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Abstract

Electric double layers are ubiquitous, arising in some form in almost
every situation involving an interface with an aqueous electrolyte so-
lution. In order to gain insight into the behavior of electrolytes and
electric double layers, simple models of bulk and inhomogeneous elec-
trolyte solutions are considered in this thesis. As the main focus is
on situations where mean field theory is not applicable, due to high
concentration, strong electrostatic interactions, polarization of the in-
terface or a combination of these, the spatial correlation between ions
is explicitly considered.

This is done within the framework of integral equation theory. The
hypernetted chain (HNC) approximation is employed, which may be
regarded as an approximate expression for the relation between the
correlation functions and the potential of mean force. The excess con-
tribution to the chemical potential is readily obtainable in the HNC
approximation. By exploiting the fact that the ideal contribution to
the chemical potential only depends on the local concentration and
that thermodynamic equilibrium requires that the total chemical po-
tential is equal everywhere, the concentration profile for each species
of ion can be determined. Thus, the HNC approximation gives rise to
a theory for electric double layers as well as for bulk electrolytes.

The model of ions and interfaces is based on the assumption that
the ions are hard, charged spheres that are embedded in a dielectric
continuum that represents the solvent. This type of model obviously
ignores any effect of the atomic granularity of the solvent, but takes
into account both electrostatic and excluded volume effects that to-
gether give rise to several interesting and counter-intuitive phenom-
ena. These have implications for both single interface properties and
interface-interface interactions.

Any contrast in dielectric properties on each side of the interface
gives rise to forces on the ions in the vicinity, which may also be of
importance for the behavior of the system. Dispersion interactions
between ions and interfaces are present whenever the ions have a non-
zero polarizability. Each ionic charge in the vicinity of an interface
also causes polarization, creating a charge distribution that gives rise
to forces on all ions in the vicinity. Thus, such polarization modifies
the forces amongst ions as well as those between ions and interfaces.
Both dispersion forces and the polarization of interfaces are explicitly
considered in this thesis.
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Chapter 1

Introduction

Typically, a particle becomes charged due to adsorption or desorption of ions
when immersed in water or a similar solvent. The counterions to a parti-
cle that has acquired a net charge remain in the vicinity, forming an “ionic
atmosphere” around the particle. Together with the charge on the surface
itself, this “atmosphere” is usually referred to as an electric double layer.
This double layer is best described in terms of the local concentration of
each species of ion as a function of position relative to the surface. The
concentration of counterions typically decreases from a high concentration
close to the surface to the bulk concentration with increasing distance from
the surface. Conversely, the concentration of co-ions is typically low close
to the surface and approaches the bulk concentration from below for large
distances. The exact structure of the double layer is determined by a subtle
balance between minimizing the Coulomb energy and maximizing the con-
figurational entropy of the ions. Therefore, the properties of electric double
layers are sensitive to the conditions in the bulk solution. Most notably, the
concentration of electrolyte is the main factor that determines the spatial
extent of the ionic atmosphere. Under experimentally attainable conditions,
the thickness of the double layer can be as small as less than a nanometer
or as large as hundreds of nanometers. Thus, a charged particle in solution
together with its counterions form an electroneutral unit that can be many
times larger than the particle itself or negligibly different from the parti-
cle in size, depending on the salt concentration. In light of this, it is not
surprising that many properties of colloidal systems and interfaces that are
dependent on salt concentration are related to electric double layers; it is the
electric double layer that connects such seemingly disparate phenomena as
electrokinesis, colloidal interactions and electrocapillarity.

For many systems of interest to colloid science, it is sufficient to treat the
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consequences of the presence of charge on a mean field level of theory, where
it is assumed that each ion sees its surroundings only in terms of their aver-
age behavior. This is a good approximation in situations where the typical
interactions between ions are so weak that any individual ion does not per-
turb its environment strongly. This thesis is mainly about situations where
this is not the case, where ion-ion correlations are important. The behavior
of individual ions then depends on the details of how each ion affects the
spatial distribution of its neighbors. This occurs for high densities, strong
interactions or both and has important consequences in the bulk solution as
well as in the vicinity of charged, or uncharged, surfaces. Depending on the
details of how each ion affects its surroundings, the deviations from mean
field behavior can be very different. Often, these deviations can give rise
to phenomena that are qualitatively different from what would be expected
from mean field theory. The limit of the range in concentration where mean
field theory can be fruitfully applied tends to coincide, at least roughly, with
the range of concentration in which the details of the interionic interactions
are relatively unimportant. Above this limit one must take on the dual chal-
lenge of finding the details of the interionic interaction potential and working
out the consequences of these details on the ion-ion correlations in order to
find satisfactory descriptions of double layers and bulk electrolytes.

Any contrast in dielectric properties between the interior of a particle and
the surrounding medium gives rise to forces on any ion in the vicinity of
the particle surface. The dynamic polarization of the surface in response to
charge density fluctuations in the ion gives rise to dispersion forces whereas
the static polarization of the surface gives rise to so called image forces. If
a charge is brought close to an interface between two dielectric media the
compromise between the polarization of each medium will lead to a charge
distribution on the surface. For planar interfaces, the field from this surface
charge distribution is the same as the field from a charge that is located at the
position of the “mirror image” of the original charge. The fictitious charge
is referred to as an “image charge”, hence the name “image forces”. Because
these forces are electrostatic in nature, the image charges are screened in
the presence of electrolyte. This is a consequence of ion-ion correlations; in
order for the screening to come out correctly in any theoretical treatment, ion-
ion correlations must be taken into account. Dispersion interactions, on the
other hand, are due to correlated charge density fluctuations on time scales so
short that the ions cannot respond. Therefore, dispersion interactions are not
subject to electrostatic screening. The effective range of these interactions
does not depend strongly on the salt concentration. In papers I and II the
consequence of image forces and dispersion forces for the interaction between
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charged surfaces is explored. In paper III a similar investigation is carried
out for uncharged surfaces.

Ions of higher valency than monovalent tend to interact so strongly that
mean field theory is valid only in a very narrow range of concentration and
surface charge density. This has consequences both in bulk and near sur-
faces. Counter-intuitively, strong repulsion between counterions near a sur-
face causes the amount of counterions in the vicinity of the surface to be
larger than for more weakly interacting counterions. This can have the con-
sequence that an enrichment of co-ions occurs some distance from the surface,
so that the surface appears to have a charge of the opposite sign compared
to the actual surface charge to an observer in the bulk solution. This sit-
uation is referred to as charge inversion or overcharging. While this have
been observed for simple models of electrical double layers since the early
1980s, the existence of this phenomenon as a consequence of ion-ion cor-

relations in real systems has not yet been unambiguously demonstrated in
experiments. In part, the dearth of experimental proof is due to the existence
of alternative mechanisms for overcharging, notably adsorption of ions due
to non-electrostatic interactions. The need to discriminate between different
mechanisms places a great demand on the comparison between experiment
and theory in that the comparison must be quantitative rather than qualita-
tive. In paper IV an attempt is made to test the predictions of double layer
models that charge inversion can occur as a consequence of ion-ion correla-
tions. This is done by making a comparison between model predictions for
surface thermodynamic properties and experimental data for the interface
between mercury and aqueous solutions of magnesium sulfate. In the course
of this work the question was raised to what extent the primitive model can
be applied as a quantitative model of divalent salt solutions. This question
is addressed in Paper V along with a possible modification to the model.
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Chapter 2

Electrolytes and Electric
Double Layers

“All animals are equal, but some animals are more equal than
others.”

-George Orwell, Animal Farm (1945)

Electrolytes are different from solutions containing only uncharged particles.
Most obviously, electrolytes are electric conductors whereas non-electrolytes
are insulators. Practically and historically, this is the defining property of an
electrolyte. A closer look at the physico-chemical properties reveal more dif-
ferences from ordinary solutions: thermodynamic properties of electrolytes
such as activity coefficients and osmotic pressure (see definitions in Section
2.1) differ measurably from ideal solution behavior even for very low concen-
trations, where neutral solutes would behave ideally. Both these observations
can be explained by the special properties of electrostatic interactions.

The electrostatic force between particles with charges of the same sign is
repulsive whereas it is attractive for particles with charges of opposite signs.
In both cases the magnitude of the force is proportional to the product of
the magnitudes of the charges and to the inverse square of the distance
between them. Electric charge is quantized so that the charge of any particle
is ±ne0 where n is an integer and e0 is a constant. There is no known
process in which charged particles are created or destroyed that does not
preserve the total charge. One can therefore reasonably suspect that the
amount of positive charge in the universe is equal to the amount of negative
charge, down to the last e0. These facts are so familiar that they appear
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self-evident. Yet these laws are very remarkable, both with respect to their
simple structure and far-reaching consequences. This is especially so since it
is hard to imagine another set of laws of interaction that would from charged
building blocks produce the macroscopic world as we see it: as composed of
uncharged objects.

That we only occasionally encounter charged objects in a world where elec-
trostatic interactions are ubiquitous and decisive for the properties of matter
is due to the phenomenon of screening. Because unlike charges attract over
long distances, ions tend to arrange themselves so that oppositely charged
ions sit close to each other. The charges then appear to compensate each
other when viewed from a sufficient distance. The most obvious example
of this is an ionic crystal, where each ion has a well-defined position on a
lattice of alternating anions and cations. Individual atoms also constitute
an example of screening as the electrons shield the charge of the nucleus.
Because the laws of quantum mechanics prohibit it, the exact positions of
each electron in an atom cannot be known. Our knowledge is limited to the
continuous probability distributions of positions of electrons, essentially the
charge density. This situation of screening by a diffuse distribution of charge
is also seen in electrolytes, but for completely different reasons that will be
explained below.

In the macroscopic world, just a minuscule amount of excess charge of either
sign on an object is required to produce measurable, and sometimes spec-
tacular, effects. This extra charge has no counter-charge to screen it and so
brings the long-range character of electrostatic interactions into the macro-
scopic world. While it is easy enough to put a small amount of extra charge
on an object, for instance by rubbing two insulators (e.g. comb and hair)
together in reasonably dry air, it does not correspond to an equilibrium sit-
uation. Whenever the opportunity arises, electric current will spontaneously
flow to eliminate any unscreened charge. The condition that a system in
equilibrium contains equal amounts of positive and negative charge is called
the electroneutrality condition.

In electrolyte solutions the charges on the ions are screened by two differ-
ent mechanisms. On one hand, the field from the ions orient the dipolar
solvent molecules with the net result that the mean force between ions in
pure solvent is for large distances of the same form as between charges in
vacuum but significantly weaker. This is referred to as dielectric screening.
On the other hand, the ions arrange themselves to effect mutual screening.
It is this mechanism that is referred to when the word “screening” is used
without qualifier. Because of the dielectric screening from the solvent, the
strength of the net electrostatic interactions between ions is brought down
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from its vacuum value to a magnitude comparable to the energy scale of the
thermal motion. In this situation the configurational entropy of the ions is
not insignificant compared to the entropy gain that can be obtained by the
ions arranging themselves in the minimum-energy configuration and thereby
dissipating the maximum heat. To find the equilibrium properties of the
system both “entropic” and “energetic” contributions to the free energy has
to be considered. The contribution from the configurational entropy acts to
spread the ions evenly over the available volume and therefore counteracts
screening for length scales smaller than that associated with that volume.
The energetic contribution acts, as already established, to order ions into an
arrangement with ions of different signs close to each other and those of the
same sign further away. The actual distribution of ions is determined by a
compromise between these two tendencies. A useful measure of the strength
of electrostatic interactions in relation to the thermal energy is the Bjerrum
length,

lB =
e20

4πǫǫ0kBT
, (2.1)

where T is the temperature, kB is Boltzmann’s constant, ǫ0 is the vacuum
permittivity, and ǫ is the relative permittivity of the solvent, that is a measure
of dielectric screening (hence the alternative name dielectric constant). The
Bjerrum length may be interpreted as the distance between unit charges for
which their interaction energy compared to infinite separation is exactly kBT .
In vacuum, lB is 560 Å at room temperature. In water lB is roughly eighty
times shorter, about 7 Å under the same conditions. Because the typical size
of ions is a few Å in diameter, the expectation is that for monovalent salts
the electrostatic interaction does not reach more than a few kBT at any point
in space. This cannot be taken for granted, however, as the characterization
of the solvent by just its relative permittivity is not necessarily justified for
distances of the order of the size of the solvent molecules, see Section 3.

A charged surface in contact with an electrolyte solution always has a diffuse
region of counter-charge associated with it, that together with the surface
charge forms an electric double layer. This name derives from that the dou-
ble layer was originally thought to literally consist of two charged planes some
distance from each other. The concept is originally due to Quincke [1] but
the name “double layer” (actually doppelschicht) was coined by Helmholtz
[2]. The modern picture of the electric double layer is that there is a con-
tinuously varying deviation in concentration of each species of ion from the
bulk concentration. Close to the surface there is a region where the solution
is not locally electroneutral, but has a total charge that exactly compensates
the surface charge, preserving global electroneutrality. The excess charge in
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the region outside the surface can arise both from enrichment of counterions
to the surface and by depletion of co-ions. All charged particles, including
individual ions, disturb their environments in this way. A theory for electric
double layers is therefore by necessity also a theory for electrolyte solutions,
and vice versa. The structure of an electric double layer is best described
by the concentration profiles associated with it. We write the concentra-
tion profile of ions of species i as ni(r) and interpret it simply as the local
concentration of that species of ion at point r. Far from any interface the con-
centration profile approaches the bulk concentration, denoted nbulk

i , and thus
becomes independent of position. Related to the concentration profile is the
pair distribution function gij(r, r

′), with the interpretation that ni(r)gij(r, r
′)

is the concentration of ions of species i at r given that there is an ion of species
j at r′. In bulk, r′ can be taken as the origin of the coordinate system and
nbulk

i gij(r) can be interpreted as the concentration profile around any given
ion. These concepts will be introduced in a more formal way and discussed
in Chapter 4. Examples of pair distribution functions relevant for the system
considered in Paper IV are shown in Figure 2.1. Note that the cation-anion
pair distribution function for the 2:2 salt is very strongly peaked at contact,
much more so than the corresponding function for the 1:1 salt.

There are certain restrictions that the set of distribution functions in an elec-
trolyte solution has to obey, most obviously the electroneutrality condition.
The distribution of charge around an ion of species i in bulk solution is

ρi(r) =
∑

j

qjn
bulk
j gij(r), (2.2)

where qj is the charge of an ion of species j and the sum is over all charged
species in solution. Because electroneutrality dictates that the total charge
of an ion and the charge distribution around it is zero, the distribution must
contain a total amount of charge that is equal in magnitude and opposite in
sign to the charge of the central ion. This condition leads to the sum rule

∑

i qin
bulk
i

∑

j qjn
bulk
j

∫

gij(r) dr
∑

i q
2
i n

bulk
i

= −1 (2.3)

for the pair distribution functions. From the connection between the dis-
tribution functions and the response to external fields, that is mentioned
in Chapter 4 as eq. (4.18), together with the fact that electrolytes behave
as conductors on a macroscopic scale, a less obvious sum rule that can be
derived [3],

∑

i qin
bulk
i

∑

j qjn
bulk
j

∫

r2gij(r) dr
∑

i q
2
i n

bulk
i

= −
6

κ2
, (2.4)
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Figure 2.1: Pair distribution functions for the model 2:2 electrolyte (solid
lines) considered in Paper IV and an analogous model 1:1 electrolyte (dashed
lines) with the same ion sizes for 0.5 M bulk concentration calculated within
the HNC approximation, see Section 4.2. The cation-anion distribution func-
tion is marked by “+−” and the anion-anion and cation-cation distributions
functions are marked with “−−” and “++”, respectively. Note that the like-
ion distribution functions are indistinguishable on the scale of the figure in
the range where they overlap (the cations are smaller than the anions) for
each type of salt.

with κ defined by

κ2 =
1

kBTǫǫ0

∑

i

q2
i n

bulk
i . (2.5)

The quantity κ−1 may be considered the characteristic length scale of screen-
ing in an electrolyte and has a prominent place in mean-field theories of elec-
trolytes and electric double layers, discussed in Section 2.2 below. Notably, κ
is proportional to the square root of the ionic strength. Both eqs. (2.3) and
(2.4) are consequences of the special properties of electrostatic interactions;
there are no counterparts for solutions of uncharged solutes. Note however
that eq. (2.3) would be valid even if the potential for electrostatic interaction
decayed as fast as 1/r3, whereas eq. (2.4) requires the interaction potential
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to decay as 1/r to hold.

Electrolytes and electric double layers can be probed experimentally in a
variety of ways. Of special interest for double layers are direct and indirect
measures of the interaction between charged surfaces. Section 2.3 contains a
discussion about the effect of electric double layers on interactions between
surfaces. Direct measurements of interactions between surfaces are just that:
surfaces are brought together and the force between them is recorded as a
function of distance [4, 5]. While this is naturally a difficult kind of ex-
periment to perform, the current state of the art is that a high level of
sophistication have been reached, to the degree that for some surfaces the
force curves can be recorded with a distance resolution of less than one Å
[6]. Indirect measures of interactions include measurement of the stability,
phase behavior or structural properties of colloidal suspensions from which
the interactions can be inferred.

Another important type of experiments is electrokinetic measurements, the
most well-known example of which is electrophoresis. This technique is based
on subjecting a suspension of particles to an electric field and measuring the
velocity with which the particles move in response to it. The information
about the electric double layer that can be obtained by this technique is
model dependent. This is so because assumptions have to be made about
the deviation in the viscosity of the solvent close to a particle surface from
the bulk value in order to work out the connection between the double layer
and the hydrodynamic drag forces on the particle. In the close vicinity of the
particle the solvent is effectively stagnant with respect to the particle surface
and any ions in this region will move with the particle and effectively add to
its surface charge. Because the concentration profiles tend to decay quickly
close to the surface, small differences in the assumptions about the width of
the stagnant solvent layer can give rise to large changes in conclusions about
the “actual” charge on the surface. Under conditions where the use of mean
field theory, discussed in Section 2.2, is justifiable these difficulties are some-
times surmountable. Under such conditions the conclusions about surface
charge from interaction studies tend to agree with those from electrokinetic
experiments.

Not surprisingly, the methods of electrochemistry are useful in studying elec-
tric double layers. This is especially so if one electrode can be made such
that no reaction takes place on its surface. In this way, reliable information
about the dependence of surface thermodynamic properties can be obtained
as functions of the potential and surface charge density. In Section 2.1 the
relevant thermodynamic relations are discussed together with one of the most
useful experimental systems for the study of double layers: the mercury elec-

10



trode. In that section some important bulk thermodynamic properties are
introduced and the principle for their experimental determination outlined

2.1 Thermodynamics of Charged Systems

Due to the electroneutrality condition, the thermodynamic treatment of sys-
tems containing charged particles is slightly different compared to systems
composed of neutral particles. Nevertheless, the thermodynamic proper-
ties of both bulk and interfacial electrolyte systems can be measured using
standard techniques. Of special interest are those bulk properties that are
directly related to the interactions between solute particles, mainly the chem-
ical potential of the salt and solvent. The intensive properties of a system
are related to each other by the Gibbs-Duhem equation,

0 = −V dP + SdT +
∑

i

Nidµi, (2.6)

where S is the entropy, V is the volume and P is the pressure. The sum is
over all components and Ni and µi are the number of particles and chemical
potential of species i, respectively. If a solution is placed in contact with
a reservoir of pure solvent in such a way that only solvent and not solute
particles can diffuse between the solution and the reservoir, eq. (2.6) implies
that the pressure in the solution is different from that in the reservoir. The
pressure thus exerted is called the osmotic pressure. Incidentally, it was the
interpretation of osmotic data in terms of kinetic theory that first led to the
conclusion that salts dissociate into free ions on dissolution [7]. Often, the
osmotic pressure is expressed as the osmotic coefficient, that is here defined
as the quotient of the actual bulk osmotic pressure, P bulk, and the osmotic
pressure for an ideal solute of the same concentration

φ =
P bulk

kBT
∑

i ni

, (2.7)

where the sum is over solute species only. Note that this is a non-standard
definition of this quantity. The reason for adopting this definition and its
relationship with the standard one is discussed in Chapter 3. The chemical
potential of solute species is usually expressed in terms of activity coefficients,
f , defined by

µi = µ0
i + kBT ln fin

bulk
i , (2.8)

where µ0
i is the chemical potential in the standard state. The interpretation

of the argument of the logarithm is that it is the concentration of an ideal
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solute that would have the same chemical potential as the real solute. Implicit
in this definition is that the standard state is chosen as an ideal system at
unit concentration in whatever unit is chosen for nbulk

i , here taken as 1 M
unless otherwise stated.

For constant temperature and pressure eq. (2.6) states that the chemical
potential of a component of the system cannot be varied independently of
the chemical potential of the other components. Exploiting this relation,
the chemical potential of dissolved salt can be obtained from that of the
solvent. This forms the basis of isopiestic determination of salt activity
coefficients [8]. A solution with a known amount of salt is placed in a gas-
tight, thermostated chamber together with a reference solution of a substance
for which the chemical potential as a function of concentration is known
with high accuracy. The solutions are then left alone until equilibrium is
established, typically for several days. In both solutions, the solvent now has
the same chemical potential. If the solute is non-volatile so that only solvent
is exchanged, the equilibrium compositions can be established simply by
weighing the solutions. If this is repeated for several starting concentrations,
the activity coefficients of the solute can be obtained from integration of
eq. (2.6). To obtain the proper integration constant, the osmotic coefficient
must be known down infinite dilution where the system behaves ideally and
ln(fi) = 0. Obviously, this cannot be done in practice and extrapolation
must be used at some stage. In the case of the isopiestic method the lowest
concentration that can be reliably treated is around 0.1 m, which cannot be
considered close to infinite dilution. The extrapolation must therefore be
carried out over a considerable concentration interval, thus introducing an
appreciable uncertainty in the integration constant. This problem is most
severe for electrolytes containing ions of higher valence types, where the
range of validity of the Debye-Hückel limiting law, see eq. (2.25) below, is
very narrow.

Note that the chemical potential of individual ionic species is not unambigu-
ously obtainable by the isopiestic method or by any other known experiment.
Because the electroneutrality condition allows only electroneutral combina-
tions of ions to be added to a system, the number of particles of different
ionic species are not independent quantities. What can be determined is
therefore the chemical potential of such electroneutral combination of ions,
denoted µsalt. The activity coefficients of electrolytes are usually given in
terms of the mean activity coefficients, f±, defined for a binary electrolyte
by

f
(s++s−)
± = f

s+

+ f
s−
− (2.9)

where si is the stoichiometric coefficient. The chemical potential of the salt
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is given in terms of f± by

µsalt = µ0
salt + (s+ + s−)kBT ln f±n

bulk, (2.10)

where nbulk is the bulk concentration of the salt. There are some subtleties
inherent in relating experimentally determined activity coefficients to those
calculated in models without an explicit solvent component. These are dis-
cussed in Chapter 3.

At an interface, the interfacial excess properties are related to each other
by the thermodynamic relation, analogous to the Gibbs-Duhem equation,
known as the Gibbs adsorption isotherm,

0 = Adγ + S(s)dT +
∑

i

N
(s)
i dµi, (2.11)

where γ is the interfacial tension and S(s) and N (s) are the interfacial excess
entropy and number of particles, respectively. The sum is over all components
in the system. In this context “interfacial excess” means the difference in a
thermodynamic quantity between two bulk phases and the system containing
two phases with an interface between them, with each phase having the
same volume in each case. The position of the interface used to determine
the volumes is arbitrary, but can always be chosen uniquely in such a way
that the interfacial excess number of particles of one component is zero. The
surface excesses are then said to be with respect to that component, that will
be referred to as the solvent. At constant temperature, the Gibbs adsorption
isotherm can be written in a more convenient form,

−dγ =
∑

i

Γidµi (2.12)

where Γi = N
(s)
i /A is referred to as the “surface excess”of species i and the

sum may be regarded as being over all species except the solvent, as Γ of the
solvent is zero by construction. For electrified interfaces the surface excesses
are subject to the electroneutrality condition,

0 =
∑

i

qiΓi. (2.13)

If the system is such that the charged components of the phases (denoted
“I” and “II”) on each side of the interface are negligibly soluble in the other
phase, one can assign each of the ionic species to one of the phases. The
thermodynamic surface charge can then be defined as

σ =
∑

i

IqiΓi = −
∑

i

IIqiΓi, (2.14)
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where each of the summations is over components present in phase I or phase
II only.

Let us consider such a system composed of a chemically inert electrode con-
nected to a reference electrode, both immersed in a binary electrolyte. If one
defines the potential difference between electrode and reference electrode as
the difference in chemical potential of the charge carrier (electrons) per unit
charge,

E± = −(µe− − µref
e− ), (2.15)

where the subscript on E± denotes that the reference electrode is reversible

to either the cations or the anions. In other words, a reaction forming either
the cation or the anion by reduction or oxidation of a solid substance can
occur reversibly at that electrode. The chemical equilibrium between ions in
solution and in the reference electrode connects the chemical potential of the
salt with that of electrons in the reference electrode. Thus only two chemical
potentials can be varied independently, that of the salt and that of electrons
in the measuring electrode. One can use this to write the Gibbs adsorption
isotherm as

−dγ = σdE± + Γ∓dµsalt. (2.16)

From this form of the isotherm the Lippmann equation immediately follows,

σ = −
∂γ

∂E±

∣

∣

∣

∣

∣

T,µsalt

, (2.17)

where the subscript ± on E± indicates that the equation is equally valid
for reference electrodes reversible to cations or anions. For the surface ex-
cess of the ionic species to which the reference electrode is not reversible an
analogous relation exists,

Γ∓ = −
∂γ

∂µsalt

∣

∣

∣

∣

∣

T,E±

. (2.18)

Thus, for any electrode for which the surface tension is measurable both
the surface charge density and the surface excess of each ionic species is
experimentally accessible. For double layers, the surface excesses of co- and
counterions are often expressed weighted by the ionic charges as components

of charge,
σ± = q±Γ±. (2.19)

The advantage of expressing surface excesses in terms of the components of
charge is that they give the contribution of each ionic species to the coun-
tercharge to the surface charge, that makes a natural connection to the elec-
troneutrality condition, eq. (2.14).
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An experimental system that is regarded by many as the canonical system for
the study of the electric double layer is the dropping mercury electrode and
similar experimental set-ups [9]. The main advantage of using a liquid metal
electrode is that the surface tension can be measured as a function of either
the potential of the mercury electrode or the chemical potential of the bulk
solution, while keeping the other quantity constant. From such measurements
along with the Gibbs adsorption isotherm the surface charge density as well
as the components of charge are available. Since the differential capacitance,

C =
∂σ

∂E±

∣

∣

∣

∣

∣

T,µsalt

, (2.20)

is independently measurable, the surface charge density can, given an in-
tegration constant, be obtained also from this quantity. By comparing the
surface charge densities obtained from the “surface tension” and “capaci-
tance” route, the robustness of the experimental method can be tested.

Since quantities obtained from the mercury electrode are derived by the use
of exact thermodynamic relations they are model independent and therefore
suitable for testing the predictions of models. It is unfortunate that the
mercury electrode does not readily lend itself to either interaction studies
or electrokinetic experiments. Had this been the case, a large degree of
uncertainty in the interpretation of such experiments could be removed by
measurement of the thermodynamic surface charge density.

During the last century, a large body of data on the mercury/aqueous elec-
trolyte system has been collected. It has been found that the properties of
the double layer associated with this interface tend to show a strong ion speci-
ficity for positive polarization, where the anions are counterions, but only a
weak ion specificity for sufficiently negative polarization, where the cations
are counterions. The conclusion is that anions are attracted to the surface
to a degree that depends on the identity of the ion but that this is not the
case for cations. For negative polarization the mercury surface appears to
be well approximated by models without ion-specific attractive interactions
between the surface and the ions of the electrolyte.

2.2 Mean-Field Theory and Its Limitations

In some cases where the interaction between ions is weak the Poisson-Boltzmann
(PB) theory gives an adequate description of the concentration profiles of ions
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close to charged surfaces [10, 11]. The PB theory for planar surfaces is some-
times called Gouy-Chapman (GC) theory in the colloid science literature,
and since only planar surfaces are considered here these names will be used
interchangeably in this thesis. The fundamental assumption of PB theory is
that the mean force on an ion at any point is equal to the force due to the
electric field from the average charge distribution. The concentration profiles
are then given by

ni(r) = nbulk
i e

−
qiΨ(r)

kBT , (2.21)

where Ψ(r) is the mean electrostatic potential at point r, given by

Ψ(r) = ψ(r) +
1

4πǫǫ0

∑

i

∫

qini(r)

|r − r′|
dr′, (2.22)

where ψ(r) is the potential from the charge on the surface. The mean elec-
trostatic potential can be calculated using Poisson’s equation and the fact
that the mean charge distribution can be calculated from the concentration
profiles, leading to the differential equation

−ǫǫ0∇
2Ψ(r) =

∑

i

qin
bulk
i e

−
qiΨ(r)

kBT , (2.23)

from which the concentration profiles can be determined through Ψ(r). Eq.
(2.21) would be exact if the ions were point charges and did not perturb
their local environment, which would only be the case if their charge were
infinitesimally small. Of course, due to the quantization of charge there is no
such thing as an infinitesimal charge. Because the interaction between ions is
only taken into account as the interaction between an ion and the mean field,
that is zero in bulk, the PB theory contains the implicit assumption that the
bulk electrolyte behaves as an ideal gas. For electrolytes, this is a severe ap-
proximation even for moderate concentrations. The PB approximation may
be thought of as a mapping of an interacting system onto a non-interacting
system in an external field that depends on the concentration profiles.

In the GC theory, the possibility that ions may adsorb due to specific inter-
actions with the surface is not taken into account explicitly. The charge on
the surface enters the problem only through the boundary conditions to eq.
(2.23), typically of either the “constant potential” or the “constant surface
charge density” type. To account for the common situation that the charge
on the surface comes from a layer of ions adsorbed on the surface due to non-
electrostatic interactions, the GC theory is often combined with a Stern layer

where ions are assumed to be adsorbed by some non-electrostatic mechanism
[12]. The assumption is that there is a chemical equilibrium between free
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ions and ions in the Stern layer. The free energy of adsorption corresponding
to this equilibrium is typically used as a fitting parameter. The resulting the-
ory is referred to as Gouy-Chapman-Stern (GCS) theory. For an exhaustive
account of this theory, see ref. [13]. Because, as will be discussed in Section
2.4, the presence of specific adsorption is the rule rather than the exception
in colloid and interface science, GCS theory finds wider application than GC
theory itself. The practice of using the parameters specifying the Stern layer
as fitting parameters also means that agreement between GCS theory and
experiment at best provides information about the magnitude of the free
energy of adsorption. To establish the mechanism of adsorption requires ad-
ditional information. This problem is similar to the problem that is faced
for bulk electrolytes, discussed in Section 3, that the physical interpretation
of the parameters that determine the short range interaction between ions is
very hard to ascertain by comparison with macroscopic measurements.

If Ψ(r) is small everywhere, the exponential function in eqs. (2.21) and (2.23)
can be linearized to give

∇2Ψ(r) = κ2Ψ(r), (2.24)

where κ2 is the same quantity as given by eq. (2.5). This theory predicts
that the concentration profiles for a flat surface decay exponentially to bulk
concentration with a decay length κ−1. For this reason, eq. (2.24) is recovered
from eq. (2.23) wherever the potential is small in magnitude. Consequently,
the long distance asymptotic decay of the concentration profiles always have
the same exponential form if the concentration is low enough for eq. (2.24)
to be valid. In this limit, electric double layers are well understood in the
sense that a theoretical framework exist that can accommodate a large body
of evidence from a wide variety of experimental techniques.

By applying eq. (2.24) to the case where ψ(r) is the potential from an ion
of species i a theory for the distribution functions gij(r) in a bulk electrolyte
is obtained. (Recall that nbulk

i gij(r) can be interpreted as the concentration
profile of ions of species i around an ion of species j.) This theory is known as
the Debye-Hückel (DH) theory [14]. As can be imagined, it is in many ways
quite crude. For instance, the theory predicts unphysical negative values for
the distribution function between like-charged ions under some conditions.
What is not obvious, but can be shown [15], is that the DH theory is exact in
the limit of low concentration of salt. The properties of electrolyte solutions
in this limit are generic; the chemical idiosyncrasies of a given system plays
a negligibly small role for its behavior. What matters under these conditions
are the ionic charges and κ. For instance, the activity coefficients are given
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in the DH theory in the low concentration limit by

ln fi = −1
2
Z2

i κlB, (2.25)

where Zi = qi/e0 is the valency of an ion of species i. Comparison between
activity coefficient from eq. (2.25), often referred to as the Debye-Hückel
limiting law (DHLL), and experiment reveals that the range of validity of
this theory is rather limited, especially so for salts containing ions of valencies
greater than one. Incidentally, eq. (2.25) is also obtained in the limit of zero
ion-size. That a finite result is obtained at all in this limit is due to the
strictly linear treatment of the Coulomb interactions. An exact treatment of
a model with point ions would give negative infinity for ln fi, see Section 3.1.
At least for 1:1 salts, the range where agreement with experiments is found
can be extended considerably by taking the finite ion size into account, as
was done in the original derivation of the theory.

In situations of high surface charge density or high electrolyte concentration
as well as for strongly interacting ions the assumption underlying the PB
theory that the ions behaves as point ions that do not perturb their local
environment is not realistic. Under such conditions the mean-field approach
cannot be sustained; each ion have a strong influence on its surroundings
and this has to be taken into account when computing the average force
on each ion. It is instructive to note that the PB approximation can be
derived from an exact statistical mechanical expression by setting gij(r, r

′)
identically equal to one and ignoring any interaction between ions except
the Coulomb interaction [16]. When gij(r, r

′) differs significantly from one in
an appreciable volume the PB theory is a poor approximation. This is true
regardless of how the pair distribution functions differ from one. In what
way the true concentration profiles differ from the PB-concentration profiles,
does depend strongly on the details of gij(r, r

′).

The exponential form of the distribution functions that is obtained whenever
eq. (2.24) is valid tends to be retained up to relatively high concentration.
The relation between the decay length and the electrolyte concentration is
in general more complicated than in DH theory, however, even for simple
electrolyte models [17, 18, 19]. For high concentrations the pair distribution
functions develop oscillations. The structure of the solution becomes such
that the ions are ordered in what might be called a “diffuse lattice”: each
ion is surrounded by an ionic atmosphere with regions of alternating sign
of the average charge density because alternating layers of depletion and
enrichment of anion and cations are formed. Interestingly, it can be concluded
that the pair distribution functions cannot be monotonic for arbitrarily large
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concentrations on the basis of only eq. (2.4) and the assumption that the
ions have a finite size [20].
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Figure 2.2: Concentration profiles for the model 2:2 electrolyte considered
in Paper IV for 0.5 M bulk concentration and a surface charge density close
to -10 µC cm−2 calculated within the HNC approximation, see Section 4.2.
The dashed lines are the concentration profiles from PB theory for the same
system. The cation (counterion) profiles are marked with a plus-sign and the
anion (co-ion) profiles are marked with a minus-sign.

For situations characterized by strong electrostatic interactions, mean field
theories are inaccurate even at very moderate concentration, both for bulk
and surface properties. In such situations the the electrostatic interactions
between anions and cation make the distribution function g+−(r, r′) very
large for small separations. This situation has been dubbed “ion pairing”.
Aqueous salt solutions containing only monovalent ions tend to be “weakly
interacting” whereas systems containing divalent (or higher) ions tend to
be “strongly interacting”, in the sense that in the former case but not in
the latter, mean field theory usually works reasonably well. Nevertheless,
a modification of the DH theory by Bjerrum where ion pairing is explicitly
considered in terms of a chemical equilibrium between “free” and “paired”
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ions significantly improves the predictions of the bulk properties of binary
salt solutions where both the cation and the anion are divalent. [21].

Strong electrostatic interactions also have consequences close to surfaces.
Simple double layer models, discussed in Section 3.1 below, show that when
the repulsion between counterions is sufficiently strong, the behavior of the
electric double layer is qualitatively different from the predictions of mean
field theory. Counter-intuitively, stronger interactions between counterions
give rise to a larger enrichment of counterions close to the surface than weaker
interactions. A situation that is typical for polyvalent counterions is that for
sufficiently large surface charge densities there is an enrichment of co-ions
compared to counterions in the region beyond a few Å from the surface. The
co-ion concentration profile then approaches the bulk concentration from
above at large distances from the the surface. To an observer in the bulk
solution, the surface can then appear to have charge of opposite sign to that
of the actual surface charge. For this situation to arise, the electroneutral-
ity condition dictates that there must be a larger amount of counter-charge
than is required to neutralize the surface charge in the region close to the
walls. Therefore, the phenomenon is often referred to as overcharging. In
Figure 2.2 the concentration profiles for a model system where overcharging
is taking place are shown together with the concentration profiles from PB
theory. Notice especially the difference in the co-ion profile compared to its
PB counterpart. Overcharging can also arise due to attractions of a chemical
nature between counterions and the surface. Such interactions, discussed fur-
ther in Section 2.4, are common in real systems and frequently gives rise to
overcharging that is strong compared to the overcharging from ion-ion corre-
lations that can be expected for aqueous systems near room temperature for
reasonable ion valencies. For this reason together with a scarcity of model
systems that are sufficiently well characterized with respect to, for instance,
the surface charge density, it has been difficult to find experimental systems
to test the model predictions of overcharging due to ion-ion correlations.

Another counter-intuitive prediction of simple electrolyte models is that the
potential difference between the surface and the electrolyte bulk need not be
a monotonic function of the surface charge density. The potential can have
an extremum, beyond which the potential varies with surface charge density
in a direction opposite to what would be expected from simple electrostat-
ics. Under some conditions, making the surface charge density more positive
can thus have the effect of making the potential less positive. For surface
charge densities in the experimentally attainable range this behavior is seen
for divalent [22] and multivalent counterions. That the potential as a func-
tion of surface charge density has an extremum carries the implication that
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Figure 2.3: Potential drop over a double layer in the presence of a primitive
model 1:3 salt of 0.25 M concentration. The ion diameters are d++ = 3.6,
d+− = 5.0 and d−− = 6.4 Å, see Section 3.1. The permittivity of the solvent
is taken to be 2.0, 1.5, 1.25, 1.0, 0.9, 0.8 and 0.75 times that of water, as
indicated in the left figure. In the right figure the potential and surface
charge density are given in reduced units. The reduced potential is the work
required to increase the surface charge by the charge of one counterion divided
by kBT . The reduced surface charge density is the quotient between the area
of a quadratic grid such that the counterions can be placed on it so far apart
that their mutual interaction energy is exactly kBT divided by the area per
counterion.

the differential capacitance of the double layer is negative for surface charge
densities beyond the extremum. A negative capacitance is incompatible with
thermodynamic equilibrium [23], so surface charge densities for which the to-
tal capacitance is negative could not be obtained in a real system. In Figure
2.3 an example of a set of systems displaying a potential maximum is shown.
The relative permittivity varies between 0.75 and 2.0 times that of water in
order to assess the effect of changes in the strength of the electrostatic inter-
actions. It is important to note, however, that the potential associated with
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the part of the double layer on the electrolyte side is in general not the only
contribution to the potential of the surface, see Section 4.3. Assuming that
the contributions to the capacitance can be added together as capacitors in
series, which is consistent with additivity of the corresponding contributions
to the potential, the condition that precludes equilibrium is that the double
layer capacitance is negative and smaller in magnitude than the total of all
other contributions to the capacitance. Even the very reasonable assumption
that the surface charge is situated at a distance comparable to molecular di-
mensions from, rather than directly at, the plane of closest approach of the
ions would give a positive contribution to the capacitance could make the
total capacitance positive for the cases shown in the figure. It is interesting
to note that in the reduced units used in the right portion of the figure the
potential maxima occur at nearly the same reduced surface charge density.
Moreover, the slope of the curves beyond the maximum in reduced units is
almost equal for all the permittivities considered where sufficiently large re-
duced surface charge densities are reached. This quasi-universality suggests
that the lateral correlation among counterions is the origin of the anomalous
behavior of the potential as a function of surface charge density.

2.3 Double Layer Interactions and Colloidal

Stability

The term “colloidal suspension” refers to a liquid suspension of particles that
are large compared to atomic dimensions, yet small on the macroscopic scale.
The size range of particles to which the word “colloidal” is generally applied
is 1 - 1000 nm. Suspensions of particles in this size range appear homoge-
neous and sedimentation is slow or absent. Dilute colloidal suspensions can
thus be mistaken for homogeneous solutions on casual inspection while con-
centrated suspensions can have the appearance of a paste. The distinction
between solution and suspension is not always easy to make, as molecules and
molecular aggregates are frequently so large that they fall into the colloidal
size range. Many substances that we come into contact with in our daily
lives are in fact colloidal suspensions. Examples are milk, where the white
color is caused by the scattering of light by micrometer-sized fat globules,
and solutions of macromolecules, that make up a large portion of our own
bodies.

From a physical perspective, the defining characteristic of a colloidal system
is a large interfacial area per unit volume of the dispersed phase. This is a
purely geometrical consequence of the small size of the particles. As a unit
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area is proportional to the square of the unit length and a unit volume is
proportional to the cube of the unit length (as the name of these powers
suggests) a system that is inhomogeneous on small length scales must neces-
sarily have a large surface to volume ratio. The properties of the interfaces
are therefore of much greater importance for the macroscopic properties of
colloidal systems than for comparable homogeneous systems. Because an
interface between two phases is associated with a positive contribution to
the free energy, colloidal suspensions are often not equilibrium phases but
may lower their free energy by precipitating the particles. If the particles
repel each other sufficiently strongly for the activation barrier against pre-
cipitation to be insurmountable in practice, colloidal suspension can often be
metastable even if they are out of equilibrium. This is a property that distin-
guishes suspensions from solutions, as the latter are almost always equilib-
rium phases. Thus, knowledge of the interactions between colloidal particles
is of paramount importance for answering the question of whether a partic-
ular suspension is stable or not. Beside the basic question of stability, the
interactions between colloidal particles are important for the determination
of many properties of suspensions, such as flow behavior and sedimentation
velocity.

Interaction between particles in a colloidal suspension may arise from sev-
eral physical mechanisms, of which two are almost always present. These
are double layer and van der Waals forces, that are usually repulsive and
usually attractive, respectively. Charged particles in solution interact due
to overlap between the diffuse part of the double layers around them. As a
charged particle and its counterions form an electroneutral unit, interaction
between them is not primarily electrostatic but due to the osmotic pressure
exerted by the ions in the double layer. Therefore, the distance dependence
of the pressure follows that of the concentration profiles, rather than the
“Coulomb’s law” form expected from simple electrostatics. When the sur-
faces are far apart the concentration profile in the space between them is
approximately the sum of the concentration profiles of two individual sur-
faces. As one might expect, this approximation becomes worse the closer the
surfaces come to each other. Nevertheless the behavior of the concentration
profiles near individual surfaces is very useful for understanding the distance
dependence of the force between surfaces. For systems where the DHLL is
valid in the bulk solution, for instance, the range of the interactions is de-
termined by κ. For two equal infinite planar surfaces at sufficiently large
separation, D, the pressure between the surfaces is proportional to e−κD.

Apart from double layer interactions, colloidal particles interact also via van
der Waals forces, that are caused by fluctuations in the charge density dis-
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tribution of the particles in time and space. If two particles are close to
each other, a random fluctuation in charge density in one of the particles
will give rise to an electric field that induces a fluctuation in charge density
in the other particle that will in turn polarize the first particle and so on.
Such correlated charge density fluctuations give rise to an attractive force
between the particles, generally called the van der Waals force [24]. Such
forces are ubiquitous in nature and van der Waals forces between atoms and
molecules play a key role in such mundane phenomena as the formation of
condensed phases and friction between surfaces. Compared to the forces asso-
ciated with covalent bonds and unscreened electrostatic interactions, van der
Waals forces are weak. But as the interactions between neighboring atoms
in a typical condensed phase are comparable in magnitude to the thermal
energy, kBT , at room temperature it is easy to see that van der Waals forces
can be important in colloidal systems. The strength of the van der Waals
force between colloidal particles depends on the dielectric properties of the
particles as well as those of the medium between them. For the geometry of
two parallel planar walls at small and intermediate separations, the potential
for this attraction decays as D−2. For typical colloidal systems, the van der
Waals force is strong enough to be important for separations as large as tens
of nanometers or more. For separations that are so large that the time it
takes for the field to propagate between the particles is comparable to the
time scale of the charge density fluctuations, the decay of the potential is
faster, proportional to D−3 [25, 26].

What may be regarded as the first successful theory for the interaction be-
tween colloidal particles is the Derjaguin-Landau-Verwey-Overbeek (DLVO)
theory [27, 28]. In DLVO theory the interaction between colloidal particles
is assumed to be the sum of the contributions from the two physical mecha-
nisms above (i.e. double layer and van der Waals interactions.) Furthermore,
these contributions are calculated, on some level of approximation, as if they
were independent of each other. Generally, the “double layer” part of the
problem is treated within the PB approximation, as was done in the origi-
nal versions of this theory. That is, the pressure is repulsive and decays for
large separations as e−κD with κ proportional to the square root of the ionic
strength for all salt concentrations. The pressure due to the van der Waals
attraction, on the other hand, is attractive and decays as D−3.

Thus, the total interaction between particles depends on a balance between
repulsive double layer forces and attractive van der Waals forces. This bal-
ance is influenced by the particle surface charge density and dielectric prop-
erties and, importantly, on the salt concentration that controls the range
and strength of the double layer interactions. The DLVO theory tends to
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predict the dependence of the stability of colloidal suspensions on the salt
concentration correctly in situations of modest surface charge density and
small concentration of monovalent salt. The predictions of DLVO theory
have been tested by direct force measurements, confirming its validity in the
low salt concentration regime [29, 30, 5, 31].

Under conditions where ion-ion correlations are important, the interactions
between charged particles in electrolyte solution becomes more complicated.
For electrolyte concentrations so large that the correlation functions turn
oscillatory in bulk, the simple exponential form of the distance dependence
for large distances is replaced by an exponentially damped oscillatory decay.
The pressure between surfaces due to the double layer is then attractive
for some separations. This is a reflection of the fact that the concentration
profiles take on the behavior of the bulk distribution functions in the large
distance asymptotic regime.

For smaller distances between surfaces, less can be said about their interac-
tion on the basis of the bulk electrolyte properties. Under such conditions
the interaction can have many features that are inexplicable in terms of mean
field theory. One counter-intuitive consequence of correlations, that has been
predicted from computer simulations as well as theory for simple double layer
models, is that strong electrostatic interaction between counterions can give
rise to attraction between surfaces for some separations at sufficiently high
surface charge density. This is partly due to van der Waals-like forces arising
from correlations between counterions on opposite surfaces and partly due to
that the correlation between counterions on the same surface allows a greater
amount of ions to get close to each surface, decreasing the concentration fur-
ther out. The net effect is that the repulsion due to the ideal contribution to
the osmotic pressure becomes small and gives way for the attractive correla-
tion pressure, resulting in a net attraction. At least the qualitative features
of these predictions are borne out by experiments. For instance, the fact that
the swelling of clays is very different in the presence of divalent counterions
compared to monovalent is consistent with double layer attraction with diva-
lent ions [32, 33]. Forces between charged surfaces in the presence of divalent
ions have also been measured using two different techniques, confirming the
existence of an attractive well [34].

A confounding factor in the interpretation of the short-ranged double layer
interactions is the presence of solvation forces. These interactions are due to
the work required to displace the solvent between the surfaces in response
to a small change in the distance between the surfaces. Depending on the
interactions between the surface and the solvent molecule these interactions
can be attractive, repulsive or oscillatory. The last situation is common
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and is due to packing constraint on the distribution of solvent molecules.
Solvophobic surfaces tend to attract and solvophilic surfaces tend to repel.
An oscillatory component may be present even in the case where there is
and overall attraction or repulsion. See ref. [35] for an overview of solvation
forces.

Another type of interaction that fits under the label of “correlation forces” is
depletion interactions of electrostatic origin. A short ranged attraction due
to depletion of ions by repulsive image charge interactions has been predicted
for uncharged dielectric surfaces in the presence of salt [36]. For uncharged
surfaces the contribution to the surface-surface interaction due to the osmotic
pressure may be regarded as analogous to solvation forces. In addition, the
image charge interactions affects the van der Waals interactions by screen-
ing the contributions from zero frequency modes [37], see also Section 3.2.
The net effect is that the zero frequency contribution to the van der Waals
attraction is replaced by a exponentially decaying depletion attraction. The
screening of the van der Waals force has been demonstrated experimentally
in lipid bi-layer systems [38], confirming the predictions of theory.

2.4 Ion Specificity and Non-Electrostatic In-

teractions

While many of the properties of electrolytes and double layers are determined
by electrostatic interactions, they cannot be the end of the story. For one
thing, the formation of a double layer is often driven by the preferential
adsorption of one species of ion over others due to short ranged “chemical”
forces. Many of the systems usually employed in colloid science have a surface
charge density that depends on the concentration of a specific type of ion,
the potential determining ion, in a way that suggest chemical equilibrium.
Examples of this are silver iodide sols, where the surface potential varies
linearly with the chemical potential of silver ions in the solutions, and oxides,
including silica, where the surface potential is determined by the pH.

It is in such situations that the GCS theory finds its greatest application.
Because the adsorption is often so strong that a minuscule concentration
of the potential determining ion is required to reach a particular value of
the surface charge density, the concentration of indifferent (not potential
determining) electrolyte can be kept low. The GC theory can then be applied
with some confidence, at least for monovalent salts and not too high surface
charge density. For low salt concentration the length scale characterizing
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the diffuse part of the electric double layer is much larger than the range
of the interactions that give rise to specific adsorption and the assumption
inherent in GCS theory that ions are adsorbed as a monolayer is not greatly
in error. For higher concentrations or surface charge densities, the latter
corresponding to a large local concentration of counterions, ion specificity is
also seen for ions that are not potential determining. While also this type
of ion specificity fit into the GCS framework, the interpretation is not clear
cut because the GC theory is less reliable for higher concentrations. In this
regime there is a risk that deviations of GCS theory from experiments due
to failures of GC theory are erroneously ascribed to specific adsorption.

It has been known for well over a century that the chemical identity of “indif-
ferent” ions play a role in a large range of phenomena involving moderate to
high electrolyte concentrations. The first systematic study of ion specificity
was performed by Franz Hofmeister in 1888. It was shown that the concen-
tration of salt required to precipitate chicken egg white albumin depends on
the type of salt used [39]. Hofmeister arranged ions (actually salts with a
common counterion) in a sequence based on their “precipitating power” into
what is known today as the Hofmeister series. For example, the ability of
the halides to precipitate albumin was in Hofmeisters original experiment
found vary as the series F− > Cl− > Br− > I−. This means that a lower
concentration of F− compared to, for instance, Cl− is required to precipitate
protein from solution.

Since then, it has been found that the ion specificity of a large range of
properties and phenomena, including enzymatic activity [40, 41, 42, 43],
surface-surface interactions [44] and colloidal stability [45], and the inter-
facial tension of electrolytes [46, 47, 48], follow either a similar or the reverse
sequence. Also the bulk properties differ greatly between different salts for
moderate to large concentrations [49]. This variation have in some cases been
found to correlate with the variation in the effect of salt on surface proper-
ties [45, 50]. The near-universality of the Hofmeister series together with its
correlation with bulk properties suggest that this type of ion specificity is
strongly influenced by the properties of the individual species of ions. This
gives some hope that the ion specificity of a given phenomenon might one
day be rendered predictable on the basis of those properties.

It has long been widely believed, particularly in biochemistry, that the ion
specificity of protein solubility, precipitation and denaturation result from
competition for solvating water between the protein and salt components of
the solution [51]. In this picture, the origin of ion-specificity would be the
difference in solvation strength of different species of ions. Small ions allow
the charge on the ion to get close to the dipolar (quadrupolar, etc.) solvent
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molecules, allowing strong electrostatic interaction and thereby strong hydra-
tion. Large ions, on the other hand, interact less strongly with the solvent
molecules. Strongly hydrated ions have an ordered shell of water molecules
around them whereas large ions are believed to break up the hydrogen bond
network in water. Therefore small well-hydrated ions are often referred to as
“kosmotropes” and large weakly hydrated ions as “chaotropes”. If competi-
tion for solvating water molecules were the only mechanism for precipitation
of proteins one would expect kosmotropes to be stronger salting-out agents
than chaotropes. This is consistent with the order of the “original” Hofmeis-
ter series, but that order is not universal. For some proteins (and colloidal
suspensions) the corresponding series have the reverse order. It is even the
case that the opposite series is found above and below the pI of for the
same protein. This would not be the case if competition for hydration of the
protein was the main explanation for ion-specificity as both negatively and
positively charged proteins are hydrated (though not necessarily to the same
extent). Thus, one can conclude that competition for hydration is not enough
to explain ion specificity in protein precipitation, let alone ion-specific effects
that are not directly related to solubility.

Relatively recently, ion specificity and the Hofmeister series have received
much attention from the physical chemistry community. A view has emerged
in which direct, specific interaction between ions and macromolecules or in-
terfaces, that are weaker but more long-ranged than the interactions that give
rise to the surface charge, are seen as the main mechanism for ion-specificity.
Direct interactions between ions and surfaces (or macromolecules) affect the
concentration profiles of ions and therefore the surface thermodynamic (and
other) properties as well as the interaction between surfaces. Analysis of ex-
perimental data in terms of Kirkwood-Buff theory lend support to this view
[52, 53]. Some authors even go so far as to claim that the effect of salt on
the bulk properties, including the “solvating ability”, of water are so small
as to be unimportant [54].

In this thesis the term “specific interaction” is used for all interactions that
depend on the chemical idiosyncrasies of a system. These include donor-
acceptor bonding, dispersion forces, solvent mediated interactions and ex-
cluded volume effects. That these classes of interactions are here grouped
together in this way is not to be taken as an assertion that they necessarily
have similar effects on a system, however. Both the strength and the distance
dependence of the interactions may be of importance, and these differ wildly
between the mechanisms mentioned above. While for instance dispersion
forces are much shorter in range than (unscreened) Coulomb interactions,
they tend to be more long-ranged than the “site-binding” interactions that
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makes some ions potential determining. Thus, one must distinguish between
different types of specific interactions that differ in both strength and dis-
tance dependence. Strong, short ranged forces simply act to create a surface
charge by adsorption of ions in the way envisioned by GCS theory. Longer
range interactions, on the other hand, can affect the spatial distribution of
ions in the outer part of the double layer even if the interaction is too weak to
affect the number of adsorbed ions to a large extent. A detailed description
of the electric double layer on the implicit-solvent level would require the full
solvent averaged interaction potential between an ion and the surface, as well
as that between ions. Unfortunately, these interaction potentials are imper-
fectly known in all cases. Assumptions and approximations must therefore
be made.

In order to get a feel for at what concentration specific interactions starts
becoming non-negligible in comparison to the long-range electrostatic ones, it
is instructive to consider the typical length scales characterizing the solution.
If the ions in a 100 mM salt solution, corresponding to maybe one ion pair
per 550 water molecules, were placed on a simple cubic lattice the lattice
spacing of would be about 20 Å. In the same solution κ−1 is about 10 Å.
In a 1 M solution, with in the order of 55 water molecules per ion pair, the
corresponding lattice spacing and κ−1 would be around 9 Å and around 3 Å,
respectively. Taking into account that ions have a size in the order of one
to a few Å (or, if one counts the first layer of coordinating water molecules,
as it is frequently argued that one should, several Å) it is not surprising
that the chemical character of the ions becomes increasingly important in
the concentration range between 0.1 and 1 M, which is something that is
frequently seen in experiments. Electrostatic interactions are then screened
to ranges comparable to the size of the ions.

The starting point of the recent interest in direct ion-surface interactions
can be traced back to the suggestion by Ninham and Yaminsky that the
ordering of the Hofmeister series might be explained by (dispersion) van der
Waals forces between the ions and interfaces [55]. The strength of such force
depends on the difference in polarizability of the ion and the solvent as well
as the polarizability of the interface. This idea is made plausible by the fact
that the ionic polarizability varies over a wide range for the small, inorganic
ions that are commonly employed as background electrolyte within colloid
science, particularly for anions. Anions tend to be more polarizable, and
have a larger variation in polarizability, than comparable cations [56]. It is
noteworthy that the polarizability of ions tend to correlate with their size.
A classification of ions in terms of polarizability would thus be likely to yield
the same sequence as a classification of ions based on solvation.
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Ion-wall dispersion forces distinguish themselves from other ion-specific forces
in that they are of relatively long range, the potential decaying as d−3 where
d is the ion-wall distance. In the case of interaction between two surfaces,
such interactions give rise to contributions to the wall-wall pressure that
are as long-ranged as the wall-wall van der Waals force. Furthermore, the
strength of the ion-wall van der Waals forces can be calculated within the
same theoretical framework as the wall-wall van der Waals interaction in the
limit of large wall-ion distances. This idea has been investigated in a number
of recent publications [57, 58, 59, 60, 61, 62, 63, 64, 65, 66].

Computer simulations consistently show that the potential of mean force be-
tween ions have an oscillatory component that is due to the the solvent struc-
ture and analogous to the oscillatory solvation force sometimes seen between
surfaces. The strength of the solvent mediated interactions is often greater
than the dispersion interactions and the difference in solvation structure of
ions give rise to a variability in the interactions between ions that makes
this mechanism a viable alternative as an explanation to the ordering of the
Hofmeister series. This is closely related to the concepts of kosmotropicity
and chaotropicity. Regardless of whether the bulk water structure is signif-
icantly influenced by ion hydration it is tautologically true that the local
structure in the vicinity of ions is. The experimentally observed correla-
tion between chaotropicity/kosmotropicity and ion specific phenomena has
lead to the formulation of heuristic rules based on this concept. The most
recent is probably the “law of matching water affinities” [67], that states
that chaotropes attract other chaotropes and kosmotropes attract other kos-
motropes while chaotropes and kosmotropes repel each other. The rationale
is that a small ion can replace a solvating water molecule near another small
ion, the strong attraction between the small ions compensating for the large
solvation energy. Similarly, a large ion can come close to another large ion
because neither is strongly solvated. Large ions cannot, however, replace
the solvating water molecules of small ions because the Coulomb energy at
contact is not sufficient to compensate for the loss of hydration energy. Obvi-
ously, computer simulations could in principle render this qualitative picture
quantitative. The technical difficulties are unfortunately such that this goal
has not yet been reached. Nevertheless, this is an active area of research and
some progress have recently been made. This is discussed further in Section
3.1.

Simulations using all-atom models indicate that large, polarizable ions tend
to enrich in a narrow region close to the air-water interface, even though
there is a negative surface excess overall [68]. The wrong order of the halides
emerge for the effect on surface tension in the air-water interface when only
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dispersion forces are included [57]. When the difference in solvation energy of
the ions is taken into account in an ad hoc manner the correct sequence could
be obtained [69]. Essentially the same conclusion was recently drawn on the
basis of surface selective spectroscopic measurements with gracing incidence
X-ray fluorescence that provides a measure of the surface excess of ions:
data could only be fitted if a short-ranged interaction was included together
with the dispersion interactions [70]. The ion-specific surface pressure of
a phospholipid film over aqueous electrolyte could be well fitted using the
strength of the dispersion interactions as fitting parameters [71]. An equally
good fit could be obtained from the assumption that ions penetrate into
the phospholipid film to a different degree, however, but not from assuming
binding to discrete sites.

In ref. [60] it was found that dispersion forces between ions and surfaces have
opposite effect on the interaction pressure between surfaces when acting on
the co-ion compared to when acting on the counterion. Mechanistically,
this is explained by attractive interactions with the co-ion that effectively
increases the surface charge density by drawing co-ions close to the surface.
An attractive interaction acting on the counterions, on the other hand, draws
them closer to the surface than electrostatic forces alone would. In the former
case there is an increase in repulsion at short separations whereas in the latter
case there is a decrease in repulsion for such separations. This mechanism
might explain the observation that the precipitation of lysozyme follows a
reverse Hofmeister series for pH below pI (i.e. for positive surface charge) and
a direct Hofmeister series above pI (i.e. for negative surface charge). In ref.
[72] it was shown that the same observation could be explained by solvent-
mediated interactions, as also these can give rise to attractive interactions
between ions and surfaces. This is another example of how models containing
completely different interaction mechanisms lead to the same prediction; it
seems that this prediction is not very sensitive to the distance dependence
of the interaction potential.

The resulting state of the art is that it is reasonably certain that the main
reason for the ordering of the Hofmeister series are weak (a fraction of kBT
to a few kBT ) and short ranged (less than 1 nm) direct interactions between
ions or between ions and interfaces. The quantitative, mechanistic under-
standing of these interactions, however, is much less certain. While the bulk
of this thesis does not deal directly with ion specific phenomena, the study
of these forms the context and background of this work. In Papers I-III the
effects of dispersion forces are investigated. The main focus is the effects of
strong asymmetry in the ion-wall interactions between the cation and anion.
A difficulty in most treatments of this problem to date is that the effect of
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the static polarization of the dielectric interfaces due to that the ions cannot
be treated consistently within mean field theories, that are usually favored
for their simplicity. When ion-ion correlations are considered explicitly, as is
done in this thesis, a consistent treatment of the continuum model of inter-
faces is possible. While the model of the interface employed in Papers I-III is
likely too crude to result in quantitative predictions for real systems the con-
sistent treatment of this model is nevertheless of interest. The role of specific
adsorption as a mechanism for overcharging forms the background for Paper
IV, wherein ion-ion correlations are considered as an alternative source of
overcharging. In order to device a test to determine whether overcharging
due to ion-ion correlation is indeed present in real systems it was necessary
to ascertain the absence of strong specific adsorption as a confounding factor.
Comparison with experimental data indicate that the relatively modest over-
charging seen for negative surface charge densities for the mercury/aqueous
MgSO4 interface [73, 74] is explainable while the strong overcharging seen
for many salts, including MgSO4, for positively polarized mercury electrodes
is not. This is consistent with notion that the mercury surface is free from
specific adsorption for sufficiently negative surface charge densities.

32



Chapter 3

Continuum Models

“Auream quisquis mediocritatem diligit... “

-Quintus Horatius Flaccus, Carmina (23 BC)

A complete description of any substance would require explicit consideration
of the properties of the constituent particles. But such a description is often
not practically feasible. A typical situation in which atomic models tend to
be intractable is one that is characterized by some length scale that is much
larger than the length scale of the interaction between individual atoms. Such
systems are often modeled by describing some or all the substances involved
by their averaged properties, disregarding the inherent discreteness of the
constituent atoms. When the disparity in length scales is large, such as for
systems of macroscopic dimensions, the utility and validity of this approach
is evident. Very rarely do we need to take into account the individuality
of atoms when describing the macroscopic properties of substances; explicit
consideration of the nature of and interaction between the atomic building
blocks is needed only when we seek to explain those properties. Even on
colloidal length scales, a continuum picture often gives an excellent descrip-
tion. In the lower end the colloidal size range the continuum description of
matter cannot, however, be accepted prima facie. For such length scales or
smaller, any continuum description is an approximation, the validity of which
is an empirical question. Nevertheless, in models of electrolyte solutions the
solvent is often described as a dielectric continuum.

A justification for why it is an acceptable approximation to only treat the
ions and not the solvent explicitly when modeling electrolyte solutions can
be obtained from an argument by McMillan and Mayer [75]. It was shown
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by them that a solution in equilibrium with pure solvent can be treated as a
fluid composed of only solute particles, interacting by the potential of mean
force between solute particles in the solution in question. In general this
potential of mean force is not limited to pairwise additive interactions, even
if the interactions between constituent particles are pairwise additive. Also,
the potential of mean force is unknown a priori because it has to be calcu-
lated as an ensemble average in the full system. Treating a system exactly

by McMillan-Mayer theory does not necessarily simplify the problem and
may well complicate it. Rather, McMillan-Mayer theory usually serves as
a starting point for approximate theories, where an ansatz is made for the
solvent-averaged interaction potential that serves as a definition for a partic-
ular model. McMillan-Mayer type models thus contain no explicit reference
to the solvent particles. In general, this engenders great simplification of
the treatment of the statistical-mechanical problem of going from interaction
potentials to thermodynamic properties. Rather than having to deal with
the multi-component, molecular fluid at liquid state densities that is the ac-
tual system, a McMillan-Mayer type model has the appearance of a gas of
solute particles with one fewer components than the full system. This is an
important conceptual as well as technical simplification.

McMillan-Mayer type models have been found to be suitable for modeling
electrolyte systems, at least for low concentrations. This is so because the
long-range Coulomb interactions are dominant in this type of systems. Thus,
a large portion of the interactions that determine the properties of the system
take place over distances corresponding to several atomic diameters. The
procedure of treating the interactions between solute ions as averaged over all
configurations of the solvent particles is then easy to justify. The expectation
that the form of the interaction between charges in a solvent is the same as
that in vacuum, but scaled down by the relative permittivity to account for
dielectric screening, is in fact correct for interactions over large distances
[76], as if the solvent behaved as a macroscopic dielectric. This observation
naturally leads to a class of models where it is taken at face value; where the
solvent is actually is modeled as a dielectric continuum. The primitive model
that is presented below, in Section 3.1, is an example of this approach. The
physical assumption of treating the solvent as a dielectric continuum is also
made in the Lifshitz theory of van der Waals interaction, discussed in Section
3.2. These models are thus constructed on the same conceptual foundation,
which is why they are discussed together here.

The relation between the thermodynamic properties in McMillan-Mayer type
models and those of real electrolyte solutions is simple but not quite trivial.
As the solvent molecules are not explicitly part of these models, the nat-
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ural way to specify the concentration is as a number density, that can be
expressed as molar concentration (moles per liter of solution). The actual
composition of the system, and therefore the molal concentration (moles per
kilogram of solvent), is generally unknown in McMillan-Mayer type models
because the amount of solvent is not specified. Furthermore, the McMillan-
Mayer argument that justifies replacing the solvent component with effective
ion-ion potentials requires the solvent degrees of freedom to be integrated
out at constant solvent chemical potential. The conditions that McMillan-
Mayer-type theory may be best thought to describe is a solution enclosed in a
container of constant volume with semi-permeable walls immersed in a large
excess of pure solvent. These conditions we refer to as McMillan-Mayer con-
ditions. Experiments, on the other hand, are usually carried out under what
we refer to as Lewis-Randall conditions, where the pressure is held constant
and the solution composition is expressed as molal concentration (moles per
kilogram of solvent), denoted m. Note that constant molar concentration
under McMillan-Mayer conditions do not necessarily correspond to constant
composition whereas constant molal concentration under Lewis-Randall con-
ditions do.

A system under Lewis-Randall conditions is most conveniently described us-
ing a thermodynamic potential with temperature, pressure and composi-
tion as its natural variables, i.e. the normal Gibbs free energy, G. Under
McMillan-Mayer conditions, on the other hand, a system is best described
by a thermodynamic potential, denoted M , with the natural variables tem-
perature, volume, number of solute particles and chemical potential of the
solvent. The two thermodynamic potentials G and M are related by a Leg-
endre transformation

M({N s}, µ0, V, T ) = G({N}, P, T ) − PV −N0µ0, (3.1)

where {N} is the set of the number of particles of each component, {N s} is
the set of the number of particles of each solute component and µ0 and N0

are the solvent chemical potential and number of particles, respectively. In
terms of M the chemical potential under McMillan-Mayer conditions is given
by the relation

(

∂M

∂Ni

)

{Ns
j 6=i},T,µ0,V

= µi({N
s}, T, µ0, V ) = µ0

i + kBT ln fin
bulk
i . (3.2)

The activity coefficient f in this equation is the same as that in eq. (2.8).
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The corresponding expression for Lewis-Randall conditions is
(

∂G

∂Ni

)

{Nj 6=i},T,P

= µi({N}, T, P ) = µ0
i + kBT ln fLR

i mi (3.3)

that defines the Lewis-Randall activity coefficient fLR. Note that the two
definitions of the activity coefficient corresponds to different concentration
scales and that the definition of activity coefficients that is usually used for
tabulated data corresponds to fLR. For a given temperature and composi-
tion, µi({N

s}, T, µ0, V ) is not in general equal to µi({N}, T, P ) because the
pressures and chemical potentials of the solvent are not in general equal. In
order to correct for this one can use thermodynamic integration along a path
of constant temperature and composition

µi({N}, P 0, T ) = µi({N}, P 0 + P bulk, T ) −

∫ P 0+P bulk

P 0

∂µi

∂P ′
dP ′, (3.4)

where P 0 is the “external” pressure and P bulk is the bulk osmotic pressure.
Because ∂µi

∂P
is equal to the partial molar volume, vi of species i, eq. (3.4)

can be written as

µi({N}, P 0, T ) = µi({N}, P 0 + P bulk, T ) − P bulkvi (3.5)

for incompressible fluids. Under the assumption of incompressibility the re-
lation between fLR

i and fi is thus

ln(mif
LR
i ) = ln(nifi) −

P bulkvi

kBT
(3.6)

where ni and mi correspond to the same composition.

For notational and conceptual convenience the quantity that is referred to
as the osmotic coefficients in McMillan-Mayer-type models is given by the
quotient of the bulk osmotic pressure, P bulk, and the osmotic pressure of
an ideal solute as given by eq. (2.7). The standard definition of osmotic
coefficient, appropriate under Lewis-Randall conditions, is

φLR = −
∆µ0

kBTM0
∑

imi

(3.7)

where M0 is the molar mass of the solvent and ∆µ0 is the difference in
chemical potential of the solvent compared to pure solvent. The relation
between φLR and φ is thus

φLRM0
∑

i

mi = φv0
∑

i

ni, (3.8)
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where v0 is the solvent partial molar volume. The difference in the form of
the Gibbs-Duhem equation under McMillan-Mayer conditions,

V dP bulk =
∑

i

N s
i dµ

s
i , (3.9)

and under Lewis-Randall conditions,

−N0dµ0 =
∑

i

N s
i dµ

s
i , (3.10)

ensure that these definitions of the osmotic coefficient correspond to analo-
gous relationships between osmotic and activity coefficients under McMillan-
Mayer conditions and Lewis-Randall conditions.

McMillan-Mayer type models contain no way to determine the amount of
solvent in the system, or even the solvent chemical potential. Experimental
volumetric data must therefore be available if the model thermodynamic
data are to be compared with corresponding experimental data. The most
convenient way to do so is to convert the experimental data to McMillan-
Mayer conditions and compare directly to the model predictions.

3.1 The Primitive Model

Within the primitive model of electrolyte solutions and electric double lay-
ers the ions are modeled as charged hard spheres in a dielectric continuum
solvent. The pair interaction potential between two ions of species i and j
at coordinates r and r′ is thus given by

uij = uCoul
ij + ucore

ij (3.11)

where
uCoul

ij (r, r′) =
qiqj

4πǫǫ0 |r − r′|
, (3.12)

The ’hard sphere’ potential, ucore
ij , is infinite if |r − r′| < aij where aij is

distance between ion centers when an ion of species i is in contact with an
ion of species j, and zero otherwise. In general the ion radii may be additive,
that is aij = (aii + ajj)/2 for all i and j, or non-additive. It is common to
choose all ion radii to be equal, aij = a for all i and j, to reduce the number
of parameters in the model.

When considering interfacial systems in the primitive model one often seeks
to model only one side of the interface. The interactions with the particles
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of the other phase are treated using external potentials. This simplification
carries the cost that the actual location of the Gibbs surface of the solvent
cannot be obtained from the model. Instead, the location of the Gibbs plane
must be taken as a model assumption. In this thesis the part of the electric
double layer that is on the solution side is of interest, and therefore we model
only the ions in solution explicitly. This type of model is compatible with the
conceptual framework of GCS theory, where a distinction is made between
the inner and diffuse parts of the double layer. The primitive model in the
form presented here may be regarded as a model of the diffuse part.

The potential from a single charged surface with surface charge density σ
located at z = zσ is given by

νCoul
i (z) = −

qiσ

2ǫǫ0
|z − zσ|. (3.13)

Note that any choice of zσ on the surface side of the plane of closest approach
of the ions gives the same concentration profiles. This is also true if the
surface charge is spread out in space as long as the surface charge distribution
does not overlap with the ion distribution. In this thesis it is assumed that
the walls are “hard” in the same sense as the ion cores, so that the interaction
energy is infinite whenever an ion is closer than a certain distance from any
wall. Note in this context that different origins of the coordinate system are
used for cases where wall-wall interactions are considered and for cases where
single-wall properties are considered. In the former case the origin is placed
in the mid-plane between walls and in the latter case it is placed in the plane
of closest approach of the ions to the walls.

The form of equation (3.12) is correct in bulk for large ionic separation; the
approximations are the assumption that this form is valid for all separations
up to hard-core contact and the use of the permittivity of pure solvent. For
finite concentrations, the permittivity appropriate for the solution is in gen-
eral not equal to the bulk permittivity of the pure solvent. Unfortunately,
the bulk permittivity of the solvent in an electrolyte solution of finite concen-
tration is an ill-defined quantity because the presence of free charges makes
the solution a conductor with infinite permittivity. The form of the short
range interaction potential, ucore

ij , is justified by the fact that ions cannot
overlap due to Pauli repulsion. The interaction energy for very small sepa-
rations must thus be so strongly repulsive compared to the thermal energy
that it may as well be considered infinite. If this feature of the potential is
not reproduced it would lead to the so-called ’Coulomb catastrophe’. As the
interaction between cations and anions is infinitely attractive for zero ion-ion
separation, the cation-anion correlation function would diverge at this point
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in the absence of an additional interaction that is infinitely repulsive. The
primitive model may thus in some sense be regarded as the simplest physi-
cally sound model of electrolyte solutions. While the very short-ranged and
very long-ranged ion-ion interactions are reproduced faithfully, the primitive
model interaction potential is no doubt a rather poor approximation of the
true intermediate-range interactions. Thus, one would expect the primitive
model to work well in situations where the long-range Coulomb interactions
are dominant.

To calculate structural and thermodynamic properties of a primitive model
by statistical mechanics is a non-trivial problem, despite the simplicity of
the interaction potential. Fortunately, this is a problem that has attracted
the attention of many workers over the last century and today theoretical as
well as simulation methods that reliably gives the properties of the primitive
model for a large range of parameters have been developed. The theories
that tend to be most successful for primitive model electrolytes (and other
simple fluids) belongs to the class of theoretical methods known as integral
equation theories. These are discussed in Section 4.1. Furthermore, a number
of general conclusions about the primitive model, some of which also applies
to electrolytes in general, can be drawn on the basis of the long range nature
of the Coulomb potential. Examples of such are sum rules for the zeroth and
second moment of the charge density distribution around an ion [3] and the
analytic form of the pair distribution function in the long-distance asymptotic
limit [17].

Due to the finite size of the ions, the primitive model takes into account
excluded volume effects. It has been found that the decay length of the bulk
distribution functions for primitive model electrolytes depend on the ion sizes
in a rather complicated fashion [77]. Thus, the ion size is a possible source
of ion specificity. Using the ion sizes as fitting parameters, the primitive
model has been found to be able to describe bulk thermodynamic data for
many real electrolyte solutions quite well up to about 1 M concentration,
sometimes much higher [78]. If a sufficiently large set of salts is investigated,
it becomes apparent that the ionic radii that give the best fit are not in
general transferable between salts, nor are they simply related to the radius of
ions in crystalline compounds. Thus, the primitive model must be employed
with the caveat that the ionic size parameter cannot be interpreted as a true
geometric property of an ion.

The primitive model applied to electrolytes near interfaces is an important
model for the electric double layer. While the same theoretical methods can
be applied to this situation as to bulk electrolytes, the interfacial problem is
far more technically demanding than the bulk problem. This is due to the in-
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homogeneity and anisotropy of the solution close to an interface that breaks
some of the spatial symmetries that can be used to simplify the bulk prob-
lem. Simulations of primitive model double layers [79, 80] and similar models
[16] have been possible since the early 1980s. For monovalent counterions at
moderate concentration near moderately charged surfaces, the results are
in qualitative agreement with the predictions of the PB approximation and
other mean-field theories. For divalent counterions (or counterions of even
higher valency) the predictions of the PB approximation differ qualitatively
from the predictions of primitive model simulations [81, 82]. This has im-
plications for the interaction pressure between walls due to the ions, that is
sometimes attractive [83, 84] rather than always repulsive, as is the case in
DLVO theory, as well as for surface excess thermodynamic properties. These
qualitative differences from mean field theory are discussed in Sections 2.2
and 2.3 above.

For more sophisticated models, realistic pairwise interaction potentials be-
tween ions may well differ sufficiently between different species of ions that
they are the main source of ion specificity under some conditions. There are
two principal methods for developing improved model interaction potentials.
One is to make assumptions about the mathematical form of the interaction
potential and use a fit to experimental data to determine the values of the
parameters defining the details of the interaction. The other is to actually
try to calculate the effective potential in some thermodynamic state using
simulation or advanced theory and then try to generalize this form to other
states.

The former approach have been extensively investigated, particularly for 1:1
salts [85, 86, 87, 88]. This research program has resulted in models in good
agreement with bulk thermodynamic data. The approach does, however,
suffer from the problem that many different forms of the interaction potential
can give similar fits to experimental data. This was realized early on, as
stated by Ramanathan and Friedman in ref. [85]:

It seems to us that the main barrier to further advancement of
our understanding of ionic solutions lies in the expectation that a
vast number of equally attractive but distinguishable models can
be found which are equally consistent with thermodynamic data.

Fits to data from macroscopic measurements can thus reveal general fea-
tures of the interaction potential, but are blunt tools for obtaining detailed
mechanistic information. As the form of an interaction potential, dictated
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by theory, for one mechanism may give an equally good fit as the form corre-
sponding to a completely different mechanism, definite conclusions can rarely
be drawn.

The latter approach of deriving the effective interaction potential from more
detailed models, on the other hand, shows some promise in giving mechanis-
tic information but suffers from that thermodynamic properties of solutions
at high concentrations are often very sensitive to small errors in the mag-
nitude of the interaction potential. (The insensitivity of the possibility of
fitting bulk thermodynamic data is to the form of the interaction potential
does not contradict sensitivity of thermodynamic properties to its magni-
tude for a given form.) Thus, it is difficult to obtain an interaction po-
tential that accurately gives the thermodynamic properties of solutions of a
given salt by this route. Nevertheless, this kind of calculations have yielded
important information about the general features of the effective interac-
tions between ions in aqueous solutions. It seems to be a general feature
that such interaction potentials have an oscillatory component due to or-
dering of water molecules that is superimposed on the Coulomb interaction
[89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 50, 72, 99]. This solvent mediated inter-
action may be considered analogous to the solvation force between surfaces
[35]. As noted in Section 2.4, differences in this solvent induced interaction
is one of the major candidates for explaining the ordering of the Hofmeis-
ter series. Interaction potentials from simulations have been applied to the
modeling of inhomogeneous systems [100, 101].

3.2 Polarizable Interfaces and van der Waals

Forces

As stated in the introduction, van der Waals forces are caused by correlated
fluctuations in the charge density distribution of bodies that may be as small
as atoms and as large as macroscopic objects. The fluctuations in charge
density may arise from the displacement of either electrons or nuclei. Due to
the difference in mass between nuclei and electrons, these mechanisms differ
greatly in time scale. The electronic fluctuations can have frequencies well
above those associated with visible light while the fluctuations associated
with the nuclei occur at frequencies comparable to those associated with in-
frared radiation or smaller. Because the time scale associated with electronic
motion can be much smaller than that of nuclear motion, the electrons move
with the nuclei. The displacement of nuclei can thus only effect a significant
fluctuation in charge density if those nuclei are part of polar molecules. Even
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in such cases, the high frequency fluctuations associated with the electronic
motion tend to give rise to the dominant contribution to the van der Waals
force [35]. This is commonly called the dispersion force. In this thesis, the
term “dispersion force” is used only for the contribution to the van der Waals
force due to high frequency fluctuations. As we shall see in the following sec-
tion, however, the same theoretical framework can be used regardless of the
time scale of the fluctuations.

When electrolyte is present, it is vital to distinguish between the “high fre-
quency” (dispersion) and “zero frequency” (that is due to very low frequency
fluctuations in charge density) contribution to the wall-wall van der Waals
force. The ions in an electrolyte cannot respond to the former, other than
by changing their polarization state, because the vast majority of the fluc-
tuations causing it happen on a timescale that is too short for the ions to
move significantly in response. However, the ions can respond to the “zero
frequency” contribution, and it is therefore screened by electrolyte much like
other electrostatic interactions. This screening is automatically taken into
account if the effects of image forces are included consistently in the treat-
ment of the intervening electrolyte.

The first quantitative theoretical treatment of dispersion forces is due to Lon-
don, who derived an approximate expression for the dispersion interaction
between two atoms [24]. This expression predicted that the strength of the
dispersion forces is proportional to the product of the atomic polarizabilities
and that the potential for this force decays as the inverse sixth power of the
interatomic distance for large distances, which is correct for distances that
are sufficiently small that negligible error is introduced if the speed of light
is taken to be infinite. The distance dependence of the van der Waals attrac-
tion between two macroscopic spheres was successfully predicted by Hamaker
[102] by simply summing the average contribution from each individual vol-
ume element, as given by the London expression for dispersion forces and
the average density. This procedure can of course be applied to any geom-
etry. Despite this success, Hamaker’s approach proved incapable of reliably
predicting the strength of the van der Waals attraction between macroscopic
bodies. This is to a large extent due to the fact that for the densities of
typical condensed phases, the London expression, that pertains to two atoms
in vacuum, is not valid. When atoms are close together, neighboring atoms
will affect each other’s polarization states in a complicated manner. Thus,
the apparent polarizability of an individual atom will depend on the aver-
age polarization states of surrounding atoms, that in turn depends on the
polarization states of the atoms surrounding them. As can be imagined, the
problem of calculating this quantity quickly becomes very complex as the
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density is increased. Note however that the problem of many-body polariza-
tion in connection to the (static) dielectric constant of polarizable liquids can
be expressed as an integral equation similar to the integral equations for the
correlation functions that appear in liquid state theories [103], see Section
4.1 below.

A theory for van der Waals forces that takes these considerations into ac-
count was developed in the 1950’s by Lifshitz [104]. This theory was originally
formulated in terms of quantum electrodynamics, but due to the approxima-
tions involved it can also be formulated in terms of classical electrodynamics
with quantization of energy [25, 105, 26]. Within Lifshitz theory, materials
are characterized by their macroscopic dielectric functions that contain the
effects of many-body interactions on the response of the material to electric
fields. These dielectric functions depend on the time scale on which the field
varies and are usually expressed as functions of frequency. Thus, Lifshitz
theory is a continuum theory where the molecular “granularity” of the wall
and particle media is neglected, much in the same way as is done in the
primitive model of electrolyte solutions.

The boundary condition that the electric field must satisfy at the interface
between two media is determined by the dielectric functions of the media, as
well as their geometries. If two interfaces are brought close to each other the
need to satisfy the boundary conditions for both interfaces places a limitation
on the wavelengths that “fit” between the interfaces. The partition function
of the electric field is given by

Q =
∏

j

∑

l

e
−

(l+1/2) ~ ωj
kBT =

∏

j

1

2 sinh
(

~ωj

2kBT

) , (3.14)

where ωj denotes the frequency of the j-th allowed mode and l is an integer,
corresponding to the number of photons in the mode. The free energy of the
field is thus

A = −kBT lnQ = kBT
∑

j

ln
(

2 sinh
(

~ωj

2kBT

)

)

. (3.15)

As the frequencies of the allowed modes depend on the separation between
the interfaces, the free energy of the field is also dependent on the separation.
It is possible to rationalize why the van der Waals force is generally attractive
by noting that the number of modes that fit between the interfaces generally
becomes smaller as the interfaces are brought closer. Since most modes have
an energy ~ωj that is much larger than kBT for the temperature range that is
of interest within colloid science, decreasing the number of modes correspond
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to a decrease in the free energy. In order to obtain F as a function of
distance one could solve the electrodynamic boundary value problem to find
the frequencies of the allowed modes, which is generally a difficult problem,
and substitute the frequencies into eq. (3.15). The problem can be simplified
by writing the free energy of the modes associated with a certain magnitude
of the wave vector in terms of the dispersion relation, D(ω, k) (that has the
property that the frequencies of the allowed modes satisfy D(ω, k) = 0) for
imaginary frequencies

A(k) = kBT

∞
∑

l=0

′
D

(

i
2πlkBT

~
, k
)

, (3.16)

where i is the imaginary unit and the prime on the summation symbol in-
dicate that the term with l = 0 is to be given half weight. The proof of
the equivalence between eq. (3.15) and eq. (3.16) relies on Cauchy’s residue
theorem and can be found in [106]. For two planar, parallel interfaces the
dispersion relation is given by1

D(ω, k) = 1 − ǫ2D(ω)e−2kD, (3.17)

where k is the magnitude of the wave vector and

ǫD(ω) =
ǫ(ω) − ǫwall(ω)

ǫ(ω) + ǫwall(ω)
, (3.18)

where ǫ(ω) and ǫwall(ω) are the frequency-dependent dielectric functions of
the solvent and the wall material, respectively. These are related to the
dielectric constants by ǫ(0) = ǫ and ǫwall(0) = ǫwall and may be thought of
as a generalization of the concept of dielectric constant that applies to fields
that vary in time. To obtain the total interaction free energy due to van der
Waals forces as a function of D, eq. (3.16) can be integrated with respect to
k, yielding

A(D) =
kBT

8πD2

∞
∑

l=0

′

∞
∑

s=1

ǫ2s
D (iωl)

s3
, (3.19)

with ωl = l 2π kBT/~. In order to obtain the pressure due to van der Waals
forces, the free energy is differentiated with respect to D, which gives the
result

P vdW (D) = −
kBT

4πD3

∞
∑

l=0

′

∞
∑

s=1

ǫ2s
D (iωl)

s3
. (3.20)

1This dispersion relation is valid only if the speed of light can be taken as infinite,
which is a good approximation for small D.
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In what follows it will be important to distinguish between the l = 0 term in
the sum, the zero-frequency van der Waals pressure, denoted P vdW

0 and the
rest of the sum, the high-frequency van der Waals pressure, denoted P vdW

hf .
The zero-frequency van der Waals pressure is screened by the presence of
electrolyte, whereas the high frequency van der Waals pressure is not. As it
turns out, this screening is intimately related to the correlation of ions and
their image charges. This screening effect is discussed below.

In most systems, the zero-frequency van der Waals pressure is small com-
pared to the high-frequency van der Waals pressure, but hydrocarbon/water
systems are an exception. As this is one of the types of system studied in
this thesis (Papers I-III), the screening of the former term may thus have
a large influence on the magnitude of the total pressure. For the particular
system that is studied here, polystyrene/water, the zero-frequency van der
Waals pressure contributes about a third of the total van der Waals pressure.
The dielectric functions used here are taken from ref. [107].

Lifshitz theory can in principle be applied to any geometry. It can therefore
be used to calculate the interaction free energy between a surface and a
polarizable point particle a distance d from the surface. The interaction free
energy for such a situation is [55]

Adisp
i (d) = −

~

(4π)2ǫ0d3

∫ ∞

0

dω
α∗

i (iω)

ǫ(iω)
ǫD(iω) =

Bi

d3
(3.21)

where ~ is Planck’s constant divided by 2π, α∗
i (iω) is the dynamic excess

polarizability of the ion and ω has the same meaning as in eq. (3.19). The
meaning of excess polarizability is the polarizability of the ion in solution,
α(ω), less the polarizability of the solvent displaced by the ion. The po-
larizability of an ion can be inferred from spectroscopic data or quantum
mechanical calculations using [25]

α(ω) =
e20

4πǫ0me

∑

l

f0,l

ω2
0,l − ω2

, (3.22)

where me is the electron mass, ω0,l is the frequency associated with the
electronic excitation from the ground state to state l and f0,l is the oscillator
strengths of that excitation. The quantities f0,l and ω0,l can be calculated
using quantum-mechanical density functional theory [108, 109]. It is on the
basis of such calculations that the values of Bi that are used here are chosen.
For details, see Paper I.

Equation (3.21) is strictly valid only for an isolated ion interacting with a
single wall. Many-body interactions will be present in the case of two walls
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and for finite salt concentrations. This is due to the fact that the environment
of the ion will affect its polarization state, as discussed previously. Here,
such many-body contributions are neglected. Under this approximation, the
interaction potential due to dispersion forces acting on an ion between two
walls is given by

νdisp
i (z|D) = Bi

(

1

|z +D/2|3
+

1

|z −D/2|3

)

, (3.23)

where Bi has the same meaning as in equation (3.21). This can be expected
to be a good approximation, at least in situations where the density of ions
is small and the walls are far apart.

When an ion is brought close to an interface between two dielectric materials
the dielectrics on either side of the interface will be polarized to a different
extent. This difference in polarization gives rise to surface charge distribu-
tion that can either repel or attract the ion, depending on which one of the
dielectrics has a higher dielectric constant. An ion in a medium of high di-
electric constant will be repelled from an interface with a medium of lower
dielectric constant, and attracted in the reverse case.

The static polarization of the walls due to the ionic charges can be taken into
account by the method of images. This method derives its name from the fact
that for certain geometries, the field due to the surface polarization induced
by a charge is identical to that from a charge placed at the position where
the mirror image of the original charge would appear to be if the surface were
a mirror. The method of images is very convenient when solving boundary
value problems is simple geometries, such as that of a charge near a single
planar interface. When the geometry of the interface is more complicated,
the method of images often gives the field due to the surface polarization
from a point charge as the field from an infinite array of image charges. The
situation is illustrated in Figure 3.1. Often, the evaluation of such a sum
is too cumbersome to make the method of images useful in practice. The
situation with an infinite number of image charges is encountered even in the
relatively simple geometry of two parallel walls considered here. Fortunately,
the Hankel transform of the potential due to the infinite sum over image
charges can be evaluated analytically.

Because the numerical procedure used to find the ionic distribution func-
tions employs Hankel transforms, see Section 4.2 below, no extra difficulty
is introduced from a potential function that is known only in k-space. The
polarization of the walls gives rise to contributions to both the ion-ion inter-
action potential and the ion-wall interaction potential. The contribution due

46



q

q

p

p

εDq εDqεD
2q

εDq

Figure 3.1: Schematic representation of the method of images. The charge
of magnitude q and the image charges of magnitude ǫnDq (where n is an
integer) all contribute to the potential at the point p. In the situation with
a single dielectric wall in the upper part of the figure only a single image
charge is needed to give the correct potential. In the second situation with
two dielectric walls an infinite number of image charges, of which the first
three are shown and the existence of a forth outside the right edge of the
picture is hinted, are needed to give the potential at the point p.

to image charges to the ion-ion interaction potential is given by [84]

ûim
ij (k, z, z′|D) =

qi qj
ǫsolǫ0 k

[

ǫD
ekD − ǫD

cosh(kz) cosh(kz′) (3.24)

+
ǫD

ekD + ǫD
sinh(kz) sinh(kz′)

]

where ǫD = ǫD(0). The contribution to the ion-wall interaction potential is
given by the interaction between an ion and its own image charges,

νim
i (z|D) =

1

2
uim

ii (0, z, z|D), (3.25)

and will be referred to the self-image interaction. From equation (3.18) we
see that if the solvent has a higher dielectric constant than the walls, the self-
image interaction will be repulsive. Under the same conditions, the image
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charges will give also rise to an extra repulsion between like-charged ions and
an extra attraction between oppositely charged ions.

If only the effect of the self-image interaction on the concentration profiles
were to be taken into account, one would conclude that the contribution
to the potential of mean force due to image charges would be long-ranged,
decaying as d−1 in the case of a single wall. In reality, however, the image
forces are screened much like the Coulomb interaction between ions in bulk.
The exact nature of the screening depends on the ionic correlation functions
that are themselves influenced by the presence of image charges. Thus, in
order to treat the screening of image charges consistently the correlation
functions must be considered explicitly. This fact makes integral equation
theory well suited for the study of interfaces with a dielectric discontinuity,
see Sections 4.1 and 4.2 below.

If the correlation between ions in the presence of image charges is treated
consistently, a repulsive contribution to the pressure that exactly cancels
the zero-frequency van der Waals pressure for large wall-wall separations
will be present [37, 36]. For small separations, the image forces give rise to
contributions to the pressure that have a shorter range than the the van der
Waals pressure and can be either attractive or repulsive. The net effect is thus
that the zero-frequency van der Waals pressure is replaced by a contribution
that has a shorter range and depends on the effect of image charges on the
ion distribution between the walls, see 4.3 below. For monovalent electrolyte
at moderate concentrations between uncharged surfaces this contribution has
the form of an exponentially decaying attraction [36]. For charged surfaces
it can be repulsive, however, see Figure 4 of Paper II.
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Chapter 4

Distribution Function Theory

“Reasoning is but reckoning.”

-Thomas Hobbes, Leviathan (1651)

Equilibrium statistical mechanics is a field of study that aims to derive ther-
modynamic properties of substances from the interactions between the con-
stituent particles. Using the concept of ensembles, collections of systems
characterized by the same thermodynamic state but with the particles ar-
ranged differently on the microscopic scale, thermodynamic quantities can be
obtained as averages over a suitable ensemble. The central relation between
statistical mechanics and thermodynamics is that there is a one-to-one cor-
respondence between each ensemble and a thermodynamic potential. This
relation is most easily illustrated for the microcanonical ensemble, defined
by constant number N of identical particles, volume V , and energy U , cor-
responding to a closed, isolated system with rigid walls. The entropy, S, is
related to the number of quantum states available to the system, Ω, by

S = kB ln Ω. (4.1)

Boltzmann’s constant, kB, is included for the expression to be consistent with
the practice of expressing the temperature in Kelvins rather than in a regular
unit for energy, which is considered desirable for historical reasons. In the
thermodynamic limit, where all extensive properties of the system are made
infinite while preserving their ratio, S becomes equal to the corresponding
quantity in classical thermodynamics. Since the natural variables of S are N ,
V , and U all thermodynamic observables of the system can be calculated if
one knows how the number of possible quantum states of the system changes
as N , V , and U are varied.
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The one-to-one correspondence between ensembles and thermodynamic po-
tentials is not limited to the entropy and the microcanonical ensemble. Re-
lations analogous to eq. (4.1) can be derived for ensembles characterized
by holding other thermodynamic quantities fixed. In the thermodynamic
limit, all ensembles that correspond to the same thermodynamic state must
give identical results for all thermodynamic observables, regardless of which
quantities are held constant. The criterion for selecting an ensemble to work
with is thus simply expedience with respect to the task at hand.

The ensemble defined by a fixed N , V and T is often referred to as the
canonical ensemble. The fundamental quantity characterizing this ensemble
is the canonical partition function, given in the classical approximation by

QN =
1

h3NN !

∫

· · ·

∫

e
−

HN (r1,··· ,rN ,p1,··· ,pN )

kBT dr1 · · · drNdp1 · · · dpN (4.2)

where ri is the position and pi is the momentum of particle i. The prefactor
ensures that indistinguishably of the particles is taken into account and that
the expression is consistent with its quantum mechanical analogue in the
applicable limit. The Hamiltonian, HN , is given by

HN(r1, · · · , rN ,p1, · · · ,pN) =
∑

i

|pi|
2

2m
+ UN(r1, · · · , rN) (4.3)

where m is the mass of the particles, the first term gives the kinetic energy
and UN is the potential energy of the system.

The canonical partition function is related to the thermodynamic potential
that has N , V and T as its natural variables, the Helmholtz free energy, A,
by

A = −kBT lnQN . (4.4)

The direct relation between the canonical partition function and A estab-
lishes the relation with the second law. We recall that the minimum in a
system’s Helmholtz free energy corresponds to the state of a system that
corresponds to a maximum in entropy of the system and its surroundings.
This link to the surroundings is also present in eq. (4.2): the integrand is
related to the availability of energy for transfer to the system from the sur-
roundings. Distributions of positions and momenta characterized by values
of the Hamiltonian that are large compared to kBT carries less weight in
the integral because of the decrease in entropy associated with transferring
energy from the surroundings to the system as heat.

In order to study surface thermodynamic properties we will consider another
ensemble that is suitable for this task: the grand canonical ensemble. This
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ensemble is characterized by constant chemical potential, µ, rather than con-
stant N . As in the canonical ensemble, V and T are held fixed. The partition
function in this ensemble is defined in terms of the canonical partition func-
tion by

Ξ =
∞
∑

N=0

e
µN

kBT QN . (4.5)

The physical interpretation of the relationship with the canonical partition
function can be grasped by noting that in the grand canonical ensemble,
particles as well as energy can be exchanged with the surroundings. Much
like all possible values of the total energy are taken into account in the
canonical partition function, all possible numbers of particles are taken into
account in the grand canonical partition function. Hence the sum over N .
For bulk systems the thermodynamic potential that is related to Ξ is −PV ,
through the relation

PV = kBT ln Ξ, (4.6)

that is analogous to eq. (4.4). The differential form of eq. (4.6) is the Gibbs-
Duhem equation, eq. (2.6). The grand canonical ensemble can be extended
to treat interfacial systems by making sure that an interface of specified area,
A , is present so that the resulting ensemble is characterized by fixed µ, V ,
A and T . This ensemble leads to the Gibbs adsorption isotherm, eq. (2.11).
This explains why this close relative of the grand canonical ensemble is well
suited for interfacial systems.

The form of eq. (4.3), with the kinetic energy contribution being independent
of the potential energy contribution, implies that eq. (4.2) can be factorized
into one factor that contains the kinetic energy only and one factor that
contains only the potential energy. The “kinetic energy” part is identical to
the partition function of an ideal gas where the potential energy is zero for
all configurations. Eq. (4.4) then implies that the free energy, and therefore
all thermodynamic quantities, can be expressed as a term that is equal to
that of an ideal system and a term that contains all the contributions from
interactions amongst the particles. Because the ideal contribution to any
thermodynamic quantity can be written as an algebraic expression, usually
a very simple one, the remainder of this section will be devoted to methods
for evaluating the remaining, excess, contribution.

The probability density, pN , for a subsystem of the canonical ensemble to
be in a given configuration, defined by the particle coordinates r1, · · · , rN , is
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[110]

pN(r1, · · · , rN) =
e
−

U(r1,··· ,rN )

kBT

∫

· · ·
∫

e
−

U(r1,··· ,rN )

kBT dr1 · · · drN

, (4.7)

where U(r1, · · · , rN) is the potential energy associated with the configuration.
The denominator in this expression is known as the configuration integral

and is denoted by ZN . This quantity is related to the excess Helmholtz free
energy, Aex, in analogy with eq. (4.4) via

Aex = −kBT ln
ZN

V N
, (4.8)

and thus contains all information about the effect of interactions on thermo-
dynamic quantities. The configurational ensemble average of a quantity, F ,
say, is denoted 〈F 〉 and can be expressed in terms of eq. 4.7 as

〈F 〉 =

∫

· · ·

∫

F (r1, · · · , rN)pN(r1, · · · , rN) dr1 · · · drN . (4.9)

The excess contributions to thermodynamic quantities such as P can be
calculated in terms of such ensemble averages, see Section 4.3.

4.1 Distribution Functions and Correlation Func-

tions

A central part in statistical mechanics is the concept of distribution func-
tions. These functions are closely linked to many experimentally measurable
properties and are therefore a suitable starting point for statistical mechani-
cal theories. In this section, the canonical ensemble is used to introduce the
theory of distribution functions in terms of ensemble averages of the local
concentration.

The particle density, i.e. “concentration”, at position r, n(r), in any config-
uration is infinite at the particle positions and zero everywhere else, thus it
can be written as

n(r) =
N
∑

i=1

δ(r − ri), (4.10)

where δ(r) is the (three-dimensional) Dirac delta distribution1. The proba-
bility density of finding a particle at r at a given time, n(1)(r) is the ensemble

1That is infinite for r = 0 and zero otherwise and has the property
∫

φ(r′)δ(r−r
′)dr′ =

φ(r), where φ is a continuous function.

52



average of n(r),

n(1)(r) = 〈n(r)〉 =
1

ZN

∫

· · ·

∫ N
∑

i=1

δ(r − ri)e
−

U(r1,··· ,rN )

kBT dr1 · · · drN

=
N

ZN

∫

· · ·

∫

e
−

U(r,r2,··· ,rN )

kBT dr2 · · · drN . (4.11)

The fact that the particles are indistinguishable has been used to simplify the
expression by noting that each of the N terms in the sum is identical. Sim-
ilarly, the probability densities of finding one particles at r and one particle
at r′ simultaneously, n(2)(r, r′), is given by

n(2)(r, r′) =
〈

N
∑

i=1

N
∑

j=1
j 6=i

δ(r − ri)δ(r
′ − rj)

〉

(4.12)

=
N(N − 1)

ZN

∫

· · ·

∫

e
−

U(r,r′,r3,··· ,rN )

kBT dr3 · · · drN .

Again, use has been made of the fact that the N(N − 1) terms are identical.
By the same argument, the l-particle distribution function, n(l)(r, · · · , r(l)),
the corresponding probability density of finding l particles at r, · · · , r(l) is
given by

n(l)(r, · · · , r(l)) =
N !

(N − l)!ZN

∫

· · ·

∫

e
−

U(r,··· ,r(l),rl+1,··· ,rN )

kBT drl+1 · · · drN .

(4.13)
From the 1- and l-particle densities the normalized l-particle distribution

function2, g(l)(r, · · · , r(l)) can be defined by

n(l)(r, · · · , r(l)) = n(1)(r) · · ·n(1)(r(l))g(l)(r, · · · , r(l)). (4.14)

As might be expected, the manipulation of higher order distribution functions
quickly becomes intractably complex with increasing order. Fortunately,
n(1)(r) and g(2)(r, r′) are the distribution functions of greatest importance.
Below, the superscripts on these symbols are suppressed whenever there is
no risk of confusion and the functions they represent will be referred to as
the concentration profile and the pair distribution function, respectively. In
order to appreciate the physical significance of these functions, it is useful to
note how they are interrelated. The product n(r′)g(r, r′) gives the average

2This naming convention is not universal, sometimes the name “distribution function”
is reserved for the g(l) functions. In this case n(l) is called the l-particle density.
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concentration at r′, given that there is a particle at r, which is the same thing
as the concentration profile around a fixed particle. This interpretation of
g(r, r′) gives rise to an elegant way of connecting the properties of homoge-
neous and inhomogeneous fluids already alluded to in Chapter 2. A theory
that gives n(r) for an arbitrary external potential is also a theory for g(r, r′)
of a bulk fluid because the external potential can be chosen as the potential
from a particle held fixed at a point r′ (that may as well be taken as the
origin of the coordinate system). The concentration profile in this situation
corresponds to nbulkg(r, r′).

The distributions functions are closely related to the density-density correla-

tion functions, defined by

H(l)(r, · · · , r(l)) =
〈

(

n(r) − n(r)
)

· · ·
(

n(r(l)) − n(r(l))
)

〉

. (4.15)

The density-density correlation function of greatest interest and importance
in practice is, as with the distribution functions, the one of lowest order, l =
2. This function is related to the distribution functions by

H(2)(r, r′) = n(r)δ(r − r′) + n(r)n(r′)h(r, r′) (4.16)

where h(r, r′) is the total correlation function related to g(r, r′) by

g(r, r′) = h(r, r′) + 1. (4.17)

These functions are thus equivalent with respect to the physical information
that they contain.

The density-density correlation function is closely related to the linear re-

sponse function, χ(r, r′), that determines how a fluid responds to a small
change in an external field. The change in density at δn(r) due to a small
change in external potential δν(r′) is given by

δn(r) =

∫

χ(r, r′)δν(r′)dr′ = −
1

kBT

∫

H(2)(r, r′)δν(r′)dr′. (4.18)

This is an example of an application of the fluctuation-dissipation theorem
that states that the response of a system to a weak external perturbation is
determined by the fluctuations in the equilibrium system, see ref. [111].

The fact that the density-density correlation function determines the re-
sponse of the fluid to a weak external field implies that it determines how
the fluid interacts with radiation. Thus, at least for bulk systems where the
concentration profiles are constant, the density-density correlation function,
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and thereby the total correlation function, can be measured more or less
directly in scattering experiments.

If the interaction potential is pairwise additive, i.e. it can be written as a
sum where each term depends on at most two particle coordinates according
to

U(r1, · · · , rN) =
N
∑

i=1

νi(ri) +
1

2

N
∑

i=1

N
∑

j=1
j 6=i

uij(ri, rj), (4.19)

where the factor 1/2 corrects for the fact that each pairwise interaction is
counted twice, the thermodynamic properties of the fluid depend on n(r),
h(r, r′) and the interaction potential only [110]. While the interaction po-
tential in real systems is not pairwise additive in general, pairwise additive
model potentials have been shown to give results in good agreement with
experimental data in many cases, see for instance ref. [112].

Over the last century, several predictive theories for h(r, r′) in terms of n(r)
and u(r, r′) have been developed. Commonly, such theories are expressed
in terms of an equation where an unknown, typically h(r, r′), appears in an
integrand, i.e. as an integral equation. The approach that has proved most
fruitful for obtaining accurate approximations for h(r, r′) is to combine the
exact Ornstein-Zernike (OZ) equation [113]

h(r, r′) = c(r, r′) +

∫

h(r, r′′)n(r′′)c(r′′, r′)dr′′, (4.20)

where c(r, r′) is called the direct correlation function, with a second, approx-
imate, expression relating h(r, r′) and c(r, r′).

The direct correlation function may be considered defined by eq. (4.20), but
an equivalent, more physically transparent definition is given by eq. (4.23)
below. The relation between the total and direct correlation functions can
be illustrated by recursively substituting the OZ equation into itself, yielding

h(r, r′) = c(r, r′) +

∫

c(r, r′′)n(r′′)c(r′′, r′)dr′′ + · · · . (4.21)

The result is an expression for h(r, r′) as an infinite series of multi-centered
integrals of products of c(r, r′) and n(r). Thus, the total correlation func-
tion can be interpreted as the sum of the direct correlation and all indirect
correlations.

For a system with an arbitrary number of components the OZ equation takes
the form of a system of equations with one equation for each pair of species,

hij(r, r
′) = cij(r, r

′) +
∑

m

∫

him(r, r′′)nm(r′′)cmj(r
′′, r′)dr′′, (4.22)
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where i and j are species indexes and the summation is over all species.
The indexed correlation functions refer to correlations between particles of
species i and j in the sense that nj(r

′)(hij(r, r
′) + 1) = nj(r

′)gij(r, r
′) gives

the average concentration of particles of species j at r′ given that a particle of
species i is held fixed at r. Because the correlation functions are symmetric
with respect to interchange of the species indexes, hij(r, r

′) = hji(r, r
′) and

similarly for cij(r, r
′), for an N -component system there are N(N + 1)/2

equations. Since we are interested in binary electrolytes it is eq. (4.22) that
is used in all calculations. We will continue to assume a one component
system in the discussion below for notational simplicity. The generalization
to multi-component systems is straight forward.

The direct correlation function can be expressed in terms of a functional
derivative of the excess chemical potential with respect to the concentration
profile,

1

kBT

δµex(r)

δn(r′)
= −c(r, r′), (4.23)

where µex(r) denotes the local excess chemical potential, the reversible work
required to insert a particle into the system at r due to interactions with
other particles. The corresponding relation for the ideal contribution to the
chemical potential is

1

kBT

δµid(r)

δn(r′)
=
δ(r − r′)

n(r)
. (4.24)

The OZ equation can be justified as follows by noting that equation (4.18)
implies that3

kBT
δn(r)

δν(r′)
= −H(2)(r, r′). (4.25)

If the fluid is maintained in equilibrium at constant chemical potential, µ, so
that

µ = µid(r) + µex(r) + ν(r), (4.26)

is not changed by the change in external field, the change in the intrinsic

chemical potential, µint(r) = µid(r)+µex(r), the contribution to the chemical
potential that is not due to external fields, must exactly cancel the change
in ν(r),

δµid(r) + δµex(r) = δµint(r) = −δν(r). (4.27)

Thus, the functional derivative of the density with respect to δµint(r) is

kBT
δn(r)

δµint(r′)
= H(2)(r, r′). (4.28)

3According to the definition of functional derivative, δF =
∫

φ(r)δψ(r)dr implies that
δF
δψ(r) = φ(r)
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We note that the sum of eqs. (4.23) and (4.24) and eq. (4.28) are each others
functional inverse, which means that they fulfill

δ(r − r′) =

∫

kBT
δn(r)

δµint(r′′)

( 1

kBT

δµid(r′′)

δn(r′)
+

1

kBT

δµex(r′′)

δn(r′)

)

dr′′ (4.29)

=

∫

n(r)(δ(r − r′′) + h(r, r′′)n(r′′))
(δ(r′′ − r′)

n(r′′)
− c(r′′, r′)

)

dr′′,

from which the OZ equation, eq. (4.20), can be recovered. See ref. [111] for
a complete proof.

In order to show how a second relation between h(r, r′) and c(r, r′) to sup-
plement the OZ equation can be found, we note that the pair distribution
function can be written as

g(r, r′) = e
−

ω(r,r′)
kBT , (4.30)

where ω(r, r′) called the potential of mean force. As the name suggests, this
function has the physical interpretation that it serves as the potential for the
average force that two fixed particles, one at r and one at r′, appears to exert
on each other, including both the direct interactions between the particles
and the average over the interaction with all other particles. The potential
of mean force can be written as

ω(r, r′) = u(r, r′) − kBT ln y(r, r′) (4.31)

where y(r, r′) is the so-called cavity correlation function that has the physical
interpretation that it is the pair distribution function between two imaginary
particles that interacts normally with all other particles in the system, but
do not interact with each other. The quantity −kBT ln y(r, r′) may be in-
terpreted as the indirect contribution to the potential of mean force. Thus,
the problem has been reduced to finding ln y(r, r′) in terms of h(r, r′) and
c(r, r′). It can be shown that [111]

ln y(r, r′) = h(r, r′) − c(r, r′) + b(r, r′) (4.32)

where b(r, r′) is called the bridge function. Although b(r, r′) can be written
as an infinite series where each term is given by a multi-centered integral over
some product composed of h(r, r′) and n(r), experience has shown that this
series tends to converge slowly while the computational complexity increases
sharply with each term. Thus, the exact solution for h(r, r′) is rendered
intractable by our inability to calculate b(r, r′) and in practice one must
resort to approximations at this stage. Such approximations are often called
closures in the literature because they are made in order to get a closed set
of equations for h(r, r′) and c(r, r′).
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4.2 The HNC Approximation

One closure that was proposed independently by several authors in the middle
of last century [114, 115, 116] is the hypernetted chain (HNC) approximation,
where b(r, r′) is simply set to zero. To get a feel for the physical implica-
tions of this approximation it instructive to note that the Ornstein-Zernike
equation allows the HNC approximation for ω(r, r′) to be written as

ωHNC(r, r′) = u(r, r′) − kBT
(

h(r, r′) − c(r, r′)
)

(4.33)

= u(r, r′) − kBT

∫

h(r, r′′)n(r′′)c(r′′, r′)dr′′.

The factor h(r, r′′)n(r′′) in the integrand can be interpreted as the deviation
in density at r′ caused by the presence of a particle at r. Together with the
definition of c(r, r′), eq. (4.23), this leads to the interpretation of the integral
for the indirect contribution to the potential of mean force in eq. (4.33) as
the change in excess chemical potential at r′ resulting from change in density
induced by the presence of a particle at r if this change in density was in-

finitesimally small. In reality that change in density is, of course, finite. The
HNC approximation thus has the character of a mean field approximation in
c(r, r′). The bridge function may be interpreted as containing all the higher
order effects of the density response on the indirect part of the potential of
mean force.

Empirically, it is known that the HNC approximation is suitable for systems
where the pair interaction potential is long-ranged, e.g. Coulomb systems,
where it gives result in close agreement with simulations under a wide range
of conditions [117]. On the other hand, the HNC approximation does not
perform well for short-ranged interaction potentials dominated by harsh re-
pulsion, such as Lennard-Jones particles and “hard spheres” [118]. That the
performance of an approximate closure depends critically on the form of the
interaction potential is generally the case. A way to rationalize these ob-
servations is that the long-range character of the Coulomb potential makes
the mean-field treatment of c(r, r′) justified. It is generally believed, but to
the authors knowledge it has not been proved in all generality, that c(r, r′)
behaves as

c(r, r′) ≈ −
u(r, r′)

kBT
(4.34)

when |r − r′| becomes large. It is therefore reasonable to expect that the
long range of the Coulomb interactions makes the region where eq. (4.34) is
a good approximation and the direct correlation function is close to the pair
potential comparatively important.
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A situation where the hypernetted chain approximation fails is for strongly
attractive Coulomb interactions. This coincides with the development of a
large peak in the cation-anion correlation function, that can be interpreted
as “ion pairing”. Given that the approximation in eq. (4.33) relies on the
deviation from bulk density to be small, it is easy to see why the HNC ap-
proximation should fail under these conditions. The deviation from bulk
concentration of one type of ions around an ion of the opposite sign is then
very far from being small. For severe cases, i.e. very strong cation-anion
interactions, there is no solution to the OZ equation with the HNC closure
for for the primitive model in a range of concentrations [119]. For weaker
interactions the height of the peak in the cation-anion distribution function
is typically underestimated and there is a spurious peak in the like-ion dis-
tribution functions for a separation of about two ions diameters [120]. This
occurs for parameters corresponding to aqueous 2:2 electrolytes close to room
temperature for concentrations below a few hundred mM. For higher concen-
trations these deficiencies are much less pronounced.

The usual method of solving the OZ equations for a given closure and a
given constant density is to simplify the equation by computing its Fourier
transform. The Fourier transform, φ̂(k), of an arbitrary function φ(r) is
defined in l dimensions by

φ̂(k) =

∫

φ(r)e−ik·rdr (4.35)

with the inverse relation

φ(r) =
1

(2π)l

∫

φ̂(k)eik·rdk, (4.36)

where i is the imaginary unit and k is the wave vector. The Fourier transform
may be considered as an expansion of a function on an infinite basis set of
standing waves, transforming a function of position r into a function of wave
vector k. The Fourier transform has the property that if

ψ(r) =

∫

φ(r′)Φ(r − r′)dr′ (4.37)

then
ψ̂(k) = φ̂(k)Φ̂(k). (4.38)

This can be used to obtain an algebraic equation in terms of the Fourier
transforms of the direct and total correlation functions. For homogeneous
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fluids where hij(r, r
′) = hij(r) (and similarly for cij(r, r

′)), r = |r′ − r| and
the concentration n is a constant,

ĥij(k) = ĉij(k) +
∑

m

ĥim(k)nmĉmj(k), (4.39)

This equation can be written as a matrix equation

Ĥ(k) = Ĉ(k) + Ĥ(k)NĈ(k) (4.40)

where the elements of Ĥ(k) are ĥij(k), the elements of Ĉ(k) are ĉij(k) and
the elements of N are given by niδij where δij is the Kronecker delta. The

solution to this equation for Ĥ(k) in terms of Ĉ(k) is

Ĥ(k) = Ĉ(k)[1 −NĈ(k)]−1 (4.41)

where 1 is the unit matrix. Thus, the OZ equation has a simpler structure in
k-space than in r-space. The closure relation, on the other hand, is generally
more easily expressed in r-space. Furthermore, analytical solutions are not
possible for most closures, including HNC, so the problem has to be solved
numerically. A common approach is to solve the set of equations iteratively,
starting from a guess for ĉij(k) in Fourier space and calculating ĥij(k). The
Fourier transform is then inverted and a new guess for ĉij(r) can be calculated

from the old ĥij(r) and ĉij(r) using eqs. (4.30), (4.31), (4.32) and the closure
relation. The Fourier transform of cij(r) is calculated and the process is
repeated until convergence is attained [121, 122]. Because the procedure
requires multiple Fourier transforms (and inverse Fourier transforms) the
fast Fourier transform algorithm is usually used.

The OZ equation is valid for both isotropic and anisotropic fluids and can
therefore be applied to situations where the concentration profiles are not
constant but functions of position. Thus, it can be applied to fluids near
interfaces if the concentration profile is known. The concentration profile
near an interface is in general unknown a priori, however. In order to find
the equilibrium ionic concentration profiles an additional relation between
the concentration profiles and correlation functions is needed. Several such
relations exist, for instance the Lovett-Mou-Buff-Wertheim equation [123,
124]. A particularly convenient relation can be obtained in the special case
where the HNC closure is used for the correlation functions. For this closure,
the excess chemical potential of ions of species i at position r, µex

i (r), can be
written in terms of the correlation functions as follows [125]

µex
i (r) = kBT

∑

j

∫

nj(r
′)
(1

2
(hij(r, r

′))2 − cij(r, r
′) −

uij(r, r
′)

kBT

)

dr′

+
kBT (1 + cij(r, r))

2
. (4.42)
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The equilibrium condition for the electrolyte in the slit is that the chemical
potential for each species is equal everywhere

µi = µid
i (r) + µex

i (r) + νi(r), (4.43)

Because the ideal part of the chemical potential depends on the concentration
profile only, according to

µid
i (r) = kBT ln(Λ3ni(r)), (4.44)

where Λ = h/(mkBT )1/2 is the thermal wave length, equation (4.43) can be
used to determine the concentration profiles. The choice of the actual value
of the chemical potential corresponds to specifying the bulk concentration of
an electrolyte solution that is in equilibrium with the electrolyte between the
walls. For systems where each component is electrically neutral the chemical
potential for each species can be specified independently, and correspondingly
any thermodynamically possible mixture of the components is allowed. For
binary electrolytes this is not the case. The components must here be present
in such proportions that the electrolyte solution is uncharged overall. Thus,
if the chemical potential of either species is fixed, the chemical potential of
the other is also fixed to the value that gives an electroneutral combination of
densities. Only the chemical potential in bulk salt need therefore be specified.
The chemical potential of each species in the inhomogeneous system is then

µi =
siµsalt

s+ + s−
+ qi∆Ψ, (4.45)

where ∆Ψ is the electric potential difference with respect to bulk solution.
The condition that the walls should have a fixed charge density, σ, and that
the system should be electroneutral overall can be used to determine ∆Ψ.

In the case of a primitive model electrolyte between two walls it is appropriate
to adopt a coordinate system such as the one shown in Figure 4.1. The
lateral distance is denoted R =

√

(x− x′)2 + (y − y′)2 and the coordinate
perpendicular to the walls is z, with its origin in the mid-plane between the
walls. The OZ equation in this geometry, in terms of the two dimensional
Fourier transforms4 of the correlation functions in the directions parallel to
the walls, has the form

ĥij(k, z, z
′) = ĉij(k, z, z

′)+
∑

m

∫

ĥim(k, z, z′′)nm(z′′)ĉmj(k, z
′′, z′)dz′′. (4.46)

4For cylindrically symmetric functions these are equivalent to the zeroth-order Hankel
transforms.
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Figure 4.1: The geometry and notation used in calculations of the wall-wall
pressure. R =

√

(x− x′)2 + (y − y′)2 is the lateral distance and z is the
coordinate perpendicular to the wall. The distance between the dielectric
interfaces is D the ion radius is a, the ion-wall distance is sometimes denoted
d and the minimum ion-wall distance is denoted b.

If the integration is approximated by a Riemann sum, the equation becomes

ĥij(k, zo, zp) = ĉij(k, zo, zp) +
∑

m

∑

l

ĥim(k, zo, zl)nm(zl)ĉmj(k, zl, zp)∆zl,

(4.47)
where the indexed z coordinates denote the centers of intervals with width
∆z, all of which need not be equal. Comparison with eq. (4.39) reveals that
the OZ-equation for a three dimensional system that is inhomogeneous in one
direction has the same form as two dimensional system with as many com-
ponents as there are terms in the sum over m and l. If l is taken sufficiently
large, eq. (4.47) becomes equivalent to eq. (4.46) for all intents and purposes.
Thus, the same method that is used for bulk mixtures can be used to solve
the OZ-equation in the inhomogeneous case, with a fixed concentration pro-
file. The formal equivalence between an inhomogeneous three dimensional
fluid and a multi-component two dimensional fluid is demonstrated in ref.
[126].

Since the concentration profiles can be calculated from eq. (4.42) and the
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equilibrium condition, eq. (4.43) the problem of finding the equilibrium con-
centration profiles and correlation functions can be solved by iteration: start-
ing from a guess for the concentration profiles and correlation functions, the
set of correlation functions that are consistent with the concentration profiles
is calculated. From those, new concentration profiles are calculated and the
set of correlation functions that are consistent with these are computed. If the
starting guess for the set of concentration profiles and correlation functions
is sufficiently close to the equilibrium distribution functions the solution will
converge to these. For details regarding the numerical procedure, see refs.
[126, 127, 128].

This method of calculating the distribution functions for inhomogeneous sys-
tems is usually referred to as the anisotropic HNC (AHNC) method. The
concentration profiles and correlation functions obtained from AHNC calcu-
lations have been compared to simulation results and has been found to be
in close agreement with these under most conditions [129]. (Even for cases
where mean-field theories, such as the PB approximation, fail qualitatively.)
The exception is when the local density is very high, such as for instance the
counterion density close to a highly charged surface, where the contact values
of the correlation functions between ions of different sign is overestimated.

The AHNC procedure can be modified to allow other closures than HNC, but
this requires a different method of calculating the concentration profiles as
eq. (4.42) is valid only within the HNC approximation. A notable example of
another closure that has been applied to inhomogeneous electrolyte systems is
the reference HNC approximation where the bridge function is not neglected
but taken from a reference system [130]. Most of the shortcomings of the
HNC approximation are absent for this closure [131, 132].

4.3 Calculation of Experimental Observables

Due to the prominent role of the chemical potential in the Gibbs adsorption
isotherm, eqs. (2.11) and (2.12), surface thermodynamic properties are most
easily handled within the grand canonical ensemble. To treat a general inter-
face one would adopt an ensemble of systems containing an interface between
phases that are both treated in molecular detail.

The surface excess number of particles is given by the difference in number of
particles between a system that contains an interface at one of its boundaries
and one that does not. This is a slightly different situation compared to that
where both phases are treated in all atomic detail, see Section 2.1. In the
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grand canonical ensemble the concentration profiles have the normalization
property

∫

ni(r)dr = 〈Ni〉. (4.48)

The surface excess number of particles of species i can therefore be written
as

N s
i = 〈Ni〉surf − 〈Ni〉bulk =

∫

(ni(r) − nbulk
i )dr, (4.49)

where the subscript “surf” means that the ensemble average is for a system
containing a surface whereas the subscript “bulk” refers to the average in
a homogeneous system of the same volume and chemical potential. For a
planar surface, it follows that the surface excess in the primitive model, Γd

i

(the superscript d stands for “diffuse”), is given by

Γd
i =

∫ ∞

0

(ni(z) − nbulk
i )dz, (4.50)

where the origin of the z-coordinate is placed in the plane of closest approach
of the ions to the surface. This formula is based on the assumption that the
Gibbs surface separating the two phases is located at a negative z-coordinate,
so that the ions cannot penetrate into the wall material. It is generally the
case that the plane of closest approach of the ions to the surface does not
coincide with the Gibbs plane in experimental systems. In this case, there
will be a negative contribution to each Γi from the “ion-free layer” between
those planes. This contribution is given simply by

Γi
i = nbulk

i zsolv, (4.51)

zsolv is the coordinate of the Gibbs plane of the solvent, which is negative
by construction in the case considered here. The superscript i stands for
“inner”. If all charged species can approach the surface equally closely, the
presence of an ion-free layer does not affect the concentration profiles. Thus,
the inner and diffuse contributions to the surface excess are additive,

Γi = Γd
i + Γi

i. (4.52)

Similarly, the drop in mean electrostatic potential over the diffuse region, the
work per unit charge to bring an infinitesimal charge from the bulk solution
to the point plane of closest approach of the ions, is

Ψd = −
1

ǫǫ0

∑

i

qi

∫ ∞

0

zni(z) dz. (4.53)
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This quantity does not depend on the actual distribution of charge on the
surface side of the plane of closest approach of the ions. The corresponding
contribution from the inner layer, Ψi, does, however, depend on the details of
that distribution. If the assumptions of the primitive model are taken at face
value and the surface charge is taken to be located in a single plane located
at zσ, then Ψi is given by

Ψi = −
σzσ

ǫǫ0
. (4.54)

Like zsolv, zσ has a negative sign by construction. Note, however, that there
is no physical reason to think that these coordinates should exactly coincide.
As for the surface excess, the inner and diffuse contributions to the potentials
are additive,

Ψ = Ψd + Ψi. (4.55)

In the situation with two walls, the pressure between them can be calculated
in terms of the distribution functions and interaction potentials. The interac-
tion pressure in the slit between the walls is equivalent to the perpendicular
component of the stress tensor at some plane between the walls [126]. Be-
cause the electrolyte is in equilibrium, the pressure must be independent of
where in the slit it is evaluated. The choice where to evaluate the pressure
is therefore one of convenience and numerical expedience. Two planes stand
out in this respect: z = ±(D/2 − b) and z = 0, i.e. at wall-ion contact
or in the middle of the slit. (Keep in mind that the coordinate system is
different compared to the one-wall case, see Figure 4.1.) The former choice
has been found to be numerically more difficult for charged surfaces due to
the difficulty in evaluating the contact concentration with sufficient accu-
racy [84]. Therefore, the second alternative will be considered here. For a
primitive model electrolyte in the presence of ion-wall dispersion interactions
the pressure due to the ions between the walls may be written as a sum of
contributions, each arising from one type of interaction,

P ion = P ion
kin + P ion

Coul + P ion
core + P ion

im + P ion
disp. (4.56)

P ion
kin is the ideal contribution to the pressure, given by P ion

kin = kBT
∑

i ni(0)
(recall that ni(0) is the concentration of ions of species i in the mid-plane
between the walls.) P ion

Coul is the wall-wall interactions due to electrostatic
ion-ion interactions across the mid-plane, given by

P ion
Coul = −

∑

i,j

∫ D/2

0

dz

∫ 0

−D/2

dz′
∫

dRni(z)nj(z
′)

× hij(R, z, z
′)
∂uCoul

ij (R, z, z′)

∂z
. (4.57)
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P ion
core is the pressure contribution due to the ionic cores colliding across the

mid-plane, the explicit expression for which is

P ion
core = 2π kBT

∑

i,j

∫ a

0

dz

∫ 0

z−a

dz′ ni(z)nj(z
′) (z − z′)

× gij([a
2
ij − (z − z′)2]1/2, z, z′). (4.58)

The three pressure contributions above approach finite values as the wall-
wall separation goes to infinity. These values are of course identical to the
corresponding contributions to the osmotic pressure of a bulk electrolyte

and are given by kBT
∑

i n
bulk
i , −

∑

i,j

nbulk
i nbulk

j

6

∫ r=∞

r=a
dr rhbulk

ij (r)
duCoul

ij (r)

dr
and

2πa3 kBT
∑

i,j n
bulk
i nbulk

j gbulk
ij (a)/3 for P ion

kin , P ion
Coul and P ion

core, respectively. The

sum of P ion
kin , P ion

Coul and P ion
core is denoted P ion

osm and referred to as the osmotic
pressure below. Generally, it is not the absolute value of the pressure com-
ponents but the deviation from the bulk value that is of interest. Whenever
any of the above pressure components are prefixed by a capital ∆ it is the
value of that pressure component minus the corresponding bulk value that
is referred to.

The pressure components P ion
im and P ion

disp are the pressure components due
to image forces and wall-ion dispersion forces, respectively. Because these
contributions to the pressure are dependent on wall-ion interactions, both
are obviously zero in bulk. P ion

im is given by [84]

P ion
im = −1

2

∑

i

∫ D/2

0
dz ni(z)

∂νim
i (z|D)

∂z
− 1

2

∑

i

∫ D/2

−D/2
dz ni(z)

∂νim
i (z|D)

∂D

− 1
2π

∑

i,j

∫ D/2

0
dz
∫ 0

−D/2
dz′
∫∞

0
dk ni(z)nj(z

′)ĥij(k, z, z
′) k

∂ûim
ij (k,z,z′|D)

∂z

− 1
4π

∑

i,j

∫ D/2

−D/2
dz
∫ D/2

−D/2
dz′
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and P ion
disp is given by (see Paper I)
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+
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i (|z −D/2|)

∂z
. (4.60)

These last two pressure components could equally well be regarded as part
of the wall-wall van der Waals pressure as of the double layer pressure.
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Chapter 5

Results and Discussion

“The purpose of computation is insight, not numbers.”

-Richard W. Hamming, Numerical Methods

for Scientists and Engineers (1962)

5.1 Summary of Papers

Paper I

In Paper I the effect of image charges and dispersion forces on the pressure
between two charged, planar walls is investigated. The main purpose of
this study is to ascertain whether the consistent treatment of image charges
affects the influence of dispersion forces on the system.

The pressure between two dielectric walls with charge ± 4.5 µC cm−2 (357
Å2 per unit charge) in equilibrium with a bulk electrolyte of 0.5 M concentra-
tion is calculated as a function of the wall-wall separation using the AHNC
method. The electrolyte model is symmetric in all respects except the disper-
sion interactions with the walls, that only acts on the anions. This choice of
electrolyte model is made in order to mimic the situation where the cations
are much less polarizable than the anions, which is believed to be common
in real systems, while minimizing the complexity of the model.

In order to ensure that the polarizability of the model ions fall into the range
that is realistic for small ions, the polarizability of iodine is calculated from
quantum mechanical density functional theory. Iodide is chosen as it is the
most polarizable atomic ions that is in common use for experimental work
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in colloid and interface science, making it appropriate as an example of a
highly polarizable ion. Based on these considerations the values 0, -20 and
-40 kJ Å3 mol−1 are chosen for B−, of which the last correspond to iodide,
an example of a highly polarizable ion, in aqueous solution interacting with
a polystyrene wall.

It is found that the interaction pressure is less repulsive for positively charged
surfaces when dispersion forces are included compared to when they are ne-
glected. The opposite trend is found for negative surfaces, but the difference
in pressure is much smaller. Image forces tend to make the pressure more re-
pulsive and thus tend to counteract the effect of dispersion forces for positive
surfaces. The magnitude of the pressure due to image charges is remarkably
insensitive to the strength of the wall-ion dispersion force despite the fact
that they have a large influence on the ionic concentration profiles.

Note that two formulas are erroneously reproduced in Paper I: In eq. (6)
there should be a factor 1/2 on the right hand side and in eq. (17) the two
first terms on the right hand side are missing a factor 1/(2π)2. Both equations
are given correctly in this thesis as eqs. (3.25) and (4.59), respectively. None
of these errors are made in the actual calculations.

Paper II

In Paper II, the same model system as in Paper I is investigated for a wider
range of bulk electrolyte concentrations, 0.125, 0.250 and 0.500 M, and sur-
face charge densities in the interval −6.4 to 6.4 µC cm−2 (250 Å2 per unit
charge).

It is found that for low surface charge densities, the image charges give rise
to depletion of salt close to the surfaces. In the same regime dispersion
forces, when present, give rise to an enrichment of ions for larger distances
from the surface. Consequently, dispersion forces give rise to an increase in
wall-wall repulsion for large separation and image forces give rise to a wall-
wall attraction for small separation. Both these effects become stronger with
increasing bulk electrolyte concentration. With an increase of the magnitude
of the surface charge density, the net contribution to the pressure from the
image charge becomes progressively less attractive and then turns repulsive,
regardless of the sign of the surface charge. This behavior is caused by the fact
that the exclusion of salt from the slit due to image forces has a smaller effect
on the total pressure for larger surface charge densities, where a larger part of
the repulsion is due to counterions, which must remain between the walls to
satisfy the electroneutrality condition. As the concentration of counterions
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increases, P ion
im becomes more repulsive due to the self-image interaction. The

relative importance of image charges for the magnitude of the total pressure
tend to decrease with increasing surface charge density.

For negative surfaces, where the dispersion forces act on the co-ions, the
pressure is found to become more repulsive with increasing strength of the
dispersion forces. This tendency is strongest for large wall separation and
high bulk concentration. For smaller separations, the exclusion of co-ions by
electrostatic forces tend to dominate the attractive dispersion forces drawing
ions into the slit. Thus, dispersion forces have little influence on the pressure
in this regime. For positive surface charge densities, dispersion forces act on
the counterions, drawing them closer to the surface than electrostatics alone
would. This gives rise to a significant decrease in repulsion between the walls
for intermediate separations as ∆P ion

osm is smaller than for the case without
wall-ion dispersion forces for these separations. Apart from the effect of
dispersion forces on the osmotic interactions between the walls there is also a
contribution to the pressure due to the direct wall-ion dispersion forces, P ion

disp,
that is always attractive. For the cases of negative and small positive surface
charge densities P ion

disp tend to counteract the change in P ion
osm, making the net

contribution to the pressure small. In the case of moderate to large positive
surface charge densities P ion

osm and P ion
disp tend to act in the same direction,

making the pressure less repulsive. It is under these conditions that the
largest effect of wall-ion dispersion forces on the wall-wall pressure are seen.

Paper III

In Paper III the distance dependence of the interaction pressure between
uncharged walls in the presence of electrolyte of 0.25 - 1.0 M concentration
is investigated. Electrolytes of valence types 1:1, 2:2 and 1:2 are considered.
The effect of the polarizability of the interface is taken into account, both
with respect to the image forces and to the dispersion forces in the same way
as in Papers I and II. It is found that for electrolytes that are symmetric
in every respect, i.e. both with respect to the charge and to the dispersion
interactions with the wall, the net contribution from the electrolyte to the
interaction pressure is attractive. This is due to depletion of electrolyte
between the walls caused by both the repulsive image forces and the loss of
“favorable” correlations. In the bulk solution the correlation between ions
tend to give rise to a large negative contribution to the chemical potential.
In the vicinity of a surface, this negative contribution is smaller because
ions cannot correlate with ions on the “surface” side. Thus, ions tend to
be excluded from the region close to a surface as well as from any confined
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space of dimensions smaller than the typical correlation length. This gives
rise to an attractive depletion interaction between surfaces. There is one
exception to this behavior: for 1 M 1:1 salt the concentration profiles are
non-monotonic and for some separation there is sufficient enrichment at the
mid-plane to give rise to a repulsive pressure.

For asymmetric electrolytes, again both with respect to valencies and dis-
persion interactions with the walls, the situation is different in that in all
cases there is a repulsive contribution to the pressure from the electrolyte.
In a few cases this repulsive contribution even exceeds the attraction from
the wall-wall van der Waals interaction. In the case of electrolytes of asym-
metric valence type the repulsion is due to that monovalent ions are depleted
to a lesser degree than divalent ions in the region close to the wall. Thus,
there is a net excess of charge of the same sign as that of the monovalent
ions close to the walls. Due to electroneutrality, this charge has to be com-
pensated by an opposite charge somewhere further away from the surface. A
situation resembling that of a charged surface is thus created. In the case of
dispersion interactions between ions and surfaces the same situation arises
due to enrichment of one of the ion species close to the surface by direct
dispersion attraction. The strongest repulsion is seen for large concentra-
tions of asymmetric electrolyte where the monovalent ions are attracted to
the surface by dispersion forces. In this case both mechanisms conspire to
create a large charge separation and the concentration profiles are oscillatory
so that the enrichment of ions at the mid-plane becomes disproportionately
large for certain wall-wall separations.

Paper IV

In Paper IV a comparison is made between experimental data on the mer-
cury/aqueous MgSO4 interface from refs. [74, 73] and results from AHNC
calculations using the primitive model. This experimental system is espe-
cially suitable for such a comparison because the surface excesses of co-ions
and counterions can be obtained in a model-independent way. The aim of the
comparison is to test the predictions from primitive model calculations that
overcharging, i.e. an apparent change in sign of the surface charge, can arise
as a consequence of ion-ion correlations. To this end the primitive model re-
sults and GC results are simultaneously compared to the experimental data
under the constraint that identical assumptions about the Stern layer are
made in both cases. This comparison between the agreement with experi-
ment of GCS theory and an entirely analogous theory where the “diffuse”
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part of the double is treated with ion-ion correlations taken into account is
meant to assess the importance of such correlations.

The effect of ion-ion correlations is qualitatively different depending on the
surface charge density. For small or zero surface charge density, depletion
is predicted in the region close to the surface. For larger surface charge
densities the depletion of electrolyte close to the surface persists but beyond
a certain surface charge density there is an onset of enrichment of co-ions
in a region further out. Due to electroneutrality this must be accompanied
by an enrichment of counterions in excess of what is needed to compensate
for the surface charge, i.e. overcharging. This behavior is not predicted
by GC theory, which gives concentration profiles that are equal to the bulk
concentration all the way up to the surface for zero surface charge density
and depletion of co-ions everywhere for finite surface charge densities. This
behavior of the concentration profiles is reflected in the component of charge
of the co-ion, that is predicted to increase monotonically to an asymptotic
value by GC theory and to go through a maximum by the primitive model.

It is found that the primitive model but not GC theory fits the trend that
the dependence of the surface excess of sulfate tends to become less negative
with increasing magnitude of the surface charge density. With the assump-
tion of an ion-free layer of thickness between 3.0 and 3.5 Å (depending on
whether image charges are taken into account or not in the primitive model
calculations) the results of the primitive model calculations are in reasonable
quantitative agreement with experimental data. For positive surface charges
the GC and primitive model calculations are both in poor agreement with
the experimental surface excesses. This is consistent with the predominating
view in the literature that sulfate is adsorbed on the mercury surface for
anodic polarization.

Paper V

In Paper V the ability of the primitive model to fit the concentration depen-
dence of the bulk activity coefficients of a series of sulfates with divalent metal
cations is investigated. Also a variant of the primitive model where the effect
of the molecular granularity of the solvent is taken into account in an ad hoc

manner, referred to as the “solvent structure primitive model” (SSPM), is
considered. The HNC approximation is used to evaluate the properties of the
model for the purpose of fitting the model parameters to experimental data
for moderate concentrations. As this approximation has some known defects
relevant for 2:2 salts in a large portion of the concentration range that is ex-
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perimentally accessible, the HNC calculations are supplemented with Monte
Carlo simulations in the regions where the accuracy or the approximation
cannot be taken for granted and in regions where no solution exist (which is
the case for the primitive model for low concentration).

It is found that the primitive model is capable of reproducing the key features
of the concentration dependence of the osmotic coefficient. The model is not
quite capable of quantitatively reproducing the trend in the details of the
concentration dependence of the osmotic coefficient over the set of sulfates
considered. While the primitive model might not be accurate enough for
applications where activity coefficients are needed with very high accuracy,
the comparison with experiment shows that it is a fairly life-like model in
many respects. The SSPM gives a slightly better fit to the osmotic coefficients
than does the PM; the position of the minimum in the osmotic coefficient as
a function of concentration is better reproduced by the SSPM.

The activity coefficients of the salt for lower concentrations are calculated us-
ing the model parameters that gives the best fit for high concentration. The
calculated activity coefficients are compared to activity coefficients derived
from EMF measurements. This comparison reveals that both the primitive
model and SSPM gives good agreement with the relative activity coefficient
(the activity coefficients relative to those for a finite concentration) but that
the primitive model and SSPM give significantly different predictions for the
absolute activity coefficients (relative to a non-interacting standard state).
These paradoxical observations are reconciled by noting that while the mod-
els behave similarly both for moderate to high concentrations and for very
low concentrations (as they must due to the DHLL) there is an intermediate
region where the primitive model activity coefficients depend more strongly
on concentration than the SSPM activity coefficients do. Thus, comparison
between both of the models and experiments in the low concentration regime
(0.1-10 mM) can in principle determine which model is superior. Unfortu-
nately, the congruency between different experimental studies is relatively
poor and the outcome of such an analysis depends on what weight is as-
signed to each experimental study. The sensitivity of the activity coefficient
to the details of the model assumptions has relevance for the interpretation of
experimental data in that some theory-assisted extrapolation is often needed
to put the activity coefficients on an absolute scale. The conclusions about
the absolute activity coefficients thus seem to depend on the form of the
interaction potential. This is especially problematic since the two models
investigated are members of a class of models that has a vast number of
members of similar a priori plausibility.
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5.2 Discussion

The feature that unites Papers I-V is that a situation in which mean field
theory is inadequate in one or more respect is investigated in each of them.
This is not to be construed as implying that mean field theory is suitable
only as a straw man to be cut down by more worthy theories. Rather, mean
field theory, in the form of PB and DH theory, has illuminated so effectively
many phenomena related to double layers and electrolyte solutions that if
one is not careful, one risks being blinded to those phenomena that are still
in the shadow. If one grows too accustomed to the conceptual simplicity
afforded by declaring the electric potential and the potential of mean force
as being one and the same animal, as one does in PB theory, it is easy to find
oneself in an alien landscape when one encounters one of the many situations
where they clearly are not the same. When this is the case, typically when
the interactions are strong or the concentration is high, difficulties abound.
Here, not only does the problem of calculating experimental observables from
interactions potentials become difficult but details of the interaction potential
that could sometimes be ignored with impunity become important. This
forces the connection to be made with ion specificity in bulk and interfacial
systems that, as is becoming increasingly clear, depend critically on non-
electrostatic interactions. While none of the Papers included in this thesis
deals with the ion-specificity in real systems directly, all are at least partly
motivated by the need to disentangle the interactions that give rise to the
idiosyncratic behavior of different ionic species.

In Papers I and II the presence of image charges necessitates the considera-
tion of correlations between ions. If one were to include image charges in a
PB-type theory, one would have to either neglect their screening and get ab-
surd result or make some ad hoc assumption about the screening. It is found,
however, that the effect of image charges on the wall-wall pressure is quan-
titative rather than qualitative for charged surfaces: while the inclusion of
image charges is necessary to even get the correct sign of the surface-surface
interaction pressure for some surface charge densities, the difference between
“images” and “no images” is quantitative rather than qualitative for most
surface charge densities. A notable exceptions to this is the region around
zero surface charge density where image charges give rise to an attractive
contribution to the pressure due to depletion of electrolyte.

An interesting feature of the double layer pressure in the presence of at-
tractive dispersion (or other) forces is that such forces acting on the co-ion
tend to increase repulsion while attractive forces on the counterions tend to
decrease repulsion. This observation is by no means novel, see for instance
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refs. [60] and [72] that are discussed in Section 2.4 in connection with the
Hofmeister series, but still deserves closer discussion. The way to under-
stand this paradoxical behavior is to note that any attractive force between
ions and walls will give rise to an increase in ion concentration between the
walls, that in turn gives rise to repulsion between the walls. Such ion-wall
interactions will also give rise to attraction between the walls due to direct
interactions between the ions in each double layer and the opposite wall.
Which of these tendencies is dominant depends the details of the system.
That attractive dispersion forces acting on the counterions give rise to a de-
crease in repulsion is due both to that there is a high density of counterions
that can interact with the opposite wall and that the concentration profiles
gets distorted (compared to the case with only electrostatic forces) so that
there is a higher density of counterions close to the walls and a lower den-
sity in the mid-plane. In the case where the co-ions are attracted to the
walls, the wall-wall attraction caused by direct ion-wall dispersion attraction
is relatively small because the co-ions are excluded for electrostatic reasons.
The change in the concentration profiles induced by dispersion forces tends
to increase the concentration in in the mid-plane and thus give rise to re-
pulsion. This is the dominant contribution to the net change in pressure in
this case. In this latter case, with dispersion interactions between walls and
co-ions, the two kinds of changes brought about by dispersion forces tend
to counteract each other, and the total change in pressure is small. In the
case where the dispersion forces act between walls and counterions, however,
both of the contributions to the change in pressure act in the same direction,
at least for a range of surface-surface separations and the magnitude of the
total change in pressure is larger. The experimental predictions is that not
only should any Hofmeister series for surface interaction be expected to be
reversed when the the surface charge density changes sign, as discussed in
Section 2.4, the magnitude of the specificity is expected to be dramatically
different as well.

The long-range asymptotic expressions for the wall-wall pressure in the pres-
ence of dispersion forces derived in ref. [66] in the DH limit are interesting
in this context. These expressions indicate that dispersion forces give rise
to a repulsion (in the case of attractive dispersion forces) that decay in the
same way as the wall-wall van der Waals interaction. The repulsive effect
on the concentration profiles is thus dominant compared to the attraction
due to wall-ion interactions in this limit. Both contributions to the pres-
sure have the same distance dependence and the ratio of their magnitudes
is 8/7. As the contributions have opposite signs this implies that the total
pressure is 1/8 of the pressure due to the change in the concentration pro-
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files, the remaining 7/8 being canceled by the pressure due to direct ion-wall
interactions. The magnitude of the pressure is determined by the arithmetic
mean of the strength of the dispersion interaction acting on each species of
ion. These observations have the implication that the apparent Hamaker
constant should be dependent on the concentration of salt if there are strong
dispersion interactions between ions and walls, but only weakly so. The
long-range behavior of the pressure is independent of the sign and magni-
tude of the surface charge density, in contrast to the observations for short
to intermediate separations made above.

In Paper III the interaction between uncharged surfaces is investigated. The
finding that the osmotic contribution to the interaction pressure changes
from attractive to repulsive for a range of separations when salt of asymmet-
ric valence type is present is non-trivial. The reason for the appearance of a
repulsive pressure is that a double layer, of sorts, is formed outside the sur-
face. This is not due to the preferential adsorption of ions on the surface but
rather to an asymmetric depletion of ions close to the surface. This depletion
is caused by both to repulsive image charges and correlation effects, both of
which effectively repel ions from the surface.

While it may appear reasonable that charge separation close to a surface gives
rise to repulsion that can be likened to the double layer repulsion between
charged surfaces, it is not obvious that this repulsion should overcome the
attraction that is expected due to overall depletion. That repulsion is seen is
ultimately a consequence of the electroneutrality condition: the net excess of
charge due to monovalent ions close to the walls has to be compensated by
an excess of divalent ions somewhere. For surface-surface separations, where
this “somewhere” turns out to be around the mid-plane between the walls,
there can be a net enrichment there, corresponding to a net repulsive ideal
contribution to the pressure.

To ascribe the resulting repulsive barrier to the ideal contribution alone is
overly simplistic and would not be correct, however. Careful analysis of the
contributions to the pressure shows that the maximum in the pressure curve
occurs for a separation where there is already a net depletion and that non-
ideal contributions to the pressure are decisive. These contributions come
from both hard core collisions and loss of “favorable” electrostatic correla-
tions. In the cases where there are additional attractive forces between the
ions and walls in the form of dispersion interactions, the effect of these de-
pends strongly on whether they oppose or act in concert with the charge
separation due to asymmetry in ionic valency. In the cases where the disper-
sion interactions act on divalent ions they give rise to a smaller enrichment
close to the walls than when they act on monovalent ions. In addition, the
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dispersion interactions tend to enhance the charge separation in the former
case but not in the latter. The net result is that dispersion interactions on
monovalent ions give rise to a much more dramatic shift in the height of the
repulsive barrier.

It is in some sense unfortunate that the most dramatic effects are seen for
surface-surface separation where the applicability of the continuum descrip-
tion of the solvent cannot be taken for granted and solvation forces may be
dominant. Nevertheless, the qualitative features of the model can be tested.
A type of experiment that may be useful in this regard is measurements
of the swelling of multilamellar phospholipid vesicles in response to osmotic
stress of the type described in ref. [38]. In such an experiment the sepa-
ration for which the system is in mechanical equilibrium is measured for a
given external osmotic pressure, that is controlled by adding high molecular
weight compounds that do not penetrate into the interlamellar spaces of the
vesicles. The pressure as a function of separation is predicted to turn oscil-
latory for much smaller concentration for salts of asymmetric valence type
than for salts of symmetric valence type. This difference could used to test
the model. An experiment could be performed where the dependence on salt
concentration of the equilibrium separation for a given osmotic pressure is
measured for salts of different valence type in order to assess this qualita-
tive predictions of the model. In principle, one could also investigate salt
solutions composed of different combinations of the same species of ions. If
the model predictions from the model are accurate, combinations giving salts
of symmetric valence type should make the force between lamellae more at-
tractive and combinations of asymmetric valence type should make it more
repulsive.

The system investigated in Paper IV appears at first sight very different from
that in Paper III. The results can to a large extent be discussed in terms of
the same mechanisms, however. For low surface charge densities a depletion
is seen. For high concentrations this is the case even in the presence of
attractive image charge interactions. This is so because in order to approach
the surface, the ionic atmosphere of each ion has to be distorted so that
there is more charge on the “solution” side than on the “surface” side of
the ion. The asymmetry of the ionic atmosphere gives rise to a force that
effectively repels the ion from the surface. (It is noteworthy that for high
concentrations of very large ions, a situation also considered in Paper IV,
there is a net enrichment of ions close to the walls. In this situation the hard
core collisions dominate the electrostatic force.)

For higher surface charge densities the situation is the opposite: there are
more ions close to the walls than mean field theory predicts. The situation
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with depletion of ions close to the walls for low surface charge densities and
a relative enrichment for higher surface charge densities may be considered
a “signature” for overcharging due to ion-ion correlation as opposed to over-
charging due to direct, chemical interactions between ions and walls. The
consequence of overcharging by the ion-ion correlation mechanism for the
component of charge of the anions is that it first increases sharply as the
surface charge density is made more negative (starting from zero), reaches a
maximum and then decrease with a rate that is dependent on the strength
of the electrostatic interactions between ions. That this behavior is seen for
the co-ion is due to the electroneutrality condition, as each increase in the
magnitude of the surface charge density gives rise to an opposite and greater
change in the magnitude of the counterion component of charge, the deple-
tion of co-ions must at the same time become smaller. For negative surfaces,
this corresponds to a decrease in the anionic component of charge that in
turn corresponds to an increase in the anionic surface excess. This pattern
should be at least close to universal; salts with similar bulk properties, such
as activity coefficients, should show a similar behavior of the surface excess
for any surface where there is no strong specific adsorption.

It is unfortunate that few experimental systems are sufficiently well char-
acterized to allow an analysis analogous to the one in Paper IV. Because
the details of surface excess of ions as a function of surface charge density
is needed to judge whether ion correlation constitute a likely mechanism in
any particular instance of overcharging. Thus, the surface charge density
has to be measurable with a high accuracy. Moreover, the surface charge
density must be variable over a broad range and the surface charge has to
be uniform. This precludes most of the model systems in use in colloid and
interface science; the mercury electrode appears unique in the respect that it
fulfills these requirements. Any variation of the experimental system would
thus have to be made on the solution side, barring any unforeseen advance.

Correlation effects become more important with increasing ionic valency,
suggesting that solutions of salts with such exotic (for salts in solutions)
valence types as 3:2 should be studied. Examples of such salts that are
reasonably soluble are Al2(SO4)3 and La2(SO4)3. At least for the latter, some
experimental data exist [133]. In that work the dependence of capacitance
on electrolyte concentration is investigated and it is found that the variation
is well described by a modified version of GC theory where thermodynamic
consistency is enforced [134], but not by the original GC theory. This is
consistent with ion-ion correlations being important. More than this cannot
be said because the modified GC theory does not contain an explicit model
of the electrolyte interaction potentials. An analysis of the same system in
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terms of such a model, like the one in Paper IV, would be of great interest.
A confounding factor for highly charged ions is that hydrolysis cannot be
excluded a priori. The pH has to be controlled in order to establish that the
highly charged cations are not present as hydration complexes of lower total
charge. While this problem need not be insurmountable, it severely limits
the interpretability of data from experiments where the pH is not controlled.

A different type of systems where overcharging due to ion-ion correlations is
expected to take place is non-aqueous electrolyte solutions with sufficiently
low permittivity. All other features of the interaction potential being equal,
a 1:1 salt in a solvent with permittivity around 20, a value that cannot be
considered extreme for polar organic solvents, should behave in the same
way as a 2:2 salt in water in terms of bulk properties. A double layer in the
same non-aqueous solution should be similar to a double layer in an aqueous
solution of 2:2 salt for a surface charge density that is twice as high. Even
lower permittivity solvents could be used; the limiting factors are whether
suitable salts can be found that are soluble and whether high surface charge
densities are obtainable in the solvent in question. At the cost of introducing
another component into the system and thereby making the thermodynamic
analysis more complicated, the permittivity can be varied continuously by
using a mixed solvent system. This would allow a very detailed test of the
predictions of the model that should be sensitive to the permittivity.

These considerations are also closely related to the bulk systems considered
in Paper V. Just as the correlations that gives rise to overcharging are to be
expected to be similar in inhomogeneous systems with similar strength of the
electrostatic interactions, the correlations that give rise to deviations from
ideal solution behavior should be similar in corresponding bulk systems. It
is an implicit assumption in the primitive model that any chemical idiosyn-
crasies of the solvent will merely modify the optimal ion radius slightly. We
note in that lithium perchlorate in 2-propanol, for which the activity coef-
ficients have been determined [135], is in some key aspects very similar to
magnesium sulfate in water: the bare ion sizes are almost the same [136], the
geometry of perchlorate is nearly identical to that of sulfate (these species
are even isoelectronic) and 2-propanol has a dielectric constant that is al-
most exactly one fourth of that of water. Thus, the electrostatic interactions
for a 1:1 salt in 2-propanol are identical to those for a 2:2 salt in water to
the extent that the representation of the solvent as a dielectric continuum is
accurate. What is not equal in water and 2-propanol is, of course, the struc-
ture of the solvent and any solvation complex. Comparison between bulk
thermodynamic data for the two solvents may well reveal to what extent
such details are important for the behavior if the electrolytes. In Figure 5.1
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such a comparison is made. A remarkable similarity is found, which lends
support to the use of the primitive model. If other systems displaying the
same conformity could be found, it would allow a systematic evaluation of
the primitive model. Particularly, the range in concentration for which the
assumptions underlying the model are valid could be established.
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Figure 5.1: Comparison between activity coefficients for aqueous MgSO4 and
LiClO4 in 2-propanol, taken from the literature. “+” and “x” symbols are
for MgSO4 taken from refs. [137] and [138], respectively. Triangles are for
LiClO4, taken from ref. [135]. The data has been converted to the McMillan-
Mayer scale, see Chapter 3, using densities from ref. [139] in the case of
MgSO4 and using the densities given in [135] for LiClO4. Note that for the
data from ref. [137], the osmotic coefficients are not available so the second
term in the right hand side of eq (3.6) could not be calculated. This term
was therefore omitted in that case, which is a permissible approximation for
low concentrations.

The conclusion that can be drawn from the results of Paper V and the dis-
cussion above is that the primitive model is unlikely to give a severe mis-
representation of the thermodynamic properties of aqueous 2:2 electrolytes.
This state of affairs is fortunate in the sense that it lends support to the
notion that conclusions on the basis of the primitive model are applicable to
real systems. On the other hand it is unfortunate in that it implies that the
thermodynamic properties of electrolytes are insensitive to the details of the
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interaction potential. Such an insensitivity implies that little can be learned
about those details by the study of the thermodynamic of bulk systems. The
situation is the same as that for 1:1 electrolytes, discussed in Section 3.1.
This is unfortunate as it makes the physico-chemical origin of “ion-pairing”
in electrolytes difficult to ascertain. Despite that the concept of ion-pairs
was introduced as a theoretical device in an approximate treatment of the
primitive model [21], there is often a tacit assumption that ion-pairing im-
plies the action of some non-electrostatic interaction mechanism. This has
caused to considerable confusion in the literature, leading some authors to
dismiss the presence of ion-pairing on the basis that experimental data could
be well described without assuming any non-electrostatic interaction mech-
anism [137]. Other authors have cited the presence of ion-pairs as evidence
of the presence of chemically well-defined species of associated ions [140],
which is hard to reconcile with a purely electrostatic interaction mechanism.
The comparison in Paper V between the primitive model and a closely re-
lated model where finite-ranged non-electrostatic interactions are taken into
account indicate that electrostatic and non-electrostatic interaction mecha-
nisms are difficult to distinguish on the basis of the bulk activity coefficients.
Nevertheless, accurate measurements of the activity coefficients for very small
concentrations could in principle discriminate between models that are not
meaningfully distinguishable for higher concentrations.

A notable feature of the primitive model of 2:2 salts is that the ion sizes are
much smaller than would be expected on the basis of the size of hydrated
ions. This is so despite that the ion sizes that gives the best fit for the
alkaline earth metal halides are commensurate with reasonable hydrated ion
sizes [78]. This is consistent with the presence of non-electrostatic attraction
between cations and anions, but as the ion sizes obtained in Paper V are in
all cases greater than the “bare” ion size they are also consistent with the
absence of non-electrostatic attraction. That the ion sizes are smaller in the
case of 2:2 electrolytes than for 1:1 and 2:1 electrolytes may well be due to
that the anion more readily replaces water in the solvation shell of the cation
in the former case. Note that the typical interaction between a cation and
a solvating water molecule becomes twice as large when going form 1:1 to
2:2 salt, whereas the interaction between a cation and an anion for a given
separation becomes four times as large.

That the primitive model can reproduce bulk thermodynamic data as well
as it does suggests that the electrostatic forces are indeed the dominant type
of interactions that determine these properties. (The electrostatic interac-
tions cannot be considered in isolation, however. The short-range repulsion
between ions, that is approximated in the primitive model by the hard cores,
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acts as a cut off for the electrostatic interactions in addition to giving rise to
an excluded volume.) This in turn lends credence to the use of the primitive
model to study surface properties. Nevertheless it is in interfacial systems
that the deficiencies of the primitive model become most clearly visible. In
the framework of the naive implementation of the primitive model, where only
electrostatic and “hard core” interactions are considered, most ion-specific
phenomena are inexplicable. This leaves two options: either the model can
be extended in an ad hoc fashion, which is the approach taken in this thesis,
or the model can be discarded in favor of more detailed models.
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114, 9565.
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On the effect of image charges and ion-wall dispersion forces
on electric double layer interactions
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Two effects of interactions between polarizable ions and polarizable walls in electric double layers
are investigated: ionic image charge forces and ion-wall dispersion forces. The first must be
included for a consistent treatment of the wall-wall van der Waals �vdW� interaction, since it
contains the effect of screening of the static part of the vdW interaction. The second has been
suggested to give rise to ion specificity in double layer interactions. The strength of the ion-wall
dispersion forces are estimated from quantum mechanical calculations of ionic polarizability and
from experimental data for the dielectric functions of the media. The ion density profiles and the
anisotropic ion-ion distribution functions in the double layer are calculated in the highly accurate
anisotropic hypernetted chain approximation, which allows the correct treatment of the image
charge forces. The double layer interactions are evaluated from these distribution functions. It is
found that it is important to include both kinds of ion-wall forces. Quantitative and sometimes even
qualitative differences occur in the double layer interactions depending on the ionic species of the
electrolyte due to different strengths of the ion-wall dispersion interactions. © 2006 American
Institute of Physics. �DOI: 10.1063/1.2357940�

I. INTRODUCTION

It has been suggested that London-type dispersion inter-
actions between ions and dielectric boundaries may play a
role in determining the ion specificity of a range of phenom-
ena related to charged interfaces in electrolytes.1,2 This hy-
pothesis has been explored in a number of recent publica-
tions; for a review see Ref. 3. In particular, the effect of
including dispersion forces between ions and interfaces when
calculating the potential of mean force between particles has
been investigated for both the case of planar walls4–6 and the
case of macroions.7–9 In the majority of these studies one has
neglected that the static electric fields generated by the ions
polarize the interfaces between walls and solvent of different
dielectric constants. Thus, in such cases the dielectric con-
stant of the walls, �wall, has in effect been set equal to that of
the solvent, �sol, while in reality �wall��sol.

The polarization at dielectric discontinuities can be
treated by the method of images in, for example, the case of
planar walls. We refer to the forces on the ions due to the
fictitious image charges as “image forces.” These forces must
be included in order to obtain a consistent treatment of the
van der Waals �vdW� interaction between the walls �see be-
low�. This is especially important when the high frequency
vdW interactions are weak, as is the case in hydrocarbon/
water systems.10 The image forces can also give rise to other
significant contributions to the mean force between colloidal
particles when the ion concentration is not very high.

In one study by Boström et al.4 both dispersion and im-
age forces are included, but the latter are treated in an ap-
proximate fashion that is on the same level as Onsager-

Samaras theory.2,11 In this approach the screening of the
image charges is treated in the Debye-Hückel approximation
using, in effect, a screened Coulomb potential from bulk
electrolyte solutions. Such an approximation introduces an
inconsistency in the treatment of the problem as the postu-
lated screening is not consistent with the ionic concentration
profiles and anisotropic ion-ion correlation functions in the
double layer. The proper way to include image charges for
interacting double layers in planar geometry were described
for the general case by Kjellander and Marčelja.12 Their
scheme has been implemented in practical calculations of
ionic concentration profiles and ion-ion correlation functions
of the double layer using the anisotropic hypernetted chain
�AHNC� approximation.12,13 This is a highly accurate
method to calculate double layer properties and it is used in
the current work. The AHNC method typically requires
much less computational effort than simulations, especially if
image forces are to be included. This method produces re-
sults in virtually perfect agreement with simulations,14,15 ex-
cept at high ionic concentrations, for which there are small
systematic errors. The explicit consideration of the ion-ion
correlations makes the AHNC method suitable for studying
systems where mean field theories, such as the Poisson-
Boltzmann approximation, fails to give even qualitatively
correct results, as may be the case for systems with divalent
ions present.13,14,16 In this work we will, however, consider
only monovalent electrolytes.

As image forces in some cases have a decisive influence
on the ionic concentration profiles and the pressure between
the walls, it is desirable that they are treated as accurately as
possible. It has been shown for the case of uncharged sur-
faces in absence of ionic dispersion interactions17 that the
self-consistent inclusion of image forces in the treatment ofa�Electronic mail: rkj@chem.gu.se
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the double layer results in the exact cancellation of the
asymptotic term of the static �zero frequency� part of the
vdW interaction between planar walls. Therefore, the inclu-
sion of image forces does not only affect the double layer
pressure but the vdW pressure as well. The static part of the
vdW interaction is screened by the intervening electrolyte
and this is contained in the effects of the image forces. This
effect will be investigated in the current work.

The presence of dispersion interactions between ions in
electrolytes have profound effects on the decay behavior of
electrostatic interactions between the ions as function of
separation, changing the exponential screening to a power
law one.18,19 In the current work we will only consider ion-
wall dispersion interactions and, for simplicity, neglect such
interactions between the ions. The latter is expected to be of
secondary importance, at least for the system studied here.
Thus the electrostatic ion-ion interactions in the electrolyte
will be exponentially screened, but the ion-wall dispersion
forces will affect the decay of the ion concentration profiles
between the walls and indirectly the ion-ion correlation func-
tions. We will see that these dispersion forces give rise to
important differences depending on, for example, if the most
polarizable ions �e.g., bromide compared to sodium ions in
sodium bromide� are counterions or coions of the charged
surfaces.

The current primitive model approach does not allow for
effects due to the structure of the solvent at the interface.
Any ion specificity arising from such effects is therefore
missed in the calculations presented below, making the rela-
tive importance of these compared to effects due to disper-
sion forces difficult to assess. Currently, the only reliable
methods available for studying solvent-structure dependent
ion specificity are laborious simulations. Recent examples of
such are found in Refs. 20 and 21.

The outline of the paper is as follows. First the system is
described and the interaction potentials are defined. This is
followed by an explicit estimation of the strength of the ion-
wall dispersion interaction using quantum mechanical calcu-
lations. Then the various contributions to the interaction
pressure between two planar walls are specified. The calcu-
lated wall-wall interaction pressure and ion density profiles
are then presented and the results of the paper are discussed.

II. THEORY

A. Model

The system considered is a simple binary electrolyte so-
lution sandwiched between two walls separated by a distance
D. The walls are modeled as semi-infinite dielectric slabs
with dielectric properties different from those of the solvent.
The electrolyte between the walls is assumed to be in ther-
modynamic equilibrium with a bulk electrolyte solution of
concentration 0.5M. We select a coordinate system with the z
axis perpendicular and the x and y axes parallel to the sur-
faces. The origin is placed at the midplane between the walls.
We use the notation r= �x ,y ,z�.

The pair potential uij�r ,r�� between an ion of species i at
coordinate r and an ion of species j at r� consists of three
contributions,

uij = uij
core + uij

Coul + uij
im, �1�

where uij
core is the hard core potential for ions of diameter a,

i.e., uij
core �r ,r��=� if �r−r���a and 0 otherwise, and where

uij
Coul�r,r�� =

qiqj

4��sol�0�r − r��
, �2�

qi and qj are the ionic charges, �sol is the dielectric constant
of the solvent, and �0 is the permittivity of vacuum. The
contribution uij

im in Eq. �1� is the potential due to image
charges, which arises from the presence of the dielectric dis-
continuities at the two walls. It is a function of the distances
of the ions to the surfaces. Due to the planar symmetry we
can write its coordinate dependence as uij

im�r ,r��
=uij

im�R ,z ,z� �D�, where R= ��x−x��2+ �y−y��2�1/2 is the lat-
eral distance and where we have explicitly indicated in the
right hand side �rhs� that uij

im depends on the distance D
between the wall surfaces. In Fourier space this potential can
be written as12

ûij
im�k,z,z��D� =

qiqj

�sol�0k
� �D

ekD − �D
cosh�kz�cosh�kz��

+
�D

ekD + �D
sinh�kz�sinh�kz��� , �3�

where

�D =
�sol − �wall

�sol + �wall
�4�

and �wall is the dielectric constant of the wall. The notation

f̂�k� is used here for the two-dimensional Fourier transform
�Hankel transform� of a function f�R�. �In real space uij

im is an
infinite sum of Coulombic terms due to the presence of mul-
tiple image charges from both surfaces.�

The ions are assumed to interact with the walls via dis-
persion forces as well as hard core exclusion and electro-
static forces. The ion-wall interaction potential �i�z �D� for an
ion of species i then consists of four contributions,

�i = �i
core + �i

Coul + �i
im + �i

disp, �5�

where �i
core is the ion-wall hard core potential, which is infi-

nite if �z�� �D−a� /2 and 0 otherwise, and where �i
Coul is the

electrostatic interaction between an ion and a uniform sur-
face charge density � on each wall. Since the surface charge
densities of the two walls are equal, �i

Coul is constant in the
slit between the surfaces and does not give rise to any forces
on the ions there. The contribution �i

im in Eq. �5� arises due
to an ion interacting with its own image charges and is given
by

�i
im�z�D� = uii

im�0,z,z�D� . �6�

The potential for the ion-wall dispersion interactions is set to

�i
disp�z�D� = Bi� 1

�z + D/2�3 +
1

�z − D/2�3	 , �7�

where the coefficient Bi is a parameter controlling the
strength of the dispersion forces and is defined in Eq. �8�
below. It should be remarked that Eq. �7� is only approxi-
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mately valid because it only contains the leading contribu-
tion from each wall �see below� and, furthermore, it fails to
account for wall-ion-wall three-body interactions.

In this work both ion species are assumed to be monova-
lent, i.e., q+=−q−=e0, where e0 is the elementary charge, and
have the same diameter a=4.6 Å. The static dielectric con-
stant of the solvent, �sol, is taken to be 78.36, corresponding
to that of water at 25 °C and for �wall we use the value 2.54,
the static dielectric constant of polystyrene.22

B. Estimation of wall-ion dispersion forces

The potential for the dispersion interaction between an
ion of species i and a single dielectric discontinuity a dis-
tance d away is given by2

Vi
disp�d� = −

�

�4��2�0d3

0

�

d	

i

*�i	�
�sol�i	�

�D�i	� =
Bi

d3 , �8�

where 
i
* is the excess polarizability of an ion of species i

�i.e., the difference in polarizability between an ion sur-
rounded by a solvent and pure solvent� and �D�i	� has the
same meaning as �D in Eq. �4� except that it is evaluated at
the imaginary frequency i	. The physical interpretation of
expression �8� is that it represents the free energy of interac-
tion between a fluctuating point dipole and its dielectric im-
age. This constitutes the leading contribution for large d of
the ion-wall dispersion interaction. In reality the distance de-
pendence for small d is more complicated than that of Eq.
�8�. The singularity of Vi

disp�d� at the wall surface �d=0� is
unphysical and arises as a consequence of regarding the ions
as point-polarizable objects. In our application of Eq. �8� the
singularity is never encountered since the ionic size is con-
sidered. In Eq. �7� we have �i

disp�z �D�=Vi
disp�z+D /2�

+Vi
disp��z−D /2��, and in practice �z�� �D−a� /2 due to the

ion-wall core interactions included in Eq. �5�.
The material of the wall is taken to be polystyrene and

the representations of the dielectric functions for water and
polystyrene, in tabular form for imaginary 	 values, were
taken from Dagastine et al.23 In order to obtain a reliable
estimate of the order of magnitude of Bi in Eq. �8� we chose
iodide as a “prototype” for highly polarizable ions. The po-
larizability of iodide was calculated from the following sum-
of-states formula:10


�	� =
e0

2

4��0me
�

l

f0,l

	0,l
2 − 	2 , �9�

where me is the electron mass, 	0,l is the frequency, and f0,l

is the oscillator strength of the transition from state 0 �the
ground state� to state l. These quantities can readily be cal-
culated using time-dependent Kohn-Sham density functional
theory �TD-DFT�.24,25

The calculations were preformed with the GAUSSIAN03

�Ref. 26� package using the B3LYP exchange-correlation
functional27,28 and Dunning’s augmented quadruple zeta cor-
relation consistent basis sets29 �aug-cc-pVQZ� with a relativ-
istic effective core potential.30 The effects of solvent were
included by placing the ion in a cavity in a dielectric con-
tinuum and including the reaction field in the Kohn-Sham
Hamiltonian using the method of Miertuš et al.31 as imple-

mented in GAUSSIAN03. The default values of 2.250 Å for the
cavity radius and 1.776 for the optic dielectric constant of
water were used. No attempts were made to include any
hydrating water molecules explicitly.

The value that was obtained for the static polarizability,

�0�, of iodide in water is 58.7 a.u., to be compared with the
experimental value of 50.0 a.u.32 A numerical evaluation of
the integral in Eq. �8� using 
�i	� as given by Eq. �9� �the
bare polarizability� instead of the excess polarizability gave
the value −40.2 kJ Å3 mol−1 of B− for iodide. Considering
that the effects of the displacement of water by the ion were
neglected and the fact that the static polarizability was over-
estimated by about one sixth, this number is likely to be an
overestimate. This led us to choose B− values in the range
between 0 and −40 kJ Å3 mol−1 for our model anions. We
expect that these values are within the range of the typical
values of B− for highly polarizable anions. This view is sup-
ported by the fact that values of similar magnitude were ob-
tained by Tavares et al.8 for a range of anions in a similar
system using different approximations for �wall�i	�, �sol�i	�,
and 
�i	�.

In light of the fact that cations are generally much less
polarizable than anions32 and in order to keep the model
simple, B+ was set to zero in all calculations. We emphasize
that we are not aiming to make predictions referring to any
particular kind of salt, but rather to investigate the properties
of the model presented above for a set of parameters of re-
alistic order of magnitude.

It is somewhat problematic to use the asymptotic form
given by Eq. �8� of the potential for the dispersion forces for
all separations since it strongly overestimates the interaction
for d�0 and necessitates the use of a cutoff distance for
small d, the exact choice of which may have a large influ-
ence on the results. It may therefore be the case that the
short-range effects of dispersion forces are exaggerated in
the calculations of this paper. Furthermore, it appears likely
that a realistic ion-wall potential would also contain contri-
butions of other physical origin, that for short distances may
well dominate the contribution due to dispersion forces even
for highly polarizable ions.

C. Evaluation of the wall-wall interaction pressure

The net interaction pressure between the walls is the
difference between the force per unit area in the slit between
the two surfaces, P�slit�, and the bulk pressure, P�bulk�,

Pnet = P�slit� − P�bulk� . �10�

When the distance D between the walls goes to infinity,
P�slit�→P�bulk� and Pnet→0.

The total pressure in the slit is the sum of a contribution
from the ions, Pion �defined below in Eq. �14��, and the vdW
interaction between the walls

P = Pion + PvdW
wall . �11�

We have
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PvdW
wall = −

A

6�D3 , �12�

where A is the Hamaker constant for the two walls interact-
ing across pure solvent. A can be obtained from Lifshitz
theory10,33 as

A =
3kBT

2 �
l=0

�

��
s=1

�
�D

2s�i	l�
s3 , �13�

where kB is Boltzmann’s constant, T the absolute tempera-
ture, the prime on the sum over l indicates that the term
corresponding to l=0 is to be weighted by one half, and �D

has the same meaning as in Eq. �4� except that it is evaluated
at imaginary frequency i	l, where 	l= l2�kBT /�.

We will distinguish the static �zero frequency� part of the
vdW interaction from the rest. The former originates from
the l=0 contribution in Eq. �13� which we will denote as A0.
Note that A0 contains only the static dielectric constants of
the solvent and the walls, the same quantities that determines
the magnitude of the image forces �cf. Eq. �3��. The zero
frequency part in Eq. �12� is PvdW�0�

wall =−A0 / �6�D3�. It has a
special role in what follows. The high frequency contribu-
tions to PvdW

wall �from the terms with l�0 in Eq. �13�� will be
denoted as PvdW�hf�

wall .
The pressure due to the ions, Pion, can be decomposed

into well defined components,

Pion = Pkin
ion + PCoul

ion + Pcore
ion + Pim

ion + Pdisp
ion , �14�

the explicit expressions for which are given below. Pion can
be evaluated at any plane in the slit between the surfaces �its
value is independent of this choice�. In the current work it is
evaluated at the midplane �at z=0� from the ion density pro-
files, ni�z�, and ion-ion pair distribution functions, gij�r ,r��,
in the slit. The planar symmetry of the system allows us to
write gij�r ,r��=gij�R ,z ,z��. The total correlation function is
defined as hij =gij −1.

In Eq. �14�, Pkin
ion is the pressure due to the thermal mo-

tion of the ions, i.e., the momentum transfer across the plane
where the pressure is evaluated. It is proportional to the total
ion concentration there. At the midplane we have Pkin

ion

=kBT�ini�0�. In the bulk Pkin
ion=kBT�ini

b, where ni
b is the bulk

concentration.
PCoul

ion is the pressure contribution from electrostatic inter-
actions due to ion-ion correlations across the midplane and
we have

PCoul
ion = − �

i,j



0

D/2

dz

−D/2

0

dz�
 dRni�z�nj�z��

� hij�R,z,z��
�uij

Coul�R,z,z��
�z

. �15�

The corresponding contribution to the bulk pressure is
−�i,j
r=a

r=�drni
bnj

brhij
b �r��duij

Coul�r� /dr� /6, where hij
b is the total

correlation function in bulk.
Pcore

ion is the pressure contribution from core-core colli-
sions of the ions across the midplane and we have

Pcore
ion = 2�kBT�

i,j



0

a

dz

z−a

0

dz�ni�z�nj�z���z − z��

� gij��a2 − �z − z��2�1/2,z,z�� . �16�

The corresponding pressure contribution in bulk is
2�a3kBT�i,jni

bnj
bgij

b �a� /3, where gij
b �a� is the core-core con-

tact value of the pair distribution function in bulk.
Pim

ion contains all contributions to the pressure due to im-
age forces,13

Pim
ion = − 2��

i,j



0

D/2

dz

−D/2

D/2

dz�

0

�

dk ni�z�nj�z��

�ĥij�k,z,z��k
�ûij

im�k,z,z��D�
�z

− ��
i,j



−D/2

D/2

dz

−D/2

D/2

dz�

0

�

dk ni�z�nj�z��ĥij�k,z,z��k

�
�ûij

im�k,z,z��D�
�D

−
1

2�
i



0

D/2

dz ni�z�
��i

im�z�D�
�z

−
1

2�
i



−D/2

D/2

dz ni�z�
��i

im�z�D�
�D

. �17�

In bulk there is, of course, no such contribution.
Pdisp

ion is the pressure component arising from direct dis-
persion interactions between ions and walls and is given by

Pdisp
ion = − �

i



0

D/2

dz ni�z�
�Vi

disp�z + D/2�
�z

+ �
i



−D/2

0

dz ni�z�
�Vi

disp��z − D/2��
�z

. �18�

Each term in the rhs gives the dispersion interaction between
the ions on one side of the midplane and the wall on the
opposite side. There is no Pdisp

ion contribution in bulk.
The zero frequency contribution to the wall-wall vdW

interaction pressure, PvdW�0�
wall , is canceled identically for large

D by the image force contributions in Pion.17 The physical
result is that PvdW�0�

wall is screened by the electrolyte in the
slit.34 The high frequency contribution, PvdW�hf�

wall , is, on the
other hand, unaffected by the presence of the ions in the slit
since they move too slowly to correlate with the rapid quan-
tum fluctuations that give rise to this dispersion force contri-
bution.

In this work the ion density profiles and ion-ion pair
distribution functions in the slit were calculated using the
AHNC approximation12 and P�slit� was then obtained from
the equations above. P�bulk� was likewise obtained from the
pair distribution functions of the bulk phase in the HNC
approximation.

Note that in the Poisson-Boltzmann approximation the
net kinetic pressure, 
Pkin

ion=kBT�i�ni�0�−ni
b�, and Pdisp

ion are
the only contributions to Pion that are nonzero.
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III. RESULTS AND DISCUSSION

AHNC calculations were carried out for a range of wall-
wall separations D between 5.1 and 29.6 Å for walls with
either positive or negative surface charges in the presence or
absence of image forces �in the latter case with �wall=�sol

=78.36�. The absolute value of the surface charge was ���
=0.0449 C m−2 unless otherwise specified. Three values for
B− were considered: −40, −20, and 0 kJ Å3 mol−1. Note that
the minimal value of D is 4.6 Å, which corresponds to a
layer of counterions between the charged surfaces. The prin-
cipal results of the calculations are presented in Fig. 1, which
shows the net pressure between the walls, except that the
high frequency vdW pressure, PvdW�hf�

wall , is not included �the
latter is the same for all cases shown�. The zero frequency
part, PvdW�0�

wall , is, however, included for the cases with image
forces. When the dielectric discontinuities at the surfaces are
neglected, i.e., in absence of image forces, PvdW�0�

wall is zero
since �D=0 at zero frequency in these cases. If PvdW�0�

wall were
to be calculated from the actual dielectric constant of the
wall material in the latter cases, the model would be incon-
sistent when image forces are neglected.

There is a dramatic difference between the cases of posi-
tive and negative surface charge where the polarizable anions
are counterions and coions, respectively. For positive sur-

faces, the inclusion of dispersion forces significantly de-
creases the pressure for all separations considered. In the
case of negative surfaces the pressure is increased at larger
separations and remains largely unaffected at small separa-
tions when dispersion forces are included. This is the same
trend that was recently observed by Boström et al.,5 who
treated a similar model within the Poisson-Boltzmann ap-
proximation. In their model image forces were neglected but
regulation of surface charge at constant pH was taken into
account.

As seen in Fig. 1, the absence or presence of image
forces can make an important difference. To neglect them
makes the pressure less repulsive in all cases, but their rela-
tive importance is much greater in the case of positive sur-
faces with strong ion-wall dispersion interactions than other-
wise. In the case of negative surfaces, Fig. 1�b�, the neglect
of image forces causes only a slight shift downwards of the
curves �not shown�.

The total net pressure, Pnet defined in Eq. �10�, is ob-
tained by adding the high frequency part of the vdW inter-
action to the results in Fig. 1. For the polystyrene/water sys-
tem, which we use as an example of a hydrocarbon/water
system, PvdW�hf�

wall is less than twice the value of PvdW�0�
wall . The

high frequency part is often the dominant contribution to the
vdW interaction, but in hydrocarbon/water system the zero
frequency part is usually of the same order of magnitude as
the high frequency part. This is due to the fact that the di-
electric properties of water and most hydrocarbons are simi-
lar in the UV region of the frequency spectrum10 while their
static dielectric constants differ greatly.

Pnet is plotted in Fig. 2, which also shows the pressure in
absence of various parts of the wall-wall vdW pressure. We
first turn our attention to the thick curves in each subfigure
�Figs. 2�a�–2�c� �cases with image forces��. Pnet turns attrac-
tive for large D �see the inserts�. This net attraction is due to
the high frequency part of the van der Waals attraction,
PvdW�hf�

wall , but not the zero frequency part, which is canceled in
the net pressure. This can be seen from the fact that the
pressure plotted in Fig. 1, which does not contain PvdW�hf�

wall , is
entirely repulsive for all of these cases �also plotted as
dashed curves in Fig. 2�. The cancellation of PvdW�0�

wall , is il-
lustrated by the upper two curves in Fig. 2. The top curve
shows 
Pion= Pion�slit�− Pion�bulk�. The second top curve
�dashed� equals 
Pion+ PvdW�0�

wall . The latter curve is closer to
zero and decays faster than 
Pion in the range shown, despite
that it contains PvdW�0�

wall . This is an effect of the cancellation.
The cases without image forces �thin curves� further il-

lustrate this cancellation when compared to the other curves
in Fig. 2. The two dashed curves in each subfigure nearly
merge with each other when D is increased; despite that the
case without image forces shows 
Pion and the other shows

Pion+ PvdW�0�

wall , i.e., the former does not contain any zero
frequency vdW contribution. On the other hand, 
Pion in the
presence of image forces �dashed-dotted line� and 
Pion in
their absence �thin dashed line� differ considerably from each
other.

That the neglect of image forces can give a qualitatively
wrong result is seen in Fig. 2�a� where Pnet for the case

FIG. 1. The net pressure, 
P= P�slit�− P�bulk�, as function of surface sepa-
ration D between two planar walls with surface charge densities �
=0.0449 �upper panel� and −0.0449 C m−2 �lower panel�, except that the
high frequency part of the van der Waals �vdW� wall-wall interaction pres-
sure, PvdW�hf�

wall , is not included. The pressure is plotted as 
P /RT, where R is
the gas constant, in molar units. The electrolyte is a 0.5M aqueous solution
of monovalent ions with equal diameters a=4.6 Å. The anions have disper-
sion interactions with the walls of strength B−=0 �solid lines�, −20 �short
dashes�, and −40 kJ Å3 mol−1 �long dashes�, while B+=0 throughout. The
thick lines show results in the presence of image charge forces. In the upper
panel results are shown from the corresponding calculation where image
forces are neglected �thin lines�. In the lower panel such curves are not
shown for clarity, since they lie only slightly below the present curves.
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without image forces is attractive for intermediate D values,
while Pnet is repulsive there in their presence. If one would
include the zero frequency contribution to the vdW pressure
as calculated from the dielectric constant of the wall material
but neglect image forces, one would have an inconsistent
model which would give an artificially large attractive pres-
sure, even larger than in Fig. 2�a�. We accordingly conclude
that it is very important to have a consistent treatment with
the image forces present, at least for cases where Pim

ion con-
stitutes a significant part of the total pressure �as is the case
shown in Fig. 2�a�, c.f. Fig. 3�a��.

Let us now further examine the case with image forces
included. The reasons for the difference between positively
and negatively charged surfaces in Fig. 1 can be analyzed by
investigating the various pressure components in Eq. �14�.
Figure 3 shows 
Pion together with its components Pim

ion,
Pdisp

ion , and the sum 
Pkin
ion+
PCoul

ion +
Pcore
ion �the former two

components have no 
 symbol since they are zero in bulk�.
In the latter sum the two last contributions are smaller than


Pkin
ion and are about the same in the three cases shown. The

kinetic contribution dominates in the sum and it increases
somewhat for intermediate D values when going from Fig.
3�a� to Fig. 3�b� and then to Fig. 3�c�. This is caused by an
increase in total ionic concentration at the midplane. Further-
more, we see that Pim

ion is virtually the same in all three cases.
By comparing Figs. 3�a� and 3�c�, which differ only in

the sign of the surface charge, we see that the main differ-
ence in pressure is due to Pdisp

ion , which is very small for
negative surface charges. The change in 
Pkin

ion acts in the
same direction and contributes to the increase in 
Pion when
changing the surface charge from positive to negative.


Pion is strongly dependent on the value of B− when the
surface charge is positive since Pdisp

ion is large in this case. This
is the main reason why 
P in Fig. 1�a� varies substantially
when B− is changed. The magnitude of Pdisp

ion increases faster
than linearly with B− when the latter turns more negative.
This is due to the fact that the concentration of negative ions
between the walls increases when B− turns more negative,
especially in the region close to the walls �see below�. The
change in 
Pkin

ion also contributes in the same direction as
Pdisp

ion , although to a lesser extent.
When the surface charge is negative 
Pion is nearly un-

FIG. 2. The total net pressure �full lines� between the walls as a function of
D for some of the systems in Fig. 1: �a� ��0 and B−=−40 kJ Å3 mol−1; �b�
��0 and B−=−20 kJ Å3 mol−1; �c� ��0 and B−=−40 kJ Å3 mol−1. The
thick lines show the results for systems with image forces �the normal case�,
while the thin lines show the results in their absence. The dashed-dotted
thick curves show 
Pion, i.e., the net pressure due to only the ions �without
any vdW wall-wall interaction pressure�. The dashed curves show the net
pressure without PvdW�hf�

wall , i.e., the same as the curves in Fig. 1. For the case
with image forces this equals 
Pion+ PvdW�0�

wall , where the last term is the zero
frequency part of the vdW pressure. The latter term is, however, not in-
cluded when image forces are absent. The inserts show magnified views of
the plots for large D.

FIG. 3. The net pressure due to ions, 
Pion, and some of its components
defined in Eq. �14� as a function of D for the same systems as in Fig. 2 in the
presence of image forces �panels �a�, �b�, and �c� show the same cases in
both figures�. The dashed-dotted curve in each panel represent 
Pion �the
same curve as in Fig. 2�, the full curve shows the sum 
Pkin

ion+
PCoul
ion

+
Pcore
ion , the upper dotted curve �small dots� is Pim

ion, and the lower dotted
curve �large dots� is Pdisp

ion . The inserts show magnified views of the plots for
large D.
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affected by B− since Pdisp
ion is small. In fact, the curves for the

case with B−=−20 kJ Å3 mol−1 and negative surface charge
�not shown� are virtually the same as Fig. 3�c�. The only
notable difference is that 
Pkin

ion increases slightly when B−

becomes more negative in this case, which is the reason for
the differences between the 
P curves in Fig. 1�b�. The rea-
son why Pdisp

ion is small for negative surfaces is that the polar-
izable coions are almost completely expelled electrostatically
from the space between the walls for small D. This effect
becomes less pronounced when D increases, but even for the
largest separation considered Pdisp

ion is small compared to the
corresponding case with positive surface charge.

Let us now investigate the reasons for these behaviors of
Pdisp

ion and 
Pkin
ion. In Fig. 4 density profiles are shown for vari-

ous cases when D=29.6 Å. The profiles in absence of ion-
wall dispersion interactions, B−=0 �dotted curves�, are com-
pared with the profiles when B−=−40 kJ Å3 mol−1. We will
first focus on the latter.

For the case of positive surface charge �thick curves�
there is a large increase in counterion concentration near the
surface; see Fig. 4�a�. This is hardly surprising as both elec-
trostatic and dispersion forces attract counterions to the sur-
face in this case. The coion profile is not much changed
compared to the B−=0 case, but both the counterion and
coion densities are closer to zero in the middle of the slit
�near z=0� when B−=−40 kJ Å3 mol−1. This is particularly
clear in the insert to Fig. 4�a�. As a consequence the charge
density profile, Fig. 4�d� �thick curve� has large negative val-

ues in the region very close to the surface and is rather close
to zero in the middle. The small value in the middle com-
pared to the B−=0 case �bottom dotted curve� is a conse-
quence of charge neutrality. The integral of the charge den-
sity is constant, independent of the value of B−, so if the
charge density increases in one place it has to decrease some-
where else. Thus it appears justified to claim that a major
effect of including dispersion forces is to contract the double
layer, thus increasing the electrostatic screening of the sur-
face.

The total number density, Fig. 4�c� �thick curve�, is large
close to the surface but is somewhat smaller than for the
B−=0 case around z�−10 to −7 Å. The total number of
ions in the slit has increased due to the ion-wall dispersion
interactions, which attracts the negative ions into the slit
while the positive ones follow because of electroneutrality.

For the case of negative surfaces �thin curves� in Fig. 4,
we note that although the inclusion of dispersion forces
causes a significant increase in the total number density, the
charge density is not as strongly affected �see Figs. 4�c� and
4�d��. An increase in density of the coions near the surface
due to the dispersion attraction is seen in Fig. 4�a�. This
increase must, as before, be followed by an increase in coun-
terion density somewhere due to electroneutrality. The net
result is an increased total number density of ions between
the walls, explaining the fact that a more negative value for
B− results in a larger 
Pkin

ion and hence stronger repulsion for
negative surfaces.

FIG. 4. Number density and charge density profiles in the slit between two walls as functions of coordinate z perpendicular to the surfaces. Only half of each
profile is shown; the coordinate z=0 denotes the midplane between the walls. The surface separation is D=29.6 Å and for z= ±12.5 Å the ions are in contact
with one of the wall surfaces. The dotted curves show the profiles in the absence of ion-wall dispersion interactions, B−=0, while the other curves show cases
with B−=−40 kJ Å3 mol−1 �for the latter curves the systems are as in Figs. 2�a� and 2�c��. Thick curves denote ��0 and thin curves ��0. �a� Ion density
profiles ni�z� for negative ions �full lines� and positive ions �dashed lines�. �b� The same as in �a� but in the absence of image forces. �c� Total number density
profiles, ntot�z�=n+�z�+n−�z�. �d� Charge density profiles, ��z�=q+n+�z�+q−n−�z�, plotted as ��z� /e0, where e0 is the elementary charge. Each insert shows a
magnified view of the respective plot near the middle of the slit.
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Let us turn to the effect of image forces. Since these are
repulsive, both coion and counterion concentrations close to
the surfaces are smaller in Fig. 4�a� than in Fig. 4�b�. The
density profiles are, however, almost unaffected by the image
forces beyond about 5 Å from the surface. The image forces
partially counteract the dispersion forces that draw anions
into the region near each surface. The neglect of image
forces therefore leads to an overestimation of the effects of
dispersion forces on the concentration profiles.

The changes in profiles as well as pair correlation func-
tions affect the various pressure components in Eq. �14�.
However, if we in Fig. 3 would plot Pdisp

ion and the sum

Pkin

ion+
PCoul
ion +
Pcore

ion for the cases without image forces,
they would in the scale of the figure hardly be distinguish-
able from those where image forces are included. Pim

ion, on the
other hand, is obviously zero in the absence of image forces.
The conclusion is therefore that the increased repulsion aris-
ing from the inclusion of image forces is almost entirely due
to Pim, rather than due to indirect effects of image forces on
the other pressure components via their effects on the con-
centration profiles and correlation functions.

In Fig. 5 the total net pressure, Pnet, in presence of image
forces is plotted as a function of surface charge density at
constant wall separation D=9.6 Å. The cases with �
= ±0.0449 C m−2 that we have investigated so far are
indicated by symbols. The curve for B−=0 is, of course,
symmetric around �=0, while the curves become more and
more asymmetric when B− increases in magnitude. We see
that there is in general a large variation in pressure depend-
ing on the strength of the counterion-wall dispersion interac-
tion �as apparent for the case ��0�. The influence of the
coion-wall dispersion interaction is much smaller �the case
��0�.

The difference between the influence of coions and
counterions on the pressure make a quantitative and in some
cases even a qualitative difference depending on the sign of
the surface charge. Pnet can, for example, be repulsive for
negative surface charges and attractive for positive ones.
This happens, for instance, when B−=−40 kJ Å3 mol−1 and �
is changed from −0.025 to +0.025 C m−2 in Fig. 5. This is

entirely due to the ion-wall dispersion interaction since the
anions and cations have the same valency and size, but differ
in polarizability.

IV. CONCLUDING REMARKS

The results presented above show that in calculations of
electric double layer interactions it is important to include
both ion-wall dispersion and image charge forces. The
former are particularly important when the counterions to the
charged surfaces are highly polarizable, such as bromide and
iodide ions. The image forces can also give rise to significant
contributions to the total pressure. We have demonstrated
that, for a certain combination of system parameters, the im-
age forces have such a large effect that the pressure has the
wrong sign if they are neglected.

The image forces are intimately connected to the zero
frequency contribution of the wall-wall vdW interaction
pressure. The screening of the latter by the electrolyte is
contained in the action of the image forces via ion-ion cor-
relation effects. If the full vdW pressure, including the zero
frequency contribution, is added to the double layer pressure
to calculate the total pressure, image forces must be included
in order to have a consistent model. This has been explicitly
demonstrated in the current work.

Our results support the suggestion that dispersion inter-
actions between ions and interfaces give rise to ion specific-
ity in interfacial phenomena, as discussed by Kunz et al..3

The very limited set of calculations presented herein is
not sufficient to give the full picture regarding the combined
effects of dispersion and image forces, however. Work is
currently underway to explore a wider range of systems.
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Image Charges and Dispersion Forces in Electric Double Layers: The Dependence of
Wall-Wall Interactions on Salt Concentration and Surface Charge Density

Erik Wernersson and Roland Kjellander*
Department of Chemistry, Go¨teborg UniVersity, SE-412 96 Go¨teborg, Sweden
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The interaction pressure between two planar charged walls is calculated for a range of conditions. The diffuse
electric double layers between the two wall surfaces are treated with ion-wall dispersion forces and ionic
image charge interactions taken into account. Both these interactions are due to dielectric discontinuities at
the surfaces. Ion-ion and ion-image charge correlations are explicitly included. The ion-wall dispersion
interactions can give rise to appreciable ion specific effects, which are particularly strong when the counterions
to the surfaces are highly polarizable. The mechanisms of these effects are investigated, and their influence
on the net interaction pressure between the walls is studied for a range of surface charge densities, strengths
of the anion-wall dispersion interaction and bulk electrolyte concentrations. When the strength of the anion-
wall dipersion interaction is increased, the pressure generally becomes less repulsive (or more attractive) for
positive surfaces. The opposite happens in general for negative surfaces but to a much lesser extent. The
effects are largest for large surface charge densities and high electrolyte concentrations. The image charge
interactions give rise to a considerable depletion attraction between the walls for low surface charge densities.

1. Introduction

The “primitive model” of electrolyte solutions, wherein ions
are characterized only by their charge and hard-sphere radius
and the solvent enters only via its dielectric constant, forms the
basis of much of our present understanding of electric double
layers and the interaction of charged particles immersed in
electrolyte solutions. In the context of colloidal dispersions, the
primitive model is, for example, used in the Derjaguin-
Landau-Vervey-Overbeek (DLVO) theory that since more
than half a century forms a framework within which a broad
range of experimental measurements are interpreted. In this
theory, Coulomb and van der Waals interactions are treated as
independent and additive. This is not strictly correct but is due
to the approximations made. For example, the effects of ion-
ion correlations, ionic image charge forces, and ionic polariz-
abilities are ignored. The importance to include these effects
has become more and more apparent during recent years. The
ion-ion correlations are not included in the DLVO theory since
it is based on the Poisson-Boltzmann approximation, which is
a mean field approximation for the ion concentration profiles
of the double layer.

It has long been known that the static (zero frequency) part
of the van der Waals (vdW) interactions between the colloid
particles are screened in electrolytes.1 The power-law vdW
interaction is replaced by an exponentially screened one. This
is brought about by the effects of image charge interactions due
to the dielectric discontinuity at the particle surfaces, provided
the correlations between the ions in the double layer are
considered.2 The high-frequency part of the vdW interactions
is, however, not screened. The forces between the ions and the
image charges will be referred to as “image forces” below.

Recently, it has been argued that the inclusion of dispersion
forces between ions and interfaces in the primitive model is an

appropriate measure to improve the model for charged inter-
faces.3 In particular, the salt specificity of certain phenomena,
such as the salting out of proteins, can partly be explained by
dispersion forces acting between ions and interfaces. The effects
of the inclusion of such interactions in the treatment of electric
double layers and colloidal interactions have been studied by
Boström and co-workers4-11 as well as others; see, for example,
refs 12-14. For a recent review, see ref 15. To model the effects
of ion-wall dispersion forces, it is common to use the long-
distance asymptotic form of these forces. In the current work,
we investigate planar “primitive model” double layers where
the ion-wall dispersion forces have been included in this
approximate manner. The ion-ion correlations and ionic image
charge forces are also included. Here, we use the term dispersion
forces only when we mean forces that arise due to high-
frequency quantum fluctuations (London forces). Compared with
the bare Coulomb interactions, the dispersion forces are
relatively short-ranged, but they are, on the other hand, relatively
long-ranged compared with other non-Coulomb interactions
between atoms, molecules, and colloidal particles. Since the
Coulomb interactions are screened in electrolytes, the effects
of dispersion forces may dominate for large distances but may
also give important effects for short distances.

We have calculated the pressure between two parallel walls
as a function of distance, surface charge density, and strength
of the anion-wall dispersion interaction for a range of bulk
electrolyte concentrations by means of the highly accurate
anisotropic hypernetted chain (AHNC) approximation.16,17Cases
with a large difference in anion-wall and cation-wall disper-
sion interactions are deemed to be of greatest interest. For
simplicity, we have assumed that only the anions and not the
cations interact with the walls via such forces. This choice was
made to reflect the fact that anions tend to have a much greater
polarizability than comparable cations18 and is motivated by a
wish to decrease the number of parameters in the model, as we
want to place a stronger emphasis on qualitative effects rather
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than quantitative estimates. Apart from the difference in anion-
wall and cation-wall dispersion interactions, the electrolyte
model is completely symmetric.

The strength of the ion-wall dispersion forces, as well as
the wall-wall vdW pressure, has been estimated from Lifshitz
theory, wherein both the walls and the solvent are characterized
by their frequency dependent dielectric functions and the ions
by their dynamic polarizability; see ref 14 for details. Like the
Coulomb potential in the primitive model, the large distance
asymptotic power law for the dispersion forces is used for all
separations beyond contact. Therefore, it may be said that the
treatment of electrostatic forces and dispersion forces are on
essentially the same level of sophistication.

This paper is a continuation of our previous study,14 where
the interaction between two walls with surface charge density
σ ) (0.0449 C m-2 were investigated at bulk electrolyte
concentration 0.5 M. (Expressed in terms of the number of
elementary charges,e0, per unit area, this surface charge density
equals(0.28e0 nm-2.) We found that for the model employed
there is a dramatic difference between the effects of dispersion
forces on the pressure for positively and negatively charged
walls.

In the current work, we investigate a wider range of systems
in order to obtain a more complete picture of the properties of
the model. In section 2, the model and the theoretical methods
are presented. The various components of the wall-wall
interaction pressure are specified. In section 3, the results are
presented and discussed, and finally, in section 4, the main
results are summarized and conclusions are presented.

2. Method

2.1. Model. The system studied consists of an electrolyte
solution sandwiched between two planar walls (semi-infinite
slabs) separated by a distanceD and in equilibrium with a bulk
electrolyte. We use a coordinate systemr ) (x, y, z) with the
origin in the plane that lies in the middle between the walls,
referred to as the midplane below. The coordinatez is
perpendicular to the wall surfaces.

Both the walls and the solvent are modeled as dielectric
continua. They have dielectric functionsεwall(iω) and εsol(iω)
respectively, expressed as functions of imaginary frequency,iω.
The static dielectric constants areεwall(0) andεsol(0).

The electrolyte model considered is a simple primitive model,
defined by the ion-ion interaction potential for speciesi andj

whereuij
core is the hard core potential for ions of diametera;

that is,uij
core(r , r ′) ) ∞ if |r - r ′| < a and 0 otherwise, and

where

qi and qj are the ionic charges andε0 is the permittivity of
vacuum. In this work, the ions are taken to be monovalent,q+

) -q- ) e0 and have equal diametera. The termuij
im in eq 1

is the potential for the image forces. The explicit expression
for the Hankel transform ofuij

im can be found in ref 16.
Obviously, this term is zero in bulk solution. Because of the
symmetry of the problem, the coordinate dependence of the
ion-ion interaction potential can be writtenuij(r , r ′) ) uij(R, z,
z′), whereR ) [(x - x′)2 + (y - y′)2]1/2 is the lateral distance.

The ion-wall potential is given by

where νi
core is the ion-wall hard core potential, which is

infinite if |z| > (D - a)/2 and 0 otherwise and whereνi
Coul is

the electrostatic interaction between an ion and a uniform surface
charge densityσ on each wall. Since the surface charge densities
of the two walls are equal,νi

Coul is constant in the slit between
the surfaces and does not give rise to any forces on the ions
there. The contributionνi

im in eq 3 arises due to ions interact-
ing with their own image charges,νi

im(z) ) uii
im(0, z, z)/2; see

ref 16. (Note that a factor 1/2 in front ofuii
im is missing in eq 6

of our previous publication, ref 14.) The potential for the ion-
wall dispersion interactions is taken to be

where the coefficientBi is a parameter that controls the strength
of the dispersion forces.

Dispersion forces are included only in the ion-wall potential
in this work, not in the ion-ion pair potential. Expression 4 is
the long-range asymptotic form of a particle-wall dispersion
interaction and is only approximately valid for finite distances.
Furthermore, it fails to account for the effects of many-body
interactions, including the wall-ion-wall three-body interac-
tion. In the calculations presented below, the values 0,-20,
and-40 kJ Å3 mol-1 are used forB-, andB+ is always set to
zero.

The value-40 kJ Å3 mol-1 for B- is an estimate for iodide
in water and was chosen on the basis of the dynamic polariz-
ability of iodide as calculated by quantum mechanical density
functional theory (for details, see ref 14). It is appropriate to
setB+ ) 0 for ions that have roughly the same polarizability
as the surrounding water. We have made this choice to reduce
the number of parameters in the exploration of qualitative
properties of the model. We emphasize that, although the value
-40 kJ Å3 mol-1 for B- was chosen with iodide in mind, the
present model does not correspond directly to any real system.
It was, however, considered desirable to choose values that are
within about the same range as those that might be encountered
in real systems.

The choice ofBi parameters made here is only one of many
possibilities that lies within the range of values that may be
expected to be realistic for some salt. We have chosenB+ and
B- such that there is a strong asymmetry in the anion-wall
and cation-wall dispersion interactions. As anions tend to be
more polarizable than comparable cations18 (i.e., cations with a
similar number of electrons); we expect such a large asymmetry
to be present in many real systems. That is not to say, however,
that the case ofB+ and B- being roughly equal is either
unrealistic or uninteresting, but we defer the study of this case
to future works. The choice of equally sized anions and cations
is expedient in the present context because it allows the study
of a model system where the ion-wall dispersion interaction
is the only source of asymmetry.

Recently, an approach similar to that used to calculate
dynamic polarizability in ref 14 has been applied to the static
polarizability of ions.19 Both a dielectric continuum representa-
tion of the solvent and that of explicit water molecules as well
as a hybrid approach were considered and compared. It was
found that when the continuum approach was used the polar-
izability was higher than in vacuum, whereas it came out lower
when the approach with explicit water molecules was used. In
the hybrid approach, the polarizability was remarkably close to
the vacuum value. This lends credence to the suspicion

uij ) uij
core+ uij

Coul + uij
im (1)

uij
Coul(r , r ′) )

qiqj

4πε0εsol(0) |r - r ′| (2)

νi ) νi
core+ νi

Coul + νi
im + νi

disp (3)

νi
disp(z|D) ) Bi ( 1

|z + D/2|3
+ 1

|z - D/2|3) (4)
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expressed in ref 14 that the magnitudeB- might have been
slightly overestimated by the method of calculation employed
therein.

2.2. Anisotropic Hypernetted Chain Approximation. Within
the AHNC approximation, the pair correlation functions and
concentration profiles for the inhomogeneous electrolyte be-
tween the walls are explicitly calculated by numerical solution
of the Ornstein-Zernike equation with the approximate HNC
closure for the pair correlation functions and an equation for
the ionic concentration profiles. In the latter, use is made of
the fact that the local excess chemical potential is given within
the HNC approximation as a known functional of the pair
correlation functions and concentration profiles. The total
chemical potential is prescribed to be equal at all points between
the walls, which gives a sufficient criterion for determination
of the concentration profiles consistent with the correlation
functions. A solution with self-consistent correlation functions
and concentration profiles is obtained by iteration. Physically,
the prescription of a constant chemical potential corresponds
to the electrolyte solution in between the walls being in
equilibrium with a bulk electrolyte solution of the same chemical
potential. The AHNC approximation and the closely related
anisotropic reference HNC (ARHNC) approximation have
previously been shown to be in very good agreement with
simulation results; see refs 20 and 21 and references cited
therein. For details regarding the AHNC method and its
implementation, see refs 16 and 17.

The AHNC method is particularly suitable for the present
problem because it provides a simple way to properly treat the
infinite array of image charges needed to take into account the
self-consistent polarization of the two walls by the intervening
ions. As the image forces are included in the Hamiltonian of
the system and the correlation functions are treated consistently,
the electrostatic screening of the image charges is included
automatically. Hence, there is no need to make any a priori
assumptions regarding the screening of the image charges.

2.3. Evaluation of the Wall-Wall Pressure.The pressure
between the walls is calculated as described in our previous
work,14 and we employ the same notation here. The pressure
due to the ions,Pion, is a sum of five terms of different physical
origin,

The termPkin
ion is the pressure due to the thermal motion of the

ions; PCoul
ion andPcore

ion originate from electrostatic and hard core
interactions across the midplane, respectively.Pim

ion originates
from the image forces, andPdisp

ion originates from the ion-wall
dispersion interactions. The latter is the force per unit area
between the ions on one side of the midplane and the wall on
the opposite side. See ref 14 for explicit expressions of the
pressure components in terms of distribution functions (note
that for Pim

ion in eq 17 of ref 14, an additional factor 1/(2π)2 is
missing in front of the first and second sum). The sum of the
three terms that are nonzero in bulk solution,Pkin

ion, PCoul
ion , and

Pcore
ion , is referred to as the osmotic pressure below and is

denotedPosm
ion .

The relevant quantity for comparison with experimental
results is the difference between the pressure in the slit between
the walls and the bulk pressure∆Pion ) Pion[slit] - Pion[bulk].
This applies to most of the pressure components, for example,
∆Pkin

ion, but Pim
ion and Pdisp

ion have no counterpart in bulk and are
therefore never equipped with a∆.

The total pressure between the walls can be written as the
sum of the pressure due to the ions between the walls and the
wall-wall van der Waals pressure,

PvdW
wall is evaluated from Lifshitz theory, and we have explic-

itly

where

is evaluated at imaginary frequencyiωl whereωl ) l2πkBT/p.
The prime on the summation symbol indicates that thel ) 0
term is to be weighted by one-half.

In the following discussion, it will be necessary to distinguish
the term corresponding tol ) 0 from the rest of the sum in eq
7. The former will be denoted byPvdW(0)

wall and referred to as the
zero frequency vdW pressure, while the latter will be denoted
by PvdW(hf)

wall and referred to as the high-frequency vdW pressure.
It should be remarked thatPdisp

ion is based on the approximate
ion-wall dispersion interaction in eq 4, so it does not give the
proper correction toPvdW(hf)

wall due to the presence of ions in the
medium between the walls. The modification of the dielectric
properties of the medium by the ions is not properly treated.
For example, many-body effects are neglected. Hence,Pion and
PvdW

wall are not strictly additive. Additivity may nevertheless be a
reasonable approximation unless the concentration of ions is
too high.

3. Results and Discussion

We have calculated the total interaction pressure between two
planar walls as a function of surface separation and surface
charge density for three different bulk electrolyte concentrations,
0.500, 0.250, and 0.125 M. The charge and size symmetric
electrolyte was monovalent and the ion diametera ) 4.6 Å.
Three different strengths of the anion-wall dispersion interac-
tion were investigated,B- ) -40, -20, and 0 kJ Å3 mol-1,
while the cation-wall dispersion force was neglected through-
out,B+ ) 0. We have used static dielectric constantsεwall(0) )
2.54 andεsol(0) ) 78.36, which correspond to polystyrene and
water22 at room temperature.PvdW(hf)

wall was calculated using
dielectric function data from White23 for polystyrene and water.

The results for 0.500 M solutions are shown as contour plots
in Figure 1. The pressure as a function of surface separation,
D, at constant surface charge density corresponds to a vertical
intersection of the diagram. The smallest value ofD displayed
in the figure is 5.6 Å, while the minimum surface separation is
4.6 Å, which corresponds to one layer of counterions between
the walls. Thus, the diagram does not extend down to contact.
The pressure eventually becomes repulsive when the surfaces
approach contact in all cases with nonzero surface charge, since
counterions must remain between the surfaces because of
electroneutrality.

The contours of the uppermost panel of Figure 1 are
symmetric aroundσ ) 0 because of the symmetry of the
electrolyte in absence of dispersion forces,B- ) B+ ) 0. When

Pion ) Pkin
ion + PCoul

ion + Pcore
ion + Pim

ion + Pdisp
ion (5)

P ) Pion + PvdW
wall (6)

PvdW
wall ) -

kBT

4π D3
∑
l)0

∞

′ ∑
s)1

∞ εD
2s(iωl)

s3
(7)

εD(iωl) )
εsol(iωl) - εwall(iωl)

εsol(iωl) + εwall(iωl)
(8)
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B- is increased in magnitude, the contours turn skewed, more
so for more negativeB-.

The contours that corresponds to zero pressure, displayed as
extra thick lines in the figure, are particularly interesting as they
constitute the “lines of demarcation” between attractive and
repulsive pressure and therefore correspond to an extremum in
the wall-wall free energy of interaction. When the pressure
goes from repulsive to attractive with increasingD, the
extremum is a minimum, that is, a stable (or possibly metastable)
state. This applies to most parts of the thick lines shown in
Figure 1. The free energy minimum is analogous to but not the
same as the secondary minimum of DLVO theory. We see in
the figure that, when the magnitude of the surface charge is
increased, the minimum (the point of zero pressure) shifts to
larger D values, which is the same qualitative behavior as in
the DLVO theory. (In contrast to the theory we use in this paper,
the DLVO theory is, however, only valid as an approximation
for double layers at low electrolyte concentrations, low surface
charge densities, in absence of image forces, and without ion-
wall dispersion forces.)

In the uppermost panel of Figure 1, the attractive region
(dashed lines) extends between about-0.10 and 0.10e0 nm-2

for D ) 10 Å. In the middle panel, this region has shifted to
extend between-0.08 and 0.13e0 nm-2 for D ) 10 Å and in
the bottom panel to between-0.06 and 0.22e0 nm-2. At the
right- and left-hand sides of the plot,σ ) (0.4 e0 nm-2, the
positions of the point of zero pressure in the bottom panel differ
by more than 1 nm between positive and negative surfaces.

The corresponding plots for bulk electrolyte concentrations
0.250 and 0.125 M are shown in Figures 2 and 3, respectively.
The same skewing of the contour of zero pressure and widening

of the attractive region are also present in these figures but to
a much smaller extent. This is true especially at the lowest
concentration, Figure 3, where the pressure does not vary much
with B-. Note that in this figure the contours change the most
with increasing magnitude ofB- for large positive surface
charge density. The change in the contours for large negativeσ
values is hardly visible in this case. The latter is true also for
the 0.250 M case, Figure 2. For the highest concentration (Figure
1) and large negativeσ, there is a slight upward shift in the
contours whenB- turns more negative. The trend for positive
σ is opposite and larger; there is a downward shift in the
contours. The latter is also true in Figures 2 and 3.

By comparing the three panels of Figures 1 to 3, we can
conclude that the main effect of increasing the magnitude of
B- is a decreased repulsion (or increased attraction) in the case
of positively charged surfaces and that the effect is opposite
and smaller for negatively charged surfaces; that is, the repulsion
is slightly increased (or attraction decreased) in the latter case.
We can also draw the conclusion that these effects are much
more pronounced at high bulk electrolyte concentration than
low. The fact that the inclusion of ion-wall dispersion forces

Figure 1. Contour plots showing the net interaction pressure,∆P )
P[slit] - P[bulk], between two planar walls as a function of surface
charge density,σ, and wall-wall separation,D. The system is in
equilibrium with a 0.500 M aqueous electrolyte solution of monovalent
ions with equal diametersa ) 4.6 Å. The upper panel shows the case
of no ion-wall dispersion interactions. In the other panels, the anions
have such interactions of strengthB- ) -20 (middle panel) and-40
kJ Å3 mol-1 (bottom panel), whileB+ ) 0 throughout. The labels of
the contours give the pressure as∆P(RT)-1 in units of M. The thick
contours are logarithmically spaced (except, of course, the ones
corresponding to zero pressure), while the thin contours correspond to
the values(2 × 10m, (4 × 10m, (6 × 10m, and(8 × 10m for various
integersm. Dashed lines correspond to an attractive pressure, and full
lines correspond to a repulsive one. The surface chage density is given
as the number of elementary charges,e0, per unit area.

Figure 2. Same as Figure 1 but for bulk concentration 0.250 M.

Figure 3. Same as Figures 1 and 2 but for bulk concentration 0.125
M.
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has opposite effects for positive and negative surfaces has been
discussed in our previous publication;14 see also the work by
Boström et al.7

The decreased repulsion for positively charged surfaces can
to a large extent be explained by the behavior ofPdisp

ion , the
pressure component due to direct dispersion interaction between
ions and walls. This attractive component increases when the
magnitude ofB- is increased for positive surfaces (i.e., when
the polarizable anions are counterions). This increase arises both
from a larger dispersion interaction for each counterion between
the walls and from an increase in the number of ions when
counterions are attracted into the slit from the surrounding bulk
solution by the dispersion interactions. Furthermore,Pdisp

ion

increases with increased positive surface charge density because
of the increased number of counterions between the walls needed
to maintain electroneutrality.

The anions are attracted to the positive surfaces by both
dispersion and electrostatic forces. This causes a decrease in
the ion concentration at the midplane compared with the case
without dispersion forces and thus causes a decrease in∆Pkin

ion

in many cases (exceptions occur for largeD and for smallσ,
see below). These changes inPdisp

ion and∆Pkin
ion both act to make

the net pressure less repulsive (more attractive).
In the case of negative surfaces, the small increase in double

layer repulsion when the magnitude ofB- is increased is due
to an increased kinetic pressure between the walls. This arises
because the ion concentration in the middle between the walls
is increased when ion pairs are drawn into the slit from bulk by
dispersion forces acting on the anions. Since the anions are
coions to the surfaces in this case, they stay largely in the middle
of the slit for moderately large surface separations. Compared
with the case of positive surfaces, the total number of anions
between the surfaces is much smaller for electrostatic reasons,
in particular for short surface separations. Therefore,Pdisp

ion is
small and relatively unimportant in this case. In total, the
pressure becomes more repulsive (less attractive) for negative
surfaces in all cases considered here whenB- turns more
negative, but it is a small effect.

These results are further illustrated in Figures 4 and 5, from
which the relative importance of various pressure components
for the magnitude of the total pressure can be deduced. Both
figures are for the case 0.500 M electrolyte and show pressure

contributions in absence and presence of ion-wall dispersion
interactions, respectively. The pressure componentPvdW(hf)

wall ,
which is the same in all cases, is not included.

The upper panel of each of these figures shows∆Posm
ion )

∆Pkin
ion + ∆PCoul

ion + ∆Pcore
ion . The latter two contributions in the

sum are rather insensitive to the magnitude ofB-, so the
difference between the upper panels is mainly due to∆Pkin

ion.
When we go from Figure 4 to 5, that is, when the ion-wall
dispersion interactions is turned on, the contours in the upper
panels corresponding toP(RT)-1 ) 1.0 and 0.1 M shift to
smaller separations for positive surface charges and to larger
separations for negative surfaces in agreement with the discus-
sion above. On the other hand, theP(RT)-1 ) 0.01 M contour
shifts to a somewhat larger separation for both positive and
negative surfaces. The effect is, however, small for positive
surfaces.

In both figures, there is a region where the pressure is
attractive. From the upper panel in Figure 4, we see that∆Posm

ion

is weakly attractive for a wide range of distances for uncharged
to moderately charged surfaces. The attraction is caused by a
depletion of ions in the slit due to repulsive image forces. The
depletion results in an attractive∆Posm

ion because the electrolyte
concentration in the slit is smaller than that in the bulk solution.
For uncharged surfaces, the pressure is attractive for all
distances, but for charged surfaces,∆Posm

ion turns repulsive for
small D. The reason for this is that counterions remain in the
slit because of the electroneutrality condition, which prevents
all of them from being expelled to bulk.

When ion-wall dispersion forces are included, Figure 5, the
attractive region becomes limited to short wall-wall separations
and low surface charge densities.∆Posm

ion becomes repulsive at
large separations. This is due to the dispersion forces which
draw ion pairs into the space between the walls from bulk. These
forces have a longer range than the repulsive image forces,
which are exponentially screened. (As noted above, for large
positiveσ, the effect is opposite for small to moderate surface
separations. Then, the increase in∆Posm

ion due to disperions
forces occurs only for largeD.)

Let us now turn to the lower panels in Figures 4 and 5, where
we have also included the contributionsPim

ion, PvdW(0)
wall , andPdisp

ion

(the latter is zero in Figure 4). Note that wheneverPim
ion is

included in the pressure one should also includePvdW(0)
wall since,

Figure 4. Contour plot showing various sums of pressure components
for the same system as in the top panel of Figure 1. No ion-wall
dispersion interactions are present. The upper panel shows∆Posm

ion )
∆Pkin

ion + ∆PCoul
ion + ∆Pcore

ion . The lower panel shows the sum of all
pressure components apart fromPvdW(hf)

wall , that is ∆Posm
ion + Pim

ion +
PvdW(0)

wall . The contour plot is constructed in the same way as Figure 1.

Figure 5. Same as Figure 4 but in presence of ion-wall dispersion
interactions of strengthB- ) -40 kJ Å3 mol-1. The system is the same
as in the bottom panel of Figure 1. The upper panel shows∆Posm

ion , and
the lower shows the sum of all pressure components apart from
PvdW(hf)

wall . In this case, the latter sum equals∆Posm
ion + Pdisp

ion + Pim
ion +

PvdW(0)
wall .
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as discussed in ref 2, these contributions cancel each other
exactly for large wall-wall separations. This cancellation
expresses the screening of the zero-frequency vdW pressure by
the electrolyte between the walls; that is,Pim

ion contains terms
that cancel the power-law decay ofPvdW(0)

wall and replaces it by
the screened interaction. For the cases investigated in this paper,
Pim

ion was found to be insensitive to the value ofB-, so Pim
ion +

PvdW(0)
wall is about the same in Figures 4 and 5.
The plots in the upper and lower panels of Figure 4 are quite

similar except in the region of smallσ and largeD. Thus, the
magnitude ofPim

ion + PvdW(0)
wall is small compared with∆Posm

ion ,
except in the latter region where the opposite is true. We see
that the attractive region for largeD in the upper panel is absent
in the lower panel. The attraction due to ion depletion is thus
counteracted by the repulsivePim

ion + PvdW(0)
wall for largeD. There

remains, however, a region with attractive pressure in the lower
panel, where the depletion attraction due to the image forces is
quite strong. By comparing Figure 4 with the upper panel of
Figure 1, wherePvdW(hf)

wall is included, we see that the magnitude
of the depletion attraction for many values ofD is comparable
to that of the high-frequency vdW attraction, although the former
decays more quickly than the latter with increasingD.

By comparing the upper and lower panels of Figure 5, we
see that the addition ofPim

ion + PvdW(0)
wall + Pdisp

ion increases the
asymmetry already present in the upper panel. This is essentially
due toPdisp

ion , in agreement with the discussion above. Further-
more, we see that the net attraction for low surface charge
densities and short wall-wall separations is slightly enhanced
in the lower panel for positive surface charges. The attractive
pressure contributionPvdW(hf)

wall , which is included in the bottom
panel of Figure 1, makes the attractive region much larger, but
a comparison of this plot and both panels in Figure 5 shows
that a non-negligible part of the attraction for low surface charge
densities and short wall-wall separations originates from
∆Posm

ion andPdisp
ion .

4. Summary and Conclusions

From the results in this work, we can identify two interde-
pendent mechanisms by which dispersion forces between walls
and ions may modify the pressure between walls separated by
an electrolyte solution. The first is the direct dispersion
interaction between the walls and highly polarizable ions. This
results in an attractive pressure that may be regarded as a
contribution to the total van der Waals pressure. The magnitude
of this pressure contribution is dependent on the total amount
of polarizable ions between the walls as well as their spatial
distribution. The attraction increases with increased bulk
electrolyte concentration and, if the counterions are polarizable,
it also increases with increasing surface charge density.

The second mechanism is a change in the concentration
profiles due to ion-wall dispersion forces, which leads to an
altered osmotic pressure in the slit between the walls. This may
result in either a decrease or an increase in net pressure
depending on the conditions. Let us assume, as is done above,
that the anions are the most polarizable ionic species. A decresed
repulsion (or increased attraction) then occurs for large positive
surface charge densities (i.e., when the polarizable anions are
counterions to the surfaces) and small to moderate surface
separations. The dispersion forces then act to draw the anions
closer to the surfaces, thereby decreasing the concentration of
ions at the midplane between the walls. The opposite pressure
change happens for negative surface charge densities or for large

surface separations. Then the ion-wall dispersion forces make
the osmotic pressure to be more repulsive (or less attractive).
In this case, the dispersion forces draw ion pairs from bulk into
the slit between the walls, which leads to an increase in ionic
concentration at the midplane.

In all cases where an increase in the strength of the dispersion
interactions resulted in an increased repulsion, the net effect
was found to be small. This can be explained in part by the
tendency of the pressure due to direct ion-wall dispersion
interactions, that is always attractive, to counteract the change
in osmotic pressure.

The image forces due to the dielectric discontinuities at the
surfaces give rise to a depletion attraction. For weakly charged
surfaces, this is a significant contribution to the pressure for
short surface separations. The importance of image forces
decreases, however, with increasing surface charge density.

We conclude that ion-wall dispersion forces are of qualitative
importance mainly where the counterions to the surface are
highly polarizable provided the surface charge density and
electrolyte concentration are rather high. For such cases, the
direct dispersion interaction between the polarizable counterions
and the walls gives rise to a large attractive contribution to the
pressure and, in addition, to a decrease in the repulsive osmotic
pressure. Taken together, these effects result in a large decrease
in net repulsion (or increase in attraction). It is therefore in such
cases that a significant influence of dispersion interactions on
the total pressure is observed.
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Ion correlation forces between uncharged dielectric walls
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The interaction pressure between two uncharged planar walls immersed in various electrolyte
solutions containing mono- and/or divalent ions is investigated. The solution is treated as a primitive
model electrolyte, and the wall surfaces constitute dielectric discontinuities. Ionic image charge and
ion-wall dispersion interactions are included. The interaction parameters are appropriate for
hydrocarbon �polystyrene�/water interfaces, and the electrolyte concentrations considered lie
between 0.250M and 1.00M. The anisotropic hypernetted chain method is used to self-consistently
calculate the ion density profiles and the ion-ion correlation functions in the inhomogeneous
electrolyte. Thereby, the effects of image charge interactions and dispersion interactions on the
pressure and the electrolyte structure are included in a fully consistent manner. The explicit
consideration of correlations between the ions in the presence of image charges ensures that the
screening of the zero-frequency van der Waals interaction is taken into account. Of special interest
are the effects of asymmetries between anions and cations with respect to valency and/or dispersion
interaction with the walls. Such asymmetries create an electric double layer in the electrolyte outside
each electroneutral surface. This causes the wall-wall interaction for large surface separations to be
similar to the interaction between charged surfaces. For intermediate separations, around 1–2 nm, a
substantial repulsive peak appears in the ionic pressure. In some cases the repulsion is larger than
the van der Waals attraction between the walls, which implies that there is a repulsive barrier in the
total pressure despite that the surfaces are uncharged. The strongest repulsion is found for 2:1
electrolytes where the monovalent anions interact strongly with the walls via dispersion forces. In
general, ion-wall dispersion forces acting on ions of lower valency have a much greater effect than
equally strong dispersion forces acting on ions of higher valency. This is mainly due to the more
strongly repulsive image charge forces on ions of higher valency that counteract the attractive
dispersion forces. Effects of confinement on the ion-ion correlations also contribute to this
difference. For all electrolytes the interaction pressure from the ions is attractive for small surface
separations. The main cause is a depletion of ions between the walls from the self-image repulsion
and confinement effects. For totally symmetric electrolytes the attractive pressure extends to large
separations in most cases. © 2008 American Institute of Physics. �DOI: 10.1063/1.2990007�

I. INTRODUCTION

Due to its simplicity, the primitive model for electrolyte
solutions and for electric double layers has been extensively
studied. In this model the ions are treated as charged hard
spheres and the solvent as a dielectric continuum. When
modeling double layers near macroions, charged walls, or
other macroparticles, one usually assumes that the particle
surfaces are smooth and uniformly charged. An area of ap-
plication is statistical mechanical calculations of interactions
between various particles, which, for instance, are relevant
for the properties and stability of colloidal dispersions and
the swelling of clays and surfactant bilayer systems.

The most common approach for the study of electrostatic
interactions in electrolyte systems is to use the Poisson–
Boltzmann �PB� approximation—a mean field approximation
that neglects the ion-ion correlations in the ion atmosphere
around the charged particle�s� or surface�s�. Such correla-
tions are due to all kinds of interactions between the ions,
electrostatic, as well as steric �from finite ionic sizes�. The

PB theory is quite successful in many cases provided that the
typical ionic interactions are not very strong, such as in aque-
ous monovalent electrolytes at low to moderate concentra-
tions near surfaces that are not too highly charged.

The primitive model has proved useful in explaining the
interactions seen between surfaces also in strongly coupled
systems, where the PB approximation fails due to the neglect
of the effects of ion-ion correlations. For example, the re-
duced swelling of clays in the presence of calcium ions,1 the
interaction pressure between mica surfaces at high electro-
lyte concentration,2 and the cohesion of cement paste3 can be
explained by the primitive model provided its properties are
accurately evaluated.

In primitive model treatments of double layer phenom-
ena near walls one assumes in most cases that the dielectric
properties of the walls and the solvent are the same. This
assumption is not inherent in the model and is done for rea-
sons that are more often technical than physical. Thereby
polarization of the dielectric interface by ions �image charge
effects� is neglected. This may be a good approximation in
many situations, but not necessarily in all cases.a�Electronic mail: rkj@chem.gu.se.
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The neglect of surface polarization leads, for example, to
inconsistencies in the treatment of the system when the van
der Waals forces between the walls are included. Such
forces, which usually are added to the double layer interac-
tion to obtain the total wall-wall interaction, incorporate
some consequences of different dielectric properties of the
walls and the solvent. Unless the same model, including the
presence of dielectric boundaries, is used for the double layer
calculations one introduces an inconsistency, which incor-
rectly makes the van der Waals interaction unaffected by the
presence of electrolyte. In fact, the correct inclusion in the
primitive model of the dielectric polarization induced by the
ions at the interfaces leads to a screening of the static �zero-
frequency� part of the van der Waals interactions from Lif-
shitz theory.4,5 This screening is absent if dielectric bound-
aries are not properly handled in the treatment of the double
layers. The static contribution to the van der Waals interac-
tions constitutes a large part of the total interaction for sys-
tems like hydrocarbon particles in water,6,7 so the screening
can have important consequences.

A coupling of the static van der Waals and the double
layer interactions is thus inherent in the primitive model
when dielectric boundaries are treated consistently. The static
polarization of these boundaries by the ions is most easily
handled by the method of image charges for simple geom-
etries like planar walls and we therefore will refer to the
interactions due to such polarization as “image interactions”
or “image forces.”

In addition to the static polarizations there are high-
frequency fluctuations in polarization of interfaces and ions
that give rise to dispersion forces between ions and inter-
faces. Since the strength of the dispersion force between an
ion and an interface depends on the electronic structure of
the ion, dispersion interactions have been suggested as a pos-
sible source of ion specificity in interfacial phenomena.8 The
dispersion interaction can, as an approximation, be added to
the electrostatic and hard core interactions of the primitive
model.

The dispersion forces arise when there are differences in
the dynamic dielectric properties on either side of an inter-
face and when the polarizability of ions is different from that
of the solvent. For sufficiently large wall-ion distances the
strength of the dispersion force acting on an ion can be esti-
mated from the frequency dependent dielectric functions of
the media and the dynamic polarizability of the ion by Lif-
shitz theory, as described in Ref. 8. To extend the primitive
model in this manner is quite reasonable since one continues
to treat the solvent as a dielectric continuum. The dielectric
functions can be inferred from spectroscopic data over a
wide frequency range,9 and the dynamic polarizability can be
estimated from quantum mechanical calculations10,11 via the
well-known “sum of states” formula for atomic polarizabil-
ity, cf. Eq. �3.7� in Ref. 4. During recent years, the effects of
such dispersion interactions on the ion distribution near in-
terfaces and other properties of double layer systems have
been the subject of several studies.12–26

In the present work we shall include effects of both im-
age interactions and ion-wall dispersion forces in the calcu-
lation of interactions between two planar walls. Our previous

results from such calculations23 for monovalent electrolytes
suggest that the influence of surface polarization is largest on
a relative scale for small surface charge densities and de-
creases with increasing magnitude of the surface charge. For
this reason, we here study the case with electrolyte in contact
with uncharged polarizable walls.

We consider 1:1 and 2:2 charge-symmetric as well as 2:1
and 1:2 charge-asymmetric electrolytes. �The convention
used here is that an m :n electrolyte is composed of cations of
valency m and anions of valency n.� In all cases the electro-
lyte is size symmetric, so anions and cations have the same
diameter. We will investigate the properties of the systems
both in the absence and presence of ion-wall dispersion in-
teractions. In the latter case, we will assume that the anions
are much more polarizable than cations. Our main focus con-
cerns qualitative features of the systems and therefore, we
have for simplicity neglected the �small� polarizability of the
cations, i.e., the latter behave as though their polarizability is
equal to that of the surrounding water. We also neglect dis-
persion interactions between the simple ions.

The relevance of investigations of the effect of electro-
lyte on interactions between electroneutral walls can be seen
in recent experimental studies of the swelling of multilamel-
lar samples of uncharged lipids by Petrache et al.27,28 They
measured the pressure between the lipid bilayers as function
of lamellar repeat distance using the osmotic pressure tech-
nique of Rand and Parsegian.29 The dependence of the swell-
ing on the type and concentration of monovalent salt was
investigated. It was found that the swelling increased with
increasing electrolyte concentration and that it was larger for
KBr than for KCl at the same concentrations. The concentra-
tion dependence was interpreted as due to the screening of
the van der Waals attraction by salt. The difference between
bromide and chloride was consistent with a weak specific
binding of bromide but not of chloride to the bilayer surfaces
and the appearance of an electric double layer repulsion in
the former case. Petrache et al. also included repulsive un-
dulation and “hydration” forces in the analysis and found
that the salt effect could not be attributed to changes in these
interactions.

These qualitative effects of electrolytes are consistent
with the findings in the present work. We do not have any
specific adsorption of ions in the model beyond that due to
dispersion forces. The binding constant reported in Ref. 28
corresponds to an attraction stronger than but of a similar
order of magnitude compared to the anion-wall dispersion
force considered in our calculations.30 We have, however,
made no attempt to fit our theoretical results quantitatively to
any experimental findings. As stated earlier, our goal here is
merely to establish the qualitative features of image interac-
tions and ion-wall dispersion forces for reasonable values of
the system parameters. We hope, nevertheless, that the re-
sults presented here will in the future prove useful in the
interpretation of similar experiments.

Some important objectives of our work are to investigate
effects of anion-cation asymmetry and possible relevance for
ion specificity in surface phenomena. For the 1:1 and 2:2
electrolytes near uncharged walls, the only source of asym-
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metry is the ion-wall dispersion interactions when present.
For the 2:1 and 1:2 electrolytes there is also charge
asymmetry.

It has been known for a long time that in 2:1 and 1:2
primitive model electrolytes �in the absence of dispersion
interactions� there is some degree of charge separation close
to an electroneutral wall both in the absence and presence of
image forces.31 Close to the surface the divalent ion concen-
tration is lower than the monovalent one, while the reverse is
true some distance away. This difference in the ionic concen-
tration profiles gives rise to a nonzero effective surface
charge on the walls, as defined from the asymptotic behavior
of the electrostatic potential and ion concentration profiles
away from the surface.32 Any kind of asymmetry between
the anions and cations make the electroneutral walls behave
as if they were charged, which, as we shall see, has important
consequences for the wall-wall interaction when the surface
separation is large enough. We shall also see that the simul-
taneous inclusion of image and dispersion interactions has
important consequences for the magnitude of the effects of
the latter. We have not attempted to include any effects of
unequal hydration of the ions, which is also a source of ionic
asymmetry that can bring about a charge separation.
Marčelja33 investigated such effects and the consequences
for interactions between bubbles.

To include image forces in models of electric double
layers introduces some complications. As the image forces
are electrostatic in nature, they are screened by electrolyte.
This screening is brought about by ion-ion correlations. It is,
for example, not enough to include only the self-image in-
teraction between an ion and the dielectric boundaries since
this would lead to an overestimation of the range and mag-
nitude of the effects of image forces. In order to describe the
screening of the image interactions in a consistent manner,
explicit consideration of the ionic pair correlations of the
inhomogeneous electrolyte near the surface is required.

A simple alternative is to include the screening of the
image forces a priori in some approximate way. A famous
example is the Onsager–Samaras theory,34 where the screen-
ing of the image charges is assumed to be equal to the
screening of a charge in bulk as given by Debye–Hückel
theory. This approach has the obvious disadvantage that the
screening ability of an inhomogeneous electrolyte close to a
surface need not be very similar to the screening ability of a
bulk electrolyte. The ion-ion correlations decay exponen-
tially perpendicularly to the surface �like in bulk�, but as a
power law in the lateral direction. It is, however, not neces-
sary to use the bulk correlations since in the low coupling
limit, where Debye–Hückel theory is valid, analytic expres-
sions for the correlation functions near a dielectric surface
can be found in some cases.35 For systems that are not close
to the low coupling limit, Debye–Hückel theory often gives
rather poor results, however. More sophisticated approaches,
such as simulations or integral equation theory, are appropri-
ate in these cases. If the ion-ion correlations in the inhomo-
geneous electrolyte are explicitly included in the theory, the
screening of image forces will automatically be included at
the same level of sophistication as the correlations
themselves.

In the present work, ion-ion correlations in the inhomo-
geneous electrolyte between the walls are calculated with the
anisotropic hypernetted chain �AHNC� method,36,37 which
was designed from the outset to correctly treat image inter-
actions. The only approximation made is to use the hypernet-
ted chain �HNC� closure for the anisotropic ion-ion correla-
tion functions. These pair correlation functions and the
concentration profiles near the surfaces are determined self-
consistently by iteration, the former in both ordinary and
Fourier space.

For approaches that only consider image interaction in
ordinary space, like simulations, the treatment of image in-
teractions for electrolytes between two planar walls can be
cumbersome due to the presence of an infinite number of
multiple image charges. In the AHNC method this is of no
concern since the potential from the multiple images can be
written in Fourier space in a closed analytic form.

By the AHNC method, image forces have been shown to
give rise to attraction between two uncharged walls im-
mersed in a primitive model electrolyte solution.5 In addi-
tion, the screening of the static component of the van der
Waals attraction is automatically included. In the presence of
image forces one obtains a repulsive contribution to the ionic
pressure that exactly cancels the zero-frequency van der
Waals interaction,5 thus accounting for the screening.

The outline of this paper is as follows. First, the model
employed as well as the methods used for calculating pair
correlations, concentration profiles, and the interaction pres-
sure are presented. Then the main results are presented for
the profiles, the pressure, and its components, which origi-
nate from distinct physical mechanisms. The significance of
the results is discussed with special emphasis on the depen-
dence of the wall-wall pressure on surface separation, kind of
ions, and electrolyte concentration. Finally the major find-
ings of this paper are summarized.

II. METHOD

A. Model

The system under study consists of a primitive model
electrolyte solution in a slit between two parallel uncharged
walls �semi-infinite dielectric slabs�. The electrolyte in the
slit is in equilibrium with a bulk electrolyte solution of a
specified composition. The bulk concentration of ion species
i is denoted ni

bulk. The walls are smooth and separated by a
distance, D, that is defined as the distance between the di-
electric interfaces, see Fig. 1. The distance of closest ap-
proach of the ion centers to each interface is denoted b. We
adopt a coordinate system with its origin at the plane in the
middle of the slit �the midplane�. The z axis is perpendicular
to the walls and the x and y axes are parallel to them.
The lateral distance along the wall between two points
r= �x ,y ,z� and r�= �x� ,y� ,z�� is denoted R= ��x−x��2

+ �y−y��2�1/2.
The interaction potential for a pair of ions of species i

and j is given by
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uij = uij
core + uij

Coul + uij
im, �1�

where uij
core�r ,r�� is zero for �r−r���a and infinite otherwise

for all pairs of ions �i.e., the ion centers can approach each
other up to a distance a�, uij

im is the potential for the image
force interactions, see below, and uij

Coul�r ,r�� is the Coulomb
potential,

uij
Coul�r,r�� =

qiqj

4��solv�0��0�r − r��
, �2�

where �0 is the permittivity of the vacuum, �solv�0� is the
dielectric function at zero frequency �the dielectric constant�
of the solvent, and ql, l= i , j, is the ionic charge. Due to the
symmetry of the system in the slit, the coordinate depen-
dence of uij�r ,r�� can be written as uij�R ,z ,z��. The two-
dimensional Fourier transform of uij

im �Hankel transform for
variable R� is given by36

ûij
im�k,z,z��D� =

qiqj

�solv�0��0k
� �D�0�

ekD − �D�0�
cosh�kz�cosh�kz��

+
�D�0�

ekD + �D�0�
sinh�kz�sinh�kz�� ,� �3�

where the D dependence of the ion-ion image interaction is
shown explicitly. We have defined

�D��� =
�solv��� − �wall���
�solv��� + �wall���

, �4�

where �solv��� and �wall��� denote the frequency dependent
dielectric functions of the solvent and the wall, respectively.
For the image interactions only the static �zero-frequency�
dielectric response matters, but for the van der Waals inter-
actions information about �solv��� and �wall��� for imaginary
� is needed �cf. Eq. �12� below�. The dielectric constant of
the solvent, �solv�0�, is taken as 78.36, that of pure water at
25 °C. The wall dielectric constant, �wall�0�, is set equal to
2.54, the static dielectric constant of polystyrene at the same
temperature.38 The hard core contact distance, a, is taken to
be 4.6 Å for all ions.

The ion-wall interaction potential is given by

�i = �i
im + �i

disp + �i
core, �5�

where �i
im is due to ions interacting with their own images

and equals36

�i
im�z�D� = 1

2uii
im�0,z,z�D� �6�

�note that in Eq. �6� of our previous paper,22 the factor 1/2 is
unfortunately missing due to a misprint�. The term �i

disp in
Eq. �5� is the potential due to ion-wall dispersion forces

�i
disp�z�D� = Bi� 1

�z + D/2�3
+

1

�z − D/2�3	 , �7�

where Bi gives the strength of the interaction �see below�.
The ion-wall hard core interaction �i

core is zero if �z��D /2
−b and infinite otherwise, with b=3 Å for all i. Thus, the
ion centers cannot approach the dielectric interface closer
than 3 Å, see Fig. 1. Thereby, the unphysical singularities of
�i

disp at z= �D /2 are avoided. Note that the ion-ion contact
distance a, the “ion diameter,” is different from 2b.

In Eq. �7� we have as an approximation set the disper-
sion interaction potential with two walls equal to the sum of
the interactions with each single wall using the long-distance
asymptotic form of the ion-wall potential. The coefficient Bi

can be calculated from Lifshitz theory as described in Ref. 8.
Since we are mainly interested in dispersion forces as a
source of asymmetry in the ion model, we restrict ourselves
to two combinations of values for Bi: B+=0,
B−=−40 kJ Å3 mol−1 and B+=B−=0. The value B−

=−40 kJ Å3 mol−1 is based on quantum mechanical calcula-
tions of the dynamic polarizability of iodide,22 which is taken
as an example of a highly polarizable ion. The two combi-
nations of values for B+ and B− are intended to correspond to
a large and no contribution, respectively, to the anion-cation
asymmetry. It should be noted that no net dispersion force is
exerted on an ion that has the same polarizability as its sur-
roundings. The choice of Bi=0 thus corresponds to the as-
sumption that the ions are as polarizable as water. Electrolyte
models with only such ions are referred to as “nonpolariz-
able” below. Electrolyte models with B−�0 are conversely
referred to as “polarizable.”

We have modeled the walls as slabs of semi-infinite
thicknesses. The results are also valid for walls of finite
widths provided the electrostatic interactions across the walls
are sufficiently weak, so ions on either side of the walls do
not correlate with each other.

B. The AHNC method

In the AHNC method36 one self-consistently solves a set
of equations for the equilibrium concentration profiles, ni�z�,
the total pair correlation functions, hij�R ,z ,z��, and the direct
correlation functions, cij�R ,z ,z��, of an inhomogeneous elec-
trolyte. The set of equations consists of the Ornstein–Zernike
equation for inhomogeneous liquids, the HNC closure for the
pair correlation functions, and an equation for the density
profiles. The latter is obtained from the condition of thermo-
dynamic equilibrium, which specifies that the chemical po-
tential for each species is equal everywhere in the slit. The

D

b
a

z

x

εwallεsolvεwall

FIG. 1. Two electroneutral walls separated by an electrolyte phase in equi-
librium with a bulk solution. The walls and the solvent have different di-
electric properties characterized by �wall and �solv, respectively. The wall-
wall separation is D as counted between the dielectric discontinuities at the
wall surfaces. The distance of closest approach of the ion centers to the
surfaces is b. The ion-ion hard core contact distance is a as counted between
the ion centers. The coordinate system has its origin at the midplane be-
tween the surfaces with the z axis perpendicular and the x and y axes parallel
to them.
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mean chemical potential in the slit is set equal to that of a
bulk electrolyte of specified composition. Because the excess
part of the chemical potential can be expressed as a known
functional of the correlation functions within the HNC ap-
proximation, the equilibrium density profile can easily be
determined once the correlation functions are known. In
practice, the problem is solved by solving the closure com-
bined with the Ornstein–Zernike equation for the pair corre-
lation functions by iteration given a fixed set of density pro-
files. Once a converged set of pair correlation functions is
obtained a new set of concentration profiles is calculated
from the profile equation, and the correlation functions are
then recalculated for the new density profiles. The cycle is
repeated until self-consistency is attained.

The accuracy of the AHNC method has been tested
against simulations37,39–42 and was found to be excellent un-
der most conditions. An exception is the situation where the
concentration of ions reaches very high values somewhere in
the slit. The ion-ion contact values of the pair correlation
functions then tend to be overestimated. As this systematic
error mainly occurs at very high surface charge densities it is
of no concern for the systems that are of interest here. The
error can, however, be minimized by including a so-called
reference bridge function in the closure40 if needed.

Of more concern is the fact that the HNC approximation
tends to be inaccurate for the restricted primitive model in
regions of parameter space that corresponds to 2:2 electrolyte
at low concentrations.43 There are also regions in parameter
space where no solution exists for the HNC approximation
for bulk electrolyte solutions.44 This occurs for low tempera-
tures or strong electrostatic interactions �i.e., interaction en-
ergies that are large compared to the thermal energy�. The
problems with the HNC approximation under these condi-
tions are related to the incorrect way the long range tails of
the density-density direct correlation functions are handled.45

These matters are important in the current context because
the image charge repulsions make the ion concentration be-
tween the walls much smaller than the bulk concentration for
small separations. The total interaction between ions is also
much larger than in the bulk due to the presence of multiple
image charges in close proximity to the wall surfaces when
the wall-wall separation is small. The strong image interac-
tions between the divalent ions thus give a situation like that
at low temperatures in the bulk. For these reasons, in all
cases in this work where divalent ions are present, there ex-
ists some minimum separation below which one enters into
the part of parameter space where the HNC approximation
fails and no solution is found. As we shall see, the failure is
not of great concern since in most cases it occurs when there
is little electrolyte left in the slit between the walls. Then the
ions in the slit do not contribute much to the net wall-wall
interaction pressure.

There are indeed similarities in the HNC correlation
functions for the cases of inhomogeneous electrolyte for
small surface separations and bulk electrolyte at low tem-
peratures. The most striking similarity for low ion concen-
trations is the appearance of a spurious unphysical peak in
the correlation function between like-charged ions for a sepa-
ration of roughly two ion diameters. In the bulk this peak

grows dramatically when one approaches the region where
no solution exists by lowering the temperature. The behavior
for the inhomogeneous systems with uncharged surfaces in
the presence of image charges is very similar when the wall-
wall separation approaches the distance where convergence
is lost.

The minimum separation for convergence of the HNC
approximation is specified for each case investigated below.
The results in the close vicinity of this separation should be
interpreted with some caution. We will, however, use some
analytic limiting results for the density profiles between the
walls for short wall-wall separations to bridge the gap where
the HNC approximation fails, see Appendix A. As we shall
see below, in this regime we have strong net attraction be-
tween the walls regardless of the details of the structure of
the electrolyte in the slit.

In all other cases considered here, the HNC approxima-
tion is reliable. Indeed, for concentrations near the bulk con-
centrations considered in this work it gives good results even
for 2:2 electrolytes.43

C. The various contributions to the wall-wall
interaction pressure

The total pressure between the walls can be written as a
sum of the pressure exerted due to the presence of ions, Pion,
and pressure from the van der Waals interactions between the
walls, PvdW

wall ,

Ptot = Pion + PvdW
wall . �8�

The quantity relevant for the interaction between the walls is
the net pressure, i.e., the difference between the pressure in
the slit Ptot and the pressure in the bulk electrolyte, Pbulk,

�Ptot = Ptot − Pbulk. �9�

The bulk pressure contains contributions from the ions only,
so the net pressure from ions is equal to

�Pion = Pion − Pbulk, �10�

and we can write

�Ptot = �Pion + PvdW
wall . �11�

The van der Waals pressure is calculated from nonretarded
Lifshitz theory4,46

PvdW
wall = −

kBT

4�D3

l=0

	

�

s=1

	
�D

2s�i�l�
s3 , �12�

where the prime on the sum over l means that the term l
=0 should be multiplied by 1/2 and where �D���, Eq. �4�, is
evaluated at imaginary frequency i�l, where �l= l2�kBT /
.
The term corresponding to l=0 will be denoted as PvdW�0�

wall

and referred to as “the zero-frequency van der Waals pres-
sure,” while the rest of the sum will be denoted as PvdW�hf�

wall

and referred to as “the high-frequency van der Waals pres-
sure.”

In this work PvdW
wall as a function surface separation D is

the same in all cases investigated. Only Pion, Pbulk, and there-
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fore �Pion differ. For reasons explained below we will al-
ways add PvdW�0�

wall to the ionic pressure, so we will mostly
study

�P = �Pion + PvdW�0�
wall �13�

rather than the total net pressure defined in Eqs. �9� and �11�.
To obtain �Ptot we have to add PvdW�hf�

wall , which will be shown
separately.

The pressure Pion evaluated at the midplane between the
walls can be subdivided into physically distinct contributions
according to

Pion = Pkin
ion + PCoul

ion + Pcore
ion + Pim

ion + Pdisp
ion . �14�

Pkin
ion is the kinetic �ideal� contribution to the pressure given

by

Pkin
ion = kBT


i

ni�0� , �15�

where ni�0� is the concentration at the midplane. PCoul
ion and

Pcore
ion are the contributions due to electrostatic and hard-

sphere interactions across the midplane, respectively. Pim
ion is

the pressure due to image forces and Pdisp
ion originates from the

direct dispersion interactions between the ions and walls.
The last four pressure contributions are expressed in terms of
the ionic distribution functions in Appendix B.

Pkin
ion, PCoul

ion , and Pcore
ion approach the corresponding compo-

nents of the bulk pressure for large D. The sum of these three
pressure components is sometimes referred to in what fol-
lows as the osmotic pressure. It is useful to discuss the pres-
sure in terms of these components when one wants to under-
stand the differences between the osmotic pressure of the
inhomogeneous electrolyte in the slit and that of the bulk
electrolyte. When any of these three components is written
with a capital � as prefix, it denotes the difference between
the value in the slit and in the bulk. For example, �Pkin

ion

=kBT
i�ni�0�−ni
bulk�. These differences obviously all go to

zero when D→	.
Pim

ion and Pdisp
ion do not have any counterparts in the bulk.

For large wall-wall separations Pim
ion asymptotically tends to

−PvdW�0�
wall .5 Thus, the sum Pim

ion+ PvdW�0�
wall decays faster to zero

than any one of the terms do individually. Physically, this
corresponds to the screening of the static van der Waals in-
teractions between the walls by the intervening electrolyte.4

For this reason we shall in what follows always consider the
sum Pim

ion+ PvdW�0�
wall . Note that the high-frequency van der

Waals term is not screened since it corresponds to fluctua-
tions that are too rapid for the ionic configurations to respond
to. The ions do, however, respond by their electronic polar-
ization �which is expressed by their polarizability�. This
gives rise to the dispersion forces between the ions and the
walls.

The total Pion can alternatively be evaluated at one of the
wall surfaces. Sometimes this is advantageous, see Appendix
B for details.

III. RESULTS AND DISCUSSION

A. Concentration profiles between the walls

Figure 2 shows concentration profiles for a range of
wall-wall separations for various 0.500M electrolytes with
nonpolarizable ions �in short “nonpolarizable electrolytes”�.
The concentration profile for each species of ion is presented
as the ion-wall correlation function, i.e., the relative devia-
tion from the bulk concentration of that species of ion,

hwi�z� =
ni�z� − ni

bulk

ni
bulk . �16�

For all systems shown in Fig. 2 there is a depletion of
ions close to the surfaces. This is caused by electrostatic
interactions: partly from the repulsive image forces and
partly due to effects of confinement �the presence of a sur-
face� on the electrolyte structure. The latter effect can be
explained as follows. An ion in close proximity to an elec-
troneutral surface is surrounded by a charge density of oppo-
site sign �i.e., its “ion cloud”� that is located mainly on the
side away from the surface. Therefore the ion is attracted
electrostatically by the ion cloud in the direction away from
the surface. This effect adds to the repulsion of ions from the
surface due to image charges. An electrostatic force due to
confinement is a general feature for ions in the neighborhood
of both charged of uncharged surfaces since the distribution
of ions around each ion must be spatially asymmetric
there.31,32,47 There are also forces from ion-ion core interac-
tions due to excluded volume effects, which are important
for high electrolyte concentrations.

From a comparison of the 1:1 and 2:2 electrolyte sys-
tems in Fig. 2 it is apparent that there is a much larger degree
of depletion close to the surfaces for divalent ions than for
monovalent ions. The same dependence of valency can be
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FIG. 2. Ion-wall correlation functions for the cases of 1:1, 2:2, and 2:1
electrolytes with nonpolarizable ions �upper, middle, and lower panels, re-
spectively� at a bulk concentration of 0.500M. The functions are shown for
wall-wall separations of 1.2, 1.8, 2.6, and 4.6 nm in the 1:1 and 2:1 cases
and for 1.8, 2.6, and 4.6 nm in the 2:2 case. In the charge-symmetric cases
the cation and anion correlation functions are identical and are represented
by a single �full� curve. In the 2:1 case the full lines correspond to the
divalent ion-wall correlation function �marked “+2”� and the dashed lines to
the monovalent one �marked “−1”�. The corresponding curves for the 2:1
electrolyte would look the same, except for a change in the sign of the ions.
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seen for the anion and cation profiles for the 2:1 electrolyte
systems. These differences in depletion are not surprising in
light of the fact that the strength of the self-image interac-
tion, �im, is proportional to the square of the valency so that
it is four times stronger for divalent ions than for monova-
lent. The confinement effect is also stronger for divalent ions.
The asymmetric ion cloud around a divalent ion has twice
the charge of that around a monovalent one, so the resulting
force away from the surface is stronger in the divalent case.

For the symmetric 1:1 and 2:2 electrolytes the anion and
cation profiles are identical because the forces on an anion
and a cation are identical for the same distance from the wall.
Hence there is no charge separation outside the surface. In
the 2:1 case there is charge separation, however, since the
magnitude and distance dependence of the force is different
for ions of different valency. We see from the concentration
profiles that there is a region with excess negative charge
close to each wall and an excess of positive charge some
distance away. The total charge in the electrolyte phase is, of
course, equal to zero. For a 1:2 electrolyte the profiles for
monovalent and divalent ions would look exactly the same as
those of a 2:1 electrolyte since the surface is uncharged and
the anion and cation sizes are the same, but the sign of the
charge distribution would be reversed.

Thus, in general, the presence of an electroneutral sur-
face induces a perturbation in the structure of the electrolyte
that for small distances is determined by the effective inter-
actions between the ions and the surface. For large distances
from the surface the distance dependence of the perturbation
is entirely determined by the bulk ion-ion correlations but the
magnitude depends on the interactions with the surface.48–50

For low to medium electrolyte concentrations the decay of
the bulk correlations for large distances is exponential with a
decay length 1 /� that tends to the usual Debye length in the
limit of zero bulk electrolyte concentration. The ion density
profiles away from a surface also have a decay length 1 /� in
most cases �an important exception is totally symmetric elec-
trolytes, see below�.

For high concentrations both the bulk correlations and
the density profiles change from a monotonic exponential
decay to an exponentially damped oscillatory decay. The
transition between the two behaviors is determined by the
bulk electrolyte and occurs at an electrolyte concentration
that depends on the ionic species present. For ions with
a=4.6 Å the transition between monotonic and oscillatory
exponential decay occurs at bulk concentration of 0.73M for
1:1, about 0.3M for 2:2, and 0.087M for 2:1 electrolytes.51,52

�Close to the surface the ion concentration profiles may,
however, have a small number of oscillations even when the
decay for large distances is plainly exponential.�

For an uncharged surface these results for the decay do
not hold when the electrolyte is totally symmetric �i.e., when
anions and cations differ only by the sign of their charges�.
As we have seen, the charge density in the electrolyte is then
zero outside the uncharged surface. In this case the ion con-
centration profiles for large distances from the surface are
dominated by a higher order term with shorter decay length
�denoted 1 /bS in Ref. 51� that is approximately 1 /2� for low
electrolyte concentrations. The term with decay length 1 /�

in the concentration profile does not contribute since its co-
efficient is zero in this case �in other words, the effective
surface charge density of the uncharged walls is zero53�. As a
consequence, the transition to oscillatory decay for the pro-
file occurs at a different bulk electrolyte concentration. For
ions with a=4.6 Å it takes place51 at about 1.0M for 1:1
electrolyte and above 0.3M for 2:2 electrolyte �the precise
concentration in the latter case has not been determined�. The
bulk correlations still have decay length 1 /�, and the profiles
would also have this decay length if the surfaces were
charged. Note that the wall-wall interaction pressure as a
function of D has in general the same decay length for large
separations as the concentration profiles.49

As soon as the electrolyte has any kind of anion/cation
asymmetry the charge density outside an uncharged surface
is nonzero. The effective surface charge density of the elec-
troneutral surface is then also nonzero. We shall here explore
the consequences the asymmetry brought about by different
ion-wall dispersion interactions for anions and cations.

The concentration profiles for 0.500M 1:1 and 2:2 elec-
trolytes with polarizable ions �in short “polarizable electro-
lytes”� are shown in Fig. 3. The strength of the anion-wall
dispersion interaction is B−=−40 kJ Å3 mol−1, while the
cation-wall dispersion interaction is neglected. There is thus
an attractive dispersion force acting on the anions in addition
to the repulsive image force. Since the forces on the anions
and cations differ, a charge density profile is built up outside
each electroneutral surface. The dispersion forces make the
amount of anions close to each surface increase compared to
the case of the nonpolarizable electrolyte in Fig. 2. For the
1:1 electrolyte in Fig. 3 the anion concentration close to the
wall is larger than the bulk concentration. The cation concen-
tration remains below the bulk value there, but it is lifted
above the bulk value some distance away from the surface.
This is due to an increase in the total number of ions between
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FIG. 3. Ion-wall correlation functions for charge-symmetric electrolytes
with polarizable anions at a bulk concentration of 0.500M. The top and
bottom panels show 1:1 and 2:2 electrolytes, respectively, on the same scale,
while the middle panel shows the same curves as the upper one on an
expanded scale. The functions are shown for wall-wall separations of 1.2,
1.8, 2.6, and 4.6 nm �the smallest separation is not shown for the 2:2 case�.
The full lines show the cation-wall correlation functions and the dashed
lines show the anion-wall functions. The strengths of the ion-wall dispersion
interaction are given by B−=−40 kJ Å3 mol−1 and B+=0 �the same values
are used for all cases with polarizable ions in this paper�.
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the surfaces brought in there from the bulk by the dispersion
attraction on the anions. The number of cations then has to
increase to maintain electroneutrality.

For the 2:2 electrolyte, on the other hand, the dispersion
forces do not change the concentration profiles much com-
pared to the nonpolarizable case. This difference is due to the
much stronger repulsive image forces and confinement effect
for divalent ions, which dominate here and counteract the
attractive dispersion interactions. Also in this case the disper-
sion forces on the anions cause an increase in the total num-
ber of ions between the surfaces, but the effect on the profiles
is small.

These kinds of differences between monovalent and di-
valent ions can also be seen for charge-asymmetric electro-
lytes in Fig. 4, which shows the profiles for 0.500M polariz-
able 1:2 and 2:1 electrolytes. These profiles correspond to
those in the bottom panel in Fig. 2 for the nonpolarizable
electrolytes �remember that the profiles for 1:2 and 2:1 elec-
trolytes are identical for the nonpolarizable case apart from
the sign of the ionic charges�. By comparing Figs. 2 and 4 we
see that the dispersion forces on the anions cause an increase
in anion concentration close to the walls that is greater for
the 2:1 electrolyte compared to the 1:2 electrolyte. In the
former case the anions are monovalent while they are diva-
lent in the latter. Concurrent with the increase in anion con-
centration there is an increase in cation concentration for the
same reason as before. This increase is also much greater for
the 2:1 electrolyte than for the 1:2 electrolyte.

The decay of the concentration profiles away from the
surface for large surface separations contains an exponen-
tially decaying contribution with a decay length determined
by the bulk electrolyte, as in the case of nonpolarizable elec-
trolytes. However, for large distances from the surface the
decay ultimately goes over to a power-law decay that origi-
nates from dispersion interactions coupled to the ion-ion
electrostatic interactions. The magnitude of the large distance
tail of each profile depends on the ion-wall interactions.

B. Wall-wall interaction pressure

1. Nonpolarizable ions

The pressure between two electroneutral walls has been
calculated for 1:1, 2:2, and 2:1/1:2 nonpolarizable electro-

lytes at bulk concentrations of 0.250M, 0.500M, and 1.00M.
The net pressure �P is obtained from Eq. �13�. Note that for
nonpolarizable ions the pressures for a 1:2 and a 2:1 electro-
lyte are identical since the ions only differ in the signs of the
charges, which do not affect the interaction pressure between
uncharged walls.

Figure 5 shows �P as a function of the wall-wall sepa-
ration D. The high-frequency part of the van der Waals pres-
sure, PvdW�hf�

wall , is shown separately and should be added to
obtain the total net pressure �Ptot. A common feature in all
cases is that �P is attractive for short surface separations. In
some cases the pressure remains attractive for larger separa-
tion, while there is a repulsive peak in other.

Let us first consider the behavior of �P for short sepa-
rations. The attraction seen in Fig. 5 actually extends all the
way down to wall-wall contact. The limiting value of Pion

when D→2b �which corresponds to a single layer of ions
between the surfaces� can be calculated analytically for elec-
troneutral surfaces. As shown in Appendix A we have

lim
D→2b

Pion = kBT�n+
bulk + n−

bulk��� exp�−
q+�−�0� + �q−��+�0�

�q+ + �q−��kBT
� ,

�17�

where �� is the bulk mean activity coefficient. PvdW�0�
wall can

also be calculated analytically, following Eq. �12�. The val-
ues of Pion and �P for D=2b=0.6 nm for the various elec-
trolytes are shown in Table I �the HNC values of �� and
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FIG. 4. Ion-wall correlation functions for 1:2 and 2:1 electrolytes with po-
larizable anions �upper and lower panels, respectively� at a bulk concentra-
tion of 0.500M. The anions are divalent in the 1:2 electrolyte and monova-
lent in the 2:1 electrolyte. The functions are shown for wall-wall separations
of 1.2, 1.8, 2.6, and 4.6 nm. The full lines correspond to the divalent ion-
wall correlation functions and the dashed lines to the monovalent ion-wall
functions. These are marked with the appropriate valency in the figure.
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ions. The upper panel shows the case of the 1:1 electrolyte, the middle panel
the 2:2 electrolyte, and the bottom panel 2:1 and 1:2 electrolytes �which
have the same pressure�. The bulk electrolyte concentrations are 0.250,
0.500, and 1.00M �short-dashed, long-dashed, and full lines, respectively�.
The dotted lines show the high-frequency van der Waals pressure, PvdW�hf�

wall ,
which is the same in all cases. The other curves give the remaining net
pressure, �P=�Pion+ PvdW�0�

wall , including the zero-frequency van der Waals
pressure. Since the ions are nonpolarizable the ions interact with the walls
via image forces and “hard wall” interactions only. The full vertical lines
denote the smallest separation, 0.6 nm, for which ions can be present be-
tween the walls.
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Pbulk have been used in the calculations; the latter is also
shown in the table�. We see that Pion is small in all cases.
This is due to the strongly repulsive image interactions con-
tained in �+ and �− in the exponent of Eq. �17�. Therefore,
�P for small D is dominated by PvdW�0�

wall − Pbulk, which is
strictly negative since PvdW�0�

wall 
0 and Pbulk�0. In Fig. 5 the
surface separation D=0.6 nm is marked as a vertical line.
For smaller D there can be no ions between the walls, and
the interaction pressure for such separations is given simply
by �P= PvdW�0�

wall − Pbulk.
As discussed in Sec. II B above, the HNC approximation

fails to converge for the systems with divalent ions when the
surface separation is so small that there are very strong im-
age charge interactions and a large degree of ion depletion.
In this region the net pressure is strongly attractive precisely
because of the small concentration of ions in the slit relative
to the bulk. In Table I we have listed the surface separation
Dmin down to which we have managed to calculate the pres-
sure in these cases. The corresponding pressures are also
shown. For all cases in Fig. 5 except for the 0.25M 2:2
electrolyte the problematic region lies well outside the pres-
sure range shown in the figure. The lack of data between
Dmin and 0.6 nm is not of great concern since we know the
pressure for D=0.6 nm, and the main thing that happens in
this interval is that ions leave the slit when D is decreased
and �P turns more negative �see also the discussion in Sec.
III C below�.

Let us now turn to the behavior at larger surface separa-
tions. In all the charge-symmetric cases except that of 1.00M
1:1 salt, the net pressure, �P, is attractive for all separations
investigated. The main difference between 1:1 and 2:2 elec-

trolytes is that the attraction is stronger in the latter case for
a given wall-wall separation and concentration. One reason
for the attraction is the depletion of ions due to the repulsive
image forces and confinement effects. A depletion is, how-
ever, not needed to explain an attractive �P. In the Ninham–
Parsegian theory54 for Debye–Hückel screening of zero-
frequency van der Waals interactions, it is assumed that the
electrolyte concentration in the slit is everywhere equal to
that of the bulk. As shown by comparison with AHNC
calculations5 this simple theory performs surprisingly well
for 1:1 electrolytes at low concentrations. When �P from the
Ninham–Parsegian theory is heuristically corrected for the
depletion of ions near the surfaces, it gives very good agree-
ment with the AHNC results for the 0.5M 1:1 electrolyte
when D�1 nm. However, for small surface separations the
depletion of ions in the whole slit is very important, as we
have seen above.

A depletion attraction solely due to confinement �no im-
age interactions� has previously been found between un-
charged surfaces by means of grand canonical Monte Carlo
simulations.42,55 In Ref. 55 it was also found that for very
high bulk electrolyte concentration the pressure is dominated
by ion packing effects and has repulsive peaks. It is the onset
of this type of behavior, related to the fact that the concen-
tration profiles turn oscillatory at high concentration, that
causes the small repulsion seen in the 1.00M 1:1 salt case of
the present work.

For the 2:1 and 1:2 electrolytes in Fig. 5 the ionic pres-
sure is repulsive for some range of separations for all con-
centrations considered. This behavior is in stark contrast to
that in the charge-symmetric cases where the pressure is

TABLE I. Various wall-wall interaction pressures in molar units for the same systems as in Figs. 5 and 6. The
concentrations and types of electrolyte are shown in the first two columns, where �p� �for polarizable� indicates
that the anions interact with the walls via dispersion forces. The following three columns show the net and ionic
pressures at surface separation D=2b=0.6 nm �the smallest separation for which there are ions between the
walls� and the bulk pressure, respectively. The last column shows the smallest separation for which a solution
was found, along with the net pressure at that separation �shown in parentheses�. A star � �� indicates that the
pressure value is listed in column 3. At separation D=0.6 nm the zero-frequency van der Waals interaction
contributes to �P /RT by an amount of −0.31M in all cases. The high-frequency van der Waals interaction is
−0.57M at the same separation.

Conc. Type �P /RT D=0.6 nm Pion /RT D=0.6 nm Pbulk /RT Dmin /nm ��P /RT�

0.250 1:1 −0.78 1.5�10−2 0.49 0.60 � ��
2:2 −0.62 1.3�10−7 0.31 1.65 �−0.047�

1:2/2:1 −0.97 4.8�10−4 0.66 0.97 �−0.38�
2:1�p� −0.97 1.1�10−3 0.66 1.05 �−0.15�

0.500 1:1 −1.31 3.1�10−2 1.03 0.60 � ��
1:1�p� −1.28 5.7�10−2 1.03 0.60 � ��

2:2 −0.96 2.1�10−7 0.65 1.32 �−0.17�
2:2�p� −0.96 3.7�10−7 0.65 1.35 �−0.090�
1:2/2:1 −1.75 9.8�10−4 1.44 0.85 �−0.86�
1:2�p� −1.75 1.5�10−3 1.44 0.95 �−0.33�
2:1�p� −1.75 2.2�10−3 1.44 0.95 �−0.18�

1.00 1:1 −2.56 7.6�10−2 2.33 0.60 � ��
1:1�p� −2.50 1.4�10−1 2.33 0.60 � ��

2:2 −1.84 3.7�10−7 1.53 1.08 �−0.53�
2:2 −1.84 6.8�10−7 1.53 1.20 �−0.076�

1:2/2:1 −3.90 2.6�10−3 3.59 0.74 �−2.04�
1:2�p� −3.90 3.9�10−3 3.59 0.80 �−0.55�
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monotonically attractive in most cases. The magnitude of the
maximum value of the pressure for charge-asymmetric elec-
trolytes depends strongly on the bulk electrolyte concentra-
tion. For the 1.00M concentration the ionic pressure gives
rise to a repulsion that exceeds the van der Waals attraction
for some separations. The qualitative situation is thus similar
to that of the familiar Derjaguin-Landau-Verwey-Overbeek
�DLVO� theory in the sense that the van der Waals force is
balanced by a repulsion originating from the osmotic pres-
sure exerted by the ions between the walls. A crucial differ-
ence is of course that in this case no surface charge is needed
for the repulsion to arise.

In the region immediately beyond the first peak, the salt
concentration dependence of the pressure is opposite to that
in the charge-symmetric cases. Whereas increased concentra-
tion from 0.500M to 1.00M results in a decrease in attraction
for separations around 2 nm for charge-symmetric electro-
lytes, the same change in concentration results in a decreased
repulsion or increased attraction for charge-asymmetric elec-
trolytes around the same separation. The same is true when
going from 0.250M to 0.500M, but at somewhat larger sepa-
rations. The pressure curves continue for larger D as expo-
nentially damped oscillations since the bulk concentrations
in all three cases are above the value where the bulk pair
correlations turn oscillatory.

2. Polarizable ions

In Fig. 6 the pressure-distance profiles are shown for
polarizable 1:1, 2:2, 2:1, and 1:2 electrolytes at various bulk
concentrations. The concentration of 0.500M is included for
all cases, while we also show results for 1.00M solutions for

1:1, 2:2, and 1:2 electrolytes and 0.250M for the 2:1 electro-
lyte. The reason for including the latter cases is that we want
to make comparisons of the different electrolytes at the same
concentration of the polarizable anions. In all cases the pres-
sure is more repulsive �or less attractive� for polarizable elec-
trolytes compared to nonpolarizable electrolytes of the same
concentration in the separation range shown, cf. Fig. 5.

The net pressure �P for small surface separations is at-
tractive in all cases. The situation is very similar to the non-
polarizable electrolyte systems discussed above, and the
qualitative conclusions drawn there apply also to the current
cases �the relevant quantitative information for all systems is
provided in Table I�. We therefore focus on the behavior for
larger separations in this section.

For the charge-symmetric polarizable electrolytes the
pressure turns repulsive above some separation, which is in
contrast to the corresponding nonpolarizable cases where the
pressure is mostly monotonically attractive. We see in Fig. 6
that polarizable 2:2 and 1:1 electrolytes at the same concen-
tration behave in a qualitatively similar manner, but that the
pressure changes sign at a larger separation for the 2:2 cases
than for the corresponding 1:1 cases. As a consequence the
maximum pressure tends to be smaller for 2:2 electrolytes
than for corresponding 1:1 electrolytes. This is a conse-
quence of the more repulsive effective interactions between
the surface and the divalent ions.

For the cases with polarizable 2:1 electrolytes, where
attractive dispersion forces act on the monovalent anions, the
pressure is much more repulsive than for the corresponding
nonpolarizable electrolyte for any given separation. For po-
larizable 1:2 electrolytes, where dispersion forces act on the
divalent anions, the difference between polarizable and non-
polarizable electrolytes is not as large on a relative scale.
Thus the effects of ionic polarizability are larger for 2:1 than
for 1:2 electrolytes, a conclusion that agrees with our find-
ings for the concentration profiles above. The presence of
polarizable monovalent anions has made the 0.5M 2:1 elec-
trolyte system to show a repulsive peak that exceeds the
attractive van der Waals pressure. For the 1:2 electrolyte this
happens for the 1.0M solution as in the nonpolarizable case.

There are two main effects that give rise to the large
difference in the wall-wall pressure for the 0.500M 2:1 and
1:2 electrolytes in Fig. 6. The first, somewhat trivial, is that
the bulk concentration of polarizable ions is twice as high for
the 2:1 electrolyte compared to the 1:2 electrolyte. The sec-
ond is that divalent ions feel a stronger self-image repulsion
and confinement effects which oppose the attractive disper-
sion forces to a larger degree than for monovalent ions. A
consequence of this is, as we have seen, that the increase in
the concentration of anions close to the walls relative to the
nonpolarizable case is smaller for 1:2 than for 2:1 polarizable
electrolytes, cf. Figs. 2 and 4.

The dependence of the pressure on the salt concentration
is qualitatively similar for polarizable and nonpolarizable
electrolytes. For 2:1 and 1:2 electrolytes the repulsion in-
creases around the pressure maximum with increasing bulk
electrolyte concentration, but it decreases in a region further
out. For 1:1 and 2:2 electrolytes, on the other hand, the pres-
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FIG. 6. Same as Fig. 5 but for various electrolytes with polarizable anions.
The upper panel shows the cases of 1:1 and 2:2 electrolytes at 1.00M con-
centration �full and long-dashed lines, respectively� and 0.500M concentra-
tion �dot-dashed and short-dashed lines, respectively�. The lower panel
shows 2:1 electrolyte at 0.500M and 0.250M �full and dot-dashed lines,
respectively� and 1:2 electrolyte at 1.00M and 0.500M �long-dashed and
short-dashed lines, respectively�. The notation is otherwise as in Fig. 5. In
all cases the cations interact with the walls via image forces and hard wall
interactions only while the anions interact with the walls via dispersion as
well as the other forces. For example, in the 1:2 cases the divalent ions
interact with the walls via dispersion forces whereas the monovalent does
not.
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sure becomes more repulsive �or less attractive� for all dis-
tances beyond the maximum as the concentration is in-
creased.

Let us now compare different polarizable electrolytes
which have comparable concentrations of the polarizable an-
ions. From Fig. 6 we see that the maximum repulsion is
larger for the 0.500M 2:1 electrolyte than for the 1.00M 1:1
electrolyte. The same is true for the 1.00M 1:2 case com-
pared to the 1.00M 2:2 case. The same picture emerges when
the 0.250M 2:1 electrolyte is compared with the 0.500M 1:1
case and when one compares the 0.500M 1:2 and the 0.500M
2:2 cases; the maximum repulsion is in all instances greater
in the charge-asymmetric systems. The maximum occurs,
however, at different separations in the various cases. The
general picture is that in the charge-asymmetric 2:1 and 1:2
cases the pressure tends to be more repulsive than in charge-
symmetric 1:1 and 2:2 cases. This observation is hardly sur-
prising in light of the fact that the wall-wall pressure tends to
be more repulsive for charge-asymmetric electrolytes com-
pared to charge-symmetric ones also for the nonpolarizable
electrolyte.

That the pressure is more repulsive in all cases when the
electrolyte is polarizable than when it is nonpolarizable indi-
cates that the larger net osmotic pressure in the former case
more than compensates for the attractive pressure component
due to ion-wall dispersion forces, Pdisp

ion , that is only present in
the former case. This observation is consistent with the near
cancellation between Pdisp

ion and the other contributions to
�Pion that has been observed at large surface separations for
systems with charged walls.22

C. Pressure components

The components of Pion, as defined in Sec. II C and Ap-
pendix B, in the slit between the walls are shown in Fig. 7
for nonpolarizable electrolytes with a bulk concentration of
0.500M. Pkin

ion is due to the momentum transfer when ions
move across the midplane between the surfaces �the ideal
pressure�. It is always repulsive. PCoul

ion comes from the elec-
trostatic forces that arise because ions on one side of the
midplane correlate with ions on the other side. It is generally
attractive. Pcore

ion is due to core-core collisions of ions on either
side of this plane and is always repulsive. Pim

ion originates
from the ion-image charge interactions �both self-images and
images of other ions� and image charge-image charge inter-
actions across the midplane. This component is shown in the
figure as Pim

ion+ PvdW�0�
wall in order to highlight the special rela-

tion between these two pressure components for large D,
as discussed earlier in Sec. II C. It is the negative PvdW�0�

wall

that makes the curve for the sum of all components,
Pion+ PvdW�0�

wall , turn negative for small separation. As we have
seen, Pion is very small for small D.

In the middle and bottom panels of Fig. 7 the curves do
not extend all the way to D=2b=0.6 nm. This is due to the
lack of convergence for small surface separations
�D
Dmin� caused by the very strong image interactions for
divalent ions and the accompanying ion depletion, as dis-
cussed in Secs. II B and III B 1. All pressure components
can, however, be calculated analytically at D=0.6 nm, as

demonstrated in Appendix A. For this D value, Pion= Pkin
ion

since all other ionic pressure components are identically
equal to zero there. In Fig. 7 the values of Pkin

ion and PvdW�0�
wall

are shown as symbols for D=0.6 nm �taken from the data in
Table I�.

The qualitative behavior of the pressure components ap-
pears quite similar in all three cases shown, while the mag-
nitudes of each corresponding component differ depending
on the electrolyte. The decrease in Pkin

ion as the separation is
decreased corresponds to the exclusion of salt from the slit
that accelerates as D becomes smaller. This is partly due to
the image repulsion, which increases in magnitude with de-
creasing D �the multiple images move closer�. The exclusion
is also caused by the confinement, which results in less op-
portunity for the ions to arrange themselves in order to lower
their free energy compared to the bulk solution. The increas-
ing exclusion continues for small D all the way to D=2b
=0.6 nm. For the other pressure components in Pion, the
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FIG. 7. Components of the pressure in the slit between two uncharged walls
as functions of wall-wall separation D in the presence of various electrolytes
with nonpolarizable ions. The upper panel shows the case of the 1:1 elec-
trolyte, the middle panel the 2:2 electrolyte, and the bottom panel 1:2 and
2:1 electrolytes �which have the same pressure�. The bulk concentration is
0.500M throughout. All pressure components are evaluated at the midplane
between the walls: kinetic �ideal� pressure Pkin

ion �short-dashed lines�, electro-
static ion-ion interaction pressure PCoul

ion �medium-dashed-short-dashed lines�,
core-core collision pressure Pcore

ion �long-dashed lines�, and pressure from
image forces and zero-frequency van der Waals attraction Pim

ion+ PvdW�0�
wall �dot-

ted lines�. The full curve is the sum of all the pressure components shown,
Pion+ PvdW�0�

wall , i.e., the total pressure apart from the high-frequency van der
Waals pressure. The dashed vertical lines in the middle and bottom panels
denote the smallest separations, Dmin, for which convergent solution was
found, see text. The full vertical lines denote the smallest separation, 0.6 nm,
for which ions are present between the walls. The values of the pressure
components at this separation are known analytically. These are marked by
filled circles for Pkin

ion and open circles for PvdW�0�
wall . The values of PCoul

ion , Pcore
ion ,

and Pim
ion are identically zero for D=0.6 nm.
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small D behavior can be anticipated from the fact that the
components are defined in Appendix B, Eqs. �B3�–�B6�, by
integrals over an interval that shrinks to zero width, which is
the reason why they go to zero when D→0.6 nm �cf. the
discussion in Appendix A�. Furthermore, the integrals con-
tain factors ni that decrease with decreasing D. Note that
PCoul

ion and Pim
ion can be written in terms of charge-charge cor-

relation functions that will remain finite and short ranged, so
the influence from the pair distribution functions will not
dominate in the integrand. Pcore

ion always goes very quickly to
zero for vanishing slit width �cf. comment after Eq. �B4��.
Thus all pressure components are expected to simply de-
crease in magnitude with decreasing surface separation for
small D. This is what is seen for the 1:1 electrolyte in Fig. 7.

For these reasons and the results in Fig. 7 it is apparent
that the lack of data between the end of the curves and
D=0.6 nm is not of any great concern since the pressure
components most likely just decrease in this region. As the
pressure is already appreciably below the bulk pressure for
D=Dmin, the net pressure is unlikely to be anything but at-
tractive until wall-wall contact.

In Fig. 8 the components of the net pressure are
shown, i.e., the difference between the pressure in the slit
and in the bulk. This way of showing the components gives
a clearer picture of how each of them contributes to the total
pressure difference. Note the difference in scale between
Figs. 7 and 8.

We start with a comparison of the 1:1 and 2:2 electro-

lytes in the upper two panels of Fig. 8. While the curves for
the pressure component sum are similar in these cases, the
curve for the 2:2 case appears shifted to greater separations.
Furthermore, there are large quantitative differences in the
individual net pressure components. For both systems the net
kinetic pressure, �Pkin

ion, and the net core-core collision pres-
sure, �Pcore

ion , are attractive for all separations. The net pres-
sure from ion-ion Coulomb interactions, �PCoul

ion , is repulsive
for all separations in both cases. The sign of each of these
components is due to the fact that the respective value in the
slit is smaller �in absolute value� than in the bulk, cf. Fig. 7.
This is mainly a consequence of the decreasing number of
ions in the slit when D is decreased. The depletion of ions in
the slit from repulsive image forces and confinement effects
makes this decrease larger than it would be otherwise. The
large increase in magnitude of, for example, �PCoul

ion for small
separations is accordingly a consequence of a loss of oppor-
tunity for the ions to give electrostatic correlation attraction
in the slit rather than some electrostatic repulsion.

For each surface separation D the deviations of PCoul
ion ,

Pcore
ion , and Pkin

ion from the respective bulk value are larger for
the 2:2 electrolyte than for 1:1, which is caused by the stron-
ger depletion in the former case. These effects of depletion
set in at larger surface separations for the divalent electrolyte
than for the monovalent one, which can also be inferred from
the concentration profile plots, see Fig. 2. The pressure due
to the image forces, shown in the figure as the sum Pim

ion

+ PvdW�0�
wall , contributes to the total net pressure for large

D with a repulsion that has a longer range than �PCoul
ion in the

case of the 1:1 electrolyte, but the opposite is true for the 2:2
case. The sum of all these components, �P=�Pion+ PvdW�0�

wall ,
constitutes the total net interaction pressure between the
walls �apart from the high-frequency van der Waals pressure�
and is shown in the figure. It decays more quickly to small
values than any of the individual components. Therefore it is
evident that the different components of the net pressure tend
to compensate each other to a large degree.

For the 2:1/1:2 asymmetric electrolyte case in Fig. 8, the
pressure components have the same signs as in the charge-
symmetric cases only for small separations. The reason for
these signs is the same here, namely, depletion of the elec-
trolyte in the slit. However, for the asymmetric electrolyte all
net pressure components change sign above a wall-wall sepa-
ration of about D=1.9 nm. The situation is thus the opposite
compared to the charge-symmetric cases for separations be-
yond that. The behavior of the components for large D is, in
fact, similar to those for charged surfaces. Due to the charge
separation near the uncharged surfaces for asymmetric elec-
trolytes, the electrolyte some distance away from the sur-
faces “sees” the surfaces as being charged. An electric
double layer is formed just in front of the surface, see Fig. 2.
This is not the case for totally symmetric electrolytes. The
phenomenon of the apparent charging of surfaces due to
asymmetry in the electrolyte has been studied previously.32

�P for the asymmetric electrolyte in Fig. 8 does not
change sign at the same separation as the individual compo-
nents. It becomes repulsive for separations greater than about
D=1.3 nm and continues as an oscillatory exponentially de-
caying function when D→	 since we are above the bulk
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FIG. 8. The components of the net pressure, i.e., the difference between the
values in the slit and in the bulk phase, for the same cases as in Fig. 7 but
drawn on a different ordinate scale. �Pkin

ion, short-dashed lines; �PCoul
ion ,

medium-dashed-short-dashed lines; �Pcore
ion , long-dashed lines; and Pim

ion

+ PvdW�0�
wall , dotted lines. The full lines show their sum �P=�Pion+ PvdW�0�

wall ,
which is the same as the long-dashed curves in Fig. 5, i.e., the total net
pressure apart from PvdW�hf�

wall . The vertical lines have the same meaning as in
Fig. 7.
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concentration where the pair correlation functions in the bulk
turn oscillatory. The main repulsive peak of �P occurs where
both �Pkin

ion and �Pcore
ion are negative. The only repulsive con-

tributions to the net pressure at this separation are �PCoul
ion and

Pim
ion. Thus the repulsion is caused by a combination of the

repulsive image interactions and a loss of electrostatic corre-
lation attraction compared to the bulk. For larger separations
�Pkin

ion and �Pcore
ion are repulsive and they are to a large degree

counteracted by �PCoul
ion , which is attractive in that region. It

is apparent from the figure that �P decays more quickly to
small values than any of the individual components, which is
similar to the charge-symmetric cases.

Let us now turn to the systems with polarizable anions.
Figure 9 shows the net pressure components for 1:1 and 2:2
electrolytes. For these charge-symmetric electrolytes we
have seen that the presence of ion-wall dispersion forces cre-
ates a charge separation in the electrolyte that is more pro-
nounced for the monovalent case than the divalent, cf. Fig. 3.
The polarizable electrolyte forms a double layer outside each
electroneutral surface and, similar to the charge-asymmetric
electrolytes above, the system behaves some distance away
from the wall as if the surface were charged. The effective
charge of the surface is nonzero. Therefore, it is not surpris-
ing that the components of �Pion for 1:1 polarizable electro-
lytes, Fig. 9, at large surface separations D behave qualita-
tively similar to those for charge-asymmetric electrolytes in
Fig. 8. �The pressure at large separations is, however,
nonoscillatory here since we are below the bulk concentra-
tion where the pair correlations in bulk turn oscillatory.�

Compared to the nonpolarizable electrolytes we have an
additional pressure component here, Pdisp

ion , that originates
from the ion-wall dispersion interactions. It is attractive, but
the total �Pion for the 1:1 case is nevertheless repulsive for
intermediate to large separations since �Pkin

ion and �Pcore
ion are

repulsive. The repulsion is due to the increase in the number

of ions between the walls brought in there by the dispersion
forces on the anions. For small D the pressure components
behave like in all other cases due to the expulsion of ions
between the surfaces, as discussed earlier.

For the 2:2 case, where the effects of the ion-wall dis-
persion forces are smaller than for 1:1 electrolytes, the pres-
sure components in Fig. 9 do not differ as much from the
corresponding nonpolarizable electrolyte, see Fig. 8. The
sign of �P for intermediate to large separations is, however,
different from the nonpolarizable case. In the intermediate
regime the net repulsion is caused by a positive �PCoul

ion , i.e.,
a loss of electrostatic correlation attraction compared to the
bulk �cf. the charge-asymmetric electrolytes discussed
above�.

The net pressure components for 1:2 and 2:1 electrolytes
with polarizable anions are shown in Fig. 10. For the 1:2
case, where the polarizable ions are divalent, we see that
there is not a large difference from the nonpolarizable elec-
trolyte, see Fig. 8. This is yet another example that illustrates
the fact that effects of the ion-wall dispersion forces are quite
small for divalent ions. Despite that we have an attractive
Pdisp

ion component here which is not present in the nonpolariz-
able case, the total �Pion is more repulsive �or less attractive�
for most D values. This is due to �Pkin

ion and �Pcore
ion , which are

increased compared to the nonpolarizable electrolyte as a
consequence of the increased number of ions between the
walls brought in there by the dispersion forces on the anions.
The increased values of these components more than com-
pensate the attraction from Pdisp

ion .
For the polarizable 2:1 electrolytes, on the other hand,

the ion-wall dispersion forces have a rather large impact on
most components, as seen in Fig. 10. �P is much more re-
pulsive �or less attractive� than in the nonpolarizable case.
This is due to large increases in �Pkin

ion and �Pcore
ion for most D

values. �Pim
ion is not much affected by the effects of the dis-

persion forces, while �PCoul
ion turns much more attractive �or

less repulsive�. The changes in �PCoul
ion and the appearance of

the attractive Pdisp
ion are, however, dominated by the increases
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FIG. 9. Components of the net pressure for 1:1 and 2:2 electrolytes with
polarizable anions �upper and lower panels, respectively� at a bulk concen-
tration of 0.500M. Pdisp

ion , dot-dashed lines; �Pkin
ion, short-dashed lines; �PCoul

ion ,
medium-dashed-short-dashed lines; �Pcore

ion , long-dashed lines; and Pim
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wall , dotted lines. The full lines show their sum �P, which are the same

as the corresponding curves in Fig. 6. The vertical lines have the same
meaning as in Fig. 7.
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monovalent in the 2:1 electrolyte. The notation is the same as in Fig. 9.
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in �Pkin
ion and �Pcore

ion . These results illustrate the greater im-
portance of the ion-wall dispersion interaction for polarizable
monovalent ions than divalent ones.

IV. SUMMARY AND CONCLUSIONS

The ion concentration profiles and interaction pressure
between uncharged hard walls immersed in various 1:1, 2:2,
2:1, and 1:2 electrolytes have been investigated. The ions
interact with the walls via image charge forces and, when the
ions are polarizable, also via ion-wall dispersion forces. Pri-
marily we investigate the net pressure from the ions, includ-
ing the zero-frequency van der Waals wall-wall interaction
pressure, which is screened by the electrolyte. The high-
frequency van der Waals wall-wall interaction pressure is the
same in all cases and is not included. It is shown separately
in Figs. 5 and 6 and can be added to obtain the total pressure.
The system parameters for the van der Waals interactions are
appropriate for hydrocarbon �polystyrene� particles in water.

For �totally� symmetric nonpolarizable electrolytes �i.e.,
consisting of nonpolarizable ions with equal sizes and equal
absolute values of charges� the pressure is attractive in nearly
all cases, as expected from the result of previous work.5 It is
only for high electrolyte concentrations that small repulsive
peaks also emerge. For charge-asymmetric �1:2 and 2:1� non-
polarizable electrolytes the behavior is qualitatively differ-
ent. The interaction pressure is then repulsive for some range
of wall-wall separations for all electrolyte concentrations ex-
amined. The maximum repulsion is larger in magnitude than
the �high-frequency� van der Waals wall-wall attraction be-
tween the walls provided the electrolyte concentration is
high. The pressure from the ions therefore gives rise to a
repulsive barrier against pushing the walls together despite
that the surfaces are uncharged.

For small separations the pressure is attractive in all
cases. The attraction is to a large extent a depletion interac-
tion caused by the expulsion of ions from the neighborhood
of each wall due to repulsive image forces and confinement
effects on the ion-ion correlations. The expulsion is larger for
divalent ions than for monovalent ones. For the charge-
asymmetric case this gives rise to a charge separation in the
electrolyte, i.e., an electric double layer is formed outside the
electroneutral surface. For symmetric nonpolarizable electro-
lytes the expulsion of anions and cations is identical, so no
charge separation occurs. Therefore, for asymmetric electro-
lytes the uncharged walls appear from a distance as if they
were charged, while this is not the case for totally symmetric
electrolytes. This has implications for the behavior of the
pressure for large separations between the walls, as discussed
in this paper.

Any kind of asymmetry of the electrolyte makes charge
separation to appear in the electrolyte outside an electroneu-
tral surface. Examples are 1:1 and 2:2 electrolytes where the
anions and cations have different strengths of the ion-wall
dispersion interactions. In this work we investigate cases
with polarizable anions and negligibly polarizable cations
�i.e., the cations are about as polarizable as water�. The
strength of the dispersion interactions for the anions corre-
sponds approximately to iodide in water. The asymmetry

makes charge-symmetric electrolytes with polarizable ions
and charge-asymmetric electrolytes to have several features
in common. Both behave in many respects as if the surfaces
had a charge.

In all cases with polarizable anions, a repulsive pressure
due to the ions is seen for intermediate to large wall-wall
separations. For small separations the pressure is still attrac-
tive in all cases. The point where the pressure changes be-
tween repulsive and attractive occurs at greater separations
for the 2:2 electrolyte than for the 1:1 electrolyte. The maxi-
mal repulsion is stronger for the monovalent case than for
the divalent.

The repulsive pressure seen for charge-asymmetric elec-
trolytes is stronger when the anions are polarizable than
when they are nonpolarizable. There is, however, a large
difference depending on if the anions are monovalent �2:1
case� or divalent �1:2 case�. For monovalent anions the maxi-
mal repulsion is much stronger for the polarizable case than
the nonpolarizable, but for divalent anions there is not a large
difference.

One important conclusion is that dispersion forces acting
on ions of higher valency have a smaller effect than when
they act on ions of lower valency. In part, this can be ex-
plained by the presence of self-image charge repulsions
which are proportional to the square of the valency. These
repulsions are more effective in counteracting the dispersion
attraction to the surfaces for ions with high charge than those
with low charge. This shows that it is very important to in-
clude both image charge and ion-wall dispersion interactions
consistently in the theoretical treatment.

The results presented above show that physical phenom-
ena that are commonly neglected in theoretical treatment of
colloidal interactions have important implications for the in-
teraction pressure between walls, particularly at high salt
concentration. An important example is that an asymmetry of
the electrolyte is sufficient to give an appreciable repulsive
barrier under conditions where PB theory predicts a contri-
bution to the total pressure that is identically zero. For polar-
izable ions the barrier in the total pressure occurs at lower
concentrations than for nonpolarizable ions, in particular,
when the polarizable ions are monovalent. A large repulsive
barrier occurs for systems with a large degree of charge sepa-
ration in the electrolyte near the electroneutral surface, re-
gardless of whether the separation is caused by depletion or
enrichment of one ion species with respect to the other in the
immediate vicinity of the surface. This shows that repulsive
as well as attractive forces may give rise to wall-wall repul-
sion if they act asymmetrically on the cation and anion.
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APPENDIX A: LIMITING VALUES OF ION DENSITY
AND PRESSURE COMPONENTS FOR THIN
SLITS

Here we shall investigate the case of thin slits between
the electroneutral surfaces. We will consider the limit of
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D→2b, where only a monolayer of ions fits in the slit. We
first note that the density profiles are nonzero only in the
range �z��D /2−b when D�2b and that they remain finite
when D→2b since the surfaces are uncharged and the elec-
trolyte in the slit is in equilibrium with a bulk electrolyte
solution. While the number of ions between the walls goes to
zero in this limit, the concentration remains finite. Both the
available volume in the slit and the number of ions go to
zero. �For charged surfaces the concentration profile of the
counterions must approach infinity in the same limit as the
number of counterions between the walls must remain finite
in this case due to electroneutrality.�

It is easy to see from the definitions of the pressure com-
ponents in Appendix B that PCoul

ion , Pcore
ion , Pim

ion, and Pdisp
ion all

tend to zero in the limit D→2b as they contain integrals over
a volume that goes to zero while the integrand remains finite.
For the same reason, the intrinsic excess chemical potential
�the part of the chemical potential that is due to ion-ion in-
teractions� of the ions in the slit goes to zero in this limit,
which leads to a simple expression for the ionic concentra-
tions in the same limit.56 We shall apply this kind of ap-
proach for our system and obtain a simple expression for the
density in the slit and for Pkin

ion, which is proportional to the
total ionic concentration at the midplane, see Eq. �15�.

Consider a binary electrolyte with mean chemical poten-
tial �� and mean activity coefficient �� in the bulk. Without
loss of generality the activity coefficient for each ion species
in the bulk is taken to be equal to ��. Equilibrium between
the bulk and the slit demands that the chemical potential for
species i satisfies

�i
bulk = kBT ln��i

3ni
bulk���

= kBT ln��i
3ni�z�� + �i�z� + �i

ex�z� − qi�� , �A1�

where �i is the de Broglie thermal wavelength, �i�z� is the
ion-wall interaction potential, �i

ex�z� is the intrinsic excess
chemical potential at position z in the slit, and �� is the
electrostatic potential difference between the slit and the bulk
solution needed to maintain electroneutrality in the slit.57

Note that this potential difference does not affect electroneu-
tral combinations of anions and cations transferred between
the bulk and the slit, so �� is the same everywhere, but each
individual ionic chemical potential �i in the slit is different
from its bulk value when ���0. It follows from Eq. �A1�
that the ion density profile in the slit is

ni�z� = ni
bulk�� exp�−

�i�z� + �i
ex�z� − qi��

kBT
� . �A2�

Since �i
ex�z�→0 for all z when D→2b we obtain

ni�0�→ ni
bulk�� exp�−

�i�0� − qi��

kBT
� . �A3�

Now since electroneutrality demands that we must have
q+n+�0�=−q−n−�0� in this limit, it follows that �+�0�
−q+��=�−�0�−q−��, where we have used q+n+

bulk=
−q−n−

bulk. Thus, ��= ��+�0�−�−�0�� / �q+−q−� and Eq. �A3�
can be written as

ni�0�→ ni
bulk�� exp�−

q+�−�0� − q−�+�0�
�q+ − q−�kBT

� . �A4�

Finally we obtain from Eq. �15�

lim
D→2b

Pkin
ion = kBT�n+

bulk + n−
bulk��� exp�−

q+�−�0� − q−�+�0�
�q+ − q−�kBT

� ,

�A5�

which is also the limiting value of Pion since the other com-
ponents are zero at D=2b.

APPENDIX B: EVALUATION OF THE WALL-WALL
INTERACTION PRESSURE

In this appendix we give explicit formulas for the calcu-
lation of the ionic pressure between the walls. At equilib-
rium, Pion �the perpendicular component of the ionic pressure
tensor� is equal everywhere in the slit, i.e., it has the same
value at any plane between the walls. Here, we shall consider
two possibilities: to calculate Pion at one of the walls and at
the midplane between the walls. The relationship between
the pressure and the distribution functions is different in the
two cases. If one chooses to evaluate Pion at one of the walls,
the following expression36 applies when the two walls are
equal:

Pion = kBT

i

ni
contact −

�2

2�solv�0��0
− 


i
�

−D/2

D/2

dzni�z�

�� �Vi
disp�D − z�

�D
+

��i
im�z�D�
�D

�
−

1

4�


i,j
�

−D/2

D/2

dz�
−D/2

D/2

dz��
0

	

dkni�z�nj�z��ĥij�k,z,z��k

�
� ûij

im�k,z,z��D�
�D

, �B1�

where the first term contains the contact density of ions at the
wall surface, � is the surface charge density of the wall �zero
in our case�, and Vi

disp�d�=Bi /d3 denotes the dispersion inter-
action between an ion and a single wall a distance d away, cf.
Eq. �7�. In our case ni

contact=ni�D /2−b� and the ion densities
are zero for �z��D /2−b, so the integral limits can be
substituted by ��D /2−b�. Equation �B1� is the so-called
contact theorem generalized to the presence of ion-wall
dispersion and image interactions.

If one instead chooses to evaluate the pressure at the
midplane between the walls one obtains a somewhat more
complicated expression. It is practical to subdivide Pion into
physically distinct contributions according to

Pion = Pkin
ion + PCoul

ion + Pcore
ion + Pim

ion + Pdisp
ion , �B2�

144701-15 Ion correlation between dielectric walls J. Chem. Phys. 129, 144701 �2008�



which are defined below �a similar subdivision is of course
possible also for Eq. �B1��.

Pkin
ion is the kinetic �ideal� contribution to the pressure

given by Eq. �15�. PCoul
ion and Pcore

ion are the contributions to the
pressure due to electrostatic and hard-sphere interactions
across the midplane, respectively. In terms of the ionic dis-
tribution functions PCoul

ion is given by37

PCoul
ion = − 2�


i,j
�

0

D/2

dz�
−D/2

0

dz��
0

	

dRni�z�nj�z��

� hij�R,z,z��R
�uij

Coul�R,z,z��
�z

, �B3�

and Pcore
ion is given by

Pcore
ion = 2�kBT


i,j
�

0

a

dz�
z−a

0

dz�ni�z�nj�z���z − z��

� gij��a2 − �z − z��2�1/2,z,z�� , �B4�

where the pair distribution function gij =hij +1 is evaluated at
the rim of the hard core exclusion zone of two ions in con-
tact. Pcore

ion measures the contact force component perpendicu-
larly to the midplane, which is expressed by the factor
z−z�. This makes Pcore

ion go very quickly to zero when the slit
width goes to zero; core-core collisions will then eventually
only take place in the lateral direction along the plane.

The pressure due to image forces, Pim
ion, contains contri-

butions from both ion-wall and ion-ion interactions and is
given by37

Pim
ion = −

1

2�


i,j
�

0

D/2

dz�
−D/2

D/2

dz��
0

	

dkni�z�nj�z��ĥij�k,z,z��k
� ûij

im�k,z,z��D�
�z

−
1

4�


i,j
�

−D/2

D/2

dz�
−D/2

D/2

dz��
0

	

dkni�z�nj�z��ĥij�k,z,z��k
� ûij

im�k,z,z��D�
�D

− 

i
�

0

D/2

dzni�z�
��i

im�z�D�
�z

− 

i
�

−D/2

D/2

dzni�z�
��i

im�z�D�
�D

. �B5�

�This expression replaces Eq. �17� of our previous paper,22

which contains some misprints.�
Pdisp

ion is the pressure contribution due to the direct disper-
sion interactions between the ions and walls and is given by

Pdisp
ion = − 


i
�

0

D/2

dzni�z�
�Vi

disp�z + D/2�
�z

+ 

i
�

−D/2

0

dzni�z�
�Vi

disp��z − D/2��
�z

, �B6�

where, again, Vi
disp�d�=Bi /d3 denotes the dispersion interac-

tion between an ion and a single wall.
The two ways of evaluating the pressure, Eq. �B1� on

one hand and Eq. �B2� together with Eqs. �15� and �B3�–
�B6� on the other hand, are equivalent �this follows from the
Born–Green–Yvon equation�. Which one of the two alterna-
tives to use is a matter of preference and numerical expedi-
ence. For charged surfaces the pressure evaluation at the
midplane is often numerically more reliable than at a wall
due to a near cancellation in Eq. �B1� between the term
−�2 / �2�solv�0��0� and the other terms. In our case, where �
=0, this is not the case. Instead we find that Eq. �B1� is often
numerically more suitable for calculation of the total Pion

than the sum of components in Eq. �B2�. This is generally
the case when only repulsive forces act between the ions and
the walls. Therefore we use Eq. �B1� for the total pressure in
these cases. When there is attraction between ions and walls
a similar problem as in the charged case appears from can-

cellation between the third term in Eq. �B1� and the other
terms. When attractive dispersion forces are present the
“midplane formula,” Eq. �B2�, is therefore often preferable.
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Abstract

Charge inversion is the phenomenon that an electric double layer contains more coun-

terions than needed to compensate the surface charge. For colloidal particles this has the

consequence that the apparent surface charge, as inferred fromelectrophoresis or interaction

studies, has a sign opposite to that of the actual surface charge, obtainable by titration. This

phenomenon has been known for over a century. According to the traditional interpretation,

the inversion is caused by (chemical) specific adsorption of ions. However, beginning in the

early 80’s it has been predicted by a large number of workers that charge inversion should

occur as a consequence of many-body ion-ion correlations. For surfaces of sufficiently high

surface charge density in the presence of divalent or multivalent counterions, charge inversion

is expected to be ubiquitous even in the absence of specific adsorption. Testing this prediction

has proved difficult because chemical specific adsorption is a very common phenomenon and

can outweigh the effects of ion correlations. So far, no experimental systems have been thor-

oughly investigated where strong specific adsorption could beunambiguously ruled out under

conditions where charge inversion due to ion-ion correlations is predicted. Here, we solve this

problem by studying the mercury/aqueous MgSO4 interface. This system has the advantage

that highly accurate double layer data are available for a variety of conditions, including some

where chemical specific adsorption is known to be absent (or at least very weak). From precise

data for this system [Harrison, J. A.; Randles, J. E. B.; Schiffrin, D. J.J. Electroanal. Chem.

1970, 25, 197] one can establish the ionic components of charge and surfacecharge density.

To extract quantitative theoretical predictions about the consequencesof ion-ion correlations,

we use the highly accurate anisotropic hypernetted chain (AHNC) method, where ion-ion cor-

relations in the double layer are taken into account in a fully self-consistentfashion. It is found

that for moderate to large negative surface charge densities and not toohigh concentration, the

variation in the ionic components of charge with the surface charge density can to a large extent

be quantitatively explained by enrichment of ions close to the surface due toion-ion correla-

tions. That chemical specific adsorption of Mg2+ is negligible is supported by considering the

properties of the double layer close to the electrocapillary maximum. In view of the large body

of evidence indicating that the counterions tend to specifically adsorb on themercury surface
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for positive polarization but not for negative, the agreement between theory and experiment

for negative surface charge constitutes strong evidence for ion-ion correlations as the origin of

charge inversion.

Keywords: electric double layers, surface and colloid science, primitivemodel electrolytes,

image charges, overcharging, charge reversal

1 Introduction

A phenomenon commonly seen in the study of colloids and interfaces is charge inversion, also

called overcharging. This term refers to the situation where more counterions are attracted to a

charged surface than needed to neutralize the surface charge. Because of electroneutrality this

leads to positive adsorption of co-ions, usually in a regionbeyond the adsorbed counterions. Thus,

the roles of counterions and co-ions appear inverted when viewed from a point sufficiently far

from the surface. The traditional way of establishing the phenomenon is by comparing the elec-

trokinetic charge with the surface charge. Electrokinetically, only the outer part of the double layer

is measured (outside the “slip plane”). When the electrokinetic charge and bare surface charge

have opposite signs, charge inversion has occurred. This isa sufficient but not a necessary con-

dition: charge inversion in the sense in which the term is used here can occur without reversal in

sign of the electrokinetic charge. Some aspects of charge inversion are indirectly reflected in col-

loid interaction; it gives rise to so-called “irregular series” in colloid stability, a phenomenon that

has recently be rediscovered in physics and renamed “re-entrant condensation”. This is the phe-

nomenon that ion condensation on (mostly) polyelectrolytes first disappears and then re-appears

upon some change in conditions.

Stating the phenomenon begs the question what the origin is of overcharging. Traditionally, it

is attributed to “specific adsorption”, which is due to an affinity of non-electrostatic origin between

ions and a surface. If this affinity is strong enough, it can outweigh electrostatic repulsion and

hence ions can adsorb against an electric field. The “chemical” origin of such forces can range
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from strong chemical bonding, complexation, ligand exchange, hydrophobic bonding to other,

rather weak, water structure-mediated attractions. All ofthis is very well established in colloid and

interface science.1,2 However, computer simulations as well as theory for simple electrolytes near

charged surfaces suggest that overcharging can arise even in the absence of any chemical attraction

between ions and surfaces.3–7 In such treatments, where only electrostatic interactionsand short-

range repulsions are taken into account, the driving force for the extra adsorption is the lowering of

the local excess chemical potential close to the surface mainly due to many-body correlations and,

to some extent, excluded volume effects due to ionic size (both are aspects of ion-ion correlations

in the electric double layer). For aqueous systems at room temperature electrostatic correlations

are important predominantly for divalent and multivalent electrolytes.

The resulting state of the art is that two alternative interpretations for the same phenomenon

are available. In a sense, this is a luxury problem. The two alternatives are not mutually exclusive;

the question is rather which mechanism, if any one, is most important for a system under given

conditions. That overchargingcan be explained by one of these mechanisms, does not mean that

it is caused in that way. One must show that the proposed adsorption mechanism is in action and

is sufficiently strong to explain the experimental observations. What is generally done in colloid

and interface science is to interpret any adsorption that cannot be explained by traditional diffuse

double layer theory in terms of an ion-free layer and chemical specific adsorption.

For the inquiring academic mind the option of the ion-correlation interpretation may look more

attractive because of its moreab initio nature, but so far it has not been unequivocally shown

by experiments that this mechanism really is dominant in anycase. In fact, most of the avail-

able experimental evidence points to chemical specific adsorption. At best there are observations

that might have been caused by ion-ion correlations, but does not constitute rigorous tests of that

mechanism. By way of illustration, in two recent reviews8,9 a variety of overcharging cases were

collected and attributed to ion-ion correlations but wherecloser inspection showed that chemi-

cal specific adsorption was the driving force. Chemical phenomena that may easily outweigh the

effects of correlations include hydrophobic bonding, adsorption of hydrolyzing species (hydroly-
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sis can reduce the valency but increase the adsorbability) and adsorption of polymeric substances

(adsorption energies per segment of only 0.2 - 0.3kBT suffice to let the chain attach almost irre-

versibly). Recent experiments that have been invoked as indications for overcharging by ion-ion

correlations10–12are not clear-cut either, because either or both the surfacecharges and electroki-

netic potential could not be controlled, let alone measured, and/or the pH was not systematically

studied, so that the hydrolysis state of the multivalent ionic species was not rigorously established.

Similar comments can be given about interpretations of experimental data based on the Poisson-

Boltzmann (PB) mean field approximation. In this approximation the statistical mechanical treat-

ment of the theoretical model is simplified by replacing the potential of mean force for an ion with

the mean electrostatic potential times the charge of an ions. Here and in what follows we make

a sharp distinction between the model for a system, i.e. the assumed form of the intermolecular

interactions, and the approximations made when evaluatingthe properties of the model. The PB

approach carries the cost that many features of the model (tobe described later) are not accurately

taken into account. The range of applicability of Gouy-Chapman (GC) theory, which is the ap-

plication of the PB approximation to planar surfaces, is rather restricted. As suggested by a wide

range of experiments, this approximation is valid only for low surface charge densities and low

electrolyte concentrations. The vast majority of all experiments apply to ranges far beyond these

limits, so that improvements of the theory are mandatory. These improvements fall into two prin-

cipal classes: improvements of the approximations made in the treatment of a given model and

changes in the model itself. The most common member of the second class is the incorporation of

a Stern layer,13 entailing corrections for counterion size and/or specific adsorption in a first layer,

adjacent to the surface, only. In many cases this is a quite effective improvement, indicating that it

is not the approximations of CG theory but the assumptions about the ion-surface interactions that

are mainly at fault in these cases. Typically, the ion-surface interactions have a range that is much

shorter than the thickness of the double layer. It is for thisreason that the inclusion of these inter-

actions as a Stern layer is often appropriate. Because GC theory is not exact, however, deviations

between experimental data and GC predictions do notnecessarily mean that one must invoke Stern
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type mechanisms to explain discrepancies between theory and experiment: the assumptions made

in the model of the system may be sufficiently close to reality, and the deviations from experiments

may instead be caused by the approximations inherent in GC theory. In fact, ion-ion correlations,

that are entirely neglected in the GC approximation, are sometimes important for the behavior of

simple electrolytes. For instance, this is the case when theelectrostatic interactions are strong

and/or the electrolyte concentration is high. In these cases, it is improvements of the theoretical

treatment of the diffuse part of the double layer that are needed.

Any kind of asymmetry between anions and cations (includingbut not limited to the magnitude

of their charges) causes differences in ion-ion correlations between the two ionic species that can

lead to appreciable effects when the asymmetry is sufficiently large. For instance, even outside

an uncharged inert surface, e.g. a hard wall, there appears acharge separation for asymmetric

electrolytes even in absence of any specific ion adsorption.Therefore an electric double layer

will be spontaneously formed. Ion correlations could in principle account for the influence of

electrolytes on the location of the point of zero charge, a phenomenon that is usually attributed

exclusively to specific chemical adsorption, depending on the details of the system. As we can

see from these examples, the term “specific adsorption” for adsorption due to direct surface-ion

interactions is somewhat unfortunate because adsorption due to ion-ion correlations can also be

specific in the sense that it depends on the species of ions present. However, as the term has long

been in use as referring to adsorption due to direct chemicalinteractions between the ions and the

surface, we will nevertheless use it here in the latter sense. In cases where ambiguity may arise we

shall write “chemical specific adsorption,” etc.

Although it is not direct evidence of ion adsorption due to ion-ion correlations, the possible rel-

evance of such correlations has been demonstrated by the measurement of attractive double layer

interaction between surfaces with equal surface charge density.14–16 This interaction is attractive

for small surface separations in presence of divalent counterions, while it is repulsive at any dis-

tance for monovalent ions. The attraction can be explained by electrostatic ion-ion correlation

attraction between the charged surfaces (neglected in the PB approximation),17–19 and is often
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much stronger than any reasonable van der Waals interaction. Obviously, GC mean field theory

cannot account for that phenomenon.

The connection to the phenomenon of charge inversion is thatthe switch from repulsion to

attraction with increase in counterion valency is caused bya largedecrease in the repulsive contri-

butions to the double layer interaction, that makes the attractive correlation interaction dominant.

This occurs because divalent counterions are much more strongly attracted to the surface region

than monovalent ones, which gives rise to a much lower ionic concentration in the middle be-

tween the surfaces in the divalent case. The dominance of theattractive forces can occur when the

number of adsorbed counterions is less than what is requiredfor charge inversion, so appearance

of double layer attraction can happen under milder conditions. Note that the ion-ion correlation

attraction between the surfaces is not very different for monovalent and divalent ions, so it is not a

variation in the attractive contribution to the force that explains the switch.17,19 According to the

theoretical treatment the ion-ion correlations cause boththe attractive contribution to the double

layer interaction and the strong attraction of multivalentions to the surfaces.

Again, the interpretation of the experiments is not unambiguous because ions can be attracted to

the surfaces by chemical specific adsorption. When the two interacting surfaces do not have exactly

the same charge density and distribution, induction in combination with charge regulation can also

cause attractions.20 However, in this latter way double layer attractions cannotbe accounted for

when the two surfaces are identical. Then the question is whether identity of the two surfaces is

established and whether the surface charge density is high enough for the attraction due to ion

correlations to become substantial. It is a pity in many of these types of experiments the surface

charge was insufficiently controlled, implying that the issue is not yet fully resolved.

A system where the action of ion correlations can unequivocally be shown to be the dominant

factor for charge inversion has to satisfy a number of constraints. The surface charge must be

accurately measurable and high, multivalent ions must be found that do not adsorb chemically

and the hydrolysis state of these ions (determined by the pH)must be well-established. These

are severe restrictions; they exclude at least two of the classical model systems of colloid science:
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oxides are too complex because the surface charge and the state of hydrolysis are simultaneously

changing with pH, and silver iodide because high surface charges are not attainable.

One system that does satisfy these requirements is the mercury/aqueous electrolyte interface.

From an experimental standpoint, this system has many advantages. By employing dropping mer-

cury electrodes the surface is continually rejuvenated andconsequently very clean. For this inter-

face, using a Lippmann electrometer, the interfacial tension can readily be measured as a function

of the applied potential. Differentiation gives the surface charge density from the Lippmann equa-

tion, and the result can be confirmed by integration of directly measured capacitances, using a

bridge method.21 Consequently, very high quality data can be obtained. For these reasons this sys-

tem has been widely studied experimentally. Because the charge on the surface is controlled by an

externally applied potential, the surface charge density and the concentration and composition of

the electrolyte can be varied independently. From the surface tension and charge a wealth of infor-

mation can be obtained via relations obtained from the Gibbsadsorption isotherm. Particularly, the

ionic components of charge are directly obtainable (see Section 2) and these quantities will play

a central role in our analysis. Another relevant advantage is that relatively high surface charges

are obtainable by polarization of the interface (absence ofFaradaic current). Finally, the chemi-

cal specific adsorption of both cations and anions is generally low at sufficiently negative surface

charge density,22 though many anions adsorb specifically for positive surfacecharge. Hence, for a

suitable electrolyte, all elements for anticipating a convincing theoretical interpretation of charge

inversion in terms of ion correlations are fulfilled.

Here, we attempt to clarify the role of ion-ion correlationsin electrical double layers by model-

ing the mercury/aqueous MgSO4 solution interface and comparing this model with publisheddata

for the same system. This constitutes a quantitative test ofthe accuracy of the model predictions,

including but not limited to the prediction that charge inversion should occur for double layers with

divalent counterions at sufficiently high surface charge densities. While there exists a vast body of

experimental data for weakly coupled system, i.e. for 1:1 salts, and a fair amount of data for 2:1

and 1:2 salts, experimental data for systems characterizedby stronger ionic interactions, such as
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3:1 and 2:2 salts, are scarce. In fact, the only example of a comprehensive, high quality data set

for a 2:2 salt that we were able to find were the electrocapillary and capacitance measurements by

Harrison, Randles and Schiffrin23,24on MgSO4 solutions.

2 Electrocapillary Measurements

Let us consider a system consisting of a dropping mercury electrode and a reference electrode

immersed in a solution of a binary salt. The latter electrodeis reversible to either the cation (+) or

the anion (−). For this system the Gibbs adsorption isotherm reads25

−dγ = σdE±+Γ∓dµsalt (1)

whereγ is the interfacial tension,σ is the surface charge density,E± is the electrostatic potential

difference between the mercury electrode and the referenceelectrode,26 Γi is the Gibbs adsorption

excess for speciesi relative to the dividing surface for the solvent andµsalt is the chemical potential

of the salt. The subscript± onE indicates that the reference electrode is reversible to either cations

or anions.

The surface charge density is related to the interfacial tension and the electrostatic potential by

the well known Lippmann equation

σ =− ∂γ
∂E±

∣∣∣∣∣
T,µsalt

, (2)

where subscriptsT andµsalt indicate that the temperature and the chemical potential ofthe salt are

to be held constant. The differential capacitance,C, is the derivative of the surface charge density

with respect to the applied potential,

C =
∂σ

∂E±

∣∣∣∣∣
T,µsalt

. (3)
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As both γ andC are accessible from experiments where the applied potential is controlled, the

surface charge density can be obtained by two routes that areindependent apart from an integration

constant. The range of surface charge densities that is experimentally available extends between

about−20 to 25 µC/cm2.

The surface excess of the ionic species with respect to whichthe reference electrode isnot

reversible can be obtained as

Γ∓ =− ∂γ
∂ µsalt

∣∣∣∣∣
T,E±

, (4)

The components of charge,σi, i.e. the individual contributions to the countercharge tothe surface

that is due to adsorption or depletion of ion speciesi, can be defined from the surface excess as

σ± = Z±F Γ±, (5)

whereZ± is the valency of the species of ion, with sign, andF is Faraday’s constant. Electroneu-

trality requires that

σ =−(σ+ +σ−). (6)

Complete information about the components of charge for a binary electrolyte can therefore be

obtained from experiments by use of reference electrodes reversible to one of the ionic species.

The components of charge are directly related to the ionic concentration profiles through

σ± = Z±F
∫ ∞

−∞
[n±(z)−nbulk

± Θ(z− zsolv)]dz, (7)

whereni(z) is the concentration profile of speciesi, z is the coordinate perpendicular to the surface,

Θ(z−zsolv) is one for positive arguments and zero for negative arguments andzsolv is the coordinate

of the Gibbs plane for the solvent. For this reason electrocapillary measurements are suitable for

testing theoretical predictions derived from the concentration profiles.
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3 Modeling of the Double Layer

In this work we model the electrical double layer by specifying all relevant interactions in the

system and solving the resulting statistical-mechanical model. Such a model is defined by the

assumptions about the potentials describing all the interactions in the system. These assumptions

may be regarded as approximations to the true interaction potentials. What we refer to below as

“approximations” are of another type: approximations madeto simplify the non-trivial problem

of deriving thermodynamic observables from a given set of interaction potentials. In order to

be able to make a comparison with Gouy-Chapman-Stern (GCS)1 theory we adopt a model that

is based on the same physical assumptions about the interactions in the system. The difference

between our approach and the GCS theory lies entirely in the mathematical approximations made

in the treatment of the model. In what follows, we will distinguish between the “diffuse” and the

“inner” parts of the double layer in essentially the same wayas is done within GCS theory. We

acknowledge that this distinction is somewhat artificial; in a complete treatment of the problem all

the details of the continuous transition between aqueous solution and liquid metal would be taken

into account in the form of concentration profiles of all species present.

The fundamental assumptions in the model that we employ are that the solvent behaves as

a dielectric continuum solely characterized by its dielectric constant. Each ion is spherical, has a

short-range repulsive interaction potential (we will use ahard core potential) and has a point charge

at the center. The mercury surface is assumed to be smooth andhave a uniformly smeared out

surface charge densityσ . Here we will only consider planar surfaces. The interior ofthe mercury

is a assumed to be a continuum with an infinite permittivity since it is a conductor. The surface

then constitutes a dielectric discontinuity and the ions inthe electrolyte experience so-called image

charge forces from the surface polarization charge.

The PB approximation, which is used in GCS theory to treat the diffuse part of the double

layer, ignores ion-ion correlations.27 Such correlations include the effects of all kinds of ion-ion

interactions, both electrostatic ones and those caused by non-zero ion sizes (core-core collisions).

According to the PB approximation, the ions are treated as being point-like and the electrostatic
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interactions amongst the ions are solely due to the electrostatic potential from the average charge

distribution of the double layer (the “mean electrostatic potential”). In the underlying model it is,

however, essential that ions have non-zero sizes, because otherwise the model would fall victim

to the “Coulomb catastrophe”, where negative and positive point charges would fall on top of

each other, resulting in the unphysical situation of infinite negative potential energy. Because all

interactions except electrostatic ones are neglected in the GC approximation a large class of models

will give identical results when treated in that approximation. In GCS theory, the properties of

diffuse double layers are unaffected by the excluded ion volume, for instance. Some effects of

finite ion size are contained the Stern layer, but as such theywill only affect the properties of the

inner layer.

The presence of a dielectric discontinuity at the planar interface does not affect the structure of

the diffuse part of a GCS double layer. One can show that the lateral translational symmetry of the

charge distributions implies that the mean electrostatic field in the diffuse layer originating from

the surface region (including the polarization charges) only depends on the total amount of charge

per unit area of the surface and the dielectric constant of the solvent. Expressed in terms of image

charges, the field in the diffuse layer due to the image of the entire planar double layer is zero (the

total charge of the image is zero). The self-image interactions of the ions cannot be introduced into

the Boltzmann factor simply as anad hoc “correction” to the GC theory since the neglect of the

ion-ion correlations implies that the screening of the image charge will not be taken into account.

In order to treat this screening consistently it is essential that the interaction between ions is taken

into account on a level beyond PB mean field theory. Ref. 28 and references therein contain early

attempts to do so.

In GCS theory all deviations from ideality are contained in the ionic interactions with the mean

electric field. As the mean field in bulk is zero the bulk electrolyte is treated as an ideal gas. We

therefore expect deviations from GCS theory if the deviationfrom ideality in bulk is large. Close to

a charged surface the concentration of counterions is largeeven for dilute electrolyte solutions. If

the counterions interact strongly, the force on an ion in thedouble layer is not well represented by
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the force from the mean electric field because each ion significantly perturbs its local environment,

i.e. ion-ion correlations are important, and we expect deviations from GCS theory also in this case.

When ion-ion correlations are taken into account in the treatment of the diffuse layer, we will

use the term “ion-correlation (IC) theory” for any accurate approach irrespectively of how (and if)

a Stern layer is included in the model. To emphasize that a Stern layeris included we use the term

“ion-correlation-Stern (ICS) theory”. This is similar to the use of the term “GC theory” for a PB

mean field treatment of the diffuse part of the double layer and “GCS theory” for a treatment that

includes a Stern layer.

For any comparison between ICS and GCS theory to be meaningful,the same assumptions

about the Stern layer must be made in both theories. As our main objective is to study the effects

of ion-ion correlations in the diffuse layer, we will model asituation where the ion-surface inter-

actions are as simple as possible, i.e. where specific adsorption is negligible. In the GCS as well

as the ICS theory, the system should then have (at most) an ion-free layer, a zeroth order Stern

layer. When we specifically refer to GCS theory with a zeroth order Stern layer we append a zero

in parenthesis to the acronym. That is, we use the acronym GCS(0) to denote GCS theory with the

constraint that only a zeroth order Stern layer is allowed. Similarly, we denote ICS theory with the

Stern layer limited to zeroth order as ICS(0).

It is important to keep in mind that the inclusion of a Stern layer does in no way constitute a

correction to the mathematical approximations used in the treatment of the diffuse part of the dou-

ble layer but is a separate model assumption. Therefore, thevalidity of any conclusion regarding

the Stern layer hinges on the validity of the theory used to treat the diffuse part of the double layer.

The comparison between the ICS(0) theory and experimental data for a particular system therefore

serves to establish whether there is any need to introduce a more sophisticated Stern layer for that

system. The conclusion of such an analysis is of course dependent on the quality of the model for

the diffuse double layer and may be subject to change on further refinement of that model. Never-

theless we expect that as long as the ion model includes, withreasonable accuracy, the interactions

that are important in real systems, the qualitative conclusion will be robust. In order to ensure
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that this is the case we use ion sizes that gives reasonable agreement with experimental activity

coefficients when the model is applied to the bulk solution, see Section 4.4.

With the assumption of a charge-free Stern layer, the equations relating the inner and diffuse

parts of the double layer in GCS theory, see ref. 1, are simplified and take on the form of the

equations below, that are valid for both ICS(0) and GCS(0) theory. In the general case where the

Stern layerdoes contain charge one must distinguish between the charge in the inner,σ i, and in

the charge in diffuse,σd, parts of the double layer. These are related to the surface charge density

by σ =−(σ i +σd). As σ i is always zero in this work, the need for this symbol is eliminated and

the only surface charge density that needs to be considered is σ . To keep the number of symbols

as small as possible, all equations below are therefore written in terms ofσ .

Let us select a coordinate system with thez axis perpendicular to the mercury interface and

with the origin at the plane of closest approach of the ion centers to the surface, at the coordinate

zion, so that by this conventionzion ≡ 0. The surface charge is assumed to be located at a plane

at z = zσ . We make no assumption aboutzσ other than thatzσ < zion. In the case where image

charges are considered we place the dielectric discontinuity at the coordinatezdiel, see Figure 1.

The zeroth order Stern layer has a width of|zion− zsolv|,29 wherezsolv is the location of the Gibbs

surface of the solvent, and its contributions to the components of charge are given by

σ i
± =−Z±Fnbulk

± (zion− zsolv) (8)

Note thatzsolv is not knowna priori and must be determined from experimental data.

The diffuse parts of the components of charge are given by

σd
± = Z±F

∫ ∞

0
(n±(z)−nbulk

± )dz. (9)

The inner and diffuse contributions to the components of charge are additive,

σ± = σ i
±+σd

±, (10)
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as a consequence of the separation of the inner and diffuse parts of the double layer by a sharp

dividing surface. Note that as we only have a zeroth order Stern layer in the GCS(0) and ICS(0)

theories, we have

σ =−(σd
+ +σd

−). (11)

sinceσ i
+ +σ i− = σ i = 0. In the general case, Equation (6) has to be used.

The diffuse potentialψd, i.e. the difference in mean electrostatic potential between the point

of closest approach for the ions to the surface and a point in the bulk solution, is given by

ψd =− F
εε0

∑
i

Zi

∫ ∞

0
ni(z)zdz. (12)

This the same expression as in GC theory but the concentration profiles are in general different

from the GC concentration profiles. In the ICS(0) theory the diffuse layer capacitance is given by

1
Cd =

dψd

dσ
. (13)

This expression is valid also in GCS(0) theory, butnot in the general case of GCS theory where it

has to be replaced by eq. (3.6.33) of ref. 1. In the current work the differential capacitanceCd for

the ICS(0) theory is calculated numerically as a finite difference ratio from the variation inψd due

to a small change inσ . The capacitances of the charge-free inner and diffuse parts of the double

layer act as capacitors in series, so that

1
C

=
1
Ci +

1
Cd . (14)

whereCi is the capacitance of the inner layer.
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4 Model and Method

4.1 The Primitive Model Interaction Potential

The primitive model (PM) for electrolyte solutions is defined by the pair interaction potentialui j,

wherei and j are species indices, given by

ui j = ucore
i j +uCoul

i j +uim
i j , (15)

whereuim
i j is the image charge potential, that is relevant only near a surface (see below),ucore

i j (r) is

the hard core potential, that is infinite forr < di j and zero otherwise, anduCoul
i j (r) is the Coulomb

potential. The latter is given in units ofkBT (with β = 1/kBT , wherekB is Boltzmann’s constant)

by

βuCoul
i j (r) =

ZiZ je2
0

4πεε0kBT r
=

ZiZ jlB
r

, (16)

whereZl, l = i, j, is the ionic valency (with sign) ande0 is the unit charge. In the right hand side

(rhs) we have introduced the Bjerrum length,lB = e2
0/(4πεε0kBT ), i.e. the distance between unit

charges for which their interaction energy is equal tokBT . The value of the the relative permittivity

ε (dielectric constant) is taken as that of the pure solvent. For water at 25◦C it is30 78.36 and

therefore the Bjerrum length is 0.715 nm.

The contributionuim to the pair potential is due to the fact that the interface is polarized by the

presence of ions both due to shifts in electron density at themercury surface and orientations of

water molecules. It is zero in bulk solution. In models with asharp dielectric discontinuity at a

planar interface the potential from the polarization is easily treated by the method of images. For

two ions located at coordinatesr1 andr2, whererν = (xν ,yν ,zν), the contribution to the ion-ion

pair potential from the image charges of the ions is given by

βuim
i j (r1, r2) =

εDZiZ jlB
[(z1 + z2−2zdiel)2 +R2

12]
1/2

(17)
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whereR12 = [(x1− x2)2 + (y1− y2)2]1/2 is the lateral distance,εD = (ε − εw)/(ε + εw) and εw

is the relative permittivity of the wall material. For a conductor such as a metal,εw is infinite

andεD = −1. Unless otherwise stated we takezdiel = −0.3 nm, which corresponds roughly the

diameter of a water molecule, in all cases where image charges are considered.

When the PM is applied to interfacial systems the interface has to be modeled as well as the

ions. The approach that is applicable to ICS(0) theory is to assume that the surface is a uniformly

charged plane that is impenetrable to the ions. It is likely that the mercury/water interface at

negative polarization is very close to this idealization, as the excess charge on the mercury then

stems from an excess of electrons. The ion-wall interactionis given by

νi = νcore
i +νCoul

i +ν im
i , (18)

where the ion-”hard wall” interaction potentialνcore
i (z) is infinite whenz < zion and zero otherwise.

We have here assumed that that anions and cations can approach the surface equally closely, a

constraint that we shall relax in Section 5.3.3. The electrostatic interaction energyνCoul
i (z) of the

ions with the surface charge densityσ in a plane located atzσ is given by

βνCoul
i (z) =− Zie0σ

2εε0kBT
|z− zσ |. (19)

Note that sincezσ < zion the value ofzσ does not affect the properties of the diffuse part of the

double layer as all such values gives rise to the same forces on each ion there. The termν im
i is

the one-body image contribution to the interaction potential, the self-image interaction, i.e. the

interaction between each ion and its own image charge

βν im
i (z) =

εD

4
Z2

i lB
z− zdiel . (20)

It is of course far from certain that the forces between an ionand the interface are well repre-

sented by the continuum picture that forms the basis for the method of images, but this level of
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sophistication is commensurate with the assumptions inherent in the PM so it is considered here.

4.2 GC Theory for the Diffuse Layer

The GC theory may be regarded as an approximate theory for thetreatment of the PM. In this

approximation the PM is indistinguishable from other members of a wider class of models where

the interactions between ions are given by the sum of the Coulomb potential and some short-range

potential. This is so because only the electrostatic interactions contribute to the mean field. In

the GC theory the effect of the dielectric boundary drops outfrom the treatment of the planar

diffuse double layer due to the symmetry of the charge distribution, as noted in Section 3. For

completeness, the GC theory expressions used in GCS(0) theory for some relevant quantities are

presented and briefly discussed in this section. The resultsare given here as functions of the bare

surface charge densityσ for easy comparison with the ICS(0) theory.

In GC theory forZ:Z electrolytes, the diffuse layer potentialψd as a function of surface charge

density is

ψd =
2RT
ZF

sinh−1(pσ) =
2RT
ZF

ln
(
[(pσ)2 +1]1/2 + pσ

)
(21)

wherep = (8εε0nbulkRT )−1/2, R is the gas constant,T is the absolute temperature,nbulk is the bulk

concentration of salt andZ is the absolute value of the ionic valency. In the case of zeroth order

Stern layer the surface charge densityσ can be identified with the corresponding quantity in eq.

(2). The expression would have to be modified to be valid in thepresence of ionic charges in the

Stern layer, see ref. 1.

The capacitance corresponding to eq. (21) is given by

Cd = εε0κ[(pσ)2 +1]1/2 (22)

whereε is the relative permittivity of the solvent,ε0 is the permittivity of vacuum andκ is the

inverse Debye length as defined byκ2 = 2(ZF)2nbulk/(εε0RT ). At the point of zero charge the

capacitance isεε0κ whereas at high surface charge densities it approachesεε0κ|pσ |. The valencies
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of the ions of the electrolyte only enters the expression viaκ.

The components of charge from the diffuse layer,σd±, are in the GC theory given by

pσd
± =±1

2

(
[(pσ)2 +1]1/2∓ pσ −1

)
. (23)

Very notably, for symmetric electrolytes they do not dependon the valencies of the ions. Thus,

GC theory predicts that the components of charge are fully determined by the bulk electrolyte

concentration and surface charge density, whatever the valency of the electrolyte. At the point of

zero charge the components of charge are both zero, whereas at high positivepσ it follows that

pσd− ∼ −(|pσ | −1/2) and pσd
+ ∼ −1/2. For high negative surface charge densitiespσd− ∼ 1/2

and pσd
+ ∼ |pσ | − 1/2. Another way to express these relations for aqueous systems at room

temperature is to say that when the concentration is expressed in M, the component of charge

for the co-ions will approach a plateau value of−sign(σ) 5.866(nbulk)1/2 µC/cm2 as the surface

charge density increases.1 Thus, in the PB approximation there is always depletion of co-ions

in the diffuse part of the double layer near charged surfacesand less counterions than needed to

neutralize the surface charge. At the point of zero charge there is neither excess nor depletion of

salt; small increments of charge are compensated on a 50-50%base by positive adsorption of one

ion type of ion and negative adsorption of the other.

4.3 The AHNC Method for Calculation in the Ion Correlation Theory

Any method in statistical mechanics that treats ion-ion correlations with sufficient accuracy can be

used to extract the true predictions of IC theory. In this work we use the anisotropic hypernetted

chain (AHNC) method,18,31 which is a procedure for the calculation of pair correlationfunctions

and concentration profiles of an inhomogeneous fluid self-consistently within the HNC approxima-

tion for pair correlation functions. Close to a surface the pair correlation functions are anisotropic,

which is taken into account in the AHNC method.

In the AHNC method, the Ornstein-Zernike equation for inhomogeneous fluids is solved nu-
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merically by iteration for a trial set of concentration profiles, which gives the correlation functions.

A new set of concentration profiles is then calculated from the equilibrium condition of equal

chemical potential everywhere that can be written as

ni(z) = nbulk
i e−

νi(z)+µex
i (z)−µex,bulk

i
kBT , (24)

whereµex
i (z) is the excess chemical potentials atz, calculated from the pair correlation functions

and the trial profiles, andµex,bulk
i is the chemical potential in bulk. Here one utilizes the factthat

in the HNC approximationµex
i can be expressed as a simple, known functional of these functions.

New trial profiles are thus obtained and the procedure is iterated until the correlation functions and

concentration profiles are fully self-consistent. In this work the concentration profiles and corre-

lation functions are calculated for an electrolyte solution in a slit between two parallel, identical

walls that are sufficiently far from each other so that the solution in the middle of the slit is very

close to bulk conditions.

So far, the AHNC method has been tested against simulations for several systems and in

most cases it shows excellent agreement.18,19,32–34Deviations between AHNC and simulations

are found (i) for very high ionic densities that occur locally close to the wall for large surface

charge densities or when the bulk concentration is very highand (ii) for situations with high elec-

trostatic coupling and low bulk concentration, where the HNC equation has been shown35 not to

have a solution for the PM.

In case (i) the effects of short-range repulsions between counterions become very important and

the agreement between AHNC calculations and simulations for identical systems are qualitative

rather than quantitative. In the present work this shortcoming is expected to be of minor importance

as the surface charge densities where this discrepancy is important are not reached in this work.

Should it be necessary, this problem can be minimized by improving the closure, for instance by

using a reference bridge function as done in ref. 34.

Failing (ii) is relevant in this case as the 2:2 system with the rather small ion sizes considered
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here is sufficiently strongly coupled for us to expect that there is a concentration range in which

no solution exists. In effect, this places a lower limit on the range of bulk concentrations for

which convergent solutions can be found. The boundaries of this concentration range have been

thoroughly investigated35 in the PM for bulk electrolytes with anions and cations of equal size (the

“restricted primitive model”). The boundaries applicablefor inhomogeneous PM systems with

unequal ionic sizes are, however, not known.

For the MgSO4 solutions considered in this work we were able to obtain HNC solutions for the

bulk electrolyte down to about 0.14 M. For the inhomogeneoussystem no solution could be found

for the system in equilibrium with a 0.2 M bulk electrolyte, which is probably caused by the fact

that the local concentration near the surface becomes so lowthat the regime in which there is no

solution is entered. (For the system with larger ions, cf. Section 5.3.2, HNC solutions could be

obtained for lower concentrations.) Since we limit ourselves to bulk concentrations above 0.5 M,

the results from the AHNC method should be very accurate.

4.4 Modeling of MgSO4 by the Primitive Model

As stated in Section 3 we need to determine reliable values for the ion-ion hard core contact

distancesdi j (the “ion sizes”) in the PM in a way that is independent of the description of the

double layer. We therefore turn to calculations of the activity coefficients of bulk solutions of

MgSO4.

The expectation is thatd+− is by far the most critical distance and that small deviations ind++

andd−− are relatively unimportant, at least for volume fractions that are far from close packing.

This is so becaused+− has a strong effect on the “ion pairing” between anions and cations whereas

the sizes associated with like-charged pairs are less important because the Coulomb repulsion, at

least for volume fractions that are not too large. Considering that our aim is not perfection, but

merely adequacy, in the description of the ion-ion interactions, we make the assumption that the

radii are pairwise additive in order to limit the number of adjustable parameters. The diameter of

the anion,d−−, is taken to be equal to the crystallographic diameter36 andd+− is used as the fitting
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parameter. The diameter of the cation,d++, is then calculated fromd+− = (d++ +d−−)/2.

The criterion for our choice ofd+− is agreement between experimental37 and theoretical (PM)

values of the mean activity coefficient,f±, as a function of electrolyte concentration. The theo-

retical f± is calculated in the hypernetted chain (HNC) approximation for bulk electrolytes. The

range of concentrations considered is between 0.20 and 2.5 M. Densities from ref. 38 are used to

convert the experimental data from Lewis-Randall (molal concentration) scale to McMillan-Mayer

(molar concentration) scale, appropriate for the PM, according to the procedure given in ref. 39.

We find that the diametersd++ = 0.30,d−− = 0.46 andd+− = 0.38 nm give the activity coeffi-

cient in good agreement with the experimental values, see Figure 2 where results for three values

of d+− are shown. As can be seen, the selected value of 0.38 nm gives the best agreement for low

concentrations, that must be given most weight in the comparison as it is for low concentrations

that the assumptions that defines the PM can reasonably be expected to be justified. The osmotic

coefficients are in comparable agreement with experimentaldata (not shown). For the upper end

of the concentration range the experimentalf± data lie between the 0.38 and 0.355 nm curves,

indicating that giving more weight to this region would result in a slightly smaller cation diameter

than the selected value. From these results it is clear, however, thatd+− should not exceed 0.38

nm.

The choice of the excess chemical potentials in the form of activity coefficients, i.e. µex
i =

kBT ln fi, as the bulk properties to be used in the selection criterionfor the ion model is justified

by the fact that the concentration profiles are inextricablylinked with the local excess chemical

potential through the equilibrium condition of equal chemical potential everywhere, eq. (24). We

argue that by ensuring that the excess chemical potential ofthe salt model is approximately correct

in bulk, we improve the chances that it will give realistic concentration profiles. This criterion is

also somewhat similar to the thermodynamic consistency criterion derived in ref. 40.

While an acceptable agreement with bulk thermodynamic data is certainly a necessary criterion

for accepting an electrolyte model as realistic, it is not a sufficient one. The somewhat limited

agreement of the present model with bulk thermodynamic datadoes not imply that the PM gives a
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detailed representation of the short-range interaction between ions. For this reason we emphasize

that the ion diameters that give the best agreement with thermodynamic data need not reflect the

actual, geometric sizes of the hydrated ions.

The value ford++ = 0.30 nm obtained here is not transferable between differentmagnesium

salts. For the halides, for instance,d++ around 0.6 nm gives reasonable agreement with experi-

ments.41 That the optimum Mg2+ radius differ between salts of different valence type illustrates

the fact that the ion sizes in the context of the primitive model are not necessarily geometric prop-

erties of the hydrated ions but rather effective sizes that reflect all short-ranged pairwise interaction

between ions. One might rationalize the small size of Mg2+ in MgSO4 by the argument that the

strong electrostatic attraction at anion-cation contact leads to a degree of ion association that mim-

ics the “ion pairing” that is believed to occur in aqueous MgSO4.42 From a chemical point of view

it is not at all unreasonable to expect the oxygens of sulfateto displace water molecules in the

solvation shell of Mg2+, which would imply a Mg2+-SO2−
4 pair distance that is smaller than the

sum of the hydrated radii. The most realistic set of ion diameters should thus be non-additive.

Indirect support for this notion is given by recent simulations studies43,44where it was found that

the effective cation-anion diameter was smaller than the mean of the cation-cation and anion-anion

diameters in all the cases examined. Unfortunately for our purposes, while Mg2+ was among

the cations examined neither SO2−
4 nor any other divalent anion was considered in that work, so

the conclusions cannot be applied directly to the present problem. In addition, it is known from

simulation studies that the interactions between ions in a molecular solvent have an oscillatory

component, which becomes important for separations less than about 1 nm.

Nevertheless, the fact that the primitive modeldoes perform as well as it does in our case can

likely be ascribed to a major influence of the Coulomb interactions. We can thus be relatively

confident that the primitive model does properly contain thedominant interactions.
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5 Predictions of the Ion Correlation Theory

5.1 Potential and Capacitance

The diffuse layer potential,ψd, and its derivative with respect toσ , the inverse differential capac-

itance 1/Cd (cf. equation (14)), are shown as a function of the surface charge density in Figure 3.

The potential passes through zero very close toσ = 0, which is a consequence of the fact that the

electrolyte is not far from being symmetrical with respect to both ion-ion and ion-surface interac-

tions. The maximum of 1/Cd therefore lies very close toσ = 0. (In the GC and therefore GCS(0)

theory one always hasψd = 0 whenσ = 0, but in ICS(0) theories this is not the case in general.)

For large negativeσ the inverse capacitance turns negative, which correspondsto the exis-

tence of a minimum inψd. This phenomenon is well known for PM electrolytes with parameters

corresponding to divalent counterions in water at room temperature whereψd as a function of

σ exhibits an extremum (maximum for positive surface charge densities, minimum for negative)

beyond which the magnitude of the potential decreases with increasing magnitude of the surface

charge density.3,45 This behavior is seen here for all concentrations investigated.

An overall negative capacitance is incompatible with thermodynamic equilibrium. However,

for complicated double layers, in which more than one capacitance can be distinguished, it is

possible that one of the capacitances is negative, providedit is (over)compensated by the other

one(s); Ref. 46 gives an experimental example of this. In our case, a negative sign of the diffuse

layer capacitance does not preclude thermodynamic equilibrium if the inner layer capacitance is

positive and smaller in magnitude, cf. equation (14). For the mercury/aqueous electrolyte interface,

the magnitude of the diffuse layer capacitance as calculated from the PM is never smaller than a

few thousands of µF/cm2 in those cases where it is negative. Typical measured valuesof the total

capacitance are in the order of tens of µF/cm2 .21 Under these circumstances, the occurrence of a

negative diffuse layer capacitance implies that the overall capacitance must be larger than the inner

layer capacitance.

As the diffuse layer capacitance is so large, the absolute value of any differences in inverse
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capacitance for the different bulk concentrations is very small except aroundσ = 0. Because the

experimental inner layer capacitance is so much smaller in magnitude, the variation in diffuse

layer capacitance with concentration for this model corresponds to a negligible variation of the

total capacitance. For the same reason, discriminating between the theoretical capacitances from

GC and IC theories on the basis of experimental values is a very insensitive test of the relative

merits of the two theories. Also a comparison on the basis of the effect of electrolytes does not

work because the dependence on salt concentration is not qualitatively different between the two

theories. For such a comparison the demands on the quality ofexperimental data is simply too

high. So, on the basis of capacitance data it is virtually impossible to discriminate between the two

models, even though there are dramatic differences betweenthem.

5.2 Concentration Profiles and Components of Charge

The concentration profiles of Mg2+ and SO2−
4 for four bulk concentrations between 0.5 and 2.0 M

for two surface charge densities are shown in Figure 4 and Figure 5 (with and without image charge

interactions respectively). Let us first analyse the behavior in absence of images, Figure 5. For low

surface charge density,σ = −0.95 µC/cm2, there is depletion of electrolyte near the wall for all

concentrations, in excess to the co-ion depletion that would be expected on the basis of GC theory

due to the charge on the surface alone. This can be seen clearly from the fact that close to the walls,

the concentration ofcounterions is smaller than the bulk concentration. This is an effect of ion-ion

correlations. In the bulk solution the ionic atmosphere around each individual ion is spherically

symmetric, while close to a wall it is not. The wall prevents the ion from being surrounded by

other ions on one side, so when an ion is close to a wall its ionic atmosphere is distorted. With

most of its countercharge on the solution side, each ion is subject to a net electrostatic force that

pulls the ion in the direction away from the wall. When the force from the surface charge is weak

or absent the result is a depletion of ions close to the surface. This mechanism is different from the

exclusion of co-ions due to repulsion from the surface charge.

In the presence of attractive image charge interactions with the mercury surface, Figure 4, the

25



depletion for low surface charge densities is less pronounced but still visible at a short distance

from the surface. By comparing Figure 4 and Figure 5 we see thatthe image charge interactions

cause both the co-ion and counterion concentration to be higher near the surface compared to the

case of no images. The peak at contact is due to the self-imagecharge interactions. In our case

these are equally strong for both species of ions as the electrolyte is symmetric. Each ion close

to the surface also interacts with the images of all other ions in its neighborhood. Due to ion-

ion correlations, the net image charge interaction is screened and decays steeply with increasing

distance from the surface (the decay length is half the decaylength of the ion-ion correlations).

For the larger surface charge density,σ =−9.95 µC/cm2, see the bottom panels in Figure 4 and

Figure 5, there is not much difference between the profiles with and without image interactions.

In the former case the concentrations are somewhat higher close to the surface. In both cases the

concentration profiles show significant structure. The co-ion peak aroundz = 0.5 nm is typical

for situations where there is overcharging. As seen in the figure, there are more co-ions (i.e.

anions) than counterions (cations) in the region to the right of the first point where the co-ion and

counterion concentration profiles cross each other (aroundz = 0.3 - 0.5 nm; this is most clearly seen

for the three highest concentrations). Therefore the totalcharge in this region is negative (same

sign asσ ). Overall electroneutrality is maintained since this charge is neutralized by an excess of

countercharge, due to depletion of co-ions and enrichment of counterions, near the surface (to the

left of the crossing point).

The presence of an excess of countercharge near the surface is an effect of ion-ion correlations,

as the model does not include chemical specific adsorption. When the surface charge density is

increased the counterion concentration near the surface also increases. The correlation from the

repulsion between counterions then gives an increasingly important contribution to the mean force

on any given counterion. When a counterion is located close tothe charged surface, other coun-

terions are depleted from the region between the surface andthe ion. Some of this depletion is

due to electrostatic forces, but a significant part comes from hard core (excluded volume) inter-

actions. In the GC theory neither of these two effects are considered, which means that there are
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more counterions in the region between the ion and the surface than if ion-ion correlations were

properly taken into account. These intervening ions weakenthe net attraction between the ion and

the surface charge. Thus, when correlationsare considered, a larger part of the surface charge is

“exposed” than in GC theory, which causes each counterion tobe more strongly attracted to the

surface region in the presence of correlations.47,48

Ionic core-core collisions that push counterions towards the surface give an additional, but rela-

tively small, contribution to the attraction between the counterions and the surface. Together, these

effects lead to a large build-up of countercharge near the surface. Likewise, the co-ions are more

strongly repelled from the region near the surface than predicted by the GC theory. Therefore, the

co-ions that must be present to compensate for the excess counterions are located predominantly

at some distance from the surface, seen as the co-ion peak in Fig. Figure 4.

Most of the countercharge and the accompanying co-ion layerare located within a few tenths

of a nanometer from the surface. For the 0.5 M case the concentration profiles decay monoton-

ically to the bulk concentration forz > 1 nm, while for the higher bulk concentrations there are

oscillations in the concentration profiles that continue inthe region some distance from the surface.

The amplitude decays exponentially with increasing distance from the surface. In some cases this

can be seen in Figure 5 while in other cases the amplitude is sosmall that only the first peak is

visible. Such oscillations are related to the conditions inthe bulk solution and occur when the con-

centration is sufficiently large. The wave length of the oscillation is determined by (and the same

as) that of the pair correlation functions in bulk, i.e. not by the properties of the interface. For low

concentrations both the profile and the bulk correlation functions are monotonically decaying, but

a region with excess countercharge and an accompanying co-ion peak still appears if the surface

charge density is sufficiently high; the co-ion peakis a property of the interface even though the

details of how the concentration profiles decay to bulk concentration are determined by the bulk

correlations.

We will now consider the diffuse parts of the components of charge in the double layer as

defined in eq. (9). These quantities reflect the (positive or negative) surface excesses of anions and
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cations in the diffuse part of the double layer. For a givenσ the anionic and cationic components of

charge are related via equation (11) and are therefore coupled quantities. The anionic components

of charge for several bulk concentrations are shown as a functions of the surface charge density in

Figure 6 for both the cases with and without image charge interactions. The values from the GC

theory are also shown.

Consider first the situation at and near the point of zero charge. We see thatσd− for the IC theory

is positive in this region for all concentrations investigated. This behavior is in sharp contrast

with the qualitative behavior in the GC theory according to which the components of charge are

predicted to be exactly zero at the point of zero charge. As a positive value ofσd− corresponds

to depletion of anions, which must be accompanied by an equalamount of cation depletion when

σ = 0, there is salt depletion at the point of zero charge. For thesystem considered here, where the

electrolyte is symmetric, the IC theory shares the feature with GC theory that close to the point of

zero charge the surface charge is compensated by increased depletion of co-ions and enrichment

of counterions in equal measures. Furthermore, image charge interactions attract both anions and

cations towards the surface to the same degree. For these reasons the IC theory curves in panel (a)

are similar to those in panel (b) apart from a vertical displacement aroundσ = 0; they have about

the same derivative in the region−2 < σ < 2 µC/cm2.

Consider next the situation for more negative surface chargedensities. When the negative

surface charge density is made larger in magnitude, the depletion of anions (that are co-ions to

the surface) initially increases but reaches a maximum and then decreases with more negative

surface charge density for all electrolyte concentrations. This tendency is most prominent in the

absence of image charge interactions. Again, the results when ion correlations are taken into

account are in sharp contrast to those from GC theory, according to which the depletion of co-ions

should tend asymptotically to a plateau value. A decrease inσd−, i.e. ∆σd− < 0, with increasingly

negativeσ implies a relative enrichment of salt in the diffuse part of the double layer. Both co-

ions and counterions are brought in, the latter to a larger extent than needed to compensate for the

increase in negative surface charge. This can be seen from from equation (11), which implies that
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∆σd
+ +∆σ =−∆σd−, where the rhs is positive in the current case so∆σd

+ > |∆σ |whenσ decreases.

5.3 Sensitivity to System Parameters

5.3.1 Dielectric Permittivity

In this section we consider the effect of varying the dielectric permittivity of the wall as well as

the solvent. In Figure 7 the anionic components of charge forthree values of the wall permittivity

are shown, corresponding to the extreme cases of a “vacuum” wall and a “conducting” wall as

well as the case where the wall permittivity is the same as that of the solvent. The distance of

closest approach between the ions and the dielectric discontinuity is 0.3 nm (zdiel = −0.3 nm) in

all calculations. The salt depletion for small surface charge densities is largest for theεw = 1 case

and smallest in theεw = ∞ case. This can be explained by the self-image interaction between the

ions and the wall that is repulsive whenεw = 1 and attractive whenεw = ∞, corresponding to image

charges of the same and the opposite sign as that of the real charge, respectively.

For large negative surface charge densities the rate of decrease in the depletion with increas-

ingly negative surface charge density is largest in theεw = 1 case and smallest in theεw = ∞ case.

This is not surprising as the image charges of an ion also interacts with all other ions, hence the

contribution to the ionic pair potentials. The image interactions increase the repulsion between

counterions close to the wall forεw = 1, enhancing ion enrichment due to correlations. The op-

posite is the case whenεw = ∞, the value that is applicable to the mercury surface. For highly

charged surfaces the contribution from image charges to thepair potential thus has an effect on the

components of charge that is opposite to that due to the self-image interaction.

In Figure 8 the permittivity of the wall is assumed to be the same as for the solvent, i.e. there

are no image charges. The anionic components of charge as a function of surface charge density

are shown for solvent permittivities 2.0, 1.5, 1.25, 1.0, 0.9 and 0.8 times that of water. As we

see in the figure, a decrease in permittivity leads to an increase in the co-ion depletion forσ near

zero and a decrease for large negativeσ . This is expected since the deviation from the GC theory

should increase as the ion-ion interactions becomes stronger. Both the overcharging for large
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negative surface charge densities and the depletion for small surface charge densities are enhanced

as the surface charge density is increased. This explains why the curves for different values of the

permittivity cross each other. It is not obvious, however, why this should happen at about the same

point for all the curves, which is the case. It is notable thatthe surface excess appears to depend

more strongly on the permittivity for low permittivities than for high. Compare, for instance, the

pair corresponding to 2 and 1.5 times the permittivity of water and the pair corresponding to 1

and 0.8. Changing the solvent permittivity changes the correlations in bulk as well as close to the

surface whereas changing the wall permittivity only gives rise to changes in the correlations close

to the surface. Our results in Figure 8 are consistent with those of Boda and coworkers.49

In the partition function for the PM, the temperature entersin βui j andβνi only as the prod-

uct εT (the productsβucore
i j andβνcore

i are independent ofT because these potentials are either

zero or infinite). Since the productεT for waterdecreases by about 14 % as the temperature in-

creases from 0 to 100◦C, only two of the curves in Figure 8, the ones corresponding to1 and 0.9

times the permittivity of water, lie within the range that isexpected to be experimentally relevant

for the aqueous MgSO4 system. For other systems, such as salts of other valence types and/or

non-aqueous solvents, a larger range of electrostatic coupling strengths may be relevant, however.

While solvents with a dielectric permittivity exceeding that of water by a factor above 1.5 are vir-

tually non-existent, the strength of the electrostatic interactions that correspond to divalent salt in a

high permittivity medium is similar to that corresponding to a monovalent salt in a low permittivity

medium.

5.3.2 Ion Size

In this section we compare the results obtained with a computation in which the cation diameter is

doubled, i.e.d++ = 0.60,d−− = 0.46 andd+− = 0.53 nm. Although this set of diameters gives

very poor values for the activity coefficients, and therefore can be rejected as a satisfactory model

of MgSO4, this choice of cation diameter is not completely arbitrary. For several magnesium salts

with monovalent anions the diameterd++ = 0.60 nm gives good agreement with experimental
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activity coefficients, as mentioned in Section 4.4 above.

In Figure 9 the concentration profiles are shown for two surface charge densities. For a concen-

tration of 0.5 M and small surface charge density,σ =−0.95 µC/cm2, there is some depletion close

to the wall. For 1.0 M solutions there happens to be about as much depletion of anions as there

is enrichment of cations, a situation similar to the GC theory predictions for low surface charge

density. The detailed behavior of the concentration profiles is, however, not like that expected from

the GC theory since the concentration profiles are non-monotonic. For higher concentrations, 1.5

and 2.0 M, there is a large degree of enrichment close to the wall and the profiles show perceivable

structure up to about 1 nm from the wall. For the higher surface charge density,−9.95 µC/cm2,

the oscillatory structure of the concentration profiles is very pronounced for these concentrations.

Careful investigation of the concentration profiles reveal that oscillations are present in all cases,

but they are hard to see on the scale of the figure for the lowestconcentrations. Since the oscil-

latory structure is induced by the bulk correlations, oscillations are present for all surface charge

densities, but they are less prominent in the upper panel. The large enrichment close to the walls

at high concentrations and the oscillations in the concentration profiles make the structure superfi-

cially reminiscent of that a hard sphere fluid close to a hard wall,50 at least for small surface charge

densities and large concentrations. This illustrates thatexcluded volume constraints are important

for the structure of the electrolyte in this case. The analogy with the hard-sphere system must not

be carried too far, however.

In Figure 10 the anionic component of charge is shown as a function of surface charge density

for the “big cation” model. The differences with respect to the “small cation” model, Figure 6, are

striking. Only for 0.5 M concentration there is a maximum andthe curve beyond that is almost

flat. Fortuitously, at a concentration of 1.0 M the degree of depletion is qualitatively similar to that

predicted by GC theory. For higher concentrations there is not depletion but enrichment of salt at

the point of zero charge (not shown). In these cases, the negative surface charge density on the

wall has to be very high to cause any depletion of anions.

It is instructive to compare the results for the “small cation” and “large cation” situation because
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they can be identified as stemming from two different regimes: The “small cation” model belongs

to the “electrostatic” regime where electrostatic interactions dominate whereas the “large cation”

model at high concentrations belongs to the “core” regime where the packing constraints for the

repulsive hard cores become dominant. In the latter regime one would not expect the assumption

to hold thatd+− is the diameter that dominates the system properties. The electrostatic regime

is characterized by depletion of salt near a weakly charged interface whereas the core regime

is characterized by enrichment. Using this classification,the 1.0 M concentration of the “large

cation” model would fall right at the boundary between the two regimes. Bulk activity coefficients

are useful to illustrate the characterization of the systemalong these lines. An activity coefficient of

less than one (negative excess chemical potential) indicates that attractive interactions dominate in

bulk whereas a value of greater than one indicates predominance of repulsive interactions (positive

excess chemical potential). A wall prevents nearby ions from interacting with other ions, simply

because there can be no ions inside the wall. The excess chemical potential should thus be expected

to decrease in magnitude but retain its sign as ions are brought close to an uncharged interface. This

would give rise to an effective repulsive force between the wall and the ions in the electrostatic

regime but an effective attractive force in the core regime.The difference between the correlations

in bulk and those close to the surface thus gives a contribution to the total potential of mean

force that may counteract, or work in concert with, any direct interaction between ions and walls.

As the total potential of mean force depends on the interactions and concentration profiles in a

complicated way, not much more can be said in general about the details of its distance dependence

on the basis of bulk chemical potentials only. Conversely, nodefinite conclusion can be drawn

about the direct interactions between ions and walls in systems where the deviation from ideality

is large unless that deviation is taken into account in the determination of the concentration profiles.

The large differences between the “small cation” and the “large cation” models indicate that

the properties of a model double layer is sensitive to the properties of the salt model, especially for

the rather large concentrations studied here. With respectto components of charge, the two models

predict deviations from GC theory that for the larger concentrations are in opposite directions. This
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sensitivity highlights the importance of using rational criteria in the selection of the parameters for

the salt model, as we have done in Section 4.4.

5.3.3 Distance of closest approach of ions to the surface

In this section we relax the constraint that the anions and the cations have the same distance of

closest approach to the surface. See Figure 11 for a sketch ofthe system considered here. The

origin of the coordinate system is placed at the plane of closest approach of thecations, that we

write with a subscript aszion
+ . We allow the anions to approach the surface up to the Gibbs plane

of the solvent, that we for purpose of illustration take to belocated atzion− = zsolv = −0.3 nm. To

avoid an unphysical singularity of the self-image interaction, the dielectric discontinuity must be

placed atz < zion− . For this reason we consider the values−0.4,−0.5 and−0.6 nm forzdiel rather

than takezdiel =−0.3 nm as we do elsewhere. This range of values forzdiel is considered in order

to establish the sensitivity of the model predictions with respect to this parameter.

The anionic components of charge are shown in Figure 12. In the cases withzion− 6= zion
+ and

zdiel = −0.6 and−0.5 nm (the upper two thick curves in the figure), the components of charge

for moderate and large negative surface charge densities are quite similar to the cases with equal

distance of closest approach (thin curves). For small surface charge densities the dashed thin

curve, for which case no image charge interactions are included, is not very similar to the other

three curves.

The most extreme case, withzion− = −0.3 nm andzdiel = −0.4 nm (the bottom thick curve),

displays much less depletion close to the point of zero charge than any of the other cases. Note

thatzdiel =−0.4 nm corresponds to just 0.1 nm between the dielectric discontinuity and the plane

of closest approach for the anions. Since the radius of sulfate is 0.23 nm this would correspond to

a significant portion of the charge distribution on a real sulfate ion being inside the metal. In this

situation the assumption that the force on the ion is well represented by the image charge force

on a point charge at the ion center is not a reasonable model, but will severely overestimate the

strength of these forces. Even in this case, however, the components of charge for large negative
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surface charge densities are remarkably similar to those from the other variants of the model.

We can thus conclude that the predictions of the model for large negative surface charge densi-

ties are insensitive to the details of the wall-ion interaction investigated in this section. Otherwise

stated, any conclusion based on comparison to experimentaldata for such surface charge densities

is robust.

6 Comparison with Experimental Data

In this section results from capacitance and electrocapillary measurements from refs.23 and24 are

presented and compared with results from the GCS(0) and ICS(0)theories. As we make no at-

tempt to model chemical specific adsorption we will mainly focus on the subset of the data that

corresponds to zero or negative surface charge, where specific adsorption is expected to be weak

or absent. (Below we shall investigate whether this expectation is justified.) Our main focus will

be to determine which features of the data can be explained for reasonable parameter values within

the framework of ICS(0) theory in its present form and which features cannot.

6.1 Components of Charge

Experimental data for the cationic component of charge for amercury/MgSO4 solution interface is

given in ref. 23 for MgSO4 concentrations 0.1, 0.2, 0.5, 1.0, 1.5 and 2.0 M and for surface charge

densities down to about−17 µC/cm2. The thickness of the zeroth order Stern layer, here defined as

|zion− zsolv|,29 is used as an adjustable parameter to fit the ICS(0) results to the experimental data.

This thickness only affects the contributionσ i− from the inner part of the double layer, equation

(8). In practice we varyzsolv sincezion ≡ 0 here. The same thickness is then used for the GCS(0)

interpretation. Note that the ionic sizes have been determined from bulk data, see Section 4.4, so

no additional fitting parameter was needed.

A comparison between the experimental data and the theoretical results from GCS(0) and

ICS(0) calculations is made in Figure 13, where the anionic component of charge is presented.

34



We consider the four concentrations where results were obtained from AHNC calculations (cf.

end of Section 4.3). The anionic and the cationic componentsof charge and the total surface

charge density are related via eq. (6) (this equation was used to obtain the experimentalσ− from

σ+). It is preferable to plotσ− for negative surfaces since the co-ion component of charge varies

considerably more slowly than the counterion component. Therefore, differences between the ex-

perimental data and the theoretical predictions are more clearly visible. Note, however, that the

range of surface charge densities in the figure extends somewhat into the positive range, where the

anions become counterions.

As seen in Figure 13, the ICS(0) result for 0.5 M bulk concentration with zsolv = −0.35 nm

agrees with the experimental data within the experimental uncertainty forσ < −1 µC/cm2. The

valuezsolv = −0.35 nm was used here for all ICS(0) and GCS(0) curves. Changes inzsolv have

the effect of shifting eachσ− curve vertically in proportion to the bulk electrolyte concentration,

cf. equation (8). The value ofzsolv may in principle depend on the concentration, but this is not

considered in our fit. It is therefore the shapes of the curvesrather than their absolute values in any

point that are to be given most weight in the comparison with the experimental data. The 1.0 and

1.5 M results agree reasonably well with the experiments in the same interval, while there are quite

large deviations for the 2.0 M case. The main message from these graphs is that ICS(0) results

are able to predict the experimentally found maximum, whichis impossible in GCS(0) theory.

For the lower part of the concentration range, the agreementis even quantitative. The only way

in which the maxima can be explained in terms of a mean field GCS theory is by assuming that

Mg2+ adsorbs specifically in conjunction with a relatively thickion-free layer, which would be

rather artificial and hence difficult to justify, especiallyso since there is no positive evidence for

specific adsorption of Mg2+ ions at the point of zero charge (see below). Thus, our results clearly

demonstrate the action of ion-ion correlations in the electric double layer.

In the original experimental paper,24 much of the variation ofσ− with concentration was ex-

plained by assuming a thickness of about 0.44 nm for the ion-free layer. The anionic component

of charge from solely such a layer (shown in Figure 13), i.e.σ i−, as a function ofσ is always a
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horizontal line, hence the maxima cannot be accounted for inthis way. The discrepancy between

this thickness and our estimate 0.35 nm is due to the fact thatsome depletion of anions is in the

ICS(0) theory accounted for inσd− and arises from the ion-ion correlations in the diffuse partof

the double layer.

The ICS(0) curves in Figure 13 are calculated in presence of image charge effects. In Figure 14

we show the corresponding results without image charges. Here, we have selectedzsolv = −0.30

nm, which gives a reasonable agreement with the experimental data forσ < −4 µC/cm2 for the

0.5 and 1.0 M cases. If instead we had chosenzsolv = −0.35 nm, the agreement for the 1.0 M

case would have deteriorated somewhat while that for 1.5 M would have improved (not shown).

The difference of 0.05 nm inzsolv is sufficient to accommodate a large part of the differences

between the curves in panels (a) and (b) of Figure 6. The larger salt depletion in the absence of

attractive image charge interactions is to a large extent compensated by a thinner ion-free layer.

Thus, excluding image charge effects does not have a large effect on the possibility to obtain a fit

between theory and experiment. The behavior ofσ− for small negative surface charge densities is

better described when images are included. On the other hand, the trend in the experimental data

for large negative surface charge densities appears to be better reproduced by the model without

images. Because the scatter is so large in the experimental data set, the data can be accommodated

by both the “image” and “no image” variant of ICS(0) theory. Nodefinite conclusion can thus be

drawn about their relative merits.

The magnitude of the effect of image charges depends on the location of the dielectric dis-

continuity via the parameterzdiel in eqs. (17) and (20). As mentioned earlier, we have selected

the value−0.3 nm forzdiel, corresponding to a dielectric discontinuity 0.3 nm from the plane of

closest approach of the ions. One must remember that the various distances and ion sizes used in

the PM are merely effective parameters that do not necessarily give precise information about the

geometrical distances, but it is important that these parameters have reasonable magnitudes.

For positive surface charge densities, we see in Figure 13 that the experimentalσ− value de-

creases very strongly with increasingσ ; more strongly than the ICS(0) theory predicts for the
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parameters used. In order to show the behavior of the components of charge over a range that also

includes larger positive surface charge densities, thecationic component of charge,σ+, is shown

as a function of surface charge density in Figure 15. For negative surface charges the agreement

between the ICS(0) and experimental values is very good except for the 2.0 M case (eq. (6) implies

that the deviations must be as large as in Figure 13). However, for positive surface charges the the-

oretical results deviate very strongly from the experimental data. In fact, for large positiveσ this

deviation is much larger than the difference between the results of the GCS(0) and ICS(0) theories.

Even if one would allow anions to enter into the inner layer asin Section 5.3.3, one would not

obtain good agreement between the ICS(0) theory and experiment for positive surface charges (not

shown). All of this suggests that strong specific chemical adsorption of SO2−
4 ions on positively

charged mercury surfaces51 has to be taken into account. As will be seen below, the behavior of

the potential at the point of zero charge also supports to this notion.

6.2 Potential at the Electrocapillary Maximum

The potential at the electrocapillary maximum (point of zero charge) for the mercury/MgSO4 so-

lution interface with respect to the sulfate-reversible Hg|Hg2SO4| reference electrode, i.e. for the

cell Hg|Hg2SO4|MgSO4(nbulk)|Hg, is given in ref. 23 for ten concentrations of MgSO4. In order

to compare the position of the electrocapillary maximum between different concentrations, the

potential scale must be such that the reference electrode isunaffected by changes in electrolyte

concentration. From the data in ref. 23 we have therefore calculated the potential with respect to

the reference electrode Hg|Hg2SO4|MgSO4(1M)| by subtracting the potential of the concentration

cell Hg|Hg2SO4|MgSO4(nbulk)||MgSO4(1M)|Hg2SO4|Hg, calculated via the Nernst equation. We

used activity coefficients taken from ref. 37, which we converted to the molarity scale using densi-

ties from ref. 30. Here,nbulk denotes the concentration of the solution in contact with the mercury

electrode. The results are shown in Figure 16. It can be seen in this figure that the potential de-

creases with concentration in an almost perfectly linearlyfashion, changing at a rate of about−8.5

mV/M.
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A negative shift of the position of the electrocapillary maximum on an increase in concentration

is often quoted as evidence for chemical specific adsorptionof anions. The argument is that specific

chemical adsorption of anions tends to induce a positive surface charge on the mercury, so that a

more negative potential must be applied to attain the point of zero surface charge density than in

their absence.22 This approach contains the implicit assumption that, as predicted by GC theory,

the diffuse layer potential at the point of zero charge does not depend on the bulk concentration.

However, when correlation effects are taken into account inthe calculation of the diffuse layer

potential this needs not be the case. In the present case witha nearly symmetric electrolyte the

diffuse layer potential at the point of zero charge is indeedalmost constant over the range of

concentrations considered, as can be seen from Figure 3. Thus, to take ion-ion correlations into

account does not invalidate this criterion for detecting specific adsorptionin this case. The tentative

conclusion is therefore that sulfate ions are chemically specifically adsorbed at the point of zero

charge but that magnesium ions are not (or at least much less strongly so). It must be kept in mind

that this conclusion may be subject to change with further refinement of ICS model of the diffuse

layer. A difference in the distance of closest approach to the surface between anions and cations,

such as the one considered in Section 5.3.3, could conceivably explain much of the shift in the

point of zero charge, for instance.

The conclusion that sulfate is specifically adsorbed at the point of zero charge is consistent

with the interpretation of experiments on Na2SO4.51 The conclusions reached in that work have,

however, been contested.52,53The objections raised are not applicable to the potential data consid-

ered in the present work, despite that the experiments are very similar. The crucial difference is

that in ref. 51 potential scale conversions are carried out by use of an approximately calculated cell

potentials for cells with a liquid junction potentials, whereas in ref. 23 measured cell potentials are

used. Note that the approximations used in ref. 51 may affectboth the conclusions about the shift

of the electrocapillary maximum with concentration and those regarding the components of charge

in that work.

38



7 Concluding Remarks

The results above show that for concentrations up to about 1.5 M and surface charge densities

more negative than about−1 µC/cm2, the properties of the double layer at the Hg/aqueous MgSO4

interface are well described by ICS(0) but not by GCS(0) theory. The ICS(0) theory correctly

predicts the feature of the experimental data in ref. 23 thatthe anionic component of charge reaches

a maximum and then decreases with increasingly negative surface charge density. GCS theory

would be unable to give an explanation of these experimentalfeatures of the components of charge

unless a sophisticated Stern layer is included. The combination of a zeroth order Stern layer and

adsorption due to ion-ion correlations in the diffuse layernaturally accommodates the experimental

behavior with only one fitting parameter (the width of the Stern layer), that simply adds a constant

shift (proportional to the bulk concentration) of the theoretical curves. In our view, this constitutes

strong evidence of the importance of ion-ion correlations in electrical double layers. As far as

we are aware this is the first unambiguous experimental demonstration of the action of ion-ion

correlations in this context.

Image charges give rise to some enrichment near the surface that compensates for the depletion

due to ion-ion correlations. This is particularly important mainly close to the point of zero charge.

For larger surface charge densities the image charges partly counteract charge inversion by weak-

ening the ion-ion correlations close to the surface. These conclusions are valid for materials with

an infinite permittivity, as for a metal. Had the permittivity been much smaller than that of water,

a very common situation, the reverse would apply.

For positive surfaces the deviation between the model and experimental components of charge

are attributed to chemical specific adsorption of sulfate. This is an interesting distinction: at the

positive side the double layer seems to be dominated by adsorption in the Stern layer, whereas on

negative surfaces the ICS(0) model prevails. Although we do not model the adsorption on positive

surfaces here, we do expect that the ICS theory can be extendedto treat the specific adsorption

of ions, e.g. by the inclusion of a short-range non-electrostatic adsorption potential for the ions,

which gives rise to the Stern layer of adsorbed ions. The equilibrium between free and adsorbed
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ions will then automatically be taken into account in the model. When ion-ion correlations are

considered in the modeling of chemically specifically adsorbed ion layers, one has the advantage

that the effect of lateral interactions within that layer aswell as correlations with all ions would

be included automatically. Actually, such an approach would help to overcome the most-evasive

problem in Stern theory, viz. establishing the mean potential at the inner Helmholtz plane. If the

IC model and the choice of the parameters are adequate such ananalysis is expected to lead to a

chemical specific adsorption Gibbs energy that is independent of the surface charge.

Deviations from GCS behavior become stronger with increasing strength of the electrostatic

interactions. Electrolytes with ions of higher valency than two would therefore be more promising

when one wants to quantify deviations from PB theory and makecomparisons with the predictions

of theories containing ion-ion correlations. The practical impediment is that trivalent ions tend

to hydrolyze, producing strongly chemically adsorbing complexes. Hence, in practice realistic

opportunities for testing the model remain scarce and the elaboration given here may appear to be

one of the few feasible.

As the long-range electrostatic interactions depend only on the ionic valencies and the solvent

and wall permittivities, one would expect that it is possible to find chemically dissimilar systems

where the electrostatic interactions are similar. If this is indeed the case, it would provide an

opportunity for further tests of the validity of ion-ion correlations as a mechanism for overcharging.

As the strength of the electrostatic interactions can be changed either by changing the valency of the

electrolyte or the relative permittivity of the solvent, non-aqueous electrolytes might be appropriate

for testing the generality of the conclusions drawn above. For instance, one would expect that an

electrolyte consisting of a 1:1 salt in a solvent with relative permittivity of about 20 would behave

as a 2:2 salt in water. Similarly a double layer with monovalent counterions in a solvent of relative

permittivity 20 would be similar to a double layer with divalent counterions in water of twice the

surface charge density. The dropping mercury electrode appears to be a suitable setup, perhaps

also for experiments employing non-aqueous electrolyte. In fact there are some examples of such

experiments in the literature.54,55 Another option may be to study the double layer on dispersed
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oxides in the presence of non-hydrolyzing multivalent electrolyte. Awaiting such applications the

system investigated by us remains unique for the reasons stated in the last paragraphs of Section 1.
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Figure Captions

Figure 1: Illustration of how the interface between mercuryand an aqueous MgSO4 solution is

modeled. The mercury phase is modeled as an ideal conductor (i.e. εw = ∞) and the solvent as

a dielectric continuum with relative permittivityε. The dielectric discontinuity is located atzdiel,

indicated by a dashed vertical line. The vertical line atzion indicates the position of the plane of

closest approach of the ion centers. The dashed-dotted vertical line atzσ indicates the location

of the surface charge and the vertical full line atzsolv indicates the position of the Gibbs dividing

plane of water. Note thatzdiel is specifieda priori while zsolv is used as a fitting parameter. No

special assumptions are made about the relation betweenzdiel, zσ andzsolv although we expect that

they should be close to each other for the model to be realistic. The curves are sketches of ionic

concentration profiles and the horizontal dashed line showsthe bulk concentration of electrolyte.

Figure 2: Comparison between experimental (symbols) and primitive model, PM, (curves)

activity coefficients,f±, of aqueous MgSO4 solutions for various values ofd+−. The PM values

are calculated within the HNC approximation. The distancesof closest approach between the

cations and anions,d+−, are indicated in the figure. The diameter of the anionsd−− is taken to

be 0.46 nm throughout and the diameter of the cations,d++, follows from the assumed additivity

of the radii. The value 0.38 nm is the one used ford+− in the calculations in this work unless

otherwise stated.

Figure 3: The diffuse layer potentialψd (panels a and c) and the inverse of the corresponding

capacitanceCd (panels b and d) as functions of surface charge density for the system described

in Figure 1 for the bulk electrolyte concentrations indicated. The thick curves are from IC the-

ory, calculated using the AHNC method with the PM pair interaction potential, see Figure 2. The

thin curves are from GC theory. Panels (a) and (b) show the results for a mercury surface (im-

age charge interactions included) while panels (c) and (d) show the corresponding results without

image charge interactions.

Figure 4: Concentration profiles in the diffuse part of the double layer from IC theory for the
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system with image charges considered in Figure 3 for the bulkelectrolyte concentrations indicated.

In panel (a)σ =−0.95 µC/cm2 and in panel (b)σ =−9.95 µC/cm2. The full curves denoten+(z),

the cation (counterion) concentration profile, and the dashed curves denoten−(z), the anion (co-

ion) concentration profile, respectively.

Figure 5: Same as Figure 4, but the dielectric constant on both sides of the charged surface is

set equal to that of water, i.e. no image charge interactionsare included.

Figure 6: Diffuse layer part of the anionic component of charge,σd−, as a function of surface

charge density for the MgSO4 bulk concentrations indicated. (a) Results for a mercury surface

(image charge interactions included). (b) Corresponding results without image charge interactions.

The bold curves are from IC calculations whereas the thin ones are from GC theory. Systems as in

figs. Figure 4 and Figure 5. (Note that the abscissa scale has negative polarization to the left and

positive to the right contrary to the usual convention in electrochemistry.)

Figure 7: Diffuse layer part of the anionic component of charge as a function of surface charge

density for 1.0 M concentration for wall permittivities corresponding to vacuum, water and a per-

fect conductor, as indicated in the figure. The dielectric discontinuity is assumed to lie 0.3 nm from

the plane of closest approach of the ions.

Figure 8: Diffuse part of the anionic component of charge as afunction of surface charge

density for 1.0 M MgSO4 solutions with dielectric constants 2, 1.5 1.25, 1, 0.9 and 0.8 times that

of water,ε. Image charge interactions arenot included. Except for the full curve, corresponding

to the dielectric constant of water, longer dashes means higher permittivity. Selected values of the

permittivity are shown in the figure.

Figure 9: Same as Figure 5, but for large ions. The ionic diameters used ared++ = 0.60,d−− =

0.46 andd+− = 0.53 nm.

Figure 10: Same as the IC results in Figure 6 b, but for larger cations. Same ionic sizes as in

Figure 9.
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Figure 11: Illustration of the variants of the double layer model considered in Section 5.3.3. In

contrast to the system considered elsewhere in this paper, presented in Figure 1, the coordinates of

the plane of closest approach of the anions,zion− , and the cations,zion
+ , are different. Otherwise, the

symbols have the same meaning. The origin of the coordinate system is placed atzion
+ , i.e. zion

+ ≡ 0.

The Gibbs surface of the solvent is assumed to coincide with the plane of closest approach of the

anions and is taken to be located atz =−0.3 nm, i.e.zsolv = zion− =−0.3 nm. Forzdiel, the values

−0.6,−0.5 and−0.4 nm are considered (marked in the figure as dashed verticallines).

Figure 12: The thick curves show the anionic components of charge (total, not only the diffuse

part) for a model where the anions can approach the surface asclose as up to the Gibbs plane

of the solvent, here taken to be located atzsolv = −0.3 nm, cf. Figure 11. The bulk MgSO4

concentration is 0.5 M andzdiel =−0.6 nm (long-dashed curve),zdiel =−0.5 nm (medium-dashed

curve) andzdiel =−0.4 nm (short-dashed curve). The thin curves correspond to the 0.5 M curves

from Figure 6, with (full curve) and without (dashed curve) image charges, withzsolv taken as−0.3

nm. The vertical line is the the Stern layer contribution to the components of charge corresponding

to this value.

Figure 13: Anionic component of charge,σ−, for the mercury/MgSO4 solution interface as

a function of surface charge density for the electrolyte concentrations indicated. The symbols

are experimental data from ref. 23, small symbols correspond to σ− calculated from capacitance

measurements and large symbols toσ− from electrocapillary curves. The dashed lines are the

predictions of GCS(0) theory and the full lines are ICS(0) results. Image charge interactions with

the mercury surface are included. The contribution toσ− from a zeroth order Stern layer (an ion

free layer) of thickness 0.35 nm has been added to the theoretical curves, i.e.zsolv = −0.35 nm,

cf. eq. (8). The thin, horizontal lines correspond to the contribution to σ− solely from an ion

free layer of thickness 0.44 nm, as assumed in ref. 24, see text. (Note that the abscissa scale

has negative polarization to the left and positive to the right contrary to the usual convention in

electrochemistry.)
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Figure 14: Same as figure Figure 13 but without image charge interactions. The thickness of

the Stern layer is 0.30 nm,zsolv =−0.30 nm, for the theoretical curves.

Figure 15: Cationic component of charge,σ+, as a function of surface charge density for the

same system as in figure Figure 13 (the same notation is used inboth figures).

Figure 16: Measured potential of the electrocapillary maximum with respect to a Hg|Hg2SO4|MgSO4(1M)|
reference electrode as a function of the concentration of MgSO4. Data taken from ref. 23.
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Abstract

The ability of the primitive model and a closely related model to reproduce the experimen-

tal activity coefficients of aqueous solutions of several divalent metal sulfates is investigated.

Both models gave a fair representation of the variation of the activity coefficients over the

range where reliable experimental data are available. However, the two models predicted sig-

nificantly different values of the absolute activity coefficients. These observations are recon-

ciled by noting that the variation of the activity coefficients at low concentrations (< 10 mM)

is different in the two models. This reveals that the thermodynamic properties of 2:2 elec-

trolytes are sensitive to the form of the interaction potential even for low concentrations. The

ion diameters that give the best agreement between the experimental and calculated activity

coefficients are found to be significantly smaller than the expected geometric size of hydrated

cations. There is a tendency towards smaller cation size with increasing atomic number, but

some exceptions to this trend were also found.

Keywords: primitive model electrolytes, sulfates, ion pairing, Monte Carlo simulation, hyper-

netted chain approximation

1 Introduction

Many sulfates with divalent metal cations (referred to as “divalent sulfates” below) are very soluble,

although calcium sulfate (gypsum) and barium sulfate are well known examples of the contrary.

The bulk thermodynamic properties of solutions of divalentsulfates show large deviations from

ideal solution behavior and are remarkably similar for different cations. Close inspection of the

activity coefficients for the aqueous solutions of divalentsulfates of beryllium, magnesium, man-

ganese, nickel, copper, zinc and cadmium reveals a systematic (though not completely universal)

trend towards a lower activity coefficient for a given concentration with increasing atomic number

of the cation. Atomic number correlates with many properties that are potentially important for

ionic interactions, such as ionic size and polarizability.From a fundamental point of view, it would

be of great interest to elucidate the details of the solvent averaged ion-ion interactions that give
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rise to the differences in thermodynamic properties and howthese interactions vary with the cation

properties.

Accurate modeling of aqueous electrolytes for all but the most dilute concentrations is a diffi-

cult problem. This is especially true for electrolytes of high valence types where the strong electro-

static interactions between ions give rise to association,“ion pairing”. For symmetric electrolytes

in aqueous solution at room temperature, the divide seems tolie between 1:1 and 2:2 electrolytes:

1:1 electrolytesusually do not exhibit significant ion pairing whereas 2:2 electrolytes invariably

do. Following Bjerrum, ion pairing is frequently described in terms of an equilibrium between

“free” and “paired” ions, characterized by an equilibrium constant.1 This leads to a description

where the ion-pair is formally treated as a separate chemical species.

In apparent contradiction to this view are models that contain only the free ions, interacting by

some set of pair potentials that define the details of the model. The contradiction is apparent rather

than real because ion pairing arises as a consequence of the interactions in the latter approach,

showing up as a strong peak in the anion-cation pair distribution function. This requires proper,

non-linear treatment of the electrostatic interactions. Thus, in approximate theories where the

electrostatic interactions are treated in a linear, Debye-Hückel-like fashion ion pairing cannot be

treated correctly. It is instructive to recall that Bjerrum theory in its original form is an approximate

theory for the primitive model (PM) of electrolyte solutions, wherein the ions are modeled as

charged hard spheres and the solvent as a dielectric continuum, intended to remedy this problem.

To describe ion paring in terms of a chemical equilibrium (orset of equilibria) is to sacrifice a

detailed representation of the ion-ion distribution functions for an approximate, conceptual simpler

one. Although such a description is capable of fitting experimental data, it does not imply the

presence of any attractive interaction in addition to the electrostatic one. On the other hand, the

presence of such non-electrostatic interactions is hard topreclude. What can be said with certainty

is that if the ion pairing can be described in terms of a chemical equilibrium, the cation-anion

interaction is strong compared to the thermal energy.

The PM is able to give a reasonable fit to the experimental activity coefficients of MgSO4 for
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moderate electrolyte concentrations with the ion sizes used as fitting parameters.2 Since the PM

only contains the Coulomb interactions and the ionic size, itis presumably not a very faithful rep-

resentation of the details of the inter-ionic potential. This immediately raises questions about just

how sensitive the model predictions are to the details of thebehavior of the interaction potential for

short to intermediate distances, where the deficiencies of the PM are likely to be the most severe.

Experience with 1:1 electrolytes shows that it is relatively easy to find a model that approximately

reproduces the thermodynamic properties of real solutions.3 It is possible to acquire similar agree-

ment with experimental thermodynamic data with models having dramatically different structural

properties.4 Clearly, the relative ease of fitting bulk thermodynamic datais more of a liability than

an asset in the search for the “true” pair potential. (The word “true” is in quotation marks because

the full solvent-averaged interaction potential is known to contain many-body terms.5 There is no

guarantee that there is such a thing as a unique best interaction potential that is limited to pairwise

terms, except, of course, in the limit of infinite dilution.)Thus, the most one can reasonably hope

for when trying to determine the inter-ionic interaction potentials by fitting experimental data is to

find the broad, qualitative features of the interaction potential.

For some applications it is essential to know the interaction potential explicitly. The theoretical

treatment of electrical double layers and inhomogeneous electrolyte solutions is an example of

this. See ref. 6 for an example of such an application. It is worth noting that while a description

of electrolytes containing ions of high valency in terms of Bjerrum-type ion pairing is likely to

give a reasonable description of the bulk properties, it is certain to be misleading for electrical

double layers. Due to the excess of counterions in the vicinity of any charged surface, a simple ion

pairing picture cannot be expected to give an accurate description of the deviations from ideality.

The deviations from ideality in that situation originate mainly from repulsion between counterions

(to the surface) rather than attraction between ions of opposite charges. This example shows that

it is important to construct models in terms of explicit interaction potentials in order to make

correct generalizations. A simple and robust model with fewfitting parameters is preferable in

this context to a highly parametrized, less robust model, even if the latter type of models can
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give a better description of the properties of the bulk solution. This is in contrast to the task

of simply describing experimental data in a compact form that allows easy interpolation. For this

purpose highly parametrized expressions such as the Pitzerequation7 are suitable and the increased

computational effort needed to treat models with explicit interaction potentials is hardly justified.

The modeling of electrolytes on the level of ionic interactions may also offer improved prospects

for putting activity coefficients on the absolute scale. Whatis meant by absolute scale here is a

scale with a non-interacting standard state, where the solution is taken to be ideal. The set of tab-

ulated activity coefficients generally considered most reliable8 have been obtained by isopiestic

determination of the osmotic coefficients from which the activity coefficients are obtained by in-

tegration of the Gibbs-Duhem equation. This integration gives the difference in excess chemical

potential from the value at the lower bound range of integration, corresponding to 0.1 m concentra-

tion in ref. 8. For the activity coefficients to be given on an absolute scale the integration has to be

carried out all the way from zero concentration, where the solution is truly ideal. This is a source

of great uncertainty in the determination of the standard chemical potential: even for high quality

data this quantity is often not accurately known. This limitation does not detract from the validity

of the activity coefficients for most purposes, because onlydifferences in (chemical) potential have

physical significance. However, from a fundamental point ofview it is somewhat unsatisfying to

be unable to compare the activity coefficients on the absolute scale. Such a comparison would be

necessary to fully quantify the differences between the different divalent sulfates.

By fitting one (or more) parameter(s) appearing in a model to osmotic coefficient data and

subsequently calculating the activity coefficients from the theory with the same parameters, the

absolute activity coefficients can be obtained. Indeed, this strategy is commonly used to treat

experimental data, see for instance ref. 9 where the Pitzer equation is used and ref. 10 where the

problem is treated in terms of a Bjerrum-like chemical equilibrium model. The strategy of using

theory in this way to extract absolute activity coefficientsfrom measured osmotic coefficients is a

somewhat risky one. This is so because it is in effect an interpolation of the osmotic coefficient

as a function of concentration over a range in which the function varies quickly. For this reason,
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it is important that the theory that is used has a sound physical basis. (Debye-Hückel theory is of

limited applicability in practice for 2:2 electrolytes, despite that this theory is an exact limiting law.

The reason is that the concentration range in which this theory is valid is very narrow compared to

the range over which the interpolation has to be made.) Conversely, the ability, or lack of such, of

a model to furnish a good extrapolation to lower concentrations can be used as a test of the model.

Measurements of the electromotive force (EMF) of electrochemical cells can be used for this

purpose. The EMF is directly related to the chemical potential of the salt through the Nernst equa-

tion. Thus, this method is experimentally independent fromisopiestic measurements of the osmotic

coefficients. EMF measurements are possible down to concentrations that are orders of magnitude

smaller than those amenable to isopiestic experiments and are therefore useful for testing theories

in the low concentration regime. However, for EMF measurements to yield activity coefficients

on an absolute scale, the EMF for zero concentration has to bedetermined through extrapolation.

Over the last century, many attempts have been made to determine activity coefficients of divalent

sulfates on the basis of such data.11–20 The extrapolation to zero concentration in refs. 13,18–21

relies on the use of the PM, evaluated using various approximate theories, which are only valid for

low concentrations. The validity of the PM thus directly affects the reliability of this extrapola-

tion. In the experimental setup used in refs.18–20an alternative route for the determination of the

activity coefficients on an absolute scale was used. This method is based on relating the absolute

activity coefficients of the electrolyte of interest to those of a set of auxiliary electrolytes. Thus,

the activity coefficients given in these papers must be considered more reliable than those from the

older studies.

The primary goal of the current paper is to investigate the ability of the PM as well as another,

closely related, model to reproduce the experimental activity coefficients for solutions of a range of

divalent sulfates. Such an analysis enables the ability of the models to accommodate the difference

between chemically distinct but physically similar salts to be tested. The comparison between

two similar models enables estimation of the sensitivity ofthe thermodynamic properties to the

assumptions about the form of the interaction potential. Special emphasis is placed on the ability
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of each model to furnish a reliable extrapolation to low concentrations with parameters determined

from experimental data for moderate to high concentrations.

A secondary goal is to test the accuracy of the hypernetted chain (HNC) approximation for

electrolyte models that give realistic values for the activity coefficients. Whenever no great error is

incurred by doing so, it is preferable to use integral equation theory over simulation, as the former

requires much less computational effort, for evaluating the properties of a given model. The HNC

approximation have been tested before22 , showing great promise as a quantitative theoryin some

regions of parameter space, though not in others.23 There is even a region in parameter space

where no physical solution exist for the PM.24 As the region in parameter space that is relevant

for 2:2 salts in water partly overlaps with the region where HNC theory is inaccurate, comparison

with simulation is necessary to establish the applicability range in concentration, for the actual ion

sizes used.

The outline of this paper is as follows: First, the pair potentials defining the two model in-

teraction potentials that we consider are given. Then, the theoretical methods used, Monte Carlo

simulation and HNC theory, are presented. The procedure forfitting the parameters of the model

potentials to experimental osmotic coefficients at moderate concentration is then described, fol-

lowed by the results of the fitting procedure for each of the model potentials. The activity coeffi-

cients for low concentrations for the same parameter valuesare then calculated and compared with

experimental data from EMF measurements.

2 Modeling of Sulfates

2.1 The Primitive Model

The PM is defined by the pair interaction potentialuPM(r), that is given by

uPM
i j (r) = uCoul

i j (r)+ucore
i j (r) (1)
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whereucore
i j (r) is a hard sphere potential that is zero forr ≥ di j and infinite forr < di j, wheredi j

is the diameter associated with the interaction between an ion of speciesi and one of speciesj and

r = |r − r ′| wherer andr ′ are the positions of the ions. The termuCoul
i j (r) is the Coulomb potential

given by

uCoul
i j (r) =

ZiZ je2
0

4πεε0r
(2)

whereZl, l = i, j, is the ionic valency (with sign),e0 is the unit charge,ε0 is the permittivity of

vacuum andε is the relative permittivity of the solution. The value of the relative permittivity is

taken as that of the pure solvent, 78.36 for water at 25 °C.25

Here, we make the assumption that the ionic diameters are additive so thatd+− = (d++ +

d−−)/2. Note that as the ion sizes in the PM are not necessarily geometric sizes, but rather serves

to approximate the repulsive forces between pairs of ions, this additivity is not self evident. It is

our expectation thatd+− is the by far most important parameter in the model as it determines the

strength of the Coulomb interaction at contact and thereby the degree of ion pairing. Here, we

keepd−− fixed to the crystal diameter of sulfate, 4.6 Å,26 and used++ as a fitting parameter;d+−

follows from additivity. This prescription is motivated bythe expectation that the cation is more

strongly hydrated than the anion.

While the PM may be regarded as the simplest member of a class ofmodels composed of

the generic long-range Coulomb interaction and a specific short-range interaction, it is just one

member of an infinite set of possible ones. We think it is prudent to consider also another member

of this class of models, described in section 2.2 below, in order to guard against the possibility that

the PM may be a pathological case in one way or another.

2.2 The Solvent Structure Primitive Model

Simulations consistently show that the ionic interaction has an intermediate-range oscillatory com-

ponent arising from ordering of the solvent. This is the caseboth for the short-range part of the

potential of mean force27–31and that of the effective potential that reproduces the truepair correla-
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tion functions.32–34The details of this potential are of course dependent on the force-field used in

the simulation, but the qualitative conclusion about the existence of an oscillatory contribution to

the interaction potential is robust. The approach in the current work is to adopt a simple expression

that has the expected qualitative features. Instead of using the ion sizes to fit experimental data, a

parameter in the short range potential, the explicit expression for which is given below, serves this

purpose.

A very simple expression that reproduces the expected qualitative behavior of the short ranged

part of the potential of mean force between cations and anions is

us
i j(r) = αi j

ds cos

(
2π r−di j

ds

)
exp

(
− r−di j

ds

)
r

, (3)

wheredi j is the ion diameter,ds is a length scale associated with the solvent andαi j gives the

energy scale. We refer to the model defined by adding eq. (3) tothe PM interaction potential,

eq. (1), as the “solvent structure primitive model”, abbreviated “SSPM”. (The same value ofdi j is

used in eq. (3) and for the hard cores.) This name is due to the role of the solvent in creating the

oscillatory behavior of the potential of mean force that eq.(3) seeks to mimic. In principle, all of

the parameters of eq. (3) could be used as fitting parameters.For a binary electrolyte this would

correspond to no less than seven parameters. While a large number of fitting parameters does not

automatically disqualify a model, this is clearly an inappropriately large number if comparison

with the one-parameter version of the PM considered here is to be meaningful.

The size parameters for ions and solvent,di j andds, are constrained to values obtained from

independent information. The length scale parameter of thesolvent,ds, was taken as 2.76 Å, the

typical inter-atomic spacing in liquid water.26 The ion diametersdi j were taken as 2db
+ + ds for

d++, 2db− for d−− anddb
+ + db− + ds/2 for d+−, with db

i denoting the “bare” radius. In all cases

the value ofdb
i was taken as the recommended value for the crystallographicion diameter from

ref. 26. The energy scale parameterα+− is used as a fitting parameter andα++ andα−− are set

to zero. This prescription is motivated by the expectation that the anion-cation interaction is the
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most important interaction in the system. This choice of diameters together with the form ofus
i j(r)

ensures that a anion-cation pair closer thandb
+ + db− + ds will be repelled due to the short-ranged

part of the pair potential. Betweendb
+ +db−+ds/2 anddb

+ +db−+ds there is a soft repulsion from

us
+−(r) and smaller distances are forbidden by the infinitely repulsive hard cores. This is meant

to model the free energy cost of displacing water molecules from the first solvation shell of the

cations. The diameters associated with interactions between like-charged ions may be considered

a compromise to maintain additivity.

We emphasize that the model defined by eq. (3) together with the prescriptions for the ion

sizes above is not predicted by any theory but is an ansatz made on the basis of our qualitative

expectations of the appearance of the potential. While the qualitative features that the form of eq.

(3) seeks to mimic are features that are consistently seen insimulation, the details are unlikely to be

faithfully represented; this potential is at best a sketch of the true interaction potential. The reason

why we investigate such a model is rather to establish to whatextent the ability to fit experimental

data depends on the actual form of the potential. We note thatthe form used here is analogous to

the one used in35 for 1:1 electrolytes, but that the pre-factor and the prescriptions for what ion-sizes

to use differ.

In Figure 1 the interaction potentials between Zn2+ and SO2−
4 are shown for the PM and SSPM,

see Section 4.1 below. Note that the Coulomb potential is the dominant contribution to the total

potential even in the SSPM. The extra potentialus
+− nowhere accounts for more than half the

value of the potential, which is the case at contact, and appears completely unimportant beyond

10 Å. Of course,us
+− gives rise to a large change in theforce between ions for some separations,

particularly close to anion-cation contact. The fact thatus
+− gives a modest contribution relative to

the total interaction potential does not necessarily mean that this contribution is unimportant. On

the contrary, a weak attraction superimposed on a strong attraction may have a larger effect than

the weak interaction alone. The reason is that the interaction potential enters the Boltzmann factor

and thus the response in density due to a change in potential is dependent on the strength of the

original interaction potential in a non-linear way.
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3 Theoretical Methods

3.1 The HNC Approximation

The Ornstein-Zernike (OZ) equation for a bulk system is given by

hi j(r) = ci j(r)+∑
m

nm

∫
him(|r − r ′|)cm j(|r ′|)dr ′, (4)

wherehi j(r) is the total correlation function andci j(r) is the direct correlation function for ion

speciesi and j. The total correlation function is related to the pair distribution function,gi j(r),

by gi j(r) = hi j(r) + 1. The hypernetted chain (HNC) approximation has the form of arelation

betweenhi j(r) andci j(r) ,

ci j(r) =−βui j(r)+hi j(r)− log[1+hi j(r)]. (5)

Together, these two relations betweenhi j(r) andci j(r) form a system of equations from which

these functions can be calculated givenui j(r). Here, the standard procedure of solving the set of

equations composed of (4) and (5) by Picard iteration is employed.36 The numerical difficulties

caused by the long-range Coulomb interactions are handled bythe method described in ref. 37.

Briefly, for a starting guess for the set ofci j’s eq. (4) is solved with respect to the set ofhi j’s by

taking the Fourier transform of this equation. Due to the convolution theorem eq. (4) then takes

the form of an algebraic equation that is solved for the Fourier transform of the set ofhi j’s. Then

the inverse Fourier transforms are calculated and a new guess for the set ofci j’s is obtained from

eq. (5). The procedure is repeated until convergence.

The accuracy of the HNC approximation tends to be good for ionic systems. A known excep-

tion is systems with strong, attractive electrostatic interactions at low density. For PM electrolytes

there is a region where there is no solution for the HNC approximation. This region has been

mapped out for the “restricted primitive model”, i.e. the PMwith the constraintsd++ = d−− = d+−

andZ+ =−Z−.24 In the vicinity of the region of no solution there are systematic errors in the total
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correlation functions. For the anion-cation correlation function the height of the peak at contact

is then too low; the degree of ion pairing in the system is underestimated. In the like-charged ion

correlation functions the errors of the HNC approximationsshow up as a spurious peak about one

ion radius from the contact distance.38 At higher concentrations both these errors are less impor-

tant: the peak height in the unlike-charged ion correlationfunction is better represented and the

peak in the like-charged ion correlation function is here a true feature of the system. The error in

the HNC approximation is that this peak does not disappear for low concentrations. For aqueous

2:2 electrolytes with sizes around those considered here, the region where this problem becomes

severe starts at concentrations below about 0.2 M and rapidly gets worse for lower concentrations.

Moreover, the HNC approximation also shows a more severe inconsistency between the compress-

ibility and virial routes for calculation of thermodynamicproperties for 2:2 salts than for 1:1 and

1:2 salts. The accuracy of the HNC approximation thus cannotbe taken for granted in the present

case. For this reason, MC simulations are employed to test the predictions about the activity coeffi-

cients from HNC theory. Note that the HNC approximation is thermodynamically consistent in the

limited sense that the “energy” route to thermodynamic properties is consistent with the “virial”

route.39,40Because of the presence of a region where no solution exist thecompressibility route is

unpractical for the calculation of osmotic coefficients andactivity coefficients on an absolute scale

for the PM of solutions of divalent sulfates. For this reasonall thermodynamic quantities presented

in this work are calculated via the energy/virial route.

3.2 MC Simulation

All simulations presented in this work are performed using the standard Metropolis Monte Carlo

method for the canonical ensemble using 242 pairs of ions with the concentration determined

by the box size. Periodic boundary conditions with the minimum image convention were used.

The simulation was run for 50 million configurations of equilibration followed by 150 million

configurations. The long equilibration was performed in order to guard against the possibility that

non-representative configurations formed by the initial random placement of the particles would
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persist for many steps due to the strong forces acting in 2:2 salts.

The excess chemical potential was evaluated using a variantof the Widom insertion method.

The basic implementation of this method is that a trial insertion of a particle is made at random

into the simulation box and the interaction with all other particles is evaluated. The excess free

energy in units ofkBT is simply the ensemble average of the Boltzmann factor associated with the

insertion of a particle at a random location. In charged systems, the naive implementation of this

method displays very poor convergence with increasing system size. This is because the insertion

gives rise to a non-electroneutral system. To remedy this problem an approximate but accurate

modification of this scheme was used.41

3.3 Fitting to Experimental Data

Experimental activity coefficients and osmotic coefficients of sulfates with the cations Be2+, Mg2+,

Mn2+, Ni2+, Cu2+, Zn2+ and Cd2+ were taken from ref. 8. To cast the osmotic coefficient in a

form that is compatible with the definition of this quantity in McMillan-Mayer type models the data

was converted from Lewis-Randall to McMillan-Mayer scale according to the procedure described

in.42 Empirical expressions for the densities of the salt solutions from ref. 43 were used.

The activity coefficient data are based on isopiestic measurements of the osmotic coefficient

for concentrations above some lowest concentrationm0, 0.1 mol/kg in this case, followed by inte-

gration according to the Gibbs-Duhem equation according to

− lnγ±(m) =− lnγ±(m0)+
∫ m

m0

(1−φ(m′))d lnm′. (6)

The osmotic coefficients and activity coefficients thus contain essentially the same information.

The accuracy of the absolute value of the activity coefficient is dependent on the activity coeffi-

cient for concentrationm0. If γ±(m0) is not reliably known, only theratio of activity coefficients

(or equivalently, difference in excess chemical potential) to that for a given concentration can be

calculated. For this reason, the osmotic coefficient was used to determine the optimal parameters

13



for each model. In ref. 8,γ±(m0) is simply set to 0.150 (on the Lewis-Randall scale, though the

difference between the McMillan-Mayer and Lewis-Randall scale are insignificant for this concen-

tration) for all the divalent sulfates. (See ref. 44 for details.)

In order to obtain meaningful information about the ionic interactions from such a fit the num-

ber of parameters must be kept to a minimum. Otherwise, thereis a risk that the model becomes so

flexible that a good fit can be obtained regardless of any resemblance between the model potential

and the true potential. What number of parameters is reasonable ultimately depends on the number

of independent pieces of information that has to be simultaneously fitted. Because we limit our-

selves to a single type of information here, we consider it prudent to use a single fitting parameter,

as described in Sections 2.1 and 2.2.

The root mean square deviation between the experimental andtheoretical osmotic coefficients,

δ =

[
∑N

m(φ(nm)−φ exp(nm))2

N

]1/2

(7)

whereφ(nm) andφ exp(nm) are the theoretical (from the HNC approximation) and experimental

osmotic coefficient for concentrationnm andN is the number of different concentrations consid-

ered, was used as the figure of merit for the fit. We have used theHNC approximation in order

to calculate the model osmotic coefficient because the accurate evaluation of osmotic coefficients

from simulations would require very long runs. The value of the fitting parameter that minimized

δ was considered best. The results thus obtained are subsequently validated by comparison of

the activity coefficients to the results from simulations for the optimal parameters. The nine data

point corresponding to 0.2 to 1.0 m concentration was used, i.e. N = 9. It is not reasonable to

expect McMillan-Mayer type models to be applicable for concentrations much higher than 1 or 2

M, although the limit of the range of validity cannot be knowna priori. The lower limit of 0.2 m is

imposed due to the fact that the HNC approximation is not accurate for the PM at low concentra-

tions under conditions of high electrostatic coupling. Solutions of different divalent sulfates have

different density. Thus the osmotic coefficients are not calculated at exactly the same concentration
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interval in terms of molar concentrations. However, the difference between the salts in the width

of the concentration interval is small, less than one percent, and not likely to skew the comparison

between the fits for different cations.

4 Results

4.1 Determination of Model Parameters

4.1.1 The PM

For all divalent sulfates considered here the cation diameter was adjusted to the value that min-

imized δ while the anion diameter was fixed to 4.6 Å, the crystallographic diameter of a sulfate

ion. The results are summarized in Table 1. The optimal values of δ are in the order of one to a

few percent of the typical values of the osmotic coefficientsin the concentration range considered.

A more detailed comparison between theory and experiment ismade in Figure 2. While the PM

shares with the experimental data the feature that the osmotic coefficient goes through a minimum

in the concentration range of the figure, the position of thatminimum is well reproduced only in

the case of BeSO4. For the other salts, the minimum in the model is consistently placed at too low

concentrations.

The theoretical activity coefficients, presented in the figure as lnf±/ f re f
± where f re f

± is the

activity coefficient for 0.2 m concentration, appear to reproduce the experimental trends more

faithfully. The deviations are quite insignificant up to concentrations around 1.5 M but for con-

centrations larger than that the agreement rapidly deteriorates (Figure 2). The apparently better

agreement between theoretical and experimental activity coefficients than between theoretical and

experimental osmotic coefficients is not due to any thermodynamic inconsistency, but is merely

a consequence of the way in which the activity coefficients and osmotic coefficients are related

by the Gibbs-Duhem equation. That lnf± varies more quickly with concentration thanφ is a

consequence of that the osmotic coefficient appears in the integrand of eq. (6). The same rela-
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tive deviation between theory and experiment for lnf± is thus less conspicuous than that forφ

on the scales of the figures for most of the concentration range. (Note that eq. (6) is written in

terms of molalities rather than molarities. This does not affect the argument, however.) The PM

systematically underestimates the osmotic coefficient forthe lower concentrations considered and

overestimate it for higher concentrations. This has the consequence that the error incurred in the

activity coefficient from the integration in the lower half of the concentration range is canceled to

some degree by the error from the upper half. The level of agreement for the experimental and the-

oretical activity coefficients for concentrations around 1M may thus be improved by cancellation

of errors and may therefore give an overly favorable impression of the model.

4.1.2 The SSPM

Here both the cation and anion sizes are held constant and theenergy scale parameterα+− is used

as a fitting parameter, as explained in detail in section 2.2.The parameters that optimizeδ are

shown in Table 2. Typically the values ofδ are lower than the corresponding ones for the PM by a

factor of two to three. Only for BeSO4 the agreement is slightly worse than for the PM. Note that

for this salt, the cation diameter used here is similar to thecation radius that gives the best fit for

the PM. In light of this it is not surprising that the optimal value ofα+− is small: for this salt the

PM and SSPM are very similar.

In Figure 3 the osmotic and activity coefficients obtained from the model are compared to their

experimental counterparts. The main merit of the SSPM compared to the PM is that it reproduces

the position of the minimum in the osmotic coefficient as a function of concentration quite faith-

fully. While the agreement between theory and experiment does extend to higher concentrations

than for the PM for MgSO4, MnSO4, and CdSO4, this is not so for BeSO4. The activity coefficients

are in better agreement with experiment for concentrationsup to about 1 M for the SSPM than for

the PM. However, the concentration range in which theory andexperiment are in agreement is not

very different for the PM and the SSPM models.
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4.2 Test of the HNC approximation against simulation

In Figure 4 the mean activity coefficients calculated in the HNC approximation for the PM are

compared with those from simulation. The agreement is remarkably close for the entire concen-

tration range, especially so in light of that the criterion of thermodynamic consistency between the

compressibility and energy/virial routes for calculationof thermodynamic quantities is not fulfilled

to a very high accuracy for 2:2 salts.45 The agreement between HNC and simulations for the activ-

ity coefficients indicates that the energy/virial route is definitely preferable over the compressibility

route in terms of accuracy. This is fortunate because the energy/virial route is also more compu-

tationally expedient. A corresponding comparison for the SSPM is made in Figure 5. Note that

this model does not seem to share with the PM the problem that it lacks a solution in the region

of parameter space corresponding to 2:2 salts at moderate concentrations. The agreement between

theory and simulation is good up to about 1 M, but above this concentration there is a consider-

able deviation. Fortuitously, and fortunately, the upper concentration limit of the range where the

HNC approximation is accurate coincides with the upper concentration limit of the range where

the model agrees with the experimental data. For low concentrations the agreement between the

HNC approximation and simulation is fair, but the activity coefficients are slightly overestimated

by the HNC theory. This is especially true for the concentration range of about 1 mM to 100 mM,

where the deviation is at most a few percent.

Figure 6 shows a comparison between the pair distribution functions calculated for the SSPM

in the HNC approximation and by simulation. It is clear that deficiencies of the HNC approxi-

mation that are well documented for the soft-core analogue of the PM23 are also present for the

SSPM. For example, the height of the peak ing+−(r) is underestimated by ten to twenty percent

in the concentration range considered. Good agreement between the activity coefficients obtained

by simulation and theory is found for the SSPM at small concentrations (< 100 mM). This is

surprising in light of the deficiencies ing+−(r) from the HNC approximation. Nevertheless, the

consistency between the virial and compressibility routesfor calculating the osmotic coefficients

is comparable to that for the PM (not shown). This suggests that the energy/virial route to thermo-
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dynamic observables is subject to some cancellation of errors that compensates for the structural

deficiencies of the theory. Indeed, this conclusion is consistent with the observation made in ref.

23 that closures that improve the predictions for structural properties over the HNC approximation

do not necessarily give improved predictions for thermodynamic quantities.

4.3 Comparison With Experiments

In Figure 7 the mean activity coefficients of ZnSO4 obtained from the PM and the SSPM are

compared with two experimental studies for ZnSO4. ZnSO4 is chosen as the main example because

this salt has been widely studied experimentally. The experimental data sets, from refs.11 and,18

which are shown in the figure, are not the only ones available in the literature. Those sets were

chosen because they cover a wide range of concentrations andshow a large degree of mutual

agreement despite the fact that different types of cells were used. In ref. 21 the same cell is used as

in ref. 11. There is good agreement between the results obtained in these studies for concentrations

of 5 mM and above. However, when the activity coefficients arepresented on a scale that is

intended to be absolute, there is limited agreement. This isthe case for different experimental data

sets as well as between experiment and theory. The discrepancies between the experimental data

sets can reasonably be explained by that the values of the experimental activity coefficients on an

absolute scale are dependent on an extrapolation to zero concentration. Such an extrapolation is

very sensitive to the data points for very small concentrations, where the experimental errors are

likely to be the largest. The good agreement between experimental data sets for low concentration

in panel (a) of Figure 7 is an illusion created by strong weight of the inaccurate low concentration

points in the extrapolation. By representing the data as the ratio of the activity coefficient to that for

a finite concentration, the data can be compared without having to take into account the accuracy

of the extrapolation procedure. We emphasize that these tworepresentations have the exact same

physical significance. For concentrations between 10 mM andabout 1 M (see also Figure 3 and

Figure 2) the PM and the SSPM do not show large differences when compared in this way. In fact,

the difference between the models is smaller than the experimental error. Nevertheless, the absolute
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values of the logarithm of the activity coefficients are different in this region by about ten percent.

This difference implies that the behavior of the two models must be quite different in the low

concentration region to fulfill the condition that the activity coefficient is one at infinite dilution.

This dependence on the details of the interaction potentialfor low concentration is unfortunate:

it calls into question the reliability of the practice of using “theory assisted extrapolation” to put

the the activity coefficients on an absolute scale. This conclusion is underlined by the comparison

between model and experimental activity coefficient data for MgSO4 and CdSO4 in Figure 8 and

Figure 9. For MgSO4 the SSPM is apparently superior to the PM whereas for CdSO4 the opposite

is true. As the PM and SSPM are just two members of a wide class of models of comparable

plausibility it is our opinion that it is hardly meaningful to speculate which one, if any, can be

considered best in general without additional information.

5 Discussion and Conclusions

The cation diameters that give the best fit between the results from PM and experiments are much

smaller than the expected geometric size of hydrated divalent cations. Furthermore, there is a

general, but not universal, trend that the the ionic radius decreases with increasing atomic number.

This would appear to suggest that the optimal PM diameter hasan inverse relation to the “bare”

diameter. If the selected diameters from ref. 26 are to be taken as accurate our results do not

support such a relationship, except in as much that the ion with the smallest bare ion size has the

largest value ofd++ and vice versa. Obviously, caution must be applied in drawing conclusions

about the size of ions in solution on the basis of apparent sizes in crystals. This is especially true

in this case, where a small relative error in the size of the ions might change the conclusion.

The small cation sizes obtained here are in most cases much closer to the bare ion diameter than

any reasonable “hydrated” size. Note, however, that for themagnesium halides a cation diameter

commensurate with strong hydration was obtained using a fitting procedure similar to the one used

here.46 This clearly illustrates that the effective diameters of ions in the PM is really a property of
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the interaction between pairs of ions rather than geometricproperties of individual hydrated ions.

This carries the implication that it might be possible to improve the agreement with experiments by

making the ion sizes non-additive, so that the distance of closest approach between a magnesium

ion and a sulfate ion need not be the arithmetic mean of the distance of closest approach between

two magnesium ions and two sulfate ions. Since the Coulomb interaction between like charged ions

causes the ions to stay well separated on average, regardless of their distance of closest approach,

this would likely only have a large effect for high concentrations.

For the SSPM the value ofα+− increases with increasing atomic number, with the values for

the first row transition metal cations being approximately equal. Note thatα+− doesnot carry the

interpretation as some “strength of hydration”. The effectof the first hydration shell is assumed

to be included first and foremost in the ion sizes, that are selected on the basis of geometrical

considerations only. There are good reasons to suspect thatthe cations considered here are strongly

hydrated: even the largest one, Cd2+, is smaller than Na+, and has twice the charge. If one accepts

the notion that the strength of solvation should be roughly proportional to the field strength at

the surface of the ion, as is often argued, see for instance ref. 47, the conclusion must be that

Cd2+ is more strongly solvated than Na+, which is itself strongly solvated. It is, however, not

unreasonable to expect that the sulfate oxygens might replace water molecules in the hydration

shell of the cation, thereby allowing smaller cation-aniondistances. The feature ofus
+− that is

probably most important is the attractive well constitutedby the first minimum in this oscillatory

potential. The peak ing+− coincides closely with this minimum, but in its absenceg+− would have

a cusp at anion-cation contact. Thus, a larger value ofα+− has the main effect that the potential

in this region is more negative. In that sense the fits for the PM and SSPM are commensurate: a

smallerd++ and a largerα+− both gives rise to stronger attraction between anions and cations.

The conclusion is thus that the pair potential is more repulsive or less attractive for ions of light

elements than for heavy. (Although no definite trend could bediscerned within the set of first row

transition metals considered.)

Comparison between the fits obtained with the PM and SSPM illustrate that these two models

20



can be made to agree with experimental data to a similar extent, in terms of the relative activity

coefficients, over a large concentration range even though the cation sizes are in some cases very

different. However, the two models give rather different results for theabsolute activity coeffi-

cients. Table 3 shows the activity coefficient at 0.1 M concentration and for the purpose of this

discussion that may be taken as insignificantly different from the 0.1 m concentration which is the

lowest one considered in ref. 8 , for which the activity coefficient is taken to be 0.150 for all diva-

lent sulfates considered therein. (The difference betweenthe Lewis-Randall and McMillan-Mayer

scales is hardly significant for this concentration.) The activity coefficients predicted by the PM

and SSPM differ greatly for this concentration. Therefore,the PM and SSPM must also disagree

about the absolute activity coefficients at higher concentrations. This reveals a subtlety in the mod-

eling of 2:2 electrolytes: the thermodynamic properties are sensitive to the details of the short-

and intermediate-range interaction potential down to verysmall concentrations. Thus, in order to

understand the relative importance of Coulomb and non-Coulomb interactions in determining the

thermodynamic behavior of electrolytes, reliable information about the activity coefficient in the

range 0.1-10 mM is needed for a range of salts.

In refs.13,18–21the PM was used for the extrapolation to infinite dilution, evaluated using var-

ious approximate theories valid for low concentrations. The ion sizes that were found in those

works to give the best fit to experimental data are roughly commensurate with those obtained here.

The values ofd+− corresponding to our cation sizes are only by a few tenth of anÅ from any of

those obtained in refs.13,18–21for the same cation. The difference between the sizes obtained in the

different works is of similar magnitude. The comparison with experiment in section 4.3 indicates

that the activity coefficients from the PM agree reasonably well with experiments down to about

10 mM concentration. For lower concentrations the agreement between different experiments is

not good enough for any definite conclusion to be drawn. However, if the more recent data from

ref. 18 are to be believed the agreement is at least fair for the entire experimental range. The data

from ref. 11 closely follows the SSPM curve but the data from ref. 21 (not shown) for the same

cell are closer to the data from ref. 18. Comparison with experimental data for different salts yield
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the same conclusion, i.e. down to a few mM the PM and SSPM are not meaningfully distinguish-

able by comparison of the relative activity coefficients (tothose for 0.2 m concentration), and for

smaller concentration experimental uncertainty makes it hard to choose between them. Neverthe-

less, both models agree fairly well with experiments over atleast three orders of magnitude. The

behavior of the relative (but not the absolute) activity coefficient also appears to be insensitive to

the details of the interaction potential as the SSPM gives a fit comparable to that of the PM except

for very low concentrations. We expect that this is the case not only for the two models considered

here but also for a wider class of models.

The expectation that the PM is unable to fit the entire concentration range for which solutions

can be prepared48 is borne out in that the activity coefficients for concentrations much above 1 M

are poorly reproduced by the sizes that give a reasonable fit at lower concentrations. Nevertheless,

the optimum ion size is roughly the same over at least three orders of magnitude. The PM should

thus be regarded as a crude but fairly life-like model up to concentrations of about 1-1.5 M, where

the agreement with experiment quickly deteriorates with increasing concentration, see Figure 2.

In our opinion, it is hardly meaningful to try to extend the concentration range where a fit can be

obtained to higher concentrations as the assumption underlying the PM are hard to justify for high

References

(1) Bjerrum, N.Z. Electrochem. 1918, 24, 321.

(2) Lund, M.; Jönsson, B.; Pedersen, T.Mar. Chem. 2003, 80, 95.

(3) Ramanathan, P. S.; Friedman, H. L.J. Chem. Phys. 1971, 54, 1086.

(4) Friedman, H. L.; Zebolsky, D. M.; Kalman, E.J. Solution Chem. 1976, 5, 1976.

(5) McMillan, W. G.; Mayer, J. E.J. Phys. Chem. 1945, 13, 276.

(6) Wernersson, E.; Kjellander, R.; Lyklema, J.J. Phys. Chem. C 2009, submitted.

(7) Pitzer, K. S.J. Phys. Chem. 1973, 77, 268.

22



(8) Robinson, R. A.; Stokes, R. H.Electrolyte Solutions; Dover Publications, 2002.

(9) Rard, J. A.; Miller, D. G.J. Chem. Eng. Data 1981, 26, 33.

(10) Pitzer, K. S.J. Chem. Soc., Faraday Trans. 2 1972, 68, 101.

(11) Bray, U. B.J. Am. Chem. Soc. 1927, 49, 2372.

(12) Getman, F. H.J. Phys. Chem. 1930, 34, 1454.

(13) La Mer, V. K.; Parks, W. G.J. Am. Chem. Soc. 1931, 53, 2040.

(14) Masaki, K.; Ikkatai, T.Bull. Chem. Soc. Japan 1932, 7, 238.

(15) Demassieux, N.; Fedoroff, B.Ann. de Chimie, Ser. 11 1941, 16, 215.

(16) Fedoroff, B.Ann. de Chimie, Ser. 11 1941, 16, 154.

(17) Davies, W. G.; Otter, R. J.; Prue, J. E.Disc. Faraday Soc. 1957, 24, 103.

(18) Malatesta, F.; Zamboni, R.J. Solution Chem. 1997, 26, 791.

(19) Malatesta, F.; Carbonaro, L.; Fanelli, N.; Ferrini, S.;Giacomelli, A.J. Solution Chem. 1999,

28, 593.

(20) Malatesta, F.; Trombella, S.; Fanelli, N.J. Solution Chem. 2000, 29, 685.

(21) Copperthwaite, I. A.; La Mer, V. K.J. Am. Chem. Soc. 1931, 53, 4333.

(22) Valleau, J. P.; Cohen, L. K.; Card, D. N.J. Chem. Phys. 1980, 72, 5924.

(23) Duh, D.-M.; Haymet, A. D. J.J. Chem. Phys. 1992, 97, 7716.

(24) Belloni, L.J. Chem. Phys. 1993, 98, 8080.

(25) Handbook of Chemistry and Physics, 52nd ed.; Weast, R. C., Ed.; The Chemical Rubber Co.:

Cleveland, OH, 1971.

23



(26) Marcus, Y.Ion Properties; Marcel Dekker, Inc.: New York, 1997.

(27) Dang, L. X.; Rice, J. E.; Kollman, P. A.J. Chem. Phys. 1990, 93, 7528.

(28) Guàrdia, E.; Rey, R.; Padró, J. A.Chem. Phys. 1991, 155, 187.

(29) Guàrdia, E.; Rey, R.; Padró, J. A.J. Chem. Phys. 1991, 95, 2823.

(30) Gavryushov, S.; Linse, P.J. Phys. Chem. B 2006, 110, 10878.

(31) Gavryushov, S.J. Phys. Chem. B 2006, 110, 10888.

(32) Lyubartsev, A. P.; Laaksonen, A.Phys. Rev. E 1995, 52, 3730.

(33) Lyubartsev, A. P.; Laaksonen, A.Phys. Rev. E 1997, 55, 5689.
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Tables

Table 1: Optimizes cation diameters for the PM.

cation d++ (Å) db
+ (Å)a 102*δ

Be2+ 3.14 0.72 0.34
Mg2+ 2.77 1.44 1.28
Mn2+ 2.30 1.66 1.48
Ni2+ 2.11 1.38 1.57
Cu2+ 2.07 1.46 0.76
Zn2+ 2.25 1.50 1.06
Cd2+ 2.01 1.90 0.85

a The selected values of the ion diameter in crystals from ref.26.

Table 2: Optimized interaction strength parameter for the SSPM.

cation α+−
kBT d++ (Å)a 102*δ

Be2+ 2.5 3.48 0.43
Mg2+ 4.4 4.20 0.72
Mn2+ 5.2 4.42 0.55
Ni2+ 5.1 4.14 0.62
Cu2+ 5.2 4.22 0.38
Zn2+ 5.0 4.26 0.33
Cd2+ 5.8 4.66 0.38

a See Section 2.2.

Table 3: Theoretical activity coefficients for 0.1 M concentration.

cation f PM± (0.1 M) f SSPM± (0.1 M)
Be2+ 0.156 0.166
Mg2+ 0.146 0.165
Mn2+ 0.132 0.160
Ni2+ 0.129 0.155
Cu2+ 0.125 0.155
Zn2+ 0.131 0.159
Cd2+ 0.122 0.157
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Figure Captions

Figure 1: The best-fit potential of the PM (full curve) and SSPM (dashed curve) in units ofkBT for

ZnSO4, see Table 1 and Table 2 in Section 4.1.

Figure 2: In panel (a) the osmotic coefficient as a function ofconcentration is shown. In panel

(b) the logarithm of the the mean activity coefficient relative to its value at 0.2 m is shown. The

symbols are experimental data from ref. 8 and the lines are calculated from the primitive model

(PM) in the HNC approximation. The circles and short-dashedcurves are for BeSO4, diamonds

and medium-dashed curves are for MgSO4, triangles and long dashed curves for MnSO4 and stars

and full curves CdSO4. NiSO4, CuSO4 and ZnSO4 have been omitted to avoid cluttering the figure.

The curves corresponding to these salts would all fall between those for MnSO4 and CdSO4. The

cation sizes are chosen to give optimal agreement between PMosmotic coefficients in the range

0.2 to 1.0 m, see Table 1. Points corresponding to higher concentrations are not considered in the

fit.

Figure 3: Same as Figure 2, but with interaction potential parameters taken from Table 2. Here,

it is α+− rather thand++ that is used as a fitting parameter.

Figure 4: Comparison between the HNC approximation (curves)and MC simulation (symbols)

for the PM with four different cation diameters. The circlesand short-dashed curves are ford++ =

3.14 Å (the size that gives the best fit for BeSO4), diamonds and medium-dashed curves are for

d++ = 2.77 Å (MgSO4), triangles and long dashed curves ford++ = 2.30 Å (MnSO4) and stars

and full curves ford++ = 2.01 Å (CdSO4). See Table 1.

Figure 5: Comparison between the HNC approximation and MC simulation for the SSPM for

four different divalent sulfates. The circles and short-dashed curves are for the parameters that

gives the best fit for BeSO4, diamonds and medium-dashed curves are for MgSO4, triangles and

long dashed curves for MnSO4 and stars and full curves for CdSO4. See Table 2. Note that the

abscissa is in log-scale in the upper pannel.
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Figure 6: Comparison between the HNC approximation (curves)and MC simulation (symbols)

for the pair distribution functionsgi j(r) for the SSPM with parameters corresponding to ZnSO4,

see section 2.2 and table Table 2. Panel a isg+−(r) shown on a log-linear plot and panel b isg+−(r)

(full curves and filled circles) andg++(r) (dashed curves and open circles) on a linear-linear plot.

The data is shown in this way to enable comparison both for thestrongly peakedg+−(r) and the

slowly varyingg++(r). Curves and symbols forg−−(r) are not shown because these would be

indistinguishable fromg++(r) on the scale of the figure.

Figure 7: Comparison between simulations for the PM (full lines) and the SSPM (dashed lines)

and experimental data (circles and triangles for data from refs.11 and,18 respectively) for the mean

activity coefficient of ZnSO4. In panel (a) the data is presented as given in the original reference

while in panel (b) the data is shifted to bring the value to zero for 0.2 m concentration, in effect

making the excess chemical potential for this concentration that of the standard state.

Figure 8: Comparison between simulations for the PM (full lines) and the SSPM (dashed lines)

and experimental data (symbols), from ref. 18, for the mean activity coefficient of MgSO4.

Figure 9: As Figure 8, but for CdSO4. Data from refs. 19 (triangles) and 13 (circles).
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