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WITH APPLICATIONS IN GENTLE TOUCH PROCESSING

Malin Björnsdotter Åberg, Department of Physiology, Institute of
Neuroscience and Physiology, University of Gothenburg, Göteborg, Sweden.

Abstract
Since the first mention of artificial intelligence in the 1950s, the field of machine learning
has provided increasingly appealing tools for recognition of otherwise unintelligible pattern
representations in complex data structures. Human brain activity, acquired using functional
magnetic resonance imaging (fMRI), is a prime example of such complex data where the utility
of pattern recognition has been demonstrated in a wide range of studies recently (Haynes et al.,
Nature Reviews Neuroscience, 2006, 7(7), pp. 523-34).

In contrast to conventional methods, pattern recognition approaches exploit the distributed
nature of fMRI activity to achieve superior sensitivities in detecting subtle differences in brain
responses. The first objective of this thesis was to implement and empirically evaluate such
novel machine learning algorithms for detection and, specifically, spatial localization of re-
gional brain response patterns. Two complementary methods are proposed, namely a Monte
Carlo approximation designed for coarse whole-brain mapping, and an evolutionary optimiza-
tion scheme for refined identification of specific brain regions. As demonstrated on real and
simulated data, both methods were more sensitive than conventional approaches in localizing
differential brain activity patterns.

The second objective was to utilize these methods to study brain processing of gentle touch
mediated by a system of thin, unmyelinated mechanoreceptive C tactile (CT) afferents (Vallbo
et al., Brain Research, 1993, 628(310), pp. 301-4). These afferents are thought to modulate
affective aspects of tactile sensations, and to act in parallel with thick, myelinated Aβ fibers
which signal discriminative information (Löken et al., Nature Neuroscience, 2009, 12(5), pp.
547-8). First, the Monte Carlo algorithm identified differential response patterns due to C tactile
and Aβ activation in the posterior insular cortex. Second, the evolutionary scheme revealed a
C tactile induced somatotopic insular activation pattern similar to that previously described
in relation to other thin-fiber mediated sensations such as pain (Björnsdotter et al., Journal of
Neuroscience, 2009, 29(29), pp. 9314-20).

In addition to demonstrating the utility of brain response pattern analysis, the results have
a number of implications. The findings support the hypothesis that parallel networks of C tac-
tile and Aβ fibers project affective and discriminative aspects of touch, respectively, and that C
tactile afferents follow the projection path of other thin fibers. This further solidifies the hypoth-
esized sensory-affective role of the C tactile system in the maintenance of physical well-being
as part of a thin-afferent homeostatic network.

Keywords: somatosensory, machine learning, pattern recognition, fMRI, support vector ma-
chines, neuroscience, brain, BOLD, signal processing, artificial intelligence, touch, human, un-
myelinated, sensory, affective
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ETT NERVSYSTEM FÖR VÄLBEFINNANDE
KARTLAGT MED ARTIFICIELL INTELLIGENS

Malin Björnsdotter Åberg, Sektionen för fysiologi, Institutionen för
neurovetenskap och fysiologi, Göteborgs Universitet, Göteborg, Sverige.

Populärvetenskaplig sammanfattning
Artificiell intelligens (AI) har sedan femtiotalet använts inom vitt skilda områ-
den för att detektera och identifiera subtila mönster i komplexa datamängder.
I den här avhandlingen har jag utvecklat två nya metoder baserade på AI med
vars hjälp jag har undersökt hur människans hjärna bearbetar emotionella as-
pekter av hudsmekning. Resultaten visar att en speciell typ av nerver i huden
- C-taktila nervfibrer - utgör ett separat nätverk som signalerar emotionella
beröringsegenskaper, och att de är organiserade på samma sätt som de tunna
fibrer som bland annat signalerar smärta. Detta tyder i sin tur på att det C-
taktila nervsystemet är del av ett större tunnfiber-nätverk som vidmakthåller
kroppens välbefinnande.

AI-modeller som tränats att känna igen små skillnader i regionala blod-
flödesförändringar, mätt med funktionell magnetresonansavbildning (fMRI),
har tillämpats med stor framgång inom hjärnforskning. Sådan analys kan dels
avslöja vilka mentala processer som ett visst hjärnaktivitetsmönster motsvarar,
dels identifiera skillnader i blodflödesförändringar med högre känslighet än
konventionell analys.

Den här avhandlingen presenterar två nya sådana metoder för att kartlägga
mönster av blodflödesförändringar. Metoderna användes för att analysera de
specifika mönster som uppstår i hjärnan vid den typ av behaglig smekning som
aktiverar de tunna C-taktila nervfibrerna. Resultaten visar att blodflödesmön-
stret vid behaglig och neutral beröring skiljer sig åt i en del av hjärnan som
kallas insulära kortex. Dessutom påverkades behaglighetsmönstret i insulära
kortex beroende på vilken kroppsdel som stimulerades, på ett sätt som tidigare
beskrivits för smärta.

Studierna stärker teorin om att C-taktila nervfibrer utgör ett separat nätverk
som signalerar emotionella aspekter av beröring, och att de är organiserade
på samma sätt som de tunna fibrer som bland annat signalerar smärta. Det
C-taktila nervsystemet kan utgöra en viktig del i ett homeostatiskt tunnfiber-
nätverk för upprätthållande av kroppens fysiologiska balans.

Resultaten visar också att de nyutvecklade AI-metoderna är väl anpassade
för att användas direkt i fysiologisk grundforskning för känslig kartläggning
av hjärnaktivitetsmönster.
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Introduction and objectives

Since McCarthey coined the term artificial intelligence in 1955, machine
learning techniques have won significant ground in virtually every niche
imaginable – from DNA sequencing (Baldi and Brunak, 2001) to active
galaxy detection (Ball and Brunner, 2009), computerized music composition
(Miranda and Biles, 2007), and identification of honeybees (Lavine and Vora,
2005). As evidenced by the wide range of applications, machine learning
provides highly appealing tools for sophisticated recognition of otherwise
unintelligible pattern representations embedded in complex data structures
(Duda, Hart, and Stork, 2000).

Human brain activity measured by functional magnetic resonance imaging
(fMRI) is a prime example of such complex data, being excessively noisy,
high-dimensional and spatially distributed. FMRI signals are traditionally
approached by descriptive statistical methods where average signal changes
in single locations are related to experimental conditions. Although
tremendously productive in the mapping of brain areas which are activated
by various conditions, such univariate average measures are poorly suited
for capturing temporally variable local and global interactions across neural
networks in the cortex.

Pattern recognition approaches, in contrast, provide tools for detection and
identification of transient patterns of brain activity, integrated across multiple
measuring points (Mitchell et al., 2004; Haynes and Rees, 2006; Norman et
al., 2006). These techniques allow computer models to learn desired behaviors
from examples, in virtually the same sense that humans learn. A model can
be trained to recognize and decode subtle intrinsic signal patterns correlated
to given brain states – such as the indistinct fMRI pattern, consisting of tens
of thousands of voxels, produced by a single touch stimulus (Beauchamp, La-
Conte, and Yasar, 2009). Trained models can be applied in mental state track-
ing (Polyn et al., 2005), lie detection (Davatzikos et al., 2005), the decoding
of single visual stimuli – visible (Haxby et al., 2001; Cox and Savoy, 2003;
Kamitani and Tong, 2005), as well as invisible (Haynes and Rees, 2005a) –
biofeedback (Yoo et al., 2006), and various types of real-time fMRI analyses
(LaConte, Peltier, and Hu, 2007; deCharms, 2008). In addition, pattern recog-
nition methods capture and utilize the spatially distributed nature of fMRI
activity, and are therefore more sensitive to subtle differences between brain
responses than traditional univariate approaches (Kriegeskorte, Goebel, and
Bandettini, 2006; De Martino et al., 2008; Björnsdotter Åberg and Wessberg,
2008; Björnsdotter, Rylander, and Wessberg, 2009).

Despite their promising potential, these techniques are only recently be-
ginning to see more than limited use in neuroimaging. This is in part due to
the fact that appropriate application of machine learning concepts requires
not only an understanding of physiology, but also a solid technical and math-
ematical background. The first objective of this thesis, consequently, was to
implement and empirically evaluate novel machine learning algorithms for ef-
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fectively applicable fMRI pattern analysis. Although the identification of sin-
gle events lies at the core of pattern recognition, information concerning the
constitution of the representational pattern is also required for physiologically
interpretable results. Accordingly, the focus of this thesis was detection and,
primarily, spatial localization of brain response patterns. Two such comple-
mentary multivariate brain mapping methods were developed. The first, based
on Monte Carlo approximations (see section 5.1 and paper I), was designed
for fast, non-specific whole-brain mapping, whereas the second, an evolution-
ary algorithm optimization scheme (see section 5.2 and paper II), was imple-
mented for refined identification of brain regions in a highly tailored fashion.

A particular aspiration of the thesis research was to implement generic pat-
tern recognition methods directly applicable in a variety of neuroimaging stud-
ies. As a second objective, therefore, these novel machine learning algorithms
were utilized to explore brain activation patterns in response to gentle tac-
tile stimulation. Specifically, touch mediated through a recently discovered
type of cutaneous sensory nerve fibers, termed C tactile (or CT) afferents
was studied. These afferents innervate human hairy skin and react vigorously
to soft mechanical stimulation, such as a gentle caress (Vallbo et al., 1993;
Vallbo, Olausson, and Wessberg, 1999). As opposed to other nerve fibers, C
tactile afferent firing rates correlate with the perceived pleasantness of tactile
stimulation (Löken et al., 2009), and are thought to project affective, emo-
tional aspects of the tactile experience (Vallbo, Olausson, and Wessberg, 1999;
Olausson et al., 2002; Wessberg et al., 2003; McGlone et al., 2007; Olausson
et al., 2008a).

Discriminative properties of touch, in contrast, are relayed through thick,
myelinated (Aβ ) fibers. These are activated by all types of mechanical stimuli
(including gentle touch) and project to the primary and secondary somatosen-
sory cortices (Kaas, 2007). In two rare patients who lack Aβ afferents, it
was recently revealed that C tactile afferents activate a brain region called
the insular cortex but not the somatosensory areas (Olausson et al., 2002;
Olausson et al., 2008b). In healthy individuals, however, such projection dif-
ferences remain to be demonstrated. Hence, one specific aim of this thesis
was to investigate differential brain patterns in response to Aβ stimulation
and combined C tactile and Aβ stimulation in healthy subjects (section 10.1
and paper III).

C tactile afferents belong to a class of thin fibers that also transmits pain
and temperature sensations (see Craig, 2002 for a review of this system).
Whereas the specific projections of C tactile fibers are poorly understood, ex-
tensive studies have detailed the pain and temperature fiber pathways from
the skin to the cortex (Craig et al., 1994; Craig, Zhang, and Blomqvist, 1999;
Blomqvist and Craig, 2000; Craig et al., 2000; Craig, 2003b; Craig and Zhang,
2006). In particular, functional imaging of cooling as well as painful stimuli
has shown that the posterior portion of the insular cortex is somatotopically
organized with upper body afferents activating regions anterior to those of the
lower body (Hua et al., 2005; Brooks et al., 2005; Henderson, Gandevia, and
Macefield, 2007). A similar organization of C tactile afferent brain projections
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would substantiate the link to the pain and temperature fiber pathways. The fi-
nal specific aim of this thesis, therefore, was to investigate whether C tactile
afferent activation patterns in the posterior insular cortex follow a somato-
topic organization similar to that shown for pain and temperature projections
(section 10.2 and paper IV).

This thesis is divided into two parts. Part I presents a technical background
to fMRI and conventional signal processing, as well as considerations regard-
ing machine learning in general and brain activity pattern recognition of in
particular. Specifically, the two novel methods developed during the course
of this thesis research are presented and evaluated. Part II, in contrast, out-
lines the physiology underpinning tactile sensation and details how the pat-
tern recognition methods were applied to differentiate brain response patterns
produced by C fiber mediated gentle touch. Finally, the two parts are jointly
discussed in an attempt to unify methodology and physiology.
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Part I:

Brain activity acquisition & processing





1. Functional magnetic resonance
imaging (fMRI)

Magnetic resonance imaging (MRI) involves detection and analysis of signals
derived from intrinsic atomic properties of matter, and enables noninvasive de-
tailed exploration of biological tissues (Hashemi, Bradley, and Lisanti, 2004).
In particular, local blood oxygenation changes in response to neural process-
ing measured with functional MRI (fMRI) provides an effective, albeit indi-
rect, indication of relative levels of brain activity (Norris, 2006).

1.1 Magnetic resonance imaging

N

S

Figure 1.1:
A hydrogen
atom.

MRI utilizes the nuclear spin and magnetism of atoms to ob-
tain information about their environment (Hashemi, Bradley,
and Lisanti, 2004). The spin refers to the inherent angular mo-
mentum possessed by all atomic nuclei with an odd number
of protons and/or neutrons. One such substance is prevalent in
organic tissue – the hydrogen atom. As a result of the spin, the
hydrogen atom also has a magnetic dipole moment and, there-
fore, behaves like a small magnet with a north and south pole as illustrated in
figure 1.1.

Such magnetic dipole moments in tissue are normally randomly oriented
producing a net magnetization of approximately zero (figure 1.2A). Applica-
tion of an external magnetic field, however, induces gradual movements in the
magnetic moments, and a small portion align with the magnetic field (lon-
gitudinal relaxation) with a time constant T1 (typically around 1 second, de-
pending on field strength and type of tissue). The alignment of the magnetic
moments results in a net magnetization in the direction of the field (figure
1.2B).

A B C

Figure 1.2: Hydrogen magnetic dipole moments in a sample (such as brain tissue) are
normally oriented in a random fashion (A). When an external magnetic field (black
arrow) is applied, a small portion of the dipole moments align with the field which
produces a net magnetic moment (B; grey arrow). Also, the net magnetization begins
to precess around the field. After application of an RF-pulse, the net magnetization is
flipped 90◦ (C).
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Figure 1.3:
A precessing
hydrogen
atom.

Also, the net magnetization will change the direction of the
axis of rotation around the field axis in a process called preces-
sion (figure 1.3). The frequency of precession, v0, is called the
Larmor or nuclear magnetic resonance frequency. The Larmor
frequency is proportional to the strength of the external mag-
netic field: v0 = γB0, where B0 (measured in Tesla, T) is the
external magnetic field strength, and γ (units: MHz/T) is the
gyromagnetic ratio. This element-specific ratio expresses the
relationship between the angular momentum and the magnetic moment of the
nuclei, and the value for hydrogen is 42.58 MHz/T. Magnetic field strengths
used for human fMRI range from 1.5 (approximately 30 000 times the earth’s
magnetic field) to 9 T.

In response to application of energy at the Larmor frequency, the net mag-
netization begins to resonate and move out of alignment with the external
magnetic field. For hydrogen, the Larmor frequency corresponds to the ra-
dio frequency (RF) band, and application of rapidly oscillating electromag-
netic RF pulses will change the alignment of the hydrogen magnetic moments
(while elements with other precessional frequencies are unaffected). The RF
pulse can be applied to flip the net magnetization 90◦, and thus change the net
magnetization from being aligned with the external magnetic field to pointing
perpendicular to the field (while still precessing around the field; figure 1.2C).
As a result of the flip, the magnetic moments are in phase and produce a pre-
cessing net magnetization which can induce an alternating current in a coil
placed nearby.

Importantly, the current induced in the coil decays over time (relaxation).
The decay is in part due to thermal motion on the molecular level, realigning
the net magnetic moments with the external magnetic field (T1 relaxation).
Also, random interactions of nuclei result in a loss of coherence of the preces-
sion which reduces the net magnetization (T2 relaxation). Moreover, inhomo-
geneities in the magnetic field cause dephasing since the precession frequency
of the nuclei is proportional to the strength of B0. This effect in combination
with the random nuclei interactions is referred to as T ∗2 relaxation.

Fundamentally important for functional and structural biological imaging,
the relaxation times differ between various tissues such as muscle and bone,
grey and white brain matter, etc. Structural images can therefore be recon-
structed from the acquired relaxation signals. An example of such an anatom-
ical image is shown in figure 1.4A.

1.2 BOLD functional imaging
In addition to structural brain images, magnetic resonance techniques provide
a possibility to acquire signals related to active functions of the brain (Norris,
2006). Such functional MRI detects effects of hemodynamics, including blood
flow, blood volume and oxygen consumption, on the basis of hemoglobin (the
molecule in red blood cells which contains oxygen). Hemoglobin is diamag-
netic when oxygenated and paramagnetic when deoxygenated, i.e. possesses
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A B

Figure 1.4: A. MRI structural image. B. fMRI functional image superimposed on a
structural image.

different magnetic characteristics depending on oxygenation state. This phe-
nomenon, in combination with the measured T ∗2 relaxation (see section 1.1),
is used in fMRI to detect magnetic differences between oxygenated and de-
oxygenated blood in the brain. Specifically, blood-oxygen-level dependent
(BOLD) fMRI is used to identify temporal and spatial variations in the pro-
portion of oxygenated to deoxygenated blood, which, in turn, is an indication
of blood flow changes (Ogawa et al., 1990). A relative increase in blood flow
results in a positive signal, and vice versa.

The fMRI BOLD signal is acquired one brain volume at a time, and each
measuring point in the three-dimensional volume grid is referred to as a voxel
(see figure 1.4B). Depending on the MRI scanner properties, the time required
to acquire a single whole brain volume (repetition time, TR) typically ranges
from 1-4 seconds with voxel dimensions of 2-4 mm per side. Thus, fMRI has
relatively poor temporal resolution and excellent spatial resolution compared
to noninvasive electrophysiological measuring techniques such as electroen-
cephalography (EEG). Moreover, fMRI is entirely noninvasive, as opposed
to other brain imaging techniques including positron emission tomography
(PET).
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1.3 Neural correlates of BOLD

fM
R

I 
si

gn
al

Time (seconds)
2 6 10 14 18

Figure 1.5: A double
gamma function esti-
mate of the hemody-
namic response func-
tion (HRF).

A positive correlation between local blood flow and
brain cell activation level was first observed in the 1890s
(Roy and Sherrington, 1890). The temporal pattern of
blood flow changes in response to activated nerve cells is
called the hemodynamic response function (HRF), and,
although differing between brain regions (Leoni et al.,
2008), a double gamma function is thought to be a good
estimate of the response in humans (figure 1.5; Büchel
et al., 1998). A generic blood flow response to a briefly
presented stimulus lasts up to 20 seconds and peaks at
approximately 6 seconds. The temporal resolution of
fMRI is thus inherently limited due to the delay in the
hemodynamic response.

Although it is generally assumed that changes in blood flow are prompted
by metabolic effects such as increased oxygen consumption by activated nerve
cells, the exact relationship between neural activity and the BOLD signal
is not fully understood. The peak of the HRF appears to be a substantial
overcompensation (supplying more blood than is required by metabolic de-
mands), and the mechanisms for this are unknown (Norris, 2006). Moreover,
the BOLD signal is an indirect measure of neural activity, and is therefore sus-
ceptible to influence by a number of physical parameters of non-neural nature.
The BOLD signal can, in fact, reflect increased blood flow into an area despite
no local neural activity (Sirotin and Das, 2008).

Nonetheless, concurrent intracortical recordings of neural signals and fMRI
responses in the visual cortex in monkeys have shown that regional brain ac-
tivity (and in particular local field potentials) are significantly correlated to the
hemodynamic response (Logothetis et al., 2001; and see e.g. Heeger and Ress,
2002, or Goense and Logothetis, 2008, for further details on the relationship
between neural activity and the BOLD signal).

Figure 1.6: The 1.5 Tesla MRI scanner at the Sahlgrenska University hospital in Göte-
borg, used to acquire data for the studies in this thesis.
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2. Data acquisition and preprocessing

A variety of considerations are necessary to effectively acquire and ana-
lyze fMRI data for research purposes. Prior to acquisition, the experimental
paradigm must be carefully designed in order to ensure that the actual effect of
interest is studied, and, subsequently, a number of signal preprocessing steps
are required for noise reduction.

2.1 Experimental paradigm
Careful attention needs to be paid to the type and organization of conditions
presented during the experiment in order to isolate the effect of interest (as op-
posed to noise or unwanted cognitive processes). Typically, paradigms involve
a number of stimulus conditions which are contrasted in subsequent analysis
to remove confounding variables. During the scanning session, the conditions
are presented in a predetermined fashion. Influenced by positron emission to-
mography (PET) imaging where extended stimulation periods are required in
order to produce stable activations (Muehllehner and Karp, 2006), fMRI stud-
ies often utilize experimental paradigms which alternate extended periods of
stimuli being ‘on’ or ‘off’ (see figure 2.1A; Turner, Howseman, and Friston,
1998).

Condition 2Condition 1 Time

CBA

Figure 2.1: Schematic of A) block, B) slow event-related, and C) fast event-related
experimental paradigm designs with two stimulus conditions.

These block designs are appealing due to ease of presentation and analysis,
as well as to the relatively high signal-to-noise ratios achieved. Brief stim-
uli can, however, produce a measurable BOLD response (e.g. 34 ms; Rosen,
Buckner, and Dale, 1998), which is utilized in event-related designs (figure
2.1B and C; Buckner, 1998). More dynamic responses can be obtained, and,
given similar scanning times, more stimulus repetitions can be applied (see
e.g. Kriegeskorte et al., 2008). A disadvantage of event-related paradigms is
the lower functional signal-to-noise ratio compared to block design paradigms
(Bandettini and Cox, 2000). It should be noted, however, that the strict divi-
sion of paradigms into these categories is idealized and experimental designs
follow a range of variants.
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2.2 Preprocessing
A variety of software exists for both preprocessing and subsequent
statistical analysis of fMRI data, including the freely available Neu-
rolens (neurolens.org), SPM (fil.ion.ucl.ac.uk/spm; Friston, 2007) and AFNI
(afni.nimh.nih.gov), as well as commercial software such as BrainVoyager
(brainvoyager.com). The following preprocessing steps are typically applied,
although all are not necessarily required and further steps can be included to
improve the analysis (see e.g. Friston, 2007 or Henson, 2003 for more details).
• Slice-time correction: The acquisition of an entire brain volume generally

takes of the order of 2-4 seconds (depending on MRI scanner parameters),
during which slices of brain tissue are scanned consecutively. The resulting
shift in acquisition time between slices can be corrected by resampling the
time courses with linear interpolation such that all voxels in a given volume
represent the signal at the same point in time.
• Motion correction: Even slight head movements have a severe effect on the

quality of the data as a result of the high spatial resolution of fMRI, and
must therefore be corrected. A variety of algorithms are available in any of
the software packages listed above. It should be noted, however, that these
algorithms usually only correct temporal changes in spatial alignment, and
motion induced effects such as differential signal distortion are often im-
possible to correct post hoc.
• Temporal filtering and detrending: Temporal drifts which can significantly

affect the results are usually reduced using temporal high-pass filtering, al-
though more sophisticated methods have shown promising results (Friman
et al., 2004).
• Spatial smoothing: In order to reflect a degree of spatial integration, spa-

tial smoothing is often applied to the volume time series using a Gaussian
FWHM kernel in the range of 3-12 millimeters. For some types of sta-
tistical analysis (e.g. the general linear model described in section 3.1),
smoothing to whiten the spatial distribution of the signal is required for
statistical inference (Worsley et al., 1992; Worsley et al., 1996).
• Spatial normalization: Individual brains are highly anatomically variable,

and for group analysis and comparison with brain atlases the acquired
signals must be projected into a standard brain format such as Talairach
(Talairach and Tournoux, 1988) or MNI (Montreal Neurological Institute;
Evans et al., 1993) space. Various algorithms have been proposed to this
end (Collins et al., 1994).
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3. Conventional brain mapping

Conventional fMRI analyses aim to identify brain regions where a certain
stimulation or condition of interest produces a significant change in BOLD
signal. Such analysis assumes that brain function is highly modular, and has
been criticized as a contemporary version of phrenology. Opponents argue that
a holistic, distributed model is a better representation of cognitive function
(see e.g. Fodor, 1983, and Uttal, 2003 for a discussion favoring the modular
and holistic view, respectively). Well-designed and appropriately interpreted
brain mapping with deep roots in related research fields (including electro-
physiological recordings) have, nevertheless, been a tremendously successful
tool for exploring brain function.

As opposed to multivariate pattern recognition methods (see section 4-5),
conventional analysis is univariate. Univariate analyses treat each voxel as
an independent measurement with no interaction with neighboring elements.
Numerous variations of univariate fMRI analysis techniques are widely used,
and the field is under active research. The following chapter describes two of
the most commonly used approaches (also utilized in paper I-IV) namely the
general linear model (Friston et al., 1994) and event-related averaging (Rosen,
Buckner, and Dale, 1998).

3.1 General linear modeling
A highly lucrative univariate approach is parametric statistical analysis to pro-
duce images (statistical parametric maps) which identify brain regions that
show significant signal changes in response to the experimental conditions
(see e.g. Henson, 2003). A spatially invariant model of the expected BOLD
response is fitted independently at each voxel’s time course and the differ-
ences between estimated activation levels during two or more experimental
conditions are tested (Friston et al., 1994).

Most such parametric modeling techniques are versions of the general linear
model (GLM). The GLM aims to explain the variation of the time course y, in
terms of a linear combination of explanatory variables x and an error ε term:

y = xβ + ε (3.1)

The matrix x (the design matrix) contains one row per time point and one
column per explanatory variable in the model (e.g. representing the presence
or absence of a specific condition). In order to detect activations, the magni-
tude of the parameter β is estimated by solving the following equation:

xT y = (xT x)β̂ (3.2)
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where β̂ corresponds to the best linear estimate of β . Given that XT X is
invertible, β̂ can be estimated as:

β̂ = (xT x)−1xT y (3.3)

A number of additional parameters (regressors) can be included in the GLM
analysis, such as cardiac responses, respiration, drift, motion correction pa-
rameters or other confounds.

Comparisons between conditions are expressed as contrasts, representing
linear combinations of β̂ values. If the respective contrasts are formulated in
a vector c, a t-statistic testing whether the condition combinations specified in
c differ significantly from the null hypothesis (cT β̂ = 0) can be computed in
each voxel as follows:

t =
cT β̂√

var(ε)cT (XT X)−1c
(3.4)

The obtained t-maps highlight brain locations where the conditions of inter-
est differ, and are usually color-coded and overlaid on structural MRI images
in a visually appealing fashion (see figure 3.1).

Figure 3.1: GLM t-map
overlaid on anatomical im-
age.

Importantly, this massively univariate testing
results in one statistic per voxel, and thus pro-
duces a classical problem of multiple compar-
isons (Friston et al., 1994). With an error proba-
bility of p<0.05, the same test repeated 100 times
under the assumption that there is no effect (null
hypothesis) will yield five cases of false positives
on average. Computing the t-test in equation 3.4
is statistically equivalent to repeating the same
test for each voxel, thus, for 100 000 voxels, ap-
proximately 5 000 would be assumed (falsely)
to be significantly activated by chance. Numer-
ous methods have been proposed for correction of the problem of multi-
ple comparisons, including simple (but overly conservative) Bonferroni cor-
rection (Nichols and Hayasaka, 2003) and false discovery rate (FDR) ap-
proaches (Genovese, Lazar, and Nichols, 2002; Chumbley and Friston, 2009;
Schwartzman et al., 2009).

3.2 Event-related averaging
Temporal brain response dynamics can be explored by computing an event-
related average BOLD signal change. The event-related response is usually
expressed as percent signal change compared to a baseline, xb, which can,
for example, be estimated as the average across a specified number of time
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points preceding each trial. The percent signal change is then calculated as
(xt − xb)/xb, where xt is the BOLD value at time t.

Event-related averages are generally computed in regions of interest iden-
tified through other methods, and can be particularly useful in pattern recog-
nition studies to examine BOLD response directions (increases or decreases;
see e.g. paper III).
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4. Brain activity pattern identification

In contrast to conventional univariate brain mapping which estimates voxel-
by-voxel signal increases or decreases, pattern recognition approaches iden-
tify patterns of activity changes integrated across multiple voxels in a mul-
tivariate fashion. Specifically, classifier-based machine learning algorithms
teach a computer model to recognize complex, spatially distributed brain sig-
nal changes related to specific experimental conditions. Since these mod-
els can also be used to predict (decode) brain states, the approach is often,
somewhat equivocally, referred to as “mind reading” (Norman et al., 2006;
deCharms, 2008).

The term multivariate is used interchangeably with multivoxel, and the gen-
eral approach is often called multivoxel pattern analysis (MVPA; Norman et
al., 2006). Akin to conventional univariate techniques, MVPA may be used in
brain mapping to identify regions containing multivariately differential BOLD
responses patterns. A direct link between instant fMRI activity and brain states
is, in addition, provided.

In this chapter, machine learning is introduced along with general technical
implementation considerations, and specific aspects for application of multi-
variate analysis in functional imaging are described.

4.1 Machine learning
Machine learning is concerned with algorithms allowing computer models to
“learn” from examples and generalize learned behaviors to make intelligent
decisions given new data. The structure of the data and desired behavior of the
algorithm determines teaching and learning operations. Although various ex-
ploratory algorithms, where no category labels or hypotheses pertaining to the
experimental conditions are supplied (i.e. unsupervised learning) have been
successfully applied in brain activity analysis (e.g. independent component
analysis; ICA; De Martino et al., 2007), this thesis investigates hypothesis-
driven brain mapping with clear links to the experimental conditions. This
category of machine learning is referred to as supervised learning or classifi-
cation.

4.1.1 Supervised learning and classification
Supervised learning algorithms train a computer model to recognize charac-
teristic consistencies in signal patterns with the specific aim of relating each
pattern to one of the supplied categories. A properly trained model (classi-
fier) can subsequently be used to classify data instances where the category is
unknown.

The data points representative of the signal with which the classifier is
trained are called features (also known as attributes or variables). In fMRI,
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the features correspond intimately with voxels and these terms are used inter-
changeably. The data categories are called labels, or, in fMRI, (experimental)
conditions or brain states. The instances of the data are termed samples, pat-
terns, examples, observations, or, in fMRI, trials or volumes.

A classifier can be described as the mapping from a feature space (e.g.
voxels) to a defined set of labels (e.g. experimental conditions), or, mathemat-
ically: consider a set of signal samples {(x1,y1), . . . ,(xn,yn)}. A classifier is
then a process h : X → Y , mapping the object x ∈X to the corresponding
label y ∈ Y . Although multi-category maps have been demonstrated (see e.g.
Björnsdotter Åberg and Wessberg, 2008), multivariate brain mapping gener-
ally involves binary data where samples belong to either of two categories.
Given such binary data in the form:

D = {(xi,yi)|xi ∈ Rp,yi ∈ {−1,1}}n
i=1, (4.1)

where yi is the category label with a value of either 1 or −1, indicating the
category to which the point xi belongs, and each xi is a p-dimensional real
vector of features, the aim of the classifier is to construct a classification rule
in the form of a decision boundary hyperplane that separates the data points xi
where ci = 1 from those where ci = −1. An example of a simple classifier is
shown in figure 4.1A.

x1

x2

x1

x2

A B

Figure 4.1: Illustration of A) linearly and B) nonlinearly separable data for a two-
feature (x1 and x2), binary dataset. For the linearly separable categories the classifier
hyperplane (dotted line) corresponds to a straight line of the standard form: w1x1 +
w2x2 = b. The classification rule of this classifier is to assign the sample to category
F if w1x1 +w2x2 > b and to category© if w1x1 +w2x2≤b.

The data categories might not be linearly separable (figure 4.1B), and, if so,
a classifier which can capture nonlinear effects is required. Linear classifier
rules are based on linear combinations of features, whereas nonlinear clas-
sifiers represent more complicated, nonlinear relationships with the features
(Theodoridis and Koutroumbas, 2006). Nonlinear classifiers can also capture
linear data structures, but generally require more computational resources, re-
duce model interpretability and are more sensitive to overfitting (Mørch et al.,
1997).

18



4.1.2 Classification algorithms
A wide range of algorithms to construct classifiers have been suggested with
varying performance depending on the structure and quality of the data and
desired generalization behavior. Some common classifiers include linear dis-
criminant analysis and Fisher’s linear discriminant (Fisher, 1936), naïve Bayes
classifier (Buntine, 1989), k-nearest neighbor (Cover and Hart, 1967) and arti-
ficial neural networks (Haykin, 1999). As noted in section 4.2.5, a substantial
amount of MVPA studies (including papers I-IV) utilized linear or nonlin-
ear support vector machines (SVMs; Vapnik and Lerner, 1963) and these are
therefore described in more detail.

Support vector machines

SVMs construct a separating hyperplane such that the distance from the
hyperplane to the nearest data point is maximized (Vapnik, 1995; Suykens et
al., 2002). Given the notation in the previous sections, the SVM algorithm at-
tempts to find the maximum-margin hyperplane which separates the xi points
where ci = 1 from those having ci = −1. Any hyperplane can be written as
the set of points x satisfying

w · x−b = 0, (4.2)

where · denotes the dot product. w is a normal vector, perpendicular to
the separating hyperplane. As illustrated in figure 4.2, the hyperplane offset
from the origin, along w, is determined by the parameter b

||w|| . Thus, the SVM
selects w and b so that the margin (the distance between the hyperplanes) is
maximally large.

b

w

w·x-
b=

1

w·x-
b=

-1
w·x-

b=
0

2||w||x1

x2

Figure 4.2: Illustration of a support vector machine (SVM) separating hyperplane.

The distance between the hyperplanes is 2
||w|| , and thus maximizing the

distance requires minimization of ||w||. In order to prevent data points from
falling into the margin, the following constraints are also added: w ·xi−b≥ 1
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for xi of class 1, and w · xi−b ≤ −1 for xi of class −1. This can be rewritten
as:

ci(w · xi−b)≥ 1, for all 1≤ i≤ n. (4.3)

The parameters of the maximum-margin hyperplane, w and b are solved for
in the following optimization problem:

minimize ||w||, subject to ci(w · xi−b)≥ 1, for all 1≤ i≤ n (4.4)

This problem depends on ||w||which involves a square root. Instead, the prob-
lem can be simplified to:

minimize
1
2
||w||2, subject to ci(w · xi−b)≥ 1, for all 1≤ i≤ n (4.5)

with retained w and b. The factor of 1
2 is added for mathematical convenience.

Nonlinear separability is constructed using the kernel trick. The kernel trick
involves replacing every dot-product in the SVM equations with a nonlin-
ear kernel function to transform the (originally linearly non-separable) feature
space into a higher-dimesional space where the categories are linearly separa-
ble by the maximum-margin hyperplane (Boser, Guyon, and Vapnik, 1992).

A variety of specialized algorithms have been developed for solving the
SVM optimization problem (see e.g. Schölkopf and Smola, 2001). Through-
out this thesis, the least-squares SVM approach proposed by Suykens et al.,
2002, is used, as implemented in the Matlab SVM package LS-SVMlab de-
veloped by the group SCD/sista in the department ESAT at the KULeuven,
Belgium (Suykens et al., 2002).

4.1.3 Classifier training and evaluation
The process of adapting the classifier parameters (e.g. solving the SVM opti-
mization problem described above) to the given data is called training. During
training, the classifier is supplied with data samples and corresponding cate-
gories. Caution is required during training in order to avoid classifier adapta-
tion to noise (Duda, Hart, and Stork, 2000). Such overfitting yields outstand-
ing results on the training dataset – at the cost of poor generalization perfor-
mance (figure 4.3). Overfitting may be controlled for by applying the trained
model to an independent validation data set to empirically evaluate the gen-
eralization performance of the classifier. Depending on the problem at hand,
more data partitions may be required to minimize bias (such as during feature
selection, described in section 4.1.4).

Generalization performance estimates are often obtained using cross-
validation, particularly when the number of available samples is limited, ac-
cording to one of the following schemes:
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N-fold cross-validation: The data samples are partitioned into N parts. The
classifier is trained on N-1 parts of the data, and the performance of the trained
classifier is evaluated on the Nth part. The process is repeated for each of the
N parts, after which a result is formed from the average across all N iterations.
Leave-one-out cross-validation is the special case of N = n, where n is the
number of available samples.

Hold-out validation: The available samples are randomly divided into two
sets where each set is used as training and validation data respectively. By
averaging over a number of partitions of the same size, a reliable estimate of
the generalization performance can be obtained.

Figure 4.3: An example of an overtrained clas-
sifier (dotted line) which correctly classifies all
instances of the training data (black) but makes
mistakes on the validation data (grey).

x1

x2

4.1.4 Feature selection
Feature selection involves the identification of a subset of variables relevant
for the given classification task (Guyon and Elisseeff, 2003). Given the typ-
ical number of original variables in contemporary measuring systems (such
as fMRI scanners), acquired signals are likely to contain a drastic number of
features which are unrelated to the categorization task. Feature selection is
fundamentally important for effective classification, particularly for the fol-
lowing two reasons:

1. Mitigate the effect of the curse of dimensionality to improve classifier per-
formance (Bellman, 1961).

The curse of dimensionality refers to the exponential increase in volume
associated with additional dimensions (figure 4.4). For example, 10 sam-
ples suffice to fully cover a 10 point one-dimensional interval, whereas
only 1% of the space is represented in three dimensions. Thus, the larger
the dimensionality, the more samples are required to sufficiently cover the
probability space to construct a good classifier. Given the exceedingly high
dimensionality of fMRI data (ranging from tens to hundreds of thousands
of voxels) compared to the number of available samples (in the range of
tens to hundreds), the curse of dimensionality is a highly acute problem
and feature selection is fundamental for optimal classifier performance.
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Figure 4.4: The curse of dimensionality: in one dimension (one feature), the ten obser-
vations (samples) cover the probability space to 100%. As the number of dimensions
increases the probability space grows exponentially resulting in an increasingly poor
coverage of the space (Bellman, 1961).

2. Improving model interpretability.

The explicit identification of informative features provides additional infor-
mation about the representation of the relevant patterns and thus facilitates
data visualization and model interpretation. Feature selection can either fo-
cus on identifying variables which are useful to build a good predictor, or,
in contrast, with the problem of identifying all potentially relevant vari-
ables, and each of the approaches provide different types of information
(see the review articles by Kohavi and John, 1997 or Blum and Langley,
1997 for a discussion of usefulness vs. relevance). As detailed in section
4.3, improved model interpretability through voxel selection is of funda-
mental significance in brain mapping.

In addition, feature selection reduces classifier training times as well as mea-
surement and storage requirements.

Approaches to feature selection can be roughly divided into two categories,
namely filter and wrapper methods (Kohavi and John, 1997; Blum and Lang-
ley, 1997).

Filter feature selection utilizes an external measure, independent of the clas-
sifier, to estimate the relevance of each feature. Common methods include uni-
variate variable ranking approaches where individual features are scored and
selected according to some measuring criteria independent of the classifier.
While filter methods are computationally fast, the obtained feature subsets are
generally not optimal for the given classifier. Importantly, variables which are
not informative individually may provide improved performance when jointly
analyzed with other variables, and two variables which are not informative in-
dividually may be so when analyzed together (see also figure 4.5; Guyon and
Elisseeff, 2003). Filter feature selection, especially of the univariate kind, is
therefore a poor choice for multivariate analyses.

Wrapper methods, on the other hand, utilize the intended classifier directly
to assess the relative usefulness of feature subsets (e.g. by classification scores
for given subsets or using classifier weights). Elements of re-training the clas-
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sifier with different feature subsets are typically involved. Notably, the train-
ing data set may require further partitioning to obtain reliable classifier gen-
eralization performance estimates during such classifier re-training. Wrapper
methods produce feature subsets which are specifically tailored to high per-
formance for the given classifier, albeit at a computational cost.

Various feature selection methods in the context of brain mapping are de-
tailed further in section 4.3.

4.2 BOLD response classification
Along with the notation in the previous section, fMRI activity patterns (data
samples) can be represented as points in a multidimensional space where the
number of dimensions equals that of voxels (features) and the experimental
conditions are the labels.

In the simplified situation of a two-voxel brain, each trial can be considered
as a point in a plane corresponding to the BOLD magnitude measured in each
voxel. The aim of MVPA is to categorize the samples by separating the points
belonging to each of the condition (i.e. brain state) classes. As illustrated in
figure 4.5, the method of doing so depends on the structure of the data; if the
conditions are sufficiently different this can be done on a single voxel level
(with conventional univariate statistics; figure 4.5A), but if the voxel distri-
butions overlap, multiple voxels must be jointly analyzed in order to distin-
guish the conditions (figure 4.5B and C). By virtue of taking the information
encoded over multiple signal elements into account, machine learning algo-
rithms have the potential to detect significant signal changes where traditional
univariate, voxel-by-voxel methods fail.
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Figure 4.5: Two-voxel illustration of the multivoxel analysis approach, where dark
squares and white circles represent two different experimental conditions. In A, the
response distributions to the conditions (the Gaussian curves) are separable in each
single voxel and a univariate statistical approach is capable of differentiating the con-
ditions. In B, the two conditions can not be separated by each individual voxel due to
the overlap of the distributions, and a univariate measure would fail in distinguishing
the conditions. A linear decision boundary (dotted line) can, however, separate the
conditions. Similarly, in C, the conditions can be separated but a nonlinear decision
boundary is required.

Numerous studies have utilized the improved sensitivity of pattern recog-
nition methods, including the decoding of speech (Formisano et al., 2008),
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hidden intentions (Haynes et al., 2007), odor quality (Howard et al., 2009),
visual stimuli – visible (Haxby et al., 2001; Cox and Savoy, 2003; Kamitani
and Tong, 2005) as well as invisible (Haynes and Rees, 2005a) – to name a
few.

Not only are multivariate methods more sensitive than univariate ap-
proaches, but the predictive power of classifier-based machine learning al-
gorithms can be utilized to identify and distinguish the specific spatial activ-
ity patterns produced by single experimental conditions (see e.g. paper II).
Numerous studies have shown the utility of such brain state classification,
and applications include tracking of mental states over time (Polyn et al.,
2005), lie detection (Davatzikos et al., 2005), biofeedback (Yoo et al., 2006;
LaConte, Peltier, and Hu, 2007) and brain-computer interfacing (Sitaram,
Caria, and Birbaumer, 2009).

MVPA typically follows the procedure shown in figure 4.6. After acqui-
sition, the fMRI signals are preprocessed, partitioned into training and vali-
dation data sets and subject to voxel selection and classifier training. Voxel
selection and classifier training are often iterated to assess the success of any
voxel subset (particularly when a wrapper feature selection approach is uti-
lized), and a map which indicates what brain regions containing differential
brain responses due to the different conditions is obtained. The success of the
classifier, in combination with the selected voxels, is evaluated using the vali-
dation data set. Finally, the obtained classifier can be applied to predict brain
states in new fMRI data.

The specific considerations required for appropriate application of
classifier-based MVPA analysis are outlined in the following sections.

Map

Training data

raw fMRI time series

Classification
performance

Validation data

Preprocessing Parameters Preprocessing

Prediction
Classifier

Voxel selection

Classifier training

Classifier design and evaluation

Figure 4.6: Generic multivoxel pattern analysis (MVPA) workflow.
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4.2.1 Experimental paradigm
MVPA experimental paradigm considerations are similar to those in conven-
tional approaches, and both block and event-related designs have been used
with good results (see e.g. Burke et al., 2004; Beauchamp, LaConte, and
Yasar, 2009 and papers I-IV). In particular, event-related designs have the ben-
efit of yielding more independent trials, which, in turn, results in less contam-
inated estimations of the spatial pattern related to each condition. Although
rapid event-related designs risk temporal overlap of hemodynamic responses,
various techniques can be applied to reduce this effect (Beauchamp, LaConte,
and Yasar, 2009).

4.2.2 Preprocessing

The same preprocessing steps as in conventional analysis are required, with
the notable exception of spatial smoothing. If the conditions differ in terms
of their fine-grained spatial activation patterns, spatial smoothing will reduce
classifier performance (Kriegeskorte, Goebel, and Bandettini, 2006). Also,
without smoothing, the spatial resolution provided by the fMRI scanner is pre-
served and small differences in location can be maximally resolved. Smooth-
ing may, nonetheless, have a beneficial impact on classification performance
(LaConte et al., 2003).

4.2.3 Condition response estimation

The continuous fMRI signal, consisting of a series of BOLD values for each
voxel across the scanning time course, must be re-represented as single trial
responses for subsequent analysis. In particular, the hemodynamic response
delay must be accounted for (see section 1.3) such that each single trial label
corresponds to the peak BOLD response due to the appropriate condition. A
number of condition response representations have been proposed:

1. Single-volume intensities: The BOLD values in a single acquisition vol-
ume are taken to represent the conditions (Haynes and Rees, 2005a;
Mourão-Miranda et al., 2005). A simple approach to compensating for
hemodynamic delay is to shift the data labels an appropriate amount of
acquisition time points (typically around 6 s).

2. Volume-average intensities: The average BOLD signal across a number
of consecutive volumes (e.g. in block design studies; Kamitani and Tong,
2005; Mourão-Miranda et al., 2006, and papers II and IV). Typically the
first few volumes are discarded. This approach has the added benefit of
increased signal-to-noise ratio due to the averaging procedure.

3. Single-trial GLM fitting: Estimation of the single condition response based
on the hemodynamic response function (e.g. De Martino et al., 2008 and
paper I and III). Estimates of the condition responses are obtained by fitting
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a GLM to each trial (Friston et al., 1998). At every voxel, the corresponding
regressor coefficient (β ) is taken to represent the trial response.

4.2.4 Data partitioning

In order to avoid classifier overfitting and biased prediction accuracies (see
e.g. Kriegeskorte et al., 2009, for a review of this problem in functional brain
imaging), care is required when partitioning the samples into training and val-
idation data.

Potential dependencies between datasets must be carefully avoided; the in-
herent temporal sluggishness of the hemodynamic response producing tempo-
ral dependencies is of particular concern. Thus, any randomization of training
and validation samples must be preceded by a single condition response esti-
mate (see section 4.2.3) ensuring no temporal dependencies between samples.
Another possibility is to select a temporally independent validation data set
from samples collected towards the end of the scanning session.

4.2.5 Choice of classifier
Despite the theoretical superiority of nonlinear classifiers (i.e. nonlinear clas-
sifiers can differentiate linear data but not vice versa), linear classifiers domi-
nate the MVPA literature (but see Davatzikos et al., 2005; Hanson, Matsuka,
and Haxby, 2004; Polyn et al., 2005), partially since the improvement over
linear classifiers is not conclusive (see e.g. Cox and Savoy, 2003). Moreover,
a highly appealing advantage of linear classifiers is the direct relation between
classifier weights and voxels, providing a means to understand which regions
of the brain are multivariately informative (Mourão-Miranda et al., 2005;
De Martino et al., 2008).

Classifiers employed for multivoxel pattern analysis of fMRI data range
from various versions of linear discriminant analysis (Carlson, Schrater, and
He, 2003; O’Toole et al., 2005; Haynes and Rees, 2005a; Haynes and Rees,
2005b; Kriegeskorte, Goebel, and Bandettini, 2006), correlation-based classi-
fication (Haxby et al., 2001; Spiridon and Kanwisher, 2002), artificial neural
networks (ANNs; Hanson, Matsuka, and Haxby, 2004; Polyn et al., 2005)
and Gaussian naïve Bayes (GNB) classifiers (Mitchell et al., 2004). Although
there may be little practical difference between linear classifiers (Ku et al.,
2008), SVMs dominate in recent MVPA studies (Cox and Savoy, 2003;
Mitchell et al., 2004; Kamitani and Tong, 2005; Mourão-Miranda et al., 2005;
Mourão-Miranda et al., 2006; LaConte et al., 2005; De Martino et al., 2008;
Formisano et al., 2008; Staeren et al., 2009; Mourão-Miranda et al., 2009).
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4.3 Voxel selection and brain mapping
Voxel selection is not only of critical importance in order to obtain classifiers
with good generalization performance, but it also provides a means to spatially
localize brain response patterns. A number of approaches, with and without
explicit voxel selection, have been proposed for multivariate brain mapping as
described in the following section.

4.3.1 Univariate filter selection and region-of-interest analysis
The feature selection and brain mapping problem may be resolved by
region-of-interest (ROI) based methods where classifiers are applied to vox-
els in anatomically or functionally predefined areas (Cox and Savoy, 2003;
Haynes and Rees, 2005a; Kamitani and Tong, 2005). ROI selection methods
based on univariate functional ranking include estimates of activation mag-
nitude due to any condition (activation-based voxel selection) or the abil-
ity to differentiate the conditions, as quantified by e.g. the standard GLM
(discrimination-based voxel selection; Mitchell et al., 2004; Haynes and Rees,
2005a; Mourão-Miranda et al., 2006). Such univariate measures can also
be used as an initial ranking scheme for improved speed or accuracy in
subsequent multivariate voxel selection (see e.g. De Martino et al., 2008;
Niiniskorpi, Björnsdotter Åberg, and Wessberg, 2009).

Coarse brain maps may be obtained by assessing the classification perfor-
mance in a number of ROIs. However, univariate feature selection disregards
any distributed brain activity effects and provides little additional information
regarding the localization of brain response patterns compared to the univari-
ate measure on its own.

4.3.2 Locally multivariate mapping
Locally multivariate mapping approaches integrate distributed brain re-
sponses, but are restricted to a limited neighborhood of adjacent voxels. Ap-
proaches targeting regions of fixed size and shape provide appealing flexi-
bility and simplicity of implementation. In particular, the attractively simple
and intuitive “searchlight” algorithm introduced by Kriegeskorte et. al (2006)
has proved useful in numerous studies (Kriegeskorte et al., 2007; Haynes
et al., 2007; Bode and Haynes, 2009; Clithero, Carter, and Huettel, 2008;
Stokes et al., 2009; Pereira, Mitchell, and Botvinick, 2009). Whole-volume
maps are produced by computing multivariate brain response measures across
fixed-size (typically spherical) search volumes sequentially centered on each
voxel in the brain volume. As opposed to region-of-interest approaches, the
searchlight requires no a priori spatial hypotheses – with the drawback that
an excessive number of information computations (one per voxel, that is,
in the order of tens to hundreds of thousands or higher) is required. The
Monte Carlo approximation proposed in paper I is a derivative of the search-
light which reduces the required number of information computations dras-
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tically (Björnsdotter Åberg and Wessberg, 2009). Other locally multivariate,
fixed-size search approaches have followed suit (e.g. particle-swarm mapping;
Björnsdotter Åberg and Wessberg, 2009). Such fixed-size, fixed-shape meth-
ods rely on the assumption that response patterns are contained within the
locality of the search volume, and may fail to detect discriminative patterns
encoded across regions of different shape and size.

The evolutionary brain mapping approach presented in paper II, on the other
hand, optimizes voxel cluster size, shape and location (Björnsdotter Åberg and
Wessberg, 2008), and yields specific information regarding the spatial extent
of differential fMRI response patterns. This property is highly useful in studies
where the exact extent and location of a specific activity pattern is acute (such
as in paper IV).

A collective benefit of these locally multivariate methods is that any ar-
bitrary information measure (including nonlinear classifiers) can be used to
detect brain response patterns.

4.3.3 Globally multivariate mapping
Globally multivariate methods jointly analyze voxels in spatially remote re-
gions or across entire brain volumes, and are an appropriate choice when brain
responses are expected to be widely distributed or include a number of sepa-
rate brain regions.

Such methods include massively multivariate methods, where a classifier
is applied to all voxels in an entire brain volume simultaneously and indi-
vidual voxel contributions are estimated from classifier weights (Mourão-
Miranda et al., 2005; LaConte et al., 2005; LaConte, Peltier, and Hu, 2007;
Beauchamp, LaConte, and Yasar, 2009; Sato et al., 2009). In addition to being
limited to linear classifiers providing a direct relationship between individual
voxels and classifiers weights, massively multivariate approaches do not alle-
viate the curse of dimensionality and hence produces suboptimal brain state
discrimination sensitivities (see section 4.1.4).

In contrast, recursive feature elimination (RFE; Hanson and Halchenko,
2008; De Martino et al., 2008; Formisano et al., 2008; Staeren et al., 2009) is a
voxel selection approach which explicitly identifies maximally discriminative
regions of arbitrary size, shape and location. Similar to massively multivariate
methods, however, RFE requires linear classifier weight rankings for iterative
voxel elimination (or, less appealingly, utilization of a univariate voxel rank-
ing scheme).

4.4 Performance metrics
Two performance metrics are used in MVPA: condition prediction ability
(i.e. pattern discrimination performance), and sensitivity of the classification
scheme in detecting relevant voxels (i.e. pattern localization performance).
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The pattern discrimination performance is usually expressed in terms of
classification measures, such as proportion correctly labelled instances of the
validation data. More refined receiver operating characteristic curve (ROC)
analysis may also be used. The ROC is a plot of the classification sensitivity
versus (1-specificity) for varying thresholds. The area under the curve (AUC),
where a value of 1 corresponds to perfect classification (no true negatives
or false positives) can then be used as a metric (see e.g. paper II and IV).
Due to the limited number of samples available in fMRI studies, use of cross-
validation is standard.

Pattern localization sensitivity can also be estimated using ROC analysis
on simulated data where the true discriminative voxels are known (see e.g. De
Martino et al., 2008; Björnsdotter, Rylander, and Wessberg, 2009 and paper
I). In studies on real data, sensitivities are typically compared to alternative
methods such as the GLM (as in, for example, paper II).

A number of variants for the problem of statistical significance testing for
both data classification and the various types of multivoxel brain maps have
been proposed (see e.g. Pereira, Mitchell, and Botvinick, 2009, for a sum-
mary). Although the statistical method of choice is highly dependent on the
application and properties of the data, variants of nonparametric permuta-
tion testing is an appealing choice to test whether a group of voxels can
classify the experimental conditions to a significant degree (Good, 2004;
Golland et al., 2005). The reasoning is as follows: if the classification score is
not related to information regarding the categories of the data (i.e. the score
was obtained by chance), permuting the data labels should not affect the clas-
sification score (i.e. the labels are exchangeable under the null hypothesis).
Repeated permutations are used to estimate the empirical cumulative distribu-
tion of the classifier error under the null hypothesis, from which a p-value for
the true label classification score can be computed.

Group analysis maps reflecting relative regional information content (e.g.
measured in proportion correctly classified samples) can be formed by av-
eraging across results obtained on the individual level (see e.g paper I and
III). Other formal group-level statistical testing methods include fixed and
random effect models (Mourão-Miranda et al., 2005; LaConte et al., 2005;
Mourão-Miranda et al., 2006; Wang et al., 2007).

4.5 Available software
A number of the machine learning algorithms described above are im-
plemented in available software. Notably, a Python-based, cross-platform,
and open source software toolbox called PyMVPA was recently released
by the Department of Experimental Psychology, University of Magde-
burg (www.pymvpa.org; Hanke et al., 2009). A similar toolbox for Mat-
lab called the Multi-Voxel Pattern Analysis (MVPA) Toolbox is provided
by the Center for the Study of Brain, Mind and Behavior, Princeton
(www.csbmb.princeton.edu/mvpa/; Detre et al., 2005). Commercially avail-
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able, BrainVoyager QX (brainvoyager.com) has just released a new version
where ROI-based classification as well as the searchlight and RFE are imple-
mented.
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5. Proposed brain mapping techniques

As described in the previous chapters, pattern recognition approaches con-
stitute an appealing complement to univariate methods and particularly for
sensitive brain mapping.

More specifically, the searchlight algorithm (described in section 4.3.2) is
an appealing multivariate mapping approach due to simplicity of implementa-
tion, as well as interpretation, and flexibility of information measure. The al-
gorithm involves the sequential centering of a fixed-size sphere on each voxel
to compute a locally multivariate information measure for that voxel (figure
5.2; Kriegeskorte, Goebel, and Bandettini, 2006). After scanning the entire
volume, a map containing one such value per voxel is obtained. However,
the excessive number of information computations (one per voxel, that is, in
the order of tens to hundreds of thousands or higher) and corresponding time
requirements restrict the practicality of the searchlight for whole-brain, multi-
subject data – especially in high-field fMRI with improved spatial resolution.

The first proposed brain mapping method, therefore, is a Monte Carlo ap-
proximation of the searchlight designed for simple, fast whole brain mapping
while still retaining the benefits of multivariate sensitivity over the univariate
GLM.

Fixed-shape, fixed-size locally-multivariate methods are, however, re-
stricted to voxel-wise approximative estimates of brain responses in the ex-
act region defined by the search sphere, and may miss patterns distributed
across regions of different sizes and shapes. Given a typical brain volume of
64×64×25 voxels and the combinatorial explosion of possible voxel subsets,
an exhaustive search to identify the exact size and shape of a maximally infor-
mative region is not feasible. Optimization methods, such as recursive feature
elimination (De Martino et al., 2008), have generally resorted to using voxel
ranking schemes, either by univariate means or linear classifier weights in or-
der to iteratively discard voxels with low scores. A wrapper-based, classifier-
independent voxel optimization approach would therefore be useful.

Evolutionary algorithms (EA, also known as genetic algorithms, GA) have
recently received much attention for robustly producing promising results in
complex optimization tasks in a wide variety of medical and biological fields
(e.g. cancer prediction; Li et al., 2004; Wahde and Szallasi, 2006, EEG sin-
gle trial analysis; Åberg and Wessberg, 2007, pap smear diagnosis; Marinakis,
Dounias, and Jantzen, 2009, nutrition; Kemsley et al., 2007, identification of
honeybees; Lavine and Vora, 2005 and numerous bioinformatics studies; e.g.
Li et al., 2008; Wu, 2008; Taneda, 2008; Thachuk et al., 2009). The second
proposed machine learning brain mapping method is, therefore, a wrapper fea-
ture optimization scheme based on evolutionary algorithms (Holland, 1975),
that identifies specific regions containing representational brain response pat-
terns.
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5.1 Monte Carlo brain mapping (paper I)
Monte Carlo methods approach problems by observing properties obeyed
by randomly generated instances (Sobol, 1994), and have been success-
fully utilized in various fields where the system under investigation is com-
plex and exact computations are not possible or feasible (including e.g.
medicine, finance and engineering; Zaidi and Sgouros, 2002; McLeish, 2005;
Amar, 2006). Generally, the Monte Carlo method can be described by the fol-
lowing procedure:

1. Specify a domain of variables.
2. Sample variables randomly from the domain.
3. Compute a measure using the variables.
4. Combine the individual measures into a final result.

The algorithm is iterative in nature, and more iterations result in an im-
proved approximation of the true (exhaustive) result. See Sobol, 1994, for
an in-depth description of the mathematical theory behind Monte Carlo sam-
pling.

5.1.1 Implementation
Pseudocode describing the proposed Monte Carlo brain mapping method
is presented in figure 5.1. Similar to the searchlight algorithm (figure 5.2;
Kriegeskorte, Goebel, and Bandettini, 2006), the brain volume is partitioned
into voxel clusters of fixed size and shape which are evaluated in terms of
information content (e.g using a classifier to differentiate brain response pat-
terns). As illustrated in figure 5.3, however, one iteration of the algorithm
consists of the brain volume being randomly divided into a number of clusters
(typically, but not necessarily, in the approximate shape of a sphere) such that
each voxel is included in one (and one only) cluster and the information mea-
sure is computed for and assigned to each such cluster. A robust multivariate
information map reflecting the mean contribution per voxel is subsequently
computed by forming an average across the information computed in all con-
stellations in which the voxels took part (as opposed to the searchlight were
each voxel is assigned the one value computed when the sphere was centered
on that voxel).

Thus, where the searchlight requires as many information computations as
there are voxels in the volume in an exhaustive fashion, the sparse Monte
Carlo method reduces the required number to the total number of voxels in the
volume divided by the number of voxels in the search sphere multiplied by the
number of iterations. Notably, larger searchlight spheres yield increased com-
putational requirements (since the number of computations are unchanged but
each computation uses more voxels), whereas the contrary holds true for the
Monte Carlo approach – with increased size, fewer search spheres are required
to cover the brain volume and thus the number of information computations
is reduced. As per the nature of Monte Carlo schemes, iterating the algorithm
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BEGIN
For (number of iterations);

While (not all voxels are selected);
Select a random hitherto unselected voxel;
Select all other hitherto unselected voxels within the specified radius;
Compute an information measure on these voxels;

End While
End For
Compute the mean information per voxel across iterations;
END

Figure 5.1: Pseudocode for Monte Carlo fMRI brain mapping.

to perform as many information computations as the searchlight yields an ex-
haustive measure with the difference that the information measure reflects an
average contribution.

=i
1

i
1

Figure 5.2: Visualization of the searchlight algorithm (Kriegeskorte et al., 2006). A
search sphere (circle) is centered on each single voxel and the corresponding measure
is assigned to that voxel.

5.1.2 Method evaluation
The searchlight, the Monte Carlo method, and an exhaustive search using the
Monte Carlo averaging procedure (denoted Monte Carlo∗ or MC∗) were eval-
uated and compared on simulated data with realistically modeled discrimi-
native regions varying in size and degree of condition-discriminative infor-
mation content (i.e. contrast-to-noise ratio, CNR). The data were simulated
according to a block design, and the discriminative voxels were assigned to ei-
ther of two populations (condition1>condition2; condition2>condition1) with
random spatial distribution within the discriminative regions. The single-trial
condition responses were estimated by single-trial GLM fitting (see section
4.2.3).

The brain mapping sensitivities were measured in area under the ROC-
curve (AUC), and a standard GLM was computed on the data for comparison.

Both linear and nonlinear (radial basis function kernel, RBF) SVM classi-
fiers were evaluated on various search sphere volumes.
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Figure 5.3: Visualization of the Monte Carlo fMRI brain mapping computation for
one voxel. For each iteration k, the search volume (circle) is centered on a random
voxel (black) and the voxels within the search volume (black and dark grey) are used
to compute an information measure ik (e.g. condition classification accuracy) for that
voxel. In subsequent iterations, the voxel is included in different constellations with
other neighboring voxels, and a final information measure is computed as the average
across all n iterations. Here, n = 5 iterations corresponds to an exhaustive search.

The following list summarizes the main results.

1. More sensitive than the searchlight and the GLM

Both the searchlight and Monte Carlo approach outperformed the univari-
ate GLM which achieved a discriminative voxel detection sensitivity of
0.503 (see table 5.1). Interestingly, the Monte Carlo method was signifi-
cantly more sensitive across search sphere volumes and classifier kernels
at a mean AUC of 0.873 (range 0.840-0.899) than the searchlight (0.826;
range 0.767-0.857; paired t-test, p<0.05; table 5.1). Also, the exhaustive
Monte Carlo∗ method consistently achieved higher mapping sensitivities
than the Monte Carlo approximation and the searchlight at an AUC of 0.904
(range 0.877-0.918; table 5.1). Thus, assigning each voxel the average in-
formation content across all constellations in which it has been included
improves the mapping sensitivity and explains the improved performance
of the Monte Carlo approximation compared to the searchlight.

Figure 5.4 shows the corresponding maps obtained with a search sphere
volume of 0.5% and the RBF kernel. Despite a 66% reduction in computer
resources the Monte Carlo map is strikingly similar to both the searchlight
and exhaustive Monte Carlo∗ maps. Moreover, as is clearly exemplified in
the large discriminative cluster with CNR = 0.8 (shown in blue) and in
stark contrast to the searchlight map, voxels with similar discriminative in-
formation content obtain homogenous values as a result of the information-
averaging smoothing effect. Map values obtained with the searchlight algo-
rithm, on the other hand, are deceptively dependent on the regional context
such that any voxel value is highly sensitive to the number of discrimi-
native voxels within the search sphere – resulting in substantially higher

34



Table 5.1: Table of brain mapping sensitivities for the searchlight (Kriegeskorte et
al., 2006), Monte Carlo (MC) method and exhaustive Monte Carlo search (MC∗) on
the simulated data, measured in area under the receiver operating curve (AUC). The
best performance for each approach is denoted by ?. The number of information com-
putations for the exhaustive searches (searchlight and MC∗) was 28 502. The search
sphere volume is expressed in percentage of total brain volume. Lin-SVM: support
vector machine with a linear kernel, RBF-SVM: support vector machine with a radial
basis function kernel; MC nr. computations, Number of information computations
required using the Monte Carlo approximation approach.

Lin-SVM RBF-SVM
Search sphere volume (%) 0.1 0.5 1.0 0.1 0.5 1.0

Searchlight 0.767 0.835 0.842 0.809 0.857? 0.848
MC 0.840 0.883 0.880 0.850 0.899? 0.886
MC∗ 0.877 0.915 0.911 0.896 0.918? 0.909

MC nr. computations 27 778 11 643 6 745 27 778 9 705 6 745
Reduction (%) 2.54 59.15 76.33 2.54 65.95 76.33

values for voxels in the center of the discriminative cluster than in the sur-
rounding voxels (despite the same information content).

2. Substantially faster than the searchlight

For the kernel (RBF) and search sphere volume (0.5% of the total vol-
ume) with which all method achieved the highest mapping sensitivities,
the number of required information computations (number of times the
classifier was trained and tested) was dramatically reduced from 28 502
for the searchlight to 9 705 for the Monte Carlo method – corresponding
to a reduction of 66% for no loss in sensitivity (see table 5.1). The more
iterations allowed for the Monte Carlo method, the higher the mapping
sensitivity, and, consequently, the computational load. As exemplified in
figure 5.5A (for a search sphere volume of 0.5%), the Monte Carlo method
mapping sensitivity improved dramatically during the initial information
computations (up to in the order of 5 000) and approximates the exhaus-
tive Monte Carlo∗ search performance at relatively few computations. For
the RBF kernel and search sphere volume of 0.5% where the exhaustive
Monte Carlo∗ search obtained an AUC of 0.918, for example, the Monte
Carlo method reduced the number of required information computations
by 75% for a 2.8% reduction in mapping sensitivity (Figure 5.5B).

3. Impact of search sphere volume

All methods achieved highest sensitivities with small to medium sized
search spheres, and the best results were obtained at a volume of 0.5% of
the total brain volume (see table 5.1 and figure 5.6A; but note that search
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Searchlight

0.857

CNR:
0.8
0.5
0.2

Monte Carlo

0.899

Monte Carlo*

0.918
Nr:
AUC:

9 705 28 502 28 502

Discriminative voxels

Figure 5.4: Comparison of the maps produced using the Monte Carlo, searchlight
and exhaustive Monte Carlo∗ algorithms on the simulated data with a search sphere
volume of 0.5% and the RBF SVM kernel. The position and CNR of the simulated dis-
criminative voxels are shown in the leftmost panel. The Monte Carlo map is strikingly
similar to the exhaustive maps despite a reduction in number of required information
computations from 28 502 to 9 705. The maps are thresholded to show voxels with
values above 0.5. CNR: contrast-to-noise ratio; Nr: Number of information computa-
tions (training and testing of the classifier); AUC: area under the receiver operating
characteristic curve.

volumes larger than 1% were not used in conjunction with the searchlight
and Monte Carlo∗ search due to excessive time requirements). There was
no substantial difference in sensitivity between the small to medium search
spheres (0.5 to 2%), despite a dramatic decrease in number of required per-
formance computations up to a volume of 2% (figure 5.6B). All methods,
however, obtained better results on the large clusters using larger search
spheres (volume of 1% vs. 0.1% and 0.5% vs. 0.1%, p<0.05, paired t-test).
Across CNRs there was no significant trend.

4. Nonlinear classifiers are more sensitive

Across all discriminative regions and search sphere volumes, the mapping
sensitivities obtained with all methods in conjunction with the RBF ker-
nel were significantly higher than those of the linear kernel maps (p<0.05,
paired t-test). The difference was not substantial, however – the RBF kernel
improved the Monte Carlo mapping sensitivity from 0.883 to 0.899 on the
combined cluster analysis with a search sphere volume of 0.5%, and the
corresponding figures for the exhaustive Monte Carlo∗ search was 0.915
and 0.918 (table 5.1).
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Figure 5.5: A) Monte Carlo algorithm brain mapping sensitivity (measured in area
under the receiver operating characteristic curve; AUC) as a function of the number
of information computations (number of times the classifier is trained and tested),
for the RBF (black) and linear (grey) SVM kernel. The searchlight and exhaustive
Monte Carlo∗ search sensitivities are plotted as dotted and straight lines, respectively.
B) The reduction in number of information computations (grey) and mapping sensi-
tivity (black) of the Monte Carlo method compared to the exhaustive Monte Carlo∗
search, for the RBF kernel. A reduction in number of information computations by
75% corresponds to a decrease in sensitivity of 2.8%, for example, as indicated by
the dotted lines. A search sphere volume of 0.5% of the total brain volume was used
in this example, and the vertical thick grey lines represent the number of information
computations required for the searchlight and exhaustive Monte Carlo∗ search.

5.2 Evolutionary brain mapping (paper II)
An evolutionary algorithm is a machine learning optimization method inspired
by biological evolution which utilizes operators such as recombination, selec-
tion, reproduction and mutation (Holland, 1975). Candidate solutions to the
optimization problem are represented by individuals in the population, and
an objective function is used to evaluate the fitness of each individual. The
individuals continuously evolve to produce a solution which approaches the
optimum throughout repeated application of the operators (as illustrated in
figure 5.7; and see Reeves and Rowe, 2002, for an in-depth discussion on the
theoretical framework of EAs).

5.2.1 Implementation
Feature selection in the traditional sense attempts to minimize the number of
redundant features (Guyon and Elisseeff, 2003). A standard feature selection
approach would, therefore, extract voxels which are sparse and distributed,
yielding maps that are difficult to interpret from a physiological point of view
(see e.g. Åberg, Löken, and Wessberg, 2009). The task of the evolutionary
algorithm was, instead, to identify spatially coherent voxel clusters of unre-
stricted size or shape, where maximal brain response differentiation can be
obtained using a classifier.
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Figure 5.7: Schematic of a general evolutionary algorithm.

Attempts were initially made to identify more than one cluster at any given
time, but the increase in search space complexity yielded unstable results with
the standard evolutionary algorithm (but see the discussion in section 6 on
suggestions for multiple cluster identification). Instead, the algorithm was de-
signed to optimize one single cluster, and, where required, it was iterated to
identify more clusters with varying locations. Below follows details on the
implementation of the algorithm, and pseudocode is presented in figure 5.8.

Representation: Each individual in the population corresponds to one voxel
cluster. Each voxel is represented by its corresponding index in a list the size
of the total number of voxels in the brain volume.

Initialization: The population of individuals is initialized in a stochastic
fashion, where, for each individual, one seed voxel is randomly selected. The
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BEGIN
Initialize population;
While (termination criteria not met);

For (each individual);
Apply mutation operations;

1. Add na random voxels;
2. Remove nr random voxels;
3. Substitute ns random voxels;

End For
Select parents;
Reproduce;
generation = generation + 1;

End While
END

Figure 5.8: Pseudocode for evolutionary brain mapping.

voxel cluster is then constructed by the addition of random voxels which
neighbor the seed voxel, or, subsequently, any voxel already in the cluster.

Mutation operations: The following mutation operations are implemented
in the algorithm: the addition of a number of voxels, the deletion of a num-
ber of voxels, and the substitution of a voxel with another voxel. All voxel
additions and substitutions are performed on neighboring voxels, that is, vox-
els within the 26 voxel cube surrounding any voxel already contained in the
cluster. Also, deletions or substitutions resulting in voxels disconnecting from
the clusters are disallowed. The frequency of mutation is regulated by a con-
stant mutation rate parameter for each mutation operation. In addition, a voxel
cluster in the population is occasionally substituted for a new, randomly gen-
erated cluster to add fresh genetic material and aid in escaping potential local
maxima.

Selection and reproduction: A standard tournament scheme is used for par-
ent selection. In order to retain a variety of the genetic material and maintain
searches in widespread regions of the brain, the proportion of parents to dis-
carded individuals is set high. Since all individuals in the population represent
different locations and crossover thus would destroy the spatial integrity of
the voxel clusters, reproduction is asexual and the new generation is formed
by cloning the parents.

Objective function: The objective is to maximize experimental condition
classification success computed using a classifier. Any classifier can be ap-
plied (including nonlinear schemes; see the discussion in section 4.1.2 on
classifiers). To ensure high generalization capability, the algorithm is supplied
with three datasets. The first is used in classifier training (training data, 35%
of the total volumes) while the second is used for fitness estimation (test-
ing data, 45%). The third dataset is exclusively used with the already trained
and optimized classifier and voxel cluster (validation data, 20%). Any fitness
measure indicative of classification performance can be used, and since all
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relevant voxels are of interest, no penalty for the number of voxels (common
in standard feature selection implementations) is involved.

Termination: The algorithm is run for either a predetermined maximum
number of generations or until a cluster yielding testing data classification
rates above a given threshold (the fitness threshold) is obtained. Since the al-
gorithm is prone to overfitting when allowed to run the full course, the cluster
with the best result on the mean of the training and testing data performance
is identified and subject to validation classification.

5.2.2 Method evaluation
The performance of the evolutionary brain mapping algorithm was evaluated
on data from two authentic fMRI studies using a linear SVM. First, nine
subjects tapped their fingers to their thumbs, and, second, six subjects were
brushed on their forearm or thigh such that two datasets (arm brushing/thigh
brushing/rest) were obtained. All data were preprocessed in a standard fash-
ion, with the exception of 6 mm spatial smoothing of the brushing data, and
the single-trial condition responses were estimated as volume-average inten-
sities. The evolutionary algorithm was repeatedly applied to obtain ten voxel
clusters per dataset. All reported classification results refer to the classification
performance obtained using trained and optimized classifiers on the validation
data, measured in the area under the ROC curve (AUC). A standard GLM was
also applied for comparison.

The following list summarizes the main results.

1. Highly accurate prediction of brain states in new subjects

A leave-one-out cross-validation was performed on the finger-tapping
dataset, where the algorithm was applied to training and testing data sets
containing eight subjects. Combinations of the identified clusters were then
used on the validation dataset consisting only of the ninth subject. The per-
formance as a function of the (unique) accumulated voxels from the high-
est through lowest ranked cluster is presented in figure 5.10A. The pattern
recognition approach was highly accurate in classifying the brain state of
the unknown subject, with a subject-average AUC of over 0.9. The latent
(unthresholded) SVM classifier output estimate for subject one is shown in
figure 5.9.

2. EA outperforms GLM feature selection

The same SVM leave-one-out cross-validation scheme was applied to the
corresponding number of voxels ranked according to the GLM t-map (ob-
tained on the training subjects). As seen in figure 5.10A, the cluster algo-
rithm outperformed the GLM ranking method which obtained classification
scores of less than an AUC of 0.85. A closer inspection of the selected vox-
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Figure 5.9: SVM classifier predictions (black) for on a subject performing an alter-
nating finger movement task (grey). The SVM was trained on eight other subjects.

els with respective methods shows that, although the general areas are sim-
ilar and the overlap is large, the cluster algorithm generated voxel subsets
slightly more medial and posterior than the GLM t-map ranking method
(see figure 5.10B). Also, the latter included voxels in the supplementary
motor area (SMA) at an early stage, whereas all of the 10 evolutionary
clusters remained in the primary motor and somatosensory area.

3. More sensitive pattern discrimination than the GLM

On the brushing dataset, the insular cortex, known to be activated by gentle
touch (Olausson et al., 2002; Björnsdotter et al., 2009) was first extracted
in each individual subject as a region of interest (ROI). Subsequently, the
algorithm was applied to the forearm/rest and thigh/rest datasets to iden-
tify clusters within the ROI. All voxels contained in clusters with an AUC
larger than 0.5 were combined and a hold-out validation (using a random
80% of the data for training and 20% for validation, 10 repetitions) was
performed on each data set. The same validation approach was applied to
all voxels within the ROI. Table 5.2 shows the resulting classification AUCs
as well as the maximum ROI GLM t-value and the corresponding number
of voxels included for classification. In six data sets (subjects 2, 5 and 6
for arm/rest and subjects 1, 4 and 5 for thigh/rest) no significantly activated
voxels (false discovery rate; FDR<0.05) were found in the ROI according
to the GLM. Using the whole ROI for classification, only three data sets
achieved significant classification scores, whereas the cluster-based classi-
fication achieved significant results in all cases (p<0.05; permutation test
with 1000 iterations).
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Figure 5.10: A) Comparison of classification performances using evolutionary algo-
rithm (EA) and univariate GLM ranking feature selection as a function of the num-
ber of clusters/voxels included for classification. B) The detected clusters with corre-
sponding classification performance. The contralateral primary motor and somatosen-
sory cortices (MI/SI) produce higher classification results than any other area. The
supplementary motor area (SMA) and ipsilateral MI/SI are also detected, but yield
lower classification scores.

Table 5.2: Summary of ROI classification results for arm/rest and thigh/rest brushing
in six subjects. The ROI classification parameters, including the maximum GLM t-
value, classification results for whole ROI classification (measured in area under the
ROC-curve, AUC), the number of voxels contained in the entire ROI, the AUC for
the cluster analysis and the number of voxels used by the cluster algorithm (voxel
subset size). Stars denote significant scores (GLM T: FDR<0.05, AUC: permutation
test, p<0.05). S, subject; ROI, region of interest.

Arm Max -log(p) ROI AUC ROI size Cluster AUC Cluster size
1 4.438* 0.6533* 753 0.6587* 351
2 2.455 0.5991 904 0.6916* 313
3 4.812* 0.592 787 0.604* 252
4 3.055* 0.5996* 811 0.6178* 304
5 1.355 0.5511 703 0.6649* 202
6 2.113 0.5733 1004 0.6502* 356

Thigh Max -log(p) ROI AUC ROI size Cluster AUC Cluster size
1 3.098 0.5173 753 0.6716* 219
2 4.087* 0.6467* 904 0.6773* 195
3 7.660* 0.5698 787 0.632* 312
4 2.190 0.5818 811 0.6178* 405
5 2.391 0.5516 703 0.6036* 128
6 4.326* 0.5578 1004 0.6244* 345
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6. Discussion

Machine learning based multivariate localization of representational patterns
provides a highly appealing complement to univariate brain mapping, partic-
ularly in terms of increased sensitivity to experimental condition differences.
The first objective of the thesis was to develop and empirically evaluate such
pattern recognition methods which could be effectively used for neuroimag-
ing purposes. Two complementary multivariate brain mapping methods are
proposed. While both were demonstrated to be more sensitive than univariate
schemes in detecting differential fMRI activity patterns, the Monte Carlo ap-
proach produces whole-brain maps whereas the evolutionary algorithm yields
tailored regions showing the spatial extent of differential fMRI responses. Ad-
ditional strengths and weakness of the algorithms, as well as implications,
applications and future directions are discussed below.

6.1 Improved sensitivity
The proposed method evaluation demonstrated one appealing benefit of multi-
variate compared to univariate (GLM) analysis, namely that of increased sen-
sitivity in detecting differential brain responses.

The simulated data modeled a situation with two spatially distributed and
intermixed populations of voxels belonging to different conditions (see pa-
per I for details). Here, the superiority of the multivariate approach over the
GLM can be explained by the integration of weak univariate condition dif-
ferences heterogenous with respect to the direction (increase or decrease) of
the BOLD response. Notably, spatial smoothing has a destructive effect on
such fine-grained response patterns and would reduce the sensitivity of any
differentiation attempts (Kriegeskorte, Goebel, and Bandettini, 2006).

Surprisingly, the Monte Carlo approach achieved higher discriminative
voxel detection sensitivities also than the searchlight algorithm. The improved
sensitivity can be attributed to two effects. First, the searchlight assigned rel-
atively higher map values to voxels with more discriminative neighbors (de-
spite equal information content), while the corresponding Monte Carlo maps
produced more homogenous values for voxels of equal information content
(as a result of averaging across multiple voxel clusters). Second, the typical
variation in performance between classification attempts, a problem which is
of particular concern when few fMRI volumes are available, is reduced due to
the averaging across numerous performance evaluations.

On the real data, a main effect (e.g. tactile brush stimulation vs. rest in
the insular cortex) was investigated, and, presumably, the patterns detected
by the evolutionary algorithm reflected a homogenous BOLD increase during
stimulus application (particularly since the data was spatially smoothed). The
higher sensitivity can therefore be attributed to the integration across multiple
weak univariate differences with the same sign, and not necessarily to fine-
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grained spatial patterns. At improved signal-to-noise ratios (SNR), such as
in higher field scanners, the GLM is therefore likely to be equally efficient at
detecting the corresponding differential activity. Indeed, the GLM did identify
significant univariate BOLD increases during brushing in some individuals.

Based on the above observations, multivariate mapping is likely to be more
sensitive than univariate analyses in two situations: 1. when the differential
brain responses are represented by fine-grained spatial patterns, and 2. in low
SNR situations when individual univariate differences are not detectable.

Improved sensitivity in lower SNR situations is particularly useful when
the number of samples is restricted. These often occur in physiological stud-
ies as well as clinical situations, where considerations for subject or patient
discomfort limits scanning times.

Advances in high-field imaging warrants improved SNRs as well as increas-
ingly high spatial resolution and corresponding finer-scale neuronal activity
representations (down to the submillimeter range; Uğurbil, Toth, and Kim,
2003; Uğurbil et al., 2003; Harel et al., 2006). Whereas univariate and multi-
variate methods benefit from improved SNR alike, a higher number of dimen-
sions yields an increasingly severe problem of multiple comparisons for the
GLM which may be detrimental (Kriegeskorte and Bandettini, 2007).

6.2 Locally vs. globally multivariate mapping
Whereas the Monte Carlo and searchlight approaches are restricted to activ-
ity patterns which can be captured in the local neighborhood of a fixed-size
search sphere, the evolutionary algorithm tailors the neighborhood to any size
and shape (and location) that optimally represents the brain response pattern.
Nonetheless, both methods are limited to jointly considering adjacently lo-
cated voxels and may fail to detect widely distributed or spatially separate
activity patterns. In situations where subtle, spatially distant coactivations are
expected (e.g. auditory tasks; Formisano et al., 2008), globally multivariate
methods, such as recursive feature elimination (De Martino et al., 2008) are
more appropriate. Or, as was demonstrated in the single-trial classification
task in paper II, a number of individually defined regions can be combined to
improve classification rates.

Nevertheless, both the Monte Carlo and evolutionary algorithm can po-
tentially be extended to allow for simultaneous analysis of distant regions.
The Monte Carlo method could, for example, easily incorporate more than
one stochastically selected search sphere at any given time. Also, the search
volume size and shape can be randomized to capture voxel activity patterns
whose spatial extend is not known. In addition, a number of niching tech-
niques allowing for simultaneous optimization of multiple voxel clusters have
been proposed for evolutionary algorithms (Dunwei, Fengping, and Shifan,
2002; Zhang et al., 2009). Specifically, successful multi-cluster maps have
been obtained using an extension of the evolutionary brain mapping method
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with elements from memetic algorithms (unpublished data; Zhu, Ong, and
Dash, 2007b; Zhu, Ong, and Dash, 2007a).

6.3 Voxel selection vs. scanning
The two proposed methods approach the problem of brain mapping from
two entirely different perspectives: the Monte Carlo method scans the entire
brain such that each voxel obtains a value, whereas the evolutionary algorithm
specifically selects only those voxels which maximize the activity pattern clas-
sification. For similar computational costs the evolutionary algorithm tends to
produce poor overall detection results (unpublished results on simulated data).
Instead, it specifically singles out a majority, if not all, of the voxels in the most
discriminative region and yields higher classification results.

The evolutionary algorithm hence lends itself towards studies where either
maximal brain state classification is required, or the size, shape and location
of a specific brain response pattern is desired. The algorithm is, for example,
highly useful in paper IV, where the research question is well-defined and
limited to localizing a single, maximal brain response. Providing maps where
each voxel is evaluated, the Monte Carlo algorithm, in contrary, is suited for
situations where whole-brain explorations are required. An example of this is
found in paper III, where differential projection patterns due to different types
of tactile stimulation are examined.

Despite various tricks to avoid local minima, the evolutionary algorithm is
notoriously sensitive to initialization factors and, unless any of the cluster in
the initial population by chance is located near the global maxima it may not
be detected. The Monte Carlo algorithm, on the other hand, easily provides a
map of the entire brain. Preliminary results on combining these correspond-
ing advantages by initializing the evolutionary (as well as the recently devel-
oped memetic) algorithm on clusters obtained from a rough Monte Carlo map
are promising. As an alternative, initialization clusters could be derived from
massively multivariate linear classifier weights (Mourão-Miranda et al., 2005;
LaConte et al., 2005) in the same fashion as recursive feature elimination (De
Martino et al., 2008).

6.4 Flexibility of performance measure
A particular aspiration of the thesis was to develop generic pattern recognition
methods directly applicable in a variety of neuroimaging studies. In this light,
a clear benefit of the proposed methods is that neither is dependent on a spe-
cific type of performance measure. Whereas recursive feature elimination (De
Martino et al., 2008) and massively multivariate maps (Mourão-Miranda et
al., 2005; LaConte et al., 2005) require the use of linear classifiers, nonlinear
classifiers can be directly incorporated in the Monte Carlo as well as the evo-
lutionary approach. Nonlinear classifiers have not been extensively studied in
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the context of fMRI classification (with the exception of Mørch et al., 1997;
Davatzikos et al., 2005; Hanson, Matsuka, and Haxby, 2004; Polyn et al.,
2005), partially since the improvement over linear classifiers is not conclusive
(see e.g. Cox and Savoy, 2003). In paper I, it was, however found that non-
linear SVM mapping was significantly more sensitive in detecting discrimina-
tive voxels than a linear SVM. Discouraging results with nonlinear classifiers
are likely to be due to limited number of training samples (and high number
of voxels) which restricts the construction of complicated relationships with
the voxels (Mørch et al., 1997). FMRI studies explicitly designed for pattern
recognition analysis with fast, event-related paradigms yielding more samples
in combination with effective voxel selection methods may increase the utility
of nonlinear classifiers and possibly reveal patterns not distinguishable with
linear classifiers.

6.5 Computational requirements
Whereas the Monte Carlo algorithm is attractively simple and only two param-
eters require specification, the evolutionary approach is complex to implement
and requires a substantial number of parameters to be empirically specified.
Such implementation issues aside, the computational requirements for both
algorithms are well within a practical range. On a standard PC (3.20GHz pro-
cessor, 3GB RAM), the Monte Carlo algorithm took in the order of 14 min-
utes to complete a 34 519 voxel whole brain map in Matlab (The Mathworks,
Massachusetts, USA; see paper I in the appendix), and the corresponding time
requirements for the evolutionary algorithm was 20 minutes.

While more computer intensive than univariate measures (which take sec-
onds or less to compute), the methods are substantially faster than the search-
light; the Monte Carlo takes 75% of the time required for the searchlight (for
no loss in sensitivity). In addition, parallelization of neither the Monte Carlo
nor the evolutionary algorithm (Stender, 1993) should not pose technical dif-
ficulties if required.

6.6 Applications
Machine learning based classifiers are appealing general purpose tools and,
in addition to revealing differential brain activity patterns for basic physiol-
ogy research purposes as was demonstrated in this thesis, can be highly ad-
vantageous in virtually any signal processing setting. Although the proposed
methods were primarily developed for brain mapping, they (and particularly
the evolutionary algorithm) have great potential for use in tracking of brain
states, both offline (as was demonstrated in paper II; see also e.g. Polyn et
al., 2005) and for real-time fMRI analysis (LaConte, Peltier, and Hu, 2007;
deCharms, 2008). Real-time analysis may provide novel approaches to dy-
namic exploration of brain activity in adaptive experiment designs, which
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could, for example, be advantageous when patients or subjects have trouble
adhering to the specified experimental paradigm. Such analysis can also be
utilized in brain-machine interfaces that allow patients to communicate non-
verbally with a computer or to control robotic devices (Birbaumer and Cohen,
2007), and for biofeedback, where patients can learn to control brain activity
(for pain relief or other purposes; Weiskopf et al., 2003; Weiskopf et al., 2004;
Yoo et al., 2006). In addition, although controversial and in a heavily restric-
tive setting, real-time classifier based analysis has shown positive results in lie
detection (Davatzikos et al., 2005).

Real-time classifier based fMRI analysis should not, however, be confused
with “mind reading”. Although single brain states can be decoded using these
methods, there are severe limitations; both technical, in terms of the heavily
restricted and categorized states which a classifier can learn to detect, and
due to inherent properties of the fMRI signal. In addition to being related
to metabolic demands rather than direct neural activity, BOLD responses are
inherently sluggish (with peak response delays of approximately six seconds)
and fMRI is therefore poorly suited for instantaneous detection of transient
thoughts. Similarly, suggestions to use fMRI as an objective measure of brain
states in legal settings (Thompson, 2005) or to reveal terrorists (Wild, 2005)
appear fallacious.

Classifiers that can be trained on a number of individuals for subsequent
use in predicting which category a new subject’s brain patterns belongs to, as
was demonstrated in paper II, could be useful in disease diagnosis. Machine
learning algorithms have indeed shown promising results in clinical diagnosis,
both with structural (Ecker et al., 2009; Koutsouleris et al., 2009) and func-
tional brain imaging (Marquand et al., 2008; Fu et al., 2008); or on other types
of data entirely (Björnsdotter Åberg and Wessberg, 2008).

The proposed machine learning algorithms are not limited to fMRI data.
In particular, similar methods have been used to predict various brain states
from electroencephalography (EEG; Åberg and Wessberg, 2007), electrocor-
ticograms (Yanagisawa et al., 2009), and direct neural recordings in monkeys
(Wessberg et al., 2000), rats (Laubach, Wessberg, and Nicolelis, 2000) and
humans (Salarian et al., 2007). The methods for volumetric pattern discrim-
ination and localization developed in this thesis are particularly suited for
multivariate analysis of differential patterns in cortical source images of EEG
(Grave de Peralta Menendez, Murray, and Gonzalez Andino, 2004).

Finally, machine learning algorithms are not limited to predicting brain
states from neuroimaging data. In fact, machine learning algorithms have
recently been successfully applied to predict muscle responses from fMRI
data, thus providing a direct link between a single muscle contraction to
the BOLD response (Ganesh et al., 2008). Similarly, response pattern rep-
resentations have been used to correlate monkey neural recordings to human
fMRI (Kriegeskorte et al., 2008). Methods for such intermodality correlations
appear particularly promising for analysis of recently developed concurrent
fMRI and EEG recording techniques (Ritter and Villringer, 2006).
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Part II:

Central processing of CT mediated gentle touch





7. Background

The vast majority of neuroscience and neurology textbooks describe touch as
signaled exclusively by large myelinated (Aβ ) fibers. Over sixty years ago,
however, it was established that mammal skin is also equipped with an addi-
tional afferent system which responds to mechanical stimulation – that of thin,
unmyelinated C tactile (or CT) fibers (Zotterman, 1939; Bessou et al., 1971;
Kumazawa and Perl, 1977b; Shea and Perl, 1985). C tactile afferents were
more recently identified also in humans (Nordin, 1990). They are highly sen-
sitive to soft, slow skin deformations such as a caress (Vallbo et al., 1993),
and their firing rates correlate intimately with subjective ratings of perceived
pleasantness (Löken et al., 2009). Whereas the Aβ system provides highly
acute information regarding discriminative properties of touch, the C tactile
system appears to signal affective aspects of the tactile experience.

Contrary to Aβ mediated touch, C tactile brain physiology and function are
not well understood. This part of the thesis, therefore, is devoted to explor-
ing the multivariate brain response patterns to C tactile mediated touch in an
attempt to further elucidate the central organization of these afferents.

7.1 Cutaneous sensory neurons
The human skin is innervated by a variety of sensory neurons which respond
to mechanical stimulation and transmit tactile information through the spinal
cord to the brain (Gardner and Martin, 2000). Such mechanoreceptive affer-
ents can be classified into three broad categories based on conduction velocity.
Aβ fibers are rapidly conducting, large diameter neurons with a thick layer of
myelin, Aδ afferents have a smaller diameter and thinner myelin, and C fibers
are thinnest and unmyelinated.

Four types of Aβ afferents innervate the glabrous skin (Johnson, 2001).
Slowly adapting fibers with irregular discharge rates (type I, SAI) are im-
plied in high-resolution discrimination (Knibestöl, 1973; Knibestöl, 1975;
Johansson and Vallbo, 1980; Vallbo et al., 1984; Phillips, Johansson, and
Johnson, 1992; Edin et al., 1995), whereas SA neurons with regular discharge
rates (type II; SAII) respond to skin stretch and indentation (Vallbo et al.,
1995). Rapidly adapting (RA) type I fibers react to low-frequency flutter vi-
bration, such as moving objects (Mountcastle et al., 1967; Connor et al., 1990;
Friedman et al., 2002; Bensmaia et al., 2005), whereas RAII units respond to
high-frequency vibration (Bolanowski and Zwislocki, 1984a; Bolanowski and
Zwislocki, 1984b; Bolanowski, 1984; Vallbo and Johansson, 1984).

In hairy skin, SAI, SAII and RAII units have been identified, and, addition-
ally, RA hair and field units (Vallbo et al., 1995).

Aβ afferents transmit acute information regarding discriminative properties
of the stimulus, such as location, shapes and textures (Vallbo et al., 1995;
Johnson, 2001; Hsiao and Bensmaia, 2007). Body parts important for tactile
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discrimination, such as the finger tips, are densely innervated by Aβ afferents
(Johansson and Vallbo, 1979a).

Aδ and C-fibers, in contrast, signal thermoreception, nociception and
chemoreception in addition to C tactile low-threshold mechanoreception
(Burgess and Perl, 1967; Bessou and Perl, 1969; Bessou et al., 1971).

7.2 Properties of C tactile afferents
Low-threshold mechanoreceptive C afferents have been described in a num-
ber of species, including rats (Lynn and Carpenter, 1982; Leem, Willis,
and Chung, 1993), guinea pigs (Sugiura, Terui, and Hosoya, 1989), mice
(Liu et al., 2007), cats (Douglas and Ritchie, 1957; Iggo, 1959; Iggo, 1960;
Bessou et al., 1971; Iggo and Kornhuber, 1977) and primates (Kumazawa
and Perl, 1977b; Kumazawa and Perl, 1977a; Kumazawa and Perl, 1978).
In humans, C tactile afferents have been identified in the hairy skin of dif-
ferent body parts, including the face and hairy skin of the extremities, but
not in glabrous skin (i.e. the palms or the soles of the feet; Nordin, 1990;
Vallbo, Olausson, and Wessberg, 1999; Edin, 2001; Löken, Wessberg, and
Olausson, 2007).

C tactile afferents respond vigorously to slow, light mechanical stimulation,
such as a caress, and poorly to rapid, vibratory skin deformations (Zotterman,
1939; Douglas and Ritchie, 1957; Iggo and Muir, 1969; Bessou et al., 1971;
Kumazawa and Perl, 1977b; Nordin, 1990; Vallbo et al., 1993; Vallbo, Olaus-
son, and Wessberg, 1999; Edin, 2001). In addition, they have been reported to
respond to skin stretch (Nordin, 1990; Vallbo, Olausson, and Wessberg, 1999;
Edin, 2001).

C tactile fibers are susceptible to fatigue (decrease in response due to re-
peated stimulation; Iggo, 1960; Bessou et al., 1971; Iggo and Kornhuber,
1977; Lynn and Carpenter, 1982; Wiklund Fernström, 2004); recovery times
are highly variable can range from 30 seconds to 30 minutes (Iggo, 1960;
Wiklund Fernström, 2004).

The receptive fields associated with C tactile afferents in humans are de-
scribed to have a number (on the order of one to nine) of small, distributed,
non-uniformly responsive spots (Wessberg et al., 2003).

7.3 Spinal cord organization
Classically, mechanoreceptive afferents are assumed to follow the posterior
column-medial lemniscus pathway from the dorsal roots through the spinal
cord to the brain (Kaas, 2007). The posterior columns primarily contain Aβ
fibers which project rostrally towards the brain and terminate in the posterior
column nuclei of the medulla. The second-order fibers, in turn, cross over to
the opposite side of the spinal cord and continue through the medial lemnis-
cus, after which they ascend to a lateral region of the ventral posterolateral
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nucleus (VPL) of the thalamus. Ultimately, third-order neurons terminate in
the somatosensory cortices (figure 7.1).

Small-diameter (Aδ and C) fibers, on the other hand, connect through lam-
ina I in the dorsal horn of the spinal cord (figure 7.1). Modality-specific classes
of neurons receiving input from functionally distinct groups of small-diameter
afferents have been identified in lamina I (Han, Zhang, and Craig, 1998;
Craig, Krout, and Andrew, 2001), including neurons responding to gentle me-
chanical stimuli (Kumazawa and Perl, 1977b; Light and Willcockson, 1999;
Sugiura, Lee, and Perl, 1986). Specifically, it has been shown that lamina I
neurons responding to noxious and temperature stimuli project somatotopi-
cally through the spinothalamic pathway in the ventral horn of the spinal cord
through the ventral posterior nucleus of the thalamus (possibly through a dis-
tinct nucleus in humans termed the posterior ventromedial thalamus; VMpo;
Craig et al., 1994; Dostrovsky and Craig, 1996; for an alternative view see
Willis et al., 2002).

It has been speculated that C tactile afferents are organized in a fashion sim-
ilar to that of the pain and temperature mediating thin-fiber system (Olausson
et al., 2002).

Thalamus

Spinothalamic tract

Posterior column

Somatosensory 
cortex

Ventral posterior 
nucleus

A‚
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Spinal cord

Brainstem

Insular cortex

Dorsal root

Posterior column 
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Spinothalamic 
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I
IIIII
IVV
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Figure 7.1: Simplified schematic of mechanoreceptive sensory neuron projection
paths. The laminae of the dorsal horn of the spinal cord are also shown.
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7.4 Central projections
Thick, myelinated Aβ afferents which project along the posterior column-
medial lemniscus pathway terminate in the primary somatosensory cortex
(SI), which is found in the postcentral gyrus in the anterior parietal lobe of the
human brain (figure 7.2A; Krubitzer and Kaas, 1987). All three architectonic
brain areas contained in SI, namely 3 (further divided into a and b), 1 and
2 (as defined by Brodmann in 1909; see e.g. Kandel, Schwartz, and Jessell,
2000), represent differential projection patterns from the contralateral side of
the body (see e.g. Hsiao and Bensmaia, 2007 for details on the functional dif-
ferences between these areas). All regions are somatotopically organized. SI
neurons respond to a wide range of tactile stimuli, and are particularly im-
plied in acute discriminative aspects of touch such as texture recognition and
high-resolution localization of tactile input (Hsiao and Bensmaia, 2007).

SI

SII

A B

Figure 7.2: Location of the A) primary (SI) and secondary (SII) somatosensory cor-
tices and B) insular cortex.

The secondary somatosensory cortex (SII), found in the parietal cortex (fig-
ure 7.2A), is implicated in object form perception (Murray and Mishkin, 1984;
Disbrow et al., 2001; Haggard, 2006). SII receives inputs from the primary so-
matosensory cortex as well as directly from the thalamus (Krubitzer and Kaas,
1987; Qi, Preuss, and Kaas, 2007), and also appears to be somatotopically or-
ganized (Ruben et al., 2001).

Thin-fiber mediated sensations projecting through the spinothalamic tract
have been shown to activate the insular cortex (Coghill et al., 1999; Hofbauer
et al., 2001; Craig et al., 2000). Specifically, functional imaging of innocu-
ous cooling and painful stimuli has revealed a somatotopic organization of the
posterior portion of the insular cortex (Hua et al., 2005; Brooks et al., 2005;
Henderson, Gandevia, and Macefield, 2007). The insular cortex (often ab-
breviated as simply ‘the insula’) is found bilaterally within the lateral sulcus
between the temporal lobe and inferior parietal cortex (figure 7.2B). Parts of
the temporal, parietal, and frontal lobes form lids (opercula) which cover the
insular cortex.

The insular cortex is described as a site of emotional processing and in-
teroceptive awareness (Craig, 2003a; Craig, 2009). The posterior region of
the insular cortex in primates has been proposed to contain a sensory repre-
sentation of thin-fiber activity, integral in the maintenance of well-being as
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an afferent homeostatic network (Craig, 2002; Craig, 2008; Olausson et al.,
2008a).

An fMRI study of two unique subjects (GL and IW) with the rare acute
neuronopathy syndrome (Sterman, Schaumburg, and Asbury, 1980), who
lack Aβ fibers but have intact C fibers, revealed that C tactile stimulation
activates the contralateral posterior insular cortex (Olausson et al., 2002;
Olausson et al., 2008b), consistent with other thin-fiber mediated sensations
such as pain and temperature. Notably, no activity in the somatosensory cor-
tices was observed, indicating that the C tactile - insular system projects dif-
ferently than he Aβ - somatosensory network. However, the question remains
whether the corresponding projection patterns are present also in healthy sub-
jects.

The consistency between C tactile and other small-diameter fibers, particu-
larly those signaling temperature and pain, suggest that C tactile fibers are an
integral part of the same thin-fiber afferent network. Hence, posterior insular
cortex processing of C tactile stimuli is hypothesized to be somatotopically
organized.

7.5 Functional role of CT afferents
Due to the dynamic properties of C tactile afferents (such as slow conduc-
tion velocity, susceptibility to fatigue, poor response to vibration, and insen-
sitivity to rapid stimulus change; Bessou et al., 1971), it is considered un-
likely that C tactile fibers are involved in acute discriminative aspects of touch
(Vallbo, Olausson, and Wessberg, 1999). Instead, the C tactile fiber system
was initially proposed to signal tickle (Zotterman, 1939; Bessou et al., 1971;
Nordin, 1990). A recent study has, however, revealed that C tactile afferent fir-
ing rates correspond highly with subjective perceptions of the pleasantness of
the tactile sensation (Löken et al., 2009), and the prevalent view today is that C
tactile afferents signal affective touch involved in affiliative behavior (Vallbo,
Olausson, and Wessberg, 1999; Olausson et al., 2002; Wessberg et al., 2003;
McGlone et al., 2007; Olausson et al., 2008a).

C tactile afferents have also been implied as an integral part of the proposed
thin-fiber homeostatic network for maintenance of physical well-being (Craig,
2003a; Craig, 2008; Craig, 2009).
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8. Aims of the study

As described in the previous chapters, a number of observations support the
hypothesis that C tactile afferents signal light touch in a network which is
differentiated from, but parallel to, the Aβ system in humans. Specifically,
positive C tactile BOLD responses have been identified in the insular, but not
somatosensory, cortical areas of neuronopathy patients (Olausson et al., 2002;
Olausson et al., 2008b), indicating that C tactile and Aβ afferents project along
separate pathways. Whereas Aβ fibers follow the posterior column medial
lemniscus pathway, C tactile afferents are hypothesized to project along the
pain and temperature fiber spinothalamic tract, which terminates in a somato-
topic fashion in the posterior insular cortex.

The differential response patterns in the insular cortex due to C tactile and
Aβ activation remain to be demonstrated in healthy humans, as does the hy-
pothesized somatotopic organization of C tactile projections in the insular cor-
tex. The aims of the study were therefore to:
1. Explore differential brain patterns in response to C tactile and Aβ stimula-

tion in healthy subjects.
2. Investigate whether C tactile afferent activation patterns in the posterior

insular cortex are somatotopically organized.
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9. Summary of methods

9.1 Subjects and ethics
The study was performed according to the Declaration of Helsinki with ap-
proval of the Ethics Committee of the Göteborg University, and informed con-
sent was obtained from all subjects. Handedness was checked with a modified
inventory (Varney and Benton, 1975).

In paper III, two healthy participants were included. In paper IV, six neuro-
logically intact volunteers were studied in addition to one subject (GL, age
56, right-handed, female) with sensory neuronopathy syndrome (Sterman,
Schaumburg, and Asbury, 1980). At the age of 31, GL suffered permanent
specific loss of large-diameter myelinated afferents, leaving unmyelinated and
small-diameter myelinated afferents intact (Forget and Lamarre, 1995). Motor
nerve conduction and electromyography findings are within the healthy range,
and thresholds for temperature and pain detection are largely normal (Olaus-
son et al., 2002; Olausson et al., 2008b). GL routinely denies any ability to
identify or localize touch below the level of the nose (Forget and Lamarre,
1995). In a forced choice task she did, however, demonstrate the perception of
gentle touch in the hairy but not in the glabrous skin (lacking C tactile affer-
ents), and she failed to detect vibratory stimuli (which poorly excite C tactile
afferents) in both types of skin (Olausson et al., 2008b). In a four-alternative
forced choice procedure, she identified 72% of soft brush stimuli to the correct
extremity (at chance level of 25%). Healthy subjects, in contrast, detect gentle
touch as well as vibration without fail in both glabrous and hairy skin, and can
localize point indentation on the hairy skin to an accuracy in the range of two
centimeters (Norrsell and Olausson, 1994).

9.2 Stimuli
Light mechanical stimulation, known to vigorously activate C-tactile afferents
(see section 7.2), was manually delivered using a soft artist’s goat hair brush
(width: 2.3 - 7 cm, indentation force: 0.5 - 0.7 N, distance 3 - 3.5 cm, velocity:
0.9 to 7.5 cm s−1).

In study IV, vibration (50 Hz), which preferentially activates Aβ afferents
(both rapidly and slowly adapting), was also used. The stimulus was applied
with a hand-held device consisting of a rectangular piece (40 x 12 x 7 mm) of
balsa wood connected to a piezoelectric element (Piezo Systems, Inc., Cam-
bridge, Massachusetts, USA). It should be noted that, although the preferred
stimulus for C tactile afferents is slow stroking, responses can be elicited also
by other types of stimuli such as vibration (unpublished data). While Aβ fibers
are highly activated by all types of touch, including brushing and vibration, C
tactile afferents are poorly activated by vibration. Differential brain activa-
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tion patterns between brushing and vibration are, therefore, likely to reflect C
tactile projections.

In paper III, all stimuli were applied to the right side of the body whereas
in paper IV the stimulation was applied to the left side.

9.3 Experimental paradigm
A block-designed paradigm was used throughout the study, and the stimuli
were applied manually according to timing cues from the scanner. All sub-
jects were instructed to focus on the stimulus throughout the fMRI scanning
session.

In paper III, six-volume blocks of vibratory stimulation, brushing stimula-
tion or rest, each lasting for 21 s were acquired. Two functional scans were
obtained during vibration and two during brushing in a balanced order be-
tween subjects.

In paper IV, three-volume blocks of forearm brushing, thigh brushing or
rest, each lasting 10.5 s were alternated in a pseudo-random order with equal
numbers of each of the three conditions. The condition order remained fixed
throughout each scan and across participants, and six functional scans were
obtained per subject.

9.3.1 fMRI data acquisition
A 1.5 T fMRI scanner (healthy subjects: Philips Intera; GL: Siemens Sonata)
was used to collect whole brain anatomical scans using a high-resolution T1-
weighted anatomical protocol. Functional scans were acquired using a BOLD
(blood oxygenation level dependent) protocol and a T2*-weighted gradient-
echo, echo-planar imaging (EPI) sequence (healthy subjects: thickness 6 mm,
in-plane resolution 3.6 × 3.6 mm; GL: thickness 4 mm, in-plane resolution 4
× 4 mm). The scanning planes were oriented parallel to the line between the
anterior and posterior commissure and covered the brain from the top of the
cortex to the base of the cerebellum.

9.4 Preprocessing
Standard preprocessing steps were applied to the data, and single-trial condi-
tion responses were estimated by either GLM fitting (paper III) or volume-
average intensities (paper IV; see section 4.2.3).

For paper IV, the posterior contralateral (left) insula was isolated (Naidich
et al., 2004). An initial evolutionary mapping was performed in each subject
to identify the region of the insular cortex which responded maximally to
brushing of the forearm and thigh combined (compared to rest). In all subjects,
this region was located to the posterior portion of the insula, consistent with
the activations found in previous studies of the insular cortex in relation to
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C tactile activation (Olausson et al., 2002; Olausson et al., 2008b). This area
was identified as a region of interest (ROI) to which all further analysis was
restricted.

9.5 Analysis
All multivariate maps were computed on individual subjects, and a linear sup-
port vector machine was used for classification.

Paper III: Whole brain main effect GLM analysis was performed using
BrainVoyager QX in order to detect regions with a significant univariate
BOLD response to any of the tactile stimuli. In addition, the Monte Carlo
algorithm (see section 5.1; search sphere radius of 6.6 mm) was applied to
the whole brain to identify locally-multivariate differential activation patterns
between brushing and vibration. Due to the reported susceptibility of C tac-
tile afferents to fatigue, only the first two volumes of each stimulus block
were analyzed. Maps were produced in each individual, and a group map was
subsequently formed by averaging across the subject-level maps. Finally, in
order to resolve whether any identified multivariate differences in brain re-
sponses between brushing and vibration were due to variations in fine-grained
spatial patterns or differential BOLD response magnitudes, an event-related
average of the BOLD temporal response for both conditions was computed
using BrainVoyager QX.

Paper IV: The evolutionary clustering scheme (see section 5.2) was applied
to the forearm/rest and thigh/rest datasets separately within the posterior in-
sula ROI to explore potential somatotopic response patterns in the insular cor-
tex. A ten-fold cross-validation of both forearm/rest and thigh/rest brushing
data was performed in all the identified regions, and significance levels of the
resulting classification scores were established using permutation testing.
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10. Summary of results

10.1 Differential C tactile and Aβ activation patterns in
the insula (paper III)
The GLM analysis demonstrated significant univariate brain activations in re-
sponse to the tactile stimuli compared to rest in the expected somatosensory
cortices (SI and SII), bilateral insular cortex and a number of additional areas
(table 10.1).

The Monte Carlo method found differential activation patterns due to soft
brush stroking and vibration in a number of regions (table 10.1). Specifi-
cally, a region in the left insular cortex with approximate location near re-
gions previously identified as activated by soft brushing (Olausson et al., 2002;
Olausson et al., 2008b), was identified and analyzed further (figure 10.1).
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Figure 10.1: Event-related average percentage BOLD change in response to the brush-
ing (grey) and vibration (black) tactile stimuli in the left insular cortex region (con-
tralateral to the stimuli) where differential multivariate response patterns between
brushing and vibration was found (shown in red). The dotted line indicates when
the stimulus was applied.

Voxels in this region were also significantly univariately activated by brush-
ing and vibration combined according to the GLM (peak t value of 5.22,
p<0.05), as well as by the GLM contrast brushing vs. rest (t=4.25, p<0.05)
and, although less so, vibration vs. rest (t=3.12, p<0.05). No significant differ-
entiation was, however, observed between brushing and vibration (max t-value
of 2.56, p>0.05).

As illustrated by the event-related averaging in figure 10.1, the differ-
ential spatial patterns between C tactile and Aβ stimulation in this re-
gion of the insular cortex (contralateral to the stimuli) was the result of
a relatively larger BOLD increase during the brushing condition than dur-
ing the vibration condition. The event-related averaging revealed a maximal
BOLD response to brushing during the first two to three stimulation vol-
umes, agreeing with the reported fatigue in C tactile afferents (Iggo, 1960;
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Bessou et al., 1971; Iggo and Kornhuber, 1977; Lynn and Carpenter, 1982;
Wiklund Fernström, 2004).

Also, the vibration condition shows some BOLD response increase during
the stimulation, although with a peak magnitude of a third of that of brushing.
Although C tactile afferents are clearly preferentially activated by gentle types
of stimulation and poorly by vibration, the insular BOLD response due to
vibration could nonetheless be the result of a partial C tactile activation.

Table 10.1: Peak group results (t values for the GLM analysis and group average
classification scores for the multivoxel analysis) and cluster centroid Talairach coor-
dinates for whole brain activations due to stimulation on the left thigh. The insular
region of interest which is analyzed further is marked with a *. BA, Brodmann area;
GLM, General linear model; Vib, vibration; contra, contralateral to the stimulated
thigh; ipsi, ipsilateral to the stimulated thigh.

Region Main tactile effect (GLM) Vib vs. brush (Monte Carlo)

S1 contra 8.49 (-16.0, -43.0, 69.0)
S2 contra 13.12 (-55.0, -28.0, 27.0)

6.60 (-58.0, 2.1, 6.5)
IC contra 6.92 (-43.0, -7.8, 15.0) 0.61 (-25.0, -2.4, 23.0)

0.60 (-39.0, -10.0, 1.0)*
S1 ipsi -7.01 (2.6, -38.0, 63.0)
S2 ipsi 6.22 (56.0, -19.0, 21.0)

6.78 (52.0, -28.0, 30.0)
5.95 (53.0, -17.0, 32.0)

IC ipsi 5.46 (46.0, -0.058, 4.0)
Other BA 3, 6, 7, 19 BA 5, 6, 9, 10, 40

21, 39
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10.2 Somatotopic organization of C tactile response
patterns in the insula (paper IV)
The evolutionary mapping approach identified brain regions where the fore-
arm and thigh response patterns were highly significantly differentiated in GL
as well as for the healthy volunteers. Forearm and thigh tactile stimulation
were found to project to distinctly separate locations in GL, with a substan-
tial euclidean distance between cluster centroids of 8.9 mm (figure 10.2). The
forearm cluster centroid was located at MNI (X, Y, Z) coordinates (-34, -10,
4), and the thigh cluster was found at (-34, -18, 0). The distance between clus-
ters was thus maximal in the anterior-posterior (Y) plane at 8 mm, whereas
the location differences in the remaining planes were either small or non-
existent (X: 0 mm, Z: 4 mm). Validating the pattern observed in GL, the
insular responses in the healthy subjects were also arranged in a clear soma-
totopic fashion. The difference in location was significant only in the Y-plane
(anterior-posterior; two-tailed paired t-test, p<0.05). The subject mean eu-
clidean distance between the cluster centroids equaled that of GL at 9.3 mm
(range 6.6-12 mm).

Figure 10.2: The voxel clusters reflecting forearm (red) and thigh (blue) BOLD acti-
vation patterns in the neuronopathy syndrome patient GL and six healthy subjects,
reflecting the projection of C tactile afferents. There was a significant difference
between forearm and thigh cluster centroid location in the Y-plane only (two-tailed
paired t-test, p<0.05).

The ten-fold cross-validation confirmed that the anterior region contained a
localized multivariate BOLD response to forearm brushing and the posterior
region to thigh brushing (see figure 10.3).
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Figure 10.3: The classification scores (measured by area under the receiver operating
characteristic curve, AUC) of the forearm (white) and thigh (black) brushing volumes
on the posterior insular voxels obtained using the evolutionary mapping algorithm (as
seen in figure 10.2). The healthy subject (left bar) forearm brushing volumes were sig-
nificantly more separable in the forearm cluster than in the thigh cluster, and vice versa
for the thigh brushing volumes (two-tailed paired t-test, p<0.05). Also, the forearm
brushing scores were significantly higher than those of thigh brushing in the anterior
cluster, and vice versa (two-tailed paired t-test, p<0.05). The neuronopathy patient
data (GL; right bar) follows the healthy subject trend. These results verify the forearm
- anterior and thigh - posterior pattern demonstrated by the evolutionary algorithm.
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11. Discussion

Using multivariate machine learning methods, these studies have demon-
strated two distinctive brain response patterns due to gentle tactile stimulation
activating C tactile afferents. First, a whole-brain analysis revealed that brush-
ing (to which both C tactile and Aβ afferents respond) and vibration (which
primarily activates Aβ fibers) response patterns differ in the posterior insular
cortex. Second, C tactile responses to brushing in this portion of the cortex
were found to be organized in a somatotopic fashion. These results have a
number of implications, as discussed below.

11.1 Afferent activation
Any tactile stimulation activates a range of mechanoreceptors which trans-
mit a complex pattern of inputs to the brain. Deducing how fMRI BOLD re-
sponses correlate to a single type of afferent is far from trivial. Moreover,
cutaneous afferents rarely respond exclusively to a particular type of stim-
ulation, and although C tactile afferents preferentially respond to soft brush
stimuli some degree of activation to other types of stimuli can also be expected
(Nordin, 1990; Vallbo, Olausson, and Wessberg, 1999). Also, myelinated (Aβ )
low-threshold mechanoreceptors respond vigorously to gentle tactile stimula-
tion in healthy subjects (Vallbo et al., 1995). Since she lacks Aβ afferents, the
neuronopathy patient GL has therefore played a fundamental role in determin-
ing the central projections of C tactile afferents (Forget and Lamarre, 1995;
Sterman, Schaumburg, and Asbury, 1980).

The pattern recognition analysis detected differences in the posterior in-
sular cortex between vibration and brushing, and a closer investigation of the
event-related BOLD response demonstrated differential temporal responses to
the stimuli. Since brushing activates this region in the patient (Olausson et al.,
2002; Olausson et al., 2008b; Björnsdotter et al., 2009), it appears likely that a
larger increase in BOLD response due to brushing than to vibration reflects the
central projections of C tactile afferents. Similarly, the consistency in activa-
tion patterns between the group of healthy individuals and the patient suggest
that the observed somatotopic organization indeed reflects brain activations
due to C tactile fiber projections rather than of myelinated afferents.

11.2 Parallel tactile systems
Soft brushing, which vigorously activates C tactile as well as Aβ afferents,
was found to produce multivariately, but not univariately, differential insular
BOLD responses compared to vibration, which preferentially activates Aβ
fibers. This spatially encoded difference implies that either the univariate ef-
fects are small and enforced through the integration across multiple voxels,
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or that the spatial BOLD response patterns differ in a fashion such that no
univariate differentiation is at all possible. As indicated by the event-related
averaging (figure 10.1), however, it is clear that the BOLD responses to the
brushing conditions are of a higher magnitude than those of vibration. Con-
firming the projection patterns observed in the neuronopathy patients (Olaus-
son et al., 2002; Olausson et al., 2008b), these results provide further support
for the hypothesis that human touch is processed in parallel by two distinct
systems that comprise Aβ afferents with projections to somatosensory cor-
tices, and C tactile afferents with projections to the insular cortex.

Aβ afferents, with the highest innervation density in the glabrous skin of
the hand (Johansson and Vallbo, 1979b), provide the central nervous system
with rapid and detailed information regarding tactile stimuli (Sinclair and Hin-
shaw, 1950; Johnson, 2001). Aβ afferents are essential for precision finger
movements such as the ability to manipulate tools or discriminate textures
(Johansson and Birznieks, 2004; Hsiao and Bensmaia, 2007). Also, Aβ fibers
are fundamentally important for proprioception of larger joints (Edin, 2001)
and postural control (Backlund et al., 2005), and project directly to the pri-
mary and secondary somatosensory cortices (Hsiao and Bensmaia, 2007). Vi-
bration and brushing should therefore produce localized differential activation
patterns also in the somatosensory cortices. None such were found, however,
likely due to limitations of fMRI spatial and temporal resolution. It should also
be noted that only two subjects were used in paper III, and further research in-
cluding more individuals is required to substantiate these observations.

As opposed to Aβ afferents, the C tactile system provides poor discrimi-
natory information (e.g. regarding physical location of a stimulus; Olausson
et al., 2002; Olausson et al., 2008b; Björnsdotter et al., 2009) and C tactile
firing rates correlate well with subjective rating of the pleasantness of a tactile
stimulation (Löken et al., 2009). It has therefore been proposed that while the
Aβ system provides highly acute information regarding discriminative prop-
erties of touch, the C tactile network signals emotional and social aspects of
tactile stimulation (Vallbo et al., 1993; Vallbo, Olausson, and Wessberg, 1999;
Essick, James, and McGlone, 1999; Olausson et al., 2002).

11.3 Discriminative functions of the CT system
Although the Aβ system is clearly dominant for accurate localization of tactile
stimuli, the findings of paper IV suggests that there is a sensory-discriminatory
functionality to the C tactile system. Consistent with the somatotopic organi-
zation in the insular cortex, the neuronopathy subject, despite lacking thick
myelinated afferents and denying any ability of sensing touch below the level
of the nose in daily life, could localize the soft brush stimulation to the thigh
or arm at an accuracy of 97% in the forced-choice situation (and 72% in a
previous quadrant study; Olausson et al., 2008b). The contrast compared to
neurologically intact individuals is, however, striking – healthy subjects can
localize point indentation on hairy skin with an accuracy of about two cen-
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timeters (Norrsell and Olausson, 1994). Also, the patient’s C tactile system
potentially serves an amplified discriminative function due to central sensory
representation adaptations, but, given the similarity in fMRI activation pat-
tern with the healthy controls, it is highly unlikely that the insular somatotopy
reflects such neuroplastic changes.

Nonetheless, it appears improbable that the C tactile system plays a sig-
nificant role in acute spatial localization. Yet, it can be presumed that the
general stimulus location significantly modulates affective sensations, which,
as opposed to Aβ mediated percepts, are intimately related to C tactile
activity (Löken et al., 2009). Propagation of such affective information is
fundamentally important in the design or preparation of appropriate ac-
tions in response to emotionally relevant stimuli. For example, it has been
shown in rats, cats, and humans that painful stimuli applied to various body
parts result in correspondingly different autonomic responses (Lewis, 1942;
Bandler, Price, and Keay, 2000). It can thus be hypothesized that the crude
localization capacity of the C tactile system serves a similar function, where,
for example, a gentle stroke on the cheek evokes a different emotional and
motivational response than that on the arm, thus signaling various affective
aspects with corresponding social implications.

11.4 Central organization of CT-afferents and relation
to pain and temperature networks
It has been speculated that C tactile afferents are organized in a fashion simi-
lar to that of the pain and temperature mediating thin-fiber system projecting
through the lamina I spinothalamic pathway to the insular cortex (Olausson et
al., 2002; see Craig, 2002 for a review of the pathway). The insular activation
pattern due to C tactile excitation observed in paper IV is highly similar to that
of painful and cooling stimuli as shown in figure 11.1. These results support
the notion that C tactile afferents indeed project along the lamina I spinothala-
mic pathway to the posterior insular cortex but not to somatosensory regions.

11.5 Role in homeostasis
It has been suggested that thin afferents constitute an anatomically and func-
tionally distinct system (Craig, 2002). According to this view, thinly myeli-
nated and unmyelinated fibers project from the posterior insular cortex to other
insular regions and anterior cingulate cortices (Craig, 2002). Insular and an-
terior cingulate cortices in turn provide descending control of the autonomic
nervous system. Hence, these fibers may act as the afferent limb in a sys-
tem with the autonomic nervous system as the efferent limb, i.e. an interocep-
tive system for well-being (Craig, 2002; Craig, 2003b; Craig, 2003c). Further-
more, there is evidence suggesting that C tactile afferents inhibit nociceptive
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Figure 11.1: Thin-fiber activation center comparison. Posterior insular cortex activa-
tion centers (in MNI coordinates) due to application of thin-fiber exciting stimuli (soft
brushing, pain and innocuous cooling) on various body parts reported in the present1

and previous studies (Hua et al., 20052, Henderson et al., 20073 and Brooks et al.,
20054). White markers indicate an upper body stimulus location and black a lower
body location. Gentle tactile stimulation (brushing) fit the somatotopic pattern in the
posterior contralateral insular cortex well, with upper body stimulations projecting
anterior (and slightly lateral) to lower body stimulations.

signals even at the level of the dorsal horn (Lu and Perl, 2003), consistent with
a role for regulating well-being. In this light, the C tactile system contributes
to the maintenance of physical integrity and well-being (that is, homeostasis)
by relaying information regarding the affective tactile status of the body. The
tactile well-being of the body is of fundamental importance, especially in pri-
mates as illustrated by Harlow’s classic study of infant monkeys displaying
affection for a surrogate mother in response to tactile comfort (Harlow, 1958).
In fact, it has been argued that the C tactile system provides an important sen-
sory underpinning of social behavior and, moreover, plays an integral role in
the foundation of self-awareness (McGlone et al., 2007; Olausson et al., 2008;
Craig, 2009).

The thin-fiber system is, in addition, proposed not only as an afferent home-
ostatic pathway, but also to contribute significantly to the construction of the
subjective experience of the self and awareness (Craig, 2009). The neuronopa-
thy patient, although denying a general sense of touch, could perceive as well
as localize a soft brush stimulation in an experimental situation. While the
somatotopically organized posterior insular cortex serves as a primary inte-
roceptive region essential for localization, the reported subsequent mid-to-
anterior progression of integration of various physiological representations
is likely to play a substantial role in generating an awareness of the tac-
tile stimulation (Burton, Videen, and Raichle, 1993; Spinazzola et al., 2008;
Hölzel et al., 2008; Craig, 2009; Lovero et al., 2009). It has previously been
observed that soft brushing induces robust activity in the anterior insular cor-
tex (Olausson et al., 2002), suggested as integral in the subjective evaluation
of the body’s condition (’how you feel’; Craig, 2009).
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Concluding remarks

In contrast to conventional univariate statistical analysis where average sig-
nal changes in single voxels are detected, machine learning algorithms utilize
the inherent multivariate nature of brain activity to identify and localize brain
response patterns. As demonstrated in this thesis, such pattern recognition
methods are more sensitive than conventional techniques, and also provide a
direct link between the BOLD response pattern and corresponding brain state.

A particular aspiration of the thesis research was to implement multivari-
ate brain mapping methods directly applicable in a variety of neuroimaging
studies. Two such algorithms for highly sensitive pattern discrimination and
localization were proposed, and these were successfully applied to map brain
responses to C tactile afferent mediated gentle touch. First, the Monte Carlo
approach (paper I) was designed for generic whole brain exploration, and was
utilized to identify regions where responses to gentle brushing (combined Aβ
and C tactile afferent stimulation) and vibration (mainly activating Aβ fibers)
differed (paper III). The evolutionary algorithm (paper II), in contrast, was
implemented to customize specific regions of any size and shape to optimally
capture regional activity patterns. Such a tailored analysis proved highly use-
ful in the somatotopy study (paper IV), where the specific regions coding for
forearm and thigh brushing were desired.

The following list summarizes the main findings of the work in this thesis:

• Multivariate pattern recognition methods are highly useful as a sensitive
complement to univariate brain mapping.
• Patterns of brain activity responses to C tactile afferent stimulation differ

from those of Aβ fibers in the posterior insular cortex.
• C tactile afferent responses are somatotopically organized in the posterior

insular cortex.

Continued interdisciplinary research aiming to refine fMRI pattern recogni-
tion methodology promises further insights in both experimental and clinical
neuroimaging settings.
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