enumeration of all Turing machines that do not halt.
Since the set of Turing machines that do halt is recursively enumerable, this
set would be recursive, so we would have an effective method for deciding
the halting problem.

These critical discussions of van Lambalgen and Raatikainen should ef-
fectively silence the proponents of the received interpretation. But unfor-
tunately this does not seem to be the case. In a recent review paper®
Raatikainen, among other things, discusses Chaitin’s unwillingness to re-
spond to criticism, and says that it

is regrettable that Chaitin does not respond to criticism of his
work but simply evades difficult questions and keeps on writing
as if they did not exist.

1.3 What Extra-Logical Conclusions Can Be Drawn from
a Theorem of Logic?

Knowing that Chaitin’s philosophical conclusions from his incompleteness
theorem are not warranted, it is interesting to ask if it is possible to draw
extra-logical conclusions from a theorem of logic. Here we just intend to
formulate some stray remarks, because this is a problem that is too large
for this thesis. It is not an exaggeration to say that Godel’s incompleteness
theorems are the theorems mostly used, or misused, in this context.

To give a well-known example we can mention Hofstadter. In the last
chapter of [Hof79] he discusses ‘consequences’ of Godel’s two incompleteness
theorems, and he is very explicit in saying that these theorems do not prove
anything in e.g. psychology. At the same time he thinks that the theorems
can reveal new truths if they are used metaphorically. Hofstadter thinks
that the brain and the thinking, the acitivity of the mind, can be considered
from a high, ‘soft ware’ level that contains concepts that cannot be seen
at lower, ‘neuron’ levels, and that this high level might have an explaining
capacity that cannot exist at lower levels. In a way, he equates this with the

8In [Raa01] Raatikainen reviews two recent books by Chaitin.



translation of number theory into metamathematics, and postulates that it
is something like this that gives rise to our unanalysable feelings of the I.

This example of use, or misuse for that matter, is of course just the
tip of an iceberg,” but this is not the place to discuss all the purported
conclusions from Godel’s incompleteness theorems. We will just present a
totally different use of Godel’s first incompleteness theorem by Dummet.!°
He initially says that a Godel sentence g for a formal system S, although
unprovable is recognizable by us as being true. Since there are structures,
or models, in which g is true or false respectively, and we can recognize g as
true, in the standard model, we must have

a quite definitive idea of the kind of mathematical structure to
which we intend to refer when we speak of natural numbers.

A Godel sentence is a sentence of the form VzA(z) where A(z) is a
recursive predicate. To know that VzA(z) is true we need to know that
A(0), A(1) etc. are true, and this we must know for every natural number,
so we must have some possibility to know what ‘natural number’ means.
But the concept ‘natural number’ cannot be fully characterized in first or-
der Peano Arithmetic. In a way, not discussed by Dummet, we know exactly
which structure this is anyhow, because the natural numbers can be charac-
terized up to isomorphism in second order Peano Arithmetic, as was proved
by Dedekind. A large part of Dummet’s paper is devoted to discussions of
the meaning of ‘natural number’, and he wants to know

what light is thrown by Godel’s theorem on the meaning of ‘nat-
ural number’ in so far as understanding its meaning involves
grasping the application of the predicate ‘true’ to arithmetical
sentences.

After a digression into different ways of attaching meaning to ‘natural num-
ber’, and a short discussion of the bearing of the ideas presented on intu-
itionism, Dummet comes to the conclusion that

(t)he intuitive conception of a valid mathematical proof ... can-
not in general be identified with the concept of proof within some

9Views akin to Hofstadter’s can be found in e.g. [Pen89] and [Ruc95]. Rucker’s book
was originally published in 1982. In [Web80] there are extensive discussions of arguments
for and against using Gddel’s theorems, Church’s Thesis, and Church’s and Turing’s results
on decidability as support for mentalism, mechanism, etc.

'0The paper The Philosophical Significance of Gédel’s First Incompleteness Theorem
was originally published in Ratio 1963. It can be found in [Dum?78].



formal system, for it may be the case that no formal system can
ever succeed in embodying all the principles of proof that we
should intuitively accept; and this is precisely what is shown to
be the case in regard to number theory by Godel’s theorem.

Finally, as a support for his intuitionistic claims, he says that

the intuitionists are right in claiming that, if the sense of mathe-
matical statements is to be given in the notion of mathematical
proof, it should be in terms of the inherently vague notion of an
intuitively acceptable proof, and not in terms of a proof within
any formal system.

These two examples of ‘conclusions’ from Godel’s theorem, and the above
‘consequence’ of Chaitin’s theorem, illustrate that one should be very careful
when one uses theorems of logic as support for extra-logical claims. We will
also emphasize that theorems of logic are mathematical theorems formulated
in a precise context, and that conclusions from this domain into e.g. a do-
main like that treated by psychology or whatever only can be analogical. To
use a theorem like Godel’s incompleteness theorem about the human mind
or brain, the mind or brain must be, at least approximately, a formal system
including elementary arithmetic. Whatever man, mind or brain might be,
it is hard to understand what it means to say that man etc. is a formal sys-
tem. It is, of course, something completely different that a man can perform
computing tasks. The problem is akin to the problem of the applicability
of mathematics to ‘reality’. But the problem of the applicability of logic to
‘reality’ consists of at least one more dimension. While it is understandable
to say e.g. that the orbit of Jupiter is approximately elliptic, or that the
energy levels of the hydrogen atom is such and such in the Bohr model of
the atom, it is hardly understandable what it means to say that the human
mind, or brain, is approximately a formal system including arithmetic.

Dummet’s claim is perhaps acceptable together with his intuitionism,
which in a way identifies ‘true’ with ‘provable’, but this is of course not the
only possible way to understand ‘true’. Hofstadter’s idea might be accept-
able if one ‘sees’ the analogy, but Chaitin’s claim is simply wrong,.

When discussing what a ‘proof’ of a proposition in mathematics is, we
think that it is fruitful to separate the concepts ‘proof in a formalized sys-
tem’ and ‘proof in mathematics’. Especially as we understand a proof of a
sentence as an argument for the truth of this sentence. Some proofs in math-
ematics are possible to formalize in first order logic, but it is too restrictive to
use ‘proof’ only of these. Assuming consistency, traditional proofs of Godel’s

10



first incompleteness theorem establish the truth of the Godel sentence. But
it is not provable in a first order formalization of Peano Arithmetic that
this sentence is true. What mathematicians have meant by ‘proof’ has var-
ied through the years, although Euclid’s Elements has been the long time
standard. It is possible that the development of the infinitesimal calculus in
the seventeenth and eighteenth centuries could not have taken place, if only
rigorous proofs would have been accepted by the mathematical community.

To be clear, the concept of true used in this thesis is the ordinary Aris-
totelian, or Tarskian, ‘true by correspondence’.

1.4 A Summary of the Two Papers of the Thesis

In the first paper we present two proofs of Chaitin’s incompleteness theorem.
These proofs are generalized, and the aim of our generalization of the first
version of the theorem is to show that the constant ¢ in the theorem depends
strongly on how the Kolmogorov complexity is defined. This version of
Chaitin’s theorem reads as follows.

Theorem 1.1 There is a constant ¢ such that for every formal system
(T, p), if (T,p) is sound and (T,p) proves K(s) > n, then n <l(p) + c.

In the theorem p is the set of the axioms, and 7" are the rules of deduction
of the formal system (T, p). The function /(p) is the length of p, and K (s)
is the Kolmogorov complexity of the string s. The definition of K utilizes a
fixed, universal Turing machine U, and K is defined as K(z) = min{l(p) :
U(p) 4= z}. The proof of the theorem utilizes a pair coding of a number
and a string. It is shown that generalizing the length function used in the
definition of K, and the pairing function gives a valid proof for a large class
of choices. The dependence of ¢ on the choices made is immediate.

We now turn to the second version of Chaitin’s theorem.

Theorem 1.2 There is a recursively enumerable set B with an infinite com-
plement, such that for every aziomatized, sound theory T there are only
finitely many n for which the formulae n ¢ B are both true and provable in
T, although infinitely many such formulae are true.

The set B is a simple set, that is the set B is non-recursive, recursively
enumerable, and the complement of B is infinite and contains no recursively
enumerable infinite subset. In fact B = {z : K(z) < f(z)}, where K is as
above, and f is a function satisfying certain conditions to be specified later.
In the generalization of this theorem we show that the length function in
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the definition of K can be replaced by a large class of functions giving rise
to different simple sets B.

Our argument thus shows that also this form of Chaitin’s incompleteness
theorem may be shown under more general conditions. The construction,
furthermore, gives rise to a wide class of simple sets.

In the second paper, which is the main paper of the thesis, we show that
something positive can be said about the possibility of defining a measure
of the power of extensions of Peano Arithmetic. In order to do this we use
a fragment of the modal logic GL, the letterless modal sentences, and its
Lindenbaum algebra. We define a probability-like measure of certain finite
parts of this fragment, and thus assign numbers to the equivalence classes of
this part of the Lindenbaum algebra of GL, or rather to representatives of
the equivalence classes. Via a translation we uniquely embed this structure
into the Lindenbaum algebra of Peano Arithmetic. The translation of a
letterless sentence is called a constant sentence. Using the same measure we
get a measure on the equivalence classes of the corresponding finite fragment
of the Lindenbaum algebra of Peano Arithmetic. Further, we show how
this measure can be extended to certain important non-constant sentences.
Finally, we use the measure to define a measure also on some extensions of
Peano Arithmetic of the type PA+ ®, where ® is a set of constant sentences.

We also discuss problems that must be dealt with if one tries to extend
our measure to a larger class of extensions.

One conclusion of this paper, then, is that it is possible to design a
measure m on certain extensions of PA. The constructed measure m takes
rational numbers as values, and the measure is such that m(S) < m(T), if
SHT.
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2 A Note on Chaitin’s Incompleteness Theorem

2.1 Introduction

Chaitin’s theorem says roughly that for every sound formal system 7' there
is a constant ¢ such that T' does not prove any true proposition of the form
K (z) > ¢ although an infinitude of propositions of this form are true. The
function K is the Kolmogorov complexity of the string z, and is to be defined
in section 2.2. The result is not especially sensitive to how the complexity
measure K is defined.!! This suggests that the theorem can be generalized
to a larger class of complexity measures. In this paper we show that this is
indeed the case, and that the value of ¢ depends on the measure chosen and
not only on the theory T

In section 2.2 we present a standard definition of Kolmogorov complexity.
Section 2.3 presents one version of Chaitin’s incompleteness theorem, and a
generalized version of it using a more general complexity measure. In section
2.4 we present another version of the theorem where we make use of simple
sets, and finally we show a more general version of this proof. The rest of
this section presents some notation and terminology.

As usual we use r.e. for recursively enumerable. The complement of a
set S is denoted S¢. A non-recursive set S is simple if it is r.e., S€ is infinite,
and every r.e. set D C S¢ is finite. All sets considered are subsets of the
natural numbers. A function is recursive if it is partial recursive and total.
Throughout the paper the notation ; presupposes a fixed enumeration of
the partial recursive functions. We write ¢;(n) | (¢;(n) 1) when the partial
recursive function ¢; converges (diverges) with input n, that is, if the func-
tion has respectively has not a value for input n, and ;(n) = m, if ¢;(n)
converges and takes the value m. If ¢ and 7 are two partial recursive func-
tions, then p(n) = 9(n) (¢(n) < (n)) is true if and only if p(n) |, ¥(n) |,
and ¢(n) = ¥(n) (p(n) < 1¥(n)), and false otherwise. The restriction of
a function f to a set S is denoted f | S. We also use Turing machines in
some of our arguments, but the arguments do not depend on any special
feature of Turing machines, so any version will do. An arithmetical formula
is Ag if all of its quantifiers are bounded, and it is X1 (TIy) if it is logically
equivalent to a formula of the form Jva (Vva), where « is a Ap-formula. A
formula is %, (II,) if it is logically equivalent to a formula of the form Jva
(Vva) where v is IT,,—1 (X,,—1). The length | of a string z, l(z), is the num-
ber of symbols in it. We also assume that we have a bijection between the

"See for example Boolos and Jeffrey [BJ89], Odifreddi [0di93] and Chaitin [Cha71,
Cha74] for alternative ways of defining K.
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natural numbers and the set of all binary strings B* = {0,1}*. The strings
are ordered lexicographically, and the number 0 is paired with the empty
string, 1 with the string 0, 2 with the string 1, 3 with the string 00, etc.
This has the advantage that we can freely switch between reasoning about
numbers and binary strings. In this way we can talk about the Kolmogorov
complexity of a number as well as of a string. The length of a number is the
length of the corresponding binary string. The base 2 logarithm is denoted
log. The floor function, that is the largest number that is smaller than or
equal to the argument, is denoted |-|. This notation has as a consequence,
that I(n) = [log(n + 1)] where the first occurrence of n can be a string or
a number, and the second is a number. In the proofs below we freely make
use of elementary results from recursion theory as well as Church’s thesis.
Everything we use can be found in elementary texts on recursion theory as
for example [0di93]. The end of a proof is marked with a O.

2.2 Kolmogorov Complexity

Chaitin’s theorem has achieved attention because it uses a new kind of
construction for producing incompleteness results, and also because of the
widespread misconceptions of the meaning of the constant ¢ as some kind of
measure of the information content of a formal system T'. See for example
van Lambalgen [vL89] and Raatikainen [Raa98] for devastating criticisms of
these misunderstandings.

We start off by defining the Kolmogorov complexity of a binary string,
and in our exposition we primarily follow Li and Vitanyi [LV93].

The idea behind the Kolmogorov complexity is that some binary strings
have very short descriptions, while most strings have not. Consider for ex-
ample the string 0101...01 = (01)106, which contains two million binary
digits, and can be described using just a few symbols. Then consider a
random string consisting of two million bits. There seems to be no way of
describing this random string in a shorter fashion than presenting the whole
string. Strings which have short descriptions have low Kolmogorov complex-
ity, while strings which only have long descriptions have high complexity.

Let z and p be binary strings. Any partial recursive function ¢ such that
o(p) I= = is a description of . The Kolmogorov Complezity of a binary
string x is

Ky(z) = min{l(p) : ¢(p) |= =z}
where ¢ is a fixed universal partial recursive function. Since ¢ is fixed, we
usually skip the subscript ¢. The string p above can be thought of as a
program that generates the string .

14



We now proceed to state some properties of K. By the example discussed
above, we see that there are strings with low Kolmogorov complexity, strings
that are very compressible, in fact infinitely many. For every number n, there
are 2" binary strings of length n, and at most 2" — 1 shorter programs. Since
there are only finitely many strings that are shorter than a constant ¢, there
are infinitely many true sentences of the form K(z) > c. For each constant
¢, we call a string c-incompressible, if K(z) > I(z)—c. The number of strings
that are c-incompressible is then 2" — 2" ¢ 4 1. The majority of the strings
of length n, with n > ¢, are c-incompressible. For a set A of cardinality m,
there are at least m(1 —27¢) 4+ 1 elements z with K(z) > log(m) — ¢, since
there are 2'°8(m)—¢ _1 programs of length less than log(m) —c. Furthermore,
K (z) > l(z) for infinitely many z, since ¢ not in general is the most effective
description of z. We formulate some of these observations as a lemma.

Lemma 2.1 (i) There are at least one binary string (number) x of length
n such that K(x) > n.

(ii) For every constant c there are infinitely many strings x such that
K(z) > c.

(7ii) Let ¢ be a positive integer. Then every finite set A with cardinality
m has at least m(1 —27¢) + 1 elements x with K(z) > log(m) — c.

(iv) K(z) > I(z) for infinitely many x.

As we noted in the introduction there are many alternative ways of
defining the Kolmogorov complexity of a binary string or a number. To list
a few we have according to Odifreddi [Odi93] the Kolmogorov complexity
defined as K(z) = pi(p;(0) J= z), where u is the p-operator. In [Cha71]
Chaitin defines the Kolmogorov complexity of z as the least number of
states a three tape Turing machine with empty input must have to produce
z. In [Cha74] Chaitin uses the minimal length of a program that produces
xz on an abstract computer. Finally, in [BJ89] Boolos and Jeffrey define
it as the least number of quadruples a one tape Turing machine with an
empty string as input must have to produce z. There is not any intrinsic
difference between the types of measures listed above. There are for example
techniques for transforming multitape Turing machines into single-tape ones.
When the index of a partial recursive function is known, it is possible to
construct a Turing machine that computes the same function. It is thus no
great wonder that the same type of results can be proved using the seemingly
different definitions above.
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2.3 A Generalized Version of Chaitin’s Incompleteness
Theorem

In this section we intend to prove a somewhat more general version of one
form of Chaitin’s incompleteness theorem. The generalization consists in
letting the function used in defining the Kolmogorov complexity of a num-
ber be a general function with certain restrictions. We will first present the
proof in [Cha74], and then discuss how this can be generalized. In his proof
Chaitin uses the concept of an abstract computer, a concept which is essen-
tially the same as that of a Turing machine. The definition of Kolmogorov
complexity in [Cha74] is almost the same as in section 2.2, but instead of
using a universal, partial recursive function Chaitin uses an abstract com-
puter, and we will use, almost following Chaitin, a fixed universal Turing
machine U.

Ky(z) = min{l(p) : U(p) I= =}

We will suppress the subscript U, and use the same symbol for Kolmogorov
complexity as above. The notation U(p) |= z means that the Turing ma-
chine U with input p stops with output z. Also, as above, z is a binary
string, I(p) is the length of a program p, in binary, fed to the Turing ma-
chine U. But note that we could equally well think of z and p as numbers.

A universal Turing machine can simulate every Turing machine. What
is needed is that a number of bits is reserved, e.g. in the beginning of the
input, to identify the Turing machine that is to be simulated. How many
bits that are needed depends on how the input is specified, and of how the
coding of the Turing machines is made. This cost of simulating a Turing
machine M on U is denoted simM. The exact value of simM depends on
the constructions, and we just note that a number such as simM exists. As
a pair coding of a number k and a string s, Chaitin uses the string 0*1s.
One standard way of specifying the input of a universal Turing machine U
that simulates M, is to use a self-delimiting description of the code of M.
The input then takes the form 04" 1np, where M = T}, in an enumeration
of the Turing machines. Then simM = 2l(n) + 1

In the proof below we also use the evident estimation K(M(p')) =
min{l(z) : U(z) = M)} < I(p') + simM, if M(p') |. Chaitin’s theo-
rem [Cha74] can now be formulated as follows.

Theorem 2.1 (Chaitin) There is a constant ¢ such that for every program
p, if U(p) generates a sentence of the form K(s) > n only if it is true, and
U(p) outputs K(s) > n, then n < I(p) + c.
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In the formulation of the theorem, U(p) is a Turing machine that suc-
cessively generates strings with the program p as input.

Proof: Let C be a Turing machine that does the following with input
p' = 0F1p. If p’ = 0%, C stops with no output. If p’ # 0F, then C simulates
U(p), and C lets U(p) search for sentences of the form K(s) > n, where
n > I(p') + k. If and when such a sentence is found, C outputs s and stops.

Now suppose that p and U(p) satisfies the hypothesis of the theorem,
and consider the computation C(0°™C1p). If C(0*™ 1p) |= s, we have

K(s) < 1(0°™C1p) + simC = I(p) + 2simC + 1.
We also have
n > 1(p') + k = 1(0°™C1p) + simC = I(p) + 2simC + 1.

But
K(s) >n >1(p) +2simC + 1

and we have a contradiction. Letting ¢ = 2simC + 1 proves the theorem. O

As is obvious from the proof, the value of the constant ¢ depends on
the chosen coding of Turing machines, since the cost of simulating C on U
is a term in ¢. Furthermore, the value of ¢ also depends on the choice of
complexity measure, based on the length function, and the coding of pairs.

The corresponding result can be proved, if we consider (U, p) as a formal
system, where U are the rules of inference of a formal system, and p is a set
of axioms. The theorem then reads: There is a constant ¢ such that for all
formal systems (U, p), if (U,p) is sound and (U, p) proves K(s) > n, then
n <l(p) +ec

If we scrutinize the above proof, we see that a corresponding result can
be proved if we define the complexity measure as

K{)(s) = min{f(p) : U(p) |= s}

where f is a suitable recursive function. The restrictions we have to make
on f is that K/ is unbounded, and that f does not grow too fast. We want
the results in Lemma 2.1 still to be true. In the discussion below we use
(z,y) as an abbreviation for a recursive function pairing the number z and
the string y. The chosen pairing function must be invertible in both its
arguments. The proof may now proceed as above.

As before we start a computation C((simC,p)), and supposing that
C({simC,p)) = s we get the following corresponding estimations. As be-
fore the exact value of simC depends on the constructions chosen.

Kl(s) = K/(C({simC,p))) = min{f(z) : U(z) {= C((simC,p))} <
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< f({simC,p)) + simC

and
n > f((simC,p)) + simC

Finally, because K/ (s) > n is true, we have
K'(s) > n> f((simC,p)) + simC

which is a contradiction. If the function f and the pairing function satisfy
the condition

f((simC,p)) = f(p) + ¢

for some constant ¢/, we can choose ¢ = ¢ + simC and the generalization
of Chaitin’s theorem is proved. This also shows the dependance of ¢ on f
and the pairing function chosen. We are now in a position to formulate a
generalization of Chaitin’s theorem.

Theorem 2.2 Let K/(s) = min{f(p) : U(p) = s}, where f and (z,y)
satisfy the restrictions in the above discussion. There is then a constant
¢ such that for every program p, if U(p) generates a sentence of the form
K1(s) > n only if it is true, and U(p) outputs K¥(s) > n, thenn < f(p)+c.
Furthermore, the constant ¢ depends on both the choice of f and the pairing
function.

Apparently Chaitin’s theorem, in which f(p) = I(p) and (k,s) = 0*1s,
is a special case of this theorem. And the conclusion that ¢, as the constant
comes out in the proof of this form of Chaitin’s theorem, could measure the
information content of a theory is not at all warranted, or is simply wrong.

It is not especially remarkable that it is possible to use other functions
than the length of a binary string. As is well known, the proof rests on a
syntactical version of Berry’s paradox. The paradox is originally semantical
and it can be derived considering the expression

the least natural number not nameable in fewer than 22 syllables.

The syntactical counterpart, used in the proof of Chaitin’s theorem, can be
formulated

the least natural number not computable by a computer of com-
plexity less than n.
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As is obvious, the paradox can be derived using a plentitude of formulations.

In [Raa98] Raatikainen discusses the constant ¢, and conclusively shows
that ¢ cannot measure the power of a formal system. Sometimes, reading
Chaitin, one gets the impression that he means that the constant produced
by his proof is a measure of the power of a formal system. In [Cha82] he for
example contrasts Godel’s incompleteness theorem with his own and says
that

(t)hese traditional proofs of Gidels’s incompleteness theorem show
that formal aziomatic systems are incomplete, but they do not
suggest ways to measure the power of the formal axiomatic sys-
tems, to rank their degree of completeness or incompleteness.

And it is understood that in Chaitin’s incompleteness theorem this ranking
is achieved.

Our result reinforces Raatikainen’s criticism, and shows that the constant
¢, produced by Chaitin’s proof, depends not only on the formal system, but
on both the coding and the complexity measure chosen.

2.4 A Second Proof of Chaitin’s Incompleteness
Theorem and its Generalization

There is a variant of Chaitin’s incompleteness theorem where the proof uses
simple sets. In this section we present, following [LV93], a standard proof of
this version of the theorem, and we then study how this proof can be gen-
eralized. We first list some of the properties of the Kolmogorov complexity
K as it was defined in section 2.2.

Theorem 2.3 (i) K is total, and K(z) < I(z) + c.

(i) The function K is not partial recursive.

(iii) The set A = {(z,a) : K(x) < a} is r.e., but not recursive.

(iv) Every partial recursive function ¢ which is a lower bound of K is
bounded.

(v) Let f be a recursive function with g(z) < f(z) < log(z) for all z, and
some unbounded monotonic function g. Then the set B = {z : K(z) < f(z)}
is simple.

Proof: (i) Note that a string is always a description of itself. The con-

stant c is the cost of using a fixed, universal partial recursive function in the
definition of K instead of a possibly more effective one.
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(ii) We show the stronger proposition that no partial recursive function
@, defined on an infinite set of points, can coincide with K over the whole
of its domain.

Suppose that there is a partial recursive function ¢ such that ¢(z) =
K (z) on an infinite set of points.

Since the domain of ¢ isr.e. and every infiniter.e. set contains an infinite
recursive subset, we can select an infinite recursive subset S in dom, the
domain of ¢. Define

P(m) = min{z € S : K(z) > m}.

The function % is recursive, since ¢(z) = K(z) on S, and it is also un-
bounded. By the definition of ¢ we have K (1(m)) > m, and by the defini-
tion of K we have K (i(m)) < Ky(¢(m))+ ¢y for some constant c,,. Finally
we have Ky (¢(m)) < I(m). Combining this gives us

m < K(¢(m)) <U(m) + ¢y = [log(m +1)] +¢y

which is a contradiction for large enough m.

(iii) Let U be a universal Turing machine that computes the function ¢
in the definition of K. To decide if (z,a) € A for fixed (z,a), we run U for
all p such that {(p) < a successively in ¢ steps, where t = 1,2,3,..., and test
whether ¢(p) J= z. The procedure eventually stops in a finite number of
steps if (z,a) € A since we need only test finitely many p. If (z,a) ¢ A the
procedure never stops. The set A is thus r.e.

To show that A is not recursive, we suppose for contradiction that A is
recursive. It is then possible to compute K(z). By item (i) we know that
K(z) <l(z)+ c for some fixed constant c. Using this bound we successively
test whether (z,0), (z,1), etc belong to A until we find a value for K(z).
But this contradicts item (ii).

(iv) Let ¢ be a partial recursive function and define D = {z : ¢(z) <

If D is finite, ¢ is surely bounded.

Suppose that D is infinite, and for contradiction that ¢ is unbounded.
Recursively enumerate the domain of ¢ without repetition, and define a
recursive function g by

g(n) = the least z in the enumeration such that ¢(z) > n.

By hypothesis there is such an z for every n. Since g is recursive there is an
index k such that g = ;. We may then conclude that

n < p(z) < K(z) < K(g(n)) = K(ex(n)) < l(n) +¢,
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where ¢ is a constant depending on the definition of K and the cost of
simulating ¢, on the universal, partial recursive function ¢.!? For large
enough n we have a contradiction.

(v) That B is r.e. follows from item (iii).

That B¢, the complement of B, is infinite follows from the results pre-
sented in Lemma 2.1. With B¢ finite only finitely many strings would have
a complexity greater than I(z) = |log(z + 1)].

Now suppose that D is a r.e. subset of B¢, and suppose for contradic-
tion that D is infinite. The restriction of f to D, is a partial recursive lower
bound for K. Therefore f | D is bounded according to item (iv). Since f is
unbounded and growing with x, we have a contradiction. The conclusion is
that D is finite, and therefore B is simple. O

As a corollary of this theorem we have a version of Chaitin’s theorem.

Corollary 2.1 There is a r.e. set B with an infinite complement, such
that for every aziomatized sound theory T there are only finitely many n for
which the formula n ¢ B is both true and provable in T, although infinitely
many such formulae are true.

Proof: Let B = {z : K(z) < f(z)} where f is the function in theo-
rem 2.3, item (v), and let B¢ be its complement. Define the set D = {n :
T+n¢ B}.

Clearly D C B¢, since T is sound. Since B is simple and D is r.e., D
must be finite. O

Since the set B is r.e., the relation n ¢ B, that is f(n) < K(n), is IT;. Tt
is worth noting that this is just like the Godel sentence constructed in the
proof of Godel’s first incompleteness theorem.

To see how this result can be generalized we replace the length function
with an increasing, recursive function f that does not grow too fast. As
in section 2.2 we fix a universal partial recursive function ¢ and define the
complexity of a number, or a binary string, as follows.

K'(z) = min{f(p) : ¢(p) I= 1}

It is essential that f is such that K7 satisfies the results discussed in connec-
tion with Lemma 2.1, so we assume that f are such that these conditions are
fulfilled. This means e.g. that an infinity of strings have a low complexity,
and that K/(z) > f(«) for infinitely many z.

12¢f. the discussion in section 2.3 on simulating a Turing machine on a universal Turing
machine.
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The intention now is to formulate and prove some theorems that are
parallel to the results in Theorem 2.3.

Theorem 2.4 (i) The function K' is total, and there is a constant ¢ such
that K1 (z) < f(z) + ¢ for every z.

(ii) The function K7 is not partial recursive.

(iii) The set A = {(z,a) : Kf(z) < a} is r.e. but not recursive.

Proof: (i) Let ¢ simulate identity function and let p = z. The constant
¢ can then be seen as the cost of simulating the identity function on ¢.

(ii) As above we prove that K/ cannot coincide with any partial recursive
function ¢; on the whole of domej, if the domain is infinite. So, suppose
that K/ = @; on dom; for some index j, where the domain of ; is infinite.
Further, let S be an infinite, recursive subset of dom;. Define the recursive
function

P(m) = min{z € S : K/ (z) > m}.

Since K7 is unbounded 4 is total, and since S is recursive 1 is too. According
to the definition of ¥, K/ (1(m)) > m. But, letting ¢ simulate 1, we have

m < K/ (y(m)) = min{f(p) : o(p) = 9(m)} < f(m) +¢,

for some constant c¢. This gives a contradiction if f is chosen such that
f(m) + ¢ < m for large enough m.

(iii) It is already clear that K/ is not recursive, and consequently A is
not recursive. To show that A is r.e. we let, as above, U be a universal
Turing machine that computes the function ¢ in the definition of K/. To
decide if (z,a) € A for fixed (z,a), we successively run U for all p such that
f(p) < aint steps, where t = 1,2,3, ..., and test whether ¢(p) |= z. The
procedure eventually stops if (z,a) € A since we need only test finitely many
p. If (z,a) ¢ A the procedure never stops. The set A is thus r.e.O

In the proof of Theorem 2.3, item (v), we used the fact that the function
K is irregular, meaning that large arguments can have short descriptions,
and that these occur, as it seems, at random. We now want a corresponding
result in a more general version. What we wish to prove is that every partial
recursive function @ that is a lower bound on K/ is bounded.

So we let 0 be a partial recursive function such that 6(z) < Kf(z), and
define D = {z : §(z) < K'(x)}.

If D is finite we are finished, so suppose D is infinite, and assume that
0 is unbounded.
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Enumerate the domain of # without repetition, and define a recursive
function g.

g(n) = the least z in the enumeration such that 8(z) > n

Simulating g on ¢ gives
n < 8(z) < K/ () < K'(g(n)) = min{f(p) : ¢(p) 4= g(n)} < f(n) +c

for some constant c. To receive a contradiction we have to choose the func-
tion f such that f(n) + ¢ < n for large enough n. We then have a proof of
the following theorem.

Theorem 2.5 If the complexity measure f is chosen such that f(n)+c<n
for large enough n, then every partial recursive function 6 that is a lower
bound of K7 is bounded.

The next result we want to prove is that the set B = {z : Kf(z) < h(z)}
is simple, if g(z) < h(z) < f(z), where g is an unbounded, monotone
function, and h is a recursive function.

That B is r.e. follows from Theorem 2.4 item (iii). Since we have chosen
f such that K/(z) > f(z) for infinitely many z, then B® = {z : K/(z) >
f(x)} is infinite. Now let D C B¢ where D is r.e., and suppose for a
contradiction that D is infinite. Then h | D is a partial recursive lower
bound to K. According to the above theorem h | D is bounded. But since
g is unbounded and monotone, and g(z) < h(z) we have a contradiction.
The following result is then clear.

Theorem 2.6 The set B = {z : Kf(z) < h(z)} is simple if g(z) < h(z) <
f(x) for some unbounded, monotone function g, and f(x)+c < = for x large
enough.

We may finally claim that

Corollary 2.2 Let K/ (z) = min{f(p) : ¢(p) |= z}, where KI satisfies the
conditions discussed in connection with Lemma 2.1, and that f(z)+c < z for
z large enough. Let B = {z : K/(z) < h(z)} where g(z) < h(z) < f(z) for
some unbounded, monotone function g. Then for every aziomatized sound
theory T, extending PA, there are only finitely many n for which the formula
n & B is both true and provable in T, while infinitely many such formulae
are true.
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Proof: As was shown in theorem 2.6 the set B is simple. Defining
D={n:TkFn¢ B}. We then have D C B¢, and since D is r.e., D must
be finite. O
Once again Chaitin’s theorem is a special case. Choosing f = [ gives us
K =K.

2.5 Conclusion

Our arguments show that incompleteness results of Chaitin’s type can be
proved under rather general conditions. Our result reinforces Raatikainens
criticism of interpretations of Chaitin’s theorem. Associated with a theory
T is not one single constant ¢, but, depending on the complexity measure
chosen there are lots of constants associated with a formal system 7. And
this of course means that ¢ cannot measure the ‘information content’ of 7.
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3 Levels of Undecidability

3.1 Introduction

When we study extensions of elementary arithmetic, Peano arithmetic, or
PA for short, we meet a very intricate structure. Efforts have been made
to construct measures on for example the ‘information content’ of these
extensions. To be interesting, a measure on a theory, or on the sentences of
a theory, ought to be recursive, that is it should be possible to compute the
measure of a theory or of a sentence. But if we succeeded in accomplishing
this, we would have a decision procedure for theoremhood, and this we
know is impossible.!> The qustion then naturally arises if it is possible to
say anything positive at all about measurements in complex structures such
as these. In this paper we show that it is in fact possible to do so. We define
a measure, which we call a provability measure, of an interesting fragment
of PA. This measure is also used to create a measure on some extensions
of elementary arithmetic. In doing this, we on one hand make something
positive, on the other hand we more clearly than before state some problems
that must be taken care of if we are to construct a more comprehensive
measure than we do in this paper. We now turn to a well-known attempt
to measure information content.

In the early 1970’s Chaitin'* announced his now famous incompleteness
theorem saying roughly that for every sound formal system T there is a
constant ¢ such that T does not prove any true proposition of the form
K(n) > ¢, although infinitely many propositions of this form are true. K(n)
is the Kolmogorov complexity of the string n. The Kolmogorov complexity
of a string is usually described as the length of the shortest description of
the string. The concepts ‘length’ and ‘description’ can be specified in many
ways, and depending on how this is done we get different versions of the
function K. Several variants of the proof appeared in the seventies. There
also emerged an interpretation of the meaning of the constant ¢ appearing
in the theorem. The constant was supposed to measure the information
content of the theory T. As the story goes, the constant ¢ was thought to
depend only on the theory T'. This interpretation has been severely critized
by van Lambalgen [vL89] and Raatikainen [Raa98], who showed that the
value of the constant ¢ depends on the G6del numbering used. It can also
be shown that the value of ¢ depends on how the function K, measuring
the Kolmogorov complexity, is defined. Furthermore, the constant ¢ would

13This problem is also discussed in the introduction.
See e.g. [ChaTl].
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generate a linear order of the extensions with respect to information content,
and this is hardly reasonable. The unequivocal conclusion is that ¢ cannot
measure the information content of 7.

As we said above, one aim of this paper is to show that the situation is
not totally negative. A recent paper by Knight gave rise to an idea of how
to use the modal logic GL to shed light on a fragment of PA.15 Although
our method is inspired by Knight’s paper, it differs in its use of a modal
logic, and in the results aimed at.

A modal, propositional logic is ordinary propositional logic extended
with the symbol O, usually read as ‘it is necessary that’. Additional axioms
and rules of deduction take care of the use of O in the calculus. Many
logicians have been suspicious of modal logics, and it was not until the early
1970’s, with the development of a reasonable semantics, that modal logic got
a wider acceptance. The most prominent use of modal logic that has been
developed since then is provability logic, usually named GL after Godel and
Léb. In this logic the box is read ‘it is provable in PA that’.

With the use of the modal logic GL we identify levels in the Lindenbaum
algebra of PA. The levels consists of equivalence classes of the so called
constant sentences, the translations of letterless modal sentences. With the
help of these levels it is possible to identify an order type. It is also possible
to define a probability-like measure, which we will call a provability measure,
on finite fragments of the set of equivalence classes. Finally, using the same
ideas, we define a kind of measure on certain extensions of PA.

In this paper we connect some well-known facts in a new and interesting
way. Sections 3.2 and 3.3 contain elementary results concerning PA and GL,
and readers familiar with these results may skip these sections. The results
are presented in order to make the paper somewhat more self-contained. In
section 3.4 we discuss the letterless sentences of GL and their connection to
the constant sentences of PA. We show how the set of traces of letterless
sentences build up a Boolean algebra, which is isomorphically embeddable
in the Lindenbaum algebra of PA. Section 3.5 presents a definition of a
provability measure on constant sentences, and section 3.6 exhibits some
ideas, including the fixed point theorem of GL, of how to extend this prov-

5In [Kni02] Knight discusses ways of measuring inconsistency. Using a finite proposi-
tional language he introduces a probability-like measure in order to measure how consistent
a set of sentences is. A set containing an explicit inconsistency gets the measure zero, and
a set that is not inconsistent gets the measure one. The other sets get intermediate val-
ues. In doing this Knight uses the disjunctive normal form for propositional sentences,
and elementary results in probability theory. See e.g. [Par94] which is one of Knight’s
main sources. This book can also be consulted when reading section 3.5 of this paper.
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ability measure to some non-constant sentences. Section 3.7 discusses some
possible shortcomings in our construction. This discussion centers on partial
conservativeness and partial Lindenbaum algebras. In section 3.8 we present
what Boolos called ‘extremely undecidable sentences’, and show that these
sentences cannot be caught in the structure we present. Finally, in section
3.9, we define a measure on some extensions of PA.

Concepts and notations are introduced as they are needed. At this point
we only mention that we use @, etc. as meta-variables ranging over sen-
tences of arithmetic, and A, B etc. as meta-variables ranging over sentences
of the modal logic GL.

3.2 Peano Arithmetic

In this section we present most of the material concerning Peano Arithmetic
needed for the sequel. The results are presented without proofs, but proofs
of all of the results we cite may be found in Mendelson [Men87], or in some
cases in Lindstrém [Lin97]. We presuppose a first-order logic with identity,
and define the language of PA, Lps = {S,+, x,0}. We also presume that
we have the standard axioms directing the use of the symbols in Lp4, and
furthermore the axiom scheme of induction. All this given, we can in the
usual way, via a Godel numbering, formalize the syntax of PA. To the
relation PRF(x,y), that is the relation

y is the Godel number of a proof in PA of a formula with the
Godel number z,

there corresponds in Lp4 a formula Prf(z,y) such that
PAVF Prf(m,n) iff PRF(m,n) is true, and

PAF =Prf(m,n) iff PRF(m,n) is not true.

In the formula Prf(m,n), the symbols m and n are formal numerals, i.e.
SS...50, containing m respectively n occurrences of the symbol S, but
we identify the numeral for the Godel number of m, with the number m.
The formula Pr(z) is short for JyPrf(z,y), and it expresses that z is (the
Godel number of) a formula that is provable in PA. In the sequel we will
normally omit the phrase within parentheses above. We will also, following
Lindstrom [Lin97], write e.g. Pr(y) instead of Pr([¢]), where [¢] is the
numeral for the Gédel number of the sentence, or formula, ¢. This should
not render any problem of reading. It should also be clear that we make a
choice when we define the formula Prf(z,y) since this formula depends on
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how the axioms of PA are enumerated. Different enumerations give different
proof predicates. However, this choice does not affect the results discussed
in this paper.

To symbolize a sentence, disprovable in PA, we use 1, which can be
understood as the sentence 0 = S0. The sentence —Pr(L) thus expresses
that a contradiction is not provable in PA, i.e. that PA is consistent, and
we use Con as short for -Pr(L). On some occasions we will refer to other
theories than P A, where a theory is understood as a set of its axioms, and
we will then write Prp(yp) expressing that ¢ is provable in the theory T,
and analogically we write Conr to express that the theory T is consistent.
As above this involves a choice, since the proof predicate depends on how
the axioms of T' are enumerated.

We now proceed to state some facts concerning the provability predicate
in PA. The results presented can be formulated in much stronger versions,
but we will almost only work in PA, so we use the weaker variants stated
below.

Theorem 3.1 (The Fixed Point Theorem of Arithmetic) Let&(z) be
a formula with only one free variable x. There is then a sentence ¢ such
that PAF ¢ < &(p).

Using the fixed point theorem, we get a Godel sentence v for PA letting
&(z) be the formula —Pr(z), that is PA F v <» = Pr(y). Thus, the Godel
sentence in a way states of itself that it is not provable in PA. In a problem,
raised by Henkin in the early 1950’s, he asked whether a sentence expressing
its own provability is provable. Using the Hilbert-Bernays-Lob provability
conditions Lob proved in the mid fifties what has become known as Lob’s
theorem. The provability conditions are the following propositions.

(P1) PAF ¢ = PAF Pr(yp)
(P2) PAF Pr(p — 9) — (Pr(y¢) = Pr(v))
(P3) PAFE Pr(p) — Pr(Pr(y))

Theorem 3.2 (L6b’s Theorem) For any sentence ¢, if PAF Pr(yp) —
@, then PAF .

In fact, the following somewhat stronger arithmetical version of Lob’s theo-
rem is provable.

(L) PAF Pr(Pr(y) = ¢) = Pr(p)
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To prove (L) Lob used the fixed point PA F 6 < (Pr(6) — ¢) and the
provability conditions.

A sentence @ is provable in PA, if PA | @, disprovable, if PA+ -, and
undecidable, if PA 1/ ¢,—p. A possible way to depict the relationship be-
tween sentences in Lp 4 is to study the Lindenbaum algebra of PA. Defining
the relation < on sentences by ¢ < 9 iff PAF ¢ — 1) we get a relation that
is reflexive and transitive. Letting ¢ = ¢ iff ¢ < 9 and ¥ < ¢, we get an
equivalence relation. The equivalence class, the degree, with representative
¢ is denoted d(¢p). Finally, letting the symbol < also order the equivalence
classes we get a partial ordering of the degrees. The strict ordering between
degrees is defined d(y) < d(v) iff d(¢) < d(v) and d(v) £ d(y). Letting
d(L) =0, d(—L1) =1, d(e) Ud(®) = d(p V 9) (the supremum or join) and
d(p)Nd() = d(¢ A1) (the infimum or meet) we get the Lindenbaum algebra,
of PA. The structure so defined is a dense, countable Boolean algebra, and
is as such not especially interesting, since all such algebras are isomorphic.
One idea behind the study of Lindenbaum algebras of theories was that dif-
ferent theories could have different Lindenbaum algebras. The Lindenbaum
algebra of a consistent and complete theory consists of only two elements,
but the algebras of incomplete extensions of PA are all isomorphic. Between
the provable and the disprovable sentences, or more correctly between the
degrees of 1 and —_1, are the undecidable sentences. We can e. g. formulate
the facts that 0 = d(L) < d(y) < d(=L) = 1, where 7 is a Godel sentence
for PA, and 0 = d(L) < d(Con) < d(—L) = 1, stating that v and Con are
undecidable in PA. We will often, in the sequel, speak of representatives of
degrees rather than the degrees. This means that we sometimes will write

@ < for d(p) < d(¥).

One aim of this paper is to show how to define levels at which, at least
some, undecidable sentences reside, and how some undecidable sentences are
related to these levels.

Sometimes we need to classify the complexity of arithmetical formulae,
and following Kaye [Kay91] we define an arithemetical formula to be Ag if
all of its quantifiers are bounded. For convenience we also denote this class
with ¥y and IIy. A formula is 3,41 (II,41) if it is provably equivalent in
PA to a formula Jvp (Voy), where ¢ is I, (£,).!® Saying that a formula
is I'y,, we mean that it is X, or II,,.

'6This definition is not adequate for all purposes, but it is good enough for the discus-
sions in this paper. In [Lin97] the A¢ formulae are identified with the primitive recursive
arithmetical formulae. For details see [Lin97].
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3.3 Provability Logic

The most impressive application of modal logic, originating in the early
1970’s, though hinted at already by Godel, is provability logic, the study
of provability.!” In this section we present the modal logic GL and some
results relating GL and PA. Again, we present no proofs, but this time
everything we use can be found in Boolos [Boo93].

We first present the syntax of GL. GL is a propositional modal logic,
and we use p, q, r, etc as sentence letters. The well formed, modal sentences
(ms) are defined as follows.

(1) L is a ms,
(2) All sentence letters are ms,
(3) If A and B are ms, then (A — B) is a ms,

(4) If A is a ms, then OA is a ms.

The other propositional connectives are introduced as abbreviations in
the obvious way. Inductively we define 0"A by 04 = A, and O A =
O0O™A. The rules of deduction are Modus Ponens (MP), and Necessitation
(Nec), which allow us to deduce OA whenever A is deduced. Substitution
instances of theorems can be shown to be theorems in GL. As axiom schemes
we have

(A1) All instances of propositional tautologies,
(A2) O(A— B) —» (DA — OB),
(A3) O(0A — A) - OA

If we compare the provability conditions (P1) — (P3) with the above modal
schemes, we see a structural similarity between (Nec) and (P1), while (A2)
looks like (P2). The arithmetical version of Lob’s theorem is structurally
like (A3). In GL it is possible to prove OA — OOA, which looks like
(P3). A normal modal logic, K, uses the inference rules MP and Nec
together with the axiom schemes (A1) and (A2). In K it is also possible
to show that substitution instances of theorems are theorems. Systems of
propositional modal logic then differ in the additional axiom schemes used,
and e.g. GL = K + (A3). It is not possible to substitute the Lob scheme

"For some historical details on the emergence of provability logic, see [BS91].
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(A3) for OA — ODOA, since a normal system together with 0A — OOA
does not prove (A3).

Using ordinary Kripke semantics for modal logic, it is possible to prove
that GL is sound and complete with respect to appropriate frames, and
furthermore, that these frames can be chosen finite. We thus have that
GL F A iff A is valid in all finite, transitive and irreflexive frames.

We connect GL with PA in the following way. A realization is a function
* which to every sentence letter p in the language of GL assigns a sentence ¢
in the language of PA, i.e. *(p) = ¢. Inductively we then define a translation
A* according to the following.

(1) p* = x(p) for all sentence letters p
(2) L*=1

(3) (A— B)*=A*— B*

(4) (DA)* = Pr(A*)

A translation thus preserves the connectives, and two realizations can only
differ in the way they assign sentences of arithmetic to sentence letters of GL.
For any translation * we have (-O.1)* = =Pr(L), that is Con. The strong
connections between GL and PA are expressed in the following theorems.

Theorem 3.3 (Arithmetical Soundness) For any realization *, if GL F
A, then PAF A*,

Theorem 3.4 (Arithmetical Completeness) For every A, there is a re-
alization * such that, if GL 1/ A, then PAl/ A*.

The realization in the arithmetical completeness theorem may depend on A.
A modal formula is letterless if it does not contain any sentence letter.
For letterless modal sentences the following immediate corollary holds.

Theorem 3.5 For any letterless sentence A and any realization x, GLF A
iff PAF A*.

The translation of a letterless sentence is called a constant sentence. Ex-
amples of constant sentences are the iterated consistency sentences defined
inductively.

Con(1,T) = Cony
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Con(n+1,T) = Con(1,T + Con(n,T))

These constant sentences are realizations of respectively ~OL and -O"+! L.
Note that PA + Con(k,PA) — Con(m,PA), if 0 < m < k, and compare
this with GLF0O™1 — 0OF1, ie. GLF -0 — O™ .

3.4 Letterless Modal Sentences

We now focus on the letterless modal sentences, and denote the set of these
LMS. A sentence in LMS is in normal form if it is a truth-functional
combination of sentences 0% L, i > 0. For letterless modal sentences we have
the following normal form theorem.

Theorem 3.6 (Normal Form Theorem) For every A € LMS, there is
a B€e LMS, such that B is in normal form, and GLF A + B.

In a way, then, sentences O° | are a kind of building blocks, but since they
are not independent they are not especially useful as such for the aim of this
paper. The (modal) degree of a modal sentence A is the maximum number
of nested occurences of the symbol O in A. If, in the normal form theorem,
A is of degree n, an analysis of the proof of the normal form theorem shows
that B is of a degree less than or equal to n.'8

We then consider the Lindenbaum algebra of GL restricted to sentences
in LM S, and this algebra is constructed just like the Lindenbaum algebra
of PA. As before, we identify sentences with their equivalence classes, and
often write A < B instead of d(A) < d(B). We denote the set of equivalence
classes LM S, and for clarity we state the following properties.

)<d(B)iff GL-A— B
) < d(B) iff d(A) < d(B) and d(A) £ d(B)

A) = d(B) iff d(A) < d(B) and d(B) < d(A) iff GL+ A+ B
)=0,d(-1)=1

The supremum and infimum of two degrees are respectively d(A) U d(B) =
d(AV B) and d(A) N d(B) = d(A A B).

To compute e.g. d(01)Nd(—~(0?L — O1)), we note that GL - (OL A
-(0%1L — O1)) « 1, and conclude that d(OL) Nd(~(0%L — O1)) =
0. To compute d(OL1) Ud(=(0%2L — OL1)), we use the fact that GL +

18See [B0093] pp92f.
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(0L V~=(0?L - 01)) « 021, and conclude d(O L) Ud(~(0?1L — O1)) =
d(0?1).

In the figure below the Lindenbaum algebra of the letterless sentences of
GL is hinted at. It is an infinite graph, and the dots and dashes indicate how
to complete the graph. The vertices are, for brevity, labelled with sentences
and not with the corresponding degrees.

—-O021

021

1=0

As a kind of building blocks we can use the sentences O™l A —O™ L
where n > 0. The corresponding degrees are atoms of the Boolean algebra
(the Lindenbaum algebra). Disjunctions and conjunctions of these sentences
can be used to generate all sentences on the ‘lower’ half. Negations of these
sentences give the sentences on the ‘upper’ half. In this way we have a kind
of normal form for letterless modal sentences using as atoms the atoms of
the Boolean algebra.

The Lob scheme is clearly provable in GL, that is GL F O(0A — A) —
OA. By normality, i.e. in K, it is possible to prove GL + OA — O(0OA —
A). Combining these results gives GL - O(0A — A) <> OA. Setting L for
A we thus can prove GL - O(-0L1) <> OL that is d(O(-0.L1)) = d(0O1).

Using tricks like these it is possible to compute where a certain degree
belongs in the Lindenbaum algebra, but this can be tedious, and also, there is
no need for it, since there is a totally mechanical procedure of computation.
To present this technique we first define the trace of a letterless sentence.
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The trace of A, t(A), is defined inductively via the following conditions,
where we use S¢ for the complement of S relative to w, the natural numbers.

t(L)y=10
t(A— B) =t(A)°Ut(B)
t(OA) ={n:Vi<niect(A)}

We can, then, compute that e.g. ¢(-A) =t(4 — L) =t(A)¢, t(—-1) = w,
t(AV B) =t(A)Ut(B), t(AAB) =t(A)Nt(B), t(O"L) ={0,1,...,n— 1},
Ot - onl) = {n}¢, t(-(O" L — 0" 1)) = {n}, etc.

Furthermore, we have the following theorem on properties of the trace
of a letterless sentence.

Theorem 3.7 For letterless sentences A and B the following propositions
are valid

(1) GLFAiff t(A) = w
(2) GLF-A iff t(A) =10
(3) GL+A— B iff t(A) C t(B)
(4) GL+ A+ B iff t(A) = t(B)
(5) t(A) is either finite or cofinite
If we consider the set
St ={t(A): A€ LMS} = {X Cw: X is finite or cofinite},

the set of traces, and apply the usual set operations we get a Boolean alge-
bra. From the theorem above and the definition of the Lindenbaum algebra
of the fragment of GL that consists of the letterless sentences, we have that
A < B iff t(A) C t(B). The supremum (infimum) of two sentences A and
B corresponds to t(A) U t(B) (¢(4) N¢(B)), L (=L) corresponds to  (w).
It is then clear that the Boolean algebra on S* is isomorphic to the Boolean
algebra on the set LM S. Furthermore, this algebra is isomorphically em-
beddable in the Lindenbaum algebra of PA.'?

With this we can have a clear picture of levels of undecidability in PA.
Also, note that the constant sentences which are realizations of sentences in
LM S are Boolean combinations of 31 sentences, and, consequently, all are
in Bi, the set of Boolean combinations of 3; sentences. Hence, this Boolean
algebra is isomorphically embeddable in any partial Lindenbaum algebra for
PA that includes Bj.

19Boolos mentions the embeddability of LM S into PA in [Boo82].
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3.5 On Measuring Levels of Undecidability

An algebra over X, X # 0, is a non-empty set A such that A C P(X),
and A is closed under complementation and finite unions. An algebra is
a o-algebra if it is closed under countable unions as well. As an example
we can mention that S* = {X C w : X is finite or cofinite} is an algebra
but not a o-algebra, since it is closed under finite, but not under countable
unions. A measure on a set X, equipped with a o-algebra A, is a function
m: A — [0,00] such that

(m1) m(@) =0

(m2) If {z;}°, is a sequence of pairwise disjoint sets, then m(|J;2; z;) =

>y m(zi)
The condition (m2) implies finite additivity, that is
(m2’) If z; Nz = 0, then m(z; U z;) = m(z;) + m(z)
The measure is a probability measure if m : A — [0, 1] such that
(pm1) m(X) = 1
(pm2) z;Nz; =0 = m(z; Uz;) = m(z;) + m(z;)
(pm3) z; 2,0 <i<jNi2;zi=0=limj,eom(z;) =0

The condition (pm3) is equivalent to (m2). In measure theory one presup-
poses that measures are defined on o-algebras, so there is no hope to apply
measure theory to the set S* defined above. To see where problems emerge,
try to define a (probability) measure on S, i.e. a function p : St — [0,1]
that satisfies the conditions above, and note that the Boolean algebra on S
is isomorphic to the Boolean algebra on LM S. The function p then satisfies
m(w) = 1, and the condition (pm?2) above. It seems natural to assign the
same positive measure to all atoms. Letting p({n}) = ¢ > 0 for all n, implies
that p({0,1,...,k}) = 2% p({i}) > 1 for large enough k, i.e. k > 1/e.

On the other hand, since every formula has a finite length, we could
consider finite fragments of S?, or, isomorphically, of LM S. Thus, confining
ourselves to finite fragments of S, we define S} = {X : X C Z, or X¢ C
Zn}, where Z, = {0,1,...,n — 1}. With standard set operations, S! is a
Boolean algebra, and it is furthermore, trivially, a o-algebra, since it is finite
and closed under complements and unions. For example we have for n = 3

St =1{0,{0},...,{0,1,2},w, {0}¢,...,{0,1,2}°}
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Correspondingly we define LM S, = {A: t(A) € SL} and LM S,, = {d(A) :
t(A) e St}
We can now define a probability-like measure on S!, or equivalently on

LMS,, or LM S, in the following way

my : SE — [0,1]

mp(w) =1

ziNz; =0 = my(z; Uzj) = mp(z;) + my(z;)
Equivalently we can define

my : LM S, — [0,1]

GLFAS my(A) =1

GL+F =~(AAB)= mp(AV B) =mp(A) + mp(B)

We will call these measures provability measures,’® because our intention is
to measure how close to being provable a sentence is. It is also obvious that it
cannot be a measure of closeness to truth, because e.g. sentences can be true
without being provable in PA. Finally, we identify the provability measure
of elements in LM S,,, with the provability measures of its representatives.
Since these three structures are isomorphic, we will freely use the idiom
that most easily, in any particular situation, expresses the ideas we try to
communicate. It is straightforward to prove the following theorem, and since
it is not common to present the result in this context, we provide a proof.

Theorem 3.8 For sentences A,B € LMS, the following assertions are
valid.

(1) mp(=4) =1—my(A)

(2) GL+ ~A & mu(A) =0

(3) GLF A — B = mn(4) < mu(B)
(4) GLF A B = mp(A) = my(B)

(5) mn(AV B) = mp(A) +mn(B) — mn(AA B)

20We make some further comments on the terminology used in the concluding remarks.
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4) is now immediate.

(5) Tautologically we have GL+ AV B <> (AA-B)V B, and so m,(AV
B) = mp((AAN-B)V B). Also, tautologically GL + —((A A =B) A B), and
consequently, m,((AA—-B)VB) = mp(AA-B)+mp(B). Furthermore, since
GLF A<+ (AN-B)V(AAB), we have my,(A) = m,((AAN-B)V (AAB)).
Finally, GL + —~((A A -B) A (A A B)), and so m,((AAN-B)V (AAB)) =
mn((AAN -B) + my(A A B)). When combining these observations, we get
the desired result. O

It now seems reasonable to assign ‘almost’ disprovable sentences (the
atoms of LMS, or S!) small values. But, note that with n singleton
sets we can not define m,({i}) = 1/n, since then m,(Z,) = 1. Instead,
we choose to make assignments such that 0 < my,(Z,) = a < 1/2, and
define m,({i}) = a/n for 0 < i < n, or equivalently my,(d(-(0**'L —
0¢1))) = mu(-(01 L — 0'1)) = a/n for 0 < i < n. This implies e.g.
that m,(-0OL) =1—a/n.

Assigning measures to singleton sets in this way satisfies the axioms on
the previous side, and the assignment thus constitutes a provability measure
in this sense.

To get a measure on sentences of PA we let LM S}, = {A*: A€ LMS,},
and TMS, = {d(A*) : d(A) € TMS,}. We use m’ as a measure on
the (degrees of the) constant sentences. Using the fact that LM S, is em-
beddable in the Lindenbaum algebra of PA via a translation, and letting
m) (d(A*)) = my(d(A)), we get a measure on the constant sentences. This
also gives us a measure of Con close to 1. This seems reasonable enough
since PA proves the consistency of every finite fragment of PA. Formally,
PA Conpyy, for every k. The symbol PA|k denotes the set consisting of
axioms of PA with Godel numbers less than k.

A reflection sentence for PA is a sentence Pr(¢) — ¢ where ¢ is a
sentence in Lpa. The local reflection principle for PA is the set Rfn =
{Pr(p) — ¢ : ¢isasentence in Lps}. Adding reflection to PA, adds
soundness to PA and is a local, or piecemeal, way of saying that ¢ is true,
if ¢ is provable.?! It is an interesting result that the letterless reflection
sentences 0T | — 01, 0 < i < n, all have the measure 1 — a/n.

21Gee e.g. [Lin97] and [Bek97] on reflection.
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Although it is not possible to define a measure, in the measure theoretic
sense, on LMS, or on the set S?, it is possible to identify levels in the
structure. Let the finite sets in S with the same cardinality be at the same
level, and let the cofinite sets be at the same level if their complements have
the same cardinality. For the letterless sentences we can define the levels in
the corresponding way. The order type, with the obvious ordering, of these
levels in LM S is w + w*. This means that L is at level 0, degrees in LM S
that correspond to singleton sets in S’ are at level 1, degrees corresponding
to m element sets are situated at level n etc. On the ‘upper’ half of the

structure the situation is reversed. We thus have established a gradation on
LMS.

3.6 Computing Provability Measures

Our main technique to compute provability measures, or levels in the Lin-
denbaum algebra of PA, uses the fixed point theorem of modal logic. We
use [JA, often called the strong boz, as short for DA A A. A sentence A is
modalized in p iff every occurance of p is within the scope of some O symbol.

Theorem 3.9 (The Fixed Point Theorem of Modal Logic) If A is
modalized in p, then

GLFH(p+ A) < Hp+ H)

where H only contains sentence variables occuring in A with the exception
of p.

To illustrate the fixed point theorem, we use it to prove the wellknown fact
that PA v < Con, where v is a Godel sentence for PA. We first note
that if p is the only sentence letter in A, then H is letterless and H* is
a constant sentence. In this case it is easy to determine H with a truth-
table-like method.?? If e.g. A is the sentence —Op, then H can be chosen
as -0OL1. Now, letting * be such that p* = 7, we have PA + (p +» —0Op)*,
since PA + v < —=Pr(v). Successively we get, PA F (O(p + —0Op))*,
PAF (B(p + —0Op))*, PAF (Q(p +» —0OL1))*, by the fixed point theorem.
And finally PAF (p <> -0OL1)*, i.e. PAF 7 <> Con. As a consequence we
have that d(y) = d(Con) in the Lindenbaum algebra of PA.

?2See e.g. Boolos [Boo93] pp110f. In [SV82] a general method to compute fixed points to
sentences A modalized in p is described. There are also sentences that are not modalized
in p that have fixed points, e.g. Op — p has a fixed point p.
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The sentence <y is not a constant sentence, but it is possible to extend
m;} to some non-constant sentences (see below), and it is then natural to set
mi(v) =1 afn.

To illustrate the method of determining the letterless sentence H in a
special case of the fixed point theorem, the case where the only sentence
letter in A is p, we need some concepts. If (W, R) is a finite, transitive and
irreflexive frame, there is for every w € W a greatest n such that for some
sequence of worlds wy,, ..., wy,wyg € W, where w = wyR... RwiRwy. For
each w € W we define the rank of w, r(w), as the greatest such n. A sentence
is called a p sentence if its only sentence letter is p. We now generalize the
concept of trace and define the A-trace of B, t4(B), for each p sentence
B. Choose one enumeration of all p sentences By, By, ... in which p comes
after A, and in which truth-functional compounds always come after their
components. Inductively we define

ta(L)=10
ta(B — C) =ta(B)°Uta(C)
tA(OD) ={m:Vi<micts(D)}
ta(p) =ta(A)
Facts concerning the concept A-trace parallels those of the concept trace.

A fixed point of A is true iff ¢4(A) is cofinite, it is provable iff t4(4) = w.
To illustrate the technique we determine the fixed point of A = —Op.

- -
+H -+
H s

The lines of the table corresponds to ranks of worlds. In worlds of rank
0 all sentences OD get the value T. Truth-functional compounds inherit
their truth-value on a line from their components. 0D gets the value | on
a line, if D has the value L on an earlier line. p gets the same value as A.
In the example above lines 1 and 2 are equal, so there is no need to proceed,
nothing new can happen. We conclude that ¢ 4(—=0Op) = {0} = ¢(-0.L), and
that =0 is provably equivalent to the fixed point of =Op. We give one more
example of the method, and determine the fixed point of A = —Op A O—p.
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Op O-p -0Op -OpAld-p p -—p
0| T T 1 1 1 T
1] L T T T T 1
2| L 1 T 1 1 T
3| L 1 T 1 1 T

Lines 2 and 3 are identical, and we conclude that t4(—=Op A O-p) =
{1} = ¢(~(0%1L — 0O1)), and that H can be chosen as —(0?1 — O1).

With the technique described, it is possible to compute where transla-
tions of certain sentences are in the hierarchy, and at the same time we get
the provability measure of the sentence. This is possible for p sentences A
that are modalized in p and such that GL F p < A. This is an impor-
tant type of sentences, since its translations are such that PAF ¢ < &(p),
where £(z) is built up using truth-functional compounds of the provability
predicate Pr(zx).

We now make some remarks on the possibility of extending m} to non-
constant sentences. There is no problem in adding a sentence like v to the
domain of m}, and the only reasonable measure to assign to v is m} (Con).
This situation is valid for any fixed point ¢ such that PA F ¢ < &(p), since
in this case it is possible, with the help of the fixed point theorem for GL, to
find a constant sentence H* that is provably equivalent to ¢. The measure
assigned to ¢ is m) (H*). The situation gets much more complicated if we
try to extend m, to arbitrary sentences ¢ such that PA - ¢ <+ L*, where L
is a letterless sentence. Formally we could do this, but we would loose the
recursiveness of m;, since there is no decision procedure for theoremhood in
PA. We cannot simply in the general case compute the measure of such a
sentence (, since it is impossible to identify it. We will use the same function
symbol m; for recursive extensions of m, which originally was defined on
LMS:.

In some cases it is possible to relate more complex fixed points to the
Lindenbaum algebra than those equivalent to a constant sentence. As an
example, we discuss Rosser sentences. Let p be a II;-Rosser sentence for
PA, i. e. a sentence p such that

PAVF p Yz (Prf(p,z) = Jy < zPrf(-p,z))

It is a well-known fact that PA - Con — —Pr(-p). Furthermore, since
PA F 1 — -p, by the provability conditions we have PA + Pr(Ll) —
Pr(-p), that is PA - =Pr(-p) — Con. Hence PA F Con < —Pr(-p).
Also, since —p € %, by provable ¥i-completeness, PA + —p — Pr(-p),
and it is clear that PA F Con — p, that is d(Con) < d(p). Supposing
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that PAF p — Con, we get PA+ pF Con. From the initially stated fact,
it follows that PA + Con — —Pr(p — 1), which implies that PA + p
Conpayp, which contradicts Godels second incompleteness theorem. Hence
PAV p— Con. We have thus proved the following theorem.

Theorem 3.10 d(y) = d(Con) < d(p) < 1.

It is now possible to extend m,, to give p a measure. The Lindenbaum
algebra of PA is, as we already mentioned, dense. As a consequence of this
there are infinitely many degrees between d(Con) and 1. Since the only
thing we know about d(p) is that it is strictly between those two degrees
we can consistently assign any rational number between 1 — a/n and 1,
and thus letting 1 — a/n < m},(p) < 1. Consequently this extension is not
unique. This pointwise type of extension is always possible, but if we try
do treat general sets of formulae in this way we will have problems with the
recursiveness of our measure.

Compare this result with the ‘unwitnessed’ Rosser sentence, that is a
sentence ¢ such that PAF ¢ <> (Pr(¢) — Pr(—¢)). Using the fixed point
theorem, and the technique described above, we can prove that d(p) =
d((0% L — Ol)*).

To conclude this section it is, thus, possible to compute the provability
measure of constant sentences. It is also possible to extend this measure to
sentences ¢ such that PA F ¢ < £(¢), where £(p) is as above. In some
cases, it is also possible to extend the provability measure to sentences, such
as the Rosser sentence.

3.7 Partial Conservativity and Partial Lindenbaum Algebras

A sentence ¢ is I';, conservative over a theory T if for every I';, sentence 0, if
T+ @tk 6, then T+ 0. 1t is a well-known fact that =Con is II; conservative
over PA. This implies that the sentences =Con(n, PA), for n > 1, also
are II; conservative over PA. Suppose that PA + —=Con(n, PA) + = for
7w € II;. Then, since GL + 01 — O"1, PA+ -Con + w. Thus PA F .
With the same argument we can prove that for any sentence A € LM S such
that {0} C t(A), A* is I1; conservative over PA. Thus II; conservativity is
inherited upwards in the structure.

This could be seen as a possible obstacle to the intuitive ideas presented
above, since =Con is highly unprovable, m,(—=Con) = a/n. On the other
hand, the only sentence in LM S provable in GL whose translation is a II;
sentence is =L, so the ideas are consistent so far. It is also interesting that,
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in PA, the highly unprovable sentence =Con does not add any force to PA
concerning provability of IT; sentences.

Since PA is true, it is also clear that the II; sentence Con is X1 con-
servative over PA. Assume that PA + Con F o, where 0 € ¥;. Since PA
is true, Con — o is true, and then o is true because Con is true. Thus
PA + o, since PA proves all true ¥ sentences. The same type of argu-
ment shows that the IT; sentences Con(n, PA) also are 3 conservative over
PA. Furthermore, all of the sentences ~Con(n+ 1, PA) — =Con(n, PA) =
(D"+1J_ — O"1)* € By, for n > 1, are both £; and II; conservative over
PA. Assuming that PA + —-Con(n + 1, PA) — —Con(n,PA) | 0, we get
for 6 € TI;, that PA + —=Con(n, PA) F 6, and finally PA F 6. For 6 € %4,
PA+ Con(n+1,PA) F 0, and thus PA I- 0. The sentences not yet treated
that are translations of sentences with cofinite trace are also >J; conservative
over PA. They are all true, since they are conjuncions of true sentences,
and then the argument proceeds as before.

The sentences —~(Con(n + 1, PA) — Con(n, PA)), n > 1, are neither
31 nor II; conservative over PA. This is so, because PA + —(Con(n +
1,PA) — Con(n,PA)) + Con(n + 1,PA), but PA I/ Con(n + 1,PA).
And also PA + —~(Con(n + 1, PA) — Con(n,PA)) F =Con(n, PA), and
PA I/ =Con(n,PA). We summarize these observations in the following
theorem.

Theorem 3.11 We have the following results concerning conservativeness
over PA for constant sentences. All sentences Con(n, PA), n > 1, are ¥4
conservative. The sentences ~Con(n + 1, PA) — —Con(n,PA), n > 1,
are both 31 and IIy conservative. Generally, sentences that are transla-
tions of sentences with cofinite traces are Y1 conservative. The sentences
=Con(n,PA), n > 1, are II; conservative over PA, and, more generally,
for any sentence A € LMS such that {0} C t(A), A* is II; conservative.
And, finally, the sentences —=(Con(n + 1, PA) — Con(n, PA)), n > 1, are
neither X1 nor II1 conservative over PA.

A standard technique to produce non-trivial, partially conservative sen-
tences over PA is to use the fixed point PA F ¢ « 3z(T,(z) A Pr(p —
z) A=Trr,(z)). In this formula I',(z) is a formula expressing that z is a T'p,
sentence. The formula Trr, (z) is a partial truth predicate, and for ¢ € T'y,
we have PA F ¢ < Trr, (). In the fixed point ¢ is %, if T, is II,. To
construct non-trivial, partially conservative sentences over theories T that
are not true, requires more complex fixed points.?? It is, however, not easy

23Gee [Lin97], pp65f.
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to see how I'; fixed points as constructed above could be incorporated in
the structure that are under discussion.

In his discussion of partial Lindenbaum algebras, Bennet presents a con-
cept much smaller than (with respect to cup (cap)), originally introduced by
Lindstrém.?* Following the notation of Bennet, we let 54 (ITF4) be the
partial Lindenbaum algebras where the sentences in the degrees are confined
to sentences provably equivalent in PA to %, (II,,) sentences. We let a, b, ¢
range over degrees and define

a<<ybiffa<bandVe(cUa>b=c>0b)
a<<nbiffa<band Ve(cNb<a=c<a)
a<<biffa<<ybanda<<nb
From this definition it follows that the following facts are valid in X£4 (I1Z'4)
0 <<y d(yp) iff 0 < d(p)
d(p) <<n1iff d(p) <1
0 <<n d(p) iff ¢ is TI,, (X,) conservative over PA
d(p) <<y 1 iff —p is 3, (II,,) conservative over PA

Since Con € TI;, and Con (—=Con) is X1 (II;) conservative over PA, both
d(Con) << 1 and 0 << d(Con) are valid in II¥4. In ©F4 we have that
0 << d(—=Con) and d(—Con) << 1.

The reading of a << b as ‘much smaller than’ is not to be taken at face
value. Adding more structure, more degrees, as when considering e.g. 3% A
or Eg A, has as a consequence that degrees that are far apart in Z{) A or
o? 4. need not be far apart any more.?> One possible conclusion is that the
concept much smaller than is of no relevance to the problems discussed in
this paper.

3.8 Extremely Undecidable Sentences

In the arithmetical completeness theorem for GL the realization depends
on the sentence A. In [Boo82] Boolos proves that there is a realization *
that works uniformly for every sentence A. In this context he introduces

*4Bennets discussion can be found in [Ben86]. The concept was introduced by Lindstrém
1979 in his discussion of degrees of interpretability. See e.g. [Lin97].
25See [Ben86] pp65f.
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a concept ‘extremely undecidable sentence’. The definition goes like this.
As before a sentence A is a p sentence if its only sentence letter is p. A
sentence @ over Lp4 is extremely undecidable in P A, if for every p sentence
A, if there is a realization # such that PA I/ A#, then PA I A*, where

p* = @. An alternative formulation is that ¢ is extremely undecidable in
PA, if there is a realization x such that x(p) = ¢ and PA F+ A* implies
that PA + A# for every realization # and every p sentence A. This means,

citing Boolos [Boo82], that

roughly speaking, a sentence is extremely undecidable if it can be
proved to have only those modal-logically characterizable prop-
erties that every sentence can be proved to have.

Boolos also proves that there are infinitely many extremely undecidable sen-
tences, but note that neither the Godel sentence v nor the Rosser sentence
p are extremely undecidable. It is now an interesting fact that the only (de-
grees of) constant sentences that are related to (the degree of) an extremely
undecidable sentence are d(L) and d(—L1). We formulate this observation
as a theorem.

Theorem 3.12 Let ¢ be an extremely undecidable sentence, and L € LM S
such that GLY L,—~L. Then ¢ £ L*, L* £ ¢, ~¢o £ L*, and L* £ —p

Proof: Letting p be a Rosser sentence for PA, we will first prove that
PA Y/ p — L*. Suppose for a contradiction that PA F p — L*. Since
t(L) C t(O"*'1 — O"1) for some n > 0, GL - L — (O™ 1L — Onl).
Therefore PAF p — (O"T' 1L — 0" 1)*. Since PA - Con — p, we conclude
that PA - (-OL — (O"t'1L — O"1))* n > 0, but this contradicts that
t(-01) ¢ ¢(@™*1L — Om1) for n > 1. The case when n = 0 is already
clear, since PA t/ p — Con. The conclusion is that PA I/ p — L*. By this
argument it is also clear that PA F/ L* — —p.

Now, letting A = p — L, and # a realization such that p# = p it follows
that PA I/ (p — L)#. Since ¢ is extremely undecidable, PA If ¢ — L*,
where p* = ¢, and so ¢ £ L*. Letting A = L — p, and # such that
p# = —p, we conclude PA I/ (L — p)#, and consequently PA I/ L* — ¢, i.e.
L* £ ¢. Proceeding in the same way we set A = —-p — L and #(p) = —p,
which implies that PA I/ A#. Once again, since ¢ is extremely undecidable,
PA tf —p — L*, where *(p) = ¢, and hence —¢ £ L*. Finally, letting
A =L — —p and #(p) = p, and arguing in the same way it is clear that
L* £ —p. O
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This theorem gives us the interesting property of extremely undecidable
sentences that they are not related to any constant sentences, with the
exception of 1 and —1. Tt is interesting in its own right that it is not
possible to decide where these sentences are situated in the structure we
study.

3.9 Comparing Theories

With the means developed above, there is a method to compare, and even
to construct, a kind of measure on some extensions of PA in an illuminat-
ing way. Consider an extension T' of PA, notationally PA 4T, obtained by
adding constant sentences, or sentences provably equivalent to constant sen-
tences, to PA. Letting T'= PA + ®, where @ is a set of constant sentences,
two cases emerge. Each element ¢ € ® is the translation of some letterless
sentence A. As before t(A) denotes the trace of A.

At first we will deal with the case when @ is finite. Determine the
infimum of ® as t(®) = [ 4.cq t(A), the trace of ®, and associate this set
with 7. The set #(®) is in this case an element of S, the set of traces.
Just as above we can identify levels of order type w + w* in the set of
theories {PA + ® : ® is finite}. To get a kind of two-dimensional measure,
we can also identify a ‘direction’ where PA + ® reside. If we restrict the
sentences in ® to be translations of sentences in LM S,,, or sentences provably
equivalent to such translations, it is also possible to assign a probability-like
measure to PA + ® using the value assigned to ¢(®) as we did above. If
e.g. T = PA+ Con we associate {0}¢ with 7', and T can, just as in the
case of the Lindenbaum algebras, be assigned the value 1 — a/n. PA itself
is associated with w, or the value 1, and PA + L with () or the measure 0.

The case when ® is an arbitrary set of constant sentences is much more
intricate. As before we define the infimum of ® as T(®) = (4.4 t(A),
and associate this set with 7. But 7/(®) need not be an element of S?, and
the complexity of sets T(®) ranges over sets that are e.g. not recursively
enumerable, r.e. for short. Still, 7'(®) is an element of P(w), and this
Boolean algebra is isomorphically embeddable in the set of all extensions of
PA. Furthermore, the set

{PA+ ®: ® is a set of constant sentences}

is isomorphic to the Boolean algebra P(w). It is not possible to define
levels in P(w) as we did in the finite case, and it is not possible to assign a
probability-like measure, if we want all the atoms of P(w) to have the same
positive value.

45



If ® is r.e., we can use a theorem by Lindstrom?® to get a characterization
of PA+®. Since ® is a set of constant sentences it is a subset of By, and so it
is also in X9, and IIy. We write S -1, T' to denote that S is a Ils-subtheory
of T', i.e. every Il sentence provable in S is provable in T

Theorem 3.13 Let ® be a r.e. set of constant sentences. There is then a
3o sentence 0 such that PA+® 4 PA+ 60 -, PA+ 9.

In the theorem we can choose 6 to be a Il sentence, and then PA + ®
PA + 6 ds, PA+ ®. The sentence 6 can be effectively constructed and is
‘below’ every sentence in ®. Next we associate § with the set T'(®) as defined
above. The condition that ® is r.e. can, according to Craig’s theorem, be
weakened to ® being primitive recursive. Craig’s theorem says that for
every r.e. theory S, that is a theory whose set of axioms are r.e., there is a
primitive recursive theory T' such that S and T have the same theorems.

In both cases there are, of course, infinitely many theories between two
theories T1 4 T», T1 being a proper subtheory of T5. We know that PA -
PA+p - PA++, proper, so a measure of PA+ p should get a value between
1 —a/n and 1, which of course is reasonable.

In a way, then, we thus have accomplished at least something of what
Chaitin aimed at in his interpretation of the constant ¢ in Chaitin’s incom-
pleteness theorem.

3.10 Concluding Remarks

It is important to realize that the measures above not in any reasonable
sense can measure ‘closeness’ to truth. Arithmetical sentences are true or
false, nothing in between. We use the term ‘probability-like’ just to indicate
that we use the axioms in measure theory that are normally used to design
a theory of probability. But our term ‘provability’ measure may also be
misleading. The sentence Con is not provable in PA. In one way, discussed
above, it is almost provable, but the measure we have defined is thought to
indicate where in the structure e.g. Con is situated. It is close to sentences
that are provable. The measure, and the identified levels, give an ordering of
closeness to the provable or disprovable. The measures we have constructed
on extensions of PA do not measure closeness to truth either. Some of the
theories are true, that is true in the standard model, some of them are not
true. In this case it is hardly reasonable to call the measure a provability

26Theorem 4, p 66 in [Lin97].
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measure. In a way we measure the ‘proving capability’, or power, of theories
since theories high up in the structure can prove less than theories low down.

To conclude we have in this paper shown that it is possible to define a
provability measure of sentences in an important fragment of the Linden-
baum algebra of Peano Arithmetic, the sentences in the set LMS;. We
have also shown how to define levels in a larger fragment, the set of con-
stant sentences. Finally, we have said something positive on the possibility
to compare some extensions of Peano Arithmetic, and even how these exten-
sions can be given kinds of measures. We have also shown that we, using our
construction, cannot catch e.g. extremely undecidable sentences. In order
to construct a full measure of e.g. information content, as Chaitin has tried,
the structures, problems and possibilities discussed here have to be taken
into consideration.
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