
 Research Report 
2009:2 

ISSN 0349-8034 
Mailing address: Fax Phone  Home Page: 
Statistical Research Unit Nat: 031-786 12 74 Nat: 031-786 00 00 http://www.statistics.gu.se/  
P.O. Box 640 Int: +46 31 786 12 74 Int: +46 31 786 00 00  
SE 405 30 Göteborg    
Sweden    
 

 

Research Report 
Statistical Research Unit 
Department of Economics 
University of Gothenburg 
Sweden 
 

  

 Sufficient reduction in multivariate 
surveillance 

 M. Frisén, E. Andersson &  
L. Schiöler 

 



 

Address correspondence to Marianne Frisén, Statistical Research Unit, University of Gothenburg, PO Box 640, 
SE 40530 Gothenburg, Sweden; E-mail: marianne.frisen@statistics.gu.se. 

Sufficient reduction in multivariate surveillance 
 
MARIANNE FRISÉN, EVA ANDERSSON, AND LINUS SCHIÖLER 
Statistical Research Unit, University of Gothenburg, Göteborg, Sweden  
 
The relation between change points in multivariate surveillance is important but seldom considered. The 
sufficiency principle is here used to clarify the structure of some problems, to find efficient methods, and to 
determine appropriate evaluation metrics. We study processes where the changes occur simultaneously or with 
known time lags. The surveillance of spatial data is one example where known time lags can be of interest. A 
general version of a theorem for the sufficient reduction of processes that change with known time lags is given. 
A simulation study illustrates the benefits or the methods based on the sufficient statistics.  
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1. Introduction 

In society there is a great need for continuous surveillance of processes with the aim of 
detecting an important change in the underlying process as soon as possible after the change 
has occurred. The inference is quite different in on-line surveillance as compared to 
hypothesis testing. In surveillance there are no fixed hypotheses. Even if the situation is 
stable at the current time, a change can happen later. Timeliness is important in surveillance. 
Since the probability of a false alarm increases with time and tends to one for most 
surveillance methods, evaluation by significance level, power, and other well-known metrics 
is not useful for ordinary surveillance problems. Some surveillance methods have been 
constructed to resemble methods for hypothesis testing, see for example Chu, Stinchcombe, 
& White, (1996). These methods are constructed to have a false alarm probability less than 
one. This could be an advantage, since it allows statements like those in hypothesis testing to 
be made. However, Frisén, (2003), Aue & Horvath, (2004), and Bock, (2008) demonstrated 
that the detection ability of these methods declines rapidly for late changes. These methods 
are suitable only for applications where a possible change appears at or soon after the start. 
Sometimes methods like the CUSUM method by Page, (1954) or the Shiryaev-Roberts 
method by Shiryaev, (1963), which were constructed to be optimal for on-line surveillance, 
are demonstrated to be useful also for retrospective hypothesis testing, as in Lee, Ha, Na, & 
Na, (2003) and Vexler & Wu, (2009). There are problems situated between hypothesis testing 
and surveillance, but in this paper we will deal only with inference suitable for on-line 
surveillance.  

The first versions of modern control charts (Shewhart, (1931)) were made for industrial 
use. Multivariate surveillance is of interest in industrial production, for example in order to 
monitor the multiple sources of variation in assembled products. Wärmefjord, (2004) 
described the multivariate problem for the assembly process of the Saab automobile. In recent 
years, there has been an increased interest in statistical surveillance also in other areas than 
industrial production. The increased interest in surveillance methodology in the US following 
the 9/11 terrorist attack is notable. In the US, as well as in other countries, several new types 
of data are now being collected. Since the collected data involve several related variables, this 
calls for multivariate surveillance techniques. The surveillance of several parameters of one 
distribution (such as the mean and the variance of a normal distribution), see for example 
Knoth & Schmid, (2002), can involve the same problems as the surveillance of a 
multidimensional distribution originating from the observation of different variables. Spatial 
surveillance is useful for the detection of a local change or a spread. One example is the 
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spread of a disease such as influenza, as in Schiöler, (2008) and Frisén, Andersson, & 
Schiöler, (2009). Another example is the spread of a harmful agent such as nuclear radiation, 
as in Järpe, (2001). Spatial surveillance is multivariate since several locations are involved. 
Recently, there have also been efforts to use multivariate surveillance for financial decision 
strategies (see for example Okhrin & Schmid, (2007) and Golosnoy, Schmid, & Okhrin, 
(2007)) with respect to various assets.  

Reviews on multivariate surveillance methods can be found for example in Basseville & 
Nikiforov, (1993), Ryan, (2000), Frisén, (2003), Sonesson & Frisén, (2005a), Bersimis, 
Psarakis, & Panaretos, (2007), and Frisén, (2009). Optimality is hard to derive and sometimes 
even hard to define in multivariate problems. However, we will demonstrate how the 
structure of some multivariate surveillance problems can be simplified by the sufficiency 
principle and how this will lead to more efficient methods than those suggested earlier. 

At each time point, a new observation is made on the process. The p-variate process 
under surveillance is denoted by { ( ),  1,2,...}t t Y Y , where Y(t) = {Y1(t), Y2(t),..., Yp(t)}. 
We aim to detect the change from a stable state D to a harmful state C as soon as possible 
after the change has occurred, in order to give warnings and take corrective actions. At 
decision time s we base the decision on the available information Ys = {Y(1), Y(2)... Y(s)} 
and use the observation vector ys to form an alarm statistic. An alarm is called the first time 
that the statistic exceeds an alarm limit. In the univariate case, the change happens at the 
unknown time point . In the multivariate case, we observe p processes which can change at 
different times τ1, .. τp. Here an important aim is to detect the first time that not all processes 
is are in control, that is, we want to make inference about min 1min{ ,..., }p   . If no change 

ever occurs in process i, we denote this by “i =”. We consider models where the 
observations Yi(t) and Yi(t+j) are independent, given the values of the change points, and for 
each variable, i, there is one distribution, fi

0(t), for t< τi and another, fi
1(t), for t≥τi. In this 

paper we concentrate on the one-parameter exponential family.  
In Section 2 different approaches to the construction of multivariate surveillance methods 

are described and exemplified. Theoretical results on sufficient reduction are given in Section 
3. In Section 4 we discuss the challenges of evaluating multivariate surveillance methods 
with special focus on how the structure of the multivariate problem is clarified by the 
sufficiency principle. In Section 5 we illustrate the theory by a simulation study. Concluding 
remarks are made in Section 6. 

2. Approaches to multivariate surveillance 

Some commonly used general approaches for adapting univariate methods to multivariate 
surveillance will be described and exemplified. Principal differences between approaches for 
handling multivariate data in surveillance will be demonstrated. 

2.1. Dimension reduction 

In Statistical Process Control (SPC) it is practical to use only one control chart instead of 
several. Thus many suggestions have been made on reduction to one chart (see e.g. Cheng & 
Thaga, (2006)). A stepwise reduction of the multivariate surveillance problem is natural. An 
easy way to simplify the situation is to reduce the p-variate vector at each time point into one 
statistic and then use a system for univariate surveillance on this statistic. One example is the 
suggestion by Crosier, (1988) to summarize data by the Hotelling T variable and then apply 
the univariate CUSUM method to the T variable, making it a scalar accumulation method. As 
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we will describe in Section 3, a sufficient dimension reduction can be found for some 
situations. 

2.2. Parallel surveillance 

A stepwise solution of the multivariate surveillance problem can alternatively be 
accomplished by monitoring each variable separately. The approach with parallel systems is 
often called “combined univariate” methods or “parallel” methods. The most common way to 
combine the information from several univariate methods is to signal an alarm at the first 
time that any of the univariate methods gives an alarm. This is a special case of the union-
intersection technique suggested by Roy, (1953). 

2.3. Vector accumulation  

The accumulated information on each component is utilized by a transformation of the vector 
of component-wise alarm statistics into a scalar alarm statistic. Thus a surveillance method is 
applied to each of the p processes, resulting in p-variate alarm statistics at each decision time 
s. This p-variate statistic is then transformed into a scalar, which is the alarm statistic for the 
whole system at time s. An alarm is triggered if this statistic exceeds a limit. As an example, 
Lowry, Woodall, Champ, & Rigdon, (1992) proposed a multivariate extension, MEWMA, of 
the univariate EWMA. The MEWMA method uses a vector of univariate EWMA statistics. 
For each variable Yj and each time t, we have the EWMA statistic Z(t)=jYj(t)+(1-j)Zj(t-1) 
where Z(0)=0. At decision time s we have Z(s)={Z(y1

s), Z(y2
s),..., Z(yp

s)}. An alarm is 
triggered at 1

( )min{ ; ( ) ( ) }T
A st s s s L ZZ Σ Z . The properties of the method are  described in 

Section 5.2.2. Vector accumulation methods based on CUSUM have also been proposed, but 
there are several possibilities of how to handle the characteristic barrier of the CUSUM 
methods (see Sonesson & Frisén, (2005b)). 

2.4. Joint solution  

A joint solution of the original full problem, without stepwise solutions, is preferred when 
possible. In general, the likelihood ratios are sufficient for the problem and so is the set of 
partial likelihoods for surveillance problems: 

L(s,m1,...mp)=
1 1 1

1 1

( ,... ,... )

( ,... ,... )

 
 
 

 

s s
p p p

s s
p p

f Y Y m m

f Y Y s s
 . 

The full likelihood ratio method for the multivariate problem (see for example Andersson, 
(2009)) requires knowledge of the distribution of the change times. When the full likelihood 
for Ys = {Y(1), Y(2)... Y(s)} is available, it provides a good basis for surveillance since 
optimal methods are mostly constructed based on the likelihood. However, the full likelihood 
can be complicated for some problems, and therefore a reduction may be considered. A 
sufficient reduction will not reduce the information, but other reductions will. A jointly 
optimal solution can be constructed by a sufficient reduction (where no information is lost in 
the reduction step), followed by an optimal surveillance method applied to the reduced 
statistic. Stepwise approaches which start with a reduction (either in time or in the variables) 
and then use a possibly optimal univariate method can be suspected to be suboptimal. Only 
reductions which are sufficient can be expected to result in jointly optimal solutions, since no 
information is lost.  
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3. Sufficient reduction 

A statistic T is sufficient for a family of distributions if and only if fY|T(y|t) is the same for all 
distributions belonging to the family F (see for example Cox & Hinkley, (1974)). A sequence 
T1(Y1), T

2(Y2),… is a sufficient sequence of statistics for the distributional families F 1, F 2 
… if for all s, Ts(Ys) is a sufficient statistic for the family F s.  

For a shift at τ in a univariate distribution between two fully specified distributions, the 
set of likelihood ratios L(s,t) = fYs(Y

s |τ=t) /fYs(Y
s |D) is sufficient for the distributional family 

of Ys defined by the time of change τ.  
According to the sufficiency principle, all conclusions to be drawn should depend on one 

sufficient statistic only.  

3.1. Simultaneous changes 

Consider the case where all processes have the same change point so that τ1 = τ2 =…τp = τ. 
For a change at τ between the distributions f0 and f1 we have the distribution for the s 
observations 
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0 1 0
0

1 1

( ( ))
( | ) ( ( )) ( ( )) ( ( ))

( ( ))

m s s s

s
t t m t t m

f Y t
f Y m f Y t f Y t f Y t

f Y t




   

      . 

It now becomes possible to identify the separate factors: the part that depends on the data (but 
not the value of τ) as well as the part that depends on the s-dimentional vector 
Ls(Ys)={L(s,m), t=1,...s}, where m is the common change time. Thus Ls(Ys) is sufficient for 
the distributional family for each s. From this it follows that the sequence of s likelihood 
ratios is a sufficient sequence. This was proven by Wessman, (1998) both for a fixed 
unknown value of τ and for a stochastic time of change. When the aim is to detect a fully 
specified, simultaneous change in a multivariate process and the distributions before and after 
the change are fully specified, it is possible to construct a univariate surveillance procedure 
based on the sufficient sequence of likelihood ratios. Examples will be given in the next 
section as special cases of the general theorem in the next section. 

3.2. Changes with time lags 

We will now consider the case where there are known time lags between the changes of the p 
processes. In the context of nuclear incidents, Järpe, (2000) studied measurements at different 
geographical locations in Sweden. Several models for the spread of radioactive material by 
the wind were studied. At each location, the radioactivity increased with a time lag which 
was assumed to be proportional to the distance from the source (a nuclear plant). For the 
situation with a shift of equal size in the expected value of Gaussian processes, when the 
shifts occur with known lags and where we have independent (given the change points) 
normal distributions with the same variances, Järpe, (2000) demonstrated that a sufficient 
reduction to univariate surveillance exists. Here we will prove that a sufficient reduction to a 
univariate statistic exists as long as the processes belong to the one-parameter exponential 
family. 
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Theorem 
For p processes which all belong to the one-parameter exponential family and which are 
independent (conditional on the change points), there exists a sufficient reduction of the 
observation vectors {y1, y2, …yp}  to a univariate statistic for the detection of shifts in the 
parameter vector when the changes occur with known time lags (q2, q3,… qp) where qi=τi – τi-
1. A sufficient statistic for the detection of shifts of sizes 1 2, ,... s    is the set  

1 1 2 2 2( ) ( ) ... ( )      p p py t y t q y t q , for 1≤ t ≤s-q2 -q3 -...-qp 

1 1 2 2 2 1 1 1( ) ( ) ... ( )         p p py t y t q y t q , for s-q2 -q3 -...-qp< t ≤ s-q2 -q3 -...-qp-2, 

… 

1 1 2 2 2( ) ( )  y t y t q , for s-q2 -q3 <t ≤ s-q2, 

1( )y t , for s-q2 <t ≤ s.  

 
Proof 
Since the observations are independent given the values of the change points, the distribution 
can be written as a product. The likelihood expressions for the exponential family can be 
written as  

1

2

1

min

1 p

j j j j
t 1 j 1

1 p1

j j j j j j j j j j
t j 1 j 2

j j j j j

f (Y s)

exp y (t) ( ) g( ) h(y (t))

exp y (t) ( ) g( ) h(y (t)) y (t) ( ) g( ) h(y (t))

... exp y (t) ( ) g( ) h(









 

     

   



 



  

 

 
      

 
                    
   

      



  
p

p 1

p

1 p 1 p

j j j j j
t j 1 j p

ps

j j j j j j
t j 1

y (t)) y (t) ( ) g( ) h(y (t))

exp y (t) ( ) g( ) h(y (t))







 

   



 

  

 

               
   

         
  

  


 

and 

min

ps

j j j j
t 1 j 1

f (Y s)

exp y (t) ( ) g( ) h(y (t))



 
 

 

 
     

 


 

 

The likelihood ratio, conditional on τmin=m, equals min

min

( | )
( , )

( | )



 




f Y m s
L s m

f Y s
 and thus the 

log likelihood ratio is  
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2

pm 1

j j j j
t 1 j 1

m q 1 p1

j j j j j j j j j j
t m j 1 j 2

2

j j j j j j j j j j
j 1

y (t) ( ) g( ) h(y (t))

y (t) ( ) g( ) h(y (t)) y (t) ( ) g( ) h(y (t))

y (t) ( ) g( ) h(y (t)) y (t) ( ) g( ) h(y (t))

 

     

     



 

 

  



     

 
                

 

          



  


2 3

2

2 p

2 p 1

2

m q q 1 p

t m q j 3

m q ... q 1 p 1 p

j j j j j j j j j j
t m q ... q j 1 j p

p

j j j j j j
t m q . j 1

...

y (t) ( ) g( ) h(y (t)) y (t) ( ) g( ) h(y (t))

y (t) ( ) g( ) h(y (t))

     

   



  

  

    

     

   

 
    

 
 

 
                 

 

       

 

  


p

s

.. q

ps

j j j j
t 1 j 1

y (t) ( ) g( ) h(y (t)) 



 



     




 

 
This can be arranged into 

2 p 2 p 1 2

2 p 2 3 2

3 p 3 p 1

2 3 p 3

s q ... q s q ... q s q s

1 1 1 1 1 1 1 1
t m t s q ... q 1 t s q q 1 t s q 1

s q ... q s q ... q s

2 2 2 2 2 2
t m q t s q ... q 1 t s q 1

y (t) y (t) ... y (t) y (t)

y (t) y (t) ... y (t)

..

   

  





      

            

     

         

       

      



   

  
p

2 p 1 p

2 p

s q s

p 1 p 1 p 1 p 1
t m q ... q t s q 1

s

p p
t m q ... q

1 2 p 1 2 p

. y (t) y (t)

y (t)

z( , ,..., , , ,..., )

 



     





   
      

   

   

 



 



 

 
where z(δ1, δ2,… δp, φ1, φ2,… φp) =  
 

 

 

 

 

2

2 p 1

2 p

s

1 1 1
t m

s

2 2 2
t m q

s

p 1 p 1 p 1
t m q ... q

s

p p p
t m q ... q

g( ) g( )

g( ) g( )

... g( ) g( )

g( ) g( )

  

  

  

  





 

  
   

   

 

  

   

  









 

 
is independent of the observations. The expression above can be rewritten as 
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     

 

2 p

2 p 1

2 p

s q ... q

1 1 2 2 2 p 1 2 p 1 p 1 p 2 p p
t m

s q ... q

1 1 2 2 1 p 1 2 p 1 p 1
t s q ... q 1

1 1 2 2 2
t s q

y (t) y (t q ) ... y (t q ... q ) y (t q ... q )

y (t) y (t q ) ... y (t q ... q )

... y (t) y (t q )

   

  

 



  

  


  

  
    

 

                

            

     




2

2 3

2

s q

q 1

s

1 1
t s q 1

1 2 p 1 2 p

y (t)

z( , ,..., , , ,..., )



     



 

  

 







 
 
Thus logL(s,m) is a one-one function of the statistic in the Theorem, and thus it is a sufficient 
statistic for L(s,m) and thus for the problem.  
  

The Theorem is general and thus has many parameters. In order to illustrate the idea we 
will now look at some special cases. The performance for these special cases will be 
illustrated in Section 5.  
 
Corollary 1  
A special case of the Theorem concerns two processes (p=2) when the changes occur at the 
same time (q=0). In this situation we have by the Theorem that 1 1 2 2( ) ( )Y t Y t   for 1≤ t ≤s is 

sufficient. If, for example, δ1=2δ2 we have that 2 1 2 22 ( ) ( ) Y t Y t  is sufficient. From this it 

follows that the statistic 1 2

2 1
( ) ( )

3 3
Y t Y t  is sufficient. If we have equal shifts in the parameter 

vector (δ1=δ2=δ), then 1 2( ) ( ) Y t Y t  is a sufficient statistic. From this it follows that the set 

of means of the observations 

SuffR0(t)= 1 2( ) ( )

2

Y t Y t
 

is sufficient.   
 
Corollary 2 
Another special case of the Theorem concerns two processes (p=2) which have equal shifts in 
the parameter vector (δ1=δ2=δ) and where the changes occur with a known time lag q. In this 
situation we have, by the Theorem, that a sufficient statistic is the set   

 1 2( ) ( )Y t Y t q    for t=1,…s-q, 

1( )Y t  for t=s-q+1, …s 

We need two arguments to specify the statistic when q>0, since the series changes when s 
increases. For q=1 a sufficient statistic is the set  

{SuffR1(s, t)}, for t=1, 2, … s.  
Thus, for s=1, the sufficient set is  

{SuffR1(1, 1)= 1(1)Y }.   

For s=2, the sufficient set is  
{SuffR1(2, 1)=  1 2(1) (2)Y Y /2, SuffR1(2, 2)= 1(2)Y  }.  
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For s=3, the sufficient set is  
{SuffR1(3, 1)=  1 2(1) (2)Y Y /2, SuffR1(3, 2)=  1 2(2) (3)Y Y /2, SuffR1(3, 3)= 1(3)Y }. 

For q=5, a sufficient statistic is the set  
{SuffR5(s, t)=    1 2 1 2 1 1{ ( ) ( 5) / 2,... ( 5) ( ) / 2, ( 4),... ( )}Y t Y t Y s Y s Y s Y s     , for t=1, 

2…s.  
 

The main theory of statistical surveillance is constructed for a change between two 
distributions – one for t<τi and another for t≥τi,. The SuffRq(s,t) statistic does not necessarily 
change between two distributions for q>0. For iid Gaussian distributions (conditional on τi) 
with expected values µ0 for t<τi and µ1 for t≥τi., and constant variance σ2, the distributions of 
the sufficient SuffRq(s,t) statistics have the expected value µ0 for t< τmin and µ1  for t≥ τmin.. 
However, the variance is not the same for t>q as for  t≤q. For example, for a lag of 1, the 
variance for SuffR1(2,1) equals σ2/2, whereas the variance for SuffR1(2,2) equals σ2. Other 
transformations, which are also sufficient, could be considered. One alternative is to divide 
the sums in the sufficient statistic SuffRq with √2 instead of 2. This results in a constant 
variance for all components but not constant expected values. For t≥ τmin the expected value 

shifts from 12  for the first components of the series to µ1 (for the last components). This 
seems like a larger drawback, and we will thus study the SuffRq(s,t) statistic in the examples 
in Section 5.4. In spite of the fact that we cannot rely on theoretical optimality (since the 
SuffRq statistic does change between more than two distributions), we will see that the 
statistic works well. 

4. Evaluation 

4.1. Optimality  

It can be difficult to find a definition of optimality that holds for all different aspects of 
multivariate problems in surveillance, see Frisén, (2003). In multivariate problems there are 
always many dimensions to consider. In surveillance there is the additional complexity of the 
different relations between the change points, ranging from simultaneous changes to 
independent changes. Nevertheless, sufficient reductions make it possible to find optimal 
solutions for at least one important situation. 

After sufficient reduction to a univariate statistic, we can use earlier optimality results of 
univariate surveillance. Different combinations of the partial likelihood ratios are known to 
have different optimality properties, as described by Frisén, (2003). In Frisén & de Maré, 
(1991) it is shown that the full likelihood ratio method, which is a weighted sum of L(s,t), 
with the weights proportional to P(τ=t), yields a minimal expected delay in univariate 
surveillance. This follows from the results by Shiryaev, (1963), where optimality is shown 
when the change point follows a geometric distribution. Another function of the partial 
likelihood ratios is the maximum likelihood ratio component L(s,t) with respect to t. This 
alarm statistic is mini-max optimal, as proved by Moustakides, (1986). The EWMA method 
was demonstrated by Frisén, (2003) and Frisén & Sonesson, (2006) to be an approximation of 
the full likelihood ratio method. 

For simultaneous changes, it was demonstrated in Section 3 that the multivariate problem 
can be reduced to a univariate problem of a change between two distributions: one for t<τ and 
another for t≥τ. Thus, the ordinary theory of optimal surveillance can be applied. Surveillance 
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of the sufficient statistic by an optimal univariate method is thus optimal for the multivariate 
problem. 

In the multivariate setting with different change points, the full likelihood ratio equals the 
joint solution. We may be able to find the full likelihood ratio, weighted by the geometric 
distribution of τ, which in the univariate case guarantees a minimal delay. Sun & Basu, 
(1995) studied multivariate surveillance with p=2 and used the assumption that (1,2) follows 
a bivariate geometric distribution. This means that also min follows a geometric distribution. 
If min is considered as the change point, then the requirement of a geometric distribution is 
satisfied. However, in proofs for optimality such as those of Shiryaev, (1963) and 
Moustakides, (1986), it is also required that Y(t) is independently and identically distributed 
before as well as after the change point. The requirement of identical distributions is not 
satisfied for Y(t) for all t after min, for the situation when there are several change points. 
Nevertheless, the different types of combinations of partial likelihood expressions (as 
described above) can be assumed to be suitable for different types of (approximate) 
optimality. In Section 5, examples will be used to demonstrate that the methods based on the 
sufficient statistic work well also for situations where optimality cannot be proven. 

4.2. Evaluation measures in multivariate surveillance  

The most commonly used measure of delay of the time, tA, of the alarm is ARL1= [ 1] AE t  

which is also called the zero state ARL since it is a measure of the delay when the change 
happens immediately. A measure for the opposite situation, when the change time tends to 
infinity, is the steady state ARL (see for example Lu & Reynolds Jr, (1999) and Reynolds & 
Kim, (2007)). In univariate surveillance this measure is unique for specified distributions and 
a specified method. In a multivariate setting, however, this measure is not unique but depends 
on the relation between the change points when they tend to infinity. It is common to 
calculate the measure for the situation of simultaneous changes even if the assumption of 
simultaneous changes is only implicit. However, as was pointed out in Section 3.1, the 
situation with simultaneous changes is not a genuine multivariate problem since it can be 
reduced to a univariate one. As was seen in Section 3.1, there are optimal methods for this 
situation. 

In {Frisén, 2009 #382} the conditional expected delay was recommended for situations 
with different relations between the τ-values 

CED(τ1, τ2... τp) = min min[ ]A AE t t   .   

This measure will be used in the next section to evaluate methods for different situations. 

5. Examples  

In order to illustrate the performance of different multivariate methods, especially those 
based on reduction, we apply them to a number of different situations. We will concentrate 
on the way in which the relations between the change times, τ1, τ2, ..., τp, influence the 
properties of different surveillance methods. In Section 5.1 we give a simple model which 
will be used in the simulation study, in Section 5.2 we describe the methods which are 
compared, and in Sections 5.3 and 5.4, respectively, we report the results for simultaneous 
changes and changes with different change points. 
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5.1. Simple model 

A very simple example with two processes will be used. The two processes, Y1 and Y2, are 
assumed to be independent (conditional on the change times) 
 

 

1
1

1

(0,1)
( ) ~

(2,1)

N t
Y t

N t





 

 

 

2
2

2

(0,1)
( ) ~

(2,1)

N t
Y t

N t





 

  

5.2. Methods 

In Section 2 we described how univariate techniques can be generalized to handle 
multivariate situations. We have chosen the EWMA method as the method for accumulating 
the information over time, since it is commonly used also in multivariate situations. The 
EWMA method was introduced in the quality control literature by Roberts, (1959) and has 
received much attention. As regards the variance of the EWMA statistic there are two 
versions: the exact and the asymptotic variance. We will use the asymptotic variance, both for 
simplicity and on the basis of the arguments given in Frisén & Sonesson, (2006) concerning 
properties. At time s the statistic of the EWMA method for the univariate surveillance of Y is  

s
s -t

t=1

Z(s)=λ(1-λ) (1-λ) Y(t) , 

where 0<≤1 and Z0 is the target value, which is zero in the examples. The EWMA statistic is 
a weighted sum of all observations available at the decision time s. Here we choose the value 
=0.35. For the comparisons we set alarm limits to ensure the same median run length to a 
false alarm (MRL0=100). We will compare the results of several approaches to multivariate 
surveillance: i) the EWMA method applied to a sufficient reduction of data, ii) the MEWMA 
method, iii) a system based on two parallel EMWA methods, and iv) the EWMA method 
applied to the univariate process that changes first. These methods will now be described. 

5.2.1 EWMA based on reduction 

If the two processes in Section 5.1 have simultaneous change points (1=2), then the 
reduction to the statistic SuffR0(t)=(Y1(t)+Y2(t))/2 is sufficient. The EWMA method can then 
be applied to this statistic. This reduction method is labeled SuffR0 in the figures.  

We will also study the reduction SuffR5(s,t) for the case of a lag of 5 (2=1+5). In the 
surveillance process the EWMA is applied to the sufficient statistics, and the time of alarm 
for the reduction methods is the first time when the EWMA statistic exceeds a constant alarm 
limit. Note that the recursive formula Z(s) = (1-)Z(s-1)+Y(s), for s=1, 2,... , which can be 
used for a univariate statistic Y, is not always valid here. The whole SuffRq(t) series is 
revised at each decision time (except for q=0). Thus the original EWMA 

1

( ) (1 ) (1 ) ( )
s

s t q

t

Z s SuffR t   



    should be used. For lag 5 we have  

 
Z(s)=(1-)sZ0+(1-)s-1(Y1(1)+Y2(6))/2+ (1-)s-2(Y1(2)+Y2(7))/2 +... 
 + (1-)2(Y1(s-5)+Y2(s))/2 +...+ (1-)1Y1(s-1) + Y1(s). 
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5.2.2 MEWMA 

MEWMA can be described as a Hotelling T2 control chart applied to univariate EWMA 
statistics instead of to the original data and is thus a vector accumulation method. For our 
simple example and with the value of λ equal for both processes it is 

2 2
1 2( ) ( )

( )
/(2 )

Z s Z s
EWMA s

 





. 

5.2.3 Parallel EWMA  

The parallel approach means that the EWMA method is applied to Y1(t) and Y2(t) separately. 
The time of alarm for the Parallel method is the first of either of the alarm times. 

5.2.4 Univariate 

For comparison we also have the results from the EWMA method applied to only one 
process. This corresponds to the situation when there is prior knowledge about which process 
will change first and therefore efficient to monitor only this one. This method is labeled 
“Univariate” in the diagrams. 

5.3. Results for simultaneous changes 

Below we present the results of the delay curve for the methods described above and the 
model in Section 5.1. First we study the situation when 1=2=. By Corollary 1, a method 
based on the sufficient reduction to the SuffR0 statistic should be used. We compare the 
EWMA method based on SuffR0 with the MEWMA method and the Parallel method. 
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Figure 1. CED(τ1, τ2) vs τmin for EWMA based on SuffR0, EWMA Parallel, and MEWMA, when 1=2=min. 
 
In Figure 1 we see that for simultaneous changes, the EWMA method based on reduction to 
the statistic SuffR0(t)= (Y1(t)+Y2(t))/2 gives the shortest delay. This is in accordance with 
theory, as described in Section 3.1. It may be surprising that the popular MEWMA method 
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gives the worst result. In this simple example, however, the flexibility of the MEWMA 
method does not constitute an advantage. When using the other methods it is advantageous to 
know the direction of the change. By contrast, the MEWMA method based on Hotelling T2 is 
directionally invariant. There are suggestions of one-sided versions of MEWMA, but they 
were not used here. 

5.4. Results for changes with a time lag 

We now study the two variables Y1 and Y2 in the situation when they change with a known 
time lag. For the time lag of 1 unit, we find from Corollary 2 that the reduction SuffR1 should 
be used. Correspondingly, for a known lag of 5 time units, the SuffR5 should be used. In 
Figure 2 we examine the situation when 2=1+1 and in Figure 3 we examine 2=1+5. We 
compare the EWMA method based on the sufficient statistic for the specific situation (lag 1 
or lag 5) with MEWMA, a parallel EWMA system, and EWMA based on SuffR0.  
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Figure 2. CED(τ1, τ2) vs τmin=1, for 2=(1+1) for MEWMA, EWMA Parallel, EWMA based on SuffR0, and 
EWMA based on SuffR1. 
 
In Figure 2, we can see that EWMA based on the SuffR1 reduction gives a shorter CED than 
the other methods for the case when 2=(1+1). 
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Figure 3. CED(τ1, τ2) vs τmin=1, for 2=(1+5) for EWMA based on SuffR0, MEWMA, EWMA Parallel, and 
EWMA based on SuffR5.  
 
In Figure 3 we can see that EWMA based on the SuffR5 reduction has the shortest expected 
delay.  
 
If we know that only the Y1 variable can change (τ2=∞), then it makes sense to base the 
surveillance on this variable only, i.e. monitor Y1 by univariate surveillance.  
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Figure 4. CED(τ1) vs τmin = 1 for τ2=∞, presented for EWMA Parallel, EWMA Univariate, and EWMA based 
on SuffR0.  
 
In Figure 4 we see that for τ2=∞ the univariate EWMA based on Y1 is clearly the best 
alternative. Thus, knowledge considerably improves the CED of the surveillance. 
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The conclusion is that for simultaneous changes (1=2), EWMA based on the SuffR0 
reduction gives the shortest delay. This is in accordance with theory, see Wessman, (1998). 
However, if there is a long time interval between the changes as in Figure 3, or if only one 
process changes as in Figure 4, the reduction to SuffR0 is not favorable. 

6. Discussion 

Since many important problems involve several data sources, multivariate surveillance has 
attracted much interest. It is challenging in many ways. Multivariate surveillance involves 
statistical theory, practical issues concerning the collection of new types of data, and 
computational issues such as the implementation of automated methods in large scale 
surveillance data bases. In this paper the focus has been on the statistical inference aspects 
and especially the effect of a sufficient reduction of the multivariate surveillance problem. 
The impact of the relation between the change points is seldom considered. However, here it 
was demonstrated that the relations between the change points do have a great impact and can 
be utilized to find efficient methods.  

Evaluations are often made by the ARL1 or the steady state ARL, together with an 
implicit assumption that all processes change simultaneously. However, if the processes do 
change simultaneously, there exists a sufficient reduction to a univariate statistic which 
should be the base for optimal surveillance. Genuinely multivariate problems with different 
change points should be evaluated by generalized metrics, as suggested in this paper. 

According to the sufficiency principle, all conclusions to be drawn should depend only on 
a sufficient statistic. We have demonstrated that a considerable improvement can be made by 
basing the surveillance on the suggested SuffR0 statistic instead of using the Parallel method 
or the MEWMA.  

In the Theorem it is demonstrated, for the exponential family, that a known time lag 
allows a sufficient reduction. In this situation (i.e. with different change times), the sufficient 
statistic does not change between two distributions only, and therefore previous optimality 
results on how to aggregate the information over time cannot be used directly. However, we 
have demonstrated that for some situations, the method based on a sufficient reduction for the 
known lag gives the shortest delay to detection compared to a parallel approach or the 
MEWMA method. 

It was also demonstrated – as expected – that in a situation where only one process 
changes, the performance is considerably improved if this knowledge is utilized in the 
surveillance procedure.  
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