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To the memory of my grandmother Hagar 
 

I will always remember the evenings we spent on your roof terrace,  
breathing in the cool breeze of Baghdad,  

listening to your radio,  
lying close to each other and  

watching the stars. 
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Ja visst gör det ont 
Ja visst gör det ont när knoppar brister. 

Varför skulle annars våren tveka? 
Varför skulle all vår heta längtan 
bindas i det frusna bitterbleka? 

Höljet var ju knoppen hela vintern. 
Vad är det för nytt, som tär och spränger? 

Ja visst gör det ont när knoppar brister, 
ont för det som växer 
och det som stänger. 

 
Ja nog är det svårt när droppar faller. 

Skälvande av ängslan tungt de hänger, 
klamrar sig vid kvisten, sväller, glider  - 
tyngden drar dem neråt, hur de klänger. 

Svårt att vara oviss, rädd och delad, 
svårt att känna djupet dra och kalla, 

ändå sitta kvar och bara darra  - 
svårt att vilja stanna 

och vilja falla. 
 

Då, när det är värst och inget hjälper, 
Brister som i jubel trädets knoppar. 
Då, när ingen rädsla längre håller, 
faller i ett glitter kvistens droppar 

glömmer att de skrämdes av det nya 
glömmer att de ängslades för färden  - 
känner en sekund sin största trygghet, 

vilar i den tillit 
som skapar världen. 

                           
                                                                  Karin Boye 1900-1941 
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Abstract 
The most common cancers in the western countries are breast cancer in women and prostate 

cancer in men, and these cancer types, together with lung cancer, often metastasise to the 

skeleton. Bone scan is used to determine whether metastases are present, and the result of the 

examination serves as a guide in the choice of treatment strategy. Correct interpretation is, 

therefore, of great importance. The primary aim of this thesis is to investigate whether 

diagnostic accuracy of planar whole-body bone scan interpretations can be improved with the 

aid of a computer-assisted diagnosis (CADx) system. This is accomplished by four separate 

studies, of which the first shows that an automated CADx system is possible to develop for the 

interpretations of bone scans regarding the presence or absence of metastases. In the second 

study we investigated, in a nation-wide survey, the physicians’ performance and the 

interpretive variations between readers for bone scan examinations. The physicians were 

asked to classify 59 images regarding the presence or absence of bone metastases. The images 

were selected to reflect the spectrum of pathology found in everyday clinical work. The 

physicians’ interpretations were compared with final clinical assessment based on a 4.8 year 

follow-up period, and they were also compared pairwise with each other. The results showed 

a sensitivity ranging from 52% to 100%, with an average of 77% and a mean specificity of 

96%. In addition, moderate agreement was found between readers. The experience from these 

studies resulted in the development of a second CADx system (third study) based on improved 

image processing and artificial neural network techniques and a larger database of whole-

body bone scans. The CADx performance when tested on the 59 bone scans showed a 

sensitivity and a specificity of 90% and 89%, respectively. In the final study 35 physicians 

with varying levels of experience, working at 18 of the 30 nuclear medicine departments in 

Sweden interpreted the 59 bone scan images again, this time with the aid of the CADx system. 

The results showed a significant increase in sensitivity (88%) (p<0.001) without significant 

loss of specificity (94%). The area under the ROC curve increased from 0.925 without CADx 

to 0.961 (p=0.005) with CADx. The variation in interpretations decreased with CADx. In 

conclusion, a CADx system can improve diagnostic accuracy and reduce interpretive 

variations between physicians for bone scan examinations.  

 

Key words: Diagnostic accuracy – Radionuclide imaging – Bone metastases – Breast cancer – 

Prostate cancer  
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Populärvetenskaplig sammanfattning 

Bland de vanligaste cancerformerna i västvärlden är bröstcancer hos kvinnor och 

prostatacancer hos män och dessa cancerformer, inklusive lungcancer, sprider sig ofta till 

skelettet. Skelettscintigrafiska underökningar genomförs för att upptäcka tumörspridning och 

det är av stor vikt att bilderna tolkas korrekt för att patienten ska få rätt cancerbehandling. En 

korrekt diagnos är en av förutsättningarna för att framgångsrikt bota eller bromsa en aggressiv 

cancersjukdom. Dessutom är det viktigt att en undersökning bedöms på samma sätt oberoende 

av vid vilket sjukhus diagnostiken sker. Det primära syftet med avhandlingsarbetet var att 

undersöka om den diagnostiska säkerheten för tolkning av skelettscintigrafiska bilder kan 

förbättras med assistans av ett datorbeslutstöd. Detta uppnåddes med hjälp av fyra separata 

studier varav den första visade att det är möjligt att utveckla ett helautomatiserat 

datorbeslutstöd för tolkning av skelettumörfrågeställning. I arbete två undersöktes, i en 

nationell multicenterstudie, hur bra bedömare är på att hitta skelettumörer och hur eniga 

bedömarna är i tolkningarna när de jämförs parvis med varandra. Deltagarna ombads tolka 59 

skelettscintigrafiska bilder avseende tumörer. Bilderna valdes så att de skulle representera den 

typiska fördelningen av tumörförekomst som påträffas i den kliniska vardagen. Resultaten 

visade att bedömarna hittade i genomsnitt 77% av patienterna med tumörer och 96% av 

patienterna utan tumörer. Bedömarna var dessutom måttligt eniga i tolkningarna när de 

jämfördes med varandra. Utifrån erfarenheten av dessa studier utvecklades ytterligare ett 

datorbeslutstöd (arbete III) baserat på förbättrad bildbehandling, förstärkt artificiella neurala 

nätverksteknik samt en större databas av skelettscintigrafiska bilder. När datorbeslutstödet 

testades på de 59 bilderna hittades 90% av patienterna med skelettumörer samt 89% utan 

tumörer. I det fjärde arbetet deltog 35 läkare från 18 olika sjukhus med varierande erfarenhet 

av skelettscintigrafisk tolkning. Läkarna ombads att återigen tolka samma 59 bilder, denna 

gång med assistans av ett beslutstöd. Läkarnas bedömningar jämfördes dels med den samlade 

kliniska slutbedömningen som bygger i snitt på 4,8 års uppföljningsperiod, dels jämfördes 

läkarnas tolkningar med varandra. Resultaten visade både att läkarna hittade fler patienter 

med skelettumörer (88%) och fick en mera samstämmig tolkning då beslutstödet användes. 

Sammanfattningsvis så kan ett datorbaserat beslutstöd assistera läkare till ökad diagnostisk 

säkerhet vid tolkning av skelettscintigrafiska bilder samt minska variationerna i tolkningarna 

mellan bedömare. 
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Abbreviations 
 

CAD Computer-Assisted Detection or Computer-Assisted Diagnosis 

CADe Computer-Assisted Detection 

CADx Computer-Assisted Diagnosis 

CT Computed Tomography 

DBMMRMC Dorfman-Berbaum-Metz Multiple-Reader Multiple-Cases 

FN False-Negative 

FP False-Positive 

κ Kappa 

MRI Magnetic Resonance Imaging 

PA Percentage Agreement 

RC Relative Concentration 

ROC Receiver Operating Characteristic curve  

RP Relative Position 

RV Relative rank Variance 
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Background  
Image interpretations 
Rapid technological innovations in the imaging field, such as in functional and metabolic 

imaging, ultrasound, radiology and interventional radiology, contribute to seemingly 

unlimited horizons of diagnostic possibilities. However, with wider possibilities the 

complexity of the interpretation process rises and becomes an even more demanding task. 

Furthermore, the expanding and rapidly aging population requires an increasing volume of 

diagnostic examinations. Physicians and radiologists are, therefore, facing an increasing 

workload, but must still manage to read the diagnostic images carefully, avoiding errors in 

interpretation which may otherwise lead to an adverse effect in patient management. Surveys 

between 1999 and 2003 report an increase in radiologists’ workload by 39%, measured in 

relative value units (RVU) (1). The RVU measures the physicians’ productivity, taking into 

account the complexity of the examinations being interpreted and the percentage of time the 

average reader spends on the interpretations (2). As the volume of investigations increases, 

the risk of errors and the associated anxiety accelerates even more rapidly (2).  

 

Most interpretations of diagnostic images are made visually, which makes the classifications 

observer-dependent. Factors that result in differences in interpretation are either personality 

dependent and/or random. One type of personality difference is when a reader has the 

tendency to report abnormal findings more often than another reader, who conversely has the 

tendency to reject findings, that is, the physicians systematically either overestimate or 

underestimate the significance of the findings. The other type of personality-dependent 

difference is when a reader is uncertain and often use words like “bone metastases cannot be 

ruled out with certainty” or “bone metastases probable”, while another reader is more definite 

and often use statements like “absence of bone metastases” or “definite presence of bone 

metastases”. Random errors, on the other hand, arise due to disturbing factors related to a 

busy practice, like loos of concentration or fatigue (3, 4). These types of image interpretation 

errors can in the worst cases lead to lack of appropriate treatment or the opposite, unnecessary 

additional examinations or treatment.  

 

Fortunately, the majority of image interpretations are correct, but what can be done about 

those that are wrong or misleading? One way to assist the image reader could be by using a 
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computer system which alerts the reader to suspicious findings and propose a “second 

opinion” for the interpretation. 

 

Decision support systems  
The idea of a computer-assisted detection/diagnosis (CAD) system is to draw the physician’s 

attention to pathological changes, while minimizing the risk of abnormal findings being 

overlooked (5-8). The general concept is to assist the reader by combining his or her 

competence and knowledge with the computer’s capability to detect lesions in medical 

images. Computer alerts should not be considered surrogates or possible replacements for 

human experts; rather they should facilitate and complement their work.  

 

CAD systems could be used either for the detection (CADe) of lesions by flagging for 

suspicious uptake in the images, or further developed also to deliver a diagnosis (CADx) for 

the whole examination. In either case, when CAD is used as a “second opinion”, the 

physician makes the first decision by judging the images without CAD, then asks for CAD 

advice and ultimately makes the final interpretation. In some cases in which physicians are 

confident of their judgment, they may agree with the CAD output, or disagree and then 

disregard the CAD advice. In other cases, where the physician is less confident, the final 

decision can be improved by the use of a CAD advice, if of course the CAD advice is correct. 

The higher the performance of the CAD system, the better is the effect on the final 

interpretation. This approach does not, however, require the CAD system to be equal to or 

better than the physician but to complement the reader. CAD systems used as a “second 

opinion” place the responsibility for lesion detection on the physician, and they do not 

entirely rely on CAD. Used in this order, CAD constrains the physician to maintain a high 

level of knowledge and vigilance and then adds the alerting effect of the computer system.  

 

Other ways of using CAD are either as a “first reader” or as a “concurrent reader”. CAD as a 

“first reader” presents the diagnosis directly and the physician makes the final image 

interpretation by either accepting or rejecting the advice of the CAD. Used as a “concurrent 

reader”, the images are displayed simultaneously on the computer screen. These last two 

approaches can have the advantage of shortening the interpretation time for each 

examination, but require the CAD system to achieve very high sensitivity in order not to miss 

a suspicious finding.   
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CAD systems can improve medical practice in many different fields, as has been shown in a 

recent systematic review of randomised controlled trials (8). It has been applied to all 

imaging modalities, including radiography, computed tomography (CT), magnetic resonance 

imaging (MRI), ultrasound and nuclear imaging, used for all body parts such as the skull, 

thorax, heart, abdomen and extremities, and all kinds of examinations, including skeletal 

imaging, soft tissue imaging, functional imaging and angiography (5, 9). Currently, most 

CAD systems developed in the imaging field are for the detection of breast lesions in 

mammography screening (6, 10-13), the detection of lung nodules in chest CT (7), the 

detection of polyps in CT colonography (14-16), the detection of cervical cancers in cytology 

(17, 18) and for the diagnosis of ischemia and infarction in myocardial perfusion scintigrams 

(19, 20). Yet, previous work may be considered as an inception, since computer alerts may 

contribute towards important benefits in medical images in the future. As the physicians’ 

interpretation time is limited, these kinds of systems can help to deal quickly with the 

constantly increasing number of images and the high flow of information. 

 

Bone scintigraphy 
The reason bone scintigraphy was chosen as the research field was because bone scans are the 

most frequently performed nuclear medicine examination, and are widely accepted as a 

method of choice for the initial diagnosis of bone and joint changes in patients with 

oncological diseases (21-25). The interpretation is, however, a difficult pattern-recognition 

task. Non-neoplastic diseases can also reveal abnormalities in the images, and a number of 

differential diagnosis and error sources should be considered (26). Some previous studies 

have shown a lack of sensitivity in the reporting of bone metastases, and a variation in 

interpretations that was substantial, even for such a well-established and widely used 

diagnostic method (27, 28).  

 

Quantification programs presenting the extent of metastases in whole-body bone scans have 

been presented previously (29, 30). Their results showed a high correlation with 

corresponding visual or manually drawn region-of-interest analysis. These types of programs 

may be of value in clinical trials in order to present an objective measure of the extent of 

bone metastases, but they are probably too time-consuming for clinical use (30). The 

measuring time for the method presented by Noguchi and co-workers was on average 16 
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minutes per examination (30). The method by Erdi and colleagues is semi-automated and 

requires the user to insert a seed point into each metastatic region on the image before the 

system can demarcate a region of interest (29). Yin and Chiu developed a CADe system for 

bone scans in order to provide physicians with warning marks for suspicious radiotracer 

uptake, again without a presentation of the likely diagnosis for the whole examination (31). 

Their system showed a high detection rate, but the mean number of false-positive (FP) 

detections was 37 in an abnormal image and 46 in a normal image. Their system performed 

better for hands and legs and worse for the head and vertebrae regions, where metastatic bone 

disease is mostly located. CADe systems with lower FP detections or CADx with higher 

specificity, with completely automated analysis, and methods which propose 

recommendations for the possible diagnosis will most likely be required before physicians 

can adopt this type of technique as part of their clinical workflow. 
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Aims  
The primary aim of this thesis was to investigate whether diagnostic accuracy of whole-body 

bone scan interpretations can be improved with the aid of a computer-assisted diagnosis 

system. This was accomplished by four separate studies with the specific aims to:  

 
I. develop a completely automated method, based on image processing techniques 

and artificial neural networks, for the interpretation of bone scans regarding the 

presence or absence of metastases. 

II. investigate, in a nationwide survey, the inter-observer variation and performance 

in interpretations regarding the presence or absence of bone metastatic disease 

based solely on bone scan images. 

III. develop a completely automated computer-assisted diagnosis system for 

interpretation of bone scans regarding the presence or absence of metastases, based 

on improved image-processing, artificial neural network techniques and a large 

database of whole-body bone scans.  

IV. investigate, in a multi-centre study, whether physicians benefit from the advice of 

our computer-assisted diagnosis system by reducing inter-observer variation and 

improving performance in the interpretations of bone scans regarding the presence 

or absence of bone metastases. 

 14



Development of a CADx system  
An automated CADx system for the interpretation of bone scans regarding the presence or 

absence of metastases was developed. In order to create such a system a multidisciplinary 

research group consisting of physicians, engineers, physicists, a statistician and a technologist 

was established. The four important cornerstones in this thesis were image processing, 

machine learning, databases and clinical evaluation.  

 

The CADx system used for the interpretation of bone scans consists of image processing 

techniques and a machine learning method called artificial neural networks (ANN). The 

image processing presents features from the bone scan images to the ANN, which are then 

used to interpret the examination. Since these methods are data-driven, i.e. learning by 

training, a database consisting of a large number of bone scans was used. After the 

development of the CADx system, the performance had to be evaluated by utilizing a separate 

test group, representing cases that are normally seen in daily clinical work. 

 

The decision to adopt a new technology depends on adequate evaluation of the performance 

and usefulness of this method. The important issue is yet not the performance of CADx per se, 

but whether physicians benefit from it. As the CADx system is intended to be used as a 

“second opinion”, the performance and usefulness of CADx is equal to the performance 

achieved by the physicians, who make the final decision, by using the CADx advice. The 

following study design, both for the development and testing of the decision support and for 

investigating the physicians’ performance without and with CADx, is used in an attempt to 

evaluate the clinical value of CADx in the final decision-making.  

 

Image processing 
Each bone scan image, anterior and posterior, is composed of large number of picture 

elements (pixels)  (256x1024) and each pixel is presented by a value, or “a variable”. The 

total number of variables for the whole examination therefore exceeds 0.5 million 

((256x1024) x 2). Only some of these variables represent the actual skeleton, while the rest 

are outside the body. The purpose of the image processing operation is to reduce the large 

number of variables by extracting relevant and excluding irrelevant information before 

processing it further to the ANN. Relevant information could, for example, be the number of 

hot spots present in the images or the distribution of the hot spots. Information excluded 
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could, for example, be symmetrical hot spots, a hot spot representing the bladder and the area 

outside the body. Image processing is one of the most important aspects of the development 

of a CADx system. Prior knowledge is needed of the examination that is to be interpreted, 

and the goal is to transform this knowledge into mathematical formulae and incorporate it 

into the image processing. There are no general rules as to how to extract relevant features, 

and this has to be tested for each individual problem. 

 

The three basic operations used in the image processing are segmentation, hot spot detection 

and feature extraction.  

 

Segmentation 

The segmentation of the skeleton defines the region of interest. A precise segmentation 

makes it possible to use different variations of the algorithm for the detection of hot spots in 

different parts of the image, and to present information in greater detail regarding the 

localization and distribution of hot spots to the ANN. Two different approaches where used 

to segment the skeleton. In paper I thresholding was used to separate the bones from the 

background, which defined the outer contour of the body (Fig. 1a). In paper III active-shape 

models (ASM) were used (32), which is a statistical approach to find different skeleton parts 

(Fig. 1b). ASM allows expected variations in size and shape of the skeleton and considers 

grey-level appearance to find the borders of the skeleton. A robust segmentation is a 

prerequisite for successful hot spot detection, since the localization of each potential hot spot 

was obtained on the basis of the result of the segmentation process. 
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1a.                                                   1b. 

Figure 1. The two different segmentation approaches used in paper I (1a) and paper III (1b). 
 

Hot spot detection  

A region-specific threshold algorithm was used to detect potential hot spots. The algorithm 

was based on the mean and standard deviation of all pixel count values from a specific 

region. Clusters of pixels with count values above this threshold, with a cluster size 

exceeding six pixels in paper I and 13 pixels in paper III, were regarded as potential hot 

spots. A low number of pixels increases the risk of detecting noise, i.e. false-positive 

detections. By increasing the number of pixels in paper III, the false-positive detections 

decreased and consequently the false-positive interpretations. The localization of each 

potential hot spot could be obtained, based on the result of the segmentation process. Hot 

spots corresponding to the bladder and the kidneys were excluded based on location and size.  

 

Feature extraction  

Mathematical algorithms were developed to extract useful parameters from the segmented 

regions. The features were selected to describe both the hot spot itself and its relation to other 

hot spots and the surrounding region. The size, shape, intensity and localization of a hot spot 

were calculated, as well as the intensity characteristics of the region in which the hot spot 

was located. An important difference in image processing between the first and the second 

CADx was the feature extraction operation. Fourteen features were used in the first CADx 

(Paper I) to describe the anterior and posterior images, while this number was extended to 45 
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features to describe each hot spot in paper III, and additionally 26 features to describe the 

whole bone scan examination. The increased numbers of features enabled the image 

processing operation to better describe the characteristics of each hot spot, i.e. the size, 

shape, intensity and localization before presenting them to ANN. The resulting image 

features are used as input to ANN, used to interpret the hot spots and the complete 

examination. 

 

Machine learning method 
Medical decisions are rarely based on a single measurement; instead physicians often consider 

several factors and parameters before making their final diagnosis. Physicians have learned to 

weight the importance of these factors or measurements through acquired knowledge, 

experience from previous cases, discussions with senior experts and comparison with the final 

clinical outcome. In order to shorten this long learning curve and minimise variations in 

interpretations due to turnover of staff, decision support systems have been developed to 

assist physicians by providing knowledge based on a large number of cases.  

 

There are different methods used in the development of a decision aid. Expert systems based 

on rules predefined by physicians (33), standard statistical methods (33) or artificial neural 

networks (34) are some methods used. Which method to use depends on the problem that has 

to be solved. 

 

Interpretation of bone scan images is a complex process based on pattern-recognition 

weighting different variables, like homogeneity of the radiotracer uptake, symmetry, 

localization, distribution, intensity, coverage, shape of hot spots etc. Furthermore, the 

separation between the two groups “disease” or “no disease” when classifying cases from a 

diagnostic test is often non-linear. Therefore, using an interpretation method assuming a 

linear boundary in an attempt to discriminate between these two populations would be less 

powerful (Fig. 2a). The advantage of the ANN is that they can be trained and adjusted to 

discriminate between “disease” or “no disease” with non-linear decision boundaries. (An 

illustration of a non-linear decision boundary can be seen in figure 2b). A prerequisite is a 

large, representative training group with the desired interpretation (gold standard). ANN are 

not programmed and are not, therefore, restricted to a set of predefined critical variables for 

their interpretations: rather they learn from examples, in the way people do. The ANN can 
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generalize by detecting similarities between new patterns and previously stored patterns and 

are, therefore, ideal for complex pattern recognition. Another set of cases, a test group, with a 

gold standard will be needed to test the performance of the networks.      

 
2a.                                                           2b. 

Figure 2. Using a linear boundary in this population for the separation between “disease” or 
“no disease” (2a) is not as powerful as the non-linear discrimination boundary (2b).  
 

The probably most used ANN design for interpretation problems, such as discriminating 

between “disease” or “no disease” is the multilayer perceptron (35). The most common 

construction has three different layers; one input layer, one hidden layer and one output layer 

(Fig.3). Each layer consists of one or more processing units called nodes (mimicking neurons 

in the human brain). The nodes are interconnected by a set of “weights” (analogous to 

synaptic connections in the nervous system) allowing signals to travel through the network 

(Fig.3).  

 
Figure 3. Example of a simple three-layer ANN. The resulting image features from the image 
processing operation are presented as inputs, processed through the network, and a 
likelihood value for a patient of having bone metastases is finally delivered from the output 
layer.  
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The input layer contains the same number of nodes as the number of input variables 

(features). (For example, there are 14 nodes in the input layer (Paper I), one for each feature 

used). The output node computes the likelihood of the event, e.g. the likelihood of having 

bone metastases. The number of nodes used in the output layer depends on how many 

categories the interpretation problem requires. Every node in a layer is connected with each 

node in adjacent layers. Each node sums the weighted signals it receives from its input 

connections and produces an output signal which is a non-linear function of this input. This 

mimics the way that incoming nerve impulses are aggregated in a biological neuron which 

will fire (an “action potential”) if these signals exceed the activation threshold. The 

computational power in an ANN lies in the interconnections between the nodes containing the 

weights, together with non-linear activation functions. Weights are adjusted in the training 

process until the output from the network better agrees with gold standard. This is the 

“memory” of the ANN. Once the training stops the memory cannot be modified until a new 

set of training cases are presented and weights adjusted. 

 

In the first CADx system (Paper I) one set of ANN was used as an interpreter for the whole 

examination, while in the second CADx (Paper III) two sets of ANN were used; the first 

interpreting each hot spot and the second interpreting the whole bone scan examination. In 

paper III the second network weighted the most important hot spot information received from 

the “hot spot” network, before interpreting the whole bone scan images. By this approach, 

increased radiotracer uptake caused by, for example, bad teeth or sternotomy was flagged as 

suspicious findings but was not interpreted as bone metastases in the final classification made 

by CADx (Fig.4). Using two sets of ANN enabled the program to increase the specificity in 

the final interpretation for the whole examination. 
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Figure 4. A 70-year-old man with prostate cancer. Increased radiotracer uptake can be seen 
in the right part of the mandible, most probably due to bad teeth, and in the sternum 
secondary to sternotomy. The artificial neural networks classifying hot spots separately 
indicate that uptake in the sternum could be a metastasis, but the neural networks classifying 
the complete examination, considering all hot spots, correctly report ‘absence of bone 
metastases’. Suspicious metastases are marked in red, symmetrical or benign radiotracer 
uptake in blue and the bladder is yellow.  
 

Databases 

Images 

Ideally the databases used for CAD development and evaluation should be at least of the 

order of hundreds, including representative cases found in a clinical routine. Researchers who 

have developed automated methods for the interpretation of coronary artery disease in 

myocardial Bull’s-Eye scintigrams have included the same 135 patients both for training and 

evaluation, by using the “leave-one-out” validation procedure (19). One patient examination 

was used as an evaluation case, whereas the remaining 134 patients were used for training. 

This procedure was repeated 135 times, such that each case in the data set was used as a test 

case once (19). Other CADe developers for programs used for the detection of polyps on CT 

colonography have used 141 cases as a training group and 119 in test (14), or 239 cases for 

training and “leave-one-out” for the validation (16), respectively, collected from different 

centres.  

 

Yin and Chiu developed a CADe method providing physicians with warning marks for 

suspicious radiotracer uptake on bone scans, and used 20 selected patients in the training 

phase and further 109 patients from the same database for the test group (82 abnormal and 27 

normal images) (31). In our first decision-support system (Paper I), 200 consecutive patients, 
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who had undergone whole-body bone scintigraphy due to suspected bone metastatic disease 

were included. We chose a consecutive approach in order to train and test the CADx with 

representative patient material which is normally seen in the clinical routine, e.g. prevalence 

of bone metastases, age, gender etc. The total group was then randomly divided into 100 

cases each for the training and testing of the CADx system (Table 1). The number of cases 

used in paper I lie in the range of what has been used by others who have developed 

successful decision support systems. Our approach was also superior to those used by 

Lindahl et al and Halligan et al, as we included two different patient groups for training and 

testing (16, 19).   

 

A major step forward in the improvement process between the first (Paper I) and second 

CADx (Paper III) system is that the number of training cases was increased from 100 to 810 

consecutive patients (Table 1). This was done in order to present an even larger variation of 

bone scan findings, and thus enable the second CADx system to better differentiate normal or 

benign uptake patterns from pathological processes. The reason why we included this large 

number of cases was because it is the recommended number of bone scans a physician 

should interpret during his or her specialist training.  

 

For the testing of CADx (Paper III) a group of 59 patients were retrospectively selected, who 

had undergone whole-body bone scintigraphy due to suspected bone metastatic disease, and 

who had had at least one follow-up bone scan (Table 1). These patients had a similar 

distribution of age, gender and prevalence of bone metastases to the consecutive material 

(Table 1). The reason why the number of test cases was reduced between the first and second 

CADx is because these 59 patients were not only used as the validation group for CADx but 

also in the evaluation of the physician’s performance and inter-observer variation (Paper II 

and IV). A high number of patient studies makes it difficult to recruit physicians, due to the 

amount of time it would demand from each. We therefore decided to include as many cases 

as it would be possible to read in approximately 1 hour. 
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Table 1. Study population in paper I and III. 

 Training group 

(paper I) 

Test group 

(paper I) 

Training group 

(paper III) 

Test group 

(paper III) 

No. of patients 100 100 810 59

Female (%) 31 32 35 31

Mean age, years 
(range) 

68 (40−88)       69 (36−89) 66 (25–92) 65 (43–86)

Prevalence of bone 
metastases (%) 

36 31 34 36

 

 

Gold standard 

Different alternatives can be used as gold standard for the diagnosis of malignant disease, of 

which histological verification is considered as the most accurate. Biopsy is possible to use if 

included as part of the routine workflow as, for example, when breast cancer is suspected on 

mammography, or for the analysis of malignancy in polyps detected on colonoscopy. This 

type of gold standard was used in the evaluation of CADe programs in the fields of 

mammography and CT colography (10-13, 15, 16). However, biopsy was only performed 

when malignancies were suspected, while in the remaining cases interpreted as normal or 

benign, an expert physician or panel of physicians who read the images served as the 

reference standard. One should also bear in mind that biopsy has its limitations. Layfield 

reported in a recent review that the diagnostic accuracy in fine-needle aspiration for bone 

lesions is 85%, and that the insufficiency rates could vary from 4% to 33% (36).   

 

Using biopsy as a gold standard is impossible in practice for each hot spot found in the bone 

scans, as multiple skeletal parts could be involved. In such circumstances acceptable and 

frequently used reference standards are: a human expert, consensus agreement between a 

panel of experts, application of a majority rule from an expert panel, or, taken even further, 

using final clinical outcome based on a long follow-up period.  

 

The gold standard interpretation of the patients in the training and test groups (Paper I) 

regarding presence or absence of bone metastases was based on clinical reports and bone 

scan images. These reports and the corresponding bone scans were re-evaluated by an 
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experienced physician and a trained technologist, who estimated the probability of bone 

metastases on an analogue scale from 0 to 1.  

 

In paper III during the improvement of the second CADx system, the gold standard for the 

training group was further strengthened. In difficult cases results from other diagnostic 

examinations of the patient, for example, follow-up scans, MRI, X-rays or CT when 

available, were considered in the re-evaluation.  

 

In order to come as close as possible to the absolute truth regarding the presence or absence 

of bone metastases in the 59 patients, who were used both as the test group for CADx (Paper 

III) and in the evaluation of the physician’s performance and inter-observer variation without 

and with CADx (Paper II and IV), we used final clinical assessment made by an experienced 

physician. This assessment was based on all the bone scan images, including the follow-up 

scans, the patient’s computerised medical record including the results of laboratory tests, and 

all available diagnostic images (MRI, CT and X-ray) for a mean follow-up duration of 4.8 

years. The aim of this approach was to use all the available patient data.  

 

Using follow-up as a gold standard is preferable compared with consensus agreement among 

an expert panel, basing their interpretations only on the bone scan images. Just because 

experts agree in their interpretations, this does not automatically mean that their 

interpretations are correct. However, final clinical assessment was carried out by one expert 

physician, which could be seen as a limitation. An expert panel discussing all cases during 

the follow-up would have further strengthened the reference standard.  

 

If we had used a panel of experts as the gold standard, and the majority rule had been applied 

to the 11 experienced physician interpretations (of the total 35 readers, paper IV), then 53 of 

the 59 cases would have had the same classification regarding presence or absence of bone 

metastases. (These participating physicians had access to the 59 current patient examinations 

but not to the follow-up information.) In the 6 cases that were diagnosed differently from our 

gold standard, follow-up had an important impact on the final diagnosis. In 2 of the 6 cases 

nearly all (10/11) the experienced physicians classified the increased uptake as false-

negative. One of these patients had a positive biopsy, and the other showed increased uptake 

in lesion size and intensity on the follow-up scans. In the remaining 4 cases there were more 

disagreements among the 11 experienced physicians, 3 cases with 6 votes against 5, and one 
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with 7 votes against 4. This indicates that our gold standard based on final clinical 

assessment is less dependent on the experience of this one expert physician.  

 

Clinical evaluation  

Clinical evaluation should ideally be designed so that the results also have implications for 

physicians and patients other than those who participated in the trial. The study design used is 

referred to as “three factors” – multiple-reader, multiple-cases and multiple-modality, “fully 

crossed” design – all physicians interpreted all images twice, once without and once with 

CADx. The goal is to have as many readers and cases as possible. However, there is a trade-

off between the number of physicians who will agree to participate in quality assessment 

studies and the number of cases each physician is asked to read. Authors who have used the 

same study design to investigate the physicians’ performance without and with CAD usually 

included few (three to ten) readers, some of them working at the same hospital, and in some 

studies only experienced readers were selected to join (14-16, 19, 20). In these trials the 

physicians were asked to read between 30 to 135 cases. In contrast to the previously 

mentioned studies, we invited all the physicians in Sweden interpreting bone scans as part of 

their daily routine to participate in the nation-wide survey (Paper II). Thirty-seven physicians 

(of an estimated 100–125 physicians), with various levels of experience, from 18 of the 30 

nuclear medicine departments in Sweden, agreed to participate. The physicians were 

instructed to visually review 59 whole-body, anterior and posterior, bone scan images without 

CADx and – one year later – with CADx. Thirty-five physicians participated on both 

occasions.     

 

In the field of mammography, researchers have used different study designs when 

investigating the effect of CADe on physicians’ performance. In two prospective studies 

12,860 (10) and 8,682 (12) cases were included, respectively, and interpreted by one of two 

and one of seven physicians, i.e. not all physicians interpreted all cases. Their CADe systems 

were already implemented and part of the routine workflow. The need for inclusion of 

thousands of cases in these studies is due to the fact that the incidence of breast cancer in a 

screening population is low. Only 3 to 10 cancers are diagnosed out of 1,000 women screened 

(12). Therefore, in order to detect a significant positive effect using CADe a high volume of 
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cases is needed. In the current material, on the other hand, 36% of the 59 test cases had bone 

metastases (Table 1). 

 

In a large Danish study, Rossing et al investigated the quality of reporting of bone scans from 

842 breast cancer patients collected at 12 centres (27). Again, not all physicians interpreted 

each of the 842 scans, but each of the 12 centres contributed with some of these patients.  

 

In order to be able to compare the physician’s performance and inter-observer variation both 

without and with CADx the scale given bellow was used in the interpretation of the presence 

or absence of bone metastases. Commonly in their routine clinical work physicians use 

different statements in their reporting; some mention certain findings while others ignore 

them. These types of statements are, however, difficult to compile between the physicians and 

between two different occasions. Therefore, the physicians were asked to use a 4-point 

interpretation scale. A drawback could yet be that the physicians were constrained to a scale 

they might not be used to.  

 

Grade 1: Absence of bone metastases 

Grade 2: Bone metastases cannot be ruled out with certainty 

Grade 3: Bone metastases probable 

Grade 4: Definite presence of bone metastases 
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Results  

The quality of the interpretation of bone scintigraphy, carried out by physicians or CADx 

regarding metastases, can be described using measurements of sensitivity and specificity 

(performance). One way of determining the physicians performance or the CADx performance 

is to classify the patients into two groups (“no bone metastases” or “bone metastases”) 

according to the results of a gold standard and to compare the physicians’ or the CADx 

interpretations with this reference standard. An alternative approach, which does not require a 

gold standard, is to measure the physicians’ reproducibility by comparing them with each 

other (inter-observer agreement).  

 

Performance 
Paper I  

The results from the first CADx system showed that it is possible to develop an automated 

method for the interpretation of whole-body bone scintigraphy regarding the presence or 

absence of bone metastases. When compared with gold standard (expert physician), the 

interpretations by the CADx system showed a sensitivity of 90% in the test group. CADx 

could correctly interpret 28 of the 31 patients with metastases. A false-positive interpretation 

of metastases was made in 18 of the 69 patients not classified as having metastases by the 

experienced physician, which resulted in a specificity of 74%. In order to determine whether 

these results are satisfactory and whether readers can be helped by such a system, our next 

aim was to identify the strength and limitations in the physicians’ reporting, and to optimize a 

CADx system with the ability to complement the readers and prevent errors, with the final 

goal of increasing diagnostic accuracy.  

 

Paper II 

In the nation-wide survey 37 physicians interpreted 59 bone scan images and these were 

compared with final clinical assessment as gold standard, based on follow-up scans, the 

patient’s computerized medical record including results of laboratory tests and all the 

available diagnostic images (MRI, CT, X-ray) for a mean follow-up period of almost 5 years. 

The physicians’ results showed sensitivities ranging between 52% and 100%, with an average 

of 77%, indicating that the physicians either failed to detect the lesions or interpreted 

metastatic disease as benign findings. The specificities for the physicians were high; ranging 

between 79% and 100%, with an average of 96%. Rossing et al. investigated the quality of 
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reporting in bone scans by comparing the initial interpretations with a panel of three 

physicians as the gold standard (27). They showed a sensitivity and a specificity of 78% and 

84% respectively. The difference in gold standard between the studies may partly explain the 

differences in specificities. Peters et al. studied clinical audit in nuclear medicine and showed 

that 19 reports out of 220 (8.6%) were classified as having non-trivial errors in the 

interpretations, that is errors with the potential adversely to influence patient management 

(28). Our results and those found by others indicate that the main problem in the 

interpretations of bone scan images seems to be false-negative errors. Among patients 

suffering from bone metastases the aim is to avoid skeletal-related events such as bone pain 

and pathological fractures, which is why this kind of misinterpretations should be reduced. 

 

Paper III 

The results from the first CADx system were encouraging, but further improvements were 

needed in order to apply the system in a day-to-day clinical setting. These experiences led to 

the development of a second method, based on improved image processing and artificial 

neural network techniques and a larger database of whole-body bone scans. An important 

improvement between the first and second CADx is that the specificity was increased from 

74% to 89%. True negative interpretations were made for 34 of the 38 patients classified as 

not having bone metastases by the gold standard (follow-up). The second CADx system made 

correct interpretations for 19 of the 21 patients with bone metastases, showing the same level 

of sensitivity (90%) as in the first CADx.  

 

It is difficult to make a direct comparison between our computer system and that of Yin and 

Chiu (31), as their system was used to provide warning marks to direct the physician’s 

attention to suspicious radiotracer uptake, and not to provide a second opinion regarding the 

interpretation of the complete image, as in our system. They present per-lesion results while 

we present per-patient results (31). Their system showed a sensitivity in the per-lesion 

analysis of 91.5% and a mean false-positive detection of 37 per image in the whole material, 

i.e. a total of 4065 FP marks in 109 images. The problem of low specificity seems to be much 

less with our system. Our sensitivity and specificity were also higher than those presented by 

Sajn and co-authors (37), 79.6% and 85.4%, respectively, who presented an automatic method 

for analysis of whole-body bone scans. One explanation could be that we included a larger 

number of patients in the training process and used different techniques in the development of 

the system.  
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Ellis and co-workers compared two CADe systems (R2 ImageChecker M1000, version 5.0A 

and iCAD Second Look, version 6.0 mid operating point) used in mammography for the 

detection of breast cancer (38). The per-study sensitivity and per-study specificity for R2 

ImageChecker and iCAD Second Look were 82% and 39%, and 61% and 31%, respectively. 

Both CADe systems are optimised towards higher sensitivity at the cost of much lower 

specificity. A low specificity implies that the physicians have to investigate many false-

positive marks carefully, which can reduce the readers’ acceptance of the system. Despite the 

fact that neither our system nor theirs is meant to be used independently, a high specificity is 

required in order not to increase interpretation time and induce the need for additional 

investigations.  

 

Paper IV 

The important issue is, however, not the performance of CADx per se, but whether physicians 

benefit from it. We found that, when the 59 images were interpreted with the aid of the CADx 

system, the results showed a positive additive effect on the 35 physician’s performance. The 

combination of the physician’s high specificity with the high sensitivity of CADx resulted in 

significantly increased sensitivity, from 78% without CADx to 88% (p<0.001) in detecting 

bone metastases, without significant loss of specificity. The following two cases illustrate the 

synergetic effect between CADx and the readers. The case shown in figure 5 was correctly 

classified as metastases by the CADx system, and with the computer’s advice 30 physicians, 

instead of 17 without CADx advice, made a correct interpretation. Figure 6 shows an example 

of a patient with fractures, misinterpreted by the CADx system as having metastases, but 

correctly classified by 33 out of 35 physicians, despite false-positive CADx advice. 
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Figure 5. With the advice of the CADx system 30 of the 35 physicians classified this case as a 
true-positive compared with 17 physicians without the CADx advice. A 47-year-old woman 
with breast cancer. Multiple focal increases in pathological radiotracer uptake can be 
visualized. X-ray of the left thorax verifies bone metastases, and the medical record stated 
metastases in the bone, liver and lungs. Suspicious metastases are marked in red, symmetrical 
or benign radiotracer uptake in blue and the bladder is yellow.  
 
 

 
 

Figure 6. A 63-year-old man with prostate cancer. Increased radiotracer uptake can mainly 
be seen in the rib/costa cartilages, which disappeared on the follow-up scan. The 
localizations speak in favour of fractures. The CADx system classifies this patient as having 
metastases, but the majority of the physicians (33/35) interpreted the images correctly, 
despite erroneous advice from the CADx system. Suspicious metastases are marked in red, 
symmetrical or benign radiotracer uptake in blue and the bladder is yellow.  
 
 

Several studies in different medical fields have been published highlighting the positive effect 

of CAD on physician’s detection of abnormalities, and also showing less variation in the 

reporting. In CT colonography, CADe significantly increased the detection of polyps, by an 

average of 9.1%, especially in those of small and medium size (16). Taylor et al reported that, 
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despite false-positive CADe marks, the system did not adversely influence correct reader 

interpretation (15). Furthermore, Baker and colleges demonstrated that CADe can be useful 

for less-experienced readers, and showed that the average sensitivity to polyp detection 

significantly increased from 81% to 91% with CADe (14).  

 

When interpreting diagnostic images, the final report should preferably, clarify whether or not 

the patient has bone metastases. However, in actual everyday practice these definite diagnosis 

are not always possible due to difficult, uncertain findings, and more than two categories are 

usually used to describe the spectrum of cases seen. The physicians were, therefore, asked to 

interpret the bone scan images regarding the presence or absence of metastases using a 4-

categorical scale. The performance of each physician was measured as the area under the 

receiver operating characteristic (ROC) curve. The ROC area can present a value between 0 

and 1, with 1 indicating perfect performance. The differences in ROC areas without and with 

the CADx system for all physicians were calculated using a multireader-multicase ROC 

analysis of variance trapezoidal area analysis (DBMMRMC 2.2) (39-46). This ROC analysis 

considers cases and readers as random samples. This means that the analysis is not only meant 

to reflect the performance in the particular sample studied, but provide an estimate of 

performance “on average” in similar cases and physicians and readings that were not studied. 

The results can, therefore, be generalized to both the population of cases and that of readers 

from which the test samples of cases and readers were drawn (39-46). 

 

When the physicians considered the computer advice in their interpretations, the area under 

the ROC curves rose significantly from 0.925 without to 0.961 (p=0.005) with CADx. These 

findings are in accordance with what others have reported (19, 20) using computer advice as a 

second-opinion in the interpretations of myocardial perfusion scintigrams. Researchers have 

found improved performance, expressed as increases in the areas under the ROC curves from 

0.65 to 0.70 and from 0.79 to 0.82 for two vascular territories when physicians used CADx 

(19). Others in the same field also showed benefits from CADx, expressed as increased 

sensitivity for ischaemia from 81% without to 86% with the CADx system (20).  

 

In the United States single reading is standard practice in mammography screening, but 

double reading has been used in some centres in order to increase sensitivity in the detection 

of breast cancer. This procedure is time-consuming and costly from a radiologist manpower 

perspective. Gromet investigated the efficacy of single reading (without CADe) compared to 
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double reading and to single reading with CADe and found that the sensitivity increased from 

81.4% to 88.0% to 90.4%, respectively. Gromet concluded that CADe enhances the 

performance of a single reader, yielding increased sensitivity, with only a small increase in 

recall rate (i.e., the rate at which mammographically screened women are recalled for 

additional assessment). They have routinely converted from double reading to single reading 

with CADe in screening mammograms (6). Similarly, in a large, prospective, multi-centre 

study Gilbert and colleges found no significant difference between double-reading and single-

reading with CADe, with a modest increase in recall rate (47). Furthermore, in a recent review 

presenting CAD systems in medical imaging, Doi summarized the results of six prospective 

studies on the usefulness of CADe for the detection of breast cancers in screening 

mammography. All six studies indicated an increase in the detection rates from 1.7% to 

19.5% in finding cancers (5). Importantly, Warren Burhenne et al showed that 67% (286 of 

427) of breast cancers were visible retrospectively in prior mammograms, and by using a 

panel of radiologists 27% (115 of 427) could have been diagnosed earlier (11). Their CADe 

system could successfully detect 77% of these 115 cases and would have alerted the 

physician.  

 

In contrast to the majority of studies dealing with CADe in mammography screening, Fenton 

et al concluded that CADe is associated with reduced accuracy of interpretation. Their study 

showed an increase in sensitivity from 80.4% to 84.0% and an increase in cancer detection 

rates from 4.15 to 4.20 per 1,000, but these two findings were not statistically significant. The 

authors argued that CADe provides no benefits, because the study showed a 19.7% increase in 

biopsy rate, which was statically significant (48).  

 

In the detection of pulmonary nodules using CT, Golding and co-workers summarized in a 

review the current state of the art regarding CAD techniques, and concluded that CAD serving 

as a second reader, may provide better sensitivity for small nodules, easier enumeration and 

better documentation, improved inter-observer and inter-scan consistency in follow-up 

examinations, and a more objective assessment of significant temporal change in lesion size 

and number (7). These examples of previous work and our multi-centre study (Paper IV) 

demonstrate that CAD could increase diagnostic accuracy and reduce interpretive variations 

in diagnostic images.   
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Percentage agreement (PA) was used in paper II-IV in order to calculate exact agreement 

between categorical assessments made by physicians or CADx, compared with a gold 

standard, or between paired physicians. A value of 100% implies perfect agreement. Thus, 

some agreement between two physicians could be expected to be caused by guessing and in 

order to investigate the agreement beyond that expected by chance, the kappa (κ) coefficient 

was used. A maximum value of 1 means perfect agreement.  

 

In comparison with the gold standard, when classifying the 59 bone scans without CADx the 

37 physicians showed a mean PA of 66% and a mean κ value of 0.50, indicating moderate 

agreement. The second CADx system performed PA and κ values of 76% and 0.58, 

respectively, when interpreting the same scans. Finally, when the 35 physicians classified the 

images with the advice of CADx they showed significantly increased PA (73%) (p=0.00004). 

The same trend was observed with κ, that the mean value rose significantly to 0.58 

(p=0.0001) with CADx advice.  

 

Inter-observer variation  
Paper II and IV 

Pairwise agreement between the 37 readers was analyzed by creating all combinations of 

physician pairs. On average, PA between the paired readers when interpreting the images 

without CADx was 64% and mean κ was 0.48, indicating moderate agreement. One year later 

35 of these physicians interpreted the images again, this time with CADx assistance. The 

influence of the CADx system on inter-observer variation was studied in the following way: 

for each pair of physicians, their agreement was quantified both without and with CADx. 

Mean changes between these two occasions were calculated for all pairs, but no significance 

tests were applied, because the physicians were dependent on each other. 

 

The results showed that most pairs increased their agreement (PA and κ) with the advice of 

CADx. This indicates that, when the physicians considered the CADx advice in their 

classifications, the inter-observer variation decreased, that is most pairs agreed more in the 

interpretations.  
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Systematic or random variations papers II-IV 

κ statistics is commonly used in these kinds of studies. However, there are several 

disadvantages with κ. First, one should not compare the value of κ from different studies 

where the prevalence of the categories differs. Second, the κ value depends on the number of 

categories used. The more categories, the higher is the chance of disagreement between 

physicians and vice versa. Third, κ calculations merely indicate that there can be some 

disagreement, without any further explanation of the type of disagreement. Therefore, to 

overcome these shortcomings we used the non-parametric approach of Svensson and Holm, 

which allows a deeper analysis of the nature of performance or inter-observer variation (3, 4). 

Disagreement between two physicians could be systematic and/or random. Two types of 

systematic variations are possible - the first due to overestimation or underestimation of the 

interpretations, and the second due to concentration of the interpretations. Systematic 

overestimation occurs when one reader classifies cases as being more abnormal than does 

another reader, or, conversely, when this is a case of systematic underestimation by the other 

reader. Systematic concentration occurs when one reader uses the middle section of the 4-

point scale (“cannot be ruled out” or “probable”) more often than another reader, who uses the 

grades “absence” or “definitely bone metastasis” more often. Overestimation or 

underestimation is reflected by the variable relative position (RP), and concentration by the 

variable relative concentration (RC). The possible values for RP and RC range from -1 to 1, 

and a value of 0 indicates that no systematic disagreement is present. The pattern of random 

errors was quantified using the variable of relative rank variance (RV). Random errors could 

be caused by guessing, or losing concentration. The possible values for RV are between 0 and 

1, with 0 indicating no random contribution.  

 

The main reason for disagreement between the physicians and the gold standard when 

interpreting the images without CADx was that the physicians concentrated more on the 

central sections of the 4-point scale and used words like “bone metastases cannot be ruled out 

with certainty” or “bone metastases probable” (Grades 2 and 3), in contrast to the gold 

standard.  

 

However, the contribution of systematic variations in position (RP) and concentration (RC) 

was small for the second CADx system, that is, the computer neither overestimated or 

underestimated the interpretations, nor concentrated the interpretations to a certain section of 

the 4-point scale compared with the gold standard.  
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When the physicians interpreted the images with CADx, the disagreement in concentration 

was still present but significantly reduced (p=0.00002), that is the physicians used the more 

uncertain middle section of the 4-point scale (“cannot be ruled out” or “probable”) less often. 

These results show that a CADx system can influence the interpretive style of physicians, but I 

acknowledge that there can be different opinions regarding how frequently uncertainty should 

be indicated in clinical reports. In addition, the contribution of random errors (RV) caused by, 

for example, losing concentration, reading fatigue or interruptions during the interpretations, 

decreased significantly with CADx (p=0.01). 
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Conclusions 
The first study demonstrates that a completely automated method for the interpretation of 

bone scans can be developed regarding the presence or absence of metastases. 

 

The second study shows that false-negative errors were the major problem in the 

interpretations of bone scan images, while the specificities for the physicians were high. 

Furthermore, moderate inter-observer agreement was found when physicians were compared 

pairwise with each other. The reason for the disagreement was mainly systematic, but random 

variations also contributed.  

 

The third study demonstrates that an automated CADx system, based on improved image-

processing, artificial neural network techniques and a large database of whole-body bone 

scans could further amend the performance of the computer method, expressed as increased 

specificity with maintained high sensitivity. 

 

The last study shows that a CADx system can improve the physician’s sensitivity in detecting 

metastases and reduce inter-observer variation in planar whole-body bone scanning. The 

CADx system appears to have significant potential in assisting physicians in their clinical 

routine. 

 
The final conclusion of this thesis is that the diagnostic accuracy of planar whole-body bone 

scan interpretations can be improved with the aid of a computer-assisted diagnosis system.  
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Summary 
What was already known on this topic is that few computer-based decision aids are used 

routinely in health care, despite several reports of potentially valuable new methodologies. 

The decision to take up a new technology depends on adequate testing to prove that it is a 

substantial improvement over unsupported human decisions, and there are only few studies of 

that type. The primary aim of this thesis was to investigate whether diagnostic accuracy of 

whole-body bone scan interpretations can be improved with the aid of a computer-assisted 

diagnosis system. 

 

We have demonstrated that an automated CADx method can be developed regarding the 

presence or absence of bone metastases. In order to investigate the quality of reporting and 

estimate the need for such a decision support system, a nation-wide survey was carried out. 

All the physicians in Sweden interpreting bone scan images were invited to participate. They 

were asked to interpret bone scan images reflecting the spectrum of pathology found in every 

day clinical work. This is, to our knowledge, the most extensive investigation of the quality 

of reporting in this field. The results showed that the main problem in the interpretations of 

bone scan images was due to false-negative interpretations and moderate agreement was 

found between the readers when compared with each other. The experience from these 

studies resulted in the development of a second CADx system. By several efforts, such as 

improved image-processing and artificial neural network techniques and a large database of 

whole-body bone scans a robust, completely automated CADx system that propose 

recommendations for a possible diagnosis was developed and sent to the physicians who 

participated in the nation-wide survey.  

 

The purpose of a decision support system is to aid physicians and not to replace them. The 

idea is to draw the physician’s attention to abnormalities that might pass undetected. The 

physician is still responsible for lesion analysis and the final interpretation of the 

examinations. Our final study has demonstrated that this collaborative effect, obtained by 

combining the physician’s competence with the computer’s capability in detecting lesions, 

has resulted in increased sensitivity, maintained high specificity, and reduced inter-observer 

variation in planar whole-body bone scanning. These multiple-reader, multiple-case studies, 

comparing unaided to aided performance of multiple readers from multiple hospitals, may 

serve as an example of the proper evaluation of a decision aid. This thesis demonstrates the 
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development of an idea that ended up as a programme tested by 35 physicians working at 18 

different hospitals in the country. 

 

Other applications of the automated decision support system might be to highlight suspicious 

uptake for technologists during the acquisition of the images, so that they can consider 

obtaining additional views. It can also be used for educational purposes, to facilitate the 

understanding of bone scan interpretations for physicians, nurses, technologists, physicists 

and students and to shorten the learning curve needed to achieve high-quality reports.  

 

Future developments in this field will focus on: 

• quantification of the extent of bone metastases 

• monitoring of progression/regression of the tumours on follow-up scans 

• alerting for poor image quality due to low count rate   

 

A phantom study is planned in order to determine whether the CADx system shows the same 

performance on images acquired with different gamma cameras or different protocols, for 

example when using faster scanning during the image acquisition or injecting lower 

radiotracer dose to the patient.  
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