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Abstract

Knightian uncertainty in climate sensitivity is analyzed in a two sec-
toral integrated assessment model (IAM), based on an extension of
DICE. A representative household that expresses ambiguity aversion
uses robust control to identify robust climate policy feedback rules that
work well over IPCC climate-sensitivity uncertainty range [1]. Ambi-
guity aversion, together with linear damage, increases carbon cost in a
similar way as a low pure rate of time preference. Secondly, in combi-
nation with non-linear damage it makes policy responsive to changes in
climate data observations as it makes the household concerned about
misreading sudden increases in carbon concentration rate and temper-
ature as sources to global warming. Perfect ambiguity aversion results
in an infinite expected shadow carbon cost and a zero carbon-intensive
consumption path. Dynamic programming identifies an analytically
tractable solution to the model.

Keywords: robust control, climate change policy, carbon cost, Knigh-
tian uncertainty, ambiguity aversion, integrated assessment models

JEL classification: C73, C61, Q54

1 Introduction

An essential component subject to scientific uncertainty in climate modeling
is equilibrium climate sensitivity, defined as the ratio between a steady-state
change in mean atmospheric temperature ∆Tt and a steady-state change in
radiative forcing ∆Rt. The IPCC Executive Summary [1] stated ‘The equi-
librium climate sensitivity is a measure of the climate system response to
sustained radiative forcing. It is not a projection but is defined as the global
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average surface warming following a doubling of carbon dioxide concentra-
tions. It is likely to be in the range 2.0oC to 4.5oC with a best estimate of
about 3.0oC, and is very unlikely to be less than 1.5oC. Values substantially
higher than 4.5oC cannot be excluded, but agreement of models with ob-
servations is not as good for those values.’ Equilibrium climate sensitivity
depends on several underlying physical feedback processes that affect equi-
librium mean temperature which are hard to predict. Some of the most
uncertain are the cloud effect, water vapor, albedo and vegetation effect,
see e.g. [2] and [3]. An analysis by Roe and Baker [4] shows that the cli-
mate sensitivity probability distribution is highly sensitive to uncertainties
in already uncertain underlying physical feedback factors. The probability
distribution becomes unpredictable as well as skewed with a thicker high-
temperature tail that is not likely to be reduced despite scientific progress in
understanding underlying feedback factors [4]. If climate uncertainty con-
cerns not only outcomes but also probability distributions the question is
raised whether the concepts of expected utility theory and risk aversion can
explain and capture all reasonings behind e.g. precautionary principles in
climate change policy. In decision theory the discussion on uncertain prob-
ability distributions is not new. Already Knight [5] suggested that for many
choices the assumption of known probability distributions is too strong and
therefore distinguished between ‘measurable uncertainty’ (risk) and ‘unmea-
surable uncertainty’, reserving the latter denotation to include also unknown
probabilities. Keynes [6], in his treatise on probability, put forward the ques-
tion whether we should be indifferent between two scenarios that have equal
probabilities, but one of them is based on greater knowledge. Savage’s Sure-
Thing principle [7] argued that we could, while Ellsberg’s experiment [8]
showed that individuals facing two lotteries, the first one with known prob-
abilities and the second one with unknown probabilities, tended to prefer to
bet on outcomes in the first lottery to bet on outcomes in the second lottery
where they had to rely on subjective probabilities, thus contradicting the
Sure-Thing principle. This behavior was referred to as ambiguity (or un-
certainty) aversion as a broader aversion than risk aversion. When it comes
to causes of ambiguity aversion, Ellsberg’s setup has been repeated several
times, supporting ambiguity aversion. In e.g. Fox and Tversky [9] subjects
were asked for their willingness to pay, resulting in much higher willingness
to pay for the urn with known probabilities than for the ambiguous urn.
However, ambiguity aversion disappeared in an experiment in which the two
urns were evaluated in isolation, suggesting that the comparison of known vs
unknown probabilities matters. Other experiments by e.g. Curley et al. [10]
showed that fear of negative evaluation when others observe the choice and
may judge the decision-maker for it, increases his ambiguity aversion, which
gives it an interesting connection to social norms in policymaking, [10] and
[11]. Ambiguity aversion is closely related to the ‘precautionary principle’
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which has been raised in e.g. the Rio Declaration article 15.1 From a norma-
tive standpoint, delayed action would then be an irresponsible choice as it
does not contain the precaution necessary to avoid the irreversible increase
in uncertainty. One of the most influential ways to model ambiguity aver-
sion is by Gilboa and Schmeidler [13] who formulated a maximin expected
criterion, by weakening Savage’s Sure-Thing Principle.2 The decision-maker
faces a set of probability distributions, and maximizes expected utility under
the belief that the worst-case probability distribution is true, which in ef-
fect implies to put more probability weight on bad outcomes. Still we could
find a subjective prior ex post that correspond to an individual’s choice,
but this does not imply that it always can be fully explained by expected
utility theory and pure risk aversion, as the reasoning guiding him to the
choice may have other reasons, such as ambiguity aversion and precaution-
ary principles. Kahneman and Tversky [15] found empirical evidence that
individuals tend to put more weight on low-probability extreme outcomes
than would be implied by expected utility. The maximin decision criterion,
as modeling fears of Knightian uncertainty, has been applied before in static
models with the general result that it leads to an increase in abatement
effort, e.g. Chichilnisky [16] and Bretteville Froyn [17], as well as dynamic
models using a robust control approach with applications to e.g. water man-
agement Roseta-Palma and Xepapadeas [18], climate change Hennlock [19]
and biodiversity management Vardas and Xepapadeas [20]. In the pres-
ence of Knightian uncertainty about probabilities, the maximin criterion is
an elegant way of formalizing uncertainty aversion and precaution concern
that is not captured by pure risk aversion. However, in climate change pol-
icy analysis climate policy actions span over a range from zero to arbitrarily
large carbon prices. Furthermore, a policy based on the most pessimistic be-
liefs would likely be irresponsible when feasible policy actions are connected
to large expected costs of delayed action as well as costs of action. In an
IAM with ambiguity aversion, modeled as a maximin criterion, we should
therefore allow for the ‘hypothetical minimizer’ to choose over a range of
worst-case beliefs and, in this range, try to find the most ‘responsible level
of responsibility’.

1‘Where there are threats of serious or irreversible damage, lack of full scientific cer-
tainty shall not be used as a reason for postponing cost-effective measures to prevent envi-
ronmental degradation.’ Ulph and Ulph [12] have put forward that the benefits of insuring
against irreversibility effects by actions now should balanced to the benefit of awaiting bet-
ter scientific information by delaying action. If there are no climate irreversibilities, the
benefit of awaiting better scientific information dominates and actions should be delayed.
However, they do not deny that there are climate irreversibilities, they rather question
which effect is largest.

2The Choquet expected utility (CEU) model of Schmeidler [14] is another example.
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1.1 Measurable vs Unmeasurable Uncertainty in IAMs

The simplest way to introduce ‘risk’ in the literature on IAMs has been the
so-called ‘sensitivity-analysis approach’. Uncertain parameters are varied
and values of carbon cost, optimal policy and outcomes are computed from
several runs. This ‘deterministic approach‘ becomes more sophisticated by
replacing uncertain input parameter values by samplings from probability
distributions and then obtain policy variables, expected benefits and costs as
probability distributions from which mean and variance can be calculated.
Also in deterministic models, the probability distributions for policies, costs
and benefits can differ significantly from assumed probability distributions
for input parameters, but this merely reflects that these variables are nonlin-
ear functions of input parameters. Two early examples based on extensions
of DICE [21] resulted in 2 to 4 times higher carbon cost than the certainty
case, reflecting the benefit of reducing risk of high future climate change
costs, see [22] and [23]. Another example modeled catastrophic events by
altering the probability distributions of damages as temperature increases
[24]. The Stern Review [25] performed a similar study using PAGE2002
[26] where several parameters are represented as probability distributions,
to explore consequences of e.g. high climate sensitivities of 2.4oC - 5.4oC
for the 5 − 95% interval. Nordhaus and Popp [23] also imposed expected
utility maximization and found carbon costs slightly higher than without
maximization of expected utility, reflecting risk aversion. Clearly, optimal
reductions in CO2 emissions would differ largely whether the decision is
based on a climate model based on an equilibrium sensitivity of 2.0oC or
4.5oC or even higher. My main point (as model builder) is to be silent
about this magnitude and instead leave the question unanswered by letting
our decision-maker face Knightian uncertainty rather than one or another
model builder’s sometimes ad hoc guesses about probability distributions.

Hennlock [19] introduced Knightian uncertainty in a IAM approach us-
ing robust control in climate-economy modeling. Weitzman independently
introduced Knightian uncertainty, first in a draft to his Review of the Stern
Report, and then in an early working paper of Weitzman [27]. Based on
Knightian uncertainty, the main results of Hennlock [19] and Weitzman [27]
seemed to tell the same story - uncertain probability distributions can justify
large measures taken. In Hennlock [19] results emerged as a ‘robust carbon
cost markup’, inducing a policymaker to take stringent measures (robust
carbon pricing). Proposition 6 in Hennlock [19] showed that when a policy-
maker expresses perfect ambiguity aversion his expected shadow carbon cost
becomes infinite, and hence, he ‘backstop acts’ by cutting carbon-generating
production to zero. Weitzman’s analysis, based on a static linear relation-
ship between a utility function and a parameter with unknown probability
distribution, showed that with Bayesian learning in a two-period analysis
the result is an infinite expected marginal utility at zero consumption levels
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(the Dismal Theorem) [27].3

In this theoretical paper we apply the IAM approach in Hennlock [19] -
Analytical Model Uncertainty in an Integrated Climate-Economy in a model
with profit-maximizing firms (AMUICE-P) - but instead with a utility-
maximizing household (AMUICE-C) in a model based on a two-sectoral
extension of the DICE model in continuous time. The purpose of this first
theoretical paper is not to perform a simulation or a full sensitivity anal-
ysis, but to present an IAM and its analytically tractable solution using
dynamic programming and to introduce Knightian uncertainty and ambi-
guity aversion, modeled as maximin criterion within robust control, and fi-
nally comment on some major consequences in connection to the discussion
following the Stern Review on discounting and the Dismal Theorem. The
paper has the following organization: Section 2 presents main features of the
household’s Ramsey alike problem in the deterministic problem. Section 3
presents how Knightian uncertainty and ambiguity aversion are introduced.
Section 4 discusses the major outcomes of the analytical solution which is
followed by a summary in section 5. The appendix contains the analytical
solution.

2 The Climate-Economy Model

The AMUICE-C model has its next of kin in DICE when it comes to the
way it captures economic and climatic phenomena. The major choice for
the representative household is whether to consume a final good, to invest in
productive capitals, or to slow global climate change by abatement and in-
vesting in carbon-neutral and (more efficient) carbon-intensive technology.
Besides the two-sectoral approach, the major difference with AMUICE-C
is the introduction of Knightian uncertainty in climate sensitivity as one
of the essential uncertain components in climate modeling. We distort the
mean of the climate sensitivity probability distribution and end up with a
continuum of climate sensitivity probability distributions over an arbitrarily
large (but finite) range so that they can cover e.g. the IPCC uncertainty
range 2.0oC - 4.5oC (or an even greater range) that our (possibly ambigu-
ity averse) household is willing to imagine [1]. Given these multiple mean
distorted probability distributions, which are understood as multiple pri-
ors that our household can form about climate sensitivity, the household
uses robust control to identify a robust policy design that works well over a
range of climate sensitivity outcomes. However, we start by presenting the
deterministic version of the household problem.

3Nordhaus [28] comments on [27] and how the the result can depend on fat tails in the
(posterior) probability distribution.
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2.1 The Household Problem without Uncertainty

The representative household problem is described as a Ramsey alike prob-
lem as in DICE but the representative household owns a carbon-intensive
production sector and a carbon-neutral production sector (using a natural
capital stock as input). There is endogenous technology growth inspired
by Romer [29] in both sectors and a climate model of the type used in
DICE in continuous time. The final good is composed by a carbon-intensive
input good Ct and a carbon-neutral input good Gt produced in the carbon-
intensive and the carbon-neutral production sector, respectively. A CES
function with constant elasticity of substitution σ and share parameter
ω ∈ [0, 1], describes how the inputs Ct and Gt compose the final good.
The objective function is taken from Sterner and Persson [30]:4

max
C,G,q,s,r

∫ ∞

0

1
1− η

[
(1− ω)C

σ−1
σ

t + ωG
σ−1

σ
t

] (1−η)σ
σ−1

e−ρtdt (1)

with elasticity of marginal utility of consumption (constant relative risk
aversion) η from consuming the final good where a high value of η is usu-
ally interpreted as high risk aversion or inequality aversion. The household
maximizes objective (1) subject to the dynamic system:

dK =
[
(υK + (1− rt)Aτ

Kt)K
α
t L1−α

t − cq2
t − Ct − δKt

]
dt (2)

dAK =
[
ν(rjtYKjt)τA1−τ

Kt − δKAKt

]
dt (3)

dEi =
[
(υE + (1− st)A

ψ
t )Eφ

t −
1
κ

Et − Φ(Tt − T0)E
φ
t − πGt

]
dt (4)

dAE =
[
β(rtYEjt)ψA1−ψ

Et − δEAEt

]
dt (5)

dM =
[
εϕKα

t L1−α
t − µqt − ΩMt

]
dt (6)

Rt =
λ0ln(Mt/M0)

ln(2)
(7)

dT =
1
τ1

(
Rt + Otdt− λ1Tdt− τ3

τ2
(Tt − T̃t)dt

)
(8)

4See Hoel and Sterner [31] for a discussion on how the CES function affects the so-called
Ramsey-rule.
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dT̃ =
1
τ3

(
τ3

τ2
(Tt − T̃t)

)
dt (9)

The major choice for the representative household is whether to consume the
final good, to invest in productive capitals, or to slow global climate change
by using the following policy variables: reduce the share of carbon-intensive
composition in the final good by altering carbon-intensive share in consump-
tion Ct/(Ct + Gt), abatement effort qt, research effort rt in carbon-intensive
research sector (more output for given emissions levels) and research effort
st in carbon-neutral research sector. Sections 2.2 - 2.4 further describe the
details of the dynamic programming problem (1) - (9). A complete list of
all 32 model parameters is found in appendix A.2.

2.2 Carbon-Intensive Production Sector in (2) - (3)

The carbon-intensive production sector is described by the carbon-intensive
capital growth equation (2) and the endogenous carbon-intensive technol-
ogy growth equation (3). The carbon-intensive input factor is produced
by using carbon-intensive capital Kt, whose accumulation (2) is determined
by production Aτ

KtK
α
t L1−α

t minus research expenditure rtA
τ
KtK

α
t L1−α

t with
rt ∈ [0, 1], consumption of carbon-intensive good Ct and abatement cost.
Applying the polluter-pays-principle, the carbon-intensive sector pays for
abatement effort qt in (2) with a quadratic cost function due to capacity
constraints as more effort is employed.

Carbon-intensive technology AK develops endogenously in (3) with re-
search effort rt ∈ [0, 1] and the stock of abatement knowledge AK as inputs
in the research process. Thus a representative household whose research
sector has generated many ideas in its history also has an advantage in gen-
erating new ideas relative to research sectors in less developed regions, see
[29]. The ‘Malthusian constraints’ 0 < τ < 1 and υK > 0 in (2) ‘stabilize’
the dynamics as restrictions on future technology and capital sets such that
carbon-intensive growth cannot ‘go on for ever’. The same restriction in
(3) also suggests that it requires more than a doubling researchers in or-
der to double the number of ideas (as researchers may come up with the
same ideas). The implementation of new discoveries in the production pro-
cess, implies that some of the old knowledge cannot be used in the current
production process. For example, some of artisans’ knowledge before the in-
dustrial revolution was lost. Imperfect substitution of knowledge over time
is reflected by δK ≥ 0.

2.3 Carbon-Neutral Production Sector in (4) - (5)

Growth equations (4) and (5) describe the dynamics of the carbon-neutral
sector. The carbon-neutral input good Gt is produced by using carbon-
neutral (environmental or natural) capital Et whose accumulation follows
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(4). The first two terms in (4) describe a technology-enhanced natural
growth function with carrying-capacity Ē = (υK + κ(1 − st)A

ψ
Et)

1/(1−φ).
Carbon-neutral technology AE develops endogenously as in (3) and im-
proves carbon-neutral capital growth (and raises carrying-capacity), thus
counteracting the damage from temperature increases in (4). The ‘Malthu-
sian constraints’ 0 < ψ < 1 and υE > 0 in (4) put restrictions on future
technology and capital sets such that carbon-neutral growth cannot go on
forever.

An overview of climate change impacts is found in IPCC [32] and IPCC
[33]. Considered impacts are often on natural capitals; agriculture, forestry,
water resources, loss of dry- and wetland (due to sea-level rise) etc. We
let natural capital be damaged by an ‘increasing-damage-to-scale’ Cobb-
Douglas function Φ(Tt − T0)E

φ
t in (4) adopted from Hennlock [34] and

Hennlock [35] with Φ as a climate impact parameter.5 The ‘increasing-
damage-to-scale’ implies that a given temperature increase leads to a greater
total damage (or gain for Φ < 0) the greater is the natural capital stock.
The net carrying-capacity with climate impact is then:

Ē =
[
υE + κ (1− st) Aψ

Et − Φ(Tt − T0)
] 1

1−φ (10)

Carbon-neutral technology AEt can then also be seen as adaption technology
in (10).

2.4 Climate Modeling in (6) - (9)

Equations (6) - (9) describe a continuous-time modified version of the climate
model used in DICE.6 Total emissions in the first term in (6) is proportional
to carbon-intensive production fraction and thus AK increase output for
given emissions flow where ϕ > 0. The second term is abatement level µqt

where µ > 0. Net emissions flow accumulates to the global atmospheric
CO2 stock, Mt where ε > 0 is the marginal atmospheric retention ratio and
Ω > 0 the rate of assimilation. The atmospheric CO2 stock, Mt influences
global mean atmospheric temperature Tt via the change in radiative forcing
Rt (Wm−2) in (7) which affects the energy balance of the climate system,
and hence, the global mean atmospheric temperature Tt in (8) via the deep
ocean temperature T̃t in (9).7 The parameter λ0 is essential for equilibrium

5Solutions are possible also when letting physical capital carry impact of climate
change. However, separating stocks to damaging (physical) capital and damaged (en-
vironmental) capital, makes a unique solution possible corresponding to the verified value
function.

6The climate model was originally based on [36].
7For analytical tractability of the Isaacs-Bellman-Flemming equation, we approximate

(7) in (8) by a square-root approximation

Rt '
Λ0

√
Mt/M0√
2γ

+
Λ̂0Mt/M0

2γ
(11)

8



climate sensitivity, τ1 is the thermal capacity of atmosphere and upper ocean
and τ3 is the thermal capacity of deep ocean. 1/τ2 is the transfer rate from
the atmosphere and upper ocean layer to the deep ocean layer.8

3 Robust Control in Climate Policy Design

Robust control with Knightian uncertainty is a condition of analysis when
the specifications of the climate model and climate impacts are open to
doubt by the decision-maker. For illustrative purposes we only introduce
uncertainty in climate sensitivity, though it could also be introduced in cli-
mate impacts.9 In temperature equation (8) there are two possible places to
introduce uncertainty in probabilities over climate sensitivity outcomes - via
the radiative forcing parameter λ0 in (7) and via the climate feedback pa-
rameter λ1 reflecting uncertainty in the underlying physical processes. Both
are conclusive for equilibrium climate sensitivity in (8) and introducing un-
certain probability distributions in both λ0 and λ1 resulted in a solution with
multiple solutions.10 For illustrative purposes, we here want a straightfor-
ward unique solution and look at a household that only forms multiple priors
about equilibrium (steady state) climate sensitivity. Thus in what follows
we let λ0 capture all uncertainty in equilibrium climate sensitivity, although
its uncertainty also has transitional feedback sources in λ1 as analyzed by
[4] but also their analysis is performed in equilibrium terms. We now follow
Hennlock [19] and define the following unknown process:

B0t = B̂0t +
∫ t

0
Λ0sds Λ0s ∈ [Λ0,min, Λ0,max] (12)

where dB̂0 is the increment of the Wiener process B̂0t on the probability
space (ΞG, ΦG, G) with variance σ2

v ≥ 0 where {B̂0t : t ≥ 0}. Moreover,
{Λ0t : t ≥ 0} is a progressively measurable drift distortion, implying that
the probability distribution of B0t itself is distorted and the probability
measure G0 is replaced by another unknown probability measure Q0 on the

where γ is calibrated to fit (7). The corresponding change in equilibrium mean temperature
Λ0/Λ1 in (8) from M/M0 = 2 can still be calibrated to follow (7).

8The geophysical parameter values used in the discrete DICE climate model are Λ0 =
4.1, Λ1 = 1.41, 1/τ1 = 0.226, τ3/τ2 = 0.44 and 1/τ2 = 0.02 and Ω = 0.0083. For a
calibration of these parameters to continuous form see e.g. [37].

9Knightian uncertainty in both climate sensitivity and local climate impacts was intro-
duced in M. Hennlock, A Robust Abatement Policy in a Climate Change Policy Model,
Department of Economic and Statistics, University of Gothenburg, 2006 unpublished draft,
and resulted in significantly higher expected carbon cost for a given degree of ambiguity
aversion as the expected local damage becomes a function of worst-case mean distortions
in both local climate impact and global climate sensitivity.

10M. Hennlock, A Robust Abatement Policy in a Climate Change Policy Model, De-
partment of Economic and Statistics, University of Gothenburg, 2006, unpublished draft.
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space (ΞG, ΦG, Q). The sensitivity parameter process Λ0t is then introduced
in temperature equation (8) in the following way

dT =
1
τ1

(
(Λ0tdt + dB̂0)

σv

√
Mt/M0

γ
√

2
+

1
2

Λ̂0

γ

Mt

M0
dt + Otdt (13)

−λ̂1Tdt− τ3

τ2
(Tt − T̃t)dt

)

and hence, temperature equation (13) follows an analytically tractable Ito
process. Since both mean and variance of drift term Λ0t are uncertain, (12)
yields different statistics (priors) of equilibrium climate sensitivity in (13)
where the interval [Λ0,min, Λ0,max] indicates the maximum model specifica-
tion error, e.g. corresponding to the range of climate sensitivity outcomes
that the household is willing to accept based on its (ambiguity averse in-
fluenced) beliefs. Setting σ0 = 0 yields the the ‘benchmark model’ that
the household regards as an approximation to an unknown and unspecified
global climate system that generates the true data.

3.1 Ambiguity Aversion as a Dynamic Maximin Criterion

Ambiguity aversion violates the Sure-Thing Principle [7], which is essential
for ensuring that conditional preferences are well-defined and consistent over
time and also being a basis for Bayesian updating. We assume that a rational
decision-maker instead updates her beliefs to new information by a time
consistent rule derived from backward induction using a dynamic maximin
criterion adopted from robust control [38].11 We border to the problem a
hypothetical minimizer that resides in the head of our household making her
to think ‘what if the worst about climate sensitivity turns out to be true’.
We then introduce an aversion to uncertainty with 1/θ0 ∈ [0, +∞] assigning
how much our household listens to her ‘minimizer voice’. The maximin
criterion, with expectation operator ε, then takes the following form

sup
C,G,q,r,s

inf
Λ0

ε

∫ ∞

0

1
1− η

[
C

σ−1
σ

t + ωG
σ−1

σ
t

] (1−η)σ
σ−1

e−ρtdt + θ0R(Q0) (14)

which can be formulated as a zero-sum differential game between the house-
hold (the maximizer) and the hypothetical minimizer choosing the worst-
case climate sensitivity prior path for the household, where the last term
contains a Lagrangian multiplier θ0 and the finite entropy (Kullback-Leibler
distance) R(Q0) as a statistical measure of the distance between the bench-
mark climate sensitivity and the worst-case climate sensitivity priors, gener-
ated by {Λ0s}, in what follows: Recall that the unknown process in (12) will

11While Gilboa and Schmeidler [13] view ambiguity aversion as a minimization of the
set of probability measures, Hansen et al. [38] set a robust control problem and let its
perturbations be interpreted as multiple priors in max-min expected utility theory. Epstein
and M. [39] provides another updating process.
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unexpectedly change the probability distribution of B0t, having probability
measure Q0, relative to the distribution of B̂0t having measure G0. The
Kullback-Leibler distance between probability measure Q0 and G0 is then:

R(Q0) =
∫ ∞

0
εQ0

(
|Λ0s|2

2

)
e−ρtds (15)

As long as R(Q0) < Θ0 in (14) is finite

Q0

{∫ t

0
|Λ0s|2ds < ∞

}
= 1 (16)

which has the property that Q0 is locally continuous with respect to G0,
implying that G0 and Q0 cannot be distinguished with finite data, and hence,
future probability distributions cannot be inferred by using current finite
climate data. Statistically this mimics the situation that current climate
data from underlying physical processes is not sufficient to predict climate
sensitivity probability distributions with certainty in accordance with [4].
Following [40], a maximin constraint problem as in (14) can be rewritten

max
C,G,q,r,s

min
Λ0i

ε

∫ ∞

0

{
1

1− η

[
(1− ω)C

σ−1
σ

t + ωG
σ−1

σ
t

] (1−η)σ
σ−1

+
θ0Λ2

0t

2

}
e−ρtdt(17)

where the quadratic term contains mean distortions Λ0t and the minimiza-
tion with respect to Λ0t creates a lower (worst-case) boundary of the value
function. The corresponding policy rule vector (C∗

t , G∗
t , q

∗
t , r

∗
t , s

∗
t ) from the

household’s expected maximization would then be robust to priors that the
household could imagine within the range [0, Λ∗0t]. Maximizing-minimizing
objective (17) subject to12

dK =
[
(υK + (1− rt)Aτ

Kt)K
α
t − cq2

t − C − δK
]
dt (18)

dAK =
[
ν(rtYKjt)τA1−τ

Kt − δKAKt

]
dt (19)

dE =
[
(υE + (1− st)A

ψ
t )Eφ

t −
1
κ

Et − Φ(Tt − T0)E
ψ
t − πGt

]
dt (20)

dAE =
[
β(rtYEt)ψA1−ψ

Et − δEAEt

]
dt (21)

dM = [εϕKα
t − µqt − ΩMt] dt (22)

12In order to simplify, labor stock Lt is omitted in the solution hereinafter defining Kt

as the amount of capital per unit labor.

11



dT =
1
τ1

(
(Λ0tdt + dB̂0)

σv

√
Mt/M0√
2γ

+ Λ̂0
Mt/M0

2γ
dt + Otdt (23)

−λ̂1Tdt− τ3

τ2
(Tt − T̃t)dt

)

dT̃ =
1
τ3

(
τ3

τ2
(Tt − T̃t)

)
dt (24)

defines the household’s stochastic optimization problem (17) - (24), with the
bordered hypothetical minimizer, choosing the household’s upper boundary
beliefs about climate-sensitivity mean distortions.

4 An Analytically Tractable Solution

The maximin dynamic programming problem (17) - (24) is solved by forming
the Isaacs-Bellman-Flemming (IBF) equation in (38). Finding an analyti-
cally tractable solution to (38) by ‘guessing-and-verifying’ is tedious and left
for appendix A.1. In short, the procedure goes as follows: Taking the first-
order conditions of (38) and rearranging yield robust feedback policy rules.
In order to identify shadow prices and costs, a value function that solves
the IBF equation (38) needs to be identified by a guessing-and-verifying
procedure. Once a value function is verified that solves (38) it can be dif-
ferentiated with respect to state variables and so identify the shadow price
and cost partial derivatives. An analytically tractable solution to (17) - (24)
is possible by carefully specifying 6 of the 32 parameters in appendix A.2.
and its corresponding value function is identified in appendix A.1. Since,
the objective function in (38) is time autonomous, any robust policy feed-
back rule will be time consistent [41]. Moreover, certainty equivalence makes
the variance distortions in (12) irrelevant and we only need to focus on its
mean distortions. Taking the first-order condition of the Isaacs-Bellman-
Flemming equation (38) with respect to the policy vector (C∗

t , G∗
t , q

∗
t , r

∗
t , s

∗
t )

and rearranging, yield robust feedback policy rules (25) - (30) where the
partial derivatives are expected shadow prices and costs, which in general
are functions of state variables.

C∗(K(t)) =

(
1− ω

∂W
∂Kt

)2

e−2ρt (25)

G∗(E(t)) =

(
ω

π ∂W
∂Et

)2

e−2ρt (26)

q∗(K(t),M(t)) = −εµ

2c

∂W
∂Mt

∂W
∂Kt

≥ 0 (27)
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r∗(AK(t),K(t)) =
A1−τ

Kt (ντ)
1

1−τ

Kα
t

( ∂W
∂AKt

∂W
∂Kt

) 1
1−τ

∈ [0, 1] (28)

s∗(AE(t), E(t)) =
A1−ψ

Et (βψ)
1

1−ψ

Eφ
t

( ∂W
∂AEt

∂W
∂Et

) 1
1−ψ

∈ [0, 1] (29)

The carbon-intensive consumption rule in (25) is determined by the shadow
price of carbon-intensive capital ∂W/∂Kt. The lower the shadow price,
the greater is consumption. The carbon-neutral consumption rule (26) has
the same structure but with the instantaneous price π > 0. The abate-
ment rule in (27) is determined by the relative price of shadow carbon
price −∂W/∂Mt with respect to carbon-intensive capital ∂W∂Kt (due to
polluter-pays-principle). Since ∂W/∂Mt ≤ 0 abatement will be positive.
The research effort feedback rule in carbon-intensive technology in (28) re-
duces carbon-intensity in carbon-intensive sector by greater fuel efficiency
etc. and is determined by the relative shadow price of carbon-intensive tech-
nology with respect to carbon-intensive capital. By symmetry, the relative
shadow price of carbon-neutral technology with respect to carbon-neutral
capital is conclusive for carbon-neutral research effort feedback rule st in
(29).

Minimizing the IBF equation (38) with respect to Λ0 gives the opti-
mal feedback rule identifying the household’s worst-case mean distortions,
Λ∗0(Mt, Tt) in terms of its ambiguity aversion 1/θ0 and expected shadow cost
of climate change ∂W/∂T :

Λ∗0t(M(t), T (t)) = −∂W

∂T

σv

√
Mt/M0e

ρt

θ0τ1γ
√

2
≥ 0 Λ∗0t ∈ [Λ0,min,Λ0,max] (30)

The optimal feedback rule (30) shows how the household updates its upper
boundary of the range of climate sensitivities in (12) and [0, Λ∗0t] therefore
‘stakes out the corners’ of the basis used for policymaking. Why does the
worst-case mean distortion Λ∗0t(Mt, Tt) depend on atmospheric CO2 concen-
tration rate and mean temperature? The explanation is that ambiguity aver-
sion makes the household concerned about misreading an observed increase
in CO2 concentration rate or temperature as sources to global warming and
impact and therefore the household’s worst-case beliefs alter to increases in
CO2 concentration rate and mean temperature as though observed increases
eventually will cause a greater increase in equilibrium temperature and im-
pact than observed so far. As precaution, robust policy design becomes
more responsive to changes in observed CO2 concentration rate and mean
temperature, and works as an insurance to avoid (if possible) increasing un-
certainty for high-temperature outcomes up to a degree that corresponds to
the household’s degree of ambiguity aversion.
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4.1 Ambiguity Aversion and Discounting

Ambiguity aversion is a preference of knowing (objective) probability dis-
tributions to form them subjectively in presence of Knightian uncertainty.
From the analytical expression of shadow carbon cost in proposition 1 we see
that ambiguity aversion has a similar effect on carbon cost path as has a low
pure rate of time preference, which makes ambiguity aversion another gad-
get in the discussion on discounting that took place in the reviews following
the Stern Review e.g. [42], [43], [44] and [30].13

Proposition 1 The expected shadow carbon cost corresponding to the houshe-
old’s robust control problem in (38) is:

−Λ̂0

ωΦ
√

2/π

ρ+ 1
2κ +

β2

8(2ρ+δE)2

ρ+
λ̂1
τ1

+
τ3

τ1τ2

(
1− 1

1+ρτ2

) − σ̂2
v

2θ0τ1γ




ωΦ
√

2/π

ρ+ 1
2κ +

β2

8(2ρ+δE)2

ρ+
λ̂1
τ1

+
τ3

τ1τ2

(
1− 1

1+ρτ2

)




2

2τ1γ(ρ + Ω)M0
· e−ρt (31)

Proof : Solving (38) by guessing-and-verifying and identifying ∂W/∂Mt by
determining the undetermined coefficient in (57).

Social carbon cost largely depends on geophysical parameters in the climate
model (22) - (24) as well as economic parameters.14 Moreover, ambiguity
aversion 1/θ0 ∈ [0,+∞] increases carbon cost, resulting in more stringent
policy feedback rules. With no ambiguity aversion θ0 → +∞, and the
effect of the quadratic term in (31) cancels and carbon cost and robust
controls collapse to a certainty equivalent optimal control problem, using
the benchmark climate sensitivity as basis in policymaking. In the other
extreme, under perfect ambiguity aversion θ0 → 0, and the household takes
into account ‘uncut’ worst-case mean distortions and expected carbon cost
becomes infinite. Its consequences are further discussed in proposition 2 and
3 in section 4.2.

Even though patience ρ and ambiguity aversion 1/θ0 affect carbon cost
in a similar manner in (31), ambiguity aversion has an additional effect
on policy compared to low utility discounting; it makes worst-case beliefs
about equilibrium climate sensitivity responsive to changes in climate data
observations over time as seen in (30) and how this in turn will affect policy
depends inter alia on the damage function. In (31) the carbon cost path is
falling over time. The explanation is the way temperature deviation Tt−T0

enters the Cobb-Douglas damage function in (20), which in the IBF equation
(38) becomes

−∂W

∂Et
Φ(Tt − T0)E

φ
t (32)

13A discussion on discounting and uncertainty is also found in [45].
14See appendix A.2. for the list of parameters.
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Normally the increase in scarcity price ∂W/∂Et, as Et falls from a temper-
ature increase, would increase total damage in (32), however, the reduction
in capital Et also reduces total damage in (32). In the guessed-and-verified
solution to (38) this reduction in total damage gets the same rate as the
increase in scarcity price and the two effects cancel each other and (32)
becomes:

−ω

2

√√√√ 2/π

ρ + 1
2κ − β2

32(ρ+δE/2)2

Φ(Tt − T0) (33)

which is linear in Tt − T0. A non-linear formulation of temperature would
call for a value function with a non-linear term in temperature which would
result in a shadow carbon cost being a function of at least M and T , which
would also make policy directly responsive to observed changes in carbon
concentration rate and temperature via (31). Imposing a quadratic temper-
ature term jointly with the nonlinear differential equation system for Kt,
AKt, Et and AEt results in demanding calculations and is left out from this
article to keep the illustration of analytical tractability straightforward.

4.2 Ambiguity Aversion and the Dismal Theorem

Proposition 6 in Hennlock [19] showed that a policymaker, who expresses
perfect ambiguity aversion, exhibits infinite expected carbon cost and re-
sorts to zero carbon-intensive production as precaution. In this two-sector
consumer model, perfect ambiguity aversion results in a complete shift from
carbon-intensive consumption to carbon-neutral consumption.

Proposition 2 Let the household express perfect ambiguity aversion θ0 →
0. Then its expected shadow cost of carbon-intensive capital ∂W/∂Kt →
+∞, resulting in the robust carbon-intensive consumption feedback rule

ε

[
lim

θ0→0
C∗(K∗(t)) = 0

]
(34)

Proof : Setting θ0 = 0 in (57) gives limθ0→0 f → −∞ and limθ0→0 a → +∞
in (53). Differentiating (39) with respect to Kt gives limθ0→0 ∂W/∂Kt →
+∞ which in (25) yields (34).

Proposition 2 reminds us about the Dismal Theorem [27], though abstract
and based on a static relationship between a utility function and a ‘climate-
sensitivity parameter’ with unknown probability distribution, the dismal
theorem demonstrated an infinite expected marginal utility at zero con-
sumption level, if we believe (possibly as a result of ambiguity aversion) in
fat-tail-priors.15 In my view the dismal theorem, rather than anything else,

15Nordhaus [28] comments on Weitzman [27] and how the results can depend on fat
tails in the (posterior) probability distribution.

15



highlights the importance of taking ambiguity aversion seriously in climate
change policy. Ambiguity aversion pushes the incentive for taking policy
measures today to avoid (if possible) high-impact outcomes with low but
uncertain probability magnitudes. If the household’s θ0 → 0, its beliefs em-
brace ‘Weitzmanian fat-tails’ about worst-case mean distortions in climate
sensitivity and its expected shadow carbon cost in (31) becomes infinite. An
important difference here is that there is (Bayesian) learning in Weitzman
[27] while there is no learning either in our model or in Hennlock [19].16

However, neither in Weitzman’s two-period model there is learning realized
until we are far away (200 years?) into the future by the arrival of the second
period.17 It seems unwise for a household to give up all its wealth today
in order to transfer it into an uncertain future. However, the consequence
of ‘Weitzmanian fat-tails’ correspond to zero initial θ0 beliefs in our model
and raises the question what initial level of ambiguity aversion (or precau-
tion) the household should have today in presence of the current scientific
uncertainty. A household can express a high ambiguity aversion but it does
not need to be perfect. Furthermore, even an infinite shadow carbon cost
do not necessarily imply, as one might think at a first glance, that robust
abatement and investment in technology take upper corners.

Proposition 3 Let the household express perfect ambiguity aversion θ0 →
0. Then its expected shadow cost of carbon limθ0→0 ∂W/∂Mt → −∞ result-
ing in the robust abatement feedback rule

ε

[
lim

θ0→0
q∗(t, K∗(t))

]
=

µ
c (K∗

t )1/2

− ϕ
(ρ+δ/2) +

√(
ϕ

(ρ+δ/2)

)2
+ 2µ2

c(ρ+δ/2− ν2

32(ρ+δK/2)
)

≥ 0(35)

and the robust investment expenditure r∗Y ∗
t (Kt) in carbon-intensive technol-

ogy feedback rule

ε

[
lim

θ0→0
r∗Y ∗

t (K∗
t )

]
=

(
1

2ρ + δK

)2 ν2

4
K∗

t ≥ 0 (36)

Proof : Setting θ0 = 0 in (57) gives limθ0→0 f → −∞ and limθ0→0 a → +∞
in (53) and limθ0→0 b → +∞ in (54). Differentiating (39) with respect to Mt,
Kt and AKt yield ∂W/∂Kt → +∞, ∂W/∂Mt → −∞ and ∂W/∂AKt → +∞
which in (27) and (28) reproduce (35) and (36).

16Gollier et al. [46] focus e.g. on learning and uses prudence to give an interpretation
of the precautionary principle.

17Tol et. al. [47] admit the importance of the dismal theorem but also put a label on
it: ‘Warning: Not to be taken to its logical extreme in application to real world problems.’
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Thus despite that shadow price of carbon and of carbon-intensive capital
explode - its ratio - the relative shadow price

ε

[
lim

θ0→0
−

∂W
∂Mt

∂W
∂Kt

]
(37)

converges to a finite positive value, and consequently, the robust abatement
feedback rule converges to a maximum (but still finite) leverage for given
capital paths in (35) also for ‘uncut’ worst-case mean distortions and an
unbounded value function. When it comes to research effort in (36), both
∂W/∂Kt → +∞ and ∂W/∂AKt → +∞ but again the relative shadow price,
conclusive for research effort, takes a finite value as seen in (36). The results
in (35) and (36) are special due to endogenous ‘relative-shadow-price-driven’
technology growths and that carbon-intensive capital pays for current and
future abatement (polluter-pays-principle).

4.3 How much Precaution is too Cautious?

Still, proposition 2 and 3, the Dismal Theorem and proposition 6 in Hennlock
[19] bring up the question how much precaution is justified. Weitzman ap-
plies the value of statistical life (VSL) parameter to generate a lower bound-
ary on consumption [27]. In our case, a finite upper boundary on ambigu-
ity aversion 1/θ0, seen as precaution, would cut the considered worst-case
mean distortion and leave a minimized finite value of the value function.
A possible upper boundary would be to set θ0 sufficiently high (as an up-
per boundary for precaution) to make it difficult to statistically distinguish
alternative worst-case climate sensitivity outcomes from a benchmark sen-
sitivity properly set within the IPCC climate sensitivity range. But that
brings us back to the difficult question of a normative statement how much
aversion to uncertainty should be involved in climate change policy for it to
be consistent with a ‘precautionary principle’ as formulated by e.g. article
15 of the Rio Declaration? To get a feeling for what θ0 levels we are talking
about, we take some upper boundaries 4.5oC and 6.0oC as mentioned in
IPCC [1] and derive corresponding lower boundaries for θ0 by rearranging
the optimal feedback rule (30). This suggests boundaries for θ0 in the in-
terval 1 - 2 percent which in (31) suggests a carbon cost path that is 3 to 5
times higher than the certainty case, compared to Nordhaus and Popp [23]
who got up to 4 times the certainty case due to pure risk aversion. Recall
that our result (for simple-tractability reason) uses an elasticity of marginal
utility of only η = 0.5 and linear one-sector damage while Nordhaus and
Popp [23] use η = 1 and non-linear damage, suggesting that ambiguity aver-
sion corresponding to the IPCC range up to 4.5oC together with a higher
η and non-linear damage could justify more stringency than what pure risk
aversion has shown in IAMs so far. The effect of ambiguity aversion on car-
bon cost comes in addition and independently of a low utility discounting
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(here 0.03) as the latter increases both the certainty and the uncertainty
cost by the same percentage. As a precursor, table 2 shows derived values
for θ̂0 and robust shadow carbon cost (as a shadow ambiguity premium)
expressed as markups (times the certainty carbon cost path) for various
boundaries of Λ0, here against a benchmark of Λ̂0 corresponding to 1.5oC.18

The point with a statistical approach would be to calibrate θ0 by calculating

Range (oC) θ̂0 Shadow Ambiguity Premium
1.5 - 1.5 +∞ 1
1.5 - 3.0 0.039 2.31
1.5 - 4.5 0.019 3.62
1.5 - 6.0 0.013 4.93
1.5 - 7.0 0.011 5.81
1.5 - 8.0 0.009 6.68
1.5 - 9.0 0.0078 7.56
1.5 - 10.0 0.0068 8.43
1.5 - 20.0 0.0031 17.17

Table 1: Derivation of initial θ̂0 and Shadow Ambiguity Premium

overall detection error probabilities p(1/θ0) for distinguishing a benchmark
climate model from worst-case climate models by varying 1/θ0.19 Ambigu-
ity aversion then translates to what detection error probabilities that we
are willing to accept for distinguishing worst-case models from an approx-
imative benchmark model. In the case science should narrow predictions
of climate sensitivity in the future, the corresponding adjustment θ̂0t over
time replaces learning by updating the range of climate-sensitivity outcomes
used as basis for robust policy design. Precaution then becomes a function of
waiting time for enough data to discriminate worst-case climate sensitivity
from approximative benchmark sensitivity.

4.4 Analytical IAMs and Tractability vs Complexity

A technical feature of our IAM is analytically tractable dynamic program-
ming solutions in continuous time instead of computer-based numerical sim-

18The calculations are based on a pure rate of time preference 0.03, elasticity of marginal
utility η = 0.5, Φ = 0.10 and ω = 0.5. Geophysical parameter values are based on
calibrations by the author as well as [37] for a continuous-time version of the climate
model in DICE. The parameter values used are σv = 1, Λ0 = 3.38, γ = 0.5719, λ1 = 1.41,
1/τ1 = 0.226, τ3/τ2 = 0.44 and 1/τ2 = 0.02 and Ω = 0.0083.

19Hansen and Sargent [40] suggest that a robustness parameter θ should be set suf-
ficiently high for it to take long time series to distinguish the benchmark model from
worst-case models. By calculating likelihood ratio under benchmark and worst-case mod-
els Hansen and Sargent [48] suggest calculating overall detection error probability using
detection error probabilities conditional on each model, respectively. For 1/θ0 = 0 models
are identical and p = 0.5. In general the greater is 1/θ0, the lower is then p.

18



ulations in discrete time as usual seen in IAM. Analytically tractable solu-
tions to non-linear differential games, using guessing-and-verifying methods
in dynamic programming, are usually extremely difficult to identify. Still
an analytical solution usually has better reliability, allows for deeper un-
derstandings as trajectories can be traced down to their explicit functional
forms, and the model can also serve as a basis for which more complex ex-
tensions gradually can be added as seen in this paper: e.g. endogenous tech-
nology growth in both carbon-intensive and carbon-neutral sectors, Knigh-
tian uncertainty and ambiguity aversion in a differential game. To obtain a
unique analytically tractable solution some major simplifications have been
made e.g. (i) specifications have been carefully chosen for 6 of the 32 pa-
rameters, that amongst other things make the objective function additively
separable (see appendix A.2.) while remaining 26 parameters are free to be
varied for sensitivity analysis and simulations, (ii) linear damage only in the
non-carbon-generating sector (two-sector damage resulted in multiple and
not straightforward analytically tractable solutions),20 (iii) Knightian uncer-
tainty only in the radiative forcing parameter, and (iv) a slightly modified
temperature equation to make it follow an Ito process, but still it can be
calibrated to follow the original temperature equation used in DICE closely.

5 Summary

The article initiated a discussion on Knightian uncertainty and ambiguity
aversion, modeled as a maximin criterion, in IAMs. We applied the robust
IAM approach in Hennlock [19] which differ from existing ‘risk analysis’ in
IAMs in that it does not fix one or another model builder’s sometimes ad
hoc (subjective) probability distributions to uncertain parameters. Instead
it introduced multiple priors, over equilibrium climate sensitivity as illus-
tration, using a distorted continuous-time version of the climate model used
in DICE. Statistically this mimics a decision-making process in which finite
climate data from underlying physical processes is statistically insufficient
to predict climate sensitivity probability distributions in accordance with
Roe and Baker [4]. We applied the approach to a two-sectoral extension
of DICE - with a carbon-intensive and a carbon-neutral sector and a rep-
resentative household that expresses ambiguity aversion and therefore uses
robust control to identify robust policy feedback rules. We find that ambi-
guity aversion puts forward a responsibility of taking action via a ‘shadow
ambiguity premium’ that lifts the expected shadow carbon cost path. The
result is a robust policy feedback design, more stringent than optimal policy
under certainty equivalence as a special case, avoiding (if possible) putting
into effect increased uncertainty following high-temperature outcomes. As

20M. Hennlock, A Robust Abatement Policy in a Climate Change Policy Model, De-
partment of Economic and Statistics, University of Gothenburg, 2006, unpublished draft.
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an upper boundary for precautionary priors, we proposed the statistical
approach, that θ0 should be set sufficiently high to make it statistically
difficult to distinguish worst-case models from benchmark models using de-
tection error probabilities. Ambiguity aversion has two effects; firstly with
linear damage, it increases shadow carbon cost by a ‘shadow ambiguity pre-
mium’ in a similar way as a low pure rate of time preference, and secondly,
in combination with non-linear damage it will make policy feedback rules
responsive to changes in climate data observations as it makes the household
concerned about misreading a sudden increase in observed CO2 concentra-
tion rate or temperature as sources to global warming. This behavior cannot
be calibrated by a low pure rate of time preference.

There are several interesting ways to extend robust control in climate
change policy analysis. Thinking about Roe and Baker [4], who stated that
it is not likely that scientific progress or learning will narrow the thicker
high-temperature tail, strengthens the argument for a robust policy design
as a complement to Bayesian learning or ‘risk analysis’ in IAMs.21 An inter-
esting extension would be to combine ambiguity aversion and learning under
Knightian uncertainty and balance benefits of insuring against irreversible
uncertainty by action to benefits of awaiting better scientific information by
delaying action, as has already been done within risk analysis, see e.g. [46].
A scientific-oriented extension is to develop and adapt statistical methods
based on detection error probabilities for discriminating worst-case climate
models from approximative benchmark climate models within the IPPC
best-estimation ranges, to simulate and calibrate for reasonable empirical
parameter values. Other extensions are non-linear damage in both natural
and physical capital, which together with ambiguity aversion would make
policy responsive to climate data observations as discussed in section 4.1,
to extend the game dimension with multiple regional representative house-
holds as well as to repeat the maximin criterion to include several uncertain
parameters.22 Model uncertainty in both climate sensitivity and local im-
pact resulted in significantly higher expected carbon cost for a given degree
of ambiguity aversion as expected local impacts become functions of worst-
case mean distortions in both local climate impact as well as global climate
sensitivity outcomes.23

21Scientific research that reduces uncertainty in the underlying physical processes has
little effect in reducing uncertainty at high-temperature outcomes [4]. For values above
the interval 2.0oC - 4.5oC, the upper tail of the probability distribution would remain
thick despite progress in understanding the underlying physical processes and Roe and
Baker [4] therefore conclude ‘We do not therefore expect the range presented in the next
IPCC report to be different from that in the 2007 report’ and ‘we are constrained by the
inevitable: the more likely a large warming is for a given forcing (i.e. the greater the
positive feedbacks) the greater the uncertainty will be in the magnitude of that warming.’

22A differential game (AMUICE-P) with multiple regional producers and regulators
with independent feedback strategies is analyzed in [19].

23M. Hennlock, A Robust Abatement Policy in a Climate Change Policy Model, De-
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Appendix

A.1. The Dynamic Programming Problem

The section presents a solution structure to AMUICE-C with a parameter-
setting that allows for an analytical tractable solution to the zero-sum dif-
ferential game defined by objective (17) and dynamic system (18) - (24).
Forming the Isaacs-Bellman-Fleming (IBF) dynamic programming equation
[49]:

−∂W

∂t
= (38)

max
C,G,q,r,s

min
Λ0





1
1− η

[
(1− ω)C

σ−1
σ

t + ωG
σ−1

σ
t

] (1−η)σ
σ−1

+
θ0Λ2

0t

2



 e−ρt

+
∂W

∂K

[
(υK + (1− rt)Aτ

Kt)K
α
t − cq2

t − Ct − δKt

]

+
∂W

∂AK

[
ν(stYKt)τA1−τ

Kt − δKAKt

]

+
∂W

∂EK

[
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t )Eφ
t −

1
κ

Et − Φ(Tt − T0)E
φ
t − pGt

]

+
∂W

∂AE

[
β(rtYEt)ψA1−ψ

Et − δEAEt

]
+

∂W

∂M

[
εϕKα

t L1−α
t − µqt − ΩMt

]

+
∂W

∂T

1
τ1

[
Λ0t

σv

√
Mt/M0√
2γ

+ Λ̂0
Mt/M0

2γ
+ Ot − λ̂1Tdt− τ3

τ2
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]

+
1
2

∂2W

∂T 2
σ2

vMt +
∂W
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[
1
τ3

(
τ3

τ2
(Tt − T̃t)

)]

The robust control vector Γ∗t = (Ct, Gt, qt, rt, st) is given by maximizing
the partial differential equation (38) with respect to policy variables and
minimizing with respect to Λ0t and solving for feedback rules.

Proposition 4 The value function W (K,AK , E, AE ,M, T, T̃ , t)

=
(

aK1−α + bAτ
K + dE1−φ + eAψ

E + fM + gT + hT̃ + k

)
e−ρt (39)

satisfy the differential equation system formed by (38).

Proof : An analytically tractable solution is possible by setting σ = 2 and
η = τ = α = φ = ψ = 1/2 while the remaining 26 parameters, listed
in appendix A.2., can be set free. Substituting (25) to (30) into (38) and

partment of Economic and Statistics, University of Gothenburg, 2006, unpublished draft.
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collecting terms forms the indirect Isaacs-Bellman-Fleming equation. The
carbon-intensive consumption feedback rule is

C∗(Kt) =
4(1− ω)2

a2
Kt ≥ 0 (40)

where a is defined in (53). The carbon-neutral consumption feedback rule
is

G∗(Et) =
4ω2

(πd)2
Et ≥ 0 (41)

where d is defined in (55). The abatement feedback rule is

q∗(Kt) = −εµ

c

f

a
K

1/2
t ≥ 0 (42)

where a is defined in (53) and f in (57). The research effort feedback rule
in the carbon-intensive sector is

r∗(Kt) =
(

bν

2a

)2 (
Kt

AKt

)1/2

∈ [0, 1] (43)

where b is defined in (54). The research effort feedback rule in the carbon-
neutral sector is

s∗(Et) =
(

eβ

2d

)2 (
Et

AEt

)1/2

∈ [0, 1] (44)

where e is defined in (56). The minimizer’s feedback rule is

Λ∗0t(M(t)) =
d
2Φ

ρ + λ̂1
τ1

+ τ3
τ1τ2

(1− 1
1+ρτ2

)

σv

√
Mt/M0

θ0τ1γ
√

2
≥ 0 (45)

Using value function (39) and substituting robust feedback rules (40) to (45)
in (38) yield the equation system

ρa =
2(1− ω)2

a
− a

δ

2
+

aν2

32(ρ + δK/2)2
+

(fεµ)2

2ac
+ fεϕ (46)

ρb =
a

2
L

1/2
K − b

δK

2
(47)

ρd =
2ω2

π
+

(eβ)2

8di
− 1

2κ
(48)

ρe =
d

2
− e

δE

2
(49)
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ρf = − 1
2θ0M0

(
gσv

τ1γ
√

2

)2

− fΩ +
gΛ̂0

2τ1γM0
(50)

ρg = −dΦ
2
− gi

Λ̂1

τ1
− g

τ3

τ1τ2
+ h

1
τ2

(51)

ρh = g
τ3

τ1τ2
− h

1
τ2

(52)

Solving the equation system (46) - (52) for undetermined coefficients gives
the coefficients in terms of parameter values

a =
fεϕ

2
(
ρ + δ

2 − ν2

32(ρ+δK/2)2

) (53)

+
1
2

√√√√√

 fεϕ

ρ + δ
2 − ν2

32(ρ+δK/2)2




2

+
8(1− ω)2 + 2 (fεµ)2

c

ρ + δ
2 − ν2

32(ρ+δK/2)2

b =
a

2ρ + δK
(54)

d = ω

√√√√ 2/π

ρ + 1
2κ − β2

32(ρ+δE/2)2

(55)

e =
d

2ρ + δE
(56)

f =
g

(
Λ̂0 − gσ2

v
2θ0iτ1γ

)

2τ1γ(ρ + Ω)M0
(57)

g =
−d

2Φ

ρ + λ̂1
τ1

+ τ3
τ1τ2

(1− 1
1+ρτ2

)
(58)

h = g
τ3

τ1τ2(ρ + 1
τ2

)
(59)

The coefficients in (53) - (59) are uniquely defined, and hence, feedback rules
(40) to (45) corresponding to value function (39) are unique. The coefficient
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k in proposition 4 is uniquely determined by (53) - (59).

A.1.1. Transitional Dynamics

To find the optimal trajectories in the dynamic system, the feedback rules
(40) to (45) are substituted in dynamic system (18) - (24) which then gives

dK =
[
(υK + A

1/2
Kt )K1/2

t −
(

b

a

)2 ν2

4
Kt − c

(
−εµ

c

f

a
K

1/2
t

)2

(60)

−4(1− ω)2

a2
Kt − δKt

]
dt

dAK =


ν

((
b

a

)2 ν2

4
Kt

)1/2

A
1/2
Kt − δKAKt


 dt (61)

dEi =
[
(υE + A

1/2
t )E1/2

t −
(

e

d

)2 β2

4
Et − 1

κ
Et (62)

−Φ(Tt − T0)E
1/2
t − π

4ω2

(πd)2
Et

]
dt

dAE =


β

((
e

d

)2 β2

4
Et

)1/2

A
1/2
Et − δEAEt


 dt (63)

dM =
[
εϕK

1/2
t L

1/2
t + µ

εµ

c

f

a
K

1/2
t − ΩMt

]
dt (64)

dT =
1
τ1

(
σv

√
Mt/M0√
2γ

dB̂0 − gσ2
vMt/M0

2θ0τ1γ2
+ Λ̂0

Mt/M0

2γ
dt + Otdt (65)

−Λ̂1Tdt− τ3

τ2
(Tt − T̃t)dt

)

dT̃ =
1
τ3

(
τ3

τ2
(Tt − T̃t)

)
dt (66)

To simplify expressions, define the following parameters

ΠK ≡
(

b

a

)2 ν2

4
− c

(
−εµ

c

f

a

)2

− 4(1− ω)2

a2
− δ ΓK ≡

(
b

a

)2 ν2

2
(67)
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ΠE ≡
(

e

d

)2 β2

4
Et − 1

κ
− π

4ω2

(πd)2
ΓE ≡

(
e

d

)2 β2

2
(68)

Θ ≡ εϕ + µ
εµ

c

f

a
χ ≡ Λ̂0

2τ1γ
Ξ ≡ Λ̂1

τ1
+

τ3

τ1τ2
(69)

And the dynamic system (60) - (66) can be rewritten as

dK =
[
(υK + A

1/2
Kt )K1/2

t −ΠKKt

]
dt (70)

dAK =
[
ΓKA

1/2
Kt K

1/2
t − δKAKt

]
dt (71)

dE =
[
(υE + A

1/2
Et )E1/2

t −ΠEEt − Φ(Tt − T0)E
1/2
t

]
dt (72)

dAE =
[
ΓEA

1/2
Et E

1/2
t − δEAEt

]
dt (73)

dM =
[
ΘK

1/2
t − ΩMt

]
dt (74)

dT = χMt − ΞTt − τ3

τ1τ2
T̃ (75)

dT̃ =
1
τ2

(
Tt − T̃t

)
dt (76)

Besides computer-based methods an analytical solution to (70) - (76) can
be found by using transformations K̂ ≡ K1/2, ÂK ≡ A

1/2
K , Ê ≡ E1/2 and

ÂE ≡ A
1/2
E , transforming the system to a linear system in which eigenvalues

and eigenvectors can be defined before transforming back to the nonlinear
system.
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A.1.2. Steady States

From (60) to (66) the steady states (K̄, ĀK , Ē, ĀE , M̄ , T̄ , ¯̃T ) as t →∞ in the
4N + 3 state space can be derived in terms of parameter values. Applying
certainty equivalence in (38) yields

K̄ =


 υK

ΠK − ΓK
δK




2

ĀK =




ΓK
δK

ΠK − ΓK
δK




2

(77)

Ē =


υE + Φ(T̄t − T0)

ΠE − ΓE
δE




2

ĀE =




ΓE
δE

ΠE − ΓE
δE




2

(78)

M̄ =
Θ
Ω

υK

ΠK − ΓK
δK

T̄ =
χ

Ξ
Θ
Ω

υK

ΠK − ΓK
δK

¯̃T = T̄ (79)

The corresponding steady state policy variables as t →∞ are found by sub-
stituting (77) - (79) in (40) - (44).

A.2. List of Parameters

The analytically tractable solution required 6 of 32 parameters to be fixed
as specified below. Remaining 26 parameters below are free to be varied.

Free Parameters
ρ > 0 pure time preference
ω ∈ [0, 1] share parameter in objective function
1/θ0 ∈ [0, +∞] degree of ambiguity aversion
c ≥ 0 abatement cost parameter
Θ climate impact parameter
π ≥ 0 relative price carbon-neutral input good
ν ≥ 0 carbon-intensive research sector efficiency parameter
β ≥ 0 carbon-neutral research sector efficiency parameter
δ ≥ 0 depreciation rate carbon-intensive capital
1/κ ≥ 0 depreciation rate carbon-neutral capital
δK ≥ 0 depreciation rate carbon-intensive technology
δA ≥ 0 depreciation rate carbon-neutral technology
ϕ ≥ 0 carbon-intensity
µ ≥ 0 abatement effort efficiency
υK ≥ 0 Malthusian constraint carbon-intensive sector
υE ≥ 0 Malthusian constraint carbon-neutral sector
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Free Parameters in the Climate Model
λ̂0 ≥ 0 radiative forcing parameter
λ̂1 ≥ 0 climate feedback parameter
τ1 ≥ 0 thermal capacity of atmospheric layer
τ3 ≥ 0 thermal capacity of deep ocean layer
1/τ2 ≥ 0 transfer rate from the upper layer to the deeper ocean layer
1/Ω ≥ 0 transfer rate of CO2 from atmosphere to other reservoirs
ε ≥ 0 marginal atmospheric retention ratio
M0 ≥ 0 initial CO2 concentration rate
T0 ≥ 0 initial atmospheric mean temperature
T̃0 ≥ 0 initial deep ocean mean temperature

Specified Parameters in the Analytically Tractable Solution
σ = 2 elasticity of substitution
η = 0.5 elasticity of marginal utility of final good
α = 0.5 capital intensity carbon-intensive production
φ = 0.5 capital intensity carbon-neutral production
τ = 0.5 Malthusian exponent constraint carbon-intensive sector
ψ = 0.5 Malthusian exponent constraint carbon-neutral sector
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