Poster presented at Medicinteknikdagarna, Gothenburg, Sweden. Oct. 14-15, 2008

AUTOMATIC COMPUTER-BASED DIAGNOSIS IN ACUTE ABDOMINAL PAIN

Kajsa Nalin¹, Helge Malmgren², Ulf Gunnarsson³, Helena Laurell⁴, Malin C.B. Åberg⁵, Lars-Erik Hansson⁶

¹Kollegium SSKKII, Centre of Interdisciplinary Research/Cognition/Information, SE-405 30 Gothenburg, Sweden,

²Department of philosophy, University of Gothenburg, SE-405 30 Gothenburg, Sweden,

Department of Surgery, Karolinska University Hospital, SE-171 76 Stockholm, Sweden

⁴Department of Surgery, Mora Hospital, SE-792 85 Mora, Sweden,

⁵Institute of neuroscience and physiology, University of Gothenburg, SE-413 90 Gothenburg, Sweden

⁶Department of Surgery, Sahlgrenska University Hospital/Östra, SE-416 85 Gothenburg, Sweden

BACKGROUND

In a project initiated in Mora in 1997 [3], 3 337 patients were examined using a standardised form consisting of some 55 different parameters, ranging from current pain localization to various blood measurements, describing the patient's history and status. The same patients were later followed up to determine the final diagnosis. Here, we report on our first findings using this material for studies on computer-based diagnosis of acute abdominal pain.

METHODS

Before using the collected data these were first transformed to a homogeneous format and the resulting dimensionality was 127. Missing data were substituted with the use of estimated normal ("healthy") values.



Figure 1: An artificial neuron and a model of an ANN

Our trials with linear networks, using softmax output and six categories (diagnose groups), performed almost as well as the doctors. Following trials with non-linear networks showed no convincing results.

Support vector machines (SVMs) are a type of classification algorithms and the SVM model is trained by adapting its weights to the data at hand. The area under the receiver operating characteristic curve (AUC) was used to measure performance.

RESULTS

In this poster we present our latest preliminary results using the one-against-all and one-against-one approach.

Table 1: Summary of performance results for the diagnosis of diverti-culitis and nonspecific abdominal pain (NSAP): sensitivity/specificity.

	cipo tidulitis es others	NGAF valothers	dwert cultions NBAP
Pr∮sician	1714-917	1114 MIN	11 / 11.11 4-21
37'd at the significance constitute	0.571/0.90	0.40070 070	0.714/0.905
Strid at this sician's specificity	0.5/0 987	0.41 /C 909	0.786/0.033

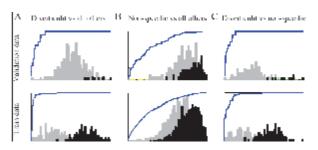


Figure 2: Histograms illustrating the separability of:

- A) Diverticulitis (black) vs. all other diseases (grey)
- B) Non-specific abdominal pain (black) vs. all other diseases (grey)
- C) Diverticulitis (black) vs. non-specific abdominal pain (grey)

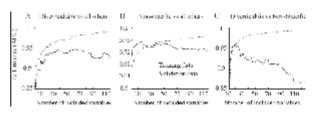


Figure 3: Performance as a function of the number of included variables for:

- A) Diverticulitis vs. all other diseases
- B) Non-specific abdominal pain vs. all other diseases
- C) Diverticulitis vs. non-specific abdominal pain

CONCLUSION

Automatic computer-based disease classification is a promising tool for the diagnosis of acute abdominal pain, but requires substantial research before a clinical implementation is feasible.

REFERENCES

[1] K. Nalin, "Den ideala kliniska beslutsprocessen. En studie av arbetsprocessen på en kirurgisk akutmottagning

(The ideal clinical decison process. A study of the work process in an acute surgical ward)". Masters thesis in Cognitive Science, University of Gothenburg, 2006.

[2]L.-E. Hansson, "Akut buk". Studentlitteratur, Lund, 2002.

[3]H. Laurell, "Acute Abdominal Pain". Thesis, Uppsala University 2006. [4]R. Dybowski, V. Gant, "Clinical applications of artificial neural networks". Cambridge University Press, London, 2001.

[5]M.C. Åberg, J. Wessberg, "Evolutionary optimization of classifiers and features for single trial EEG discrimination." BioMedical Engineering Online 2007, 6(32)