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Abstract 

 

Contact allergy to fragrance compounds is an increasing problem in the western countries 

today. R-Limonene is one of the most common fragrance compounds; it is used in 

hygiene products and cosmetics as well as in industrial products such as hand cleansers 

and degreasers. R-Limonene is prone to autoxidation and it has been shown that 2-3% of 

consecutive dermatitis patients are allergic to oxidized limonene or the hydroperoxide 

fraction of the oxidation mixture. 

This thesis examines limonene hydroperoxides, what radicals they can form, their 

sensitizing capacities, and a possible mechanism for immunogenic complex formation. 

Six structurally similar hydroperoxides were studied. Two of these are naturally 

occurring in oxidized limonene (limonene-1-hydroperoxide and limonene-2-

hydroperoxide), while the others are synthetic structural analogues used for SAR-studies.  

The formation of radicals was studied in radical trapping experiments using iron 

porphyrin as a model for enzyme-initiated radical formation. All hydroperoxides formed 

large amounts of radicals and the trapping experiments showed that the identity and 

quantity of radicals formed depend on the structure of the hydroperoxide. In combination 

with the sensitizing capacities, the results also indicate that the alkoxyl radicals are the 

most important in the immunogenic complex formation. 

The sensitizing capacities were studied in the local lymph node assay (LLNA) and all 

hydroperoxides were found to be potent sensitizers. In a modified LLNA, comprising 

non-pooled lymph nodes and statistical evaluation, limonene-1-hydroperoxide was 

significantly more sensitizing compared to two other hydroperoxides. The clinical 

relevancy of this result was demonstrated in a limited study where more allergic reactions 

to limonene-1-hydroperoxide compared to limonene-2-hydroperoxide were recorded in 

individuals with known contact allergy to oxidized limonene. 

The immunogenic complex formation of limonene-2-hydroperoxide was studied in a 

model using amino acids. Limonene-2-hydroperoxide forms carvone that reacts with thiyl 

radicals from cysteine according to the thiol-ene reaction. The identification of a carvone-



 

cysteine adduct indicates a possible radical mechanism for the immunogenic complex 

formation of olefinic hydroperoxides.  

The combined results indicate that the immunogenic complex formation of 

hydroperoxides may include two phases. The formation of large amounts of radicals in 

the skin weakens the antioxidant defense; this facilitates the addition of a compound 

derived from the hydroperoxide to a protein via a radical mechanism, resulting in a 

specific immunogenic complex. This form of action explains why all hydroperoxides are 

strong sensitizers with very small differences in their sensitizing capacities.  

In summary, the results presented in this thesis demonstrate that the radical formation of 

the hydroperoxides depends on their structure and influence the sensitizing capacity of 

the hydroperoxide. In addition, the formation of protein radicals and addition of a 

compound originating from the hydroperoxide via the thiol-ene reaction is proposed as a 

possible mechanism of immunogenic complex formation of olefinic hydroperoxides. 

Keywords: allergic contact dermatitis, contact allergy, immunogenic complex, limonene 

hydroperoxides, local lymph node assay, patch testing, radicals, sensitizing capacity, 

skin, structure activity relationship. 
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Introduction 

 

Redness, drying, swelling, itching, and blistering are some of the clinical manifestations 

that characterizes eczema, an inflammation in the skin that can have different causes [1]. 

One of these is the hypersensitivity to chemicals in our everyday environment. More 

commonly known as contact allergy, it affects 20% of the population in the western 

countries today [2]. Nickel and fragrance compounds are among the most common 

contact allergens. Contact allergy is a chronic disease, meaning that once a person is 

sensitized the only way to avoid the eczema is to avoid exposure to the allergen [3]. The 

level of exposure is affected by occupation, personal habits, the general use in society, 

and legislation; for example the use of scented or unscented cosmetic and hygiene 

products and an increased use of fragrances in everyday products. Legislation can limit 

the use of known allergens or demand clearer labeling to allow customers a conscious 

choice. One example is the European Union Cosmetics Directive [4] that requires 

labeling of cosmetic products and detergents for 24 individually named fragrances, if 

present above set concentration limits. 

Fragrances are used, not only for their pleasant scent, but also to hide foul smell, in 

numerous everyday and industrial products such as soaps, shampoos, lotions, perfumes, 

degreasers, cutting fluids etc. The use of fragrances has increased during the last decades 

and this is accompanied by an increase in contact allergy to fragrances [5].  

One of the most common fragrance compounds is R-limonene, which is not a contact 

allergen itself but forms allergenic compounds when exposed to air. Reactions to the 

oxidation mixture are seen in 2-3% of consecutive dermatitis patients in Europe [6-9]. 

Several oxidation products have been identified, among these the hydroperoxides have 

been shown to be strong allergens [10-12]. In order for the hydroperoxides to trigger the 

outbreak of eczema they have to bind to a protein in the skin [3]. This is believed to 

happen through a radical mechanism [13-17]. This thesis examines limonene 

hydroperoxides, what radicals they can form, their sensitizing capacities, and a possible 

mechanism for the immunogenic complex formation. The results presented expand the 
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knowledge of the mechanisms of contact allergy and allergic contact dermatitis to 

limonene hydroperoxides. 

1.1 Allergic Contact Dermatitis 

Allergic contact dermatitis (ACD) is the clinical manifestation of contact allergy [3]. It is 

caused by repeated exposure of chemicals to the skin and results in eczema. The 

immunologic response of ACD is cell-mediated, a mechanism that requires 24 – 72 hours 

from exposure to fully developed eczema in a sensitized person. This makes ACD a 

delayed type hypersensitivity reaction. 

ACD involves two phases: the sensitization phase, when an individual becomes 

sensitized, and the elicitation phase, during which eczema develops. Both phases start 

with exposure to a hapten (Figure 1). Haptens are chemical compounds or metal ions 

with physicochemical properties that allow them to penetrate stratum corneum into 

epidermis and react with proteins. This generates immunogenic hapten-protein 

complexes, a prerequisite of ACD since the haptens are too small to elicit an immune 

response themselves [18]. The complexes are processed by antigen-presenting cells 

(APC) before they are presented as a hapten-modified peptide in association with major 

histocompatability complexes (MHC) on the cell surface [19]. If the immunogenic 

complex is formed outside the APC, it is internalized, processed via the exogenous 

pathway and presented as an antigen on MHC class II molecules to CD4+ T-cells. 

Lipophilic haptens can enter the cell before forming the immunogenic complex. These 

internal complexes are processed via the endogenous pathway resulting in presentation 

on MHC class I molecules to CD8+ T-cells. However, there is a large degree of overlap 

between the two routes from hapten to antigen, for instance can external immunogenic 

complexes be processed by the endogenous pathway [19], and the precise contribution of 

CD4+ and CD8+ cells in human ACD is unknown [20].  

In the sensitization phase, a special type of APC situated in epidermis, Langerhans cells, 

will migrate to the lymph nodes where they present the hapten-modified peptides as 

antigens to naïve T-cells. Recognition of the antigen by the naïve T-cells causes them to 

mature to effector and memory T-cells that circulate the blood and lymphatic system. The 
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memory T-cells cells constitute an immunological memory as they will recognize the 

antigen on repeated exposure [3]. 
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Figure 1. Schematic representation of the immunogenic mechanism of ACD. (A) Antigen, (C) 

inflammatory cytokines and chemokines, (e) effector T-cells, (H) hapten, (HP) immunogenic hapten-

protein complex, (m) memory T-cells, (n) naïve T-cells, (P) protein, (○) antigen presenting cells (APC). In 

the sensitization phase, a special type of ACD called Langerhans cells will migrate from epidermis to the 

lymph node. 

 
In the elicitation phase, re-exposure to the hapten results in formation of the same 

immunogenic hapten-protein complex that will be internalized, processed and presented 

by APC in the skin. Memory T-cells that recognize the antigen will now be activated by 

APC, resulting in formation of effector T-cells and the release of pro-inflammatory 

cytokines and chemokines. These substances cause and enhance the immunological 

response leading to the development of eczema at the site of exposure. Memory T-cells 

for a specific antigen circulate the body of a sensitized person in higher concentrations 

compared to the naïve T-cells specific for the same antigen in a non-sensitized person. 

Thus, a much lower concentration of the hapten is needed in the elicitation phase 

compared to the sensitization phase. If two different haptens form antigens that are so 

similar that the T-cells can not differentiate one from the other, the haptens are said to 

cross-react. This is evident when animals sensitized to one hapten react to another hapten 

[13, 21]. 
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1.1.1 Formation of Immunogenic Complexes 

The formation of immunogenic hapten-protein complexes, a prerequisite for the 

immunological mechanisms of ACD, is achieved by the formation of a covalent or 

coordination bond between the hapten and a protein in the skin [3]. The bond formation 

can proceed via different reactions and depends on the nature of the hapten. 

Coordination reactions 

Metals such as nickel, chromium, and cobalt form positively charged ions that readily 

accept electrons from the nucleophilic side chains of amino acids [22]. The ions are said 

to coordinate to the amino acids and the bonds are called coordination bonds. 

Electrophilic – Nucleophilic reactions 

The majority of organic compounds that cause ACD are electrophiles [23]. They form 

covalent bonds with nucleophilic amino acid side chains in reactions common in organic 

chemistry, for example SN2, Michael addition or nucleophilic addition to carbonyls. 

Radical Reactions 

It has been proposed that for instance urushiols [24, 25] and hydroperoxides [13-17] 

(Figure 2), form immunogenic complexes via radical reactions. For hydroperoxides 

oxidation of proteins has been discussed as a possible mechanism for formation of 

unspecific immunogenic complexes. This would cause cross-reactivity between 

structurally different hydroperoxides. However, investigations show no cross-reactivity 

between such hydroperoxides, instead it is concluded that hydroperoxides form specific 

immunogenic complexes via hapten-protein binding [21]. For hydroperoxides the initial 

step of the immunogenic complex formation would be the homolytic cleavage of the 

oxygen-oxygen bond in the hydroperoxide group [26, 27]. This results in an alkoxyl 

radical that either reacts directly with a protein or rearranges into another radical that 

reacts with a protein. Rearrangement to other radicals is demonstrated by the formation of 

carbon-centered radicals from linalyl hydroperoxide [14, 17]. The alkoxyl radicals can 

also rearrange into haptens that react as electrophiles. One example of this is the 

formation of allergenic epoxides from 15-hydroperoxyabietic acid [13]. However, to the 
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best of our knowledge, no specific radical mechanisms have been proposed for the 

immunogenic complex formation of hydroperoxides.  

OH

OH

C15-17H25-31

OOH

Urushiol Limonene-1
hydroperoxide  

Figure 2. General structure of urushiol and an example of a hydroperoxide. 

 

1.2 Radicals 

Electrons reside in orbitals surrounding the atom nucleus. When atoms combine into 

molecules, the atomic orbitals combine into molecular orbitals. Each atomic or molecular 

orbital can contain two electrons and when they do so the specie is, in general, stable. 

Atoms, ions or molecules with orbitals that contain only one electron are called radicals 

and the lone electron is said to be unpaired. Radicals are highly reactive and react in such 

ways as to fill their half empty orbitals with electrons (Figure 3).  

 

 

 

Figure 3. Schematic representation of how radicals react to fill their half-empty orbitals. (1) Radical (A·) 

will either abstract another radical (B·) from a non-radical specie (BB), creating a new radical (B·) and a 

new non-radical (AB) in the process, or (2) react with another radical (C·) to form a non-radical (AC). 

 
1.2.1 Studying Radicals - Electron Paramagnetic Resonance 

Observation of radicals is difficult as their high reactivity results in short life-times, but 

can be done using Electron Paramagnetic Resonance (EPR) Spectroscopy [28]. The basis 

of this technique is the interaction of the unpaired electron with micro-wave radiation in a 
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magnetic field. The electron spins align themselves parallel or anti-parallel to the 

magnetic field. This gives rise to two energy levels and by absorbing micro-wave 

radiation the state of the electrons can change from the lower to the higher level (Figure 4 

left). The energy absorption is monitored and converted into a spectrum. The gap 

between the energy levels is dependent on the strength of the local magnetic field around 

the electrons. This is the sum of an external magnetic field and the magnetic fields 

originating from the spins of nearby nuclei in the molecule. The nuclear spins align 

themselves parallel or anti-parallel to the external magnetic field, thereby increasing or 

decreasing the local magnetic field. The radicals in a sample will be evenly distributed 

between nuclei increasing or decreasing the local magnetic field. Thus, the electrons of 

different radicals will have different local magnetic fields around them and will need 

different amounts of energy to change energy level. This is observed as a splitting of the 

EPR-signal, resulting in more than one peak in the spectrum (Figure 4 right). The size 

and number of the splitting is dependent on the identity of the nearby nuclei, as different 

nuclei have different magnetic moments and spins. Thus, information about the nuclei in 

the molecule close to the radical can be extracted from the EPR-spectrum and aid in the 

identification of the radical. 

Magnetic field

Off On

E

Field strenght  

Figure 4. Schematic representations of the energy states of an electron in a magnetic field (left) and the 

splitting of the EPR-signal (right). 

 
The majority of molecules are not EPR-active since they have no unpaired electrons. This 

constraint of the EPR-technique is also its advantage since it gives a high degree of 
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specificity and the possibility to observe radicals in complex matrices, e.g. biological 

samples. The generally short lifetime of radicals is countered by the use of spin-traps, 

compounds that react with the radicals and in doing so creates new radicals with longer 

lifetimes. Interaction with the nuclei of the spin-trap can give extra information about the 

identity and structure of the radical. Nitrones are among the most commonly used spin-

traps (Figure 5) and a multitude of these and other spin-traps has been synthesized to be 

used in specific experiments [29]. 

N O
N

O

PO(OEt)2

DEPMPO TMIO

N

O

TEMPO

N O
N

O

PO(OEt)2
N

O

R R R

R

R

R

 

Figure 5. DEPMPO is a nitrone used in EPR spin-trapping; the arrow marks the position where radicals 

add. The new radical (bottom row, left) is delocalized over the oxygen and the adjacent nitrogen. TEMPO 

and TMIO are examples of stable radicals used as radical trappers (vide infra). (R·) Radical. 

 

1.2.2 Studying Radicals - Radical Trapping  

Indirect observation of radicals can be done by radical trapping. That is the formation of a 

stable compound by reaction of the radicals with a radical trapper (Figure 5). In theory, 

any molecule that reacts with a radical can be seen as a radical trapper. If the trapper 

doesn’t contain unpaired electrons before the reaction with the radical, the new molecule 

will also be a radical (as in EPR spin-trapping). In reality the best radical trappers are 

radicals themselves. Molecules that contain an un-paired electron but for steric and 

electronic reasons have a low reactivity are called stable radicals (Figure 5). They are 

frequently used as radical trappers and the product is a non-radical. However, radical 
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trapping can be done without stable radicals as trappers, if so the formation of a stable 

product usually requires more than one reaction step. The stable products, and thus the 

former radical, can be purified and analyzed by conventional chromatographic and 

spectroscopic methods. 

1.2.3 Radicals in biology 

Radicals and radical reactions are of major importance in biology [30]. For most 

organisms they are necessary both for function and survival as well as constantly 

damaging the molecular components of the organism. Examples of the necessity are that 

many enzymes have a free radical located at their active site and that redox reactions are 

involved in both intra- and intercellular signaling. Examples of the damage caused by 

radicals are the oxidation of lipids, proteins and DNA, for instance the oxidation of 

unsaturated fatty acids [31]. This may lead to uncontrolled leakage through cell 

membranes, damage membrane proteins, and inactivate ion channels [30]. 

Numerous radicals are constantly produced and present in our cells. The level of radicals 

is balanced by antioxidants. If this balance is disturbed in such a way that the level of 

radicals increases, the cell is said to be under oxidative stress. The response from the cell 

depends on the severity of the oxidative stress. Mild stress can cause proliferation and 

adaptation whereas intense stress results in damage and cell death. The production of 

radicals is affected not only by disease or injury but also by xenobiotics. Radicals and 

oxidative stress are associated with many different diseases. However, very few cases are 

known where radicals are the primary cause of the disease, more commonly oxidative 

stress is a consequence of the disease [30].  

In the context of ACD radicals are thought to be involved in the formation of 

immunogenic complexes from e.g. hydroperoxides [13-17] and urushiols [24, 25]. 

Hydroperoxides can be formed by autoxidation of terpenes (vide infra); a group of 

natural products that includes many fragrance compounds, commonly used in cosmetics 

and everyday products. 
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1.3 Terpenes 

Terpenes form a diverse family of organic molecules made up of two or more isoprene 

units (Figure 6). Condensation of the isoprene units form the carbon skeletons of mono- 

(C10), sesqui- (C15), di- (C20), sester- (C25), tri- (C30) and tetraterpenes (C40) [32]. These 

can be further modified to include closed rings or oxygen atoms. Terpenes are produced 

in a wide variety of plants and their pleasant smells make them ideal as scents. They are 

thus frequently used as fragrance compounds in perfumes, toiletries and household 

products. Well-known examples are geraniol, which is the scent of roses and the primary 

ingredient in rose oil, and linalool, which is responsible for the scent of lavender (Figure 

6). The scent of citrus fruits most commonly originates from R-limonene, the major 

constituent of citrus peel oil. The oil is produced by pressing the citrus peel followed by 

distillation. R-Limonene is used not only in perfumes but also in cosmetic products, 

detergents, paints, degreasers, rinsing agents, and disinfectants in concentrations ranging 

from <0.1% to 100% [33]. Due to the presence of allylic positions, terpenes are prone to 

autoxidation (vide infra). 

 

OH

OH

R-Limonene
(Citrus)

Geraniol
(Roses)

Linalool
(Lavender)

Isoprene

 

Figure 6. Structures of isoprene and three monoterpenes commonly used as fragrance compounds. 

 

1.4 Autoxidation of Terpenes 

Autoxidation is a radical chain reaction between an organic compound and molecular 

oxygen resulting in various oxidation products. It requires the parent compound to be in 

contact with molecular oxygen and an initiator such as metal ions, heat or ultraviolet 

light. Autoxidation of terpenes follows the mechanism of olefin oxidation [34, 35] 

generating hydroperoxides as the primary oxidation products (Figure 7). These can be 
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further oxidized to secondary oxidation products such as alcohols, aldehydes, ketones, 

epoxides etc.  

The first step of the autoxidation sequence is the abstraction of a hydrogen atom from the 

parent compound by the initiator resulting in the formation of a radical. The ease and 

location of the hydrogen atom abstraction is strongly influenced by the stability of the 

formed radical. Thus, hydrogens in allylic positions and α-positions of heteroatoms are 

prone to abstractions due to the stabilizing effect of the allylic double bond and the 

heteroatom [36]. 

The second step is the reaction with molecular oxygen resulting in a peroxyl radical that 

abstracts another hydrogen atom, thus propagating the reaction, to form hydroperoxides 

as the primary oxidation product. 

 

Initiation

Propagation

Termination

RH R

R 3O2
ROO

ROO RH+ ROOH R

2 R

RROO

2 ROO

+
non-radical
products

+

+

 

 

Figure 7. General mechanism for the formation of hydroperoxides and non-radical products via 

autoxidation. 

 



 14 

1.5 Hydroperoxides 

Hydroperoxides have the general formula ROOH were R is an organic structure. 

Hydroperoxides are mostly used as oxidants in organic chemistry, in recent years 

becoming increasingly important in the synthesis of enantiomerically pure compounds as 

chiral hydroperoxides can be used as induce asymmetry in the product [37].  The stability 

of hydroperoxides is largely dependent on the size of the R-group and the level of 

substitution of the hydroperoxide bearing carbon. Less than five carbon atoms per 

hydroperoxide make the hydroperoxide potentially explosive, whereas a large R-group 

and a high level of substitution generally mean a more stable hydroperoxide. 

 

1.5.1 Synthesis of Hydroperoxides 

Several methods for synthesis of hydroperoxides are available; all of these utilize 

reagents where the oxygen-oxygen bond is already present to construct the carbon-

oxygen bond [37, 38]. 

Synthesis from hydrogen peroxide or the hydrogen peroxide anion 

Both hydrogen peroxide and the hydrogen peroxide anion are strong nucleophiles which 

can be used in substitution reactions together with e.g. alcohols, carboxylates, halides, 

and sulfonates to give hydroperoxides (Scheme 1). Primary and secondary 

hydroperoxides can be made from halides or sulfonates under SN2-conditions [12, 39]; 

yields are sometimes low due to the base sensitivity of these hydroperoxides. Higher 

yields of primary, secondary, and tertiary hydroperoxides can be achieved by reaction of 

bromides or iodides with hydrogen peroxide in the presence of silver trifluoroacetate or 

silver tetrafluoroborate.  

OMs OOH
H2O2

KOH (aq)

43%
 

Scheme 1. Example of synthesis of hydroperoxide from sulfonate and hydrogen peroxide [39]. 
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Synthesis from superoxide anion 

The superoxide anion can also be used in SN2-reactions together with halides or 

sulfonates followed by reduction and protonation to yield hydroperoxides [40, 41]. DMF 

is a good solvent for this reaction that sometimes suffers from low yields due to 

competing formation of alcohol and dialkyl peroxide. 

Synthesis from peroxide precursors 

Peracetals, peraminals, perketals, peroxyesters, and silyl peroxides can be converted to 

hydroperoxides (Scheme 2). Reaction conditions are harsh for peracetals whereas they 

are mild for perketals, peroxyesters, and silyl peroxides [37, 42]. Acidic hydrolysis of 

peroxyesters in the presence of bis(tributyltin)oxide is a good way of making primary 

hydroperoxides, as these conditions avoid the base-catalyzed decomposition of 

hydroperoxides and results in good yields. Racemic hydroperoxides can be resolved by 

conversion to peracetals or perketals followed by separation and re-conversion. 

OEt

O

OOSiEt3

OEt

O

OOH

74%

HCl
MeOH

 

Scheme 2. Example of synthesis of a hydroperoxide from silyl peroxide [42]. 

 
Synthesis by ozonolysis 

Reaction of alkenes with ozone gives carbonyl oxides [37]. Reaction of this intermediate 

with alcohol or water yields α-alkoxyhydroperoxides and 1-hydroxyhydroperoxides, 

respectively [43, 44]. 

Synthesis by autoxidation 

Autoxidation is the spontaneous radical reaction of hydrocarbons with molecular oxygen 

(vide supra). The reaction is promoted by high concentration of the substrate and 

stabilization of the initially formed radical [38]. Hydroperoxides are formed by reaction 

of this radical with molecular oxygen, generating a peroxyl radical that abstracts a proton 
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to furnish the hydroperoxide. Enols, phenols, hydrazones, imines, alkenes, dienes and 

polyenes can all serve as substrates (Scheme 3). 

OOH

OOH

OOH OOH

OOH

34% 29% 34% 2% 1%

1 atm O2

60 oC, 28 h

67%
 

Scheme 3. Example of synthesis of allylic hydroperoxides by autoxidation [45]. Individual yields are 

reported as proportion of total peroxide yield (67%), with a conversion of 30%. 

 
Synthesis by photooxidation 

In photooxidation an alkene is transformed into an allylic hydroperoxide in an ene-type 

reaction [46, 47]. The active reagent is singlet oxygen which is generated from triplet 

oxygen by triplet sensitizers such as Rose Bengal, methylene blue or porphyrins. The 

products and product distribution obtained in a photooxidation can differ from the 

products of autoxidation of the same substrate. 

Synthetic methods used in this thesis 

The hydroperoxides investigated in this thesis were synthesized in substitution reactions 

or from silyl peroxides. Substitution started from an alcohol, a sulfonate or a hydrazine 

using hydrogen peroxide or the hydrogen peroxide anion as nucleophiles (Papers I-IV).  

Silyl peroxides were generated from alkenes and converted to hydroperoxides by acidic 

hydrolysis (Paper IV). 

1.5.2 Hydroperoxides in Reactions with Iron(III) Porphyrins 

Hydroperoxides are believed to form immunogenic complexes in the skin via a radical 

mechanism [13-17]. This makes it interesting to study the radical formation of 

hydroperoxides in reactions mimicking their metabolism. Hydroperoxides are 

metabolized by cytochrome P450 enzymes [26, 27] and iron(III) porphyrin complexes are 

frequently used as biomimetic models for these enzymes [48 and references therein]. 

Cytochrome P450 is a large family of metabolic enzymes present mainly in the liver but 

also in other tissues, e.g. the skin [49]. The P450s are responsible for a large number of 

metabolic transformations; one of these is the cleavage of the oxygen-oxygen bond in 
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hydroperoxides. The active site of the P450s contains a heme unit [26] and as biomimetic 

models iron(III) porphyrin complexes have been extensively studied. Investigations 

presented in the literature regarding reactions of iron(III) porphyrins with hydroperoxides 

conclude that the oxygen-oxygen bond can be cleaved either homolytically or 

heterolytically [48 and references therein]. Which of the reaction pathways that dominate 

is dependent on the reaction conditions, the structure of the hydroperoxide and the 

electronic properties of the iron(III) porphyrin complex. Hydroperoxides with electron-

donating alkyl groups, for example t-butyl hydroperoxide, and electron-rich porphyrin 

complexes, such as Fe(III)TPPCl (Figure 8), will promote the homolytic cleavage of the 

oxygen-oxygen bond [48]. 

N

N

N

N

Fe

Cl

 

Figure 8. The iron(III) porphyrin complex used in this work. Studies by Nam et. al. shows that this 

complex cleaves the oxygen-oxygen bond of t-butyl hydroperoxide homolytically [48]. 

 

1.5.3 Hydroperoxides in Allergic Contact Dermatitis 

In the context of ACD, hydroperoxides have received attention since the middle of the 

20th century when eczema among painters was attributed to hydroperoxides in turpentine 

[50] Hydroperoxides from ∆3-carene were identified as the “eczematogenic factor” but no 

structure was reported [51-54]. Hydroperoxides are formed in the autoxidation of 

terpenes and it has been shown that the oxidation mixtures of colophony, limonene, 

linalool, and geraniol are sensitizing [55-58]. Individual oxidation products have been 

tested and hydroperoxides have been demonstrated to be strong sensitizers [12, 47, 58]. 

The oxidation of terpenes has a clinical relevance as positive reactions to both oxidation 

mixtures of terpenes and hydroperoxide fractions from these mixtures are observed in 

dermatitis patients [6, 59, 60]. 
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1.6 Diagnosis of Contact Allergy in Patients 

Diagnosis of contact allergy in patients is performed by so called patch testing. This 

means that the most well known contact allergens are applied to the skin under controlled 

forms [61]. The compound or mixture of interest is dissolved in white petrolatum and 

applied on the upper back of the patient in a small aluminum cup held in place by 

adhesive tape. The concentration is chosen to provoke an allergic reaction in a sensitized 

patient, while simultaneously causing minimal risk of sensitizing a non-sensitized patient. 

The test material is left under occlusion for 48 h and the reaction is evaluated twice, on 

day 2-4 and on day 5-7. Reactions are classified based on their morphological 

characteristics according to the scale in Table 1. Patients are tested for contact allergy 

using a base-line series containing the most common compounds or mixtures of 

compounds that cause ACD. Additional compounds commonly used, in for instance 

different professions, may be added if considered appropriate. 

Table 1. Morphological characteristics of patch test reactions. 

Classification Reaction Morphological characteristics 

− Negative  

irr Irritant Irritant reaction of different types 

? Doubtful Faint erythema only 

+ Weak or moderate positive  Erythema, infiltration, possibly papules 

++ Strong positive reaction Erythema, infiltration, papules, vesicles 

+++ Very strong positive  Intense erythema, infiltration, coalescing vesicles,  

 

1.7 Local Lymph Node Assay 

The local lymph node assay (LLNA) is a method for estimation of the sensitizing 

capacity of a compound [62, 63], accepted and recommended by both the U.S. Food and 

Drug Administration (FDA) and the Organisation for Economic Co-operation and 

Development (OECD). It is an animal test where mice in different groups are subjected to 

different concentrations of the compound under investigation (Figure 9). The basis of the 

LLNA is that if the immune system of the mice responds to the compound, the cells of 
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the local lymph nodes proliferate and in this process they incorporate thymidine. Through 

the administration of radioactive labeled thymidine it is possible to measure the 

proliferation in the lymph nodes. A strong sensitizer induces more proliferation compared 

to a weak sensitizer. For each concentration a stimulation index (SI) is calculated, this is 

the proliferation in the test group divided with the proliferation in the control group. The 

final outcome of a LLNA experiment is an EC3-value. This is defined as the 

concentration (% w/v) of compound where the proliferation of cells in the lymph nodes is 

three times as high as in the control group. Ranging from 0% to 100% it is a 

measurement of the sensitizing capacity of the compound, lower EC3-value means a 

stronger sensitizer. Sensitizing compounds are roughly divided in four classes; 0 – 0.1% 

extreme, 0.1 – 1% strong, 1 – 10% moderate and 10 – 100% weak or non-sensitizing 

[64]. 

 

Figure 9. The local lymph node assay (LLNA). The compound to be tested is dissolved in a vehicle, 

usually acetone/olive oil (4/1 v/v) and applied on the back of the ears of mice on day 0, 1, and 2. The mice 

are divided into 3 – 5 groups with 3 – 5 mice in each. The different groups receive different concentrations 

of the compound, from no compound (control group) up to pure compound (no vehicle) depending on the 

expected sensitizing capacity of the compound. On day 5 [methyl-3H]-thymidine is injected in the tail vein, 

after five hours the mice are sacrificed and the draining auricular lymph nodes from each ear are excised. 

The lymph nodes from all mice receiving the same concentration of compound are pooled and single-cell 

suspensions are prepared. The incorporation of the radioactive thymidine is measured and the stimulation 

indexes and EC3 value are calculated [62, 63]. 
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Aims of the Thesis 

 

The overall aim of the work presented in this thesis was to provide knowledge about the 

mechanism of immunogenic complex formation of limonene hydroperoxides in allergic 

contact dermatitis. The purpose was to investigate the relation between structure, radical 

formation, and sensitizing capacity of limonene hydroperoxides and structural analogues. 

 

Specific aims were to study: 

� The radical formation of limonene hydroperoxides and structural analogues 

(Papers I and IV). 

� The sensitizing capacity of limonene hydroperoxides and structural analogues 

(Papers I and IV). 

� If there is a significant difference in sensitizing capacities of three allylic 

hydroperoxides in mice and if any found difference in sensitizing capacities is 

clinically relevant for the two major hydroperoxides occurring in the oxidation 

mixture of limonene (Paper II).  

� The formation of adducts between limonene-2-hydroperoxide and cysteine as a 

model for immunogenic complex formation (Paper III).   
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Results and Discussion 

 

3.1 Radical Formation and Sensitizing Capacity of Allylic 

Limonene Hydroperoxides (Paper I) 

The increased use of scented products has caused an increase in ACD to fragrance 

compounds [5]. Among the most commonly used fragrance compounds is R-limonene, 

which is not a sensitizer itself, but forms allergenic hydroperoxides 1 (limonene-1-

hydroperoxide, Scheme 4) and 2 (limonene-2-hydroperoxide) on air-exposure. The 

formation of immunogenic complexes between the hapten and a protein in the skin is a 

prerequisite of ACD; for hydroperoxides a radical mechanism is postulated for this 

reaction [13-17]. 

The aim of this paper was to study the radical formation and sensitizing capacity of 

limonene hydroperoxides. Three hydroperoxides were included in the study. Two of them 

(1 and 2) are naturally occurring in the autoxidation mixture of limonene; the third (3) is 

a synthetic analogue, included in order to further study the difference between secondary 

and tertiary hydroperoxides. Formed radicals are potentially the chemical entities that 

form covalent bonds to proteins in the skin and thereby immunogenic complexes of 

hydroperoxides. 

Hydroperoxide 1 was synthesized from (+)-2-carene by epoxidation and subsequent 

rearrangement of the epoxide (4) into the corresponding alcohol (5, Scheme 4). Acid 

catalyzed treatment with hydrogen peroxide furnished the hydroperoxide. Hydroperoxide 

2 was synthesized from carveol (6) via the corresponding chloride (7) in two substitution 

reactions, utilizing methanesulfonyl chloride and urea-hydrogen peroxide adduct as 

reagents. Hydroperoxide 3 was synthesized from carvone (8) by addition of a methyl 

group to furnish the corresponding alcohol (9) which was converted into the 

hydroperoxide by acid catalyzed treatment with hydrogen peroxide. To the best of our 

knowledge synthetic procedures for hydroperoxides 1 and 3 have not been published 

before whereas a similar synthesis for hydroperoxide 2 is known [12]. The reaction 
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pathways produced moderate overall yields but were readily scaled up to produce 

sufficient amounts of hydroperoxides for further investigations. 
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Scheme 4. Synthesis of Allylic Hydroperoxides 1, 2 and 3. 

 

The sensitizing capacity was tested in the LLNA. All of the hydroperoxides were found 

to be potent sensitizers with the following EC3-values: 1 0.019 M (0.33%), 2 0.049 M 

(0.83%) and 3 0.071 M (1.29%). These sensitizing potencies correspond to previously 

tested hydroperoxides [14, 15, 47, 58]. 

The radical formation was studied in radical trapping experiments (Figure 10) and with 

EPR spectroscopy (vide infra). The trapping experiments were performed in a 1:1 

mixture of acetonitrile and water, using 1.1 equivalent of Fe(III)TPPCl as radical initiator 

and 2 equivalents of TMIO as radical trapper. The oxygen-oxygen bond of the 

hydroperoxide group was cleaved homolytically with Fe(III)TPPCl. Reactions and 

radical rearrangement resulted in non-radical products and carbon centered radicals, of 

which the latter were trapped by TMIO.  
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Figure 10. Schematic representation of the TMIO experiments performed in Papers I and IV. 

The initial cleavage of the oxygen-oxygen bond creates oxygen centered alkoxyl radicals 

(10, Scheme 5). This radical can react or rearrange according to several different 

pathways.  
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Scheme 5. Mechanistic proposal for the formation of products identified in the trapping experiments with 

hydroperoxides 1, 2 and 3. 
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Products from three major pathways have been identified: pathway i) hydrogen 

abstraction resulting in the corresponding alcohol (5, 6, 9); pathway ii) 1,2-shift resulting 

in a 1-hydroxyallyl radical (11); and pathway iii) 1,3-cyclization resulting in a 

oxiranylcarbinyl radical (12). In pathways ii) and iii) the formed radicals react further to 

form non-radical products that have been isolated and identified. The outcome of the 

trapping experiments is governed by the balance between the different pathways, which 

is in turn governed by the structure of the parent hydroperoxides. 

Hydroperoxide 1 reacted according to pathways i) and iii), resulting in the corresponding 

alcohol (5) and the TMIO-adduct (13) of the oxiranylcarbinyl radical being formed in 

approximately equal amounts (Table 2). No products formed by pathway ii) were 

detected. This is in accordance with 1 being a tertiary hydroperoxide and the 1,2-shift 

requiring a hydrogen atom in position 2. 

The products isolated and identified in the radical trapping experiments with 

hydroperoxide 2 corresponds to all three pathways. Since 2 is a secondary hydroperoxide 

alkoxyl radical 10 can react according to pathway ii). The rapid 1,2-shift of this pathway 

and the following reactions results in carvone (8) being the major product in the trapping 

experiment with hydroperoxide 2. Small amounts of alcohol 6 (carveol) and the 1,3-

cyclization product 14 were also isolated and identified. The ratio of the products was 

approximately 30:2:1, favoring carvone over carveol and the TMIO-adduct. No 

epoxidized products were isolated in the trapping experiment with hydroperoxide 2. This 

indicates that Fe(III)TPPCl cleaves the oxygen-oxygen bond of the secondary 

hydroperoxide 2 homolytically [48]. 
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Table 2. Product distribution in the radical trapping experiments with TMIO and allylic hydroperoxides 1, 

2 and 3; %-values correspond to purified yields. 

Hydroperoxides  Products 

   

OOH

OOH

OOH

1

2

3

 

 

OH

OH O

TMIO

OOH TMIO
O

TMIO
O

HO
O

5

27%
13

22%

14

1.2%

9

1.5%
15

34%
16

3.2%

6

2.5%
8

34%

 
   

 

In the trapping experiment with hydroperoxide 3 three different products formed by 

pathways i) and iii) were isolated and identified: the corresponding alcohol (9) and two 

products originating from the oxiranylcarbinyl radical, the TMIO-adduct (15) and the 

epoxy alcohol (16). The products were formed in a 1:25 ratio, favoring the 

oxiranylcarbinyl derived products. Similar to hydroperoxide 1 the 1,2-shift of pathway ii) 

is blocked since 3 is a tertiary hydroperoxide.  

The formation of immunogenic hapten-protein complexes of hydroperoxides is proposed 

to follow a radical mechanism [13-17]. The alcohols (5, 6, 9) identified in the radical 

trapping experiments is a measure of the amount of alkoxyl radicals (10) available for 

this reaction. Likewise, the amount of TMIO-adducts (13, 14, 15) and the epoxy alcohol 
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(16) is a measure of the amount of oxiranylcarbinyl radicals available for the same 

reaction. 

Low amounts of alcohol 6 (carveol) and TMIO-adduct 14 were isolated from the trapping 

experiment with hydroperoxide 2. This indicates low amounts of alkoxyl radicals 

available for formation of an immunogenic complex. The high amount of carvone can not 

account for the sensitizing capacity of hydroperoxide 2 since carvone is a weak sensitizer 

[65]. Formation of carvone is proposed to proceed via the 1-hydroxyallyl radical 11 but 

no adducts with this radical was isolated.  

High amounts of products derived from the oxiranylcarbinyl radical were isolated in the 

trapping experiment with hydroperoxide 3. Even so, there is no substantial difference in 

the sensitizing capacities of hydroperoxides 2 and 3. This might indicate the importance 

of the oxygen centered alkoxyl radical, since roughly equal amounts of alcohol were 

detected in the respective trapping experiments. 

Hydroperoxide 1 displays the highest amount of alcohol as well as the highest total 

amount of products in the trapping experiments. Since the experiments with 

hydroperoxides 2 and 3 indicate that the oxygen centered alkoxyl radicals may be more 

important compared to the carbon-centered radicals, this result indicates that 

hydroperoxide 1 may be a more potent sensitizer compared to hydroperoxides 2 and 3.  

The reactions following cleavage of the oxygen-oxygen bond in the hydroperoxides were 

studied in EPR experiments (Section 1.2.1). Experiments were carried out in acetonitrile 

or chloroform at temperatures ranging from 220 to 283 K and the samples were 

continuously flowed through a flat quartz cell where they were irradiated with a mercury-

xenon lamp to initiate the radical reactions. The first experiments were carried out 

without a spin-trap present and peroxyl radicals were detected from all three 

hydroperoxides. This radical can be formed by hydrogen abstraction from the 

hydroperoxide group by alkoxyl or hydroxyl radicals formed by the cleavage of the 

oxygen-oxygen bond of another hydroperoxide. In experiments with the tertiary 

hydroperoxides 1 and 3 in the presence of the spin-trap DEPMPO (Figure 5, Section 

1.2.1) the same peroxyl radicals were detected. When performing the same experiment 

with hydroperoxide 2, two different radicals were detected: the peroxyl radical and a 
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carbon-centered radical. As the carbon-centered radical was only detected from 

hydroperoxide 2 it may be the 1-hydroxyallyl radical (11) that forms via a 1,2-shift from 

the initially formed alkoxyl radical. 

In summary, all three hydroperoxides formed large amounts of radicals and were found to 

be potent sensitizers according to the LLNA. The identities and amounts of the individual 

radicals were clearly affected by the structure of the hydroperoxides. The product 

distribution in the radical trapping experiments indicates that the alkoxyl radicals may be 

more important compared to the carbon-centered radicals in the immunogenic complex 

formation. 
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3.2 Limonene Hydroperoxide Analogues Differ in Allergenic 

Activity (Paper II) 

The fragrance compound R-limonene readily autoxidizes on air-exposure. The oxidation 

mixture causes positive patch test reactions in 2-3% of consecutive dermatitis patients [6-

9] and hydroperoxides formed in the autoxidation of limonene have been shown to be 

strong sensitizers [9, 12 and Paper I]. Hydroperoxides are believed to form immunogenic 

complexes via a radical mechanism [13-17] and Paper I revealed the formation of high 

amounts of radicals from limonene hydroperoxides. 

The aim of this paper was to further investigate the sensitizing capacities of the limonene 

hydroperoxides from Paper I together with pure and oxidized limonene. The sensitizing 

capacities of pure and oxidized limonene as well as the individual oxidation products 

were determined in the LLNA. In addition, limonene hydroperoxides 1, 2 and 3 (Scheme 

4) were tested in a modified LLNA including non-pooled lymph nodes and statistical 

analysis to investigate if there was a significant difference in the sensitizing capacities of 

the hydroperoxides. Clinical studies were performed using both oxidized limonene and 

the pure limonene hydroperoxides 1 and 2 to investigate the clinical relevance of the 

results from the modified LLNA. 

The sensitizing capacity of limonene is markedly increased by air-exposure and the 

subsequent oxidation (Figure 11). Pure limonene has an EC3-value of 2.2 M (30%) 

whereas limonene oxidized for 10 weeks has an EC3-value of 0.22 M (3.0%). Testing of 

the individual oxidation products reveals that the hydroperoxides have the highest 

sensitizing capacities [65, 66 and Paper I]. Thus, the high sensitizing capacity of the 

oxidation mixture is mainly attributed to the hydroperoxides.  
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Figure 11. LLNA-results for pure and oxidized limonene and individual autoxidation products. (●) 

Hydroperoxide 1, (○) hydroperoxide 2, (■) R-limonene oxidized for 10 weeks, (□) R-carvone, (▲) 

limonene epoxide, (∆) R-limonene. Stimulation index (SI) is the quotient of the proliferation between the 

test groups and the control group. The horizontal line marks a stimulation index of 3, the cut-off limit for a 

compound to be considered a sensitizer. The EC3-values are the concentrations were the curves intersect 

the horizontal line. 

 

Hydroperoxides 1, 2 and 3 were tested in a modified LLNA. In the ordinary LLNA the 

lymph nodes from all mice receiving the same concentration of compound are pooled 

before single-cell suspensions are prepared and the proliferation is measured. In the 

modified LLNA single-cell suspensions were prepared of the lymph nodes from each 

individual mouse which made it possible to perform a statistical analysis. The result of 

this analysis show that hydroperoxide 1 have a significantly higher sensitizing capacity 

compared to hydroperoxides 2 and 3 (P = 0.0008, Figure 12), that there is no statistical 

difference between hydroperoxides 2 and 3, and that all hydroperoxides differ 

significantly from the controls (P = 0.0008). This modification of the LLNA offers a new 

possibility to compare compounds with similar sensitizing capacities and has, to the best 

of our knowledge, not been published before. 
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Figure 12. Results from the modified LLNA. (○) Hydroperoxide 1, (◊) hydroperoxide 2, (∆) hydroperoxide 

3, (SI) stimulation index. The horizontal line marks a stimulation index of 3, the cut-off limit for a 

compound to be considered a sensitizer. 

In the clinical study, seven patients that had previously reacted positive to oxidized 

limonene were retested with pure limonene, oxidized limonene and different 

concentrations of limonene hydroperoxides 1 and 2. All patients displayed positive 

reactions to hydroperoxide 1, whereas only three patients reacted to hydroperoxide 2. 

Reactions to lower concentrations of hydroperoxide 1 compared to hydroperoxide 2 were 

seen in all patients that reacted to both hydroperoxides (Table 3). This shows the clinical 

relevance of the results from the modified LLNA.  

 

Table 3. Results from clinical testing with pure and oxidized limonene and hydroperoxides 1 and 2. 

 Number of patients tested Number of positive reactions 

Limonene 7 0 

Oxidized limonene 7 6 

Hydroperoxide 1 7 7 

Hydroperoxide 2 7 3 
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The impact of the hydroperoxides on the sensitizing capacity of the oxidized limonene is 

demonstrated by the LLNA experiments with pure and oxidized limonene and the 

individual oxidation products. Hydroperoxides 1 and 2 have the highest sensitizing 

capacities of the compounds tested in the LLNA and the oxidized limonene has a higher 

sensitizing capacity compared to carvone and limonene oxide (Figure 11). These results 

are in accordance with previous testing of oxidation mixtures and oxidation products of 

linalool and geraniol [47, 57, 58]. 

In Paper I the radical formation of hydroperoxides 1, 2 and 3 was studied. It was found 

that both hydroperoxide 1 and 3 formed high amounts of carbon-centered radicals, and 

that hydroperoxide 1 formed almost 20 times more alkoxyl radicals compared to 

hydroperoxide 3. The significantly higher sensitizing capacity of hydroperoxide 1 and the 

higher number of positive reactions to hydroperoxide 1 in the clinical tests further 

indicates the importance of the alkoxyl radicals in the formation of immunogenic 

complexes of limonene hydroperoxides. 

In summary, the sensitizing capacity of limonene is markedly affected by oxidation and 

the sensitizing capacity of the oxidation mixture is mainly attributed to the 

hydroperoxides. Hydroperoxide 1 was shown to be a significantly stronger sensitizer 

compared to hydroperoxides 2 and 3 in the modified LLNA. This proved clinically 

relevant as more positive reactions to hydroperoxide 1 were found in dermatitis patients. 

In combination with the results from Paper I this indicates the importance of the alkoxyl 

radicals in the immunogenic complex formation of limonene hydroperoxides. The finding 

that structurally related hydroperoxides differ significantly in sensitizing potential refutes 

the proposal of formation of unspecific antigens and supports formation of specific 

antigens from hydroperoxides [21]. 
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3.3 Identification of a Radical Mechanism for Formation of 

Immunogenic Complexes (Paper III) 

It has been discussed that hydroperoxides would form immunogenic complexes by an 

unspecific oxidation of proteins. This suggestion has been refuted by the lack of cross-

reactivity between structurally different hydroperoxides [21], a finding that strongly 

indicates the formation of specific immunogenic complexes, which is proposed to follow 

a radical mechanism [13-17]. Hydroperoxide 2, a strong sensitizer in the LLNA, forms 

large amounts of radicals but only weakly allergenic products in the radical trapping 

experiment presented in Paper I. 

The aim of this paper was to further investigate the formation of immunogenic hapten-

protein complexes of olefinic hydroperoxides via a radical mechanism. This was done by 

studying the formation of adducts between 2 and protected amino acids or glutathione 

(GSH). Radical reactions were initiated by Fe(III)TPPCl and formed adducts were 

identified by LC/MS and NMR. 

Reactions between hydroperoxide 2 and the amino acids or GSH were initiated by a 

catalytic amount of Fe(III)TPPCl in a 1:1 mixture of acetone and phosphate buffer at 37 

°C. An initial screening was performed using glutathione and protected alanine, leucine, 

cysteine, histidine, lysine, tryptophan and tyrosine. LC/MS analysis of the reaction 

mixtures revealed large amounts of adducts in the experiments with cysteine and GSH, 

whereas no or only small amounts of adducts were detected with the other amino acids. 

Therefore, the cysteine experiment was scaled up to isolate sufficient material for NMR-

analysis (Scheme 6). 
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Scheme 6. Reaction of hydroperoxide 2 with Fe(III)TPPCl in the presence of NAc-Cys-OMe. 
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The scaled up reaction mixture was fractionated by preparative HPLC. MS-analysis 

identified possible adducts in four fractions that were subjected to NMR-analysis 

resulting in two fully characterized adducts (Figure 13). The first adduct (17) corresponds 

to the Michael addition product of NAc-Cys-OMe to carvone. This compound was also 

synthesized as a reference compound in a Michael addition reaction. The second adduct 

(18) is the result of addition of the thiol group of NAc-Cys-OMe over the double bond in 

the isopropenyl group of carvone. The formation of this adduct can not be explained by 

an ionic reaction.  
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Figure 13. Structures of identified m/z 328 adducts isolated from the reaction of hydroperoxide 2 with 

Fe(III)TPPCl in the presence of NAc-Cys-OMe. 

 

The studies presented in Paper I show that a lot of radicals, as well as carvone and 

carveol, are formed in the reaction of hydroperoxide 2 with Fe(III)TPPCl. If any of these 

radicals abstract a hydrogen atom from the thiol group of NAc-Cys-OMe a thiyl radical is 

formed. Thiyl radicals are known to add to olefinic double bonds in an anti-Markovnikov 

fashion via the thiol-ene reaction [67]. This is followed by hydrogen abstraction to 

generate the non-radical product. The results presented in Paper I together with the thiol-

ene reaction accounts for the formation of adduct 17 and 18 (Scheme 7). 
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Scheme 7. Mechanistic proposal for the formation of the identified adducts (17 and 18) in the reaction of 

hydroperoxide 2 and Fe(III)TPPCl in the presence of NAc-Cys-OMe. 

 

Several other products were detected in the reaction mixture and HPLC-fractions from 

the reaction of 2 with Fe(III)TPPCl in the presence of NAc-Cys-OMe. The major product 

was the dimer of NAc-Cys-OMe. The formation of a diastereomer of adduct 2 is 

explained by a planar symmetry around the carbon radical (19) formed by the addition of 

the thiyl radical. The carbon radical is formed at the quaternary carbon in the isopropenyl 

group and the subsequent hydrogen abstraction can take place on both sides of the plane, 

resulting in diastereomers. The addition of NAc-Cys-OMe to the endocyclic double bond 

of carveol is consistent with the formation of carveol from 2 and the thiol-ene 

mechanism. The addition of one molecule of NAc-Cys-OMe to each carbon-carbon 

double bond of carvone is in agreement with the detection of adducts 17 and 18.  

Hydroperoxide 2 was reacted with Fe(III)TPPCl in the presence of GSH under the same 

conditions as in Scheme 6. In this reaction, two diastereomers corresponding to the 
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addition of GSH to the isopropenyl double bond of carvone was detected. No GSH-

adducts corresponding to the Michael addition adduct were detected.  

Although it has been suggested that a radical mechanism is involved in the formation of 

specific antigens of hydroperoxides [13-17], no specific mechanism has been proposed. 

The results in this paper demonstrate that the formation of an amino acid centered radical 

and the addition of compounds derived from the hydroperoxide are possible. Thus, the 

thiol-ene reaction and the addition of compounds derived from the hydroperoxide offer a 

potential mechanism for the formation of specific immunogenic complexes of olefinic 

hydroperoxides.  

All hydroperoxides tested are strong sensitizers with small differences in their sensitizing 

capacities [14, 15, 47, 58 and Paper I]. A possible explanation for this is an initial 

weakening of the antioxidant defenses in the skin by the formation of large amounts of 

radicals [68, 69] that will ease the formation of a specific immunogenic complex by 

radical addition. 

The formation of immunogenic complexes corresponding to adduct 18 also offers an 

explanation for the lack of cross-reactivity between carvone and hydroperoxide 2 [12], as 

the hapten-peptide formed by the addition of carvone to a cysteine residue via the 

isopropenyl double bond would be different to the hapten-peptide formed via addition to 

the endocyclic double bond. 

In summary, the formation of specific immunogenic complexes of olefinic 

hydroperoxides by a two-step process is proposed. First the depletion of antioxidants and 

formation of protein thiyl radicals by large amounts of radicals formed from the 

hydroperoxide, thereafter addition of the thiyl radical to a compound originating from the 

hydroperoxide via the thiol-ene reaction. This two-step process also explains the small 

difference in sensitizing capacities between different hydroperoxides. 
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3.4 Radical Formation and Sensitizing Capacity of Alkylic 

Limonene Hydroperoxides (Paper IV) 

The results presented in Papers I and II demonstrate a link between the structure, the 

radical formation and the sensitizing capacities of the allylic hydroperoxides. In Paper II 

a significant difference in sensitizing capacities between hydroperoxide 1 and 

hydroperoxides 2 and 3 was demonstrated. In Paper I three major pathways for radical 

formation was observed, one of these was the 1,3-cyclization including the endocyclic 

double bond. This led to the formation of carbon-centered radicals that subsequently 

reacted with the radial trapper TMIO. Both hydroperoxide 1 and 3 formed large amounts 

of carbon-centered oxiranylcarbinyl radicals, but only hydroperoxide 1 formed large 

amounts of alcohol, the result of an intermolecular reaction of the alkoxyl radical. 

Together these results indicate the importance of the alkoxyl radicals in the formation of 

immunogenic complexes of the hydroperoxides. 

The aim of this paper was to study the radical formation and sensitizing capacity of three 

alkylic analogues to the previously studied allylic hydroperoxides (Paper I). In these 

analogues the endocyclic double bond is removed (20, 21, 22, Figure 14). This will 

prevent formation of the oxiranylcarbinyl radicals and may increase the preference to 

intermolecular reactions of the alkoxyl radicals. This could possibly increase the 

sensitizing capacity of the hydroperoxides as the immunogenic complex formation 

requires an intermolecular reaction. The radical formation was studied in radical trapping 

experiments utilizing Fe(III)TPPCl as radical initiator and TMIO as radical trapper. The 

sensitizing capacities of the hydroperoxides were investigated in the LLNA. 

 

OOHOOH
OOH OOH

2120 22 56  

Figure 14. The alkylic hydroperoxides referred to in this chapter. 
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The first attempts to synthesize hydroperoxide 20 were made using the same acid-

catalyzed substitution methodology that proved successful in the synthesis of 

hydroperoxides 1 and 3. However, starting from alcohol 23, the major product (24) 

originates from elimination of water instead of the anticipated nucleophilic substitution 

(Figure 15); addition to the isoprene unit (25, 26), typically in a Markovnikov manner, 

was also observed [70]. Different combinations of peroxide reagents (H2O2, urea- H2O2 

adduct, or Na2O2), acids (H2SO4, PTSA, acetic acid, or TFA), equivalents, temperatures, 

reaction times and solvents (pentane, DCM, DMF, or THF) were used (Appendix I). 

Products resulting from elimination of the hydroxyl group or addition to the isopropenyl 

group were also obtained when trying to substitute the hydroxyl group into a chloride, 

bromide, mesylate, or tosylate leaving group (27). The carbocation formation was 

projected to proceed smoothly from the tertiary alcohol (23) under acidic conditions in 

polar solvents. Conversely, according to our experience, these reactions were sluggish. 

Four fifths of the reactions did not consume the starting material, in some reactions only 

one of the two diastereomers of the starting material reacted and in six attempts no 

reaction at all was observed (Appendix I). These observations could possibly be 

explained by the structure of the starting material. In the conformations where both the 

isopropenyl and the hydroxyl group have axial positions, a hydrogen bond can form 

between the hydroxyl group and the double bond. This will stabilize the conformation 

and if the stabilization is large enough this might be the most common conformation. The 

formation of elimination products, once the intermediate carbocation is formed, is readily 

explained by the low energy of the fully substituted double bond, which stabilizes these 

products.  

OH XOH

NuNu

23 20 X = OOH
27 X = LG

242526

oror

 

Figure 15. Products identified in the first attempts to synthesize hydroperoxide 20 via substitution of the 

corresponding alcohol (23). Several combinations of peroxide reagents, acids, equivalents, temperatures, 

reaction times and solvents were used (Appendix I). (Nu) Nucleophile, (LG) leaving group. 
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Instead the synthesis of hydroperoxide 20 was performed using cobalt catalyzed 

peroxidation of the corresponding alkene 28 (Scheme 8). The alkene was synthesized 

from dihydrocarvone (29) in a Wittig reaction and the peroxidation product (30) was 

deprotected in acidic methanol to yield hydroperoxide 20. Hydroperoxide 21 was 

synthesized from dihydrocarvone (29) via the corresponding hydrazone (31) that was 

reduced to hydrazine 32 and treated with aqueous hydrogen peroxide yielding 

hydroperoxide 21.  

O

H2NNHTs

NNHTs

NaBH4

NHNHTs

H2O2 (aq)

OOH

O PPh3MeBr
NaN(TMS)2

Et3SiH
cat t-BuOOH
cat Co(thd)2

OOSiEt3

cat HCl

OOH

97% 91% 29%

65% 9% 73%

29 31 32 21

29 28 30 20

 

Scheme 8. Syntesis of hydroperoxides 20 and 21. 

 

Two attempts to synthesize hydroperoxide 22 were made. The first one aimed at using 

the same strategy that proved successful for hydroperoxide 20 (Scheme 9). The synthesis 

of the corresponding dialkene (33) started with the Diels-Alder reaction of methyl vinyl 

ketone (34) with its corresponding TMS-enolate (35). The Diels-Alder product (36) was 

deprotected yielding 37 and a Wittig transformation of the carbonyl groups furnished 33. 

The peroxidation was successful in the sense that the correct product (38) was isolated, in 

two reactions the isolated yields were 4.7% and 3.0%, respectively. In substrates with 

multiple double bonds, the cobalt catalyst has a higher affinity for electron-rich double 

bonds [42]. The double bonds of alkene 33 have similar electronic properties, thus the 

similar yields of silyl peroxides (38) and (39). Long reaction times will reduce the yield 

of silyl peroxide 38 by double peroxidation (40). The isolated yields of product 38, in 

combination with the synthetic work required for the starting material 33, were 
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considered insufficient for an effective synthesis of the amounts needed for further 

experiments and the strategy was abandoned. 
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Scheme 9. First attempt to synthesize hydroperoxide 22 using the cobalt catalyzed peroxidation method on 

diene 33. 
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The second attempt to synthesize hydroperoxide 22 aimed at using the cobalt catalyzed 

peroxidation on a monoalkene (41, Scheme 10). Starting with the same Diels-Alder 

reaction of methyl vinyl ketone (34) and its corresponding TMS-enolate (35) as in the 

first attempt, Wittig transformation of 36 followed by TMS-deprotection resulted in 42. 

In order to avoid reduction the ketone was protected as an acetal (43) before 

hydroboration was used to convert the isopropenyl group to a propanoyl group (44). The 

acetal was removed (45), the ketone transformed to an alkene (46), and the hydroxyl 

group converted to a tosylate (41). The peroxidation step was successful but the projected 

elimination of the tosyl group (47) failed despite several attempts. Most successful was 

the use of t-BuOK in t-BuOH/DMSO at 80 °C which gave the desired alkene (38) as a 

minor product. Attempts using refluxing collidine, refluxing TEA, t-BuOK in THF at RT, 

and collidine using microwave assisted heating at 100 – 170 °C for 5 – 40 min resulted in 

degradation of the starting material (47) without any detectable formation of the desired 

product (38). As the starting material (47) was not compatible with the reaction 

conditions needed for the elimination a new strategy was drawn up. 
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Scheme 10. Second attempt to synthesize hydroperoxide 22 using the cobalt catalyzed peroxidation method 

on a monoalkene (41). 
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The third strategy for synthesis of hydroperoxide 22 is outlined in Scheme 11. To avoid 

the fatal elimination reaction, the carbonyl group of the Diels-Alder product (36) is 

protected as an acetal (48). Deprotection of the TMS-enolate (48) is followed by a 

Wittig-transformation of the carbonyl (49) to an alkene (50) and restoration of the acetyl 

group (51). The introduction of the peroxyl functionality (52) is followed by conversion 

of the acetyl group to an isopropenyl group (38) and deprotection of the silylperoxide to 

furnish the hydroperoxide (22). 
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Scheme 11. Third synthetic strategy for the synthesis of hydroperoxide 22. Dashed arrows implies 

projected reactions.  
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In order to evaluate some of the synthetic transformations of the third strategy to 

synthesize hydroperoxide 22 a short test synthesis was made (Scheme 12). Commercially 

available dihydrocarvone (29) was peroxidized using the same conditions as in the 

planned synthesis yielding silyl peroxide 53. This was used in a Wittig reaction, 

transforming the carbonyl group into alkene 54 (see Appendix II for experimental 

procedures). The success of these reactions proves the compatibility of the different 

functional groups with the planned reaction conditions. 
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Scheme 12. Reactions used to evaluate the compatibility of functional groups with the projected reaction 

conditions in the third strategy for the synthesis of hydroperoxide 22. 

As the attempts to synthesize hydroperoxide 22 were unsuccessful, no reactions including 

the isopropenyl unit had been observed in Paper I and in view of the mechanistic 

proposal in Paper III, it was decided to synthesize the fully saturated hydroperoxide 55. 

Thus, ketone 56 was transformed into alkene 57 in a Wittig reaction, (Scheme 13) 

followed by cobalt catalyzed peroxidation yielding silyl peroxide 58, that was 

deprotected in acidic methanol furnishing hydroperoxide 55.  
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Scheme 13. Synthesis of alkylic hydroperoxide 55. 
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The sensitizing capacity of hydroperoxide 20 and 21 was tested in the LLNA and the 

EC3-values obtained were 0.065 M (1.10%) and 0.037 M (0.68%), respectively. This 

makes both hydroperoxides potent sensitizers and is equivalent to previously investigated 

hydroperoxides [14, 15, 47, 58]. Testing of hydroperoxide 55 in the LLNA is planned for 

early summer of 2009. 

The radical trapping experiments were performed in a 1:1 mixture of acetonitrile and 

water, using 1.1 equivalent of Fe(III)TPPCl as radical initiator and 2 equivalents of 

TMIO as radical trapper (Figure 10, Section 3.1). The reactions were stirred at room temp 

until TLC showed no hydroperoxide. The products were isolated using flash 

chromatography as well as preparative HPLC and identified by NMR and MS. 

In the radical trapping experiments the oxygen-oxygen bond of the hydroperoxide 

functional group is cleaved homolytically by Fe(III)TPPCl. The alkoxyl radical (59) thus 

formed can react according to three different pathways (Scheme 14): i) hydrogen 

abstraction to form the corresponding alcohol (60, 61, 62); ii) 1,2-shift to form a 1-

hydroxyl radical (63) that subsequently forms dihydrocarvone (29); or iii) β-scission that 

opens the cyclohexane ring and forms a carbon-centered radical (64, 65) that can be 

trapped by TMIO or dioxygen. The structure of the hydroperoxide and the reaction rates 

of the different pathways determine the product distribution of the trapping experiments. 
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Scheme 14. Mechanistic proposal for the formation of products identified in the trapping experiments with 

hydroperoxides 20, 21 and 55. 
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Hydroperoxide 20 forms large amounts TMIO-adduct 66 and ketone 67, which both are 

derived from the carbon-centered radical that is the result of β-scission, as well as small 

amounts of alcohol (60, Table 4). From hydroperoxide 21 the major product is 

dihydrocarvone (29) together with small amounts of alcohol (61). The major products 

from hydroperoxide 55 are the corresponding alcohol (62) and TMIO-adduct 68. The 

corresponding ketone is not formed because the 1,2-shift requires a hydrogen atom on the 

hydroperoxide bearing carbon. 

Table 4. Product distribution in the radical trapping experiments with TMIO and alkylic hydroperoxides 

20, 21and 55; %-values correspond to purified yields. 
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Similar to the hydroperoxides in Paper I, there seems to be a correlation between the 

radical formation and the sensitizing capacities of hydroperoxides 20 and 21. In the 

trapping experiment with hydroperoxide 21 a small amount of alcohol corresponding to 

an intermolecular reaction of the alkoxyl radical was isolated. The sensitizing capacity of 
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the hydroperoxide can not be explained by the formation of dihydrocarvone as this 

compound is not a sensitizer according to guinea pig studies [71]. This indicates the 

importance of the alkoxyl radical in the formation of the immunogenic complexes. In 

analogy with hydroperoxide 2 formation of dihydrocarvone is proposed to proceed via 

the 1-hydroxyl radical 63 but no adducts with this radical was isolated. 

The same amount of alcohol was isolated in the trapping experiment with hydroperoxide 

20 as with hydroperoxide 21, together with large amounts of products derived from the 

carbon-centered radical. The formation of high amounts of carbon-centered radicals 

without any substantial increase in the sensitizing capacity indicates that these radicals 

may be less potent compared to the alkoxyl radicals in the formation of immunogenic 

complexes. Relatively large amounts of both alcohol and TMIO-adduct were isolated in 

the trapping experiment with hydroperoxide 55. If the sensitizing capacity correlates to 

the radical formation in the same way as for the allylic hydroperoxides in Paper I, 55 will 

be a stronger sensitizer compared to hydroperoxides 20 and 21. 

In comparison with the allylic hydroperoxides in Paper I, roughly the same amounts of 

radicals and products were isolated in the radical trapping experiments with the alkylic 

analogues investigated in this paper (Tables 2 and 4). However, the mechanistic pathway 

for formation of the carbon-centered radicals is different. The allylic alkoxyl radicals 

rearranged into carbon-centered radicals via a 1,3-cyclization including the double bond 

whereas the alkylic alkoxyl radicals reacts according to a β-scission mechanism that 

opens the cyclohexane ring. The preference for the different reactions is in accordance 

with the general ease of the reactions and the stability of the formed radicals. It is 

interesting that the formation of primary carbon-centered radicals via ring-opening from 

hydroperoxide 55 is identified, while the formation of a methyl radical and the 

corresponding ketone is not observed. 

In summary, all hydroperoxides were potent sensitizers in the LLNA and the same 

correlation between radical formation and sensitizing capacity was observed as for the 

allylic hydroperoxides in Paper I, albeit the formation of carbon-centered radicals follows 

a different mechanism. The results indicate that alkoxyl radicals may be more important 
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compared to carbon-centered radicals in the immunogenic complex formation, even if the 

latter are formed in larger amounts. 



 50 

3.5 Stability of Hydroperoxides towards Fe(III)TPPCl 

Most metabolizing enzymes in the body belong to the P450 cytochrome family that has a 

heme group in their catalytic sites [26]. As a model for the heme group, iron porphyrins 

have been extensively studied [48 and references therein]. The stability of 

hydroperoxides 1, 2 and 3 (Figure 16) towards catalytic amounts of the iron porphyrin 

Fe(III)TPPCl was investigated in NMR experiments (see Appendix II for experimental 

details). The intensity of the signals from the olefinic protons was used as a measure of 

the hydroperoxide concentration. 
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Figure 16. Hydroperoxides investigated for stability towards Fe(III)TPPCl. 
 

The results of the investigations are that the half-life for hydroperoxide 1 was 3.9 min, 

whereas it was 66 min for hydroperoxide 2, and 13.5 min for hydroperoxide 3 (Figure 

17). 
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Figure 17. Stability of hydroperoxides 1 (♦), 2 (■) and 3 (▲) towards Fe(III)TPPCl. 
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These results indicate that the concentration of radicals formed in the skin from the same 

amount of hydroperoxide may differ between the investigated hydroperoxides. This is 

important as formation of large amounts of radicals in the skin will deplete the 

antioxidants [68, 69] and are likely to result in the formation of more immunogenic 

complexes. The number of immunogenic complexes are likely to be important both to 

pass the threshold for the immunogenic response and for the strength of the response 

[72]. 
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General Discussion 

 

This thesis investigates the mechanisms of immunogenic complex formation of limonene 

hydroperoxides. The studies have focused on the connection between structure, radical 

formation and sensitizing capacities of the hydroperoxides. Studies of the reaction 

between hydroperoxide 2 (limonene-2-hydroperoxide) and cysteine identified a possible 

mechanism for the formation of immunogenic complexes from olefinic hydroperoxides 

and proteins. 

The radical formation has been studied in trapping experiments employing TMIO as a 

radical trapper for carbon-centered radicals. The isolation and identification of TMIO-

adducts and other non-radical products indicated what radicals were potentially available 

for immunogenic complex formation from each hydroperoxide (Papers I and IV). In these 

experiments, Fe(III)TPPCl was used as a model for the metabolizing enzymes, cleaving 

the oxygen-oxygen bond of the hydroperoxides homolytically, thereby initiating the 

radical reactions. All investigated hydroperoxides formed large amounts of radicals; 

however, several reaction pathways are available after formation of the initial alkoxyl 

radical. The structure of the hydroperoxide and thus the alkoxyl radical governs what 

pathways will dominate the following reactions and thereby also the identity and quantity 

of the formed radicals.  

All investigated hydroperoxides formed the corresponding alcohols by hydrogen 

abstraction. However, the yields of alcohol differed between the hydroperoxides. This is 

a result of the structure of the hydroperoxides influencing the balance between the 

different pathways, and thus the product distribution in the radical trapping experiments 

(Tables 2 and 4).  

For the secondary hydroperoxides 2 and 21 the 1,2-shift is the dominating pathway, 

resulting in the formation of large amounts of the corresponding 1-hydroxyl radicals. 

Further reactions ultimately form carvone (8) and dihydrocarvone (29), respectively, as 

the major products in the trapping experiments. 



 53 

For the tertiary hydroperoxides the 1,2-shift is not possible due to the absence of a 

hydrogen on the hydroperoxide bearing carbon. The allylic hydroperoxides 1 and 3 

primarily react according to the 1,3-cyclization pathway, resulting in high amounts of 

oxiranylcarbinyl radicals. The preference for this reaction compared to hydrogen 

abstraction is influenced by the stability of the formed epoxide; this is displayed by the 

larger amount of cyclization products formed from hydroperoxide 3 compared to the 

amount formed from hydroperoxide 1. 

The omission of the endocyclic double bond prevents the alkylic hydroperoxides 20 and 

55 to react according to the 1,3-cyclization pathway. Instead the preferred reaction is a β-

scission resulting in opening of the cyclohexane ring and the simultaneous formation of a 

carbon-centered radical. The ease of this is mainly depending on the stability of the 

formed carbon radical. Thus, considerably more secondary radicals were formed from 20 

compared to primary radicals formed from 55, and consequently higher yields of 

products corresponding to the secondary radicals were isolated. 

The sensitizing capacities were investigated in the LLNA and all hydroperoxides tested 

were found to be potent sensitizers (Papers I and IV). This is in accordance with 

previously studied hydroperoxides [14, 15, 47, 58]. In a modified LLNA comprising non-

pooled lymph nodes and statistical calculations hydroperoxide 1 was demonstrated to be 

a significantly stronger sensitizer compared to hydroperoxides 2 and 3. Investigations of 

statistical differences in the sensitizing capacities of compounds with similar EC3-values 

using this modification of the LLNA have, to the best of our knowledge, not been 

published before. When developing new methods to replace current animal based assays 

of allergenic activity this possibility to differentiate the sensitizing capacities of 

structurally similar compounds with comparable EC3-values is important. 

The results from the modified LLNA proved clinically relevant as seven out of seven 

patients who previously showed positive reactions to oxidized limonene also reacted to 

hydroperoxide 1, while only three of them reacted to hydroperoxide 2 (Paper II). In 

previous testing with oxidized limonene and linalool and their respective hydroperoxide 

fractions 40 – 60% of the patients reacted to both the oxidation mixture and its 

hydroperoxide fraction [6, 9, 59]. This is likely caused by some patients being allergic to 
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secondary oxidation products (aldehydes, epoxides, ketones, etc.) in the mixtures. 

However, the clinical study in Paper II is limited and needs to be repeated with a larger 

number of patients to verify the results.  

The difference in EC3-values from the ordinary LLNA is too small to differentiate 

between the sensitizing capacities of the hydroperoxides. Thus one must be careful when 

drawing conclusions about the correlation between radical formation and sensitizing 

capacity. However, in the modified LLNA hydroperoxide 1 was found to be a 

significantly stronger sensitizer compared to hydroperoxides 2 and 3. Hydroperoxide 1 

also formed considerably higher amounts of alcohol in the trapping experiments 

compared to hydroperoxides 2 and 3. This indicates a higher preference of the alkoxyl 

radical from 1 to participate in an intermolecular reaction which is likely to be important 

for the immunogenic complex formation and sensitizing capacity. 

Paper III investigates the formation of adducts between hydroperoxide 2 and amino acids 

as a model system for immunogenic complex formation. When hydroperoxide 2 was 

reacted with Fe(III)TPPCl carvone was formed, and when the reaction was performed in 

the presence of cysteine two adducts between carvone and cysteine were isolated and 

identified. This revealed a possible radical mechanism for immunogenic complex 

formation of olefinic hydroperoxides: formation of thiyl radicals from cysteine, followed 

by addition to a compound originating from the hydroperoxide, and hydrogen abstraction 

to furnish the non-radical product (Paper III). This mechanism explains how the 

specificity of the immunogenic complex of an olefinic hydroperoxide is obtained as an 

exogenous molecular structure originating from the hydroperoxide is covalently bound to 

the protein.  

The mechanistic proposal in Paper III also explains the importance of the alkoxyl 

radicals, displayed by the combined results of the trapping experiments (Paper I), the 

modified LLNA and the clinical studies (Paper II). The formation of thiyl radicals is most 

likely achieved via hydrogen abstraction. This can be done by both the oxygen centered 

and the carbon-centered radicals mentioned above. However, the bond dissociation 

energy (BDE) of an O-H bond is larger compared to that of a C-H bond [73] making 

hydrogen abstraction by an oxygen-centered radical more energetically favorable. Thus, 
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it is possible that a larger amount of thiyl radicals are formed from oxygen-centered 

radicals, compared to the amount of thiyl radicals formed from the same amount of 

carbon-centered radicals. In the skin this would correspond to more thiyl radicals being 

formed from the same amount of hydroperoxide, thereby creating more possibilities for 

formation of immunogenic complexes. A higher number of immunogenic complexes are 

likely to cause a stronger immunogenic response as a larger number of memory T-cells 

will be activated [72]. 

The formation of protein radicals as part of the immunogenic complex formation of 

hydroperoxides points to another important aspect of radical reactions in the skin; the 

formation of large amounts of radicals will deplete the antioxidant reserve [68, 69] and 

thereby ease the formation of covalent hapten-protein bonds via radical mechanisms. In 

this aspect the identity of the radicals are likely to be less important compared to the 

quantity. This is a possible explanation for the observation that all tested hydroperoxides 

are potent sensitizers with only small differences in EC3-values [14, 15, 47, 58 and Paper 

I]. 

The quantity of radicals depends on the amount of hydroperoxide, but also the stability of 

the hydroperoxides towards the metabolizing enzymes. In the stability experiments 

(Section 3.5) hydroperoxide 1 was the least stable of the investigated hydroperoxides 

towards the P450-mimicing Fe(III)TPPCl. This means that more radicals are formed from 

the same amount of hydroperoxide within a given time period. In the skin this will 

contribute to the weakening of the antioxidant defenses, thus increasing the possibility of 

immunogenic complex formation by radical reactions and the sensitizing capacity of the 

hydroperoxide. 

Most likely there are several other mechanisms available for the formation of 

immunogenic complexes of hydroperoxides. One indication of this is the reported cross-

reactivity between cumene hydroperoxide and a cyclohexenyl analogue together with 

quantum chemical calculations [21]. These results support the direct attachment of the 

alkoxyl radicals to a protein as rupture of the aromatic system of cumene hydroperoxide 

would be energetically unfavorable. Another possible mechanism for the immunogenic 

complex formation of hydroperoxides is the rearrangement of the initially formed 



 56 

radicals into non-radical haptens capable of forming hapten-protein bonds in 

nucleophilic-electrophilic reactions. One example of this is the formation of allergenic 

epoxides from 15-hydroperoxyabietic acid HPA [13]. However, not all electrophilic 

compounds that can be formed by radical rearrangement are strong sensitizers that can 

explain the sensitizing capacity of the initial hydroperoxide. One example of this is 

hydroperoxide 2 that forms carvone (Paper I) that have a lower sensitizing capacity in the 

LLNA compared to hydroperoxide 2 (Paper II). Another example is linalyl 

hydroperoxide, that forms epoxides that are non-sensitizers according to the LLNA [14]. 

In summary, the work presented in this thesis demonstrates a correlation between 

structure, radical formation and sensitizing capacity of limonene hydroperoxides. All 

investigated hydroperoxides were potent sensitizers in the LLNA and formed large 

amounts of radicals in the trapping experiments. The identity and quantity of formed 

radicals are influenced by the structure of the hydroperoxides. Furthermore, the results 

indicate that alkoxyl radicals may be the most important radicals in the formation of 

immunogenic complexes of hydroperoxides. A statistically significant difference in 

sensitizing capacities between hydroperoxide 1 and hydroperoxides 2 and 3 is 

demonstrated in a modified LLNA and supported by clinical data, results that further 

emphasize the formation of specific antigens from hydroperoxides. The isolation of an 

adduct between cysteine and carvone makes us propose that the formation of thiyl 

radicals and reaction of these with an olefin originating from the hydroperoxide in the 

thiol-ene reaction is a possible mechanism for the formation of specific immunogenic 

complexes of olefinic hydroperoxides. Finally, the formation of large amounts of radicals 

in the skin will weaken the antioxidant defenses, easing the formation of hapten-protein 

bonds via a radical mechanism. This offers an explanation to all hydroperoxides being 

potent sensitizers with similar EC3-values, seemingly without regard to individual 

structure. 
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Outlook 

 

The results presented provide an insight into the mechanism of immunogenic complex 

formation of limonene hydroperoxides but also the realization that a lot of interesting and 

important questions still remain. Future investigations should include a clinical study 

with a larger number of patients to verify the clinical results from Paper II. Further 

studies of the sensitizing capacities of hydroperoxides 20, 21, and 22 as well as 1, 22 and 

55 using the modified LLNA should be conducted in order to increase the understanding 

of the correlation between structure and sensitizing capacity. Trapping experiments with 

amino acids, peptides and possibly proteins are also very interesting for further 

elucidation of the mechanism of immunogenic complex formation. Especially 

hydroperoxide 1, which is a significantly stronger sensitizer, and the analogues 22 and 55 

are interesting in this aspect.  

The results point to the importance of considering oxidative stress as a part of the 

immunogenic complex formation mechanism. When part of a mixture hydroperoxides 

can deplete antioxidant defenses and thus facilitate the formation of immunogenic 

complexes not only of hydroperoxides but also of other haptens able to react via radical 

mechanisms. 

The use of antioxidants as a preventive treatment of ACD caused by limonene-2-

hydroperoxide have been investigated in guinea pigs with positive results [74]. This 

thesis further indicates the importance of radical reactions in ACD and presents valuable 

knowledge that can be used in investigations of the relationship between hydroperoxides 

and antioxidant levels as well as the development of better treatment methods.  
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Appendix I 

 

Reagents and reaction conditions used in the attempts to synthesize 

hydroperoxide 20 by substitution of alcohol 23. 

The tables are adopted from Emilsson [70] with permission from the author. 

 
Table 1. Reactions with H2O2 (aq), using different acids, equivalents of acid and peroxide, temperatures, 

solvents and reaction times in order to synthesize 20 from 23. 

Acid Eq H+ 
Eq 

peroxide 
Solvent Temp. Time 

All s.m. 
consumed 

Elima. 
Other 
prod.a 

H2SO4 Drop 145 Pentane RT 1d No ND NR 

H2SO4 Drop 100 Pentane RT 1h Yes Yes AI 

H2SO4 Drop 100 DCM RT 1h Yes Yes NI 

H2SO4 Drop 100 DMF RT 5d Yes ND AI 

pTSA 1 100 DMF RT 5d No ND NI 

H2SO4 Drop 100 DCM 0 °C 15 min No ND NI 

H2SO4 Drop 100 DCM 0 °C 1 min No ND NI 

H2SO4 Drop 100 DCM 8 °C 7 min No Yes NI 

H2SO4 Drop 100 DCM RT 1 min No Yes NI 

H2SO4 Drop 100 DCM 0 °C → RT days No ND NI 
a
 NR = no reaction; NI = formed but not identified, AI = addition to isoprene unit, ND = not detected

 

 

 

Table 2. Reactions with TFA, using different peroxide reagents, equivalents of acid and peroxide, 

temperatures, solvents and reaction times in order to synthesize 20 from 23. 

Eq H+ Peroxide 
Eq 

peroxide 
Solvent Temp. Time 

All s.m. 
consumed 

Elim. a 
Other 
prod.a 

2 UHP 20 DMF RT 1d No ND NR 

0 None None DMFb
 RT 1d No ND NI 

2 Na2O2 5 DCM RT→40 →RT o/n No ND NI 

2 Na2O2 5 DCM RT 1h No Yes NI 

10 Na2O2 5 DCM RT 1h No Yes AI 

2 Na2O2 5 THFc
 RT 1d No ND NR 

10 Na2O2 5 THFc
 RT 1d No ND NI 

2 Na2O2 5 THFc
 RT 1d No ND NR 

a
 NR = no reaction; NI = formed but not identified,  AI = addition to isoprene unit, ND = Not detected.  
b
 DCM added in equal amounts as DMF.

 c
 THF dried prior to use. 
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Table 3. Reactions with pTSA and Na2O2 in DCM, using different equivalents of acid and peroxide, 

temperatures and reaction times in order to synthesize 20 from 23. 

Eq pTSA Eq Na2O2 Temp. Time All s.m. consumed Elim. a Other prod.a 

3 5 RT 5h No Yes NI 

3 5 RT 2h No Yes NI 

3 5 RT 2h No Yes AI 

3 50 RT days No Yes NI 

3 5 Reflux 2h Yes ND AI 

3 5 RT days No ND NI 

0 →  17 % 5 RT days No ND NI 

3 0 RT 3h No Yes NI 

3 0 Reflux 3h Yes ND NI, DS 
a
 NI = not identified, ND = formed but not detected, AI = addition to isoprene unit, DS = degradation of 

starting material 

 

 

Table 4. Miscellaneous reactions using different acids, peroxide reagents, equivalents of acid and peroxide, 

solvents and reaction times at room temperature in order to synthesize 20 from 23. 

Acid Eq acid Peroxide 
Eq 

peroxide 
Solvent Time 

All s.m. 
consumed 

Elim. a 
Other 
prod.a 

Acetic acid 3 Na2O2 5 DCM 5h No Yes NI 

H2SO4 3 Na2O2 5 DCM 30 min Yes Yes ND 

Amberlyst 100 wt% H2O2 aq 100 THF 7d No ND NR 

Amberlyst 100 wt% Na2O2 5 DCM 3h OI ND NI 
a
 NR = no reaction; NI = formed but not identified, ND = not detected, OI = only one isomer consumed 

 

 

Table 5. Reactions with MsCl or TsCl, using different bases, equivalents of substrate and base, 

temperatures, solvents and reaction times in order to substitute 23 with a chloride, mesylate or tosylate 

group. 

Additive 
Eq 

additive 
Reagent 

Eq 
substrate 

Solvent Temp. Time 
All s.m. 

consumed 
Elim. 

a 
Other 
prod.a 

NEt3 1.3 MsCl 1.2 DCM 0 °C 2h No Yes ND 

Pyr Solvent MsCl 1.2 Pyr 0 °C 2h No Yes NI 

H2O2 16 MsCl 1.2 Pyr 0 °C 5d No Yes ND 

NEt3 1.3 TsCl 1.2 DCM 0 °C 2d No ND NR 

NEt3 1.3 MsCl 1.2 DCM 0 °C 2.5h Yes Yes ND 

None None HCl konc Excess DCM RT o/n Yes ND DS 

None None HCl konc Excess DCM RT 1h Yes ND DS 
a
 NR = no reaction; NI = formed but not identified, ND = not detected, DS = degradation of starting 

material
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Table 6. Reactions with halogen reagents, using different equivalents, temperatures, solvents and reaction 

times in order to substitute 23 with a bromide or chloride group. 

Reagent Eq reagent Solvent Temp. Time 
All s.m. 

consumeda 
Elim. a Other prod.a 

LiBr 1.5 2 eq HBr -10 °C 1h No Yes NI, DS 

BBr3 1.2 DCM 0 °C 2h No Yes AI, NI 

PBr3 2.2 DCM 0 °C → RT 1d No Yes AI, NI 

PCl3 1.2 Pentane 0 °C → RT 3h No Yes NI 

PCl3 1 DCM 0 °C 3h OI Yes NI 

POCl3 1 DCM 0 °C 5h No No NI 

POCl3 2.5 DCMb 8 °C 3d No Yes NI 

POCl3 2.5 DCM RT 2d OI Yes NI 

SOCl2 1.1 CHCl3 0 °C → RT 30h OI Yes NI 

POCl3 3 DCM 0 °C → RT 1d OI Yes NI 
a 
NI = formed but not identified, ND = not detected, AI = addition to isoprene unit, OI = one isomer 

consumed, DS = degradation of starting material, 
b
one drop of pyridine added 
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Appendix II 

 

Experimental procedures discussed in section 3.4 and 3.5 

Instrumentation. NMR spectroscopy was performed on a JEOL Eclipse+ 400 

instrument at 400 MHz using deuterated chloroform (CDCl3) as solvent. Chemical shifts 

(δ) are reported in ppm relative to CHCl3 at 7.26 for 1H, and at 77.0 for 13C. Coupling 

constants are reported in Hz. 

Column chromatography was performed using Merck silica gel 60 (230-400 mesh 

ASTM) and TLC was performed using silica plated aluminium sheets (Merck, 60 F254 

silica gel) that were developed with anisaldehyde dip (2.1 mL of acetic acid, 5.1 mL of 

anisaldehyde and 7 mL of H2SO4 in 186 mL of ethanol) followed by heating. 

Synthesis. 35 - 37 were synthesized according to literature [75]. 

4-Isopropenyl-1-methylenecyclohexane (33). Sodium bis(trimethylsilyl)amide (2 M in 

THF, 9.00 mL, 18.0 mmol) was added dropwise to a stirred suspension of 

methyltriphenylphosphonium bromide (6.42 g, 18.0 mmol) in dry THF (30 mL) under N2 

at room temperature. After 15 min, 4-acteyl-cyclohexanone (1.10 g, 7.82 mmol) 

dissolved in THF (6.5 mL) was added dropwise and the reaction mixture was heated to 

reflux. After 1 h, the reaction mixture was allowed to reach room temperature and n-

pentane (35 mL) and water (35 mL) were added. The aqueous phase was extracted with 

n-pentane (35 mL), and the combined organic phases were washed with water (3 × 65 

mL). Due to heavy precipitation both aqueous and organic phases were filtered, the 

aqueous phase was extracted with pentane (100 mL), the organic phases were pooled, 

washed with water (125 mL) and brine (125 mL), dried over MgSO4, and concentrated 

under reduced pressure at 0 °C. The crude product was purified by flash chromatography 

on silica gel (100% n-pentane) affording 0.72 g (67%) of the target compound: 1H NMR 

δ 1.21 – 1.34 (m, 2H), 1.71 (s, 3H), 1.79 – 1.88 (m, 2H), 1.98 – 2.12 (m, 3H), 2.29 – 2.38 

(m, 2H), 4.59 – 4.62 (m, 2H), 4.67 (s, 2H); 13C NMR δ 21.0, 33.1, 35.0, 45.1, 107.0, 

108.6, 149.4, 150.2. 
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Silylperoxides 38 – 40. Triethylsilane (0.35 mL, 2.19 mmol) and t-butylhydroperoxide 

(5.5 M in decane, 0.11 µmol, 20 µL) were added to a stirred solution of 33 (0.31 g, 2.26 

mmol) in 1,2-dichloroethane (90 mL) under oxygen atmosphere at 0 °C. Co(thd)2 (0.03 g, 

0.08 mmol) was added, the mixture was stirred for 45 min at 0 °C and concentrated. The 

crude product was purified by flash chromatography (hexane/ethyl acetate 99:1) yielding 

starting material 33 (71 mg, 24%), silylperoxide 38 (19 mg, 3.0%), silylperoxide 39 (16 

mg, 2.6%), and silylperoxide 40 (30 mg, 4.8%).  

Characteristic data: 38 TLC (hexane 100%) Rf 0.31; 1H NMR δ 1.70 (s, 3H, 

(CH3)C(CH)(CH2)), 4.63 – 4.69 (m, 2H, CH2); 39 TLC (hexane 100%) Rf 0.25; 1H NMR 

δ 0.61 – 0.70 (m, 6H, Si(CH2CH3)3), 0.94 – 1.00 (m, 9H, Si(CH2CH3)3), 1.12 (s, 6H, 

C(CH3)2Si), 4.57 – 4.59 (m, 2H, CH2); 40 TLC (hexane 100%) Rf 0.10; 1H NMR δ 0.61 – 

0.71 (m, 6H, Si(CH2CH3)3), 0.93 – 1.01 (m, 9H, Si(CH2CH3)3), 1.13 (s, 3H, 

(CH3)C(CH2)2Si)), 1.55 (s, 6H, C(CH3)2Si).  

4-isopropenylcyclohexanone (42) was synthesized according to literature [76]. 

Methyltriphenylphosphonium bromide (14.5 g, 40.1 mmol), butyllithium (2.5 M, 17.0 

mL, 42.5 mmol), 36 (7.16 g, 33.7 mmol). The reaction mixture was concentrated, 

dissolved in hexane (50 mL) and water (50 mL), the aqueous phase extracted with hexane 

(3 × 50 mL), the combined organic phases washed with water (1 × 200 mL) and brine (1 

× 200 mL), dried over MgSO4 and concentrated. The crude product was purified by flash 

chromatography on silica gel eluting with hexane/ethyl acetate (stepwise gradient 19:1 

and 9:1) yielding 3.11 g (67%) of the target compound. Characterization data corresponds 

to literature values [76]. 

1-(1',3'-dioxolane)-4-isopropenylcyclohexane (43). p-Tolunesulfonic acid (14.6 mg, 

0.08 mmol), 4-isopropenylcyclohexanone (1.69 g, 12.3 mmol), 1,2-ethanediol (0.74 mL, 

13.3 mmol), and toluene (10 mL) was added to a roundbottomed flask fitted with a Dean-

Stark water separator. The mixture was heated to reflux for 3.5 hours, allowed to cool to 

room temperature, washed with aqueous sodium hydroxide (10%, 1 × 50 mL), water (1 × 

50 mL) and brine (1 × 50 mL). The aqueous phases was extracted with toluene (2 × 200 

mL), the organic phases were combined, dried over Na2SO4 and concentrated under 

reduced pressure. The crude product was purified by flash chromatography on silica gel 
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eluting with hexane/ethyl acetate (stepwise gradient 19:1 and 9:1) yielding 3.04 g (74%) 

of the target compound as a yellow oil: 1H NMR δ 1.51 – 1.58 (m, 4H), 1.69 – 1.82 (m, 

7H), 1.88 – 1.98 (m, 1H), 3.94 (s, 4H), 4.66 – 4.72 (m, 2H); 13C NMR δ 21.0, 29.1, 34.9, 

44.3, 64.3, 64.4, 108.81, 108.83, 149.8. 

1-(1',3'-dioxolane)-4-(propan-1-ol-2-yl)-cyclohexane (44). To a stirred solution of 

compound 51 (100 mg, 0.55 mmol) in dry THF (5 mL) at 0 °C under N2 was added 1 M 

BH3 in THF (1 M, 0.28 mmol). The mixture was stirred at 0 °C for 2 h before aqueous 

NaOH (3 M, 1.11 mmol) was slowly added at 0 °C followed by H2O2 (30% in water, 1.42 

mL, 16.5 mmol). The mixture was stirred for 3 h in RT, water (10 mL) was added and the 

mixture was extracted with ethyl acetate (3 × 20 mL). The combined organic phases was 

washed with brine (75 mL), dried over MgSO4, filtered and concentrated under reduced 

pressure. The crude product was purified by flash chromatography on silica gel eluting 

with hexane/ethyl acetate (1:1) yielding 0.08 g (73%) of the target compound: 1H NMR δ 

0.89 (d, J = 6.96 Hz, 3H), 1.35 – 1.42 (m, 2H), 1.45 – 1.60 (m, 4H), 1.60 – 1.68 (m, 2H), 

1.72 – 1.79 (m, 2H), 3.44 – 3.62 (m, 2H), 3.92 (s, 4H); 13C NMR δ 13.6, 25.8, 28.0, 34.8, 

35.0, 38.1, 40.1, 64.25, 64.30, 66.4, 109.1. 

4-(propan-1-ol-2-yl)-cyclohexanone (45). Compound 44 (234 mg, 1.17 mmol) was 

added to a solution of p-toluensulfonic acid (121 mg, 0.64 mmol) in acetone (8 mL) and 

water (5 mL) and heated to reflux until TLC showed no starting material. Water (13 mL) 

and DCM (25 mL) was added to the reaction mixture, the aqueous phase was extracted 

with DCM (4 × 25 mL), the combined organic phases was washed with saturated aqueous 

sodium carbonate (2 × 125 mL), the combined sodium carbonate phases was extracted 

with DCM (4 × 125 mL), all organic phases were combined and dried over MgSO4 and 

concentrated under reduced pressure yielding 0.18 g (100%) of the target compound that 

was used without further purification: 1H NMR δ 0.92 (d, J = 6.96 Hz, 3H), 1.40 – 1.72 

(m, 4H), 1.82 – 1.93 (m, 1H), 1.95 – 2.05 (m, 2H), 2.33 – 2.44 (m, 3H), 3.52 – 3.65 (m, 

2H); 13C NMR δ 13.5, 28.4, 30.7, 37.6, 39.6, 41.1, 41.3, 66.2, 212.3. 

1-methylene-4-(propan-1-ol-2-yl)-cyclohexane (46). Butyllithium (2.5 M in hexane, 

3.73 mL, 9.34 mmol) was added dropwise to a stirred suspension of 

methyltriphenylphosphonium bromide (3.34 g, 9.35 mmol) in dry THF (34 mL) under N2 
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at room temperature. After 45 min, compound 45 (1.22 g, 7.78 mmol) dissolved in THF 

(10 mL) was added dropwise and the reaction mixture was heated to 60 °C for 4 h. The 

reaction mixture was allowed to reach room temperature before hexane (50 mL) and 

water (50 mL) were added. The aqueous phase was extracted with hexane (100 mL), the 

combined organic phases were dried over MgSO4 and concentrated under reduced 

pressure at 0 °C yielding a yellow oil mixed with white crystals. The oil was transferred 

to a new flask and the crystals were washed with several portions of hexane that was 

combined with the oil and concentrated under reduced pressure. The crude product was 

purified by flash chromatography on silica gel eluting with hexane/ethyl acetate (stepwise 

gradient 9:1, 4:1) yielding 0.50 g (42%) of the target compound: 1H NMR δ 0.87 (d, J = 

6.77 Hz, 3H), 1.00 – 1.22 (m, 2H), 1.45 – 1.58 (m, 2H), 1.69 – 1.77 (m, 2H), 1.94 – 2.07 

(m, 2H), 2.25 – 2.34 (m, 2H), 3.42 – 3.63 (m, 2H), 4.56 – 4.58 (m, 2H); 13C NMR δ 13.5, 

29.9, 32.2, 34.9, 35.1, 38.9, 40.4, 66.4, 106.7, 149.9. 

1-methylene-4-(propan-1-tosyloxyl-2-yl)-cyclohexane (41). Compound 46 (499 mg, 

3.23 mmol) was added to a solution of p-toluenesulfonyl chloride (1.26 g, 6.61 mmol) in 

pyridine (8 mL) and stirred at RT under N2 until TLC show no starting material. The 

reaction mixture was poured onto crushed ice and water (5 mL) and extracted with 

toluene (3 × 100 mL). The aqueous phase was extracted with toluene (3 × 100 mL), the 

organic phases were combined, washed with aqueous HCl (1M, 2 × 300 mL), dried over 

MgSO4 and concentrated under reduced pressure yielding 0.76 g (72%) of crude product 

that was used without further purification: 1H NMR δ 0.83 (d, J = 6.83 Hz, 3H), 0.91 – 

1.11 (m, 2H), 1.39 – 1.50 (m, 1H), 1.55 – 1.64 (m, 2H), 1.64 – 1.73 (m, 1H), 1.85 – 2.01 

(m, 2H), 2.20 – 2.29 (m, 2H), 2.44 (s, 3H), 3.82 – 3.96 (m, 2H), 4.55 – 4.57 (m, 2H), 7.31 

– 7.36 (m, 2H), 7.75 – 7.80 (m, 2H); 13C NMR δ 13.4, 21.7, 29.7, 31.7, 34.6, 34.7, 37.3, 

38.5, 73.6, 107.0, 128.0, 129.9, 133.1, 144.8, 149.2. 

1-methyl-4-(propan-1-tosyloxyl-2-yl)-cyclohexane-1-triethylsilyl peroxide (47). 

Triethylsilane (0.97 mL, 6.07 mmol) and t-butylhydroperoxide (5.5 M in decane, 0.10 

µmol, 0.02 µL) were added to a stirred solution of 41 (0.65 g, 2.00 mmol) in 1,2-

dichloroethane (26 mL) under oxygen atmosphere. Co(thd)2 (0.03 g, 0.06 mmol) was 

added to the clear solution at room temperature, whereupon it instantly turned dark green. 

The mixture was stirred for 3 h, filtered through silica and concentrated. The crude 
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product was purified by flash chromatography on silica gel eluting with hexane/ethyl 

acetate (19:1) yielding 0.32 g (34%) of the target compound: 1H NMR δ 0.58 – 0.70 (m, 

6H), 0.83 (d, J = 7.14 Hz, 3H), 0.92 – 1.00 (m, 9H), 1.10 – 1.72 (m, 12H), 1.87 – 1.95 

(m, 1H), 2.44 (s, 3H), 3.80 – 4.00 (m, 2H), 7.31 – 7.36 (m, 2H), 7.75 – 7.80 (m, 2H); 13C 

NMR δ 4.0, 6.9, 13.2, 21.7, 23.2, 25.5, 25.7, 34.4, 34.6, 37.6, 37.9, 73.8, 79.8, 128.0, 

129.9, 133.2, 144.7. 

2-methyl-5-(propan-2-triethylsilyl peroxyl-2-yl)-cyclohexanone (53). Triethylsilane 

(0.85 mL, 5.32 mmol) and t-butylhydroperoxide (5.5 M in decane, 0.10 µmol, 0.02 µL) 

were added to a stirred solution of 29 (0.31 g, 2.01 mmol) in 1,2-dichloroethane (12 mL) 

under oxygen atmosphere. Co(thd)2 (0.03 g, 0.06 mmol) was added to the clear solution 

at room temperature, whereupon it instantly turned dark green. The mixture was stirred 

for 2 h, filtered through silica and concentrated. The crude product was purified by flash 

chromatography on silica gel eluting with hexane/ethyl acetate (4:1) yielding 0.16 g 

(27%) of the target compound: 1H NMR δ 0.30 – 2.60 (m, 32H); 13C NMR δ 3.9, 6.8, 

14.4, 21.8, 22.1, 26.6, 34.8, 43.3, 45.0, 46.7, 83.4, 213.2. 

1-methylene-2-methyl-5-(propan-2-triethylsilyl peroxyl-2-yl)-cyclohexane (54). 

Butyllithium (2.5 M in hexane, 0.26 mL, 0.65 mmol) was added dropwise to a stirred 

suspension of methyltriphenylphosphonium bromide (0.24 g, 0.67 mmol) in dry THF (3 

mL) under N2 at 0 °C. After 20 min, compound 53 (0.16 g, 0.53 mmol) dissolved in THF 

(2 mL) was added dropwise and the reaction mixture was stirred at 0 °C for 2 h. Hexane 

(10 mL) and water (10 mL) were added to the reaction mixture, the aqueous phase was 

extracted with hexane (2 × 10 mL), the combined organic phases were washed with water 

(20 mL) and brine (20 L), dried over Na2SO4 and concentrated under reduced pressure 

yielding beige crystals. The crystals were filtered and washed with several portions of 

hexane that was combined and concentrated under reduced pressure yielding 0.12 g 

(74%) of crude product: 1H NMR δ 0.61 – 0.69 (m, 6H), 0.77 – 0.93 (m, 1H), 0.93 – 1.00 

(m, 9H), 1.01 – 1.04 (m, 3H), 1.12 – 1.16 (m, 6H), 1.16 – 1.32 (m, 1H), 1.62 – 1.75 (m, 

2H), 1.75 – 1.87 (m, 3H), 1.87 – 1.98 (m, 1H), 4.55 – 4.58 (m, 1H), 4.65 – 4.68 (m, 1H); 
13C NMR δ 4.0, 6.9, 18.3, 21.7, 22.1, 27.5, 36.5, 37.4, 37.7, 47.0, 84.1, 104.6, 153.9. 
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General procedure for studying the stability of hydroperoxides 1, 2 and 3 towards 

Fe(III)TPPCl. Fe(III)TPPCl (1.60 mg, 2.28 µmol) dissolved in base washed CDCl3 (75 

µL) was added to a solution of hydroperoxide (77 µmol) in base washed CDCl3 (0.7 mL) 

in a NMR tube at t = 0. The solution was thoroughly mixed and the degradation of the 

hydroperoxide was followed by 1H NMR, where the signal corresponding to the 

endocyclic olefinic proton was used as a measure of hydroperoxide concentration. 

 


