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Abstract

Electric double layers are ubiquitous, arising in some form in almost
every situation involving an interface with an aqueous electrolyte so-
lution. In order to gain insight into the behavior of electrolytes and
electric double layers, simple models of bulk and inhomogeneous elec-
trolyte solutions are considered in this thesis. As the main focus is
on situations where mean field theory is not applicable, due to high
concentration, strong electrostatic interactions, polarization of the in-
terface or a combination of these, the spatial correlation between ions
is explicitly considered.

This is done within the framework of integral equation theory. The
hypernetted chain (HNC) approximation is employed, which may be
regarded as an approximate expression for the relation between the
correlation functions and the potential of mean force. The excess con-
tribution to the chemical potential is readily obtainable in the HNC
approximation. By exploiting the fact that the ideal contribution to
the chemical potential only depends on the local concentration and
that thermodynamic equilibrium requires that the total chemical po-
tential is equal everywhere, the concentration profile for each species
of ion can be determined. Thus, the HNC approximation gives rise to
a theory for electric double layers as well as for bulk electrolytes.

The model of ions and interfaces is based on the assumption that
the ions are hard, charged spheres that are embedded in a dielectric
continuum that represents the solvent. This type of model obviously
ignores any effect of the atomic granularity of the solvent, but takes
into account both electrostatic and excluded volume effects that to-
gether give rise to several interesting and counter-intuitive phenom-
ena. These have implications for both single interface properties and
interface-interface interactions.

Any contrast in dielectric properties on each side of the interface
gives rise to forces on the ions in the vicinity, which may also be of
importance for the behavior of the system. Dispersion interactions
between ions and interfaces are present whenever the ions have a non-
zero polarizability. Each ionic charge in the vicinity of an interface
also causes polarization, creating a charge distribution that gives rise
to forces on all ions in the vicinity. Thus, such polarization modifies
the forces amongst ions as well as those between ions and interfaces.
Both dispersion forces and the polarization of interfaces are explicitly
considered in this thesis.
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Chapter 1

Introduction

Typically, a particle becomes charged due to adsorption or desorption of ions
when immersed in water or a similar solvent. The counterions to a parti-
cle that has acquired a net charge remain in the vicinity, forming an “ionic
atmosphere” around the particle. Together with the charge on the surface
itself, this “atmosphere” is usually referred to as an electric double layer.
This double layer is best described in terms of the local concentration of
each species of ion as a function of position relative to the surface. The
concentration of counterions typically decreases from a high concentration
close to the surface to the bulk concentration with increasing distance from
the surface. Conversely, the concentration of co-ions is typically low close
to the surface and approaches the bulk concentration from below for large
distances. The exact structure of the double layer is determined by a subtle
balance between minimizing the Coulomb energy and maximizing the con-
figurational entropy of the ions. Therefore, the properties of electric double
layers are sensitive to the conditions in the bulk solution. Most notably, the
concentration of electrolyte is the main factor that determines the spatial
extent of the ionic atmosphere. Under experimentally attainable conditions,
the thickness of the double layer can be as small as less than a nanometer
or as large as hundreds of nanometers. Thus, a charged particle in solution
together with its counterions form an electroneutral unit that can be many
times larger than the particle itself or negligibly different from the parti-
cle in size, depending on the salt concentration. In light of this, it is not
surprising that many properties of colloidal systems and interfaces that are
dependent on salt concentration are related to electric double layers; it is the
electric double layer that connects such seemingly disparate phenomena as
electrokinesis, colloidal interactions and electrocapillarity.

For many systems of interest to colloid science, it is sufficient to treat the



consequences of the presence of charge on a mean field level of theory, where
it is assumed that each ion sees its surroundings only in terms of their aver-
age behavior. This is a good approximation in situations where the typical
interactions between ions are so weak that any individual ion does not per-
turb its environment strongly. This thesis is mainly about situations where
this is not the case, where ion-ion correlations are important. The behavior
of individual ions then depends on the details of how each ion affects the
spatial distribution of its neighbors. This occurs for high densities, strong
interactions or both and has important consequences in the bulk solution as
well as in the vicinity of charged, or uncharged, surfaces. Depending on the
details of how each ion affects its surroundings, the deviations from mean
field behavior can be very different. Often, these deviations can give rise
to phenomena that are qualitatively different from what would be expected
from mean field theory. The limit of the range in concentration where mean
field theory can be fruitfully applied tends to coincide, at least roughly, with
the range of concentration in which the details of the interionic interactions
are relatively unimportant. Above this limit one must take on the dual chal-
lenge of finding the details of the interionic interaction potential and working
out the consequences of these details on the ion-ion correlations in order to
find satisfactory descriptions of double layers and bulk electrolytes.

Any contrast in dielectric properties between the interior of a particle and
the surrounding medium gives rise to forces on any ion in the vicinity of
the particle surface. The dynamic polarization of the surface in response to
charge density fluctuations in the ion gives rise to dispersion forces whereas
the static polarization of the surface gives rise to so called image forces. If
a charge is brought close to an interface between two dielectric media the
compromise between the polarization of each medium will lead to a charge
distribution on the surface. For planar interfaces, the field from this surface
charge distribution is the same as the field from a charge that is located at the
position of the “mirror image” of the original charge. The fictitious charge
is referred to as an “image charge”, hence the name “image forces”. Because
these forces are electrostatic in nature, the image charges are screened in
the presence of electrolyte. This is a consequence of ion-ion correlations; in
order for the screening to come out correctly in any theoretical treatment, ion-
ion correlations must be taken into account. Dispersion interactions, on the
other hand, are due to correlated charge density fluctuations on time scales so
short that the ions cannot respond. Therefore, dispersion interactions are not
subject to electrostatic screening. The effective range of these interactions
does not depend strongly on the salt concentration. In papers I and II the
consequence of image forces and dispersion forces for the interaction between



charged surfaces is explored. In paper III a similar investigation is carried
out for uncharged surfaces.

Tons of higher valency than monovalent tend to interact so strongly that
mean field theory is valid only in a very narrow range of concentration and
surface charge density. This has consequences both in bulk and near sur-
faces. Counter-intuitively, strong repulsion between counterions near a sur-
face causes the amount of counterions in the vicinity of the surface to be
larger than for more weakly interacting counterions. This can have the con-
sequence that an enrichment of co-ions occurs some distance from the surface,
so that the surface appears to have a charge of the opposite sign compared
to the actual surface charge to an observer in the bulk solution. This sit-
uation is referred to as charge inversion or overcharging. While this have
been observed for simple models of electrical double layers since the early
1980s, the existence of this phenomenon as a consequence of ion-ion cor-
relations in real systems has not yet been unambiguously demonstrated in
experiments. In part, the dearth of experimental proof is due to the existence
of alternative mechanisms for overcharging, notably adsorption of ions due
to non-electrostatic interactions. The need to discriminate between different
mechanisms places a great demand on the comparison between experiment
and theory in that the comparison must be quantitative rather than qualita-
tive. In paper IV an attempt is made to test the predictions of double layer
models that charge inversion can occur as a consequence of ion-ion correla-
tions. This is done by making a comparison between model predictions for
surface thermodynamic properties and experimental data for the interface
between mercury and aqueous solutions of magnesium sulfate. In the course
of this work the question was raised to what extent the primitive model can
be applied as a quantitative model of divalent salt solutions. This question
is addressed in Paper V along with a possible modification to the model.






Chapter 2

Electrolytes and Electric
Double Layers

“All animals are equal, but some animals are more equal than
others.”

-George Orwell, Animal Farm (1945)

Electrolytes are different from solutions containing only uncharged particles.
Most obviously, electrolytes are electric conductors whereas non-electrolytes
are insulators. Practically and historically, this is the defining property of an
electrolyte. A closer look at the physico-chemical properties reveal more dif-
ferences from ordinary solutions: thermodynamic properties of electrolytes
such as activity coefficients and osmotic pressure (see definitions in Section
2.1) differ measurably from ideal solution behavior even for very low concen-
trations, where neutral solutes would behave ideally. Both these observations
can be explained by the special properties of electrostatic interactions.

The electrostatic force between particles with charges of the same sign is
repulsive whereas it is attractive for particles with charges of opposite signs.
In both cases the magnitude of the force is proportional to the product of
the magnitudes of the charges and to the inverse square of the distance
between them. Electric charge is quantized so that the charge of any particle
is +neg where n is an integer and ey is a constant. There is no known
process in which charged particles are created or destroyed that does not
preserve the total charge. One can therefore reasonably suspect that the
amount of positive charge in the universe is equal to the amount of negative
charge, down to the last eg. These facts are so familiar that they appear



self-evident. Yet these laws are very remarkable, both with respect to their
simple structure and far-reaching consequences. This is especially so since it
is hard to imagine another set of laws of interaction that would from charged
building blocks produce the macroscopic world as we see it: as composed of
uncharged objects.

That we only occasionally encounter charged objects in a world where elec-
trostatic interactions are ubiquitous and decisive for the properties of matter
is due to the phenomenon of screening. Because unlike charges attract over
long distances, ions tend to arrange themselves so that oppositely charged
ions sit close to each other. The charges then appear to compensate each
other when viewed from a sufficient distance. The most obvious example
of this is an ionic crystal, where each ion has a well-defined position on a
lattice of alternating anions and cations. Individual atoms also constitute
an example of screening as the electrons shield the charge of the nucleus.
Because the laws of quantum mechanics prohibit it, the exact positions of
each electron in an atom cannot be known. Our knowledge is limited to the
continuous probability distributions of positions of electrons, essentially the
charge density. This situation of screening by a diffuse distribution of charge
is also seen in electrolytes, but for completely different reasons that will be
explained below.

In the macroscopic world, just a minuscule amount of excess charge of either
sign on an object is required to produce measurable, and sometimes spec-
tacular, effects. This extra charge has no counter-charge to screen it and so
brings the long-range character of electrostatic interactions into the macro-
scopic world. While it is easy enough to put a small amount of extra charge
on an object, for instance by rubbing two insulators (e.g. comb and hair)
together in reasonably dry air, it does not correspond to an equilibrium sit-
uation. Whenever the opportunity arises, electric current will spontaneously
flow to eliminate any unscreened charge. The condition that a system in
equilibrium contains equal amounts of positive and negative charge is called
the electroneutrality condition.

In electrolyte solutions the charges on the ions are screened by two differ-
ent mechanisms. On one hand, the field from the ions orient the dipolar
solvent molecules with the net result that the mean force between ions in
pure solvent is for large distances of the same form as between charges in
vacuum but significantly weaker. This is referred to as dielectric screening.
On the other hand, the ions arrange themselves to effect mutual screening.
It is this mechanism that is referred to when the word “screening” is used
without qualifier. Because of the dielectric screening from the solvent, the
strength of the net electrostatic interactions between ions is brought down



from its vacuum value to a magnitude comparable to the energy scale of the
thermal motion. In this situation the configurational entropy of the ions is
not insignificant compared to the entropy gain that can be obtained by the
ions arranging themselves in the minimum-energy configuration and thereby
dissipating the maximum heat. To find the equilibrium properties of the
system both “entropic” and “energetic” contributions to the free energy has
to be considered. The contribution from the configurational entropy acts to
spread the ions evenly over the available volume and therefore counteracts
screening for length scales smaller than that associated with that volume.
The energetic contribution acts, as already established, to order ions into an
arrangement with ions of different signs close to each other and those of the
same sign further away. The actual distribution of ions is determined by a
compromise between these two tendencies. A useful measure of the strength
of electrostatic interactions in relation to the thermal energy is the Bjerrum
length,

_ %
 AdweegkpT’

where T' is the temperature, kg is Boltzmann’s constant, ¢y is the vacuum
permittivity, and e is the relative permittivity of the solvent, that is a measure
of dielectric screening (hence the alternative name dielectric constant). The
Bjerrum length may be interpreted as the distance between unit charges for
which their interaction energy compared to infinite separation is exactly kgT'.
In vacuum, I is 560 A at room temperature. In water I is roughly eighty
times shorter, about 7 A under the same conditions. Because the typical size
of ions is a few A in diameter, the expectation is that for monovalent salts
the electrostatic interaction does not reach more than a few kg7 at any point
in space. This cannot be taken for granted, however, as the characterization
of the solvent by just its relative permittivity is not necessarily justified for
distances of the order of the size of the solvent molecules, see Section 3.

I3 (2.1)

A charged surface in contact with an electrolyte solution always has a diffuse
region of counter-charge associated with it, that together with the surface
charge forms an electric double layer. This name derives from that the dou-
ble layer was originally thought to literally consist of two charged planes some
distance from each other. The concept is originally due to Quincke [1] but
the name “double layer” (actually doppelschicht) was coined by Helmholtz
[2]. The modern picture of the electric double layer is that there is a con-
tinuously varying deviation in concentration of each species of ion from the
bulk concentration. Close to the surface there is a region where the solution
is not locally electroneutral, but has a total charge that exactly compensates
the surface charge, preserving global electroneutrality. The excess charge in



the region outside the surface can arise both from enrichment of counterions
to the surface and by depletion of co-ions. All charged particles, including
individual ions, disturb their environments in this way. A theory for electric
double layers is therefore by necessity also a theory for electrolyte solutions,
and vice versa. The structure of an electric double layer is best described
by the concentration profiles associated with it. We write the concentra-
tion profile of ions of species i as n;(r) and interpret it simply as the local
concentration of that species of ion at point r. Far from any interface the con-
centration profile approaches the bulk concentration, denoted n?** and thus
becomes independent of position. Related to the concentration profile is the
pair distribution function g;;(r,r’), with the interpretation that n;(r)g,;(r,r’)
is the concentration of ions of species 7 at r given that there is an ion of species
j at r’. In bulk, r’ can be taken as the origin of the coordinate system and
nbukg,.(r) can be interpreted as the concentration profile around any given
ion. These concepts will be introduced in a more formal way and discussed
in Chapter 4. Examples of pair distribution functions relevant for the system
considered in Paper IV are shown in Figure 2.1. Note that the cation-anion
pair distribution function for the 2:2 salt is very strongly peaked at contact,
much more so than the corresponding function for the 1:1 salt.

There are certain restrictions that the set of distribution functions in an elec-
trolyte solution has to obey, most obviously the electroneutrality condition.
The distribution of charge around an ion of species 7 in bulk solution is

pi(r) = Z g5 g (r), (2.2)

where ¢; is the charge of an ion of species j and the sum is over all charged
species in solution. Because electroneutrality dictates that the total charge
of an ion and the charge distribution around it is zero, the distribution must
contain a total amount of charge that is equal in magnitude and opposite in
sign to the charge of the central ion. This condition leads to the sum rule

>0 aind ™ 3 g [ gij(r) dr
S gZnbilt

for the pair distribution functions. From the connection between the dis-
tribution functions and the response to external fields, that is mentioned
in Chapter 4 as eq. (4.18), together with the fact that electrolytes behave
as conductors on a macroscopic scale, a less obvious sum rule that can be

derived [3],
2 s amt [r2gi(r)de 6

2. bulk T2
Zi a;n; K

=1 (2.3)

(2.4)
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Figure 2.1: Pair distribution functions for the model 2:2 electrolyte (solid
lines) considered in Paper IV and an analogous model 1:1 electrolyte (dashed
lines) with the same ion sizes for 0.5 M bulk concentration calculated within
the HNC approximation, see Section 4.2. The cation-anion distribution func-
tion is marked by “4—" and the anion-anion and cation-cation distributions
functions are marked with “——" and “+47, respectively. Note that the like-
ion distribution functions are indistinguishable on the scale of the figure in
the range where they overlap (the cations are smaller than the anions) for
each type of salt.

with x defined by

1
2 2, bulk
= E M 2.5

The quantity x~! may be considered the characteristic length scale of screen-
ing in an electrolyte and has a prominent place in mean-field theories of elec-
trolytes and electric double layers, discussed in Section 2.2 below. Notably,
is proportional to the square root of the ionic strength. Both egs. (2.3) and
(2.4) are consequences of the special properties of electrostatic interactions;
there are no counterparts for solutions of uncharged solutes. Note however
that eq. (2.3) would be valid even if the potential for electrostatic interaction
decayed as fast as 1/r3, whereas eq. (2.4) requires the interaction potential



to decay as 1/r to hold.

Electrolytes and electric double layers can be probed experimentally in a
variety of ways. Of special interest for double layers are direct and indirect
measures of the interaction between charged surfaces. Section 2.3 contains a
discussion about the effect of electric double layers on interactions between
surfaces. Direct measurements of interactions between surfaces are just that:
surfaces are brought together and the force between them is recorded as a
function of distance [4, 5]. While this is naturally a difficult kind of ex-
periment to perform, the current state of the art is that a high level of
sophistication have been reached, to the degree that for some surfaces the
force curves can be recorded with a distance resolution of less than one A
[6]. Indirect measures of interactions include measurement of the stability,
phase behavior or structural properties of colloidal suspensions from which
the interactions can be inferred.

Another important type of experiments is electrokinetic measurements, the
most well-known example of which is electrophoresis. This technique is based
on subjecting a suspension of particles to an electric field and measuring the
velocity with which the particles move in response to it. The information
about the electric double layer that can be obtained by this technique is
model dependent. This is so because assumptions have to be made about
the deviation in the viscosity of the solvent close to a particle surface from
the bulk value in order to work out the connection between the double layer
and the hydrodynamic drag forces on the particle. In the close vicinity of the
particle the solvent is effectively stagnant with respect to the particle surface
and any ions in this region will move with the particle and effectively add to
its surface charge. Because the concentration profiles tend to decay quickly
close to the surface, small differences in the assumptions about the width of
the stagnant solvent layer can give rise to large changes in conclusions about
the “actual” charge on the surface. Under conditions where the use of mean
field theory, discussed in Section 2.2, is justifiable these difficulties are some-
times surmountable. Under such conditions the conclusions about surface
charge from interaction studies tend to agree with those from electrokinetic
experiments.

Not surprisingly, the methods of electrochemistry are useful in studying elec-
tric double layers. This is especially so if one electrode can be made such
that no reaction takes place on its surface. In this way, reliable information
about the dependence of surface thermodynamic properties can be obtained
as functions of the potential and surface charge density. In Section 2.1 the
relevant thermodynamic relations are discussed together with one of the most
useful experimental systems for the study of double layers: the mercury elec-
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trode. In that section some important bulk thermodynamic properties are
introduced and the principle for their experimental determination outlined

2.1 Thermodynamics of Charged Systems

Due to the electroneutrality condition, the thermodynamic treatment of sys-
tems containing charged particles is slightly different compared to systems
composed of neutral particles. Nevertheless, the thermodynamic proper-
ties of both bulk and interfacial electrolyte systems can be measured using
standard techniques. Of special interest are those bulk properties that are
directly related to the interactions between solute particles, mainly the chem-
ical potential of the salt and solvent. The intensive properties of a system
are related to each other by the Gibbs-Duhem equation,

0=—VdP+SdT + Y Nidpu, (2.6)

where S is the entropy, V is the volume and P is the pressure. The sum is
over all components and NV; and u; are the number of particles and chemical
potential of species i, respectively. If a solution is placed in contact with
a reservoir of pure solvent in such a way that only solvent and not solute
particles can diffuse between the solution and the reservoir, eq. (2.6) implies
that the pressure in the solution is different from that in the reservoir. The
pressure thus exerted is called the osmotic pressure. Incidentally, it was the
interpretation of osmotic data in terms of kinetic theory that first led to the
conclusion that salts dissociate into free ions on dissolution [7]. Often, the
osmotic pressure is expressed as the osmotic coefficient, that is here defined
as the quotient of the actual bulk osmotic pressure, P*** and the osmotic
pressure for an ideal solute of the same concentration

Pbulk
- /{ZBT Zz n; ’

where the sum is over solute species only. Note that this is a non-standard
definition of this quantity. The reason for adopting this definition and its
relationship with the standard one is discussed in Chapter 3. The chemical
potential of solute species is usually expressed in terms of activity coefficients,

f, defined by

¢ (2.7)

pi = g + kTl finf"™", (2.8)

where 19 is the chemical potential in the standard state. The interpretation
of the argument of the logarithm is that it is the concentration of an ideal

11



solute that would have the same chemical potential as the real solute. Implicit
in this definition is that the standard state is chosen as an ideal system at
unit concentration in whatever unit is chosen for n?*  here taken as 1 M
unless otherwise stated.

For constant temperature and pressure eq. (2.6) states that the chemical
potential of a component of the system cannot be varied independently of
the chemical potential of the other components. Exploiting this relation,
the chemical potential of dissolved salt can be obtained from that of the
solvent. This forms the basis of isopiestic determination of salt activity
coefficients [8]. A solution with a known amount of salt is placed in a gas-
tight, thermostated chamber together with a reference solution of a substance
for which the chemical potential as a function of concentration is known
with high accuracy. The solutions are then left alone until equilibrium is
established, typically for several days. In both solutions, the solvent now has
the same chemical potential. If the solute is non-volatile so that only solvent
is exchanged, the equilibrium compositions can be established simply by
weighing the solutions. If this is repeated for several starting concentrations,
the activity coefficients of the solute can be obtained from integration of
eq. (2.6). To obtain the proper integration constant, the osmotic coefficient
must be known down infinite dilution where the system behaves ideally and
In(f;) = 0. Obviously, this cannot be done in practice and extrapolation
must be used at some stage. In the case of the isopiestic method the lowest
concentration that can be reliably treated is around 0.1 m, which cannot be
considered close to infinite dilution. The extrapolation must therefore be
carried out over a considerable concentration interval, thus introducing an
appreciable uncertainty in the integration constant. This problem is most
severe for electrolytes containing ions of higher valence types, where the
range of validity of the Debye-Hiickel limiting law, see eq. (2.25) below, is
Very narrow.

Note that the chemical potential of individual ionic species is not unambigu-
ously obtainable by the isopiestic method or by any other known experiment.
Because the electroneutrality condition allows only electroneutral combina-
tions of ions to be added to a system, the number of particles of different
ionic species are not independent quantities. What can be determined is
therefore the chemical potential of such electroneutral combination of ions,
denoted 4. The activity coefficients of electrolytes are usually given in
terms of the mean activity coefficients, fi, defined for a binary electrolyte
by

(et _ oo - 2.9

where s; is the stoichiometric coefficient. The chemical potential of the salt

12



is given in terms of fi by

Msalt = :U’(s)alt + (8+ + S—)kBT In f:ﬁ:nbmk7 (210)

where n?* is the bulk concentration of the salt. There are some subtleties

inherent in relating experimentally determined activity coefficients to those
calculated in models without an explicit solvent component. These are dis-
cussed in Chapter 3.

At an interface, the interfacial excess properties are related to each other
by the thermodynamic relation, analogous to the Gibbs-Duhem equation,
known as the Gibbs adsorption isotherm,

0= Ady+ SWdT + > N dy;, (2.11)

where 7 is the interfacial tension and S*) and N are the interfacial excess
entropy and number of particles, respectively. The sum is over all components
in the system. In this context “interfacial excess” means the difference in a
thermodynamic quantity between two bulk phases and the system containing
two phases with an interface between them, with each phase having the
same volume in each case. The position of the interface used to determine
the volumes is arbitrary, but can always be chosen uniquely in such a way
that the interfacial excess number of particles of one component is zero. The
surface excesses are then said to be with respect to that component, that will
be referred to as the solvent. At constant temperature, the Gibbs adsorption
isotherm can be written in a more convenient form,

—dy = Tidp; (2.12)

where I'; = Ni(s) /A is referred to as the “surface excess”of species ¢ and the
sum may be regarded as being over all species except the solvent, as I of the
solvent is zero by construction. For electrified interfaces the surface excesses
are subject to the electroneutrality condition,

0=> gl (2.13)

If the system is such that the charged components of the phases (denoted
“I" and “II”) on each side of the interface are negligibly soluble in the other
phase, one can assign each of the ionic species to one of the phases. The
thermodynamic surface charge can then be defined as

g = Z IQze = — Z II(],‘FZ', (214)
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where each of the summations is over components present in phase I or phase
1T only.

Let us consider such a system composed of a chemically inert electrode con-
nected to a reference electrode, both immersed in a binary electrolyte. If one
defines the potential difference between electrode and reference electrode as
the difference in chemical potential of the charge carrier (electrons) per unit
charge,

By = (e — i), (2.15)
where the subscript on F denotes that the reference electrode is reversible
to either the cations or the anions. In other words, a reaction forming either
the cation or the anion by reduction or oxidation of a solid substance can
occur reversibly at that electrode. The chemical equilibrium between ions in
solution and in the reference electrode connects the chemical potential of the
salt with that of electrons in the reference electrode. Thus only two chemical
potentials can be varied independently, that of the salt and that of electrons
in the measuring electrode. One can use this to write the Gibbs adsorption
isotherm as

—dy = odEy 4+ T'zdisan. (2.16)
From this form of the isotherm the Lippmann equation immediately follows,
v
= —— 2.17
Tvusalt

where the subscript +£ on EL indicates that the equation is equally valid
for reference electrodes reversible to cations or anions. For the surface ex-
cess of the ionic species to which the reference electrode is not reversible an
analogous relation exists,

oy

F:F - _ausalt

(2.18)

T,Ex

Thus, for any electrode for which the surface tension is measurable both
the surface charge density and the surface excess of each ionic species is
experimentally accessible. For double layers, the surface excesses of co- and
counterions are often expressed weighted by the ionic charges as components
of charge,

04 = tii. (219)
The advantage of expressing surface excesses in terms of the components of
charge is that they give the contribution of each ionic species to the coun-
tercharge to the surface charge, that makes a natural connection to the elec-
troneutrality condition, eq. (2.14).
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An experimental system that is regarded by many as the canonical system for
the study of the electric double layer is the dropping mercury electrode and
similar experimental set-ups [9]. The main advantage of using a liquid metal
electrode is that the surface tension can be measured as a function of either
the potential of the mercury electrode or the chemical potential of the bulk
solution, while keeping the other quantity constant. From such measurements
along with the Gibbs adsorption isotherm the surface charge density as well
as the components of charge are available. Since the differential capacitance,

B oo
- OE, ’

T7/“salt

C (2.20)

is independently measurable, the surface charge density can, given an in-
tegration constant, be obtained also from this quantity. By comparing the
surface charge densities obtained from the “surface tension” and “capaci-
tance” route, the robustness of the experimental method can be tested.

Since quantities obtained from the mercury electrode are derived by the use
of exact thermodynamic relations they are model independent and therefore
suitable for testing the predictions of models. It is unfortunate that the
mercury electrode does not readily lend itself to either interaction studies
or electrokinetic experiments. Had this been the case, a large degree of
uncertainty in the interpretation of such experiments could be removed by
measurement of the thermodynamic surface charge density.

During the last century, a large body of data on the mercury/aqueous elec-
trolyte system has been collected. It has been found that the properties of
the double layer associated with this interface tend to show a strong ion speci-
ficity for positive polarization, where the anions are counterions, but only a
weak ion specificity for sufficiently negative polarization, where the cations
are counterions. The conclusion is that anions are attracted to the surface
to a degree that depends on the identity of the ion but that this is not the
case for cations. For negative polarization the mercury surface appears to
be well approximated by models without ion-specific attractive interactions
between the surface and the ions of the electrolyte.

2.2 Mean-Field Theory and Its Limitations

In some cases where the interaction between ions is weak the Poisson-Boltzmann
(PB) theory gives an adequate description of the concentration profiles of ions
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close to charged surfaces [10, 11]. The PB theory for planar surfaces is some-
times called Gouy-Chapman (GC) theory in the colloid science literature,
and since only planar surfaces are considered here these names will be used
interchangeably in this thesis. The fundamental assumption of PB theory is
that the mean force on an ion at any point is equal to the force due to the
electric field from the average charge distribution. The concentration profiles

are then given by
4, (x)

n;(r) = nlke” kpT (2.21)

where W(r) is the mean electrostatic potential at point r, given by

anl
V() = 47T6€() Z/ Ir — r’| (222)

where ¢ (r) is the potential from the charge on the surface. The mean elec-
trostatic potential can be calculated using Poisson’s equation and the fact
that the mean charge distribution can be calculated from the concentration
profiles; leading to the differential equation

_9%(r)

el = gt 23)

from which the concentration profiles can be determined through ¥(r). Eq.
(2.21) would be exact if the ions were point charges and did not perturb
their local environment, which would only be the case if their charge were
infinitesimally small. Of course, due to the quantization of charge there is no
such thing as an infinitesimal charge. Because the interaction between ions is
only taken into account as the interaction between an ion and the mean field,
that is zero in bulk, the PB theory contains the implicit assumption that the
bulk electrolyte behaves as an ideal gas. For electrolytes, this is a severe ap-
proximation even for moderate concentrations. The PB approximation may
be thought of as a mapping of an interacting system onto a non-interacting
system in an external field that depends on the concentration profiles.

In the GC theory, the possibility that ions may adsorb due to specific inter-
actions with the surface is not taken into account explicitly. The charge on
the surface enters the problem only through the boundary conditions to eq.
(2.23), typically of either the “constant potential” or the “constant surface
charge density” type. To account for the common situation that the charge
on the surface comes from a layer of ions adsorbed on the surface due to non-
electrostatic interactions, the GC theory is often combined with a Stern layer
where ions are assumed to be adsorbed by some non-electrostatic mechanism
[12]. The assumption is that there is a chemical equilibrium between free
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ions and ions in the Stern layer. The free energy of adsorption corresponding
to this equilibrium is typically used as a fitting parameter. The resulting the-
ory is referred to as Gouy-Chapman-Stern (GCS) theory. For an exhaustive
account of this theory, see ref. [13]. Because, as will be discussed in Section
2.4, the presence of specific adsorption is the rule rather than the exception
in colloid and interface science, GCS theory finds wider application than GC
theory itself. The practice of using the parameters specifying the Stern layer
as fitting parameters also means that agreement between GCS theory and
experiment at best provides information about the magnitude of the free
energy of adsorption. To establish the mechanism of adsorption requires ad-
ditional information. This problem is similar to the problem that is faced
for bulk electrolytes, discussed in Section 3, that the physical interpretation
of the parameters that determine the short range interaction between ions is
very hard to ascertain by comparison with macroscopic measurements.

If W(r) is small everywhere, the exponential function in egs. (2.21) and (2.23)
can be linearized to give
V2U(r) = k*U(r), (2.24)

where x? is the same quantity as given by eq. (2.5). This theory predicts
that the concentration profiles for a flat surface decay exponentially to bulk
concentration with a decay length x~1. For this reason, eq. (2.24) is recovered
from eq. (2.23) wherever the potential is small in magnitude. Consequently,
the long distance asymptotic decay of the concentration profiles always have
the same exponential form if the concentration is low enough for eq. (2.24)
to be valid. In this limit, electric double layers are well understood in the
sense that a theoretical framework exist that can accommodate a large body
of evidence from a wide variety of experimental techniques.

By applying eq. (2.24) to the case where ¢ (r) is the potential from an ion
of species i a theory for the distribution functions g;;(r) in a bulk electrolyte
is obtained. (Recall that n?*g,;(r) can be interpreted as the concentration
profile of ions of species ¢ around an ion of species j.) This theory is known as
the Debye-Hiickel (DH) theory [14]. As can be imagined, it is in many ways
quite crude. For instance, the theory predicts unphysical negative values for
the distribution function between like-charged ions under some conditions.
What is not obvious, but can be shown [15], is that the DH theory is exact in
the limit of low concentration of salt. The properties of electrolyte solutions
in this limit are generic; the chemical idiosyncrasies of a given system plays
a negligibly small role for its behavior. What matters under these conditions
are the ionic charges and k. For instance, the activity coefficients are given
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in the DH theory in the low concentration limit by
In f; = —1Z7klp, (2.25)

where Z; = ¢;/eq is the valency of an ion of species i. Comparison between
activity coefficient from eq. (2.25), often referred to as the Debye-Hiickel
limiting law (DHLL), and experiment reveals that the range of validity of
this theory is rather limited, especially so for salts containing ions of valencies
greater than one. Incidentally, eq. (2.25) is also obtained in the limit of zero
ion-size. That a finite result is obtained at all in this limit is due to the
strictly linear treatment of the Coulomb interactions. An exact treatment of
a model with point ions would give negative infinity for In f;, see Section 3.1.
At least for 1:1 salts, the range where agreement with experiments is found
can be extended considerably by taking the finite ion size into account, as
was done in the original derivation of the theory.

In situations of high surface charge density or high electrolyte concentration
as well as for strongly interacting ions the assumption underlying the PB
theory that the ions behaves as point ions that do not perturb their local
environment is not realistic. Under such conditions the mean-field approach
cannot be sustained; each ion have a strong influence on its surroundings
and this has to be taken into account when computing the average force
on each ion. It is instructive to note that the PB approximation can be
derived from an exact statistical mechanical expression by setting g¢;;(r,r’)
identically equal to one and ignoring any interaction between ions except
the Coulomb interaction [16]. When g;;(r,r’) differs significantly from one in
an appreciable volume the PB theory is a poor approximation. This is true
regardless of how the pair distribution functions differ from one. In what
way the true concentration profiles differ from the PB-concentration profiles,
does depend strongly on the details of g;;(r,1r’).

The exponential form of the distribution functions that is obtained whenever
eq. (2.24) is valid tends to be retained up to relatively high concentration.
The relation between the decay length and the electrolyte concentration is
in general more complicated than in DH theory, however, even for simple
electrolyte models [17, 18, 19]. For high concentrations the pair distribution
functions develop oscillations. The structure of the solution becomes such
that the ions are ordered in what might be called a “diffuse lattice”: each
ion is surrounded by an ionic atmosphere with regions of alternating sign
of the average charge density because alternating layers of depletion and
enrichment of anion and cations are formed. Interestingly, it can be concluded
that the pair distribution functions cannot be monotonic for arbitrarily large

18



concentrations on the basis of only eq. (2.4) and the assumption that the
ions have a finite size [20].

4 IIIIIIIII|IIIIIIIII|IIIIIIIII|IIIIIIIII LCCeer ettty

[EEY

n.(z) (M)
N
| | 1 I | 1 | | |

0 R L L L LR R L L R L

O 01 02 03 04 05 06 07 08 09 1
z (nm)

Figure 2.2: Concentration profiles for the model 2:2 electrolyte considered
in Paper IV for 0.5 M bulk concentration and a surface charge density close
to -10 pC ecm~2 calculated within the HNC approximation, see Section 4.2.
The dashed lines are the concentration profiles from PB theory for the same
system. The cation (counterion) profiles are marked with a plus-sign and the
anion (co-ion) profiles are marked with a minus-sign.

For situations characterized by strong electrostatic interactions, mean field
theories are inaccurate even at very moderate concentration, both for bulk
and surface properties. In such situations the the electrostatic interactions
between anions and cation make the distribution function g, _(r,r’) very
large for small separations. This situation has been dubbed “ion pairing”.
Aqueous salt solutions containing only monovalent ions tend to be “weakly
interacting” whereas systems containing divalent (or higher) ions tend to
be “strongly interacting”, in the sense that in the former case but not in
the latter, mean field theory usually works reasonably well. Nevertheless,
a modification of the DH theory by Bjerrum where ion pairing is explicitly
considered in terms of a chemical equilibrium between “free” and “paired”
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ions significantly improves the predictions of the bulk properties of binary
salt solutions where both the cation and the anion are divalent. [21].

Strong electrostatic interactions also have consequences close to surfaces.
Simple double layer models, discussed in Section 3.1 below, show that when
the repulsion between counterions is sufficiently strong, the behavior of the
electric double layer is qualitatively different from the predictions of mean
field theory. Counter-intuitively, stronger interactions between counterions
give rise to a larger enrichment of counterions close to the surface than weaker
interactions. A situation that is typical for polyvalent counterions is that for
sufficiently large surface charge densities there is an enrichment of co-ions
compared to counterions in the region beyond a few A from the surface. The
co-ion concentration profile then approaches the bulk concentration from
above at large distances from the the surface. To an observer in the bulk
solution, the surface can then appear to have charge of opposite sign to that
of the actual surface charge. For this situation to arise, the electroneutral-
ity condition dictates that there must be a larger amount of counter-charge
than is required to neutralize the surface charge in the region close to the
walls. Therefore, the phenomenon is often referred to as overcharging. In
Figure 2.2 the concentration profiles for a model system where overcharging
is taking place are shown together with the concentration profiles from PB
theory. Notice especially the difference in the co-ion profile compared to its
PB counterpart. Overcharging can also arise due to attractions of a chemical
nature between counterions and the surface. Such interactions, discussed fur-
ther in Section 2.4, are common in real systems and frequently gives rise to
overcharging that is strong compared to the overcharging from ion-ion corre-
lations that can be expected for aqueous systems near room temperature for
reasonable ion valencies. For this reason together with a scarcity of model
systems that are sufficiently well characterized with respect to, for instance,
the surface charge density, it has been difficult to find experimental systems
to test the model predictions of overcharging due to ion-ion correlations.

Another counter-intuitive prediction of simple electrolyte models is that the
potential difference between the surface and the electrolyte bulk need not be
a monotonic function of the surface charge density. The potential can have
an extremum, beyond which the potential varies with surface charge density
in a direction opposite to what would be expected from simple electrostat-
ics. Under some conditions, making the surface charge density more positive
can thus have the effect of making the potential less positive. For surface
charge densities in the experimentally attainable range this behavior is seen
for divalent [22] and multivalent counterions. That the potential as a func-
tion of surface charge density has an extremum carries the implication that
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Figure 2.3: Potential drop over a double layer in the presence of a primitive
model 1:3 salt of 0.25 M concentration. The ion diameters are d,, = 3.6,
dy_=50andd__ =64 A, see Section 3.1. The permittivity of the solvent
is taken to be 2.0, 1.5, 1.25, 1.0, 0.9, 0.8 and 0.75 times that of water, as
indicated in the left figure. In the right figure the potential and surface
charge density are given in reduced units. The reduced potential is the work
required to increase the surface charge by the charge of one counterion divided
by kgT. The reduced surface charge density is the quotient between the area
of a quadratic grid such that the counterions can be placed on it so far apart
that their mutual interaction energy is exactly kg7 divided by the area per
counterion.

the differential capacitance of the double layer is negative for surface charge
densities beyond the extremum. A negative capacitance is incompatible with
thermodynamic equilibrium [23], so surface charge densities for which the to-
tal capacitance is negative could not be obtained in a real system. In Figure
2.3 an example of a set of systems displaying a potential maximum is shown.
The relative permittivity varies between 0.75 and 2.0 times that of water in
order to assess the effect of changes in the strength of the electrostatic inter-
actions. It is important to note, however, that the potential associated with
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the part of the double layer on the electrolyte side is in general not the only
contribution to the potential of the surface, see Section 4.3. Assuming that
the contributions to the capacitance can be added together as capacitors in
series, which is consistent with additivity of the corresponding contributions
to the potential, the condition that precludes equilibrium is that the double
layer capacitance is negative and smaller in magnitude than the total of all
other contributions to the capacitance. Even the very reasonable assumption
that the surface charge is situated at a distance comparable to molecular di-
mensions from, rather than directly at, the plane of closest approach of the
ions would give a positive contribution to the capacitance could make the
total capacitance positive for the cases shown in the figure. It is interesting
to note that in the reduced units used in the right portion of the figure the
potential maxima occur at nearly the same reduced surface charge density.
Moreover, the slope of the curves beyond the maximum in reduced units is
almost equal for all the permittivities considered where sufficiently large re-
duced surface charge densities are reached. This quasi-universality suggests
that the lateral correlation among counterions is the origin of the anomalous
behavior of the potential as a function of surface charge density.

2.3 Double Layer Interactions and Colloidal
Stability

The term “colloidal suspension” refers to a liquid suspension of particles that
are large compared to atomic dimensions, yet small on the macroscopic scale.
The size range of particles to which the word “colloidal” is generally applied
is 1 - 1000 nm. Suspensions of particles in this size range appear homoge-
neous and sedimentation is slow or absent. Dilute colloidal suspensions can
thus be mistaken for homogeneous solutions on casual inspection while con-
centrated suspensions can have the appearance of a paste. The distinction
between solution and suspension is not always easy to make, as molecules and
molecular aggregates are frequently so large that they fall into the colloidal
size range. Many substances that we come into contact with in our daily
lives are in fact colloidal suspensions. Examples are milk, where the white
color is caused by the scattering of light by micrometer-sized fat globules,
and solutions of macromolecules, that make up a large portion of our own

bodies.

From a physical perspective, the defining characteristic of a colloidal system
is a large interfacial area per unit volume of the dispersed phase. This is a
purely geometrical consequence of the small size of the particles. As a unit
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area is proportional to the square of the unit length and a unit volume is
proportional to the cube of the unit length (as the name of these powers
suggests) a system that is inhomogeneous on small length scales must neces-
sarily have a large surface to volume ratio. The properties of the interfaces
are therefore of much greater importance for the macroscopic properties of
colloidal systems than for comparable homogeneous systems. Because an
interface between two phases is associated with a positive contribution to
the free energy, colloidal suspensions are often not equilibrium phases but
may lower their free energy by precipitating the particles. If the particles
repel each other sufficiently strongly for the activation barrier against pre-
cipitation to be insurmountable in practice, colloidal suspension can often be
metastable even if they are out of equilibrium. This is a property that distin-
guishes suspensions from solutions, as the latter are almost always equilib-
rium phases. Thus, knowledge of the interactions between colloidal particles
is of paramount importance for answering the question of whether a partic-
ular suspension is stable or not. Beside the basic question of stability, the
interactions between colloidal particles are important for the determination
of many properties of suspensions, such as flow behavior and sedimentation
velocity.

Interaction between particles in a colloidal suspension may arise from sev-
eral physical mechanisms, of which two are almost always present. These
are double layer and van der Waals forces, that are usually repulsive and
usually attractive, respectively. Charged particles in solution interact due
to overlap between the diffuse part of the double layers around them. As a
charged particle and its counterions form an electroneutral unit, interaction
between them is not primarily electrostatic but due to the osmotic pressure
exerted by the ions in the double layer. Therefore, the distance dependence
of the pressure follows that of the concentration profiles, rather than the
“Coulomb’s law” form expected from simple electrostatics. When the sur-
faces are far apart the concentration profile in the space between them is
approximately the sum of the concentration profiles of two individual sur-
faces. As one might expect, this approximation becomes worse the closer the
surfaces come to each other. Nevertheless the behavior of the concentration
profiles near individual surfaces is very useful for understanding the distance
dependence of the force between surfaces. For systems where the DHLL is
valid in the bulk solution, for instance, the range of the interactions is de-
termined by k. For two equal infinite planar surfaces at sufficiently large
separation, D, the pressure between the surfaces is proportional to e *P.

Apart from double layer interactions, colloidal particles interact also via van
der Waals forces, that are caused by fluctuations in the charge density dis-
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tribution of the particles in time and space. If two particles are close to
each other, a random fluctuation in charge density in one of the particles
will give rise to an electric field that induces a fluctuation in charge density
in the other particle that will in turn polarize the first particle and so on.
Such correlated charge density fluctuations give rise to an attractive force
between the particles, generally called the van der Waals force [24]. Such
forces are ubiquitous in nature and van der Waals forces between atoms and
molecules play a key role in such mundane phenomena as the formation of
condensed phases and friction between surfaces. Compared to the forces asso-
ciated with covalent bonds and unscreened electrostatic interactions, van der
Waals forces are weak. But as the interactions between neighboring atoms
in a typical condensed phase are comparable in magnitude to the thermal
energy, kgT', at room temperature it is easy to see that van der Waals forces
can be important in colloidal systems. The strength of the van der Waals
force between colloidal particles depends on the dielectric properties of the
particles as well as those of the medium between them. For the geometry of
two parallel planar walls at small and intermediate separations, the potential
for this attraction decays as D~2. For typical colloidal systems, the van der
Waals force is strong enough to be important for separations as large as tens
of nanometers or more. For separations that are so large that the time it
takes for the field to propagate between the particles is comparable to the
time scale of the charge density fluctuations, the decay of the potential is
faster, proportional to D3 [25, 26].

What may be regarded as the first successful theory for the interaction be-
tween colloidal particles is the Derjaguin-Landau-Verwey-Overbeek (DLVO)
theory [27, 28]. In DLVO theory the interaction between colloidal particles
is assumed to be the sum of the contributions from the two physical mecha-
nisms above (i.e. double layer and van der Waals interactions.) Furthermore,
these contributions are calculated, on some level of approximation, as if they
were independent of each other. Generally, the “double layer” part of the
problem is treated within the PB approximation, as was done in the origi-
nal versions of this theory. That is, the pressure is repulsive and decays for
large separations as e *" with s proportional to the square root of the ionic
strength for all salt concentrations. The pressure due to the van der Waals
attraction, on the other hand, is attractive and decays as D 3.

Thus, the total interaction between particles depends on a balance between
repulsive double layer forces and attractive van der Waals forces. This bal-
ance is influenced by the particle surface charge density and dielectric prop-
erties and, importantly, on the salt concentration that controls the range
and strength of the double layer interactions. The DLVO theory tends to
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predict the dependence of the stability of colloidal suspensions on the salt
concentration correctly in situations of modest surface charge density and
small concentration of monovalent salt. The predictions of DLVO theory
have been tested by direct force measurements, confirming its validity in the
low salt concentration regime [29, 30, 5, 31].

Under conditions where ion-ion correlations are important, the interactions
between charged particles in electrolyte solution becomes more complicated.
For electrolyte concentrations so large that the correlation functions turn
oscillatory in bulk, the simple exponential form of the distance dependence
for large distances is replaced by an exponentially damped oscillatory decay.
The pressure between surfaces due to the double layer is then attractive
for some separations. This is a reflection of the fact that the concentration
profiles take on the behavior of the bulk distribution functions in the large
distance asymptotic regime.

For smaller distances between surfaces, less can be said about their interac-
tion on the basis of the bulk electrolyte properties. Under such conditions
the interaction can have many features that are inexplicable in terms of mean
field theory. One counter-intuitive consequence of correlations, that has been
predicted from computer simulations as well as theory for simple double layer
models, is that strong electrostatic interaction between counterions can give
rise to attraction between surfaces for some separations at sufficiently high
surface charge density. This is partly due to van der Waals-like forces arising
from correlations between counterions on opposite surfaces and partly due to
that the correlation between counterions on the same surface allows a greater
amount of ions to get close to each surface, decreasing the concentration fur-
ther out. The net effect is that the repulsion due to the ideal contribution to
the osmotic pressure becomes small and gives way for the attractive correla-
tion pressure, resulting in a net attraction. At least the qualitative features
of these predictions are borne out by experiments. For instance, the fact that
the swelling of clays is very different in the presence of divalent counterions
compared to monovalent is consistent with double layer attraction with diva-
lent ions [32, 33]. Forces between charged surfaces in the presence of divalent
ions have also been measured using two different techniques, confirming the
existence of an attractive well [34].

A confounding factor in the interpretation of the short-ranged double layer
interactions is the presence of solvation forces. These interactions are due to
the work required to displace the solvent between the surfaces in response
to a small change in the distance between the surfaces. Depending on the
interactions between the surface and the solvent molecule these interactions
can be attractive, repulsive or oscillatory. The last situation is common
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and is due to packing constraint on the distribution of solvent molecules.
Solvophobic surfaces tend to attract and solvophilic surfaces tend to repel.
An oscillatory component may be present even in the case where there is
and overall attraction or repulsion. See ref. [35] for an overview of solvation
forces.

Another type of interaction that fits under the label of “correlation forces” is
depletion interactions of electrostatic origin. A short ranged attraction due
to depletion of ions by repulsive image charge interactions has been predicted
for uncharged dielectric surfaces in the presence of salt [36]. For uncharged
surfaces the contribution to the surface-surface interaction due to the osmotic
pressure may be regarded as analogous to solvation forces. In addition, the
image charge interactions affects the van der Waals interactions by screen-
ing the contributions from zero frequency modes [37], see also Section 3.2.
The net effect is that the zero frequency contribution to the van der Waals
attraction is replaced by a exponentially decaying depletion attraction. The
screening of the van der Waals force has been demonstrated experimentally
in lipid bi-layer systems [38], confirming the predictions of theory.

2.4 Ion Specificity and Non-Electrostatic In-
teractions

While many of the properties of electrolytes and double layers are determined
by electrostatic interactions, they cannot be the end of the story. For one
thing, the formation of a double layer is often driven by the preferential
adsorption of one species of ion over others due to short ranged “chemical”
forces. Many of the systems usually employed in colloid science have a surface
charge density that depends on the concentration of a specific type of ion,
the potential determining ion, in a way that suggest chemical equilibrium.
Examples of this are silver iodide sols, where the surface potential varies
linearly with the chemical potential of silver ions in the solutions, and oxides,
including silica, where the surface potential is determined by the pH.

It is in such situations that the GCS theory finds its greatest application.
Because the adsorption is often so strong that a minuscule concentration
of the potential determining ion is required to reach a particular value of
the surface charge density, the concentration of indifferent (not potential
determining) electrolyte can be kept low. The GC theory can then be applied
with some confidence, at least for monovalent salts and not too high surface
charge density. For low salt concentration the length scale characterizing
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the diffuse part of the electric double layer is much larger than the range
of the interactions that give rise to specific adsorption and the assumption
inherent in GCS theory that ions are adsorbed as a monolayer is not greatly
in error. For higher concentrations or surface charge densities, the latter
corresponding to a large local concentration of counterions, ion specificity is
also seen for ions that are not potential determining. While also this type
of ion specificity fit into the GCS framework, the interpretation is not clear
cut because the GC theory is less reliable for higher concentrations. In this
regime there is a risk that deviations of GCS theory from experiments due
to failures of GC theory are erroneously ascribed to specific adsorption.

It has been known for well over a century that the chemical identity of “indif-
ferent” ions play a role in a large range of phenomena involving moderate to
high electrolyte concentrations. The first systematic study of ion specificity
was performed by Franz Hofmeister in 1888. It was shown that the concen-
tration of salt required to precipitate chicken egg white albumin depends on
the type of salt used [39]. Hofmeister arranged ions (actually salts with a
common counterion) in a sequence based on their “precipitating power” into
what is known today as the Hofmeister series. For example, the ability of
the halides to precipitate albumin was in Hofmeisters original experiment
found vary as the series F~ > CI~™ > Br~ > [7. This means that a lower
concentration of F~ compared to, for instance, Cl~ is required to precipitate
protein from solution.

Since then, it has been found that the ion specificity of a large range of
properties and phenomena, including enzymatic activity [40, 41, 42, 43],
surface-surface interactions [44] and colloidal stability [45], and the inter-
facial tension of electrolytes [46, 47, 48], follow either a similar or the reverse
sequence. Also the bulk properties differ greatly between different salts for
moderate to large concentrations [49]. This variation have in some cases been
found to correlate with the variation in the effect of salt on surface proper-
ties [45, 50]. The near-universality of the Hofmeister series together with its
correlation with bulk properties suggest that this type of ion specificity is
strongly influenced by the properties of the individual species of ions. This
gives some hope that the ion specificity of a given phenomenon might one
day be rendered predictable on the basis of those properties.

It has long been widely believed, particularly in biochemistry, that the ion
specificity of protein solubility, precipitation and denaturation result from
competition for solvating water between the protein and salt components of
the solution [51]. In this picture, the origin of ion-specificity would be the
difference in solvation strength of different species of ions. Small ions allow
the charge on the ion to get close to the dipolar (quadrupolar, etc.) solvent
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molecules, allowing strong electrostatic interaction and thereby strong hydra-
tion. Large ions, on the other hand, interact less strongly with the solvent
molecules. Strongly hydrated ions have an ordered shell of water molecules
around them whereas large ions are believed to break up the hydrogen bond
network in water. Therefore small well-hydrated ions are often referred to as
“kosmotropes” and large weakly hydrated ions as “chaotropes”. If competi-
tion for solvating water molecules were the only mechanism for precipitation
of proteins one would expect kosmotropes to be stronger salting-out agents
than chaotropes. This is consistent with the order of the “original” Hofmeis-
ter series, but that order is not universal. For some proteins (and colloidal
suspensions) the corresponding series have the reverse order. It is even the
case that the opposite series is found above and below the pl of for the
same protein. This would not be the case if competition for hydration of the
protein was the main explanation for ion-specificity as both negatively and
positively charged proteins are hydrated (though not necessarily to the same
extent). Thus, one can conclude that competition for hydration is not enough
to explain ion specificity in protein precipitation, let alone ion-specific effects
that are not directly related to solubility.

Relatively recently, ion specificity and the Hofmeister series have received
much attention from the physical chemistry community. A view has emerged
in which direct, specific interaction between ions and macromolecules or in-
terfaces, that are weaker but more long-ranged than the interactions that give
rise to the surface charge, are seen as the main mechanism for ion-specificity.
Direct interactions between ions and surfaces (or macromolecules) affect the
concentration profiles of ions and therefore the surface thermodynamic (and
other) properties as well as the interaction between surfaces. Analysis of ex-
perimental data in terms of Kirkwood-Buff theory lend support to this view
[52, 53]. Some authors even go so far as to claim that the effect of salt on
the bulk properties, including the “solvating ability”, of water are so small
as to be unimportant [54].

In this thesis the term “specific interaction” is used for all interactions that
depend on the chemical idiosyncrasies of a system. These include donor-
acceptor bonding, dispersion forces, solvent mediated interactions and ex-
cluded volume effects. That these classes of interactions are here grouped
together in this way is not to be taken as an assertion that they necessarily
have similar effects on a system, however. Both the strength and the distance
dependence of the interactions may be of importance, and these differ wildly
between the mechanisms mentioned above. While for instance dispersion
forces are much shorter in range than (unscreened) Coulomb interactions,
they tend to be more long-ranged than the “site-binding” interactions that
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makes some ions potential determining. Thus, one must distinguish between
different types of specific interactions that differ in both strength and dis-
tance dependence. Strong, short ranged forces simply act to create a surface
charge by adsorption of ions in the way envisioned by GCS theory. Longer
range interactions, on the other hand, can affect the spatial distribution of
ions in the outer part of the double layer even if the interaction is too weak to
affect the number of adsorbed ions to a large extent. A detailed description
of the electric double layer on the implicit-solvent level would require the full
solvent averaged interaction potential between an ion and the surface, as well
as that between ions. Unfortunately, these interaction potentials are imper-
fectly known in all cases. Assumptions and approximations must therefore
be made.

In order to get a feel for at what concentration specific interactions starts
becoming non-negligible in comparison to the long-range electrostatic ones, it
is instructive to consider the typical length scales characterizing the solution.
If the ions in a 100 mM salt solution, corresponding to maybe one ion pair
per 550 water molecules, were placed on a simple cubic lattice the lattice
spacing of would be about 20 A. In the same solution £~ is about 10 A.
In a 1 M solution, with in the order of 55 water molecules per ion pair, the
corresponding lattice spacing and x~! would be around 9 A and around 3 A,
respectively. Taking into account that ions have a size in the order of one
to a few A (or, if one counts the first layer of coordinating water molecules,
as it is frequently argued that one should, several A) it is not surprising
that the chemical character of the ions becomes increasingly important in
the concentration range between 0.1 and 1 M, which is something that is
frequently seen in experiments. Electrostatic interactions are then screened
to ranges comparable to the size of the ions.

The starting point of the recent interest in direct ion-surface interactions
can be traced back to the suggestion by Ninham and Yaminsky that the
ordering of the Hofmeister series might be explained by (dispersion) van der
Waals forces between the ions and interfaces [55]. The strength of such force
depends on the difference in polarizability of the ion and the solvent as well
as the polarizability of the interface. This idea is made plausible by the fact
that the ionic polarizability varies over a wide range for the small, inorganic
ions that are commonly employed as background electrolyte within colloid
science, particularly for anions. Anions tend to be more polarizable, and
have a larger variation in polarizability, than comparable cations [56]. It is
noteworthy that the polarizability of ions tend to correlate with their size.
A classification of ions in terms of polarizability would thus be likely to yield
the same sequence as a classification of ions based on solvation.
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Ton-wall dispersion forces distinguish themselves from other ion-specific forces
in that they are of relatively long range, the potential decaying as d—* where
d is the ion-wall distance. In the case of interaction between two surfaces,
such interactions give rise to contributions to the wall-wall pressure that
are as long-ranged as the wall-wall van der Waals force. Furthermore, the
strength of the ion-wall van der Waals forces can be calculated within the
same theoretical framework as the wall-wall van der Waals interaction in the
limit of large wall-ion distances. This idea has been investigated in a number
of recent publications [57, 58, 59, 60, 61, 62, 63, 64, 65, 66].

Computer simulations consistently show that the potential of mean force be-
tween ions have an oscillatory component that is due to the the solvent struc-
ture and analogous to the oscillatory solvation force sometimes seen between
surfaces. The strength of the solvent mediated interactions is often greater
than the dispersion interactions and the difference in solvation structure of
ions give rise to a variability in the interactions between ions that makes
this mechanism a viable alternative as an explanation to the ordering of the
Hofmeister series. This is closely related to the concepts of kosmotropicity
and chaotropicity. Regardless of whether the bulk water structure is signif-
icantly influenced by ion hydration it is tautologically true that the local
structure in the vicinity of ions is. The experimentally observed correla-
tion between chaotropicity /kosmotropicity and ion specific phenomena has
lead to the formulation of heuristic rules based on this concept. The most
recent is probably the “law of matching water affinities” [67], that states
that chaotropes attract other chaotropes and kosmotropes attract other kos-
motropes while chaotropes and kosmotropes repel each other. The rationale
is that a small ion can replace a solvating water molecule near another small
ion, the strong attraction between the small ions compensating for the large
solvation energy. Similarly, a large ion can come close to another large ion
because neither is strongly solvated. Large ions cannot, however, replace
the solvating water molecules of small ions because the Coulomb energy at
contact is not sufficient to compensate for the loss of hydration energy. Obvi-
ously, computer simulations could in principle render this qualitative picture
quantitative. The technical difficulties are unfortunately such that this goal
has not yet been reached. Nevertheless, this is an active area of research and
some progress have recently been made. This is discussed further in Section
3.1.

Simulations using all-atom models indicate that large, polarizable ions tend
to enrich in a narrow region close to the air-water interface, even though
there is a negative surface excess overall [68]. The wrong order of the halides
emerge for the effect on surface tension in the air-water interface when only
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dispersion forces are included [57]. When the difference in solvation energy of
the ions is taken into account in an ad hoc manner the correct sequence could
be obtained [69]. Essentially the same conclusion was recently drawn on the
basis of surface selective spectroscopic measurements with gracing incidence
X-ray fluorescence that provides a measure of the surface excess of ions:
data could only be fitted if a short-ranged interaction was included together
with the dispersion interactions [70]. The ion-specific surface pressure of
a phospholipid film over aqueous electrolyte could be well fitted using the
strength of the dispersion interactions as fitting parameters [71]. An equally
good fit could be obtained from the assumption that ions penetrate into
the phospholipid film to a different degree, however, but not from assuming
binding to discrete sites.

In ref. [60] it was found that dispersion forces between ions and surfaces have
opposite effect on the interaction pressure between surfaces when acting on
the co-ion compared to when acting on the counterion. Mechanistically,
this is explained by attractive interactions with the co-ion that effectively
increases the surface charge density by drawing co-ions close to the surface.
An attractive interaction acting on the counterions, on the other hand, draws
them closer to the surface than electrostatic forces alone would. In the former
case there is an increase in repulsion at short separations whereas in the latter
case there is a decrease in repulsion for such separations. This mechanism
might explain the observation that the precipitation of lysozyme follows a
reverse Hofmeister series for pH below pl (i.e. for positive surface charge) and
a direct Hofmeister series above pl (i.e. for negative surface charge). In ref.
[72] it was shown that the same observation could be explained by solvent-
mediated interactions, as also these can give rise to attractive interactions
between ions and surfaces. This is another example of how models containing
completely different interaction mechanisms lead to the same prediction; it
seems that this prediction is not very sensitive to the distance dependence
of the interaction potential.

The resulting state of the art is that it is reasonably certain that the main
reason for the ordering of the Hofmeister series are weak (a fraction of kgT
to a few kgT') and short ranged (less than 1 nm) direct interactions between
ions or between ions and interfaces. The quantitative, mechanistic under-
standing of these interactions, however, is much less certain. While the bulk
of this thesis does not deal directly with ion specific phenomena, the study
of these forms the context and background of this work. In Papers I-III the
effects of dispersion forces are investigated. The main focus is the effects of
strong asymmetry in the ion-wall interactions between the cation and anion.
A difficulty in most treatments of this problem to date is that the effect of
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the static polarization of the dielectric interfaces due to that the ions cannot
be treated consistently within mean field theories, that are usually favored
for their simplicity. When ion-ion correlations are considered explicitly, as is
done in this thesis, a consistent treatment of the continuum model of inter-
faces is possible. While the model of the interface employed in Papers I-111I is
likely too crude to result in quantitative predictions for real systems the con-
sistent treatment of this model is nevertheless of interest. The role of specific
adsorption as a mechanism for overcharging forms the background for Paper
IV, wherein ion-ion correlations are considered as an alternative source of
overcharging. In order to device a test to determine whether overcharging
due to ion-ion correlation is indeed present in real systems it was necessary
to ascertain the absence of strong specific adsorption as a confounding factor.
Comparison with experimental data indicate that the relatively modest over-
charging seen for negative surface charge densities for the mercury/aqueous
MgSO, interface [73, 74] is explainable while the strong overcharging seen
for many salts, including MgSO,, for positively polarized mercury electrodes
is not. This is consistent with notion that the mercury surface is free from
specific adsorption for sufficiently negative surface charge densities.
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Chapter 3
Continuum Models

(13

“Auream quisquis mediocritatem diligit...
-Quintus Horatius Flaccus, Carmina (23 BC)

A complete description of any substance would require explicit consideration
of the properties of the constituent particles. But such a description is often
not practically feasible. A typical situation in which atomic models tend to
be intractable is one that is characterized by some length scale that is much
larger than the length scale of the interaction between individual atoms. Such
systems are often modeled by describing some or all the substances involved
by their averaged properties, disregarding the inherent discreteness of the
constituent atoms. When the disparity in length scales is large, such as for
systems of macroscopic dimensions, the utility and validity of this approach
is evident. Very rarely do we need to take into account the individuality
of atoms when describing the macroscopic properties of substances; explicit
consideration of the nature of and interaction between the atomic building
blocks is needed only when we seek to explain those properties. Even on
colloidal length scales, a continuum picture often gives an excellent descrip-
tion. In the lower end the colloidal size range the continuum description of
matter cannot, however, be accepted prima facie. For such length scales or
smaller; any continuum description is an approximation, the validity of which
is an empirical question. Nevertheless, in models of electrolyte solutions the
solvent is often described as a dielectric continuum.

A justification for why it is an acceptable approximation to only treat the
ions and not the solvent explicitly when modeling electrolyte solutions can
be obtained from an argument by McMillan and Mayer [75]. It was shown
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by them that a solution in equilibrium with pure solvent can be treated as a
fluid composed of only solute particles, interacting by the potential of mean
force between solute particles in the solution in question. In general this
potential of mean force is not limited to pairwise additive interactions, even
if the interactions between constituent particles are pairwise additive. Also,
the potential of mean force is unknown a priori because it has to be calcu-
lated as an ensemble average in the full system. Treating a system exactly
by McMillan-Mayer theory does not necessarily simplify the problem and
may well complicate it. Rather, McMillan-Mayer theory usually serves as
a starting point for approximate theories, where an ansatz is made for the
solvent-averaged interaction potential that serves as a definition for a partic-
ular model. McMillan-Mayer type models thus contain no explicit reference
to the solvent particles. In general, this engenders great simplification of
the treatment of the statistical-mechanical problem of going from interaction
potentials to thermodynamic properties. Rather than having to deal with
the multi-component, molecular fluid at liquid state densities that is the ac-
tual system, a McMillan-Mayer type model has the appearance of a gas of
solute particles with one fewer components than the full system. This is an
important conceptual as well as technical simplification.

McMillan-Mayer type models have been found to be suitable for modeling
electrolyte systems, at least for low concentrations. This is so because the
long-range Coulomb interactions are dominant in this type of systems. Thus,
a large portion of the interactions that determine the properties of the system
take place over distances corresponding to several atomic diameters. The
procedure of treating the interactions between solute ions as averaged over all
configurations of the solvent particles is then easy to justify. The expectation
that the form of the interaction between charges in a solvent is the same as
that in vacuum, but scaled down by the relative permittivity to account for
dielectric screening, is in fact correct for interactions over large distances
[76], as if the solvent behaved as a macroscopic dielectric. This observation
naturally leads to a class of models where it is taken at face value; where the
solvent is actually is modeled as a dielectric continuum. The primitive model
that is presented below, in Section 3.1, is an example of this approach. The
physical assumption of treating the solvent as a dielectric continuum is also
made in the Lifshitz theory of van der Waals interaction, discussed in Section
3.2. These models are thus constructed on the same conceptual foundation,
which is why they are discussed together here.

The relation between the thermodynamic properties in McMillan-Mayer type
models and those of real electrolyte solutions is simple but not quite trivial.
As the solvent molecules are not explicitly part of these models, the nat-

34



ural way to specify the concentration is as a number density, that can be
expressed as molar concentration (moles per liter of solution). The actual
composition of the system, and therefore the molal concentration (moles per
kilogram of solvent), is generally unknown in McMillan-Mayer type models
because the amount of solvent is not specified. Furthermore, the McMillan-
Mayer argument that justifies replacing the solvent component with effective
ion-ion potentials requires the solvent degrees of freedom to be integrated
out at constant solvent chemical potential. The conditions that McMillan-
Mayer-type theory may be best thought to describe is a solution enclosed in a
container of constant volume with semi-permeable walls immersed in a large
excess of pure solvent. These conditions we refer to as McMillan-Mayer con-
ditions. Experiments, on the other hand, are usually carried out under what
we refer to as Lewis-Randall conditions, where the pressure is held constant
and the solution composition is expressed as molal concentration (moles per
kilogram of solvent), denoted m. Note that constant molar concentration
under McMillan-Mayer conditions do not necessarily correspond to constant
composition whereas constant molal concentration under Lewis-Randall con-
ditions do.

A system under Lewis-Randall conditions is most conveniently described us-
ing a thermodynamic potential with temperature, pressure and composi-
tion as its natural variables, i.e. the normal Gibbs free energy, G. Under
McMillan-Mayer conditions, on the other hand, a system is best described
by a thermodynamic potential, denoted M, with the natural variables tem-
perature, volume, number of solute particles and chemical potential of the
solvent. The two thermodynamic potentials G and M are related by a Leg-
endre transformation

M{N*}, 1%, V,T) = G({N}, P,T) — PV — N°%.J°, (3.1)

where { N} is the set of the number of particles of each component, {N*} is
the set of the number of particles of each solute component and ;° and N°
are the solvent chemical potential and number of particles, respectively. In
terms of M the chemical potential under McMillan-Mayer conditions is given
by the relation

i

oM
( TN ) = w({N*}, T, 0%, V) = i + kgT'ln i7", (3.2)
{N; 7,})Tuu'07V

The activity coefficient f in this equation is the same as that in eq. (2.8).
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The corresponding expression for Lewis-Randall conditions is

<§i> = 1, ({N}, T, P) = 1i° + kT In f-m; (3.3)
"/ {N;z},T,P

that defines the Lewis-Randall activity coefficient f“?. Note that the two
definitions of the activity coefficient corresponds to different concentration
scales and that the definition of activity coefficients that is usually used for
tabulated data corresponds to ff. For a given temperature and composi-
tion, pu;({N*}, T, u°, V) is not in general equal to u;({ N}, T, P) because the
pressures and chemical potentials of the solvent are not in general equal. In
order to correct for this one can use thermodynamic integration along a path
of constant temperature and composition

PO+Pbulk a )

wi({N}, P°, T) = p;({N}, P° + P™* T — / Sigp, (3.4)
PO OP'

where P is the “external” pressure and P”* is the bulk osmotic pressure.

Because 24 is equal to the partial molar volume, v; of species 4, eq. (3.4)

aP
can be written as

wi({N}, PO, T) = ps({N}, P° + PP% 1) — phuiky, (3.5)

for incompressible fluids. Under the assumption of incompressibility the re-
lation between fXf and f; is thus

Pphulky,
kT

where n; and m; correspond to the same composition.

ln(mifiLR) =In(n,fi) —

(3.6)

For notational and conceptual convenience the quantity that is referred to
as the osmotic coefficients in McMillan-Mayer-type models is given by the
quotient of the bulk osmotic pressure, P*** and the osmotic pressure of
an ideal solute as given by eq. (2.7). The standard definition of osmotic
coefficient, appropriate under Lewis-Randall conditions, is

Ap°

d)LR —
k’BTMO Zz m;

(3.7)
where M° is the molar mass of the solvent and Au® is the difference in

chemical potential of the solvent compared to pure solvent. The relation
between ¢ and ¢ is thus

QSLRMOZmi — vaozni, (38)
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where v° is the solvent partial molar volume. The difference in the form of
the Gibbs-Duhem equation under McMillan-Mayer conditions,

VdP™™* =" Ndps;, (3.9)

and under Lewis-Randall conditions,
—Np® =" Nidys, (3.10)

ensure that these definitions of the osmotic coefficient correspond to analo-
gous relationships between osmotic and activity coefficients under McMillan-
Mayer conditions and Lewis-Randall conditions.

McMillan-Mayer type models contain no way to determine the amount of
solvent in the system, or even the solvent chemical potential. Experimental
volumetric data must therefore be available if the model thermodynamic
data are to be compared with corresponding experimental data. The most
convenient way to do so is to convert the experimental data to McMillan-
Mayer conditions and compare directly to the model predictions.

3.1 The Primitive Model

Within the primitive model of electrolyte solutions and electric double lay-
ers the ions are modeled as charged hard spheres in a dielectric continuum
solvent. The pair interaction potential between two ions of species ¢ and j
at coordinates r and r’ is thus given by

Uij = uicj(’“l + g (3.11)

where

Coul / 4i4;
() = —mMm——— 3.12
uy (xx) deey v —1'| (3.12)

The ’hard sphere’ potential, ug™, is infinite if [r — r'| < a;; where a;; is

distance between ion centers when an ion of species 7 is in contact with an
ion of species j, and zero otherwise. In general the ion radii may be additive,
that is a;; = (@i + a;5)/2 for all i and j, or non-additive. It is common to
choose all ion radii to be equal, a;; = a for all ¢ and j, to reduce the number
of parameters in the model.

When considering interfacial systems in the primitive model one often seeks
to model only one side of the interface. The interactions with the particles
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of the other phase are treated using external potentials. This simplification
carries the cost that the actual location of the Gibbs surface of the solvent
cannot be obtained from the model. Instead, the location of the Gibbs plane
must be taken as a model assumption. In this thesis the part of the electric
double layer that is on the solution side is of interest, and therefore we model
only the ions in solution explicitly. This type of model is compatible with the
conceptual framework of GCS theory, where a distinction is made between
the inner and diffuse parts of the double layer. The primitive model in the
form presented here may be regarded as a model of the diffuse part.

The potential from a single charged surface with surface charge density o
located at z = 27 is given by
_ 4o

veoul(z) = 5 |z — 27]. (3.13)
€€

Note that any choice of z7 on the surface side of the plane of closest approach
of the ions gives the same concentration profiles. This is also true if the
surface charge is spread out in space as long as the surface charge distribution
does not overlap with the ion distribution. In this thesis it is assumed that
the walls are “hard” in the same sense as the ion cores, so that the interaction
energy is infinite whenever an ion is closer than a certain distance from any
wall. Note in this context that different origins of the coordinate system are
used for cases where wall-wall interactions are considered and for cases where
single-wall properties are considered. In the former case the origin is placed
in the mid-plane between walls and in the latter case it is placed in the plane
of closest approach of the ions to the walls.

The form of equation (3.12) is correct in bulk for large ionic separation; the
approximations are the assumption that this form is valid for all separations
up to hard-core contact and the use of the permittivity of pure solvent. For
finite concentrations, the permittivity appropriate for the solution is in gen-
eral not equal to the bulk permittivity of the pure solvent. Unfortunately,
the bulk permittivity of the solvent in an electrolyte solution of finite concen-
tration is an ill-defined quantity because the presence of free charges makes
the solution a conductor with infinite permittivity. The form of the short
range interaction potential, ug™, is justified by the fact that ions cannot
overlap due to Pauli repulsion. The interaction energy for very small sepa-
rations must thus be so strongly repulsive compared to the thermal energy
that it may as well be considered infinite. If this feature of the potential is
not reproduced it would lead to the so-called "Coulomb catastrophe’. As the
interaction between cations and anions is infinitely attractive for zero ion-ion
separation, the cation-anion correlation function would diverge at this point
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in the absence of an additional interaction that is infinitely repulsive. The
primitive model may thus in some sense be regarded as the simplest physi-
cally sound model of electrolyte solutions. While the very short-ranged and
very long-ranged ion-ion interactions are reproduced faithfully, the primitive
model interaction potential is no doubt a rather poor approximation of the
true intermediate-range interactions. Thus, one would expect the primitive
model to work well in situations where the long-range Coulomb interactions
are dominant.

To calculate structural and thermodynamic properties of a primitive model
by statistical mechanics is a non-trivial problem, despite the simplicity of
the interaction potential. Fortunately, this is a problem that has attracted
the attention of many workers over the last century and today theoretical as
well as simulation methods that reliably gives the properties of the primitive
model for a large range of parameters have been developed. The theories
that tend to be most successful for primitive model electrolytes (and other
simple fluids) belongs to the class of theoretical methods known as integral
equation theories. These are discussed in Section 4.1. Furthermore, a number
of general conclusions about the primitive model, some of which also applies
to electrolytes in general, can be drawn on the basis of the long range nature
of the Coulomb potential. Examples of such are sum rules for the zeroth and
second moment of the charge density distribution around an ion [3] and the
analytic form of the pair distribution function in the long-distance asymptotic
limit [17].

Due to the finite size of the ions, the primitive model takes into account
excluded volume effects. It has been found that the decay length of the bulk
distribution functions for primitive model electrolytes depend on the ion sizes
in a rather complicated fashion [77]. Thus, the ion size is a possible source
of ion specificity. Using the ion sizes as fitting parameters, the primitive
model has been found to be able to describe bulk thermodynamic data for
many real electrolyte solutions quite well up to about 1 M concentration,
sometimes much higher [78]. If a sufficiently large set of salts is investigated,
it becomes apparent that the ionic radii that give the best fit are not in
general transferable between salts, nor are they simply related to the radius of
ions in crystalline compounds. Thus, the primitive model must be employed
with the caveat that the ionic size parameter cannot be interpreted as a true
geometric property of an ion.

The primitive model applied to electrolytes near interfaces is an important
model for the electric double layer. While the same theoretical methods can
be applied to this situation as to bulk electrolytes, the interfacial problem is
far more technically demanding than the bulk problem. This is due to the in-
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homogeneity and anisotropy of the solution close to an interface that breaks
some of the spatial symmetries that can be used to simplify the bulk prob-
lem. Simulations of primitive model double layers [79, 80] and similar models
[16] have been possible since the early 1980s. For monovalent counterions at
moderate concentration near moderately charged surfaces, the results are
in qualitative agreement with the predictions of the PB approximation and
other mean-field theories. For divalent counterions (or counterions of even
higher valency) the predictions of the PB approximation differ qualitatively
from the predictions of primitive model simulations [81, 82]. This has im-
plications for the interaction pressure between walls due to the ions, that is
sometimes attractive [83, 84] rather than always repulsive, as is the case in
DLVO theory, as well as for surface excess thermodynamic properties. These
qualitative differences from mean field theory are discussed in Sections 2.2
and 2.3 above.

For more sophisticated models, realistic pairwise interaction potentials be-
tween ions may well differ sufficiently between different species of ions that
they are the main source of ion specificity under some conditions. There are
two principal methods for developing improved model interaction potentials.
One is to make assumptions about the mathematical form of the interaction
potential and use a fit to experimental data to determine the values of the
parameters defining the details of the interaction. The other is to actually
try to calculate the effective potential in some thermodynamic state using
simulation or advanced theory and then try to generalize this form to other
states.

The former approach have been extensively investigated, particularly for 1:1
salts [85, 86, 87, 88]. This research program has resulted in models in good
agreement with bulk thermodynamic data. The approach does, however,
suffer from the problem that many different forms of the interaction potential
can give similar fits to experimental data. This was realized early on, as
stated by Ramanathan and Friedman in ref. [85]:

It seems to us that the main barrier to further advancement of
our understanding of ionic solutions lies in the expectation that a
vast number of equally attractive but distinguishable models can
be found which are equally consistent with thermodynamic data.

Fits to data from macroscopic measurements can thus reveal general fea-

tures of the interaction potential, but are blunt tools for obtaining detailed
mechanistic information. As the form of an interaction potential, dictated
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by theory, for one mechanism may give an equally good fit as the form corre-
sponding to a completely different mechanism, definite conclusions can rarely
be drawn.

The latter approach of deriving the effective interaction potential from more
detailed models, on the other hand, shows some promise in giving mechanis-
tic information but suffers from that thermodynamic properties of solutions
at high concentrations are often very sensitive to small errors in the mag-
nitude of the interaction potential. (The insensitivity of the possibility of
fitting bulk thermodynamic data is to the form of the interaction potential
does not contradict sensitivity of thermodynamic properties to its magni-
tude for a given form.) Thus, it is difficult to obtain an interaction po-
tential that accurately gives the thermodynamic properties of solutions of a
given salt by this route. Nevertheless, this kind of calculations have yielded
important information about the general features of the effective interac-
tions between ions in aqueous solutions. It seems to be a general feature
that such interaction potentials have an oscillatory component due to or-
dering of water molecules that is superimposed on the Coulomb interaction
[89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 50, 72, 99]. This solvent mediated inter-
action may be considered analogous to the solvation force between surfaces
[35]. As noted in Section 2.4, differences in this solvent induced interaction
is one of the major candidates for explaining the ordering of the Hofmeis-
ter series. Interaction potentials from simulations have been applied to the
modeling of inhomogeneous systems [100, 101].

3.2 Polarizable Interfaces and van der Waals
Forces

As stated in the introduction, van der Waals forces are caused by correlated
fluctuations in the charge density distribution of bodies that may be as small
as atoms and as large as macroscopic objects. The fluctuations in charge
density may arise from the displacement of either electrons or nuclei. Due to
the difference in mass between nuclei and electrons, these mechanisms differ
greatly in time scale. The electronic fluctuations can have frequencies well
above those associated with visible light while the fluctuations associated
with the nuclei occur at frequencies comparable to those associated with in-
frared radiation or smaller. Because the time scale associated with electronic
motion can be much smaller than that of nuclear motion, the electrons move
with the nuclei. The displacement of nuclei can thus only effect a significant
fluctuation in charge density if those nuclei are part of polar molecules. Even
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in such cases, the high frequency fluctuations associated with the electronic
motion tend to give rise to the dominant contribution to the van der Waals
force [35]. This is commonly called the dispersion force. In this thesis, the
term “dispersion force” is used only for the contribution to the van der Waals
force due to high frequency fluctuations. As we shall see in the following sec-
tion, however, the same theoretical framework can be used regardless of the
time scale of the fluctuations.

When electrolyte is present, it is vital to distinguish between the “high fre-
quency” (dispersion) and “zero frequency” (that is due to very low frequency
fluctuations in charge density) contribution to the wall-wall van der Waals
force. The ions in an electrolyte cannot respond to the former, other than
by changing their polarization state, because the vast majority of the fluc-
tuations causing it happen on a timescale that is too short for the ions to
move significantly in response. However, the ions can respond to the “zero
frequency” contribution, and it is therefore screened by electrolyte much like
other electrostatic interactions. This screening is automatically taken into
account if the effects of image forces are included consistently in the treat-
ment of the intervening electrolyte.

The first quantitative theoretical treatment of dispersion forces is due to Lon-
don, who derived an approximate expression for the dispersion interaction
between two atoms [24]. This expression predicted that the strength of the
dispersion forces is proportional to the product of the atomic polarizabilities
and that the potential for this force decays as the inverse sixth power of the
interatomic distance for large distances, which is correct for distances that
are sufficiently small that negligible error is introduced if the speed of light
is taken to be infinite. The distance dependence of the van der Waals attrac-
tion between two macroscopic spheres was successfully predicted by Hamaker
[102] by simply summing the average contribution from each individual vol-
ume element, as given by the London expression for dispersion forces and
the average density. This procedure can of course be applied to any geom-
etry. Despite this success, Hamaker’s approach proved incapable of reliably
predicting the strength of the van der Waals attraction between macroscopic
bodies. This is to a large extent due to the fact that for the densities of
typical condensed phases, the London expression, that pertains to two atoms
in vacuum, is not valid. When atoms are close together, neighboring atoms
will affect each other’s polarization states in a complicated manner. Thus,
the apparent polarizability of an individual atom will depend on the aver-
age polarization states of surrounding atoms, that in turn depends on the
polarization states of the atoms surrounding them. As can be imagined, the
problem of calculating this quantity quickly becomes very complex as the
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density is increased. Note however that the problem of many-body polariza-
tion in connection to the (static) dielectric constant of polarizable liquids can
be expressed as an integral equation similar to the integral equations for the
correlation functions that appear in liquid state theories [103], see Section
4.1 below.

A theory for van der Waals forces that takes these considerations into ac-
count was developed in the 1950’s by Lifshitz [104]. This theory was originally
formulated in terms of quantum electrodynamics, but due to the approxima-
tions involved it can also be formulated in terms of classical electrodynamics
with quantization of energy [25, 105, 26]. Within Lifshitz theory, materials
are characterized by their macroscopic dielectric functions that contain the
effects of many-body interactions on the response of the material to electric
fields. These dielectric functions depend on the time scale on which the field
varies and are usually expressed as functions of frequency. Thus, Lifshitz
theory is a continuum theory where the molecular “granularity” of the wall
and particle media is neglected, much in the same way as is done in the
primitive model of electrolyte solutions.

The boundary condition that the electric field must satisfy at the interface
between two media is determined by the dielectric functions of the media, as
well as their geometries. If two interfaces are brought close to each other the
need to satisfy the boundary conditions for both interfaces places a limitation
on the wavelengths that “fit” between the interfaces. The partition function
of the electric field is given by

_(41/2)hw;

Q:H;e WZHW (3.14)

j 2sinh (55

where w; denotes the frequency of the j-th allowed mode and [ is an integer,
corresponding to the number of photons in the mode. The free energy of the
field is thus

A=—ksThQ = kBTEj:ln (2sinh (QZ:JT)) (3.15)
As the frequencies of the allowed modes depend on the separation between
the interfaces, the free energy of the field is also dependent on the separation.
It is possible to rationalize why the van der Waals force is generally attractive
by noting that the number of modes that fit between the interfaces generally
becomes smaller as the interfaces are brought closer. Since most modes have
an energy hw; that is much larger than kg7 for the temperature range that is
of interest within colloid science, decreasing the number of modes correspond
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to a decrease in the free energy. In order to obtain F' as a function of
distance one could solve the electrodynamic boundary value problem to find
the frequencies of the allowed modes, which is generally a difficult problem,
and substitute the frequencies into eq. (3.15). The problem can be simplified
by writing the free energy of the modes associated with a certain magnitude
of the wave vector in terms of the dispersion relation, Z(w, k) (that has the
property that the frequencies of the allowed modes satisfy Z(w, k) = 0) for
imaginary frequencies

> 27THCBT
A(k):kTE 'Dli——— k),
nL (l ) >

where i is the imaginary unit and the prime on the summation symbol in-
dicate that the term with [ = 0 is to be given half weight. The proof of
the equivalence between eq. (3.15) and eq. (3.16) relies on Cauchy’s residue
theorem and can be found in [106]. For two planar, parallel interfaces the
dispersion relation is given by!

(3.16)

D(w, k) =1 — e (w)e 2P, (3.17)
where k is the magnitude of the wave vector and

e(w) — ewall(w)
€(w) + €wan(w)’

(3.18)

ep(w) =

where €(w) and €,4;(w) are the frequency-dependent dielectric functions of
the solvent and the wall material, respectively. These are related to the
dielectric constants by €(0) = € and €,,(0) = €,ay and may be thought of
as a generalization of the concept of dielectric constant that applies to fields
that vary in time. To obtain the total interaction free energy due to van der
Waals forces as a function of D, eq. (3.16) can be integrated with respect to
k, yielding

A(D) = 8’?; >y plir) (3.19)

with w; = [ 27 kgT'/h. In order to obtain the pressure due to van der Waals
forces, the free energy is differentiated with respect to D, which gives the
result

PvdW(D) _ kgT - /i D (iwl)‘ (320)

IThis dispersion relation is valid only if the speed of light can be taken as infinite,
which is a good approximation for small D.
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In what follows it will be important to distinguish between the [ = 0 term in
the sum, the zero-frequency van der Waals pressure, denoted PY™ and the
rest of the sum, the high-frequency van der Waals pressure, denoted P}f}iw.
The zero-frequency van der Waals pressure is screened by the presence of
electrolyte, whereas the high frequency van der Waals pressure is not. As it
turns out, this screening is intimately related to the correlation of ions and
their image charges. This screening effect is discussed below.

In most systems, the zero-frequency van der Waals pressure is small com-
pared to the high-frequency van der Waals pressure, but hydrocarbon/water
systems are an exception. As this is one of the types of system studied in
this thesis (Papers I-III), the screening of the former term may thus have
a large influence on the magnitude of the total pressure. For the particular
system that is studied here, polystyrene/water, the zero-frequency van der
Waals pressure contributes about a third of the total van der Waals pressure.
The dielectric functions used here are taken from ref. [107].

Lifshitz theory can in principle be applied to any geometry. It can therefore
be used to calculate the interaction free energy between a surface and a
polarizable point particle a distance d from the surface. The interaction free
energy for such a situation is [55]

is h < af(w , B;

AT#P () = _W/o dw e(gw))GD(M) = (3.21)
where £ is Planck’s constant divided by 27, o (iw) is the dynamic excess
polarizability of the ion and w has the same meaning as in eq. (3.19). The
meaning of excess polarizability is the polarizability of the ion in solution,
a(w), less the polarizability of the solvent displaced by the ion. The po-
larizability of an ion can be inferred from spectroscopic data or quantum
mechanical calculations using [25]

(3.22)

where m, is the electron mass, wy; is the frequency associated with the
electronic excitation from the ground state to state [ and fy; is the oscillator
strengths of that excitation. The quantities fo; and wy; can be calculated
using quantum-mechanical density functional theory [108, 109]. It is on the
basis of such calculations that the values of B; that are used here are chosen.
For details, see Paper 1.

Equation (3.21) is strictly valid only for an isolated ion interacting with a
single wall. Many-body interactions will be present in the case of two walls
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and for finite salt concentrations. This is due to the fact that the environment
of the ion will affect its polarization state, as discussed previously. Here,
such many-body contributions are neglected. Under this approximation, the
interaction potential due to dispersion forces acting on an ion between two
walls is given by

4 1 1
4P (2| D) = B; 3.23
v D) 1<\z+D/2l3 i \Z—D/2|3>’ (3:23)

where B; has the same meaning as in equation (3.21). This can be expected
to be a good approximation, at least in situations where the density of ions
is small and the walls are far apart.

When an ion is brought close to an interface between two dielectric materials
the dielectrics on either side of the interface will be polarized to a different
extent. This difference in polarization gives rise to surface charge distribu-
tion that can either repel or attract the ion, depending on which one of the
dielectrics has a higher dielectric constant. An ion in a medium of high di-
electric constant will be repelled from an interface with a medium of lower
dielectric constant, and attracted in the reverse case.

The static polarization of the walls due to the ionic charges can be taken into
account by the method of images. This method derives its name from the fact
that for certain geometries, the field due to the surface polarization induced
by a charge is identical to that from a charge placed at the position where
the mirror image of the original charge would appear to be if the surface were
a mirror. The method of images is very convenient when solving boundary
value problems is simple geometries, such as that of a charge near a single
planar interface. When the geometry of the interface is more complicated,
the method of images often gives the field due to the surface polarization
from a point charge as the field from an infinite array of image charges. The
situation is illustrated in Figure 3.1. Often, the evaluation of such a sum
is too cumbersome to make the method of images useful in practice. The
situation with an infinite number of image charges is encountered even in the
relatively simple geometry of two parallel walls considered here. Fortunately,
the Hankel transform of the potential due to the infinite sum over image
charges can be evaluated analytically.

Because the numerical procedure used to find the ionic distribution func-
tions employs Hankel transforms, see Section 4.2 below, no extra difficulty
is introduced from a potential function that is known only in k-space. The
polarization of the walls gives rise to contributions to both the ion-ion inter-
action potential and the ion-wall interaction potential. The contribution due
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Figure 3.1: Schematic representation of the method of images. The charge
of magnitude q and the image charges of magnitude €},q (where n is an
integer) all contribute to the potential at the point p. In the situation with
a single dielectric wall in the upper part of the figure only a single image
charge is needed to give the correct potential. In the second situation with
two dielectric walls an infinite number of image charges, of which the first
three are shown and the existence of a forth outside the right edge of the
picture is hinted, are needed to give the potential at the point p.

to image charges to the ion-ion interaction potential is given by [84]

" (k,z,#'|D) = Giiéqcfk equj . cosh(kz)cosh(kz')  (3.24)
ek;——?—eD sinh(kz) sinh(kz")

where ep = €p(0). The contribution to the ion-wall interaction potential is
given by the interaction between an ion and its own image charges,

. 1 .
vi"(2|D) = 5ui"(0, 2, 2| D), (3.25)
and will be referred to the self-image interaction. From equation (3.18) we

see that if the solvent has a higher dielectric constant than the walls, the self-
image interaction will be repulsive. Under the same conditions, the image
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charges will give also rise to an extra repulsion between like-charged ions and
an extra attraction between oppositely charged ions.

If only the effect of the self-image interaction on the concentration profiles
were to be taken into account, one would conclude that the contribution
to the potential of mean force due to image charges would be long-ranged,
decaying as d! in the case of a single wall. In reality, however, the image
forces are screened much like the Coulomb interaction between ions in bulk.
The exact nature of the screening depends on the ionic correlation functions
that are themselves influenced by the presence of image charges. Thus, in
order to treat the screening of image charges consistently the correlation
functions must be considered explicitly. This fact makes integral equation
theory well suited for the study of interfaces with a dielectric discontinuity,
see Sections 4.1 and 4.2 below.

If the correlation between ions in the presence of image charges is treated
consistently, a repulsive contribution to the pressure that exactly cancels
the zero-frequency van der Waals pressure for large wall-wall separations
will be present [37, 36]. For small separations, the image forces give rise to
contributions to the pressure that have a shorter range than the the van der
Waals pressure and can be either attractive or repulsive. The net effect is thus
that the zero-frequency van der Waals pressure is replaced by a contribution
that has a shorter range and depends on the effect of image charges on the
ion distribution between the walls, see 4.3 below. For monovalent electrolyte
at moderate concentrations between uncharged surfaces this contribution has
the form of an exponentially decaying attraction [36]. For charged surfaces
it can be repulsive, however, see Figure 4 of Paper II.
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Chapter 4

Distribution Function Theory

“Reasoning is but reckoning.”
-Thomas Hobbes, Leviathan (1651)

Equilibrium statistical mechanics is a field of study that aims to derive ther-
modynamic properties of substances from the interactions between the con-
stituent particles. Using the concept of ensembles, collections of systems
characterized by the same thermodynamic state but with the particles ar-
ranged differently on the microscopic scale, thermodynamic quantities can be
obtained as averages over a suitable ensemble. The central relation between
statistical mechanics and thermodynamics is that there is a one-to-one cor-
respondence between each ensemble and a thermodynamic potential. This
relation is most easily illustrated for the microcanonical ensemble, defined
by constant number N of identical particles, volume V', and energy U, cor-
responding to a closed, isolated system with rigid walls. The entropy, S, is
related to the number of quantum states available to the system, €2, by

Boltzmann’s constant, kg, is included for the expression to be consistent with
the practice of expressing the temperature in Kelvins rather than in a regular
unit for energy, which is considered desirable for historical reasons. In the
thermodynamic limit, where all extensive properties of the system are made
infinite while preserving their ratio, S becomes equal to the corresponding
quantity in classical thermodynamics. Since the natural variables of S are N,
V', and U all thermodynamic observables of the system can be calculated if
one knows how the number of possible quantum states of the system changes
as N, V, and U are varied.
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The one-to-one correspondence between ensembles and thermodynamic po-
tentials is not limited to the entropy and the microcanonical ensemble. Re-
lations analogous to eq. (4.1) can be derived for ensembles characterized
by holding other thermodynamic quantities fixed. In the thermodynamic
limit, all ensembles that correspond to the same thermodynamic state must
give identical results for all thermodynamic observables, regardless of which
quantities are held constant. The criterion for selecting an ensemble to work
with is thus simply expedience with respect to the task at hand.

The ensemble defined by a fixed N, V and T is often referred to as the
canonical ensemble. The fundamental quantity characterizing this ensemble
is the canonical partition function, given in the classical approximation by

1 _Hy(r1,-rn,P1s 5 PN)
QN = v //e 5T dry---drydpy - dpy  (4.2)

where r; is the position and p; is the momentum of particle :. The prefactor
ensures that indistinguishably of the particles is taken into account and that
the expression is consistent with its quantum mechanical analogue in the
applicable limit. The Hamiltonian, Hy, is given by

12
HN<I‘17"' ,I'ny, P10 7pN):Z%+UN(r17 ,I'N) (43)

where m is the mass of the particles, the first term gives the kinetic energy
and Uy is the potential energy of the system.

The canonical partition function is related to the thermodynamic potential
that has N, V and T as its natural variables, the Helmholtz free energy, A,
by

A= —]{JBTIII QN- (44)

The direct relation between the canonical partition function and A estab-
lishes the relation with the second law. We recall that the minimum in a
system’s Helmholtz free energy corresponds to the state of a system that
corresponds to a maximum in entropy of the system and its surroundings.
This link to the surroundings is also present in eq. (4.2): the integrand is
related to the availability of energy for transfer to the system from the sur-
roundings. Distributions of positions and momenta characterized by values
of the Hamiltonian that are large compared to kg7 carries less weight in
the integral because of the decrease in entropy associated with transferring
energy from the surroundings to the system as heat.

In order to study surface thermodynamic properties we will consider another
ensemble that is suitable for this task: the grand canonical ensemble. This
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ensemble is characterized by constant chemical potential, p, rather than con-
stant N. As in the canonical ensemble, V and T" are held fixed. The partition
function in this ensemble is defined in terms of the canonical partition func-
tion by

oo LN
=) ersTQy. (4.5)
N=0
The physical interpretation of the relationship with the canonical partition
function can be grasped by noting that in the grand canonical ensemble,
particles as well as energy can be exchanged with the surroundings. Much
like all possible values of the total energy are taken into account in the
canonical partition function, all possible numbers of particles are taken into
account in the grand canonical partition function. Hence the sum over N.
For bulk systems the thermodynamic potential that is related to = is — PV,
through the relation
PV =kgTInz, (4.6)

that is analogous to eq. (4.4). The differential form of eq. (4.6) is the Gibbs-
Duhem equation, eq. (2.6). The grand canonical ensemble can be extended
to treat interfacial systems by making sure that an interface of specified area,
o/, is present so that the resulting ensemble is characterized by fixed pu, V,
</ and T'. This ensemble leads to the Gibbs adsorption isotherm, eq. (2.11).
This explains why this close relative of the grand canonical ensemble is well
suited for interfacial systems.

The form of eq. (4.3), with the kinetic energy contribution being independent
of the potential energy contribution, implies that eq. (4.2) can be factorized
into one factor that contains the kinetic energy only and one factor that
contains only the potential energy. The “kinetic energy” part is identical to
the partition function of an ideal gas where the potential energy is zero for
all configurations. Eq. (4.4) then implies that the free energy, and therefore
all thermodynamic quantities, can be expressed as a term that is equal to
that of an ideal system and a term that contains all the contributions from
interactions amongst the particles. Because the ideal contribution to any
thermodynamic quantity can be written as an algebraic expression, usually
a very simple one, the remainder of this section will be devoted to methods
for evaluating the remaining, excess, contribution.

The probability density, py, for a subsystem of the canonical ensemble to
be in a given configuration, defined by the particle coordinates ry,--- ry, is
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[110]

_ Ul ry)
e kT
pN(rla"' ,I'N) Uy, ,rN) ) (47)
[ e B dry---dry
where U(ry, - -+ ,ry) is the potential energy associated with the configuration.

The denominator in this expression is known as the configuration integral
and is denoted by Zy. This quantity is related to the excess Helmholtz free
energy, A", in analogy with eq. (4.4) via

ZN
VN
and thus contains all information about the effect of interactions on thermo-

dynamic quantities The configurational ensemble average of a quantity, F,
say, is denoted (F') and can be expressed in terms of eq. 4.7 as

/ / I'l, I'N)pN(I'l,"' ,I'N) dr1-~drN. (49)

The excess contributions to thermodynamic quantities such as P can be
calculated in terms of such ensemble averages, see Section 4.3.

A = _fpTIn 28 (4.8)

4.1 Distribution Functions and Correlation Func-
tions

A central part in statistical mechanics is the concept of distribution func-
tions. These functions are closely linked to many experimentally measurable
properties and are therefore a suitable starting point for statistical mechani-
cal theories. In this section, the canonical ensemble is used to introduce the
theory of distribution functions in terms of ensemble averages of the local
concentration.

The particle density, i.e. “concentration”, at position r, n(r), in any config-
uration is infinite at the particle positions and zero everywhere else, thus it

can be written as
N

n(r) =Y dr—r), (4.10)

i=1
where (r) is the (three-dimensional) Dirac delta distribution!. The proba-
bility density of finding a particle at r at a given time, n(")(r) is the ensemble

!That is infinite for r = 0 and zero otherwise and has the property [ ¢(r')é(r—r')dr’ =
¢(r), where ¢ is a continuous function.
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average of n(r),
N
1 UGy
”(1)(1') = (n(r)) = In / - / E o(r—ry)e  FBT ) dry---dry

_U(rrg,ry)
= / / bt r2---drN. (4.11)

The fact that the particles are indistinguishable has been used to simplify the
expression by noting that each of the N terms in the sum is identical. Sim-
ilarly, the probability densities of finding one particles at r and one particle
at ' simultaneously, n? (r, 1), is given by

ndr,r) = < i i 5(r —r)o(r — rj)> (4.12)

i=1 j=1
J#i

_1 U(rr U(r,r',rg, - ,ry)
_ / / ST dry - dry.

Again, use has been made of the fact that the N(N — 1) terms are identical.
By the same argument, the l-particle distribution function, n®W(r,---  r®),
the corresponding probability density of finding ! particles at r,--- ,r® is
given by

N! _U(r,-.-,rﬂ),r )
Tl(l)(r,'-- ,I‘(Z)> — —(N_Z)IZN/”./B kBlT+1 = drl+1"'dI‘N.

(4.13)
From the 1- and [-particle densities the normalized [-particle distribution
function®, gV (r,--- ,r®) can be defined by

nG, - r®)y =n® ). .. nOED)gO(r, ... r0), (4.14)

As might be expected, the manipulation of higher order distribution functions
quickly becomes intractably complex with increasing order. Fortunately,
nM(r) and ¢@(r,r') are the distribution functions of greatest importance.
Below, the superscripts on these symbols are suppressed whenever there is
no risk of confusion and the functions they represent will be referred to as
the concentration profile and the pair distribution function, respectively. In
order to appreciate the physical significance of these functions, it is useful to
note how they are interrelated. The product n(r')g(r,r’) gives the average

2This naming convention is not universal, sometimes the name “distribution function”
is reserved for the ¢g(¥ functions. In this case n(") is called the I-particle density.
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concentration at r’, given that there is a particle at r, which is the same thing
as the concentration profile around a fixed particle. This interpretation of
g(r,r’) gives rise to an elegant way of connecting the properties of homoge-
neous and inhomogeneous fluids already alluded to in Chapter 2. A theory
that gives n(r) for an arbitrary external potential is also a theory for g(r,r’)
of a bulk fluid because the external potential can be chosen as the potential
from a particle held fixed at a point r’ (that may as well be taken as the
origin of the coordinate system). The concentration profile in this situation
corresponds to n”“*g(r, r').

The distributions functions are closely related to the density-density correla-
tion functions, defined by

HO®x, ... 10) = <(n(r) — ) (n(r®) - n(r<l>))>. (4.15)

The density-density correlation function of greatest interest and importance
in practice is, as with the distribution functions, the one of lowest order, [ =
2. This function is related to the distribution functions by

HP(r,r') = n(r)é(r — ') + n(r)n(x’)h(r, ) (4.16)
where h(r,r’) is the total correlation function related to g(r,r’) by
g(r,r') = h(r,r') + 1. (4.17)

These functions are thus equivalent with respect to the physical information
that they contain.

The density-density correlation function is closely related to the linear re-
sponse function, x(r,r'), that determines how a fluid responds to a small
change in an external field. The change in density at on(r) due to a small
change in external potential dv(r') is given by

1
on(r) = /X(r,r')dy(r’)dr’ =17 /H(Q)(r, r')ov(r')dr'. (4.18)
B
This is an example of an application of the fluctuation-dissipation theorem
that states that the response of a system to a weak external perturbation is
determined by the fluctuations in the equilibrium system, see ref. [111].

The fact that the density-density correlation function determines the re-
sponse of the fluid to a weak external field implies that it determines how
the fluid interacts with radiation. Thus, at least for bulk systems where the
concentration profiles are constant, the density-density correlation function,
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and thereby the total correlation function, can be measured more or less
directly in scattering experiments.

If the interaction potential is pairwise additive, i.e. it can be written as a
sum where each term depends on at most two particle coordinates according
to

TR
U(ry,---,ry) = vi(r;) + = ;i (r;, ), 4.19
(ry N);<)2;;J( i) (4.19)

J#i
where the factor 1/2 corrects for the fact that each pairwise interaction is
counted twice, the thermodynamic properties of the fluid depend on n(r),
h(r,r') and the interaction potential only [110]. While the interaction po-
tential in real systems is not pairwise additive in general, pairwise additive
model potentials have been shown to give results in good agreement with

experimental data in many cases, see for instance ref. [112].

Over the last century, several predictive theories for A(r,r’) in terms of n(r)
and u(r,r’) have been developed. Commonly, such theories are expressed
in terms of an equation where an unknown, typically A(r,r’), appears in an
integrand, i.e. as an integral equation. The approach that has proved most
fruitful for obtaining accurate approximations for h(r,r’) is to combine the
exact Ornstein-Zernike (OZ) equation [113]

h(r,r") = c(r,r") + / h(r,e")n(x")e(r”, v')dr", (4.20)

where ¢(r,1’) is called the direct correlation function, with a second, approx-
imate, expression relating h(r,r’) and c(r,1r’).

The direct correlation function may be considered defined by eq. (4.20), but
an equivalent, more physically transparent definition is given by eq. (4.23)
below. The relation between the total and direct correlation functions can
be illustrated by recursively substituting the OZ equation into itself, yielding

h(r,r') = c(r,r') + /c(r, rn(e")e(x” o )de" + - - - . (4.21)

The result is an expression for h(r,r’) as an infinite series of multi-centered
integrals of products of ¢(r,r’) and n(r). Thus, the total correlation func-
tion can be interpreted as the sum of the direct correlation and all indirect
correlations.

For a system with an arbitrary number of components the OZ equation takes
the form of a system of equations with one equation for each pair of species,

hij(r,r") = ¢;(r,v') + Z / P (2, 27 )00 (27 ) (27 27 ) 2", (4.22)
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where ¢ and j are species indexes and the summation is over all species.
The indexed correlation functions refer to correlations between particles of
species ¢ and j in the sense that n;(r")(h;(r,r") + 1) = n;(r')g;;(r,r') gives
the average concentration of particles of species j at r’ given that a particle of
species 7 is held fixed at r. Because the correlation functions are symmetric
with respect to interchange of the species indexes, h;;(r,r’) = hj;(r,r’) and
similarly for ¢;;(r,r’), for an N-component system there are N(N + 1)/2
equations. Since we are interested in binary electrolytes it is eq. (4.22) that
is used in all calculations. We will continue to assume a one component
system in the discussion below for notational simplicity. The generalization
to multi-component systems is straight forward.

The direct correlation function can be expressed in terms of a functional
derivative of the excess chemical potential with respect to the concentration

profile,
1 ()
kgT on(r')
where p*(r) denotes the local excess chemical potential, the reversible work
required to insert a particle into the system at r due to interactions with

other particles. The corresponding relation for the ideal contribution to the
chemical potential is

= —c(r,r), (4.23)

1 id R
outir) _ ol =r). (4.24)
kT on(r') n(r)
The OZ equation can be justified as follows by noting that equation (4.18)
implies that?

kBT—gfé:,)) = —HO(r,1). (4.25)
If the fluid is maintained in equilibrium at constant chemical potential, u, so
that

p= ) + p(r) +v(r), (4.26)
is not changed by the change in external field, the change in the intrinsic
chemical potential, ™ (r) = p'(r) + p(r), the contribution to the chemical
potential that is not due to external fields, must exactly cancel the change
in v(r),

Spi(r) + op (r) = ou(r) = —v(r). (4.27)
Thus, the functional derivative of the density with respect to du™(r) is
on(r)
kpT——+— = H?(r,1'). 4.28
B 5,umt(r’) (I‘, r ) ( )

3 According to the definition of functional derivative, 6F = [ ¢(r)d¢(r)dr implies that
OF
o) ¢(r)
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We note that the sum of eqs. (4.23) and (4.24) and eq. (4.28) are each others
functional inverse, which means that they fulfill

N on(r) 1 opid(x”) L duce(x”)N .,
or—r) = /kBTéumt(r”)(kBT on(r’) +k;BT on(r’) >dr (4.29)

_ / n(x) (5(r — 1) + h(r, " )n(x") (M

n(r//)
from which the OZ equation, eq. (4.20), can be recovered. See ref. [111] for
a complete proof.

B C(I‘//, r/)>dr”,

In order to show how a second relation between h(r,r’) and ¢(r,r’) to sup-
plement the OZ equation can be found, we note that the pair distribution
function can be written as

glr,x) = 5T, (4.30)
where w(r,r’) called the potential of mean force. As the name suggests, this
function has the physical interpretation that it serves as the potential for the
average force that two fixed particles, one at r and one at r’, appears to exert
on each other, including both the direct interactions between the particles
and the average over the interaction with all other particles. The potential
of mean force can be written as

w(r,r’) =u(r,r') — kgTlny(r,r’) (4.31)

where y(r,r’) is the so-called cavity correlation function that has the physical
interpretation that it is the pair distribution function between two imaginary
particles that interacts normally with all other particles in the system, but
do not interact with each other. The quantity —kgT Iny(r,r’) may be in-
terpreted as the indirect contribution to the potential of mean force. Thus,
the problem has been reduced to finding Iny(r,r’) in terms of A(r,r’) and
c(r,r’). Tt can be shown that [111]

Iny(r,r') = h(r,r') — c(r,r') + b(r, ') (4.32)

where b(r, 1) is called the bridge function. Although b(r,r’) can be written
as an infinite series where each term is given by a multi-centered integral over
some product composed of h(r,r’) and n(r), experience has shown that this
series tends to converge slowly while the computational complexity increases
sharply with each term. Thus, the exact solution for A(r,r’) is rendered
intractable by our inability to calculate b(r,r’) and in practice one must
resort to approximations at this stage. Such approximations are often called
closures in the literature because they are made in order to get a closed set
of equations for h(r,r’) and ¢(r,r’).
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4.2 The HNC Approximation

One closure that was proposed independently by several authors in the middle
of last century [114, 115, 116] is the hypernetted chain (HNC) approximation,
where b(r,r’) is simply set to zero. To get a feel for the physical implica-
tions of this approximation it instructive to note that the Ornstein-Zernike
equation allows the HNC approximation for w(r,r’) to be written as

W™, r") = wu(r,r’) — kgT(h(r,1') — c(r,1)) (4.33)

= u(r,r’) —kBT/h(r,r”)n(r”)c(r”,r’)dr”.

The factor h(r,r”)n(r”) in the integrand can be interpreted as the deviation
in density at r’ caused by the presence of a particle at r. Together with the
definition of ¢(r, 1), eq. (4.23), this leads to the interpretation of the integral
for the indirect contribution to the potential of mean force in eq. (4.33) as
the change in excess chemical potential at r’ resulting from change in density
induced by the presence of a particle at r if this change in density was in-
finitesimally small. In reality that change in density is, of course, finite. The
HNC approximation thus has the character of a mean field approximation in
c(r,r’). The bridge function may be interpreted as containing all the higher
order effects of the density response on the indirect part of the potential of
mean force.

Empirically, it is known that the HNC approximation is suitable for systems
where the pair interaction potential is long-ranged, e.g. Coulomb systems,
where it gives result in close agreement with simulations under a wide range
of conditions [117]. On the other hand, the HNC approximation does not
perform well for short-ranged interaction potentials dominated by harsh re-
pulsion, such as Lennard-Jones particles and “hard spheres” [118]. That the
performance of an approximate closure depends critically on the form of the
interaction potential is generally the case. A way to rationalize these ob-
servations is that the long-range character of the Coulomb potential makes
the mean-field treatment of ¢(r,r’) justified. It is generally believed, but to
the authors knowledge it has not been proved in all generality, that ¢(r, ")

behaves as
u(r,r’)

kgT
when |r — r| becomes large. It is therefore reasonable to expect that the
long range of the Coulomb interactions makes the region where eq. (4.34) is
a good approximation and the direct correlation function is close to the pair
potential comparatively important.

c(r,r') ~ — (4.34)

o8



A situation where the hypernetted chain approximation fails is for strongly
attractive Coulomb interactions. This coincides with the development of a
large peak in the cation-anion correlation function, that can be interpreted
as “ion pairing”. Given that the approximation in eq. (4.33) relies on the
deviation from bulk density to be small, it is easy to see why the HNC ap-
proximation should fail under these conditions. The deviation from bulk
concentration of one type of ions around an ion of the opposite sign is then
very far from being small. For severe cases, i.e. very strong cation-anion
interactions, there is no solution to the OZ equation with the HNC closure
for for the primitive model in a range of concentrations [119]. For weaker
interactions the height of the peak in the cation-anion distribution function
is typically underestimated and there is a spurious peak in the like-ion dis-
tribution functions for a separation of about two ions diameters [120]. This
occurs for parameters corresponding to aqueous 2:2 electrolytes close to room
temperature for concentrations below a few hundred mM. For higher concen-
trations these deficiencies are much less pronounced.

The usual method of solving the OZ equations for a given closure and a
given constant density is to simplify the equation by computing its Fourier
transform. The Fourier transform, ¢(k), of an arbitrary function ¢(r) is
defined in [ dimensions by

d(k) = / o(r)e T dr (4.35)

with the inverse relation

1 2 ikr
o) = / B(1)e Tk, (4.36)

where 7 is the imaginary unit and k is the wave vector. The Fourier transform
may be considered as an expansion of a function on an infinite basis set of
standing waves, transforming a function of position r into a function of wave
vector k. The Fourier transform has the property that if

P(r) = /gb(r')@(r —r')dr (4.37)

then R o
P(k) = o(k)P(k). (4.38)

This can be used to obtain an algebraic equation in terms of the Fourier
transforms of the direct and total correlation functions. For homogeneous
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fluids where h;;(r,r’') = h;;(r) (and similarly for ¢;;(r,r’)), r = |r' —r| and
the concentration n is a constant,

hij(k) = €i5(k) + > T (k) i (k), (4.39)

This equation can be written as a matrix equation
H(k) = C(k)+ H(k)NC(k) (4.40)

where the elements of H(k) are hy;(k), the elements of C(k) are ¢;(k) and
the elements of N are given by n;0;; where ¢;; is the Kronecker delta. The
solution to this equation for H (k) in terms of C'(k) is

H(k) = C(k)[1 — NC(k)] ! (4.41)

where 1 is the unit matrix. Thus, the OZ equation has a simpler structure in
k-space than in r-space. The closure relation, on the other hand, is generally
more easily expressed in r-space. Furthermore, analytical solutions are not
possible for most closures, including HNC, so the problem has to be solved
numerically. A common approach is to solve the set of equations iteratively,
starting from a guess for ¢;(k) in Fourier space and calculating hy; (k). The
Fourier transform is then inverted and a new guess for ¢;;(r) can be calculated
from the old h;;(r) and é;(r) using egs. (4.30), (4.31), (4.32) and the closure
relation. The Fourier transform of ¢;;(r) is calculated and the process is
repeated until convergence is attained [121, 122]. Because the procedure
requires multiple Fourier transforms (and inverse Fourier transforms) the
fast Fourier transform algorithm is usually used.

The OZ equation is valid for both isotropic and anisotropic fluids and can
therefore be applied to situations where the concentration profiles are not
constant but functions of position. Thus, it can be applied to fluids near
interfaces if the concentration profile is known. The concentration profile
near an interface is in general unknown a priori, however. In order to find
the equilibrium ionic concentration profiles an additional relation between
the concentration profiles and correlation functions is needed. Several such
relations exist, for instance the Lovett-Mou-Buff-Wertheim equation [123,
124]. A particularly convenient relation can be obtained in the special case
where the HNC closure is used for the correlation functions. For this closure,
the excess chemical potential of ions of species i at position r, uf*(r), can be
written in terms of the correlation functions as follows [125]

pe(r) = /{ZBTZ/nj(r/)<%(hij(r,r/))2 _ cij(r,r/) — %)dr’

/{ZBT(l + Cij(I‘, I'))
2

. (4.42)
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The equilibrium condition for the electrolyte in the slit is that the chemical
potential for each species is equal everywhere

= () + () + (), (4.43)

Because the ideal part of the chemical potential depends on the concentration
profile only, according to

p4(r) = kpT In(A3n,(r)), (4.44)

where A = h/(mkpT)"? is the thermal wave length, equation (4.43) can be
used to determine the concentration profiles. The choice of the actual value
of the chemical potential corresponds to specifying the bulk concentration of
an electrolyte solution that is in equilibrium with the electrolyte between the
walls. For systems where each component is electrically neutral the chemical
potential for each species can be specified independently, and correspondingly
any thermodynamically possible mixture of the components is allowed. For
binary electrolytes this is not the case. The components must here be present
in such proportions that the electrolyte solution is uncharged overall. Thus,
if the chemical potential of either species is fixed, the chemical potential of
the other is also fixed to the value that gives an electroneutral combination of
densities. Only the chemical potential in bulk salt need therefore be specified.
The chemical potential of each species in the inhomogeneous system is then

Silsalt
i = ————— + AV, 4.45
= T (4.45)

where AW is the electric potential difference with respect to bulk solution.
The condition that the walls should have a fixed charge density, o, and that
the system should be electroneutral overall can be used to determine AW.

In the case of a primitive model electrolyte between two walls it is appropriate
to adopt a coordinate system such as the one shown in Figure 4.1. The
lateral distance is denoted R = /(z — /)2 + (y — ¢/)? and the coordinate
perpendicular to the walls is z, with its origin in the mid-plane between the
walls. The OZ equation in this geometry, in terms of the two dimensional
Fourier transforms* of the correlation functions in the directions parallel to
the walls, has the form

~

hij(k, z, 2" :éij(k,z,z’)—l—Z/ﬁim(k,z,z”)nm(z")émj(k,z",z’)dz”. (4.46)

4For cylindrically symmetric functions these are equivalent to the zeroth-order Hankel
transforms.
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Figure 4.1: The geometry and notation used in calculations of the wall-wall

pressure. R = y/(x —2/)2 + (y — y)? is the lateral distance and z is the
coordinate perpendicular to the wall. The distance between the dielectric
interfaces is D the ion radius is a, the ion-wall distance is sometimes denoted
d and the minimum ion-wall distance is denoted b.

If the integration is approximated by a Riemann sum, the equation becomes

}Allj<k7 205 Zp) — él]<k7 2oy Zp) + Z Z Bzm(k7 2oy Zl)nm(zl)ém](ku 2, Zp)Azb

m

(4.47)
where the indexed z coordinates denote the centers of intervals with width
Az, all of which need not be equal. Comparison with eq. (4.39) reveals that
the OZ-equation for a three dimensional system that is inhomogeneous in one
direction has the same form as two dimensional system with as many com-
ponents as there are terms in the sum over m and [. If [ is taken sufficiently
large, eq. (4.47) becomes equivalent to eq. (4.46) for all intents and purposes.
Thus, the same method that is used for bulk mixtures can be used to solve
the OZ-equation in the inhomogeneous case, with a fixed concentration pro-
file. The formal equivalence between an inhomogeneous three dimensional

fluid and a multi-component two dimensional fluid is demonstrated in ref.
[126].

Since the concentration profiles can be calculated from eq. (4.42) and the
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equilibrium condition, eq. (4.43) the problem of finding the equilibrium con-
centration profiles and correlation functions can be solved by iteration: start-
ing from a guess for the concentration profiles and correlation functions, the
set of correlation functions that are consistent with the concentration profiles
is calculated. From those, new concentration profiles are calculated and the
set of correlation functions that are consistent with these are computed. If the
starting guess for the set of concentration profiles and correlation functions
is sufficiently close to the equilibrium distribution functions the solution will
converge to these. For details regarding the numerical procedure, see refs.
[126, 127, 128].

This method of calculating the distribution functions for inhomogeneous sys-
tems is usually referred to as the anisotropic HNC (AHNC) method. The
concentration profiles and correlation functions obtained from AHNC calcu-
lations have been compared to simulation results and has been found to be
in close agreement with these under most conditions [129]. (Even for cases
where mean-field theories, such as the PB approximation, fail qualitatively.)
The exception is when the local density is very high, such as for instance the
counterion density close to a highly charged surface, where the contact values
of the correlation functions between ions of different sign is overestimated.

The AHNC procedure can be modified to allow other closures than HNC, but
this requires a different method of calculating the concentration profiles as
eq. (4.42) is valid only within the HNC approximation. A notable example of
another closure that has been applied to inhomogeneous electrolyte systems is
the reference HNC approximation where the bridge function is not neglected
but taken from a reference system [130]. Most of the shortcomings of the
HNC approximation are absent for this closure [131, 132].

4.3 Calculation of Experimental Observables

Due to the prominent role of the chemical potential in the Gibbs adsorption
isotherm, eqs. (2.11) and (2.12), surface thermodynamic properties are most
easily handled within the grand canonical ensemble. To treat a general inter-
face one would adopt an ensemble of systems containing an interface between
phases that are both treated in molecular detail.

The surface excess number of particles is given by the difference in number of
particles between a system that contains an interface at one of its boundaries
and one that does not. This is a slightly different situation compared to that
where both phases are treated in all atomic detail, see Section 2.1. In the
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grand canonical ensemble the concentration profiles have the normalization
property

/[7%(r)dr — (N)). (4.48)

The surface excess number of particles of species i can therefore be written
as

N? = (Vi) = (N = [ () =y, (249

where the subscript “surf” means that the ensemble average is for a system
containing a surface whereas the subscript “bulk” refers to the average in
a homogeneous system of the same volume and chemical potential. For a
planar surface, it follows that the surface excess in the primitive model, I'¢
(the superscript d stands for “diffuse”), is given by

I = /Ooo(nl(z) — nl"*)dz, (4.50)

where the origin of the z-coordinate is placed in the plane of closest approach
of the ions to the surface. This formula is based on the assumption that the
Gibbs surface separating the two phases is located at a negative z-coordinate,
so that the ions cannot penetrate into the wall material. It is generally the
case that the plane of closest approach of the ions to the surface does not
coincide with the Gibbs plane in experimental systems. In this case, there
will be a negative contribution to each I'; from the “ion-free layer” between
those planes. This contribution is given simply by

Fi — nbulkzsolv

7 7 ;

(4.51)

2% is the coordinate of the Gibbs plane of the solvent, which is negative

by construction in the case considered here. The superscript ¢ stands for
“inner”. If all charged species can approach the surface equally closely, the
presence of an ion-free layer does not affect the concentration profiles. Thus,
the inner and diffuse contributions to the surface excess are additive,

I, =T¢+ T (4.52)

Similarly, the drop in mean electrostatic potential over the diffuse region, the
work per unit charge to bring an infinitesimal charge from the bulk solution
to the point plane of closest approach of the ions, is

1 [e.e]
Ut = - — : (2)dz. 4.53
Zq/ ni(2) d (453)
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This quantity does not depend on the actual distribution of charge on the
surface side of the plane of closest approach of the ions. The corresponding
contribution from the inner layer, U¢, does, however, depend on the details of
that distribution. If the assumptions of the primitive model are taken at face
value and the surface charge is taken to be located in a single plane located
at 27, then W' is given by .
=77 (4.54)
€€
Like 2°°", 2% has a negative sign by construction. Note, however, that there
is no physical reason to think that these coordinates should exactly coincide.
As for the surface excess, the inner and diffuse contributions to the potentials
are additive,
U =0t (4.55)

In the situation with two walls, the pressure between them can be calculated
in terms of the distribution functions and interaction potentials. The interac-
tion pressure in the slit between the walls is equivalent to the perpendicular
component of the stress tensor at some plane between the walls [126]. Be-
cause the electrolyte is in equilibrium, the pressure must be independent of
where in the slit it is evaluated. The choice where to evaluate the pressure
is therefore one of convenience and numerical expedience. Two planes stand
out in this respect: z = £(D/2 —b) and z = 0, i.e. at wall-ion contact
or in the middle of the slit. (Keep in mind that the coordinate system is
different compared to the one-wall case, see Figure 4.1.) The former choice
has been found to be numerically more difficult for charged surfaces due to
the difficulty in evaluating the contact concentration with sufficient accu-
racy [84]. Therefore, the second alternative will be considered here. For a
primitive model electrolyte in the presence of ion-wall dispersion interactions
the pressure due to the ions between the walls may be written as a sum of
contributions, each arising from one type of interaction,

Pt = Plon 4 pion, 4 plon 4 plon 4 plon (4.56)

kin core disp*

Pio" is the ideal contribution to the pressure, given by P" = kgT . n,;(0)
(recall that n;(0) is the concentration of ions of species ¢ in the mid-plane
between the walls.) P47, is the wall-wall interactions due to electrostatic

ion-ion interactions across the mid-plane, given by

D/2
P = / dz/ alz/anZ 2)n;(2")
D/2

Qu " (R, 2, 2')

X hi(R, z,2") P

(4.57)
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P is the pressure contribution due to the ionic cores colliding across the

mid-plane, the explicit expression for which is

a 0
Py, = 2mkpT Z/ dZ/ dz'ni(z)n;(2') (z — 2')
i 0 z—a
X gig(la; — (z = )%, 2,2), (4.58)

The three pressure contributions above approach finite values as the wall-
wall separation goes to infinity. These values are of course identical to the
corresponding contributions to the osmotic pressure of a bulk electrolyte

: bulk ng etk r—oo bulk (. w5 (1)
and are given by kgT' Y, nb"* — Zij - [ dr rh2™" (r)—L— and

2ma® kgT 3, ny " it (a) /3 for P, Pén, and Pior., vespectively. The

kin > core’

kin» core osm
pressure below. Generally, it is not the absolute value of the pressure com-

ponents but the deviation from the bulk value that is of interest. Whenever
any of the above pressure components are prefixed by a capital A it is the
value of that pressure component minus the corresponding bulk value that
is referred to.

sum of Pi", Pin and P" is denoted P" and referred to as the osmotic

0n 0n
The pressure components P;0" and Pj¢ are the pressure components due
to image forces and wall-ion dispersion forces, respectively. Because these
contributions to the pressure are dependent on wall-ion interactions, both

are obviously zero in bulk. P/ is given by [84]

ion D/2 aufm z|D D/2 ayiim 2D
Pt =530 dzni(z)% — 3% f—D/Q dz ”i(z)%

daim (k,z,2'|D)

D/2 0 i~ o
—a >iilo / dszp/z dz' [;7 dkni(z)n; (2 )hj(k, z,2') k o
— 3 i fD/2 dsz/2 dz' [° dkni(Z)nj(Z/)iLij(k,Z,Z/)kjw

-D/2 -D/2 oD
(4.59)
and Py" is given by (see Paper I)
. b/ DAY (2 4+ D/2)
pion d : i
disp Z\/O Zn (Z) aZ
° 9AT (|2 — D/2))
+ / dzn;(z L . 4.60
B (4.60)

These last two pressure components could equally well be regarded as part
of the wall-wall van der Waals pressure as of the double layer pressure.
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Chapter 5

Results and Discussion

“The purpose of computation is insight, not numbers.”

-Richard W. Hamming, Numerical Methods
for Scientists and Engineers (1962)

5.1 Summary of Papers

Paper 1

In Paper I the effect of image charges and dispersion forces on the pressure
between two charged, planar walls is investigated. The main purpose of
this study is to ascertain whether the consistent treatment of image charges
affects the influence of dispersion forces on the system.

The pressure between two dielectric walls with charge 4= 4.5 pC ecm=2 (357
A2 per unit charge) in equilibrium with a bulk electrolyte of 0.5 M concentra-
tion is calculated as a function of the wall-wall separation using the AHNC
method. The electrolyte model is symmetric in all respects except the disper-
sion interactions with the walls, that only acts on the anions. This choice of
electrolyte model is made in order to mimic the situation where the cations
are much less polarizable than the anions, which is believed to be common
in real systems, while minimizing the complexity of the model.

In order to ensure that the polarizability of the model ions fall into the range
that is realistic for small ions, the polarizability of iodine is calculated from
quantum mechanical density functional theory. Iodide is chosen as it is the
most polarizable atomic ions that is in common use for experimental work

67



in colloid and interface science, making it appropriate as an example of a
highly polarizable ion. Based on these considerations the values 0, -20 and
-40 kJ A3 mol™! are chosen for B_, of which the last correspond to iodide,
an example of a highly polarizable ion, in aqueous solution interacting with
a polystyrene wall.

It is found that the interaction pressure is less repulsive for positively charged
surfaces when dispersion forces are included compared to when they are ne-
glected. The opposite trend is found for negative surfaces, but the difference
in pressure is much smaller. Image forces tend to make the pressure more re-
pulsive and thus tend to counteract the effect of dispersion forces for positive
surfaces. The magnitude of the pressure due to image charges is remarkably
insensitive to the strength of the wall-ion dispersion force despite the fact
that they have a large influence on the ionic concentration profiles.

Note that two formulas are erroneously reproduced in Paper I: In eq. (6)
there should be a factor 1/2 on the right hand side and in eq. (17) the two
first terms on the right hand side are missing a factor 1/(27)2. Both equations
are given correctly in this thesis as eqs. (3.25) and (4.59), respectively. None
of these errors are made in the actual calculations.

Paper 11

In Paper II, the same model system as in Paper I is investigated for a wider
range of bulk electrolyte concentrations, 0.125, 0.250 and 0.500 M, and sur-
face charge densities in the interval —6.4 to 6.4 pC cm=2 (250 A? per unit
charge).

It is found that for low surface charge densities, the image charges give rise
to depletion of salt close to the surfaces. In the same regime dispersion
forces, when present, give rise to an enrichment of ions for larger distances
from the surface. Consequently, dispersion forces give rise to an increase in
wall-wall repulsion for large separation and image forces give rise to a wall-
wall attraction for small separation. Both these effects become stronger with
increasing bulk electrolyte concentration. With an increase of the magnitude
of the surface charge density, the net contribution to the pressure from the
image charge becomes progressively less attractive and then turns repulsive,
regardless of the sign of the surface charge. This behavior is caused by the fact
that the exclusion of salt from the slit due to image forces has a smaller effect
on the total pressure for larger surface charge densities, where a larger part of
the repulsion is due to counterions, which must remain between the walls to
satisfy the electroneutrality condition. As the concentration of counterions
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increases, P{°" becomes more repulsive due to the self-image interaction. The
relative importance of image charges for the magnitude of the total pressure
tend to decrease with increasing surface charge density.

For negative surfaces, where the dispersion forces act on the co-ions, the
pressure is found to become more repulsive with increasing strength of the
dispersion forces. This tendency is strongest for large wall separation and
high bulk concentration. For smaller separations, the exclusion of co-ions by
electrostatic forces tend to dominate the attractive dispersion forces drawing
ions into the slit. Thus, dispersion forces have little influence on the pressure
in this regime. For positive surface charge densities, dispersion forces act on
the counterions, drawing them closer to the surface than electrostatics alone
would. This gives rise to a significant decrease in repulsion between the walls
for intermediate separations as AP" is smaller than for the case without
wall-ion dispersion forces for these separations. Apart from the effect of
dispersion forces on the osmotic interactions between the walls there is also a
contribution to the pressure due to the direct wall-ion dispersion forces, Pj;’s’;,
that is always attractive. For the cases of negative and small positive surface
charge densities Pdifs’; tend to counteract the change in P°" = making the net
contribution to the pressure small. In the case of moderate to large positive
surface charge densities P, and Py7 tend to act in the same direction,

making the pressure less repulsive. It is under these conditions that the
largest effect of wall-ion dispersion forces on the wall-wall pressure are seen.

Paper I11

In Paper III the distance dependence of the interaction pressure between
uncharged walls in the presence of electrolyte of 0.25 - 1.0 M concentration
is investigated. Electrolytes of valence types 1:1, 2:2 and 1:2 are considered.
The effect of the polarizability of the interface is taken into account, both
with respect to the image forces and to the dispersion forces in the same way
as in Papers I and II. It is found that for electrolytes that are symmetric
in every respect, i.e. both with respect to the charge and to the dispersion
interactions with the wall, the net contribution from the electrolyte to the
interaction pressure is attractive. This is due to depletion of electrolyte
between the walls caused by both the repulsive image forces and the loss of
“favorable” correlations. In the bulk solution the correlation between ions
tend to give rise to a large negative contribution to the chemical potential.
In the vicinity of a surface, this negative contribution is smaller because
ions cannot correlate with ions on the “surface” side. Thus, ions tend to
be excluded from the region close to a surface as well as from any confined
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space of dimensions smaller than the typical correlation length. This gives
rise to an attractive depletion interaction between surfaces. There is one
exception to this behavior: for 1 M 1:1 salt the concentration profiles are
non-monotonic and for some separation there is sufficient enrichment at the
mid-plane to give rise to a repulsive pressure.

For asymmetric electrolytes, again both with respect to valencies and dis-
persion interactions with the walls, the situation is different in that in all
cases there is a repulsive contribution to the pressure from the electrolyte.
In a few cases this repulsive contribution even exceeds the attraction from
the wall-wall van der Waals interaction. In the case of electrolytes of asym-
metric valence type the repulsion is due to that monovalent ions are depleted
to a lesser degree than divalent ions in the region close to the wall. Thus,
there is a net excess of charge of the same sign as that of the monovalent
ions close to the walls. Due to electroneutrality, this charge has to be com-
pensated by an opposite charge somewhere further away from the surface. A
situation resembling that of a charged surface is thus created. In the case of
dispersion interactions between ions and surfaces the same situation arises
due to enrichment of one of the ion species close to the surface by direct
dispersion attraction. The strongest repulsion is seen for large concentra-
tions of asymmetric electrolyte where the monovalent ions are attracted to
the surface by dispersion forces. In this case both mechanisms conspire to
create a large charge separation and the concentration profiles are oscillatory
so that the enrichment of ions at the mid-plane becomes disproportionately
large for certain wall-wall separations.

Paper IV

In Paper IV a comparison is made between experimental data on the mer-
cury/aqueous MgSO, interface from refs. [74, 73] and results from AHNC
calculations using the primitive model. This experimental system is espe-
cially suitable for such a comparison because the surface excesses of co-ions
and counterions can be obtained in a model-independent way. The aim of the
comparison is to test the predictions from primitive model calculations that
overcharging, i.e. an apparent change in sign of the surface charge, can arise
as a consequence of ion-ion correlations. To this end the primitive model re-
sults and GC results are simultaneously compared to the experimental data
under the constraint that identical assumptions about the Stern layer are
made in both cases. This comparison between the agreement with experi-
ment of GCS theory and an entirely analogous theory where the “diffuse”
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part of the double is treated with ion-ion correlations taken into account is
meant to assess the importance of such correlations.

The effect of ion-ion correlations is qualitatively different depending on the
surface charge density. For small or zero surface charge density, depletion
is predicted in the region close to the surface. For larger surface charge
densities the depletion of electrolyte close to the surface persists but beyond
a certain surface charge density there is an onset of enrichment of co-ions
in a region further out. Due to electroneutrality this must be accompanied
by an enrichment of counterions in excess of what is needed to compensate
for the surface charge, i.e. overcharging. This behavior is not predicted
by GC theory, which gives concentration profiles that are equal to the bulk
concentration all the way up to the surface for zero surface charge density
and depletion of co-ions everywhere for finite surface charge densities. This
behavior of the concentration profiles is reflected in the component of charge
of the co-ion, that is predicted to increase monotonically to an asymptotic
value by GC theory and to go through a maximum by the primitive model.

It is found that the primitive model but not GC theory fits the trend that
the dependence of the surface excess of sulfate tends to become less negative
with increasing magnitude of the surface charge density. With the assump-
tion of an ion-free layer of thickness between 3.0 and 3.5 A (depending on
whether image charges are taken into account or not in the primitive model
calculations) the results of the primitive model calculations are in reasonable
quantitative agreement with experimental data. For positive surface charges
the GC and primitive model calculations are both in poor agreement with
the experimental surface excesses. This is consistent with the predominating
view in the literature that sulfate is adsorbed on the mercury surface for
anodic polarization.

Paper V

In Paper V the ability of the primitive model to fit the concentration depen-
dence of the bulk activity coefficients of a series of sulfates with divalent metal
cations is investigated. Also a variant of the primitive model where the effect
of the molecular granularity of the solvent is taken into account in an ad hoc
manner, referred to as the “solvent structure primitive model” (SSPM), is
considered. The HNC approximation is used to evaluate the properties of the
model for the purpose of fitting the model parameters to experimental data
for moderate concentrations. As this approximation has some known defects
relevant for 2:2 salts in a large portion of the concentration range that is ex-
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perimentally accessible, the HNC calculations are supplemented with Monte
Carlo simulations in the regions where the accuracy or the approximation
cannot be taken for granted and in regions where no solution exist (which is
the case for the primitive model for low concentration).

It is found that the primitive model is capable of reproducing the key features
of the concentration dependence of the osmotic coefficient. The model is not
quite capable of quantitatively reproducing the trend in the details of the
concentration dependence of the osmotic coefficient over the set of sulfates
considered. While the primitive model might not be accurate enough for
applications where activity coefficients are needed with very high accuracy,
the comparison with experiment shows that it is a fairly life-like model in
many respects. The SSPM gives a slightly better fit to the osmotic coefficients
than does the PM; the position of the minimum in the osmotic coefficient as
a function of concentration is better reproduced by the SSPM.

The activity coefficients of the salt for lower concentrations are calculated us-
ing the model parameters that gives the best fit for high concentration. The
calculated activity coefficients are compared to activity coefficients derived
from EMF measurements. This comparison reveals that both the primitive
model and SSPM gives good agreement with the relative activity coefficient
(the activity coefficients relative to those for a finite concentration) but that
the primitive model and SSPM give significantly different predictions for the
absolute activity coefficients (relative to a non-interacting standard state).
These paradoxical observations are reconciled by noting that while the mod-
els behave similarly both for moderate to high concentrations and for very
low concentrations (as they must due to the DHLL) there is an intermediate
region where the primitive model activity coefficients depend more strongly
on concentration than the SSPM activity coefficients do. Thus, comparison
between both of the models and experiments in the low concentration regime
(0.1-10 mM) can in principle determine which model is superior. Unfortu-
nately, the congruency between different experimental studies is relatively
poor and the outcome of such an analysis depends on what weight is as-
signed to each experimental study. The sensitivity of the activity coefficient
to the details of the model assumptions has relevance for the interpretation of
experimental data in that some theory-assisted extrapolation is often needed
to put the activity coefficients on an absolute scale. The conclusions about
the absolute activity coefficients thus seem to depend on the form of the
interaction potential. This is especially problematic since the two models
investigated are members of a class of models that has a vast number of
members of similar a prior: plausibility.
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5.2 Discussion

The feature that unites Papers I-V is that a situation in which mean field
theory is inadequate in one or more respect is investigated in each of them.
This is not to be construed as implying that mean field theory is suitable
only as a straw man to be cut down by more worthy theories. Rather, mean
field theory, in the form of PB and DH theory, has illuminated so effectively
many phenomena related to double layers and electrolyte solutions that if
one is not careful, one risks being blinded to those phenomena that are still
in the shadow. If one grows too accustomed to the conceptual simplicity
afforded by declaring the electric potential and the potential of mean force
as being one and the same animal, as one does in PB theory, it is easy to find
oneself in an alien landscape when one encounters one of the many situations
where they clearly are not the same. When this is the case, typically when
the interactions are strong or the concentration is high, difficulties abound.
Here, not only does the problem of calculating experimental observables from
interactions potentials become difficult but details of the interaction potential
that could sometimes be ignored with impunity become important. This
forces the connection to be made with ion specificity in bulk and interfacial
systems that, as is becoming increasingly clear, depend critically on non-
electrostatic interactions. While none of the Papers included in this thesis
deals with the ion-specificity in real systems directly, all are at least partly
motivated by the need to disentangle the interactions that give rise to the
idiosyncratic behavior of different ionic species.

In Papers I and II the presence of image charges necessitates the considera-
tion of correlations between ions. If one were to include image charges in a
PB-type theory, one would have to either neglect their screening and get ab-
surd result or make some ad hoc assumption about the screening. It is found,
however, that the effect of image charges on the wall-wall pressure is quan-
titative rather than qualitative for charged surfaces: while the inclusion of
image charges is necessary to even get the correct sign of the surface-surface
interaction pressure for some surface charge densities, the difference between
“images” and “no images” is quantitative rather than qualitative for most
surface charge densities. A notable exceptions to this is the region around
zero surface charge density where image charges give rise to an attractive
contribution to the pressure due to depletion of electrolyte.

An interesting feature of the double layer pressure in the presence of at-
tractive dispersion (or other) forces is that such forces acting on the co-ion
tend to increase repulsion while attractive forces on the counterions tend to
decrease repulsion. This observation is by no means novel, see for instance
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refs. [60] and [72] that are discussed in Section 2.4 in connection with the
Hofmeister series, but still deserves closer discussion. The way to under-
stand this paradoxical behavior is to note that any attractive force between
ions and walls will give rise to an increase in ion concentration between the
walls, that in turn gives rise to repulsion between the walls. Such ion-wall
interactions will also give rise to attraction between the walls due to direct
interactions between the ions in each double layer and the opposite wall.
Which of these tendencies is dominant depends the details of the system.
That attractive dispersion forces acting on the counterions give rise to a de-
crease in repulsion is due both to that there is a high density of counterions
that can interact with the opposite wall and that the concentration profiles
gets distorted (compared to the case with only electrostatic forces) so that
there is a higher density of counterions close to the walls and a lower den-
sity in the mid-plane. In the case where the co-ions are attracted to the
walls, the wall-wall attraction caused by direct ion-wall dispersion attraction
is relatively small because the co-ions are excluded for electrostatic reasons.
The change in the concentration profiles induced by dispersion forces tends
to increase the concentration in in the mid-plane and thus give rise to re-
pulsion. This is the dominant contribution to the net change in pressure in
this case. In this latter case, with dispersion interactions between walls and
co-ions, the two kinds of changes brought about by dispersion forces tend
to counteract each other, and the total change in pressure is small. In the
case where the dispersion forces act between walls and counterions, however,
both of the contributions to the change in pressure act in the same direction,
at least for a range of surface-surface separations and the magnitude of the
total change in pressure is larger. The experimental predictions is that not
only should any Hofmeister series for surface interaction be expected to be
reversed when the the surface charge density changes sign, as discussed in
Section 2.4, the magnitude of the specificity is expected to be dramatically
different as well.

The long-range asymptotic expressions for the wall-wall pressure in the pres-
ence of dispersion forces derived in ref. [66] in the DH limit are interesting
in this context. These expressions indicate that dispersion forces give rise
to a repulsion (in the case of attractive dispersion forces) that decay in the
same way as the wall-wall van der Waals interaction. The repulsive effect
on the concentration profiles is thus dominant compared to the attraction
due to wall-ion interactions in this limit. Both contributions to the pres-
sure have the same distance dependence and the ratio of their magnitudes
is 8/7. As the contributions have opposite signs this implies that the total
pressure is 1/8 of the pressure due to the change in the concentration pro-
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files, the remaining 7/8 being canceled by the pressure due to direct ion-wall
interactions. The magnitude of the pressure is determined by the arithmetic
mean of the strength of the dispersion interaction acting on each species of
ion. These observations have the implication that the apparent Hamaker
constant should be dependent on the concentration of salt if there are strong
dispersion interactions between ions and walls, but only weakly so. The
long-range behavior of the pressure is independent of the sign and magni-
tude of the surface charge density, in contrast to the observations for short
to intermediate separations made above.

In Paper III the interaction between uncharged surfaces is investigated. The
finding that the osmotic contribution to the interaction pressure changes
from attractive to repulsive for a range of separations when salt of asymmet-
ric valence type is present is non-trivial. The reason for the appearance of a
repulsive pressure is that a double layer, of sorts, is formed outside the sur-
face. This is not due to the preferential adsorption of ions on the surface but
rather to an asymmetric depletion of ions close to the surface. This depletion
is caused by both to repulsive image charges and correlation effects, both of
which effectively repel ions from the surface.

While it may appear reasonable that charge separation close to a surface gives
rise to repulsion that can be likened to the double layer repulsion between
charged surfaces, it is not obvious that this repulsion should overcome the
attraction that is expected due to overall depletion. That repulsion is seen is
ultimately a consequence of the electroneutrality condition: the net excess of
charge due to monovalent ions close to the walls has to be compensated by
an excess of divalent ions somewhere. For surface-surface separations, where
this “somewhere” turns out to be around the mid-plane between the walls,
there can be a net enrichment there, corresponding to a net repulsive ideal
contribution to the pressure.

To ascribe the resulting repulsive barrier to the ideal contribution alone is
overly simplistic and would not be correct, however. Careful analysis of the
contributions to the pressure shows that the maximum in the pressure curve
occurs for a separation where there is already a net depletion and that non-
ideal contributions to the pressure are decisive. These contributions come
from both hard core collisions and loss of “favorable” electrostatic correla-
tions. In the cases where there are additional attractive forces between the
ions and walls in the form of dispersion interactions, the effect of these de-
pends strongly on whether they oppose or act in concert with the charge
separation due to asymmetry in ionic valency. In the cases where the disper-
sion interactions act on divalent ions they give rise to a smaller enrichment
close to the walls than when they act on monovalent ions. In addition, the
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dispersion interactions tend to enhance the charge separation in the former
case but not in the latter. The net result is that dispersion interactions on
monovalent ions give rise to a much more dramatic shift in the height of the
repulsive barrier.

It is in some sense unfortunate that the most dramatic effects are seen for
surface-surface separation where the applicability of the continuum descrip-
tion of the solvent cannot be taken for granted and solvation forces may be
dominant. Nevertheless, the qualitative features of the model can be tested.
A type of experiment that may be useful in this regard is measurements
of the swelling of multilamellar phospholipid vesicles in response to osmotic
stress of the type described in ref. [38]. In such an experiment the sepa-
ration for which the system is in mechanical equilibrium is measured for a
given external osmotic pressure, that is controlled by adding high molecular
weight compounds that do not penetrate into the interlamellar spaces of the
vesicles. The pressure as a function of separation is predicted to turn oscil-
latory for much smaller concentration for salts of asymmetric valence type
than for salts of symmetric valence type. This difference could used to test
the model. An experiment could be performed where the dependence on salt
concentration of the equilibrium separation for a given osmotic pressure is
measured for salts of different valence type in order to assess this qualita-
tive predictions of the model. In principle, one could also investigate salt
solutions composed of different combinations of the same species of ions. If
the model predictions from the model are accurate, combinations giving salts
of symmetric valence type should make the force between lamellae more at-
tractive and combinations of asymmetric valence type should make it more
repulsive.

The system investigated in Paper IV appears at first sight very different from
that in Paper III. The results can to a large extent be discussed in terms of
the same mechanisms, however. For low surface charge densities a depletion
is seen. For high concentrations this is the case even in the presence of
attractive image charge interactions. This is so because in order to approach
the surface, the ionic atmosphere of each ion has to be distorted so that
there is more charge on the “solution” side than on the “surface” side of
the ion. The asymmetry of the ionic atmosphere gives rise to a force that
effectively repels the ion from the surface. (It is noteworthy that for high
concentrations of very large ions, a situation also considered in Paper IV,
there is a net enrichment of ions close to the walls. In this situation the hard
core collisions dominate the electrostatic force.)

For higher surface charge densities the situation is the opposite: there are
more ions close to the walls than mean field theory predicts. The situation
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with depletion of ions close to the walls for low surface charge densities and
a relative enrichment for higher surface charge densities may be considered
a “signature” for overcharging due to ion-ion correlation as opposed to over-
charging due to direct, chemical interactions between ions and walls. The
consequence of overcharging by the ion-ion correlation mechanism for the
component of charge of the anions is that it first increases sharply as the
surface charge density is made more negative (starting from zero), reaches a
maximum and then decrease with a rate that is dependent on the strength
of the electrostatic interactions between ions. That this behavior is seen for
the co-ion is due to the electroneutrality condition, as each increase in the
magnitude of the surface charge density gives rise to an opposite and greater
change in the magnitude of the counterion component of charge, the deple-
tion of co-ions must at the same time become smaller. For negative surfaces,
this corresponds to a decrease in the anionic component of charge that in
turn corresponds to an increase in the anionic surface excess. This pattern
should be at least close to universal; salts with similar bulk properties, such
as activity coefficients, should show a similar behavior of the surface excess
for any surface where there is no strong specific adsorption.

It is unfortunate that few experimental systems are sufficiently well char-
acterized to allow an analysis analogous to the one in Paper IV. Because
the details of surface excess of ions as a function of surface charge density
is needed to judge whether ion correlation constitute a likely mechanism in
any particular instance of overcharging. Thus, the surface charge density
has to be measurable with a high accuracy. Moreover, the surface charge
density must be variable over a broad range and the surface charge has to
be uniform. This precludes most of the model systems in use in colloid and
interface science; the mercury electrode appears unique in the respect that it
fulfills these requirements. Any variation of the experimental system would
thus have to be made on the solution side, barring any unforeseen advance.

Correlation effects become more important with increasing ionic valency,
suggesting that solutions of salts with such exotic (for salts in solutions)
valence types as 3:2 should be studied. Examples of such salts that are
reasonably soluble are Aly(SO4)3 and Las(SO4)s. At least for the latter, some
experimental data exist [133]. In that work the dependence of capacitance
on electrolyte concentration is investigated and it is found that the variation
is well described by a modified version of GC theory where thermodynamic
consistency is enforced [134], but not by the original GC theory. This is
consistent with ion-ion correlations being important. More than this cannot
be said because the modified GC theory does not contain an explicit model
of the electrolyte interaction potentials. An analysis of the same system in
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terms of such a model, like the one in Paper IV, would be of great interest.
A confounding factor for highly charged ions is that hydrolysis cannot be
excluded a priori. The pH has to be controlled in order to establish that the
highly charged cations are not present as hydration complexes of lower total
charge. While this problem need not be insurmountable, it severely limits
the interpretability of data from experiments where the pH is not controlled.

A different type of systems where overcharging due to ion-ion correlations is
expected to take place is non-aqueous electrolyte solutions with sufficiently
low permittivity. All other features of the interaction potential being equal,
a 1:1 salt in a solvent with permittivity around 20, a value that cannot be
considered extreme for polar organic solvents, should behave in the same
way as a 2:2 salt in water in terms of bulk properties. A double layer in the
same non-aqueous solution should be similar to a double layer in an aqueous
solution of 2:2 salt for a surface charge density that is twice as high. Even
lower permittivity solvents could be used; the limiting factors are whether
suitable salts can be found that are soluble and whether high surface charge
densities are obtainable in the solvent in question. At the cost of introducing
another component into the system and thereby making the thermodynamic
analysis more complicated, the permittivity can be varied continuously by
using a mixed solvent system. This would allow a very detailed test of the
predictions of the model that should be sensitive to the permittivity.

These considerations are also closely related to the bulk systems considered
in Paper V. Just as the correlations that gives rise to overcharging are to be
expected to be similar in inhomogeneous systems with similar strength of the
electrostatic interactions, the correlations that give rise to deviations from
ideal solution behavior should be similar in corresponding bulk systems. It
is an implicit assumption in the primitive model that any chemical idiosyn-
crasies of the solvent will merely modify the optimal ion radius slightly. We
note in that lithium perchlorate in 2-propanol, for which the activity coef-
ficients have been determined [135], is in some key aspects very similar to
magnesium sulfate in water: the bare ion sizes are almost the same [136], the
geometry of perchlorate is nearly identical to that of sulfate (these species
are even isoelectronic) and 2-propanol has a dielectric constant that is al-
most exactly one fourth of that of water. Thus, the electrostatic interactions
for a 1:1 salt in 2-propanol are identical to those for a 2:2 salt in water to
the extent that the representation of the solvent as a dielectric continuum is
accurate. What is not equal in water and 2-propanol is, of course, the struc-
ture of the solvent and any solvation complex. Comparison between bulk
thermodynamic data for the two solvents may well reveal to what extent
such details are important for the behavior if the electrolytes. In Figure 5.1
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such a comparison is made. A remarkable similarity is found, which lends
support to the use of the primitive model. If other systems displaying the
same conformity could be found, it would allow a systematic evaluation of
the primitive model. Particularly, the range in concentration for which the
assumptions underlying the model are valid could be established.
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Figure 5.1: Comparison between activity coefficients for aqueous MgSO,4 and
LiClOy4 in 2-propanol, taken from the literature. “4” and “x” symbols are
for MgSO, taken from refs. [137] and [138], respectively. Triangles are for
LiClOy, taken from ref. [135]. The data has been converted to the McMillan-
Mayer scale, see Chapter 3, using densities from ref. [139] in the case of
MgSO, and using the densities given in [135] for LiClO4. Note that for the
data from ref. [137], the osmotic coefficients are not available so the second
term in the right hand side of eq (3.6) could not be calculated. This term
was therefore omitted in that case, which is a permissible approximation for
low concentrations.

The conclusion that can be drawn from the results of Paper V and the dis-
cussion above is that the primitive model is unlikely to give a severe mis-
representation of the thermodynamic properties of aqueous 2:2 electrolytes.
This state of affairs is fortunate in the sense that it lends support to the
notion that conclusions on the basis of the primitive model are applicable to
real systems. On the other hand it is unfortunate in that it implies that the
thermodynamic properties of electrolytes are insensitive to the details of the
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interaction potential. Such an insensitivity implies that little can be learned
about those details by the study of the thermodynamic of bulk systems. The
situation is the same as that for 1:1 electrolytes, discussed in Section 3.1.
This is unfortunate as it makes the physico-chemical origin of “ion-pairing”
in electrolytes difficult to ascertain. Despite that the concept of ion-pairs
was introduced as a theoretical device in an approximate treatment of the
primitive model [21], there is often a tacit assumption that ion-pairing im-
plies the action of some non-electrostatic interaction mechanism. This has
caused to considerable confusion in the literature, leading some authors to
dismiss the presence of ion-pairing on the basis that experimental data could
be well described without assuming any non-electrostatic interaction mech-
anism [137]. Other authors have cited the presence of ion-pairs as evidence
of the presence of chemically well-defined species of associated ions [140],
which is hard to reconcile with a purely electrostatic interaction mechanism.
The comparison in Paper V between the primitive model and a closely re-
lated model where finite-ranged non-electrostatic interactions are taken into
account indicate that electrostatic and non-electrostatic interaction mecha-
nisms are difficult to distinguish on the basis of the bulk activity coefficients.
Nevertheless, accurate measurements of the activity coefficients for very small
concentrations could in principle discriminate between models that are not
meaningfully distinguishable for higher concentrations.

A notable feature of the primitive model of 2:2 salts is that the ion sizes are
much smaller than would be expected on the basis of the size of hydrated
ions. This is so despite that the ion sizes that gives the best fit for the
alkaline earth metal halides are commensurate with reasonable hydrated ion
sizes [78]. This is consistent with the presence of non-electrostatic attraction
between cations and anions, but as the ion sizes obtained in Paper V are in
all cases greater than the “bare” ion size they are also consistent with the
absence of non-electrostatic attraction. That the ion sizes are smaller in the
case of 2:2 electrolytes than for 1:1 and 2:1 electrolytes may well be due to
that the anion more readily replaces water in the solvation shell of the cation
in the former case. Note that the typical interaction between a cation and
a solvating water molecule becomes twice as large when going form 1:1 to
2:2 salt, whereas the interaction between a cation and an anion for a given
separation becomes four times as large.

That the primitive model can reproduce bulk thermodynamic data as well
as it does suggests that the electrostatic forces are indeed the dominant type
of interactions that determine these properties. (The electrostatic interac-
tions cannot be considered in isolation, however. The short-range repulsion
between ions, that is approximated in the primitive model by the hard cores,
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acts as a cut off for the electrostatic interactions in addition to giving rise to
an excluded volume.) This in turn lends credence to the use of the primitive
model to study surface properties. Nevertheless it is in interfacial systems
that the deficiencies of the primitive model become most clearly visible. In
the framework of the naive implementation of the primitive model, where only
electrostatic and “hard core” interactions are considered, most ion-specific
phenomena are inexplicable. This leaves two options: either the model can
be extended in an ad hoc fashion, which is the approach taken in this thesis,
or the model can be discarded in favor of more detailed models.
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Two effects of interactions between polarizable ions and polarizable walls in electric double layers
are investigated: ionic image charge forces and ion-wall dispersion forces. The first must be
included for a consistent treatment of the wall-wall van der Waals (vdW) interaction, since it
contains the effect of screening of the static part of the vdW interaction. The second has been
suggested to give rise to ion specificity in double layer interactions. The strength of the ion-wall
dispersion forces are estimated from quantum mechanical calculations of ionic polarizability and
from experimental data for the dielectric functions of the media. The ion density profiles and the
anisotropic ion-ion distribution functions in the double layer are calculated in the highly accurate
anisotropic hypernetted chain approximation, which allows the correct treatment of the image
charge forces. The double layer interactions are evaluated from these distribution functions. It is
found that it is important to include both kinds of ion-wall forces. Quantitative and sometimes even
qualitative differences occur in the double layer interactions depending on the ionic species of the
electrolyte due to different strengths of the ion-wall dispersion interactions. © 2006 American

Institute of Physics. [DOI: 10.1063/1.2357940]

I. INTRODUCTION

It has been suggested that London-type dispersion inter-
actions between ions and dielectric boundaries may play a
role in determining the ion specificity of a range of phenom-
ena related to charged interfaces in electrolytes.l’2 This hy-
pothesis has been explored in a number of recent publica-
tions; for a review see Ref. 3. In particular, the effect of
including dispersion forces between ions and interfaces when
calculating the potential of mean force between particles has
been investigated for both the case of planar walls*™® and the
case of macroions.”” In the majority of these studies one has
neglected that the static electric fields generated by the ions
polarize the interfaces between walls and solvent of different
dielectric constants. Thus, in such cases the dielectric con-
stant of the walls, €,,, has in effect been set equal to that of
the solvent, €, while in reality €, 7 €.

The polarization at dielectric discontinuities can be
treated by the method of images in, for example, the case of
planar walls. We refer to the forces on the ions due to the
fictitious image charges as “image forces.” These forces must
be included in order to obtain a consistent treatment of the
van der Waals (vdW) interaction between the walls (see be-
low). This is especially important when the high frequency
vdW interactions are weak, as is the case in hydrocarbon/
water systems.lo The image forces can also give rise to other
significant contributions to the mean force between colloidal
particles when the ion concentration is not very high.

In one study by Bostrom et al.* both dispersion and im-
age forces are included, but the latter are treated in an ap-
proximate fashion that is on the same level as Onsager-
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Samaras theory.z’” In this approach the screening of the

image charges is treated in the Debye-Hiickel approximation
using, in effect, a screened Coulomb potential from bulk
electrolyte solutions. Such an approximation introduces an
inconsistency in the treatment of the problem as the postu-
lated screening is not consistent with the ionic concentration
profiles and anisotropic ion-ion correlation functions in the
double layer. The proper way to include image charges for
interacting double layers in planar geometry were described
for the general case by Kjellander and Mar(:elja.12 Their
scheme has been implemented in practical calculations of
ionic concentration profiles and ion-ion correlation functions
of the double layer using the anisotropic hypernetted chain
(AHNC) approximation.'® This is a highly accurate
method to calculate double layer properties and it is used in
the current work. The AHNC method typically requires
much less computational effort than simulations, especially if
image forces are to be included. This method produces re-
sults in virtually perfect agreement with simulations,"*'> ex-
cept at high ionic concentrations, for which there are small
systematic errors. The explicit consideration of the ion-ion
correlations makes the AHNC method suitable for studying
systems where mean field theories, such as the Poisson-
Boltzmann approximation, fails to give even qualitatively
correct results, as may be the case for systems with divalent
ions present.B’M’16 In this work we will, however, consider
only monovalent electrolytes.

As image forces in some cases have a decisive influence
on the ionic concentration profiles and the pressure between
the walls, it is desirable that they are treated as accurately as
possible. It has been shown for the case of uncharged sur-
faces in absence of ionic dispersion interactions'’ that the
self-consistent inclusion of image forces in the treatment of

© 2006 American Institute of Physics
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the double layer results in the exact cancellation of the
asymptotic term of the static (zero frequency) part of the
vdW interaction between planar walls. Therefore, the inclu-
sion of image forces does not only affect the double layer
pressure but the vdW pressure as well. The static part of the
vdW interaction is screened by the intervening electrolyte
and this is contained in the effects of the image forces. This
effect will be investigated in the current work.

The presence of dispersion interactions between ions in
electrolytes have profound effects on the decay behavior of
electrostatic interactions between the ions as function of
separation, changing the exponential screening to a power
law one."®" In the current work we will only consider ion-
wall dispersion interactions and, for simplicity, neglect such
interactions between the ions. The latter is expected to be of
secondary importance, at least for the system studied here.
Thus the electrostatic ion-ion interactions in the electrolyte
will be exponentially screened, but the ion-wall dispersion
forces will affect the decay of the ion concentration profiles
between the walls and indirectly the ion-ion correlation func-
tions. We will see that these dispersion forces give rise to
important differences depending on, for example, if the most
polarizable ions (e.g., bromide compared to sodium ions in
sodium bromide) are counterions or coions of the charged
surfaces.

The current primitive model approach does not allow for
effects due to the structure of the solvent at the interface.
Any ion specificity arising from such effects is therefore
missed in the calculations presented below, making the rela-
tive importance of these compared to effects due to disper-
sion forces difficult to assess. Currently, the only reliable
methods available for studying solvent-structure dependent
ion specificity are laborious simulations. Recent examples of
such are found in Refs. 20 and 21.

The outline of the paper is as follows. First the system is
described and the interaction potentials are defined. This is
followed by an explicit estimation of the strength of the ion-
wall dispersion interaction using quantum mechanical calcu-
lations. Then the various contributions to the interaction
pressure between two planar walls are specified. The calcu-
lated wall-wall interaction pressure and ion density profiles
are then presented and the results of the paper are discussed.

Il. THEORY
A. Model

The system considered is a simple binary electrolyte so-
lution sandwiched between two walls separated by a distance
D. The walls are modeled as semi-infinite dielectric slabs
with dielectric properties different from those of the solvent.
The electrolyte between the walls is assumed to be in ther-
modynamic equilibrium with a bulk electrolyte solution of
concentration 0.5M. We select a coordinate system with the z
axis perpendicular and the x and y axes parallel to the sur-
faces. The origin is placed at the midplane between the walls.
We use the notation r=(x,y,z).

The pair potential u;;(r,r") between an ion of species i at
coordinate r and an ion of species j at r’ consists of three
contributions,

J. Chem. Phys. 125, 154702 (2006)

core Coul im

wy=ug gt g (1)
where u;?"®
core

ie., i

is the hard core potential for ions of diameter a,
(r,r')= if [r-r'| <a and 0 otherwise, and where

uq()“l(r r’) — . 44; (2)
Y ’ 47T€s0160|r_r’| '

gq; and gq; are the ionic charges, € is the dielectric constant
of the solvent, and ¢, is the permittivity of vacuum. The
contribution uj’,n in Eq. (1) is the potential due to image
charges, which arises from the presence of the dielectric dis-
continuities at the two walls. It is a function of the distances
of the ions to the surfaces. Due to the planar symmetry we
can write its coordinate dependence as ui-'?‘(r,r’)
=u?in(R,z,z'|D), where R=[(x—x")>+(y—y")?]"? is the lat-
eral distance and where we have explicitly indicated in the
right hand side (rhs) that u;;“ depends on the distance D
between the wall surfaces. In Fourier space this potential can
be written as'’

. g €
i (k,z,7'|D) = 9d4; | _p cosh(kz)cosh(kz")
2] kD

€oi€ok [ €7 — €p

+ — 2— sinh(kz)sinh(kz") |, (3)
e+ €p

where

€50l — Ewall
_ s w. ( 4)
€501 T Eall

and €, is the dielectric constant of the wall. The notation

f(k) is used here for the two-dimensional Fourier transform
(Hankel transform) of a function f(R). (In real space ut',“ is an
infinite sum of Coulombic terms due to the presence of mul-
tiple image charges from both surfaces.)

The ions are assumed to interact with the walls via dis-
persion forces as well as hard core exclusion and electro-
static forces. The ion-wall interaction potential v,(z|D) for an
ion of species i then consists of four contributions,

V=17 + viCO“l + "+ V?ISP, (5)

where 1{° is the ion-wall hard core potential, which is infi-
nite if |z|>(D~a)/2 and 0 otherwise, and where v~*"" is the
electrostatic interaction between an ion and a uniform sur-
face charge density o on each wall. Since the surface charge
densities of the two walls are equal, viC"“' is constant in the
slit between the surfaces and does not give rise to any forces
on the ions there. The contribution vim in Eq. (5) arises due
to an ion interacting with its own image charges and is given

by
WD) = 47(0,5.21D). ©

The potential for the ion-wall dispersion interactions is set to

1
+ , 7
(z+D2)* " |z- D/2|3> @

V?isp(Z|D) = Bi(

where the coefficient B; is a parameter controlling the
strength of the dispersion forces and is defined in Eq. (8)
below. It should be remarked that Eq. (7) is only approxi-
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mately valid because it only contains the leading contribu-
tion from each wall (see below) and, furthermore, it fails to
account for wall-ion-wall three-body interactions.

In this work both ion species are assumed to be monova-
lent, i.e., ¢, =—q_=e(, where ¢ is the elementary charge, and
have the same diameter a=4.6 A. The static dielectric con-
stant of the solvent, €, is taken to be 78.36, corresponding

to that of water at 25 °C and for €,,; we use the value 2.54,
the static dielectric constant of polystyrene.22

B. Estimation of wall-ion dispersion forces

The potential for the dispersion interaction between an
ion of species i and a single dielectric discontinuity a dis-
tance d away is given by2

VP = i f” Jo @, (iw) i) = B
0

T (4m)ed’ e (i) &

(8)

where af is the excess polarizability of an ion of species i
(i.e., the difference in polarizability between an ion sur-
rounded by a solvent and pure solvent) and €(iw) has the
same meaning as €p in Eq. (4) except that it is evaluated at
the imaginary frequency iw. The physical interpretation of
expression (8) is that it represents the free energy of interac-
tion between a fluctuating point dipole and its dielectric im-
age. This constitutes the leading contribution for large d of
the ion-wall dispersion interaction. In reality the distance de-
pendence for small d is more complicated than that of Eq.
(8). The singularity of V?iSp(d) at the wall surface (d=0) is
unphysical and arises as a consequence of regarding the ions
as point-polarizable objects. In our application of Eq. (8) the
singularity is never encountered since the ionic size is con-
sidered. In Eq. (7) we have »7P(z|D)=V¥P(z+D/2)
+V9P(|z=D/2|), and in practice |z|<(D-a)/2 due to the
ion-wall core interactions included in Eq. (5).

The material of the wall is taken to be polystyrene and
the representations of the dielectric functions for water and
polystyrene, in tabular form for imaginary w values, were
taken from Dagastine et al.” In order to obtain a reliable
estimate of the order of magnitude of B; in Eq. (8) we chose
iodide as a “prototype” for highly polarizable ions. The po-
larizability of iodide was calculated from the following sum-
of-states formula: '’

2
€o Sou

2
dmegm,”; wy;— w

a(w) =

2 2 (9)

where m, is the electron mass, wy is the frequency, and f,
is the oscillator strength of the transition from state O (the
ground state) to state /. These quantities can readily be cal-
culated using time-dependent Kohn-Sham density functional
theory (TD-DFT).***

The calculations were preformed with the GAUSSIANO3
(Ref. 26) package using the B3LYP exchange-correlation
functional®’*®* and Dunning’s augmented quadruple zeta cor-
relation consistent basis sets>’ (aug-cc-pVQZ) with a relativ-
istic effective core potential.30 The effects of solvent were
included by placing the ion in a cavity in a dielectric con-
tinuum and including the reaction field in the Kohn-Sham
Hamiltonian using the method of Miertus§ et al*' as imple-
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mented in GAUSSIANO3. The default values of 2.250 A for the
cavity radius and 1.776 for the optic dielectric constant of
water were used. No attempts were made to include any
hydrating water molecules explicitly.

The value that was obtained for the static polarizability,
a(0), of iodide in water is 58.7 a.u., to be compared with the
experimental value of 50.0 au.*? A numerical evaluation of
the integral in Eq. (8) using a(iw) as given by Eq. (9) (the
bare polarizability) instead of the excess polarizability gave
the value —40.2 kJ A% mol™! of B_ for iodide. Considering
that the effects of the displacement of water by the ion were
neglected and the fact that the static polarizability was over-
estimated by about one sixth, this number is likely to be an
overestimate. This led us to choose B_ values in the range
between 0 and —40 kJ A% mol™! for our model anions. We
expect that these values are within the range of the typical
values of B_ for highly polarizable anions. This view is sup-
ported by the fact that values of similar magnitude were ob-
tained by Tavares et al.® for a range of anions in a similar
system using different approximations for €,,,(iw), €.(iw),
and a(iw).

In light of the fact that cations are generally much less
polarizable than anions™ and in order to keep the model
simple, B, was set to zero in all calculations. We emphasize
that we are not aiming to make predictions referring to any
particular kind of salt, but rather to investigate the properties
of the model presented above for a set of parameters of re-
alistic order of magnitude.

It is somewhat problematic to use the asymptotic form
given by Eq. (8) of the potential for the dispersion forces for
all separations since it strongly overestimates the interaction
for d=0 and necessitates the use of a cutoff distance for
small d, the exact choice of which may have a large influ-
ence on the results. It may therefore be the case that the
short-range effects of dispersion forces are exaggerated in
the calculations of this paper. Furthermore, it appears likely
that a realistic ion-wall potential would also contain contri-
butions of other physical origin, that for short distances may
well dominate the contribution due to dispersion forces even
for highly polarizable ions.

C. Evaluation of the wall-wall interaction pressure

The net interaction pressure between the walls is the
difference between the force per unit area in the slit between
the two surfaces, P[slit], and the bulk pressure, P[bulk],

Pt = P[slit] — P[bulk]. (10)
When the distance D between the walls goes to infinity,
P[slit]— P[bulk] and P"'— 0.

The total pressure in the slit is the sum of a contribution

from the ions, P" [defined below in Eq. (14)], and the vdW
interaction between the walls

P=P"+ PGy (11)

We have
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A
Pwall —_ ,
vaw 6mwD?

(12)

where A is the Hamaker constant for the two walls interact-
ing across pure solvent. A can be obtained from Lifshitz
theorylo 33,

3kBT - ‘ l(,()])

5 22 (13)
1=0

s=1

where kp is Boltzmann’s constant, 7 the absolute tempera-
ture, the prime on the sum over [ indicates that the term
corresponding to /=0 is to be weighted by one half, and ¢,
has the same meaning as in Eq. (4) except that it is evaluated
at imaginary frequency iw;, where w;=127kgT/#.

We will distinguish the static (zero frequency) part of the
vdW interaction from the rest. The former originates from
the /=0 contribution in Eq. (13) which we will denote as A,.
Note that A, contains only the static dielectric constants of
the solvent and the walls, the same quantities that determines
the magnitude of the image forces [cf. Eq. (3)]. The zero
frequency part in Eq. (12) is ‘V”;\I,IJ(OF—AO/ (67D?). It has a
special role in what follows. The high frequency contribu-
tions to va(f\]{, [from the terms with />0 in Eq. (13)] will be
denoted as Py;\l},(hf).

The pressure due to the ions, Pi°n can be decomposed
into well defined components,

Pi0n=Pi<oiE+Pi(?gul+Plc(z)r;e+Plon+P:i(:2p’ (14)
the explicit expressions for which are given below. P can
be evaluated at any plane in the slit between the surfaces (its
value is independent of this choice). In the current work it is
evaluated at the midplane (at z=0) from the ion density pro-
files, n,(z), and ion-ion pair distribution functions, g;(r,r’),
in the slit. The planar symmetry of the system allows us to
write g;(r,r")=g;(R,z,z"). The total correlation function is
defined as h;j=g;—1.

In Eq. (14), P}flg is the pressure due to the thermal mo-
tion of the ions, i.e., the momentum transfer across the plane
where the pressure is evaluated. It is proportional to the total
ion concentration there. At the midplane we have P
=kgTEn;(0). In the bulk P\"=k,T=n?, where n’ is the bulk
concentration.

P" | is the pressure contribution from electrostatic inter-
actions due to ion-ion correlations across the midplane and
we have

E’SM——EI de dz’ den(z)n(z)
i,j D/2

&QOUIR,V’/
) u; ZZ). (15)

X hij(R,z,z
ij &Z
The corresponding contribution to the bulk pressure is
-3 ::jdrnfnj’rhj?j(r)[duC°“‘(r)/dr]/6 where 4, is the total
correlation function in bulk.
P is the pressure contribution from core-core colli-
sions of the ions across the midplane and we have

J. Chem. Phys. 125, 154702 (2006)

a 0
PIL(())I;E_ZWkBTEJ dzJ dz'nf(2)n;(z")(z-z")
ij Y0 z-a
X gi[a* = (z=2")*1",2,2"). (16)

The corresponding pressure contribution in bulk is
2ma kg TS, b N gf-’i(a)/ 3, where gg-(a) is the core-core con-
tact value of the pair distribution function in bulk.

P! contains all contributions to the pressure due to im-

13
age forces,

‘ pn (DR oc
P =27 J dzJ dz'f dk ni(z2)ni(z")
ij Jo -p12 0

™ (k,z,2'|D)
Xh,J(k 72,2 )k —%

-7

D/2
dzj dz’ f dk n{2)n;(z' )h,j(k 2.2 )k
-D/2

ij D/I2
™ (k,z,z'|D) 1 JD/Z ™ (z|D)
P! Bt e A dz n(z)l—
oD 22;‘ 0 ' /4
D/2 aylm Z|D
—‘E dzn(z)—D (17)
i J-Di2

In bulk there is, of course, no such contribution.

Piﬁgp is the pressure component arising from direct dis-

persion interactions between ions and walls and is given by

aVIP(z + DJ2)
oz

v““P(|z, D/2|

D/2
P3| den
i 0

(18)

+2J dz ni(z)
pn

Each term in the rhs gives the dispersion interaction between
the ions on one side of the midplane and the wall on the
opposite side. There is no Piﬁzp contribution in bulk.

The zero frequency contribution to the wall-wall vdW
interaction pressure, P‘V”é‘\l{,(o), is canceled identically for large
D by the image force contributions in Pon 17 The physical
result is that PVdW is screened by the electrolyte in the
slit.”* The high frequency contribution, P‘V":&(hf), is, on the
other hand, unaffected by the presence of the ions in the slit
since they move too slowly to correlate with the rapid quan-
tum fluctuations that give rise to this dispersion force contri-
bution.

In this work the ion density profiles and ion-ion pair
distribution functions in the slit were calculated using the
AHNC approximation'? and P[slit] was then obtained from
the equations above. P[bulk] was likewise obtained from the
pair distribution functions of the bulk phase in the HNC
approximation.

Note that in the Poisson-Boltzmann approximation the
net kinetic pressure, A }gﬁ—kBTE [1,(0)-n?], and g;‘;p re
the only contributions to P'" that are nonzero.
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FIG. 1. The net pressure, AP = P[slit]— P[bulk], as function of surface sepa-
ration D between two planar walls with surface charge densities o
=0.0449 (upper panel) and —0.0449 C m~2 (lower panel), except that the
high frequency part of the van der Waals (vdW) wall-wall interaction pres-
sure, P - is not included. The pressure is plotted as AP/RT, where R is
the gas constant, in molar units. The electrolyte is a 0.5M aqueous solution
of monovalent ions with equal diameters a=4.6 A. The anions have disper-
sion interactions with the walls of strength B_=0 (solid lines), —20 (short
dashes), and —40 kJ A> mol™! (long dashes), while B,=0 throughout. The
thick lines show results in the presence of image charge forces. In the upper
panel results are shown from the corresponding calculation where image
forces are neglected (thin lines). In the lower panel such curves are not
shown for clarity, since they lie only slightly below the present curves.

lll. RESULTS AND DISCUSSION

AHNC calculations were carried out for a range of wall-
wall separations D between 5.1 and 29.6 A for walls with
either positive or negative surface charges in the presence or
absence of image forces (in the latter case with €y,;= €y
=78.36). The absolute value of the surface charge was |o]
=0.0449 C m~2 unless otherwise specified. Three values for
B_ were considered: —40, —20, and 0 kJ A3 mol™L. Note that
the minimal value of D is 4.6 A, which corresponds to a
layer of counterions between the charged surfaces. The prin-
cipal results of the calculations are presented in Fig. 1, which
shows the net pressure between the walls, except that the
high frequency vdW pressure, Py - is not included (the
latter is the same for all cases shown). The zero frequency
part, P‘V"j\l,{,(o), is, however, included for the cases with image

forces. When the dielectric discontinuities at the surfaces are

neglected, i.e., in absence of image forces, P‘V”;&(O) is zero

since €p=0 at zero frequency in these cases. If P‘V”(j‘\',],(o) were
to be calculated from the actual dielectric constant of the
wall material in the latter cases, the model would be incon-
sistent when image forces are neglected.

There is a dramatic difference between the cases of posi-
tive and negative surface charge where the polarizable anions
are counterions and coions, respectively. For positive sur-
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faces, the inclusion of dispersion forces significantly de-
creases the pressure for all separations considered. In the
case of negative surfaces the pressure is increased at larger
separations and remains largely unaffected at small separa-
tions when dispersion forces are included. This is the same
trend that was recently observed by Bostrom et al.’ who
treated a similar model within the Poisson-Boltzmann ap-
proximation. In their model image forces were neglected but
regulation of surface charge at constant pH was taken into
account.

As seen in Fig. 1, the absence or presence of image
forces can make an important difference. To neglect them
makes the pressure less repulsive in all cases, but their rela-
tive importance is much greater in the case of positive sur-
faces with strong ion-wall dispersion interactions than other-
wise. In the case of negative surfaces, Fig. 1(b), the neglect
of image forces causes only a slight shift downwards of the
curves (not shown).

The total net pressure, P™' defined in Eq. (10), is ob-
tained by adding the high frequency part of the vdW inter-
action to the results in Fig. 1. For the polystyrene/water sys-
tem, which we use as an example of a hydrocarbon/water

system, Pl is less than twice the value of Py;\l;{,(o). The

high frequency part is often the dominant contribution to the
vdW interaction, but in hydrocarbon/water system the zero
frequency part is usually of the same order of magnitude as
the high frequency part. This is due to the fact that the di-
electric properties of water and most hydrocarbons are simi-
lar in the UV region of the frequency spectrum10 while their
static dielectric constants differ greatly.

P is plotted in Fig. 2, which also shows the pressure in
absence of various parts of the wall-wall vdW pressure. We
first turn our attention to the thick curves in each subfigure
[Figs. 2(a)-2(c) (cases with image forces)]. P™ turns attrac-
tive for large D (see the inserts). This net attraction is due to
the high frequency part of the van der Waals attraction,

P‘V”é‘\li,(hf), but not the zero frequency part, which is canceled in

the net pressure. This can be seen from the fact that the
pressure plotted in Fig. 1, which does not contain P‘V”;&(hf), is

entirely repulsive for all of these cases (also plotted as
dashed curves in Fig. 2). The cancellation of yj\l,{,(o), is il-
lustrated by the upper two curves in Fig. 2. The top curve
shows AP©°"=pPionslit]— P°"[bulk]. The second top curve
(dashed) equals APi°“+Py;\1,},(O). The latter curve is closer to
zero and decays faster than AP" in the range shown, despite
that it contains Py ). This is an effect of the cancellation.

The cases without image forces (thin curves) further il-
lustrate this cancellation when compared to the other curves
in Fig. 2. The two dashed curves in each subfigure nearly
merge with each other when D is increased; despite that the
case without image forces shows AP and the other shows
APi°“+P‘V”(;‘\',]¢(O), i.e., the former does not contain any zero
frequency vdW contribution. On the other hand, AP™" in the
presence of image forces (dashed-dotted line) and AP™" in
their absence (thin dashed line) differ considerably from each
other.

That the neglect of image forces can give a qualitatively
wrong result is seen in Fig. 2(a) where P™ for the case
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FIG. 2. The total net pressure (full lines) between the walls as a function of
D for some of the systems in Fig. 1: (a) 0>0 and B_=-40 kJ A> mol™"; (b)
>0 and B_=-20 kJ A*mol™; (c) 0<0 and B_=-40 kJ A>mol~!. The
thick lines show the results for systems with image forces (the normal case),
while the thin lines show the results in their absence. The dashed-dotted
thick curves show AP™", i.e., the net pressure due to only the ions (without
any vdW wall-wall interaction pressure). The dashed curves show the net

pressure without Pa'[‘\l,l,(hn, i.e., the same as the curves in Fig. 1. For the case

with image forces this equals APi°“+P3;f\l,l,(m, where the last term is the zero
frequency part of the vdW pressure. The latter term is, however, not in-
cluded when image forces are absent. The inserts show magnified views of

the plots for large D.

without image forces is attractive for intermediate D values,
while P™ is repulsive there in their presence. If one would
include the zero frequency contribution to the vdW pressure
as calculated from the dielectric constant of the wall material
but neglect image forces, one would have an inconsistent
model which would give an artificially large attractive pres-
sure, even larger than in Fig. 2(a). We accordingly conclude
that it is very important to have a consistent treatment with
the image forces present, at least for cases where PI" con-
stitutes a significant part of the total pressure [as is the case
shown in Fig. 2(a), c.f. Fig. 3(a)].

Let us now further examine the case with image forces
included. The reasons for the difference between positively
and negatively charged surfaces in Fig. 1 can be analyzed by
investigating the various pressure components in Eq. (14).
10N

Figure 3 shows AP™" together with its components P!

m °

dipr and the sum AP{(‘;§+A ic"(';ul+APic‘(’;;e (the former two
components have no A symbol since they are zero in bulk).

In the latter sum the two last contributions are smaller than
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FIG. 3. The net pressure due to ions, AP and some of its components
defined in Eq. (14) as a function of D for the same systems as in Fig. 2 in the
presence of image forces [panels (a), (b), and (c) show the same cases in
both figures]. The dashed-dotted curve in each panel represent AP" (the
same curve as in Fig. 2), the full curve shows the sum APISM+APIM,

+AP . the upper dotted curve (small dots) is P, and the lower dotted
curve (large dots) is Py, The inserts show magnified views of the plots for
large D.

AP and are about the same in the three cases shown. The
kinetic contribution dominates in the sum and it increases
somewhat for intermediate D values when going from Fig.
3(a) to Fig. 3(b) and then to Fig. 3(c). This is caused by an
increase in total ionic concentration at the midplane. Further-
more, we see that PI°" is virtually the same in all three cases.

By comparing Figs. 3(a) and 3(c), which differ only in
the sign of the surface charge, we see that the main differ-
ence in pressure is due to Piﬂ‘:p, which is very small for
negative surface charges. The change in AP, acts in the
same direction and contributes to the increase in AP'" when
changing the surface charge from positive to negative.

AP is strongly dependent on the value of B_ when the
surface charge is positive since Piﬁ:p is large in this case. This
is the main reason why AP in Fig. 1(a) varies substantially
when B_ is changed. The magnitude of id?;‘p increases faster
than linearly with B_ when the latter turns more negative.
This is due to the fact that the concentration of negative ions
between the walls increases when B_ turns more negative,
especially in the region close to the walls (see below). The
change in API" also contributes in the same direction as

iﬁ;’p, although to a lesser extent. '
When the surface charge is negative AP'" is nearly un-
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FIG. 4. Number density and charge density profiles in the slit between two walls as functions of coordinate z perpendicular to the surfaces. Only half of each
profile is shown; the coordinate z=0 denotes the midplane between the walls. The surface separation is D=29.6 A and for z=+12.5 A the ions are in contact
with one of the wall surfaces. The dotted curves show the profiles in the absence of ion-wall dispersion interactions, B_=0, while the other curves show cases
with B_=—40 kJ A3 mol™! [for the latter curves the systems are as in Figs. 2(a) and 2(c)]. Thick curves denote o>0 and thin curves o<0. (a) Ion density
profiles n,(z) for negative ions (full lines) and positive ions (dashed lines). (b) The same as in (a) but in the absence of image forces. (c) Total number density
profiles, n,(z)=n,(z) +n_(z). (d) Charge density profiles, p(z)=q,n.(z)+q_n_(z), plotted as p(z)/e,, where e, is the elementary charge. Each insert shows a

magnified view of the respective plot near the middle of the slit.

affected by B_ since Piﬁ‘: is small. In fact, the curves for the
case with B_=—20 kJ A° mol~! and negative surface charge
(not shown) are virtually the same as Fig. 3(c). The only
notable difference is that APL" increases slightly when B_
becomes more negative in this case, which is the reason for
the differences between the AP curves in Fig. 1(b). The rea-
son why PL‘;‘S‘p is small for negative surfaces is that the polar-
izable coions are almost completely expelled electrostatically
from the space between the walls for small D. This effect
becomes less pronounced when D increases, but even for the
largest separation considered id?;‘p is small compared to the
corresponding case with positive surface charge.

Let us now investigate the reasons for these behaviors of

iﬁ:p and AP%". In Fig. 4 density profiles are shown for vari-
ous cases when D=29.6 A. The profiles in absence of ion-
wall dispersion interactions, B_=0 (dotted curves), are com-
pared with the profiles when B_=-40 kJ A3 mol~!. We will
first focus on the latter.

For the case of positive surface charge (thick curves)
there is a large increase in counterion concentration near the
surface; see Fig. 4(a). This is hardly surprising as both elec-
trostatic and dispersion forces attract counterions to the sur-
face in this case. The coion profile is not much changed
compared to the B_=0 case, but both the counterion and
coion densities are closer to zero in the middle of the slit
(near z=0) when B_=—40 kJ A3 mol~'. This is particularly
clear in the insert to Fig. 4(a). As a consequence the charge
density profile, Fig. 4(d) (thick curve) has large negative val-

ues in the region very close to the surface and is rather close
to zero in the middle. The small value in the middle com-
pared to the B_=0 case (bottom dotted curve) is a conse-
quence of charge neutrality. The integral of the charge den-
sity is constant, independent of the value of B_, so if the
charge density increases in one place it has to decrease some-
where else. Thus it appears justified to claim that a major
effect of including dispersion forces is to contract the double
layer, thus increasing the electrostatic screening of the sur-
face.

The total number density, Fig. 4(c) (thick curve), is large
close to the surface but is somewhat smaller than for the
B_=0 case around z=-10to —7 A. The total number of
ions in the slit has increased due to the ion-wall dispersion
interactions, which attracts the negative ions into the slit
while the positive ones follow because of electroneutrality.

For the case of negative surfaces (thin curves) in Fig. 4,
we note that although the inclusion of dispersion forces
causes a significant increase in the total number density, the
charge density is not as strongly affected [see Figs. 4(c) and
4(d)]. An increase in density of the coions near the surface
due to the dispersion attraction is seen in Fig. 4(a). This
increase must, as before, be followed by an increase in coun-
terion density somewhere due to electroneutrality. The net
result is an increased total number density of ions between
the walls, explaining the fact that a more negative value for
B_ results in a larger APIS" and hence stronger repulsion for
negative surfaces.
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FIG. 5. The total net pressure between the walls at separation D=9.6 A as
a function of surface charge density o for B_=0 (dotted line), =20 (dashed
line), and —40 kJ A3 mol™" (full line). The systems are otherwise the same as
in Fig. 1 (image forces are included). The cases with o=+0.0449 C m~2 are
indicated by symbols (they correspond to the cases studied in the other
figures).

Let us turn to the effect of image forces. Since these are
repulsive, both coion and counterion concentrations close to
the surfaces are smaller in Fig. 4(a) than in Fig. 4(b). The
density profiles are, however, almost unaffected by the image
forces beyond about 5 A from the surface. The image forces
partially counteract the dispersion forces that draw anions
into the region near each surface. The neglect of image
forces therefore leads to an overestimation of the effects of
dispersion forces on the concentration profiles.

The changes in profiles as well as pair correlation func-
tions affect the various pressure components in Eq. (14).
However, if we in Fig. 3 would plot Piﬁf:p and the sum
AP +APS +APRY for the cases without image forces,
they would in the scale of the figure hardly be distinguish-
able from those where image forces are included. PI°", on the
other hand, is obviously zero in the absence of image forces.
The conclusion is therefore that the increased repulsion aris-
ing from the inclusion of image forces is almost entirely due
to P;,, rather than due to indirect effects of image forces on
the other pressure components via their effects on the con-
centration profiles and correlation functions.

In Fig. 5 the total net pressure, P™', in presence of image
forces is plotted as a function of surface charge density at
constant wall separation D=9.6 A. The cases with o
=+0.0449 Cm™2 that we have investigated so far are
indicated by symbols. The curve for B_=0 is, of course,
symmetric around =0, while the curves become more and
more asymmetric when B_ increases in magnitude. We see
that there is in general a large variation in pressure depend-
ing on the strength of the counterion-wall dispersion interac-
tion (as apparent for the case o>0). The influence of the
coion-wall dispersion interaction is much smaller (the case
0<0).

The difference between the influence of coions and
counterions on the pressure make a quantitative and in some
cases even a qualitative difference depending on the sign of
the surface charge. P™' can, for example, be repulsive for
negative surface charges and attractive for positive ones.
This happens, for instance, when B_=—40 kJ A3 mol™' and o
is changed from —0.025 to +0.025 C m~2 in Fig. 5. This is
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entirely due to the ion-wall dispersion interaction since the
anions and cations have the same valency and size, but differ
in polarizability.

IV. CONCLUDING REMARKS

The results presented above show that in calculations of
electric double layer interactions it is important to include
both ion-wall dispersion and image charge forces. The
former are particularly important when the counterions to the
charged surfaces are highly polarizable, such as bromide and
iodide ions. The image forces can also give rise to significant
contributions to the total pressure. We have demonstrated
that, for a certain combination of system parameters, the im-
age forces have such a large effect that the pressure has the
wrong sign if they are neglected.

The image forces are intimately connected to the zero
frequency contribution of the wall-wall vdW interaction
pressure. The screening of the latter by the electrolyte is
contained in the action of the image forces via ion-ion cor-
relation effects. If the full vdW pressure, including the zero
frequency contribution, is added to the double layer pressure
to calculate the total pressure, image forces must be included
in order to have a consistent model. This has been explicitly
demonstrated in the current work.

Our results support the suggestion that dispersion inter-
actions between ions and interfaces give rise to ion specific-
ity in interfacial phenomena, as discussed by Kunz et al.?

The very limited set of calculations presented herein is
not sufficient to give the full picture regarding the combined
effects of dispersion and image forces, however. Work is
currently underway to explore a wider range of systems.
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The interaction pressure between two planar charged walls is calculated for a range of conditions. The diffuse
electric double layers between the two wall surfaces are treated withwiat dispersion forces and ionic

image charge interactions taken into account. Both these interactions are due to dielectric discontinuities at
the surfaces. lonion and ion-image charge correlations are explicitly included. The-wrll dispersion
interactions can give rise to appreciable ion specific effects, which are particularly strong when the counterions
to the surfaces are highly polarizable. The mechanisms of these effects are investigated, and their influence
on the net interaction pressure between the walls is studied for a range of surface charge densities, strengths
of the anion-wall dispersion interaction and bulk electrolyte concentrations. When the strength of the-anion
wall dipersion interaction is increased, the pressure generally becomes less repulsive (or more attractive) for
positive surfaces. The opposite happens in general for negative surfaces but to a much lesser extent. The
effects are largest for large surface charge densities and high electrolyte concentrations. The image charge
interactions give rise to a considerable depletion attraction between the walls for low surface charge densities.

1. Introduction appropriate measure to improve the model for charged inter-
faces? In particular, the salt specificity of certain phenomena,

The “primitive model” of electrolyte solutions, wherein ions such as the salting out of proteins. can partly be exolained b
are characterized only by their charge and hard-sphere radius 9 P ’ partly P y

and the solvent enters only via its dielectric constant, forms the g;ﬁ?}irfécé?uggcnezfa;:'sg i?:tegrv;ciiryr?sn?namg Itr;;i\r:[rriceenst. c‘)l;heelee;tf:aigts
basis of much of our present understanding of electric double double layers and colloidal interactions have been studied b
layers and the interaction of charged particles immersed in Y Y

electrolyte solutions. In the context of colloidal dispersions, the Sa?:tg_n ﬁ?d':g? ;Vr%rgeerfre\izv\ye;Laesrg;qesrs_i_s?ﬁ(’)ggl fﬁ:rgf?(lei’ts
primitive model is, for example, used in the Derjagdin ' ’ ’

Landau-Vervey—Overbeek (DLVO) theory that since more of ion—wall dispersion forces, it is common to use the long-

than half a century forms a framework within which a broad \(/j\;eszt?r:]\feesgsgtrgpt?atl:afro‘r‘rnri::itﬁcgsri;%rezﬁfsdclzt)tg eé”;in\f\,\r’,frr:’
range of experimental measurements are interpreted. In this 9 P P Y

theory, Coulomb and van der Waals interactions are treated asthe ion-wall dispersion forces have been included in this

independent and additive. This is not strictly correct but is due gﬁg:oé'gggsrgﬁggfsrb-:—:gﬁgn Iiz::ael\?\/tleoﬂsseatr;‘li 't% rr“rﬁ Icri?sageersion
to the approximations made. For example, the effects ofion 9 : ’ P

ion correlations, ionic image charge forces, and ionic polariz- ;?ercﬁzngnlyu;vnﬁﬁ% ;/Ivuectlrjr;\?iirr]lsfz)l_r(o:ﬁjotnhgrczrsecglr:we ;?e dh\l/gi?r;
abilities are ignored. The importance to include these effects q ya . P

has become more and more apparent during recent years. Théhe .bare Coulomb interactions, the dispersion forces are
ion—ion correlations are not included in the DLVO theory since relatively short-ranged, but_they are, on the other ha’.‘d’ relat_lvely
it is based on the PoisseiBoltzmann approximation, which is long-ranged compared with other non-Coqur_nb Interactions
a mean field approximation for the ion concentration profiles between atoms, T“O'ecu'esv and col!0|dal particles. Since the
of the double layer. Cou]omb interactions are scrgened in electro_lytes, the effects
It has long been known that the static (zero frequency) part of dlspers!on forces may dominate for_large distances but may
of the van der Waals (vdW) interactions between the colloid also give important effects for short distances.
particles are screened in electrolyteShe power-law vdw We have calcul_ated the pressure between two parallel walls
interaction is replaced by an exponentially screened one. This@S & function of distance, surface charge density, and strength
is brought about by the effects of image charge interactions due®f e anior-wall dispersion interaction for a range of bulk
to the dielectric discontinuity at the particle surfaces, provided €l€ctrolyte concentrations by means of the h|gh|;/ accurate
the correlations between the ions in the double layer are @nisotropic hypernetted chain (AHNC) approximatiéh! Cases
considered. The high-frequency part of the vdW interactions With @ large difference in anierwall and catior-wall disper-
is, however, not screened. The forces between the ions and thelOn interactions are deemed to be of greatest interest. For
image charges will be referred to as “image forces” below. ~ SimPlicity, we have assumed that only the anions and not the
Recently, it has been argued that the inclusion of dispersion cations interact with the walls via such forces. This choice was
forces between ions and interfaces in the primitive model is an Made to reflect the fact that anions tend to have a much greater
polarizability than comparable catidfisand is motivated by a
* Corresponding author. E-mail: rkj@chem.gu.se. Phored6-31- wish to decrease the number of parameters in the model, as we
7722819. Fax:+46-31-7721394. want to place a stronger emphasis on qualitative effects rather

10.1021/jp0748157 CCC: $37.00 © 2007 American Chemical Society
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than quantitative estimates. Apart from the difference in anion (3)
core

wall and catior-wall dispersion interactions, the electrolyte
model is completely symmetric. where v~ is the ion-wall hard core potential, which is
The strength of the ionwall dispersion forces, as well as infinite if |z > (D — a)/2 and 0 otherwise and wher&® is
the wall-wall vdW pressure, has been estimated from Lifshitz the electrostatic interaction between an ion and a uniform surface
theory, wherein both the walls and the solvent are characterizedcharge density on each wall. Since the surface charge densities
by their frequency dependent dielectric functions and the ions of the two walls are equab,icm" is constant in the slit between
by their dynamic polarizability; see ref 14 for details. Like the the surfaces and does not give rise to any forces on the ions
Coulomb potential in the primitive model, the large distance there. The contribution™ in eq 3 arises due to ions interact-
asympt(_Jtic power law for the dispersion_forces is usc_ed for all ing with their own image charges!,m(z) — Uiim(O, z, 2)I2; see
separations beyond contact. Therefore! it may be said that theref 16. (Note that a factor 1/2 in front uﬁ“ is missing in eq 6
treatment of electrostatic forces and dispersion forces are on

v, = Vicore+ ViCouI + V:m + Vidlsp

essentially the same level of sophistication.
This paper is a continuation of our previous stdtlyvhere

the interaction between two walls with surface charge density

o = £0.0449 C m? were investigated at bulk electrolyte
concentration 0.5 M. (Expressed in terms of the number of
elementary chargesy, per unit area, this surface charge density
equalst0.28e, nm~2.) We found that for the model employed

there is a dramatic difference between the effects of dispersion

of our previous publication, ref 14.) The potential for the-on
wall dispersion interactions is taken to be

1 1
lz+D/2?  |z— D/2|3)
where the coefficienB; is a parameter that controls the strength

of the dispersion forces.
Dispersion forces are included only in the tewall potential

VI5H(ZiD) = B ( @)

forces on the pressure for positively and negatively charged in this work, not in the iorrion pair potential. Expression 4 is

walls.
In the current work, we investigate a wider range of systems
in order to obtain a more complete picture of the properties of

the long-range asymptotic form of a partiel@all dispersion
interaction and is only approximately valid for finite distances.
Furthermore, it fails to account for the effects of many-body

the model. In section 2, the model and the theoretical methodsinteractions, including the wation—wall three-body interac-

are presented. The various components of the -wedlll

tion. In the calculations presented below, the values-20,

interaction pressure are specified. In section 3, the results areand—40 kJ A mol~* are used foB_, andB; is always set to
presented and discussed, and finally, in section 4, the mainzZero.

results are summarized and conclusions are presented.

2. Method

2.1. Model. The system studied consists of an electrolyte
solution sandwiched between two planar walls (semi-infinite
slabs) separated by a distarizend in equilibrium with a bulk
electrolyte. We use a coordinate systens (X, y, 2 with the
origin in the plane that lies in the middle between the walls,
referred to as the midplane below. The coordinates
perpendicular to the wall surfaces.

Both the walls and the solvent are modeled as dielectric
continua. They have dielectric functioagai(iw) and esoiw)
respectively, expressed as functions of imaginary frequeacy,
The static dielectric constants arg(0) andeso(0).

The electrolyte model considered is a simple primitive model,
defined by the ior-ion interaction potential for speciésndj

)

Whereuij is the hard core potential for ions of diameter
that is,uﬁ"’e(r, r')y =o if r —r'| < aand 0 otherwise, and
where

__ , core Coul im
Uj = U + Uj + U

(oo}

Coul ' Y

ue rr) =

! ( ) I;[EOGSOI(O) |r r’|

)

g and g are the ionic charges ang is the permittivity of
vacuum. In this work, the ions are taken to be monovalent,

= —(Q- = e and have equal diametar The termu:jrn ineql

is the potential for the image forces. The explicit expression
for the Hankel transform of" can be found in ref 16.
Obviously, this term is zero in bulk solution. Because of the

The value—40 kJ A mol1 for B_ is an estimate for iodide
in water and was chosen on the basis of the dynamic polariz-
ability of iodide as calculated by quantum mechanical density
functional theory (for details, see ref 14). It is appropriate to
setBy = O for ions that have roughly the same polarizability
as the surrounding water. We have made this choice to reduce
the number of parameters in the exploration of qualitative
properties of the model. We emphasize that, although the value
—40 kJ A mol~! for B_ was chosen with iodide in mind, the
present model does not correspond directly to any real system.
It was, however, considered desirable to choose values that are
within about the same range as those that might be encountered
in real systems.

The choice ofB; parameters made here is only one of many
possibilities that lies within the range of values that may be
expected to be realistic for some salt. We have ch@eand
B_ such that there is a strong asymmetry in the anioall
and cation-wall dispersion interactions. As anions tend to be
more polarizable than comparable catir{ge., cations with a
similar number of electrons); we expect such a large asymmetry
to be present in many real systems. That is not to say, however,
that the case oB; and B- being roughly equal is either
unrealistic or uninteresting, but we defer the study of this case
to future works. The choice of equally sized anions and cations
is expedient in the present context because it allows the study
of a model system where the iomwall dispersion interaction
is the only source of asymmetry.

Recently, an approach similar to that used to calculate
dynamic polarizability in ref 14 has been applied to the static
polarizability of ions!® Both a dielectric continuum representa-
tion of the solvent and that of explicit water molecules as well
as a hybrid approach were considered and compared. It was
found that when the continuum approach was used the polar-

symmetry of the problem, the coordinate dependence of the izability was higher than in vacuum, whereas it came out lower

ion—ion interaction potential can be writteg(r, r') = u;j(R, z,
Z), whereR = [(x — X)2 + (y — ) 2is the lateral distance.
The ion—wall potential is given by

when the approach with explicit water molecules was used. In
the hybrid approach, the polarizability was remarkably close to
the vacuum value. This lends credence to the suspicion
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expressed in ref 14 that the magnituBe might have been The total pressure between the walls can be written as the
slightly overestimated by the method of calculation employed sum of the pressure due to the ions between the walls and the
therein. wall-wall van der Waals pressure,
2.2. Anisotropic Hypernetted Chain Approximation. Within .
the AHNC approximation, the pair correlation functions and P =P+ pral (6)
concentration profiles for the inhomogeneous electrolyte be-
tween the Wa!ls are (_expllcnly qalculated by numer_lcal solution Pﬁ% is evaluated from Lifshitz theory, and we have explic-
of the Ornsteir-Zernike equation with the approximate HNC
closure for the pair correlation functions and an equation for
the ionic concentration profiles. In the latter, use is made of KT = (o)
the fact that the local excess chemical potential is given within wall _ ' oA @)
the HNC approximation as a known functional of the pair vaw 3 L 3
. . . . Ar D° =0 & S
correlation functions and concentration profiles. The total
chemical potential is prescribed to be equal at all points between,; .o
the walls, which gives a sufficient criterion for determination
of the concentration profiles consistent with the correlation Py ;
) . . . . - . €solll®) = €pan(io)
functions. A solution with self-consistent correlation functions epliw) = i i 8)
and concentration profiles is obtained by iteration. Physically, €soli)) T €gan(in)

the prescription of a constant chemical potential corresponds
to the electrolyte solution in between the walls being in is evaluated at imaginary frequenizy, wherew, = |27kgT/A.
equilibrium with a bulk electrolyte solution of the same chemical The prime on the summation symbol indicates thatltke 0
potential. The AHNC approximation and the closely related term is to be weighted by one-half.
anisotropic reference HNC (ARHNC) approximation have In the following discussion, it will be necessary to distinguish
previously been shown to be in very good agreement with the term corresponding to= 0 from the rest of the sum in eq
simulation results; see refs 20 and 21 and references cited7. The former will be denoted bwc;"‘\',{,(o) and referred to as the
therein. For details regarding the AHNC method and its zero frequency vdW pressure, while the latter will be denoted
implementation, see refs 16 and 17. by P‘yj\',{,(hf) and referred to as the high-frequency vdw pressure.

The AHNC method is particularly suitable for the present It should be remarked thﬁi’j;‘p is based on the approximate
problem because it provides a simple way to properly treat the ion—wall dispersion interaction in eq 4, so it does not give the
infinite array of image charges needed to take into account the proper correction tch"(?\','\,(h,) due to the presence of ions in the
self-consistent polarization of the two walls by the intervening medium between the walls. The modification of the dielectric
ions. As the image forces are included in the Hamiltonian of properties of the medium by the ions is not properly treated.
the system and the correlation functions are treated consistently For example, many-body effects are neglected. HePigeand
the electrostatic screening of the image charges is includedp?al are not strictly additive. Additivity may nevertheless be a
automatically. Hence, there is no need to make any a priori reasonable approximation unless the concentration of ions is
assumptions regarding the screening of the image charges. too high.

2.3. Evaluation of the Wall—Wall Pressure. The pressure
between the walls is calculated as described in our previous3. Results and Discussion
work,* and we employ the same notation here. The pressure

- = ; ) - We have calculated the total interaction pressure between two
due to the ionsP°", is a sum of five terms of different physical

planar walls as a function of surface separation and surface

origin, charge density for three different bulk electrolyte concentrations,
) ) _ ) ) ) 0.500, 0.250, and 0.125 M. The charge and size symmetric
P°" = Pyin + Pcou + Peore + Pim + Plicp (5) electrolyte was monovalent and the ion diameter 4.6 A.
Three different strengths of the aniewall dispersion interac-
The termPiy is the pressure due to the thermal motion of the tion were investigated3 = —40, —20, and 0 kJ Amol™,

while the catior-wall dispersion force was neglected through-
out, B+ = 0. We have used static dielectric constants(0) =
2.54 andeso(0) = 78.36, which correspond to polystyrene and

watef? at room temperaturePa‘;"\',{,(hf) was calculated using

ions; P&, and Peyy,, originate from electrostatic and hard core

interactions across the midplane, respectivel§] originates
from the image forces, anfe; originates from the iorwall

dispersion interactions. The latter is the force per unit area . . . i
between the ions on one side of the midplane and the wall on dielectric function data from Whitéfor polystyrene and water.

the opposite side. See ref 14 for explicit expressions of the . "I;he resgltﬁ_r‘or 0.500 M SOIUt'OfnS atr_e sh?wn ?S contour p{pts
pressure components in terms of distribution functions (note 'S altgclzjéistént seuffgec?lcjz[]eafzade?qg(i:t 'Ogogezugggz tsoega\L/r:rl?cr;I
that for Pl in eq 17 of ref 14, an additional factor 14p is : 9 Y P

o ' intersection of the diagram. The smallest valuéddisplayed
missing in front of the first and second sum). Tht?onsum of the in the figure is 5.6 A, while the minimum surface separation is

H : n

tk:gr?e terms that are nonzero in bulk soluti®f;, Pco, and 4 & & which corresponds to one layer of counterions between
Peore 1S r_ejerred to as the osmotic pressure below and is he walls. Thus, the diagram does not extend down to contact.
denotedPgg, The pressure eventually becomes repulsive when the surfaces

The relevant quantity for comparison with experimental approach contact in all cases with nonzero surface charge, since
results is the difference between the pressure in the slit betweercounterions must remain between the surfaces because of
the walls and the bulk pressusgPo" = Pon[slit] — Pobulk]. electroneutrality.
This applies to most of the pressure components, for example, The contours of the uppermost panel of Figure 1 are
APy, but Pt and Pgg, have no counterpart in bulk and are  symmetric arounds = 0 because of the symmetry of the
therefore never equipped with/a electrolyte in absence of dispersion fords,= B+ = 0. When
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D (nm)

-0.4 -0.2 0 0.2 0.4

c (eolnmz)
Figure 1. Contour plots showing the net interaction presswe,= Figure 2. Same as Figure 1 but for bulk concentration 0.250 M.
P[slit] — P[bulk], between two planar walls as a function of surface
charge densityg, and walwall separationD. The system is in i SR ;/‘\‘.‘o' ‘ o
equilibrium with a 0.500 M aqueous electrolyte solution of monovalent 254 o ird) 1 F
ions with equal diameters = 4.6 A. The upper panel shows the case ) E y E
of no ion—wall dispersion interactions. In the other panels, the anions 3 = r
have such interactions of strengsh = —20 (middle panel) ane-40 1.5 o F
kJ A2 mol? (bottom panel), whileB; = 0 throughout. The labels of 1 i3
the contours give the pressure AR(RT)"* in units of M. The thick E N
contours are logarithmically spaced (except, of course, the ones i O\ 0 i
corresponding to zero pressure), while the thin contours correspond to 254 o1 g;:\“ 0.1
the valuest2 x 10", £4 x 10™ +6 x 10", and+8 x 10" for various € 24 N E
integersm. Dashed lines correspond to an attractive pressure, and full =D N 3
lines correspond to a repulsive one. The surface chage density is given als E A r
as the number of elementary charges,per unit area. 1 §1 \ s
B- is increased in magnitude, the contours turn skewed, more 259 o ’ E:;:\EI! 2
so for more negative-. 5] iy 61
The contours that corresponds to zero pressure, displayed as ] A
extra thick lines in the figure, are particularly interesting as they 151 /5/:\\‘9 3
constitute the “lines of demarcation” between attractive and 17 N %*
repulsive pressure and therefore correspond to an extremum in IR SRR
the wal-wall free energy of interaction. When the pressure 04 02 G(eOIAZ) 02 04
0

goes from repulsive to attractive with increasiiy the ) ) )
extremum is a minimum, that is, a stable (or possibly metastable) Figure 3. Same as Figures 1 and 2 but for bulk concentration 0.125
state. This applies to most parts of the thick lines shown in

Figure 1. The free energy minimum is analogous to but not the of the attractive region are also present in these figures but to
same as the secondary minimum of DLVO theory. We see in a much smaller extent. This is true especially at the lowest
the figure that, when the magnitude of the surface charge is concentration, Figure 3, where the pressure does not vary much
increased, the minimum (the point of zero pressure) shifts to with B_. Note that in this figure the contours change the most
larger D values, which is the same qualitative behavior as in with increasing magnitude oB_ for large positive surface
the DLVO theory. (In contrast to the theory we use in this paper, charge density. The change in the contours for large negative
the DLVO theory is, however, only valid as an approximation values is hardly visible in this case. The latter is true also for
for double layers at low electrolyte concentrations, low surface the 0.250 M case, Figure 2. For the highest concentration (Figure
charge densities, in absence of image forces, and without ion 1) and large negative, there is a slight upward shift in the

wall dispersion forces.) contours wherB_ turns more negative. The trend for positive
In the uppermost panel of Figure 1, the attractive region o is opposite and larger; there is a downward shift in the
(dashed lines) extends between abe0t10 and 0.1@&, nm~2 contours. The latter is also true in Figures 2 and 3.

for D = 10 A. In the middle panel, this region has shifted to By comparing the three panels of Figures 1 to 3, we can
extend betweer-0.08 and 0.13 nm2for D =10 A and in conclude that the main effect of increasing the magnitude of
the bottom panel to between0.06 and 0.22, nm~2. At the B_ is a decreased repulsion (or increased attraction) in the case
right- and left-hand sides of the plat,= +0.4 &g nm™2, the of positively charged surfaces and that the effect is opposite
positions of the point of zero pressure in the bottom panel differ and smaller for negatively charged surfaces; that is, the repulsion
by more than 1 nm between positive and negative surfaces. is slightly increased (or attraction decreased) in the latter case.
The corresponding plots for bulk electrolyte concentrations We can also draw the conclusion that these effects are much
0.250 and 0.125 M are shown in Figures 2 and 3, respectively. more pronounced at high bulk electrolyte concentration than
The same skewing of the contour of zero pressure and wideninglow. The fact that the inclusion of ierwall dispersion forces
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Figure 4. Contour plot showing various sums of pressure components Figure 5. Same as Figure 4 but in presence of-avell dispersion
for the same system as in the top panel of Figure 1. No-ieall interactions of strengtB_ = —40 kJ A3 mol~L. The system is the same
dispersion interactions are present. The upper panel shdW§, = as in the bottom panel of Figure 1. The upper panel shaRfg, and
AP + APZ, + AP, The lower panel shows the sum of all the lower shows the sum of all pressure components apart from
pressure components apart frdﬁiﬁ’;\','\,(hf), that is APgy, + Pir + Prawcy- In this case, the latter sum equal®gn, + PSo, + Pir +

P oy The contour plot is constructed in the same way as Figure 1. Piaw(oy

has opposite effects for positive and negative surfaces has beefontributions in absence and presence ol disperlsion
discussed in our previous publicatiéhsee also the work by  interactions, respectively. The pressure comporfiffy .,

Bostram et al? which is the same in all cases, is not included. _
The decreased repulsion for positively charged surfaces can Tjr“e upper panel ?Jn each of these figures shaWig, =
to a large extent be explained by the behaviorP{ff,, the APy + APcoy + APy The latter two contributions in the

pressure component due to direct dispersion interaction betweerfum are rather insensitive to the magnitudeBof, so the
ions and walls. This attractive component increases when thedifference between the upper panels is mainly due\R§;.
magnitude ofB_ is increased for positive surfaces (i.e., when When we go from Figure 4 to 5, that is, when the ‘omall
the polarizable anions are counterions). This increase arises bott#lispersion interactions is turned on, the contours in the upper
from a larger dispersion interaction for each counterion between panels corresponding tB(RT)"* = 1.0 and 0.1 M shift to
the walls and from an increase in the number of ions when smaller separations for positive surface charges and to larger
counterions are attracted into the slit from the surrounding bulk separations for negative surfaces in agreement with the discus-
solution by the dispersion interactions. FurthermoR§, sion above. On the other hand, tRRT)~* = 0.01 M contour
increases with increased positive surface charge density becausghifts to a somewhat larger separation for both positive and
of the increased number of counterions between the walls neededegative surfaces. The effect is, however, small for positive
to maintain electroneutrality. surfaces. . . . .
The anions are attracted to the positive surfaces by both N both figures, there is a region where the pressure is
dispersion and electrostatic forces. This causes a decrease idttractive. From the upper panel in Figure 4, we see ARt
the ion concentration at the midplane compared with the caseis weakly attractive for a wide range of distances for uncharged
without dispersion forces and thus causes a decread®|ff} to moderately charged surfaces. The attraction is caused by a
in many cases (exceptions occur for laend for smallo, deplet!on of ions in the slit du_e to repulsive image forces. The
see below). These changesﬂﬁ;‘p and APC" both act to make depletion rlesullts inan attractn&anQm becauge the electrolyt.e
the net pressure less repulsive (more attractive). concentration in the slit is smaller than that in the bulk solution.

In the case of negative surfaces, the small increase in doubleF©" uncharged surfaces, the pressure s attractive for all
layer repulsion when the magnitude B is increased is due  distances, but for charged surfaces, turns repulsive for
to an increased kinetic pressure between the walls. This arisesSmall D. The reason for this is that counterions remain in the
because the ion concentration in the middle between the wallsSlit because of the .electroneutrallty condition, which prevents
is increased when ion pairs are drawn into the slit from bulk by all of them from being expelled to bulk. _
dispersion forces acting on the anions. Since the anions are VWhen ion-wall dispersion forces are included, Figure 5, the
coions to the surfaces in this case, they stay largely in the middle &ttractive region becomes limited to short wallall separations
of the slit for moderately large surface separations. Comparedand low surface charge densitiesPog;, becomes repulsive at
with the case of positive surfaces, the total number of anions large separations. This is due to the dispersion forces which
between the surfaces is much smaller for electrostatic reasonsdraw ion pairs into the space between the walls from bulk. These
in particular for short surface separations. Theref@g is forces have a longer range than the repulsive image forces,
small and relatively unimportant in this case. In total, the Which are exponentially screened. (As noted above, for large
pressure becomes more repulsive (less attractive) for negativeP0sitiveo, the effect is opposite for small to moderate surface
surfaces in all cases considered here wiBenturns more ~ Separations. Then, the increase APy, due to disperions
negative, but it is a small effect. forces occurs only for larg®.)

These results are further illustrated in Figures 4 and 5, from  Letus now turn to the lower panels in Figures 4 and 5, where
which the relative importance of various pressure componentswe have also included the contributioR§;, P, andPge,
for the magnitude of the total pressure can be deduced. Both(the latter is zero in Figure 4). Note that whenew}' is
figures are for the case 0.500 M electrolyte and show pressureincluded in the pressure one should also incIE’aQ{,(o) since,



14284 J. Phys. Chem. B, Vol. 111, No. 51, 2007 Wernersson and Kjellander

as discussed in ref 2, these contributions cancel each othersurface separations. Then the tomall dispersion forces make
exactly for large waltwall separations. This cancellation the osmotic pressure to be more repulsive (or less attractive).
expresses the screening of the zero-frequency vdW pressure byn this case, the dispersion forces draw ion pairs from bulk into
the electrolyte between the walls; that 2" contains terms  the slit between the walls, which leads to an increase in ionic
that cancel the power-law decay Bfy, ) and replaces it by ~ concentration at the midplane.

the screened interaction. For the cases investigated in this paper, In all cases where an increase in the strength of the dispersion

p:‘r’n” was found to be insensitive to the value®f, so p:%n + interactions resulted in an increased repulsion, the net effect
dea\RI(O) is about the same in Figures 4 and 5 was found to be small. This can be explained in part by the
Vi ) . . . .
The plots in the upper and lower panels of Figure 4 are quite t€ndency of the pressure due to directovall dispersion
similar except in the region of smafl and largeD. Thus, the interactions, that is always attractive, to counteract the change

magnitude ofP" + P! ~is small compared wit/AP" in osmotic pressure. _ . _—

excgept in the later regv;di\gﬁ)where the oppposite is true. We see  The image forces due to the dielectric discontinuities at the

that the attractive region for lardggin the upper panel is absent surfaces giv_e r_ise toa d_e_pletion attr_acti_on. For weakly charged

in the lower panel. The attraction due to ion depletion is thus surfaces, this is a significant contribution to the pressure for
short surface separations. The importance of image forces

RSN 4 pwal . o . .
counteracted by the repulsi®, + Puqw( for largeD. There decreases, however, with increasing surface charge density.
We conclude that ionwall dispersion forces are of qualitative

remains, however, a region with attractive pressure in the lower
panel, where the depletion attraction due to the image forces is. ; inlv wh th teri o th ‘
quite strong. By comparing Figure 4 with the upper panel of Importance mainly where the counterions 1o the surtace are
Figure 1, wher® is included, we see that the magnitude highly polarizable provided the surface charge density and
P2 vdAW(hf) ! electrolyte concentration are rather high. For such cases, the
of the depletion attraction for many valuesfis comparable
decavs more quickly than the latter with increasi. and the walls gives rise to a large attractive contribution to the
y d y 9 pressure and, in addition, to a decrease in the repulsive osmotic
By comparing the upper and lower panels of Figure 5, we
trv alread tinth | This i all in net repulsion (or increase in attraction). It is therefore in such
asymmetry already present in the upper panel. This IS essentially aqeg that a significant influence of dispersion interactions on
disp’
more, we see that the net attraction for low surface charge
in the lower panel for positive surface charges. The attractive py the Swedish Research Council.
wall
panel of Figure 1, makes the attractive region much larger, but References and Notes
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The interaction pressure between two uncharged planar walls immersed in various electrolyte
solutions containing mono- and/or divalent ions is investigated. The solution is treated as a primitive
model electrolyte, and the wall surfaces constitute dielectric discontinuities. Ionic image charge and
ion-wall dispersion interactions are included. The interaction parameters are appropriate for
hydrocarbon (polystyrene)/water interfaces, and the electrolyte concentrations considered lie
between 0.250M and 1.00M. The anisotropic hypernetted chain method is used to self-consistently
calculate the ion density profiles and the ion-ion correlation functions in the inhomogeneous
electrolyte. Thereby, the effects of image charge interactions and dispersion interactions on the
pressure and the electrolyte structure are included in a fully consistent manner. The explicit
consideration of correlations between the ions in the presence of image charges ensures that the
screening of the zero-frequency van der Waals interaction is taken into account. Of special interest
are the effects of asymmetries between anions and cations with respect to valency and/or dispersion
interaction with the walls. Such asymmetries create an electric double layer in the electrolyte outside
each electroneutral surface. This causes the wall-wall interaction for large surface separations to be
similar to the interaction between charged surfaces. For intermediate separations, around 1-2 nm, a
substantial repulsive peak appears in the ionic pressure. In some cases the repulsion is larger than
the van der Waals attraction between the walls, which implies that there is a repulsive barrier in the
total pressure despite that the surfaces are uncharged. The strongest repulsion is found for 2:1
electrolytes where the monovalent anions interact strongly with the walls via dispersion forces. In
general, ion-wall dispersion forces acting on ions of lower valency have a much greater effect than
equally strong dispersion forces acting on ions of higher valency. This is mainly due to the more
strongly repulsive image charge forces on ions of higher valency that counteract the attractive
dispersion forces. Effects of confinement on the ion-ion correlations also contribute to this
difference. For all electrolytes the interaction pressure from the ions is attractive for small surface
separations. The main cause is a depletion of ions between the walls from the self-image repulsion
and confinement effects. For totally symmetric electrolytes the attractive pressure extends to large

separations in most cases. © 2008 American Institute of Physics. [DOI: 10.1063/1.2990007]

I. INTRODUCTION

Due to its simplicity, the primitive model for electrolyte
solutions and for electric double layers has been extensively
studied. In this model the ions are treated as charged hard
spheres and the solvent as a dielectric continuum. When
modeling double layers near macroions, charged walls, or
other macroparticles, one usually assumes that the particle
surfaces are smooth and uniformly charged. An area of ap-
plication is statistical mechanical calculations of interactions
between various particles, which, for instance, are relevant
for the properties and stability of colloidal dispersions and
the swelling of clays and surfactant bilayer systems.

The most common approach for the study of electrostatic
interactions in electrolyte systems is to use the Poisson—
Boltzmann (PB) approximation—a mean field approximation
that neglects the ion-ion correlations in the ion atmosphere
around the charged particle(s) or surface(s). Such correla-
tions are due to all kinds of interactions between the ions,
electrostatic, as well as steric (from finite ionic sizes). The
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PB theory is quite successful in many cases provided that the
typical ionic interactions are not very strong, such as in aque-
ous monovalent electrolytes at low to moderate concentra-
tions near surfaces that are not too highly charged.

The primitive model has proved useful in explaining the
interactions seen between surfaces also in strongly coupled
systems, where the PB approximation fails due to the neglect
of the effects of ion-ion correlations. For example, the re-
duced swelling of clays in the presence of calcium ions,! the
interaction pressure between mica surfaces at high electro-
lyte concentration,” and the cohesion of cement paste3 can be
explained by the primitive model provided its properties are
accurately evaluated.

In primitive model treatments of double layer phenom-
ena near walls one assumes in most cases that the dielectric
properties of the walls and the solvent are the same. This
assumption is not inherent in the model and is done for rea-
sons that are more often technical than physical. Thereby
polarization of the dielectric interface by ions (image charge
effects) is neglected. This may be a good approximation in
many situations, but not necessarily in all cases.

© 2008 American Institute of Physics
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The neglect of surface polarization leads, for example, to
inconsistencies in the treatment of the system when the van
der Waals forces between the walls are included. Such
forces, which usually are added to the double layer interac-
tion to obtain the total wall-wall interaction, incorporate
some consequences of different dielectric properties of the
walls and the solvent. Unless the same model, including the
presence of dielectric boundaries, is used for the double layer
calculations one introduces an inconsistency, which incor-
rectly makes the van der Waals interaction unaffected by the
presence of electrolyte. In fact, the correct inclusion in the
primitive model of the dielectric polarization induced by the
ions at the interfaces leads to a screening of the static (zero-
frequency) part of the van der Waals interactions from Lif-
shitz theory.4’5 This screening is absent if dielectric bound-
aries are not properly handled in the treatment of the double
layers. The static contribution to the van der Waals interac-
tions constitutes a large part of the total interaction for sys-
tems like hydrocarbon particles in water,” so the screening
can have important consequences.

A coupling of the static van der Waals and the double
layer interactions is thus inherent in the primitive model
when dielectric boundaries are treated consistently. The static
polarization of these boundaries by the ions is most easily
handled by the method of image charges for simple geom-
etries like planar walls and we therefore will refer to the
interactions due to such polarization as “image interactions”
or “image forces.”

In addition to the static polarizations there are high-
frequency fluctuations in polarization of interfaces and ions
that give rise to dispersion forces between ions and inter-
faces. Since the strength of the dispersion force between an
ion and an interface depends on the electronic structure of
the ion, dispersion interactions have been suggested as a pos-
sible source of ion specificity in interfacial phenomena.8 The
dispersion interaction can, as an approximation, be added to
the electrostatic and hard core interactions of the primitive
model.

The dispersion forces arise when there are differences in
the dynamic dielectric properties on either side of an inter-
face and when the polarizability of ions is different from that
of the solvent. For sufficiently large wall-ion distances the
strength of the dispersion force acting on an ion can be esti-
mated from the frequency dependent dielectric functions of
the media and the dynamic polarizability of the ion by Lif-
shitz theory, as described in Ref. 8. To extend the primitive
model in this manner is quite reasonable since one continues
to treat the solvent as a dielectric continuum. The dielectric
functions can be inferred from spectroscopic data over a
wide frequency range,9 and the dynamic polarizability can be
estimated from quantum mechanical calculations'™!" via the
well-known “sum of states” formula for atomic polarizabil-
ity, cf. Eq. (3.7) in Ref. 4. During recent years, the effects of
such dispersion interactions on the ion distribution near in-
terfaces and other properties of double layer systems have
been the subject of several studies.'?%°

In the present work we shall include effects of both im-
age interactions and ion-wall dispersion forces in the calcu-
lation of interactions between two planar walls. Our previous
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results from such calculations® for monovalent electrolytes
suggest that the influence of surface polarization is largest on
a relative scale for small surface charge densities and de-
creases with increasing magnitude of the surface charge. For
this reason, we here study the case with electrolyte in contact
with uncharged polarizable walls.

We consider 1:1 and 2:2 charge-symmetric as well as 2:1
and 1:2 charge-asymmetric electrolytes. (The convention
used here is that an m: n electrolyte is composed of cations of
valency m and anions of valency n.) In all cases the electro-
Iyte is size symmetric, so anions and cations have the same
diameter. We will investigate the properties of the systems
both in the absence and presence of ion-wall dispersion in-
teractions. In the latter case, we will assume that the anions
are much more polarizable than cations. Our main focus con-
cerns qualitative features of the systems and therefore, we
have for simplicity neglected the (small) polarizability of the
cations, i.e., the latter behave as though their polarizability is
equal to that of the surrounding water. We also neglect dis-
persion interactions between the simple ions.

The relevance of investigations of the effect of electro-
lyte on interactions between electroneutral walls can be seen
in recent experimental studies of the swelling of multilamel-
lar samples of uncharged lipids by Petrache et al They
measured the pressure between the lipid bilayers as function
of lamellar repeat distance using the osmotic pressure tech-
nique of Rand and Parsegian.29 The dependence of the swell-
ing on the type and concentration of monovalent salt was
investigated. It was found that the swelling increased with
increasing electrolyte concentration and that it was larger for
KBr than for KCI at the same concentrations. The concentra-
tion dependence was interpreted as due to the screening of
the van der Waals attraction by salt. The difference between
bromide and chloride was consistent with a weak specific
binding of bromide but not of chloride to the bilayer surfaces
and the appearance of an electric double layer repulsion in
the former case. Petrache et al. also included repulsive un-
dulation and “hydration” forces in the analysis and found
that the salt effect could not be attributed to changes in these
interactions.

These qualitative effects of electrolytes are consistent
with the findings in the present work. We do not have any
specific adsorption of ions in the model beyond that due to
dispersion forces. The binding constant reported in Ref. 28
corresponds to an attraction stronger than but of a similar
order of magnitude compared to the anion-wall dispersion
force considered in our calculations.”® We have, however,
made no attempt to fit our theoretical results quantitatively to
any experimental findings. As stated earlier, our goal here is
merely to establish the qualitative features of image interac-
tions and ion-wall dispersion forces for reasonable values of
the system parameters. We hope, nevertheless, that the re-
sults presented here will in the future prove useful in the
interpretation of similar experiments.

Some important objectives of our work are to investigate
effects of anion-cation asymmetry and possible relevance for
ion specificity in surface phenomena. For the 1:1 and 2:2
electrolytes near uncharged walls, the only source of asym-



144701-3 lon correlation between dielectric walls

metry is the ion-wall dispersion interactions when present.
For the 2:1 and 1:2 electrolytes there is also charge
asymmetry.

It has been known for a long time that in 2:1 and 1:2
primitive model electrolytes (in the absence of dispersion
interactions) there is some degree of charge separation close
to an electroneutral wall both in the absence and presence of
image forces.” Close to the surface the divalent ion concen-
tration is lower than the monovalent one, while the reverse is
true some distance away. This difference in the ionic concen-
tration profiles gives rise to a nonzero effective surface
charge on the walls, as defined from the asymptotic behavior
of the electrostatic potential and ion concentration profiles
away from the surface.*? Any kind of asymmetry between
the anions and cations make the electroneutral walls behave
as if they were charged, which, as we shall see, has important
consequences for the wall-wall interaction when the surface
separation is large enough. We shall also see that the simul-
taneous inclusion of image and dispersion interactions has
important consequences for the magnitude of the effects of
the latter. We have not attempted to include any effects of
unequal hydration of the ions, which is also a source of ionic
asymmetry that can bring about a charge separation.
Maréelja33 investigated such effects and the consequences
for interactions between bubbles.

To include image forces in models of electric double
layers introduces some complications. As the image forces
are electrostatic in nature, they are screened by electrolyte.
This screening is brought about by ion-ion correlations. It is,
for example, not enough to include only the self-image in-
teraction between an ion and the dielectric boundaries since
this would lead to an overestimation of the range and mag-
nitude of the effects of image forces. In order to describe the
screening of the image interactions in a consistent manner,
explicit consideration of the ionic pair correlations of the
inhomogeneous electrolyte near the surface is required.

A simple alternative is to include the screening of the
image forces a priori in some approximate way. A famous
example is the Onsager—Samaras theory,34 where the screen-
ing of the image charges is assumed to be equal to the
screening of a charge in bulk as given by Debye—Hiickel
theory. This approach has the obvious disadvantage that the
screening ability of an inhomogeneous electrolyte close to a
surface need not be very similar to the screening ability of a
bulk electrolyte. The ion-ion correlations decay exponen-
tially perpendicularly to the surface (like in bulk), but as a
power law in the lateral direction. It is, however, not neces-
sary to use the bulk correlations since in the low coupling
limit, where Debye—Hiickel theory is valid, analytic expres-
sions for the correlation functions near a dielectric surface
can be found in some cases.” For systems that are not close
to the low coupling limit, Debye—Hiickel theory often gives
rather poor results, however. More sophisticated approaches,
such as simulations or integral equation theory, are appropri-
ate in these cases. If the ion-ion correlations in the inhomo-
geneous electrolyte are explicitly included in the theory, the
screening of image forces will automatically be included at
the same level of sophistication as the correlations
themselves.
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In the present work, ion-ion correlations in the inhomo-
geneous electrolyte between the walls are calculated with the
anisotropic hypernetted chain (AHNC) method,”®*” which
was designed from the outset to correctly treat image inter-
actions. The only approximation made is to use the hypernet-
ted chain (HNC) closure for the anisotropic ion-ion correla-
tion functions. These pair correlation functions and the
concentration profiles near the surfaces are determined self-
consistently by iteration, the former in both ordinary and
Fourier space.

For approaches that only consider image interaction in
ordinary space, like simulations, the treatment of image in-
teractions for electrolytes between two planar walls can be
cumbersome due to the presence of an infinite number of
multiple image charges. In the AHNC method this is of no
concern since the potential from the multiple images can be
written in Fourier space in a closed analytic form.

By the AHNC method, image forces have been shown to
give rise to attraction between two uncharged walls im-
mersed in a primitive model electrolyte solution.” In addi-
tion, the screening of the static component of the van der
Waals attraction is automatically included. In the presence of
image forces one obtains a repulsive contribution to the ionic
pressure that exactly cancels the zero-frequency van der
Waals interaction,” thus accounting for the screening.

The outline of this paper is as follows. First, the model
employed as well as the methods used for calculating pair
correlations, concentration profiles, and the interaction pres-
sure are presented. Then the main results are presented for
the profiles, the pressure, and its components, which origi-
nate from distinct physical mechanisms. The significance of
the results is discussed with special emphasis on the depen-
dence of the wall-wall pressure on surface separation, kind of
ions, and electrolyte concentration. Finally the major find-
ings of this paper are summarized.

Il. METHOD
A. Model

The system under study consists of a primitive model
electrolyte solution in a slit between two parallel uncharged
walls (semi-infinite dielectric slabs). The electrolyte in the
slit is in equilibrium with a bulk electrolyte solution of a
specified composition. The bulk concentration of ion species
i is denoted n?““‘. The walls are smooth and separated by a
distance, D, that is defined as the distance between the di-
electric interfaces, see Fig. 1. The distance of closest ap-
proach of the ion centers to each interface is denoted b. We
adopt a coordinate system with its origin at the plane in the
middle of the slit (the midplane). The z axis is perpendicular
to the walls and the x and y axes are parallel to them.
The lateral distance along the wall between two points
r=(x,y,z) and r’'=(x',y’,z’) is denoted R=[(x—x')?
+(y_y/)2]1/2-

The interaction potential for a pair of ions of species i
and j is given by
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Eyall Eyall

FIG. 1. Two electroneutral walls separated by an electrolyte phase in equi-
librium with a bulk solution. The walls and the solvent have different di-
electric properties characterized by €,,, and €, respectively. The wall-
wall separation is D as counted between the dielectric discontinuities at the
wall surfaces. The distance of closest approach of the ion centers to the
surfaces is b. The ion-ion hard core contact distance is a as counted between
the ion centers. The coordinate system has its origin at the midplane be-
tween the surfaces with the z axis perpendicular and the x and y axes parallel
to them.

core Coul im
w=uy" A+ ug™ (1)
where u;;"(r,r') is zero for [r—r'|>a and infinite otherwise

for all pairs of ions (i.e., the ion centers can approach each
other up to a distance a), ;" is the potential for the image
force interactions, see below, and us.‘)”l(r,r') is the Coulomb

potential,

uiCjDUI(l‘,I‘,) — 44 - (2)
47Tesolv(0) €0|I' -r |

where ¢ is the permittivity of the vacuum, e,,(0) is the
dielectric function at zero frequency (the dielectric constant)
of the solvent, and ¢g;, /[=i,J, is the ionic charge. Due to the
symmetry of the system in the slit, the coordinate depen-
dence of u;(r,r") can be written as u;(R,z,z'). The two-
dimensional Fourier transform of u;;“ (Hankel transform for
variable R) is given by

qiq,; [ €p(0)
EsolV(O)EOk ekD_eD(O)

+ €p(0)
ekD + ED(O)

ﬁgﬁ(k,z,z’ D) = cosh(kz)cosh(kz")

sinh(kz)sinh(kz") ] 3)

where the D dependence of the ion-ion image interaction is
shown explicitly. We have defined

esolv(w) - Ewall(w)

esolv(w) + 6wall(w) ’

ep(w) = 4)
where €, (®) and €,,;(w) denote the frequency dependent
dielectric functions of the solvent and the wall, respectively.
For the image interactions only the static (zero-frequency)
dielectric response matters, but for the van der Waals inter-
actions information about €,,,(w) and €,,,(w) for imaginary
w is needed [cf. Eq. (12) below]. The dielectric constant of
the solvent, €;,(0), is taken as 78.36, that of pure water at
25 °C. The wall dielectric constant, €,,,(0), is set equal to
2.54, the static dielectric constant of polystyrene at the same
tempera’ture.38 The hard core contact distance, a, is taken to
be 4.6 A for all ions.
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The ion-wall interaction potential is given by

V= V;m + V?iSp + 177, (5)
where »™ is due to ions interacting with their own images
and equals36

UM (z|D) = 3ul™(0,2,2|D) (6)

[note that in Eq. (6) of our previous paper,” the factor 172 is
unfortunately missing due to a misprint]. The term v in
Eq. (5) is the potential due to ion-wall dispersion forces

1 1 ) o
+ b
lz+ D2 |z-D2P

1"P(2|D) = Bi(

where B; gives the strength of the interaction (see below).
The ion-wall hard core interaction 1{*° is zero if |z|=D/2
—b and infinite otherwise, with b=3 A for all i. Thus, the
ion centers cannot approach the dielectric interface closer
than 3 A, see Fig. 1. Thereby, the unphysical singularities of
8P at z= = D/2 are avoided. Note that the ion-ion contact
distance a, the “ion diameter,” is different from 2b.

In Eq. (7) we have as an approximation set the disper-
sion interaction potential with two walls equal to the sum of
the interactions with each single wall using the long-distance
asymptotic form of the ion-wall potential. The coefficient B;
can be calculated from Lifshitz theory as described in Ref. 8.
Since we are mainly interested in dispersion forces as a
source of asymmetry in the ion model, we restrict ourselves
to two combinations of values for B; B,=0,
B_=—40 kI A>mol™" and B,=B_=0. The value B_
=-40 kJ A3 mol™! is based on quantum mechanical calcula-
tions of the dynamic polarizability of iodide,” which is taken
as an example of a highly polarizable ion. The two combi-
nations of values for B, and B_ are intended to correspond to
a large and no contribution, respectively, to the anion-cation
asymmetry. It should be noted that no net dispersion force is
exerted on an ion that has the same polarizability as its sur-
roundings. The choice of B;=0 thus corresponds to the as-
sumption that the ions are as polarizable as water. Electrolyte
models with only such ions are referred to as “nonpolariz-
able” below. Electrolyte models with B_# 0 are conversely
referred to as “polarizable.”

We have modeled the walls as slabs of semi-infinite
thicknesses. The results are also valid for walls of finite
widths provided the electrostatic interactions across the walls
are sufficiently weak, so ions on either side of the walls do
not correlate with each other.

B. The AHNC method

In the AHNC method® one self-consistently solves a set
of equations for the equilibrium concentration profiles, n;(z),
the total pair correlation functions, /;;(R,z,z"), and the direct
correlation functions, c,-j(R,z,z’), of an inhomogeneous elec-
trolyte. The set of equations consists of the Ornstein—Zernike
equation for inhomogeneous liquids, the HNC closure for the
pair correlation functions, and an equation for the density
profiles. The latter is obtained from the condition of thermo-
dynamic equilibrium, which specifies that the chemical po-
tential for each species is equal everywhere in the slit. The
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mean chemical potential in the slit is set equal to that of a
bulk electrolyte of specified composition. Because the excess
part of the chemical potential can be expressed as a known
functional of the correlation functions within the HNC ap-
proximation, the equilibrium density profile can easily be
determined once the correlation functions are known. In
practice, the problem is solved by solving the closure com-
bined with the Ornstein—Zernike equation for the pair corre-
lation functions by iteration given a fixed set of density pro-
files. Once a converged set of pair correlation functions is
obtained a new set of concentration profiles is calculated
from the profile equation, and the correlation functions are
then recalculated for the new density profiles. The cycle is
repeated until self-consistency is attained.

The accuracy of the AHNC method has been tested
against simulations®**~*? and was found to be excellent un-
der most conditions. An exception is the situation where the
concentration of ions reaches very high values somewhere in
the slit. The ion-ion contact values of the pair correlation
functions then tend to be overestimated. As this systematic
error mainly occurs at very high surface charge densities it is
of no concern for the systems that are of interest here. The
error can, however, be minimized by including a so-called
reference bridge function in the closure™ if needed.

Of more concern is the fact that the HNC approximation
tends to be inaccurate for the restricted primitive model in
regions of parameter space that corresponds to 2:2 electrolyte
at low concentrations.” There are also regions in parameter
space where no solution exists for the HNC approximation
for bulk electrolyte solutions.** This occurs for low tempera-
tures or strong electrostatic interactions (i.e., interaction en-
ergies that are large compared to the thermal energy). The
problems with the HNC approximation under these condi-
tions are related to the incorrect way the long range tails of
the density-density direct correlation functions are handled.*
These matters are important in the current context because
the image charge repulsions make the ion concentration be-
tween the walls much smaller than the bulk concentration for
small separations. The total interaction between ions is also
much larger than in the bulk due to the presence of multiple
image charges in close proximity to the wall surfaces when
the wall-wall separation is small. The strong image interac-
tions between the divalent ions thus give a situation like that
at low temperatures in the bulk. For these reasons, in all
cases in this work where divalent ions are present, there ex-
ists some minimum separation below which one enters into
the part of parameter space where the HNC approximation
fails and no solution is found. As we shall see, the failure is
not of great concern since in most cases it occurs when there
is little electrolyte left in the slit between the walls. Then the
ions in the slit do not contribute much to the net wall-wall
interaction pressure.

There are indeed similarities in the HNC correlation
functions for the cases of inhomogeneous electrolyte for
small surface separations and bulk electrolyte at low tem-
peratures. The most striking similarity for low ion concen-
trations is the appearance of a spurious unphysical peak in
the correlation function between like-charged ions for a sepa-
ration of roughly two ion diameters. In the bulk this peak

J. Chem. Phys. 129, 144701 (2008)

grows dramatically when one approaches the region where
no solution exists by lowering the temperature. The behavior
for the inhomogeneous systems with uncharged surfaces in
the presence of image charges is very similar when the wall-
wall separation approaches the distance where convergence
is lost.

The minimum separation for convergence of the HNC
approximation is specified for each case investigated below.
The results in the close vicinity of this separation should be
interpreted with some caution. We will, however, use some
analytic limiting results for the density profiles between the
walls for short wall-wall separations to bridge the gap where
the HNC approximation fails, see Appendix A. As we shall
see below, in this regime we have strong net attraction be-
tween the walls regardless of the details of the structure of
the electrolyte in the slit.

In all other cases considered here, the HNC approxima-
tion is reliable. Indeed, for concentrations near the bulk con-
centrations considered in this work it gives good results even
for 2:2 electrolytes.43

C. The various contributions to the wall-wall
interaction pressure

The total pressure between the walls can be written as a
sum of the pressure exerted due to the presence of ions, P*°",
and pressure from the van der Waals interactions between the

wall
walls, Plgws

Ptot Pmn P:V;\l}, ( 8)

The quantity relevant for the interaction between the walls is
the net pressure, i.e., the difference between the pressure in
the slit P and the pressure in the bulk electrolyte, PPUIk,

A Ptot Ptot Pbulk_ (9)

The bulk pressure contains contributions from the ions only,
so the net pressure from ions is equal to

APlon Pwn Pbulk, (10)
and we can write
AP = AP+ PYR. (11)

The van der Waals pressure is calculated from nonretarded
Lifshitz theory4’46

©

- ’ (lwl)
Pwall —_ 12
vaw 477'D3 12 z (12)

where the prime on the sum over / means that the term [
=0 should be multiplied by 1/2 and where €p(w), Eq. (4), is
evaluated at imaginary frequency iw;, where w,=027kgT/H.

The term corresponding to /=0 will be denoted as vaj\l,{,(o)

and referred to as “the zero-frequency van der Waals pres-
sure,” while the rest of the sum will be denoted as Pvdw(ht
and referred to as “the high-frequency van der Waals pres-
sure.”

In this work PY% as a function surface separation D is
the same in all cases investigated. Only pion pbulk “and there-
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fore AP differ. For reasons explained below we will al-

ways add P‘V”;\l,l,(o) to the ionic pressure, so we will mostly

study
ion wall
Af = Af + FVdW(O) (] 3)

rather than the total net pressure defined in Eqgs. (9) and (11).
To obtain AP we have to add P‘V";&(hf), which will be shown
separately.

The pressure P" evaluated at the midplane between the
walls can be subdivided into physically distinct contributions
according to

ion __ pion ion ion ion ion
P"= Py + Peou + Poore + Pim + Pisp- (14)

ion s the kinetic (ideal) contribution to the pressure given

by
P = kT, n,(0), (15)

where 7;(0) is the concentration at the midplane. PiS" and

P are the contributions due to electrostatic and hard-
sphere interactions across the midplane, respectively. Pi" is
the pressure due to image forces and PL‘;QP originates from the
direct dispersion interactions between the ions and walls.
The last four pressure contributions are expressed in terms of
the ionic distribution functions in Appendix B.

ion pion , and P approach the corresponding compo-
nents of the bulk pressure for large D. The sum of these three
pressure components is sometimes referred to in what fol-
lows as the osmotic pressure. It is useful to discuss the pres-
sure in terms of these components when one wants to under-
stand the differences between the osmotic pressure of the
inhomogeneous electrolyte in the slit and that of the bulk
electrolyte. When any of these three components is written
with a capital A as prefix, it denotes the difference between
the value in the slit and in the bulk. For example, AP
=kgT= [n;(0)-n""]. These differences obviously all go to
zero when D — o,

P and Piﬁ;‘p do not have any counterparts in the bulk.
For large wall-wall separations P; ' asymptotically tends to
—vaj\',f,(o).s Thus, the sum P%"m"+P‘j’;\l,1,(0) decays faster to zero
than any one of the terms do individually. Physically, this
corresponds to the screening of the static van der Waals in-
teractions between the walls by the intervening electrolyte.4
For this reason we shall in what follows always consider the

sum P§$’+P‘V"§&(O). Note that the high-frequency van der

Waals term is not screened since it corresponds to fluctua-
tions that are too rapid for the ionic configurations to respond
to. The ions do, however, respond by their electronic polar-
ization (which is expressed by their polarizability). This
gives rise to the dispersion forces between the ions and the
walls.

The total P'°" can alternatively be evaluated at one of the
wall surfaces. Sometimes this is advantageous, see Appendix
B for details.
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FIG. 2. Ion-wall correlation functions for the cases of 1:1, 2:2, and 2:1
electrolytes with nonpolarizable ions (upper, middle, and lower panels, re-
spectively) at a bulk concentration of 0.500M. The functions are shown for
wall-wall separations of 1.2, 1.8, 2.6, and 4.6 nm in the 1:1 and 2:1 cases
and for 1.8, 2.6, and 4.6 nm in the 2:2 case. In the charge-symmetric cases
the cation and anion correlation functions are identical and are represented
by a single (full) curve. In the 2:1 case the full lines correspond to the
divalent ion-wall correlation function (marked “+2”) and the dashed lines to
the monovalent one (marked “~17). The corresponding curves for the 2:1
electrolyte would look the same, except for a change in the sign of the ions.

lll. RESULTS AND DISCUSSION
A. Concentration profiles between the walls

Figure 2 shows concentration profiles for a range of
wall-wall separations for various 0.500M electrolytes with
nonpolarizable ions (in short “nonpolarizable electrolytes™).
The concentration profile for each species of ion is presented
as the ion-wall correlation function, i.e., the relative devia-
tion from the bulk concentration of that species of ion,

n,‘(Z) _ n?ulk
BT (16)

1

hwi(Z) =

For all systems shown in Fig. 2 there is a depletion of
ions close to the surfaces. This is caused by electrostatic
interactions: partly from the repulsive image forces and
partly due to effects of confinement (the presence of a sur-
face) on the electrolyte structure. The latter effect can be
explained as follows. An ion in close proximity to an elec-
troneutral surface is surrounded by a charge density of oppo-
site sign (i.e., its “ion cloud”) that is located mainly on the
side away from the surface. Therefore the ion is attracted
electrostatically by the ion cloud in the direction away from
the surface. This effect adds to the repulsion of ions from the
surface due to image charges. An electrostatic force due to
confinement is a general feature for ions in the neighborhood
of both charged of uncharged surfaces since the distribution
of ions around each ion must be spatially asymmetric
there.*"¥**” There are also forces from ion-ion core interac-
tions due to excluded volume effects, which are important
for high electrolyte concentrations.

From a comparison of the 1:1 and 2:2 electrolyte sys-
tems in Fig. 2 it is apparent that there is a much larger degree
of depletion close to the surfaces for divalent ions than for
monovalent ions. The same dependence of valency can be
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seen for the anion and cation profiles for the 2:1 electrolyte
systems. These differences in depletion are not surprising in
light of the fact that the strength of the self-image interac-
tion, ¥, is proportional to the square of the valency so that
it is four times stronger for divalent ions than for monova-
lent. The confinement effect is also stronger for divalent ions.
The asymmetric ion cloud around a divalent ion has twice
the charge of that around a monovalent one, so the resulting
force away from the surface is stronger in the divalent case.

For the symmetric 1:1 and 2:2 electrolytes the anion and
cation profiles are identical because the forces on an anion
and a cation are identical for the same distance from the wall.
Hence there is no charge separation outside the surface. In
the 2:1 case there is charge separation, however, since the
magnitude and distance dependence of the force is different
for ions of different valency. We see from the concentration
profiles that there is a region with excess negative charge
close to each wall and an excess of positive charge some
distance away. The total charge in the electrolyte phase is, of
course, equal to zero. For a 1:2 electrolyte the profiles for
monovalent and divalent ions would look exactly the same as
those of a 2:1 electrolyte since the surface is uncharged and
the anion and cation sizes are the same, but the sign of the
charge distribution would be reversed.

Thus, in general, the presence of an electroneutral sur-
face induces a perturbation in the structure of the electrolyte
that for small distances is determined by the effective inter-
actions between the ions and the surface. For large distances
from the surface the distance dependence of the perturbation
is entirely determined by the bulk ion-ion correlations but the
magnitude depends on the interactions with the surface.**°
For low to medium electrolyte concentrations the decay of
the bulk correlations for large distances is exponential with a
decay length 1/ that tends to the usual Debye length in the
limit of zero bulk electrolyte concentration. The ion density
profiles away from a surface also have a decay length 1/« in
most cases (an important exception is totally symmetric elec-
trolytes, see below).

For high concentrations both the bulk correlations and
the density profiles change from a monotonic exponential
decay to an exponentially damped oscillatory decay. The
transition between the two behaviors is determined by the
bulk electrolyte and occurs at an electrolyte concentration
that depends on the ionic species present. For ions with
a=4.6 A the transition between monotonic and oscillatory
exponential decay occurs at bulk concentration of 0.73M for
1:1, about 0.3M for 2:2, and 0.087M for 2:1 electrolytes.SI’52
(Close to the surface the ion concentration profiles may,
however, have a small number of oscillations even when the
decay for large distances is plainly exponential.)

For an uncharged surface these results for the decay do
not hold when the electrolyte is totally symmetric (i.e., when
anions and cations differ only by the sign of their charges).
As we have seen, the charge density in the electrolyte is then
zero outside the uncharged surface. In this case the ion con-
centration profiles for large distances from the surface are
dominated by a higher order term with shorter decay length
(denoted 1/bg in Ref. 51) that is approximately 1/2« for low
electrolyte concentrations. The term with decay length 1/«
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FIG. 3. Ion-wall correlation functions for charge-symmetric electrolytes
with polarizable anions at a bulk concentration of 0.500M. The top and
bottom panels show 1:1 and 2:2 electrolytes, respectively, on the same scale,
while the middle panel shows the same curves as the upper one on an
expanded scale. The functions are shown for wall-wall separations of 1.2,
1.8, 2.6, and 4.6 nm (the smallest separation is not shown for the 2:2 case).
The full lines show the cation-wall correlation functions and the dashed
lines show the anion-wall functions. The strengths of the ion-wall dispersion
interaction are given by B_=-40 kJ A3 mol™' and B,=0 (the same values
are used for all cases with polarizable ions in this paper).

in the concentration profile does not contribute since its co-
efficient is zero in this case (in other words, the effective
surface charge density of the uncharged walls is zero™). As a
consequence, the transition to oscillatory decay for the pro-
file occurs at a different bulk electrolyte concentration. For
jons with a=4.6 A it takes placeSl at about 1.0M for 1:1
electrolyte and above 0.3M for 2:2 electrolyte (the precise
concentration in the latter case has not been determined). The
bulk correlations still have decay length 1/ «, and the profiles
would also have this decay length if the surfaces were
charged. Note that the wall-wall interaction pressure as a
function of D has in general the same decay length for large
separations as the concentration proﬁles.49

As soon as the electrolyte has any kind of anion/cation
asymmetry the charge density outside an uncharged surface
is nonzero. The effective surface charge density of the elec-
troneutral surface is then also nonzero. We shall here explore
the consequences the asymmetry brought about by different
ion-wall dispersion interactions for anions and cations.

The concentration profiles for 0.500M 1:1 and 2:2 elec-
trolytes with polarizable ions (in short “polarizable electro-
lytes”) are shown in Fig. 3. The strength of the anion-wall
dispersion interaction is B_=-40 kJ A% mol™!, while the
cation-wall dispersion interaction is neglected. There is thus
an attractive dispersion force acting on the anions in addition
to the repulsive image force. Since the forces on the anions
and cations differ, a charge density profile is built up outside
each electroneutral surface. The dispersion forces make the
amount of anions close to each surface increase compared to
the case of the nonpolarizable electrolyte in Fig. 2. For the
1:1 electrolyte in Fig. 3 the anion concentration close to the
wall is larger than the bulk concentration. The cation concen-
tration remains below the bulk value there, but it is lifted
above the bulk value some distance away from the surface.
This is due to an increase in the total number of ions between
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FIG. 4. Ton-wall correlation functions for 1:2 and 2:1 electrolytes with po-
larizable anions (upper and lower panels, respectively) at a bulk concentra-
tion of 0.500M. The anions are divalent in the 1:2 electrolyte and monova-
lent in the 2:1 electrolyte. The functions are shown for wall-wall separations
of 1.2, 1.8, 2.6, and 4.6 nm. The full lines correspond to the divalent ion-
wall correlation functions and the dashed lines to the monovalent ion-wall
functions. These are marked with the appropriate valency in the figure.

the surfaces brought in there from the bulk by the dispersion
attraction on the anions. The number of cations then has to
increase to maintain electroneutrality.

For the 2:2 electrolyte, on the other hand, the dispersion
forces do not change the concentration profiles much com-
pared to the nonpolarizable case. This difference is due to the
much stronger repulsive image forces and confinement effect
for divalent ions, which dominate here and counteract the
attractive dispersion interactions. Also in this case the disper-
sion forces on the anions cause an increase in the total num-
ber of ions between the surfaces, but the effect on the profiles
is small.

These kinds of differences between monovalent and di-
valent ions can also be seen for charge-asymmetric electro-
Iytes in Fig. 4, which shows the profiles for 0.500M polariz-
able 1:2 and 2:1 electrolytes. These profiles correspond to
those in the bottom panel in Fig. 2 for the nonpolarizable
electrolytes (remember that the profiles for 1:2 and 2:1 elec-
trolytes are identical for the nonpolarizable case apart from
the sign of the ionic charges). By comparing Figs. 2 and 4 we
see that the dispersion forces on the anions cause an increase
in anion concentration close to the walls that is greater for
the 2:1 electrolyte compared to the 1:2 electrolyte. In the
former case the anions are monovalent while they are diva-
lent in the latter. Concurrent with the increase in anion con-
centration there is an increase in cation concentration for the
same reason as before. This increase is also much greater for
the 2:1 electrolyte than for the 1:2 electrolyte.

The decay of the concentration profiles away from the
surface for large surface separations contains an exponen-
tially decaying contribution with a decay length determined
by the bulk electrolyte, as in the case of nonpolarizable elec-
trolytes. However, for large distances from the surface the
decay ultimately goes over to a power-law decay that origi-
nates from dispersion interactions coupled to the ion-ion
electrostatic interactions. The magnitude of the large distance
tail of each profile depends on the ion-wall interactions.

B. Wall-wall interaction pressure

1. Nonpolarizable ions

The pressure between two electroneutral walls has been
calculated for 1:1, 2:2, and 2:1/1:2 nonpolarizable electro-
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FIG. 5. Net pressure between uncharged walls as function of the wall-wall
separation D in the presence of various electrolytes with nonpolarizable
ions. The upper panel shows the case of the 1:1 electrolyte, the middle panel
the 2:2 electrolyte, and the bottom panel 2:1 and 1:2 electrolytes (which
have the same pressure). The bulk electrolyte concentrations are 0.250,
0.500, and 1.00M (short-dashed, long-dashed, and full lines, respectively).
The dotted lines show the high-frequency van der Waals pressure, Pyj\l{,(hﬁ,
which is the same in all cases. The other curves give the remaining net
pressure, AP:AP“’“+P‘V”5“1,],(0), including the zero-frequency van der Waals
pressure. Since the ions are nonpolarizable the ions interact with the walls
via image forces and “hard wall” interactions only. The full vertical lines
denote the smallest separation, 0.6 nm, for which ions can be present be-
tween the walls.

Iytes at bulk concentrations of 0.250M, 0.500M, and 1.00M.
The net pressure AP is obtained from Eq. (13). Note that for
nonpolarizable ions the pressures for a 1:2 and a 2:1 electro-
lyte are identical since the ions only differ in the signs of the
charges, which do not affect the interaction pressure between
uncharged walls.

Figure 5 shows AP as a function of the wall-wall sepa-
ration D. The high-frequency part of the van der Waals pres-
sure, P;’;\l,l,(hf), is shown separately and should be added to
obtain the total net pressure AP A common feature in all
cases is that AP is attractive for short surface separations. In
some cases the pressure remains attractive for larger separa-
tion, while there is a repulsive peak in other.

Let us first consider the behavior of AP for short sepa-
rations. The attraction seen in Fig. 5 actually extends all the
way down to wall-wall contact. The limiting value of P "
when D—2b (which corresponds to a single layer of ions
between the surfaces) can be calculated analytically for elec-
troneutral surfaces. As shown in Appendix A we have

q,v_(0) + |g_|v,(0)
(q++lg_DkgT

lim P = kgT(n?"™ + n®"%) y. exp| -
D—2b

s

(17)

where . is the bulk mean activity coefficient. Pi’;\l,{,(o) can

also be calculated analytically, following Eq. (12). The val-
ues of P and AP for D=2b=0.6 nm for the various elec-
trolytes are shown in Table I (the HNC values of y. and
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TABLE 1. Various wall-wall interaction pressures in molar units for the same systems as in Figs. 5 and 6. The
concentrations and types of electrolyte are shown in the first two columns, where (p) (for polarizable) indicates
that the anions interact with the walls via dispersion forces. The following three columns show the net and ionic
pressures at surface separation D=2b=0.6 nm (the smallest separation for which there are ions between the
walls) and the bulk pressure, respectively. The last column shows the smallest separation for which a solution
was found, along with the net pressure at that separation (shown in parentheses). A star ( *) indicates that the
pressure value is listed in column 3. At separation D=0.6 nm the zero-frequency van der Waals interaction
contributes to AP/RT by an amount of —0.31M in all cases. The high-frequency van der Waals interaction is

—0.57M at the same separation.

Conc. Type AP/RT D=0.6 nm P/RT D=0.6 nm PP/ RT D™"/nm (AP/RT)
0.250 1:1 -0.78 1.5%x1072 0.49 0.60 ()
2:2 -0.62 1.3x1077 0.31 1.65 (=0.047)
1:2/2:1 -0.97 4.8x10™ 0.66 0.97 (-0.38)
2:1(p) -0.97 1.1x1073 0.66 1.05 (=0.15)
0.500 1:1 -1.31 3.1x1072 1.03 0.60 ()
1:1(p) -1.28 571072 1.03 0.60 (%)
2:2 -0.96 2.1x1077 0.65 1.32 (-0.17)
2:2(p) -0.96 3.7x1077 0.65 1.35 (=0.090)
1:2/2:1 -1.75 9.8X107* 1.44 0.85 (~0.86)
1:2(p) -1.75 1.5%1073 1.44 0.95 (-0.33)
2:1(p) -1.75 22X1073 1.44 0.95 (-0.18)
1.00 1:1 -2.56 7.6X 1072 2.33 0.60 (*)
1:1(p) -2.50 1.4x 107! 2.33 0.60 ()
2:2 -1.84 3.7x1077 1.53 1.08 (-0.53)
2:2 -1.84 6.8x 1077 1.53 1.20 (-0.076)
1:2/2:1 -3.90 2.6%1073 3.59 0.74 (=2.04)
1:2(p) -3.90 3.9%1073 3.59 0.80 (-0.55)

PPk have been used in the calculations; the latter is also
shown in the table). We see that P°" is small in all cases.
This is due to the strongly repulsive image interactions con-
tained in v, and v_ in the exponent of Eq. (17). Therefore,
AP for small D is dominated by Py, —P™", which is

strictly negative since P}y <0 and P*'*>0. In Fig. 5 the

surface separation D=0.6 nm is marked as a vertical line.
For smaller D there can be no ions between the walls, and
the interaction pressure for such separations is given simply
by AP="P}i - Pk

As discussed in Sec. II B above, the HNC approximation
fails to converge for the systems with divalent ions when the
surface separation is so small that there are very strong im-
age charge interactions and a large degree of ion depletion.
In this region the net pressure is strongly attractive precisely
because of the small concentration of ions in the slit relative
to the bulk. In Table I we have listed the surface separation
D™ down to which we have managed to calculate the pres-
sure in these cases. The corresponding pressures are also
shown. For all cases in Fig. 5 except for the 0.25M 2:2
electrolyte the problematic region lies well outside the pres-
sure range shown in the figure. The lack of data between
D™ and 0.6 nm is not of great concern since we know the
pressure for D=0.6 nm, and the main thing that happens in
this interval is that ions leave the slit when D is decreased
and AP turns more negative (see also the discussion in Sec.
III C below).

Let us now turn to the behavior at larger surface separa-
tions. In all the charge-symmetric cases except that of 1.00M
1:1 salt, the net pressure, AP, is attractive for all separations
investigated. The main difference between 1:1 and 2:2 elec-

trolytes is that the attraction is stronger in the latter case for
a given wall-wall separation and concentration. One reason
for the attraction is the depletion of ions due to the repulsive
image forces and confinement effects. A depletion is, how-
ever, not needed to explain an attractive AP. In the Ninham—
Parsegian theory54 for Debye—Hiickel screening of zero-
frequency van der Waals interactions, it is assumed that the
electrolyte concentration in the slit is everywhere equal to
that of the bulk. As shown by comparison with AHNC
calculations® this simple theory performs surprisingly well
for 1:1 electrolytes at low concentrations. When AP from the
Ninham—Parsegian theory is heuristically corrected for the
depletion of ions near the surfaces, it gives very good agree-
ment with the AHNC results for the 0.5M 1:1 electrolyte
when D>1 nm. However, for small surface separations the
depletion of ions in the whole slit is very important, as we
have seen above.

A depletion attraction solely due to confinement (no im-
age interactions) has previously been found between un-
charged surfaces by means of grand canonical Monte Carlo
simulations.**> In Ref. 55 it was also found that for very
high bulk electrolyte concentration the pressure is dominated
by ion packing effects and has repulsive peaks. It is the onset
of this type of behavior, related to the fact that the concen-
tration profiles turn oscillatory at high concentration, that
causes the small repulsion seen in the 1.00M 1:1 salt case of
the present work.

For the 2:1 and 1:2 electrolytes in Fig. 5 the ionic pres-
sure is repulsive for some range of separations for all con-
centrations considered. This behavior is in stark contrast to
that in the charge-symmetric cases where the pressure is
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FIG. 6. Same as Fig. 5 but for various electrolytes with polarizable anions.
The upper panel shows the cases of 1:1 and 2:2 electrolytes at 1.00M con-
centration (full and long-dashed lines, respectively) and 0.500M concentra-
tion (dot-dashed and short-dashed lines, respectively). The lower panel
shows 2:1 electrolyte at 0.500M and 0.250M (full and dot-dashed lines,
respectively) and 1:2 electrolyte at 1.00M and 0.500M (long-dashed and
short-dashed lines, respectively). The notation is otherwise as in Fig. 5. In
all cases the cations interact with the walls via image forces and hard wall
interactions only while the anions interact with the walls via dispersion as
well as the other forces. For example, in the 1:2 cases the divalent ions
interact with the walls via dispersion forces whereas the monovalent does
not.

monotonically attractive in most cases. The magnitude of the
maximum value of the pressure for charge-asymmetric elec-
trolytes depends strongly on the bulk electrolyte concentra-
tion. For the 1.00M concentration the ionic pressure gives
rise to a repulsion that exceeds the van der Waals attraction
for some separations. The qualitative situation is thus similar
to that of the familiar Derjaguin-Landau-Verwey-Overbeek
(DLVO) theory in the sense that the van der Waals force is
balanced by a repulsion originating from the osmotic pres-
sure exerted by the ions between the walls. A crucial differ-
ence is of course that in this case no surface charge is needed
for the repulsion to arise.

In the region immediately beyond the first peak, the salt
concentration dependence of the pressure is opposite to that
in the charge-symmetric cases. Whereas increased concentra-
tion from 0.500M to 1.00M results in a decrease in attraction
for separations around 2 nm for charge-symmetric electro-
Iytes, the same change in concentration results in a decreased
repulsion or increased attraction for charge-asymmetric elec-
trolytes around the same separation. The same is true when
going from 0.250M to 0.500M, but at somewhat larger sepa-
rations. The pressure curves continue for larger D as expo-
nentially damped oscillations since the bulk concentrations
in all three cases are above the value where the bulk pair
correlations turn oscillatory.

2. Polarizable ions

In Fig. 6 the pressure-distance profiles are shown for
polarizable 1:1, 2:2, 2:1, and 1:2 electrolytes at various bulk
concentrations. The concentration of 0.500M is included for
all cases, while we also show results for 1.00M solutions for
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1:1, 2:2, and 1:2 electrolytes and 0.250M for the 2:1 electro-
lyte. The reason for including the latter cases is that we want
to make comparisons of the different electrolytes at the same
concentration of the polarizable anions. In all cases the pres-
sure is more repulsive (or less attractive) for polarizable elec-
trolytes compared to nonpolarizable electrolytes of the same
concentration in the separation range shown, cf. Fig. 5.

The net pressure AP for small surface separations is at-
tractive in all cases. The situation is very similar to the non-
polarizable electrolyte systems discussed above, and the
qualitative conclusions drawn there apply also to the current
cases (the relevant quantitative information for all systems is
provided in Table I). We therefore focus on the behavior for
larger separations in this section.

For the charge-symmetric polarizable electrolytes the
pressure turns repulsive above some separation, which is in
contrast to the corresponding nonpolarizable cases where the
pressure is mostly monotonically attractive. We see in Fig. 6
that polarizable 2:2 and 1:1 electrolytes at the same concen-
tration behave in a qualitatively similar manner, but that the
pressure changes sign at a larger separation for the 2:2 cases
than for the corresponding 1:1 cases. As a consequence the
maximum pressure tends to be smaller for 2:2 electrolytes
than for corresponding 1:1 electrolytes. This is a conse-
quence of the more repulsive effective interactions between
the surface and the divalent ions.

For the cases with polarizable 2:1 electrolytes, where
attractive dispersion forces act on the monovalent anions, the
pressure is much more repulsive than for the corresponding
nonpolarizable electrolyte for any given separation. For po-
larizable 1:2 electrolytes, where dispersion forces act on the
divalent anions, the difference between polarizable and non-
polarizable electrolytes is not as large on a relative scale.
Thus the effects of ionic polarizability are larger for 2:1 than
for 1:2 electrolytes, a conclusion that agrees with our find-
ings for the concentration profiles above. The presence of
polarizable monovalent anions has made the 0.5M 2:1 elec-
trolyte system to show a repulsive peak that exceeds the
attractive van der Waals pressure. For the 1:2 electrolyte this
happens for the 1.0M solution as in the nonpolarizable case.

There are two main effects that give rise to the large
difference in the wall-wall pressure for the 0.500M 2:1 and
1:2 electrolytes in Fig. 6. The first, somewhat trivial, is that
the bulk concentration of polarizable ions is twice as high for
the 2:1 electrolyte compared to the 1:2 electrolyte. The sec-
ond is that divalent ions feel a stronger self-image repulsion
and confinement effects which oppose the attractive disper-
sion forces to a larger degree than for monovalent ions. A
consequence of this is, as we have seen, that the increase in
the concentration of anions close to the walls relative to the
nonpolarizable case is smaller for 1:2 than for 2:1 polarizable
electrolytes, cf. Figs. 2 and 4.

The dependence of the pressure on the salt concentration
is qualitatively similar for polarizable and nonpolarizable
electrolytes. For 2:1 and 1:2 electrolytes the repulsion in-
creases around the pressure maximum with increasing bulk
electrolyte concentration, but it decreases in a region further
out. For 1:1 and 2:2 electrolytes, on the other hand, the pres-
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sure becomes more repulsive (or less attractive) for all dis-
tances beyond the maximum as the concentration is in-
creased.

Let us now compare different polarizable electrolytes
which have comparable concentrations of the polarizable an-
ions. From Fig. 6 we see that the maximum repulsion is
larger for the 0.500M 2:1 electrolyte than for the 1.00M 1:1
electrolyte. The same is true for the 1.00M 1:2 case com-
pared to the 1.00M 2:2 case. The same picture emerges when
the 0.250M 2:1 electrolyte is compared with the 0.500M 1:1
case and when one compares the 0.500M 1:2 and the 0.500M
2:2 cases; the maximum repulsion is in all instances greater
in the charge-asymmetric systems. The maximum occurs,
however, at different separations in the various cases. The
general picture is that in the charge-asymmetric 2:1 and 1:2
cases the pressure tends to be more repulsive than in charge-
symmetric 1:1 and 2:2 cases. This observation is hardly sur-
prising in light of the fact that the wall-wall pressure tends to
be more repulsive for charge-asymmetric electrolytes com-
pared to charge-symmetric ones also for the nonpolarizable
electrolyte.

That the pressure is more repulsive in all cases when the
electrolyte is polarizable than when it is nonpolarizable indi-
cates that the larger net osmotic pressure in the former case
more than compensates for the attractive pressure component
due to ion-wall dispersion forces, Pfﬁ;'p, that is only present in
the former case. This observation is consistent with the near
cancellation between iﬁ?p and the other contributions to
AP™" that has been observed at large surface separations for
systems with charged walls.

C. Pressure components

The components of P'°", as defined in Sec. II C and Ap-
pendix B, in the slit between the walls are shown in Fig. 7
for nonpolarizable electrolytes with a bulk concentration of
0.500M. P{" is due to the momentum transfer when ions
move across the midplane between the surfaces (the ideal
pressure). It is always repulsive. P | comes from the elec-
trostatic forces that arise because ions on one side of the
midplane correlate with ions on the other side. It is generally
attractive. P;‘:‘;‘;e is due to core-core collisions of ions on either
side of this plane and is always repulsive. Pifg’ originates
from the ion-image charge interactions (both self-images and
images of other ions) and image charge-image charge inter-
actions across the midplane. This component is shown in the
figure as Pio"+ Py(f\l,l,(o) in order to highlight the special rela-
tion between these two pressure components for large D,

as discussed earlier in Sec. II C. It is the negative P:,”;\li,(o)

that makes the curve for the sum of all components,
P4 :,Vj\l,f,(o), turn negative for small separation. As we have
seen, P'" is very small for small D.

In the middle and bottom panels of Fig. 7 the curves do
not extend all the way to D=2b=0.6 nm. This is due to the
lack of convergence for small surface separations
(D<D™") caused by the very strong image interactions for
divalent ions and the accompanying ion depletion, as dis-
cussed in Secs. II B and III B 1. All pressure components
can, however, be calculated analytically at D=0.6 nm, as
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FIG. 7. Components of the pressure in the slit between two uncharged walls
as functions of wall-wall separation D in the presence of various electrolytes
with nonpolarizable ions. The upper panel shows the case of the 1:1 elec-
trolyte, the middle panel the 2:2 electrolyte, and the bottom panel 1:2 and
2:1 electrolytes (which have the same pressure). The bulk concentration is
0.500M throughout. All pressure components are evaluated at the midplane
between the walls: kinetic (ideal) pressure Pi" (short-dashed lines), electro-
static ion-ion interaction pressure Pi% | (medium-dashed-short-dashed lines),
core-core collision pressure P (long-dashed lines), and pressure from
image forces and zero-frequency van der Waals attraction P}°m“+P‘v”;‘]X],(m (dot-
ted lines). The full curve is the sum of all the pressure components shown,
Pion 4 P;”;\l,l,(o), i.e., the total pressure apart from the high-frequency van der
Waals pressure. The dashed vertical lines in the middle and bottom panels
denote the smallest separations, D™n for which convergent solution was
found, see text. The full vertical lines denote the smallest separation, 0.6 nm,
for which ions are present between the walls. The values of the pressure
components at this separation are known analytically. These are marked by
filled circles for P and open circles for P;”;\li,(o). The values of P2, P,
and PI°" are identically zero for D=0.6 nm.

ion

demonstrated in Appendix A. For this D value, P"=P"
since all other ionic pressure components are identically

equal to zero there. In Fig. 7 the values of Pi" and P;"g‘\l,{,(o)

are shown as symbols for D=0.6 nm (taken from the data in
Table I).

The qualitative behavior of the pressure components ap-
pears quite similar in all three cases shown, while the mag-
nitudes of each corresponding component differ depending
on the electrolyte. The decrease in Pi%" as the separation is
decreased corresponds to the exclusion of salt from the slit
that accelerates as D becomes smaller. This is partly due to
the image repulsion, which increases in magnitude with de-
creasing D (the multiple images move closer). The exclusion
is also caused by the confinement, which results in less op-
portunity for the ions to arrange themselves in order to lower
their free energy compared to the bulk solution. The increas-
ing exclusion continues for small D all the way to D=2b
=0.6 nm. For the other pressure components in P°", the
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FIG. 8. The components of the net pressure, i.e., the difference between the
values in the slit and in the bulk phase, for the same cases as in Fig. 7 but
drawn on a different ordinate scale. AP, short-dashed lines; AP
medium-dashed-short-dashed lines; AP long-dashed lines; and po"

core? im

+Pi o) dotted lines. The full lines show their sum AP=AP"+ Py
which is the same as the long-dashed curves in Fig. 5, i.e., the total net
pressure apart from P:’,’j‘\l,lv(hf). The vertical lines have the same meaning as in
Fig. 7.

small D behavior can be anticipated from the fact that the
components are defined in Appendix B, Egs. (B3)-(B6), by
integrals over an interval that shrinks to zero width, which is
the reason why they go to zero when D— 0.6 nm (cf. the
discussion in Appendix A). Furthermore, the integrals con-
tain factors n; that decrease with decreasing D. Note that

ion and PI°" can be written in terms of charge-charge cor-
relation functions that will remain finite and short ranged, so
the influence from the pair distribution functions will not
dominate in the integrand. Picf,fe always goes very quickly to
zero for vanishing slit width [cf. comment after Eq. (B4)].
Thus all pressure components are expected to simply de-
crease in magnitude with decreasing surface separation for
small D. This is what is seen for the 1:1 electrolyte in Fig. 7.

For these reasons and the results in Fig. 7 it is apparent
that the lack of data between the end of the curves and
D=0.6 nm is not of any great concern since the pressure
components most likely just decrease in this region. As the
pressure is already appreciably below the bulk pressure for
D=D™", the net pressure is unlikely to be anything but at-
tractive until wall-wall contact.

In Fig. 8 the components of the net pressure are
shown, i.e., the difference between the pressure in the slit
and in the bulk. This way of showing the components gives
a clearer picture of how each of them contributes to the total
pressure difference. Note the difference in scale between
Figs. 7 and 8.

We start with a comparison of the 1:1 and 2:2 electro-
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lytes in the upper two panels of Fig. 8. While the curves for
the pressure component sum are similar in these cases, the
curve for the 2:2 case appears shifted to greater separations.
Furthermore, there are large quantitative differences in the
individual net pressure components. For both systems the net
kinetic pressure, AP\, and the net core-core collision pres-
sure, APiC‘(’)';e, are attractive for all separations. The net pres-
sure from ion-ion Coulomb interactions, AP, is repulsive
for all separations in both cases. The sign of each of these
components is due to the fact that the respective value in the
slit is smaller (in absolute value) than in the bulk, cf. Fig. 7.
This is mainly a consequence of the decreasing number of
ions in the slit when D is decreased. The depletion of ions in
the slit from repulsive image forces and confinement effects
makes this decrease larger than it would be otherwise. The
large increase in magnitude of, for example, AP, for small
separations is accordingly a consequence of a loss of oppor-
tunity for the ions to give electrostatic correlation attraction
in the slit rather than some electrostatic repulsion.

For each surface separation D the deviations of PSR,
P and P from the respective bulk value are larger for
the 2:2 electrolyte than for 1:1, which is caused by the stron-
ger depletion in the former case. These effects of depletion
set in at larger surface separations for the divalent electrolyte
than for the monovalent one, which can also be inferred from
the concentration profile plots, see Fig. 2. The pressure due
to the image forces, shown in the figure as the sum P!
+P$§\l,{,(0), contributes to the total net pressure for large
D with a repulsion that has a longer range than APIS" | in the
case of the 1:1 electrolyte, but the opposite is true for the 2:2

case. The sum of all these components, AP=AP©"+ Pyl o

constitutes the total net interaction pressure between the
walls (apart from the high-frequency van der Waals pressure)
and is shown in the figure. It decays more quickly to small
values than any of the individual components. Therefore it is
evident that the different components of the net pressure tend
to compensate each other to a large degree.

For the 2:1/1:2 asymmetric electrolyte case in Fig. 8, the
pressure components have the same signs as in the charge-
symmetric cases only for small separations. The reason for
these signs is the same here, namely, depletion of the elec-
trolyte in the slit. However, for the asymmetric electrolyte all
net pressure components change sign above a wall-wall sepa-
ration of about D=1.9 nm. The situation is thus the opposite
compared to the charge-symmetric cases for separations be-
yond that. The behavior of the components for large D is, in
fact, similar to those for charged surfaces. Due to the charge
separation near the uncharged surfaces for asymmetric elec-
trolytes, the electrolyte some distance away from the sur-
faces “sees” the surfaces as being charged. An electric
double layer is formed just in front of the surface, see Fig. 2.
This is not the case for totally symmetric electrolytes. The
phenomenon of the apparent charging of surfaces due to
asymmetry in the electrolyte has been studied previously.32

AP for the asymmetric electrolyte in Fig. 8 does not
change sign at the same separation as the individual compo-
nents. It becomes repulsive for separations greater than about
D=1.3 nm and continues as an oscillatory exponentially de-
caying function when D— since we are above the bulk
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FIG. 9. Components of the net pressure for 1:1 and 2:2 electrolytes with
polarizable anions (upper and lower panels, respectively) at a bulk concen-
tration of 0.500M. P, dot-dashed lines; AP, short-dashed lines; APCy,,

medium-dashed-short-dashed lines; APL?)‘;C, long-dashed lines; and Pi)

+P$’5“],],(0), dotted lines. The full lines show their sum AP, which are the same
as the corresponding curves in Fig. 6. The vertical lines have the same
meaning as in Fig. 7.

concentration where the pair correlation functions in the bulk
turn oscillatory. The main repulsive peak of AP occurs where
both AP" and AP'"_ are negative. The only repulsive con-
tributions to the net pressure at this separation are APZ) | and
P Thus the repulsion is caused by a combination of the
repulsive image interactions and a loss of electrostatic corre-
lation attraction compared to the bulk. For larger separations
AP and AP" are repulsive and they are to a large degree
counteracted by AP, which is attractive in that region. It
is apparent from the figure that AP decays more quickly to
small values than any of the individual components, which is
similar to the charge-symmetric cases.

Let us now turn to the systems with polarizable anions.
Figure 9 shows the net pressure components for 1:1 and 2:2
electrolytes. For these charge-symmetric electrolytes we
have seen that the presence of ion-wall dispersion forces cre-
ates a charge separation in the electrolyte that is more pro-
nounced for the monovalent case than the divalent, cf. Fig. 3.
The polarizable electrolyte forms a double layer outside each
electroneutral surface and, similar to the charge-asymmetric
electrolytes above, the system behaves some distance away
from the wall as if the surface were charged. The effective
charge of the surface is nonzero. Therefore, it is not surpris-
ing that the components of AP™" for 1:1 polarizable electro-
lytes, Fig. 9, at large surface separations D behave qualita-
tively similar to those for charge-asymmetric electrolytes in
Fig. 8. (The pressure at large separations is, however,
nonoscillatory here since we are below the bulk concentra-
tion where the pair correlations in bulk turn oscillatory.)

Compared to the nonpolarizable electrolytes we have an
additional pressure component here, iﬁfp, that originates
from the ion-wall dispersion interactions. It is attractive, but
the total AP™" for the 1:1 case is nevertheless repulsive for
intermediate to large separations since API" and AP'" are

core
repulsive. The repulsion is due to the increase in the number
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FIG. 10. Components of the net pressure for 1:2 and 2:1 electrolytes with
polarizable anions (upper and lower panels, respectively) at a bulk concen-
tration of 0.500M. The anions are divalent in the 1:2 electrolyte and
monovalent in the 2:1 electrolyte. The notation is the same as in Fig. 9.

of ions between the walls brought in there by the dispersion
forces on the anions. For small D the pressure components
behave like in all other cases due to the expulsion of ions
between the surfaces, as discussed earlier.

For the 2:2 case, where the effects of the ion-wall dis-
persion forces are smaller than for 1:1 electrolytes, the pres-
sure components in Fig. 9 do not differ as much from the
corresponding nonpolarizable electrolyte, see Fig. 8. The
sign of AP for intermediate to large separations is, however,
different from the nonpolarizable case. In the intermediate
regime the net repulsion is caused by a positive API" , i.e.,
a loss of electrostatic correlation attraction compared to the
bulk (cf. the charge-asymmetric electrolytes discussed
above).

The net pressure components for 1:2 and 2:1 electrolytes
with polarizable anions are shown in Fig. 10. For the 1:2
case, where the polarizable ions are divalent, we see that
there is not a large difference from the nonpolarizable elec-
trolyte, see Fig. 8. This is yet another example that illustrates
the fact that effects of the ion-wall dispersion forces are quite
small for divalent ions. Despite that we have an attractive

iﬁ?p component here which is not present in the nonpolariz-
able case, the total AP™" is more repulsive (or less attractive)
for most D values. This is due to APJS" and AP'" , which are
increased compared to the nonpolarizable electrolyte as a
consequence of the increased number of ions between the
walls brought in there by the dispersion forces on the anions.
The increased values of these components more than com-
pensate the attraction from Piﬁ‘;p.

For the polarizable 2:1 electrolytes, on the other hand,
the ion-wall dispersion forces have a rather large impact on
most components, as seen in Fig. 10. AP is much more re-
pulsive (or less attractive) than in the nonpolarizable case.
This is due to large increases in AP and AP®" for most D

values. AP is not much affected by the effects of the dis-
persion forces, while APy, turns much more attractive (or
less repulsive). The changes in AP, and the appearance of

the attractive Pii‘f:p are, however, dominated by the increases
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in APS" and AP'".. These results illustrate the greater im-
portance of the ion-wall dispersion interaction for polarizable
monovalent ions than divalent ones.

IV. SUMMARY AND CONCLUSIONS

The ion concentration profiles and interaction pressure
between uncharged hard walls immersed in various 1:1, 2:2,
2:1, and 1:2 electrolytes have been investigated. The ions
interact with the walls via image charge forces and, when the
ions are polarizable, also via ion-wall dispersion forces. Pri-
marily we investigate the net pressure from the ions, includ-
ing the zero-frequency van der Waals wall-wall interaction
pressure, which is screened by the electrolyte. The high-
frequency van der Waals wall-wall interaction pressure is the
same in all cases and is not included. It is shown separately
in Figs. 5 and 6 and can be added to obtain the total pressure.
The system parameters for the van der Waals interactions are
appropriate for hydrocarbon (polystyrene) particles in water.

For (totally) symmetric nonpolarizable electrolytes (i.e.,
consisting of nonpolarizable ions with equal sizes and equal
absolute values of charges) the pressure is attractive in nearly
all cases, as expected from the result of previous work.” It is
only for high electrolyte concentrations that small repulsive
peaks also emerge. For charge-asymmetric (1:2 and 2:1) non-
polarizable electrolytes the behavior is qualitatively differ-
ent. The interaction pressure is then repulsive for some range
of wall-wall separations for all electrolyte concentrations ex-
amined. The maximum repulsion is larger in magnitude than
the (high-frequency) van der Waals wall-wall attraction be-
tween the walls provided the electrolyte concentration is
high. The pressure from the ions therefore gives rise to a
repulsive barrier against pushing the walls together despite
that the surfaces are uncharged.

For small separations the pressure is attractive in all
cases. The attraction is to a large extent a depletion interac-
tion caused by the expulsion of ions from the neighborhood
of each wall due to repulsive image forces and confinement
effects on the ion-ion correlations. The expulsion is larger for
divalent ions than for monovalent ones. For the charge-
asymmetric case this gives rise to a charge separation in the
electrolyte, i.e., an electric double layer is formed outside the
electroneutral surface. For symmetric nonpolarizable electro-
Iytes the expulsion of anions and cations is identical, so no
charge separation occurs. Therefore, for asymmetric electro-
lytes the uncharged walls appear from a distance as if they
were charged, while this is not the case for totally symmetric
electrolytes. This has implications for the behavior of the
pressure for large separations between the walls, as discussed
in this paper.

Any kind of asymmetry of the electrolyte makes charge
separation to appear in the electrolyte outside an electroneu-
tral surface. Examples are 1:1 and 2:2 electrolytes where the
anions and cations have different strengths of the ion-wall
dispersion interactions. In this work we investigate cases
with polarizable anions and negligibly polarizable cations
(i.e., the cations are about as polarizable as water). The
strength of the dispersion interactions for the anions corre-
sponds approximately to iodide in water. The asymmetry
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makes charge-symmetric electrolytes with polarizable ions
and charge-asymmetric electrolytes to have several features
in common. Both behave in many respects as if the surfaces
had a charge.

In all cases with polarizable anions, a repulsive pressure
due to the ions is seen for intermediate to large wall-wall
separations. For small separations the pressure is still attrac-
tive in all cases. The point where the pressure changes be-
tween repulsive and attractive occurs at greater separations
for the 2:2 electrolyte than for the 1:1 electrolyte. The maxi-
mal repulsion is stronger for the monovalent case than for
the divalent.

The repulsive pressure seen for charge-asymmetric elec-
trolytes is stronger when the anions are polarizable than
when they are nonpolarizable. There is, however, a large
difference depending on if the anions are monovalent (2:1
case) or divalent (1:2 case). For monovalent anions the maxi-
mal repulsion is much stronger for the polarizable case than
the nonpolarizable, but for divalent anions there is not a large
difference.

One important conclusion is that dispersion forces acting
on ions of higher valency have a smaller effect than when
they act on ions of lower valency. In part, this can be ex-
plained by the presence of self-image charge repulsions
which are proportional to the square of the valency. These
repulsions are more effective in counteracting the dispersion
attraction to the surfaces for ions with high charge than those
with low charge. This shows that it is very important to in-
clude both image charge and ion-wall dispersion interactions
consistently in the theoretical treatment.

The results presented above show that physical phenom-
ena that are commonly neglected in theoretical treatment of
colloidal interactions have important implications for the in-
teraction pressure between walls, particularly at high salt
concentration. An important example is that an asymmetry of
the electrolyte is sufficient to give an appreciable repulsive
barrier under conditions where PB theory predicts a contri-
bution to the total pressure that is identically zero. For polar-
izable ions the barrier in the total pressure occurs at lower
concentrations than for nonpolarizable ions, in particular,
when the polarizable ions are monovalent. A large repulsive
barrier occurs for systems with a large degree of charge sepa-
ration in the electrolyte near the electroneutral surface, re-
gardless of whether the separation is caused by depletion or
enrichment of one ion species with respect to the other in the
immediate vicinity of the surface. This shows that repulsive
as well as attractive forces may give rise to wall-wall repul-
sion if they act asymmetrically on the cation and anion.
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APPENDIX A: LIMITING VALUES OF ION DENSITY
AND PRESSURE COMPONENTS FOR THIN
SLITS

Here we shall investigate the case of thin slits between
the electroneutral surfaces. We will consider the limit of
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D —2b, where only a monolayer of ions fits in the slit. We
first note that the density profiles are nonzero only in the
range |z|=D/2—b when D>2b and that they remain finite
when D —2b since the surfaces are uncharged and the elec-
trolyte in the slit is in equilibrium with a bulk electrolyte
solution. While the number of ions between the walls goes to
zero in this limit, the concentration remains finite. Both the
available volume in the slit and the number of ions go to
zero. (For charged surfaces the concentration profile of the
counterions must approach infinity in the same limit as the
number of counterions between the walls must remain finite
in this case due to electroneutrality.)

It is easy to see from the definitions of the pressure com-
ponents in Appendix B that P, P P and Eﬁi’p all
tend to zero in the limit D — 2b as they contain integrals over
a volume that goes to zero while the integrand remains finite.
For the same reason, the intrinsic excess chemical potential
(the part of the chemical potential that is due to ion-ion in-
teractions) of the ions in the slit goes to zero in this limit,
which leads to a simple expression for the ionic concentra-
tions in the same limit.”® We shall apply this kind of ap-
proach for our system and obtain a simple expression for the
density in the slit and for PL‘;‘;, which is proportional to the
total ionic concentration at the midplane, see Eq. (15).

Consider a binary electrolyte with mean chemical poten-
tial p. and mean activity coefficient . in the bulk. Without
loss of generality the activity coefficient for each ion species
in the bulk is taken to be equal to .. Equilibrium between
the bulk and the slit demands that the chemical potential for
species i satisfies

bulk =k TlIlD\3 bulk ]

= kT I[N ni(2)] + vi(2) + 4§°(2) - gAY, (AT
where \; is the de Broglie thermal wavelength, v,(z) is the
ion-wall interaction potential, u;*(z) is the intrinsic excess
chemical potential at position z in the slit, and AW is the
electrostatic potential difference between the slit and the bulk
solution needed to maintain electroneutrality in the slit.”’
Note that this potential difference does not affect electroneu-
tral combinations of anions and cations transferred between
the bulk and the slit, so - is the same everywhere, but each
individual ionic chemical potential w; in the slit is different
from its bulk value when AW # 0. It follows from Eq. (A1)
that the ion density profile in the slit is

vi(z) + ;7 (2) — q,A‘I’}

ni(2) ="y e p{

A2
KT (A2)
Since u;*(z)— 0 for all z when D—2b we obtain
(0) — g, AW
1(0) — ey exp| - 0= 9AY | (A3)

Now since electroneutrality demands that we must have
q.n,(0)=—g_n_(0) in this limit, it follows that v,(0)
g, AV=v_(0)-g_ AV, where we have used g,n""*=
—g_n®*, Thus, AY=[v,(0)-v_(0)]/[¢,—g_] and Eq. (A3)
can be written as
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q+v_<o>—q_v+<0)] (Ad)

ni(0) — "y eXP[—
(94— q)kgT

Finally we obtain from Eq. (15)

(¢ =g kT |
(A3)

lim P = kpT(n™™ + n™™) . exp[—
D—2b

which is also the limiting value of P*°" since the other com-
ponents are zero at D=2b.

APPENDIX B: EVALUATION OF THE WALL-WALL
INTERACTION PRESSURE

In this appendix we give explicit formulas for the calcu-
lation of the ionic pressure between the walls. At equilib-
rium, P*" (the perpendicular component of the ionic pressure
tensor) is equal everywhere in the slit, i.e., it has the same
value at any plane between the walls. Here, we shall consider
two possibilities: to calculate P at one of the walls and at
the midplane between the walls. The relationship between
the pressure and the distribution functions is different in the
two cases. If one chooses to evaluate P at one of the walls,
the following expression36 applies when the two walls are
equal:

Pion — kBTE nfontact 2 f dzn (Z)
i 2Esolv 0) € D/2

(9Vi-m(Z|D)
oD

[ Vf’iSp(D -2)
+

D2 D2 w X
_ E f dzf dz’J dkn(2)nj(z")h;(k,z,2" )k
1] D/2 -D/2 0
™ k,z,7'|D
S di (k22| ), B1)
oD

where the first term contains the contact density of ions at the
wall surface, o is the surface charge density of the wall (zero
in our case), and V¥*"(d)=B;/d* denotes the dispersion inter-
action between an ion and a single wall a distance d away, cf.
Eq. (7). In our case n{*"*“=n,(D/2-b) and the ion densities
are zero for |z|>D/2-b, so the integral limits can be
substituted by *(D/2-b). Equation (B1) is the so-called
contact theorem generalized to the presence of ion-wall
dispersion and image interactions.

If one instead chooses to evaluate the pressure at the
midplane between the walls one obtains a somewhat more
complicated expression. It is practical to subdivide P into
physically distinct contributions according to

Pion= Pi((i;l"" PiCO([)lul + Plon + P10n+ Pmn (BZ)

core disp>
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which are defined below [a similar subdivision is of course
possible also for Eq. (B1)].
Py is the kinetic (ideal) contribution to the pressure
10N

given by Eq. (15). PiS  and P'°" are the contributions to the

core
pressure due to electrostatic and hard-sphere interactions
across the midplane, respectively. In terms of the ionic dis-
. 37
tribution functions P, is given by

D/2 0 ©
P&, =- 2772 dz J dz’ f dRn(2)n(z")
-D/2 0

COUI(R 7.2 )

X hij(R,z,2 )R_T (B3)

and P is given by

core
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a 0
Pion. =27k T, J dzJ dz'n(2niz')(z-2z")
ij Y0 z-a

X gij([az - (z- Z’)z]l/z,z,Z’),

where the pair distribution function g;;=h;;+1 is evaluated at
the rim of the hard core exclusion zone of two ions in con-
tact. P°" measures the contact force component perpendicu-
larly to the midplane, which is expressed by the factor
z—z'. This makes P! go very quickly to zero when the slit
width goes to zero; core-core collisions will then eventually
only take place in the lateral direction along the plane.

The pressure due to image forces, Pf,{’, contains contri-

butions from both ion-wall and ion-ion interactions and is
given by37

(B4)

o™ (k,z,2'|D)

PO = 2 f dz f dz' f dkni(2)n;(z" Vhyi(k,z,2 h——"——
1] -D/2

D12 %
EJ dzJ dz’J dkn(2)n (2 Vhij(k, 2,2 )k
ij D/2 0 .

D/2

(9Vlm(Z|D) D/2

—2 f dzn(z)———-2 dzni(2)

[This expression replaces Eq. (17) of our previous paper,22

which contains some misprints. ]

Py is the pressure contribution due to the direct disper-

sion interactions between the ions and walls and is given by
IVIP(z+ D/2)
0z
Vs |z D/2|)

D12
iﬁ’;p— E f dzn(z)

(B6)

+EID/2dzn()

where, again, V}ﬁSp(d):Bi/ d* denotes the dispersion interac-
tion between an ion and a single wall.

The two ways of evaluating the pressure, Eq. (B1) on
one hand and Eq. (B2) together with Egs. (15) and (B3)-
(B6) on the other hand, are equivalent (this follows from the
Born-Green—Yvon equation). Which one of the two alterna-
tives to use is a matter of preference and numerical expedi-
ence. For charged surfaces the pressure evaluation at the
midplane is often numerically more reliable than at a wall
due to a near cancellation in Eq. (B1) between the term
—02/(2€,,(0)€y) and the other terms. In our case, where o
=0, this is not the case. Instead we find that Eq. (B1) is often
numerically more suitable for calculation of the total P "
than the sum of components in Eq. (B2). This is generally
the case when only repulsive forces act between the ions and
the walls. Therefore we use Eq. (B1) for the total pressure in
these cases. When there is attraction between ions and walls
a similar problem as in the charged case appears from can-

Jv"(z|D)
i -D/2 aD )

9z
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cellation between the third term in Eq. (B1) and the other
terms. When attractive dispersion forces are present the
“midplane formula,” Eq. (B2), is therefore often preferable.
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Abstract

Charge inversion is the phenomenon that an electric double layer contanescam-
terions than needed to compensate the surface charge. For colloitielepathis has the
consequence that the apparent surface charge, as inferre@lgotrophoresis or interaction
studies, has a sign opposite to that of the actual surface charge, olddigafiration. This
phenomenon has been known for over a century. According to the traalificterpretation,
the inversion is caused by (chemical) specific adsorption of ions. Howeeginning in the
early 80’s it has been predicted by a large number of workers thagehaversion should
occur as a consequence of many-body ion-ion correlations. Facgsbf sufficiently high
surface charge density in the presence of divalent or multivalentedons, charge inversion
is expected to be ubiquitous even in the absence of specific adsorptaiimgTis prediction
has proved difficult because chemical specific adsorption is a very carplhenomenon and
can outweigh the effects of ion correlations. So far, no experimenttdragshave been thor-
oughly investigated where strong specific adsorption coulanbabiguously ruled out under
conditions where charge inversion due to ion-ion correlations is predieiee, we solve this
problem by studying the mercury/agueous MgSQierface. This system has the advantage
that highly accurate double layer data are available for a variety of conslitiocluding some
where chemical specific adsorption is known to be absent (or at legstireak). From precise
data for this system [Harrison, J. A.; Randles, J. E. B.; Schiffrin, [J. Blectroanal. Chem.
197Q 25, 197] one can establish the ionic components of charge and suhfamge density.
To extract quantitative theoretical predictions about the consequeh@@sion correlations,
we use the highly accurate anisotropic hypernetted chain (AHNC) methaatewdn-ion cor-
relations in the double layer are taken into account in a fully self-consisteimibn. It is found
that for moderate to large negative surface charge densities and fogtoconcentration, the
variation in the ionic components of charge with the surface charge deasitp @ large extent
be quantitatively explained by enrichment of ions close to the surface doa-ion correla-
tions. That chemical specific adsorption of #gs negligible is supported by considering the
properties of the double layer close to the electrocapillary maximum. In vievedatbe body

of evidence indicating that the counterions tend to specifically adsorb andéheury surface
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for positive polarization but not for negative, the agreement between theory gratiment
for negative surface charge constitutes strong evidence for ionsioelations as the origin of

charge inversion.

Keywords: electric double layers, surface and colloid science, primitigdel electrolytes,

image charges, overcharging, charge reversal

1 Introduction

A phenomenon commonly seen in the study of colloids andfexes is charge inversion, also
called overcharging. This term refers to the situation wh®ore counterions are attracted to a
charged surface than needed to neutralize the surfaceech&gcause of electroneutrality this
leads to positive adsorption of co-ions, usually in a redieyond the adsorbed counterions. Thus,
the roles of counterions and co-ions appear inverted whewed from a point sufficiently far
from the surface. The traditional way of establishing themgimenon is by comparing the elec-
trokinetic charge with the surface charge. Electrokiraiyconly the outer part of the double layer
is measured (outside the “slip plane”). When the electrdlidneharge and bare surface charge
have opposite signs, charge inversion has occurred. Thisugficient but not a necessary con-
dition: charge inversion in the sense in which the term iglds&e can occur without reversal in
sign of the electrokinetic charge. Some aspects of chavgesion are indirectly reflected in col-
loid interaction; it gives rise to so-called “irregular &=" in colloid stability, a phenomenon that
has recently be rediscovered in physics and renamed “rargrdondensation”. This is the phe-
nomenon that ion condensation on (mostly) polyelectraslyiest disappears and then re-appears
upon some change in conditions.

Stating the phenomenon begs the question what the originogencharging. Traditionally, it
is attributed to “specific adsorption”, which is due to anraf§i of non-electrostatic origin between
ions and a surface. If this affinity is strong enough, it cabwaigh electrostatic repulsion and

hence ions can adsorb against an electric field. The “chéhaddgin of such forces can range



from strong chemical bonding, complexation, ligand exgearhydrophobic bonding to other,
rather weak, water structure-mediated attractions. Athifis very well established in colloid and
interface sciencé:? However, computer simulations as well as theory for sim#eteolytes near
charged surfaces suggest that overcharging can ariseretreabsence of any chemical attraction
between ions and surfacés’ In such treatments, where only electrostatic interactarg short-
range repulsions are taken into account, the driving fascéhe extra adsorption is the lowering of
the local excess chemical potential close to the surfacalyndile to many-body correlations and,
to some extent, excluded volume effects due to ionic sizth(ae aspects of ion-ion correlations
in the electric double layer). For agueous systems at roompeeature electrostatic correlations
are important predominantly for divalent and multivalelectrolytes.

The resulting state of the art is that two alternative intetgtions for the same phenomenon
are available. In a sense, this is a luxury problem. The tteyr@tives are not mutually exclusive;
the question is rather which mechanism, if any one, is mopbmant for a system under given
conditions. That overchargingan be explained by one of these mechanisms, does not mean that
it is caused in that way. One must show that the proposed adsomp#gchanism is in action and
is sufficiently strong to explain the experimental obsaoret. What is generally done in colloid
and interface science is to interpret any adsorption thanaiabe explained by traditional diffuse
double layer theory in terms of an ion-free layer and chehsipacific adsorption.

For the inquiring academic mind the option of the ion-catien interpretation may look more
attractive because of its mosd initio nature, but so far it has not been unequivocally shown
by experiments that this mechanism really is dominant in @asge. In fact, most of the avalil-
able experimental evidence points to chemical specificrptisa. At best there are observations
that might have been caused by ion-ion correlations, bus doé constitute rigorous tests of that
mechanism. By way of illustration, in two recent reviéWsa variety of overcharging cases were
collected and attributed to ion-ion correlations but wheleser inspection showed that chemi-
cal specific adsorption was the driving force. Chemical phegma that may easily outweigh the

effects of correlations include hydrophobic bonding, aggon of hydrolyzing species (hydroly-



sis can reduce the valency but increase the adsorbabititypdsorption of polymeric substances
(adsorption energies per segment of only 0.2 -k3B suffice to let the chain attach almost irre-
versibly). Recent experiments that have been invoked asdtidns for overcharging by ion-ion
correlations®12are not clear-cut either, because either or both the suctaaeyes and electroki-
netic potential could not be controlled, let alone measuaed/or the pH was not systematically
studied, so that the hydrolysis state of the multivalentd@pecies was not rigorously established.
Similar comments can be given about interpretations of exyatal data based on the Poisson-
Boltzmann (PB) mean field approximation. In this approximatioe statistical mechanical treat-
ment of the theoretical model is simplified by replacing tb&eptial of mean force for an ion with
the mean electrostatic potential times the charge of an iblese and in what follows we make
a sharp distinction between the model for a system, i.e. $earaed form of the intermolecular
interactions, and the approximations made when evalugttiegroperties of the model. The PB
approach carries the cost that many features of the modeé(tlescribed later) are not accurately
taken into account. The range of applicability of Gouy-ChapniGC) theory, which is the ap-
plication of the PB approximation to planar surfaces, ibeatestricted. As suggested by a wide
range of experiments, this approximation is valid only fowIsurface charge densities and low
electrolyte concentrations. The vast majority of all expents apply to ranges far beyond these
limits, so that improvements of the theory are mandatorgsehimprovements fall into two prin-
cipal classes: improvements of the approximations madkertreatment of a given model and
changes in the model itself. The most common member of trenskedass is the incorporation of
a Stern layett? entailing corrections for counterion size and/or specifiscaption in a first layer,
adjacent to the surface, only. In many cases this is a queetafe improvement, indicating that it
is not the approximations of CG theory but the assumptionstahe ion-surface interactions that
are mainly at fault in these cases. Typically, the ion-swgfateractions have a range that is much
shorter than the thickness of the double layer. It is for tb&son that the inclusion of these inter-
actions as a Stern layer is often appropriate. Because G@yttseoot exact, however, deviations

between experimental data and GC predictions dmemsssarily mean that one must invoke Stern



type mechanisms to explain discrepancies between thedrgxgeriment: the assumptions made
in the model of the system may be sufficiently close to readityl the deviations from experiments
may instead be caused by the approximations inherent in &ythin fact, ion-ion correlations,
that are entirely neglected in the GC approximation, areetiones important for the behavior of
simple electrolytes. For instance, this is the case whereldetrostatic interactions are strong
and/or the electrolyte concentration is high. In these sasés improvements of the theoretical
treatment of the diffuse part of the double layer that arelede

Any kind of asymmetry between anions and cations (incluhmgnot limited to the magnitude
of their charges) causes differences in ion-ion correfatioetween the two ionic species that can
lead to appreciable effects when the asymmetry is suffigidatge. For instance, even outside
an uncharged inert surface, e.g. a hard wall, there appeciniarge separation for asymmetric
electrolytes even in absence of any specific ion adsorptiimerefore an electric double layer
will be spontaneously formed. lon correlations could impiple account for the influence of
electrolytes on the location of the point of zero charge, anpimenon that is usually attributed
exclusively to specific chemical adsorption, dependinghendetails of the system. As we can
see from these examples, the term “specific adsorption” dsoiption due to direct surface-ion
interactions is somewhat unfortunate because adsorptiertalion-ion correlations can also be
specific in the sense that it depends on the species of iossmireHowever, as the term has long
been in use as referring to adsorption due to direct chenmtaiactions between the ions and the
surface, we will nevertheless use it here in the latter sdnsEases where ambiguity may arise we
shall write “chemical specific adsorption,” etc.

Although itis not direct evidence of ion adsorption due te-ion correlations, the possible rel-
evance of such correlations has been demonstrated by theireezent of attractive double layer
interaction between surfaces with equal surface chargsitgefi-1 This interaction is attractive
for small surface separations in presence of divalent esionts, while it is repulsive at any dis-
tance for monovalent ions. The attraction can be explainedléctrostatic ion-ion correlation

attraction between the charged surfaces (neglected in Bhapproximation)!’~1° and is often



much stronger than any reasonable van der Waals interad@ibriously, GC mean field theory
cannot account for that phenomenon.

The connection to the phenomenon of charge inversion isttfgaswitch from repulsion to
attraction with increase in counterion valency is caused laygedecrease in the repulsive contri-
butions to the double layer interaction, that makes the attractbreetation interaction dominant.
This occurs because divalent counterions are much monegtyrattracted to the surface region
than monovalent ones, which gives rise to a much lower ioaicentration in the middle be-
tween the surfaces in the divalent case. The dominance attizetive forces can occur when the
number of adsorbed counterions is less than what is regtoretharge inversion, so appearance
of double layer attraction can happen under milder conaitioNote that the ion-ion correlation
attraction between the surfaces is not very different fonavalent and divalent ions, so it is not a
variation in the attractive contribution to the force thapkains the switcht’-1% According to the
theoretical treatment the ion-ion correlations cause Hwthattractive contribution to the double
layer interaction and the strong attraction of multivaliemts to the surfaces.

Again, the interpretation of the experiments is not unambigs because ions can be attracted to
the surfaces by chemical specific adsorption. When the tweodnting surfaces do not have exactly
the same charge density and distribution, induction in doatlon with charge regulation can also
cause attraction& However, in this latter way double layer attractions cartr®@ccounted for
when the two surfaces are identical. Then the question ishghédentity of the two surfaces is
established and whether the surface charge density is mighhgé for the attraction due to ion
correlations to become substantial. It is a pity in many ekthtypes of experiments the surface
charge was insufficiently controlled, implying that theuisss not yet fully resolved.

A system where the action of ion correlations can unequilypba shown to be the dominant
factor for charge inversion has to satisfy a number of can#s. The surface charge must be
accurately measurable and high, multivalent ions must baddhat do not adsorb chemically
and the hydrolysis state of these ions (determined by thenpltht be well-established. These

are severe restrictions; they exclude at least two of theswal model systems of colloid science:



oxides are too complex because the surface charge and thettg/drolysis are simultaneously
changing with pH, and silver iodide because high surfacegesaare not attainable.

One system that does satisfy these requirements is the m&gueous electrolyte interface.
From an experimental standpoint, this system has many &lyes1 By employing dropping mer-
cury electrodes the surface is continually rejuvenatedcamdequently very clean. For this inter-
face, using a Lippmann electrometer, the interfacial tamsan readily be measured as a function
of the applied potential. Differentiation gives the sudaharge density from the Lippmann equa-
tion, and the result can be confirmed by integration of diyecteasured capacitances, using a
bridge method?! Consequently, very high quality data can be obtained. Feetheasons this sys-
tem has been widely studied experimentally. Because thg@elwarthe surface is controlled by an
externally applied potential, the surface charge densitltae concentration and composition of
the electrolyte can be varied independently. From the sart@nsion and charge a wealth of infor-
mation can be obtained via relations obtained from the Galolssrption isotherm. Particularly, the
ionic components of charge are directly obtainable (seé@e2) and these quantities will play
a central role in our analysis. Another relevant advantaggat relatively high surface charges
are obtainable by polarization of the interface (absendeao&daic current). Finally, the chemi-
cal specific adsorption of both cations and anions is gelydaal at sufficiently negative surface
charge density? though many anions adsorb specifically for positive surtd@ge. Hence, for a
suitable electrolyte, all elements for anticipating a ¢éoong theoretical interpretation of charge
inversion in terms of ion correlations are fulfilled.

Here, we attempt to clarify the role of ion-ion correlation&lectrical double layers by model-
ing the mercury/agueous MgQ®olution interface and comparing this model with publisdath
for the same system. This constitutes a quantitative tetfteoiccuracy of the model predictions,
including but not limited to the prediction that charge irsien should occur for double layers with
divalent counterions at sufficiently high surface chargesitees. While there exists a vast body of
experimental data for weakly coupled system, i.e. for llssand a fair amount of data for 2:1

and 1:2 salts, experimental data for systems characteygetronger ionic interactions, such as



3:1 and 2:2 salts, are scarce. In fact, the only example ohgoehensive, high quality data set
for a 2:2 salt that we were able to find were the electrocapiimd capacitance measurements by

Harrison, Randles and Schiffd&?4on MgSQ, solutions.

2 Electrocapillary Measurements

Let us consider a system consisting of a dropping mercurgtrelde and a reference electrode
immersed in a solution of a binary salt. The latter electrigsdeversible to either the cation-{ or

the anion ¢). For this system the Gibbs adsorption isotherm réads
—dy = 0dE + dp= (1)

wherey is the interfacial tensiong is the surface charge densiBy. is the electrostatic potential
difference between the mercury electrode and the referdacarode?® I'; is the Gibbs adsorption
excess for specigselative to the dividing surface for the solvent guid't is the chemical potential
of the salt. The subscript onE indicates that the reference electrode is reversible beedations
or anions.

The surface charge density is related to the interfaciagioerand the electrostatic potential by

the well known Lippmann equation

: (2)

where subscript$ andu'! indicate that the temperature and the chemical potentthleo$alt are
to be held constant. The differential capacitari¢as the derivative of the surface charge density

with respect to the applied potential,

C=—| . (3)




As bothy andC are accessible from experiments where the applied potesttntrolled, the
surface charge density can be obtained by two routes thatdependent apart from an integration
constant. The range of surface charge densities that isimyg&ally available extends between
about—20 to 25 puC/cr.

The surface excess of the ionic species with respect to whieheference electrode ot

reversible can be obtained as
oy
— , (4)
st
oH TE.

r:'::

The components of charge, i.e. the individual contributions to the counterchargé® surface

that is due to adsorption or depletion of ion spec¢jean be defined from the surface excess as
Or=2Z:F Ty, (5)

whereZ_. is the valency of the species of ion, with sign, &hds Faraday’s constant. Electroneu-
trality requires that

o=—(0y+0.). (6)

Complete information about the components of charge for arpielectrolyte can therefore be
obtained from experiments by use of reference electrodessible to one of the ionic species.

The components of charge are directly related to the iomcentration profiles through
0. =Z.F / . (2) — n"Yke(z— 29V)] dz, 7)

wheren;(z) is the concentration profile of speciegis the coordinate perpendicular to the surface,
O(z— V) is one for positive arguments and zero for negative argusramtz™"V is the coordinate
of the Gibbs plane for the solvent. For this reason elecpilaay measurements are suitable for

testing theoretical predictions derived from the concdidn profiles.
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3 Modeling of the Double Layer

In this work we model the electrical double layer by specifyill relevant interactions in the
system and solving the resulting statistical-mechanicadleh Such a model is defined by the
assumptions about the potentials describing all the iotieras in the system. These assumptions
may be regarded as approximations to the true interactitenpals. What we refer to below as
“approximations” are of another type: approximations maasimplify the non-trivial problem
of deriving thermodynamic observables from a given set tdraction potentials. In order to
be able to make a comparison with Gouy-Chapman-Stern (E@8pry we adopt a model that
is based on the same physical assumptions about the inbeiat the system. The difference
between our approach and the GCS theory lies entirely in thkemetical approximations made
in the treatment of the model. In what follows, we will digjiish between the “diffuse” and the
“inner” parts of the double layer in essentially the same waays done within GCS theory. We
acknowledge that this distinction is somewhat artificialaicomplete treatment of the problem all
the details of the continuous transition between aquedusi@o and liquid metal would be taken
into account in the form of concentration profiles of all Sps@resent.

The fundamental assumptions in the model that we employhatethe solvent behaves as
a dielectric continuum solely characterized by its digieatonstant. Each ion is spherical, has a
short-range repulsive interaction potential (we will useed core potential) and has a point charge
at the center. The mercury surface is assumed to be smoothaaeda uniformly smeared out
surface charge density. Here we will only consider planar surfaces. The interiothaf mercury
Is a assumed to be a continuum with an infinite permittivitycsiit is a conductor. The surface
then constitutes a dielectric discontinuity and the ionthi@electrolyte experience so-called image
charge forces from the surface polarization charge.

The PB approximation, which is used in GCS theory to treat iffasg¢ part of the double
layer, ignores ion-ion correlatiorfd. Such correlations include the effects of all kinds of ion-io
interactions, both electrostatic ones and those causediyero ion sizes (core-core collisions).

According to the PB approximation, the ions are treated asgbgoint-like and the electrostatic
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interactions amongst the ions are solely due to the elg¢atropotential from the average charge
distribution of the double layer (the “mean electrostatitemtial”). In the underlying model it is,
however, essential that ions have non-zero sizes, bec#usevise the model would fall victim
to the “Coulomb catastrophe”, where negative and positivatpzharges would fall on top of
each other, resulting in the unphysical situation of infimegative potential energy. Because all
interactions except electrostatic ones are neglecte@iGapproximation a large class of models
will give identical results when treated in that approximoat In GCS theory, the properties of
diffuse double layers are unaffected by the excluded ionmel, for instance. Some effects of
finite ion size are contained the Stern layer, but as suchwliepnly affect the properties of the
inner layer.

The presence of a dielectric discontinuity at the planarfate does not affect the structure of
the diffuse part of a GCS double layer. One can show that teedlaranslational symmetry of the
charge distributions implies that the mean electrostagid in the diffuse layer originating from
the surface region (including the polarization charge$y dapends on the total amount of charge
per unit area of the surface and the dielectric constanteo$tivent. Expressed in terms of image
charges, the field in the diffuse layer due to the image of thieesplanar double layer is zero (the
total charge of the image is zero). The self-image intevastdf the ions cannot be introduced into
the Boltzmann factor simply as aa hoc “correction” to the GC theory since the neglect of the
ion-ion correlations implies that the screening of the imabarge will not be taken into account.
In order to treat this screening consistently it is essétité the interaction between ions is taken
into account on a level beyond PB mean field theory. Ref. 28 efedlences therein contain early
attempts to do so.

In GCS theory all deviations from ideality are contained mittnic interactions with the mean
electric field. As the mean field in bulk is zero the bulk elelstie is treated as an ideal gas. We
therefore expect deviations from GCS theory if the deviatiom ideality in bulk is large. Close to
a charged surface the concentration of counterions is krge for dilute electrolyte solutions. If

the counterions interact strongly, the force on an ion indiwgble layer is not well represented by
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the force from the mean electric field because each ion signifiiy perturbs its local environment,
i.e. ion-ion correlations are important, and we expectatéms from GCS theory also in this case.

When ion-ion correlations are taken into account in the tneat of the diffuse layer, we will
use the term “ion-correlation (IC) theory” for any accurgdpi@ach irrespectively of how (and if)
a Stern layer is included in the model. To emphasize thatra &tgerisincluded we use the term
“ion-correlation-Stern (ICS) theory”. This is similar toettuse of the term “GC theory” for a PB
mean field treatment of the diffuse part of the double layer"&CS theory” for a treatment that
includes a Stern layer.

For any comparison between ICS and GCS theory to be meaninglusame assumptions
about the Stern layer must be made in both theories. As our algéctive is to study the effects
of ion-ion correlations in the diffuse layer, we will modek#uation where the ion-surface inter-
actions are as simple as possible, i.e. where specific adsoirp negligible. In the GCS as well
as the ICS theory, the system should then have (at most) ainéerlayer, a zeroth order Stern
layer. When we specifically refer to GCS theory with a zerotleo&tern layer we append a zero
in parenthesis to the acronym. That is, we use the acronym @@S¢enote GCS theory with the
constraint that only a zeroth order Stern layer is allowenhil&rly, we denote ICS theory with the
Stern layer limited to zeroth order as ICS(0).

It is important to keep in mind that the inclusion of a Steryeladoes in no way constitute a
correction to the mathematical approximations used inrggiinent of the diffuse part of the dou-
ble layer but is a separate model assumption. Therefore/aliaity of any conclusion regarding
the Stern layer hinges on the validity of the theory useddattthe diffuse part of the double layer.
The comparison between the ICS(0) theory and experimentiafolaa particular system therefore
serves to establish whether there is any need to introduce@ sophisticated Stern layer for that
system. The conclusion of such an analysis is of course depe¢on the quality of the model for
the diffuse double layer and may be subject to change ondurédfinement of that model. Never-
theless we expect that as long as the ion model includesygagonable accuracy, the interactions

that are important in real systems, the qualitative comatusvill be robust. In order to ensure
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that this is the case we use ion sizes that gives reasonatderagnt with experimental activity
coefficients when the model is applied to the bulk solutie® Section 4.4.

With the assumption of a charge-free Stern layer, the egpstielating the inner and diffuse
parts of the double layer in GCS theory, see ref. 1, are siragliéind take on the form of the
equations below, that are valid for both ICS(0) and GCS(0)rthda the general case where the
Stern layerdoes contain charge one must distinguish between the chargesiitter,o', and in
the charge in diffusegd, parts of the double layer. These are related to the surfamee density
by 0 = —(d' + a¥). As g' is always zero in this work, the need for this symbol is eliatéd and
the only surface charge density that needs to be consideredTo keep the number of symbols
as small as possible, all equations below are thereforgewrih terms ofo.

Let us select a coordinate system with thaxis perpendicular to the mercury interface and
with the origin at the plane of closest approach of the iortersrto the surface, at the coordinate
7" so that by this conventiod® = 0. The surface charge is assumed to be located at a plane
atz=z°. We make no assumption abat other than thar® < Z°". In the case where image
charges are considered we place the dielectric discontiatithe coordinate®®, see Figure 1.
The zeroth order Stern layer has a width 2" — 729V|,29 wherez" is the location of the Gibbs

surface of the solvent, and its contributions to the comptsef charge are given by
i bulk /—ion Iv

Note thatz®" is not knowna priori and must be determined from experimental data.

The diffuse parts of the components of charge are given by
of =Z:F [ (n(z) -z (©)
The inner and diffuse contributions to the components ofgdhare additive,
oL =0, +ad9, (10)

14



as a consequence of the separation of the inner and diffute gfahe double layer by a sharp
dividing surface. Note that as we only have a zeroth ordenSéger in the GCS(0) and ICS(0)
theories, we have

o=—(0%+a%). (11)
sinceaﬂr +0' = g' =0. In the general case, Equation (6) has to be used.
The diffuse potentialy?, i.e. the difference in mean electrostatic potential betwene point
of closest approach for the ions to the surface and a poiheibtlk solution, is given by

di__F <, [7h
Yo = ZZ,/O ni(z) zdz. (12)

€& 4

This the same expression as in GC theory but the concemtrptafiles are in general different
from the GC concentration profiles. In the ICS(0) theory tHiude layer capacitance is given by

cd ™ do- (13)

This expression is valid also in GCS(0) theory, bat in the general case of GCS theory where it
has to be replaced by eq. (3.6.33) of ref. 1. In the currenkwtee differential capacitand@® for
the ICS(0) theory is calculated numerically as a finite déffere ratio from the variation i due

to a small change . The capacitances of the charge-free inner and diffuss pathe double

layer act as capacitors in series, so that

1 1 1
=4

c—o o (14)

whereC' is the capacitance of the inner layer.
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4 Model and Method

4.1 The Primitive Model Interaction Potential

The primitive model (PM) for electrolyte solutions is definigy the pair interaction potential;,
wherei and|j are species indices, given by

uij = U"®+ Ui - ulf! (15)

whereu%ﬁ“ is the image charge potential, that is relevant only nearfacel (see below)7(r) is

the hard core potential, that is infinite fox d;; and zero otherwise, amﬁ-ou' (r) is the Coulomb

potential. The latter is given in units & T (with B = 1/kgT, wherekg is Boltzmann’s constant)

by
ZZ;€; ZZjlg
Coul _ 1<) |
B (1) AmtegokaT r r’ (16)
whereZ, | =1, j, is the ionic valency (with sign) ang is the unit charge. In the right hand side

(rhs) we have introduced the Bjerrum lengi— e%/(4neeokBT), i.e. the distance between unit
charges for which their interaction energy is equalgd. The value of the the relative permittivity
¢ (dielectric constant) is taken as that of the pure solvent. viater at 25°C it is3C 78.36 and
therefore the Bjerrum length is 0.715 nm.

The contributioru'™ to the pair potential is due to the fact that the interfaceolaized by the
presence of ions both due to shifts in electron density atrteecury surface and orientations of
water molecules. It is zero in bulk solution. In models witkraarp dielectric discontinuity at a
planar interface the potential from the polarization isilgdaseated by the method of images. For
two ions located at coordinatesg andr,, wherer, = (xy,Yv, 2, ), the contribution to the ion-ion
pair potential from the image charges of the ions is given by

epZiZjlg
(22 +2p — 22919)2 4 RE,|Y/2

BUM(ry,r2) = (17)
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whereRy2 = [(x1 — X2)? + (y1 — y2)2]V/2 is the lateral distancesp = (£ — &)/ (€ + &) and &,

is the relative permittivity of the wall material. For a carmdor such as a meta,, is infinite
andep = —1. Unless otherwise stated we ta#¥ = —0.3 nm, which corresponds roughly the
diameter of a water molecule, in all cases where image changeconsidered.

When the PM is applied to interfacial systems the interfacetbde modeled as well as the
ions. The approach that is applicable to ICS(0) theory is somae that the surface is a uniformly
charged plane that is impenetrable to the ions. It is likblgt tthe mercury/water interface at
negative polarization is very close to this idealizatios tlde excess charge on the mercury then

stems from an excess of electrons. The ion-wall interadgi@iven by
Vi = Vicore+ ViCouI + viim, (18)

where the ion-"hard wall” interaction potentiaf®®(z) is infinite wherz < Z°" and zero otherwise.
We have here assumed that that anions and cations can apgheasurface equally closely, a
constraint that we shall relax in Section 5.3.3. The eletatic interaction energy“® (z) of the
ions with the surface charge densityin a plane located & is given by

Ziego

Coul _ 0
BYEM (@) = — 5 177 (19)

Note that since? < Z°" the value ofz? does not affect the properties of the diffuse part of the
double layer as all such values gives rise to the same fortezch ion there. The terl\vﬂm is
the one-body image contribution to the interaction pot#nthe self-image interaction, i.e. the

interaction between each ion and its own image charge

: 2|
punz =2 5% (20)

It is of course far from certain that the forces between anabod the interface are well repre-

sented by the continuum picture that forms the basis for tathod of images, but this level of
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sophistication is commensurate with the assumptions amttén the PM so it is considered here.

4.2 GC Theory for the Diffuse Layer

The GC theory may be regarded as an approximate theory fargagment of the PM. In this
approximation the PM is indistinguishable from other merslzd a wider class of models where
the interactions between ions are given by the sum of the @Gdufmotential and some short-range
potential. This is so because only the electrostatic iotemas contribute to the mean field. In
the GC theory the effect of the dielectric boundary dropsfoun the treatment of the planar
diffuse double layer due to the symmetry of the charge tistion, as noted in Section 3. For
completeness, the GC theory expressions used in GCS(Oytfe@mome relevant quantities are
presented and briefly discussed in this section. The restdtgiven here as functions of the bare
surface charge density for easy comparison with the ICS(0) theory.

In GC theory forZ: Z electrolytes, the diffuse layer potentiaf as a function of surface charge
density is

p* = 2 sinn(po) = 28 ([(po)? + 142+ po) (21)

wherep = (8s5on?KRT)~1/2, Ris the gas constari, is the absolute temperaturé“¥ is the bulk
concentration of salt and is the absolute value of the ionic valency. In the case ofthevcder
Stern layer the surface charge dengitgan be identified with the corresponding quantity in eq.
(2). The expression would have to be modified to be valid inpttesence of ionic charges in the
Stern layer, see ref. 1.

The capacitance corresponding to eq. (21) is given by
CY = egok[(po)? + 1] Y/2 (22)

wheree is the relative permittivity of the solvengy is the permittivity of vacuum and is the
inverse Debye length as defined by = 2(ZF )?n™K/(£59RT). At the point of zero charge the

capacitance isggk Whereas at high surface charge densities it approadiespo|. The valencies
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of the ions of the electrolyte only enters the expressiorkvia

The components of charge from the diffuse laygt, are in the GC theory given by
1
pot =+ ([(po)* + V25 po - 1). (23)

Very notably, for symmetric electrolytes they do not dependhe valencies of the ions. Thus,
GC theory predicts that the components of charge are fultgrdened by the bulk electrolyte
concentration and surface charge density, whatever tle@ewlof the electrolyte. At the point of
zero charge the components of charge are both zero, whdrbagaositivepo it follows that
pod ~ —(Jpa| —1/2) andpad ~ —1/2. For high negative surface charge densipe$ ~ 1,2
and poﬂ ~ |po| —1/2. Another way to express these relations for aqueous sgs&tmom
temperature is to say that when the concentration is exguleissM, the component of charge
for the co-ions will approach a plateau value-edign(o) 5.866(n®%)1/2 nC/cn? as the surface
charge density increasésThus, in the PB approximation there is always depletion efors

in the diffuse part of the double layer near charged surfacesless counterions than needed to
neutralize the surface charge. At the point of zero chargeetls neither excess nor depletion of
salt; small increments of charge are compensated on a 50888&oby positive adsorption of one

ion type of ion and negative adsorption of the other.

4.3 The AHNC Method for Calculation in the lon Correlation Theory

Any method in statistical mechanics that treats ion-iomedations with sufficient accuracy can be
used to extract the true predictions of IC theory. In thiskwee use the anisotropic hypernetted
chain (AHNC) method-8-3*which is a procedure for the calculation of pair correlationctions
and concentration profiles of an inhomogeneous fluid seisistently within the HNC approxima-
tion for pair correlation functions. Close to a surface thie parrelation functions are anisotropic,
which is taken into account in the AHNC method.

In the AHNC method, the Ornstein-Zernike equation for inlegeneous fluids is solved nu-
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merically by iteration for a trial set of concentration ples, which gives the correlation functions.
A new set of concentration profiles is then calculated from elquilibrium condition of equal

chemical potential everywhere that can be written as

V@) -tk

bul ke — kgT ’ (24)

ni(z) =n;

where1®(z) is the excess chemical potentialszatalculated from the pair correlation functions

and the trial profiles, ang® ™'

Is the chemical potential in bulk. Here one utilizes the thett

in the HNC approximatiom™ can be expressed as a simple, known functional of theseidmsct
New trial profiles are thus obtained and the procedure iatgeruntil the correlation functions and
concentration profiles are fully self-consistent. In thisrkwthe concentration profiles and corre-
lation functions are calculated for an electrolyte solutio a slit between two parallel, identical
walls that are sufficiently far from each other so that theisoh in the middle of the slit is very
close to bulk conditions.

So far, the AHNC method has been tested against simulatimnseiveral systems and in
most cases it shows excellent agreemé@nf-32-34Deviations between AHNC and simulations
are found (i) for very high ionic densities that occur logatlose to the wall for large surface
charge densities or when the bulk concentration is very aigh(ii) for situations with high elec-
trostatic coupling and low bulk concentration, where theGH&hjuation has been showmot to
have a solution for the PM.

In case (i) the effects of short-range repulsions betweantesions become very important and
the agreement between AHNC calculations and simulationglémtical systems are qualitative
rather than quantitative. In the present work this shoriogns expected to be of minor importance
as the surface charge densities where this discrepancypmiamt are not reached in this work.
Should it be necessary, this problem can be minimized byoripg the closure, for instance by
using a reference bridge function as done in ref. 34.

Failing (ii) is relevant in this case as the 2:2 system with iither small ion sizes considered
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here is sufficiently strongly coupled for us to expect thatréhis a concentration range in which
no solution exists. In effect, this places a lower limit o ttange of bulk concentrations for
which convergent solutions can be found. The boundariekisfcbncentration range have been
thoroughly investigatet? in the PM for bulk electrolytes with anions and cations ofa&gize (the
“restricted primitive model”). The boundaries applicalibe inhomogeneous PM systems with
unequal ionic sizes are, however, not known.

For the MgSQ solutions considered in this work we were able to obtain HNlQtgnNs for the
bulk electrolyte down to about 0.14 M. For the inhomogenesyssem no solution could be found
for the system in equilibrium with a 0.2 M bulk electrolytehieh is probably caused by the fact
that the local concentration near the surface becomes sthivhe regime in which there is no
solution is entered. (For the system with larger ions, cfcti®a 5.3.2, HNC solutions could be
obtained for lower concentrations.) Since we limit oursslto bulk concentrations above 0.5 M,

the results from the AHNC method should be very accurate.

4.4 Modeling of MgSQ, by the Primitive Model

As stated in Section 3 we need to determine reliable valueshf® ion-ion hard core contact
distancedd;j (the “ion sizes”) in the PM in a way that is independent of tlesatiption of the
double layer. We therefore turn to calculations of the #gtigoefficients of bulk solutions of
MgSO;.

The expectation is that, _ is by far the most critical distance and that small deviatiord,
andd__ are relatively unimportant, at least for volume fractionattare far from close packing.
This is so becaus#, _ has a strong effect on the “ion pairing” between anions atidicawhereas
the sizes associated with like-charged pairs are less tanpdnecause the Coulomb repulsion, at
least for volume fractions that are not too large. Considgtitat our aim is not perfection, but
merely adequacy, in the description of the ion-ion intecss, we make the assumption that the
radii are pairwise additive in order to limit the number ofusiable parameters. The diameter of

the aniond__, is taken to be equal to the crystallographic diam@tendd.._ is used as the fitting
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parameter. The diameter of the catidn,, is then calculated frord, — = (d;+ +d__)/2.

The criterion for our choice dl, _ is agreement between experimedtand theoretical (PM)
values of the mean activity coefficient,, as a function of electrolyte concentration. The theo-
retical f.. is calculated in the hypernetted chain (HNC) approximatmmbiulk electrolytes. The
range of concentrations considered is between 0.20 and 2[Zekkities from ref. 38 are used to
convert the experimental data from Lewis-Randall (molalsorration) scale to McMillan-Mayer
(molar concentration) scale, appropriate for the PM, atiogrto the procedure given in ref. 39.
We find that the diameters$,; | = 0.30,d__ = 0.46 andd,_ = 0.38 nm give the activity coeffi-
cient in good agreement with the experimental values, sger€&i2 where results for three values
of d, _ are shown. As can be seen, the selected value of 0.38 nm bwéest agreement for low
concentrations, that must be given most weight in the comaias it is for low concentrations
that the assumptions that defines the PM can reasonably leetedpto be justified. The osmotic
coefficients are in comparable agreement with experimeiaita (not shown). For the upper end
of the concentration range the experimenitaldata lie between the 0.38 and 0.355 nm curves,
indicating that giving more weight to this region would ri$a a slightly smaller cation diameter
than the selected value. From these results it is clear, Vewthatd, — should not exceed 0.38
nm.

The choice of the excess chemical potentials in the form t¥igccoefficients, i.e. u™ =
ksT In f;, as the bulk properties to be used in the selection critdnothe ion model is justified
by the fact that the concentration profiles are inextricdioljyed with the local excess chemical
potential through the equilibrium condition of equal cheatipotential everywhere, eq. (24). We
argue that by ensuring that the excess chemical potentiaéafalt model is approximately correct
in bulk, we improve the chances that it will give realistimmcentration profiles. This criterion is
also somewhat similar to the thermodynamic consistenegran derived in ref. 40.

While an acceptable agreement with bulk thermodynamic datertainly a necessary criterion
for accepting an electrolyte model as realistic, it is noutiiGgent one. The somewhat limited

agreement of the present model with bulk thermodynamicdia¢a not imply that the PM gives a
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detailed representation of the short-range interactidwdsen ions. For this reason we emphasize
that the ion diameters that give the best agreement witimibeynamic data need not reflect the
actual, geometric sizes of the hydrated ions.

The value ford, . = 0.30 nm obtained here is not transferable between differagnesium
salts. For the halides, for instanak,; around 0.6 nm gives reasonable agreement with experi-
ments* That the optimum M§" radius differ between salts of different valence type tHates
the fact that the ion sizes in the context of the primitive elate not necessarily geometric prop-
erties of the hydrated ions but rather effective sizes #féct all short-ranged pairwise interaction
between ions. One might rationalize the small size ofMim MgSO, by the argument that the
strong electrostatic attraction at anion-cation contead$ to a degree of ion association that mim-
ics the “ion pairing” that is believed to occur in aqueous NigS? From a chemical point of view
it is not at all unreasonable to expect the oxygens of sutfaidisplace water molecules in the
solvation shell of Mg", which would imply a Mé*-SOﬁ‘ pair distance that is smaller than the
sum of the hydrated radii. The most realistic set of ion di@rseshould thus be non-additive.
Indirect support for this notion is given by recent simwat studie$>**where it was found that
the effective cation-anion diameter was smaller than themoé the cation-cation and anion-anion
diameters in all the cases examined. Unfortunately for aupgses, while Mg§" was among
the cations examined neither $Onor any other divalent anion was considered in that work, so
the conclusions cannot be applied directly to the presestilem. In addition, it is known from
simulation studies that the interactions between ions ino&ecular solvent have an oscillatory
component, which becomes important for separations lessahout 1 nm.

Nevertheless, the fact that the primitive modeés perform as well as it does in our case can
likely be ascribed to a major influence of the Coulomb intecsst We can thus be relatively

confident that the primitive model does properly containdbminant interactions.
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5 Predictions of the lon Correlation Theory

5.1 Potential and Capacitance

The diffuse layer potentialp?, and its derivative with respect t, the inverse differential capac-
itance 2/CY (cf. equation (14)), are shown as a function of the surfagegghdensity in Figure 3.
The potential passes through zero very close te 0, which is a consequence of the fact that the
electrolyte is not far from being symmetrical with respecboth ion-ion and ion-surface interac-
tions. The maximum of ACY therefore lies very close to = 0. (In the GC and therefore GCS(0)
theory one always hagd = 0 wheno = 0, but in ICS(0) theories this is not the case in general.)

For large negatives the inverse capacitance turns negative, which correspmntee exis-
tence of a minimum inp9. This phenomenon is well known for PM electrolytes with paeters
corresponding to divalent counterions in water at room napire wherap® as a function of
o exhibits an extremum (maximum for positive surface chamgesdies, minimum for negative)
beyond which the magnitude of the potential decreases witteasing magnitude of the surface
charge density:*® This behavior is seen here for all concentrations invesiia

An overall negative capacitance is incompatible with thasgmamic equilibrium. However,
for complicated double layers, in which more than one cdpace can be distinguished, it is
possible that one of the capacitances is negative, providedover)compensated by the other
one(s); Ref. 46 gives an experimental example of this. In ageca negative sign of the diffuse
layer capacitance does not preclude thermodynamic equitibif the inner layer capacitance is
positive and smaller in magnitude, cf. equation (14). Fenttercury/aqueous electrolyte interface,
the magnitude of the diffuse layer capacitance as calaifaten the PM is never smaller than a
few thousands of uF/cfrin those cases where it is negative. Typical measured valuge total
capacitance are in the order of tens of pFcAt Under these circumstances, the occurrence of a
negative diffuse layer capacitance implies that the oleaglacitance must be larger than the inner
layer capacitance.

As the diffuse layer capacitance is so large, the absoldtee\a any differences in inverse
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capacitance for the different bulk concentrations is venals except around@ = 0. Because the
experimental inner layer capacitance is so much smalleragnitude, the variation in diffuse
layer capacitance with concentration for this model cqoesls to a negligible variation of the
total capacitance. For the same reason, discriminatingdagt the theoretical capacitances from
GC and IC theories on the basis of experimental values isaiusensitive test of the relative
merits of the two theories. Also a comparison on the basisi@feffect of electrolytes does not
work because the dependence on salt concentration is niitatjualy different between the two
theories. For such a comparison the demands on the qualéypefrimental data is simply too
high. So, on the basis of capacitance data it is virtuallyaggible to discriminate between the two

models, even though there are dramatic differences bettheem

5.2 Concentration Profiles and Components of Charge

The concentration profiles of Mg and S(j‘ for four bulk concentrations between 0.5 and 2.0 M
for two surface charge densities are shown in Figure 4 anar&#g (with and without image charge
interactions respectively). Let us first analyse the badramiabsence of images, Figure 5. For low
surface charge densitg, = —0.95 uC/cnd, there is depletion of electrolyte near the wall for all
concentrations, in excess to the co-ion depletion that dvbalexpected on the basis of GC theory
due to the charge on the surface alone. This can be seerydteanlthe fact that close to the walls,
the concentration afounterionsis smaller than the bulk concentration. This is an effecbafion
correlations. In the bulk solution the ionic atmosphereuatbeach individual ion is spherically
symmetric, while close to a wall it is not. The wall prevertis ion from being surrounded by
other ions on one side, so when an ion is close to a wall itxiatthosphere is distorted. With
most of its countercharge on the solution side, each ionhgestito a net electrostatic force that
pulls the ion in the direction away from the wall. When the #fiiom the surface charge is weak
or absent the result is a depletion of ions close to the sairfélsis mechanism is different from the
exclusion of co-ions due to repulsion from the surface aharg

In the presence of attractive image charge interactiors thé mercury surface, Figure 4, the
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depletion for low surface charge densities is less proneditout still visible at a short distance
from the surface. By comparing Figure 4 and Figure 5 we sedlteamage charge interactions
cause both the co-ion and counterion concentration to beehigear the surface compared to the
case of no images. The peak at contact is due to the self-icteayge interactions. In our case
these are equally strong for both species of ions as therelget is symmetric. Each ion close
to the surface also interacts with the images of all othes ionits neighborhood. Due to ion-
ion correlations, the net image charge interaction is sa@&nd decays steeply with increasing
distance from the surface (the decay length is half the diecegth of the ion-ion correlations).

For the larger surface charge density= —9.95 pC/cnf, see the bottom panels in Figure 4 and
Figure 5, there is not much difference between the profilés amnd without image interactions.
In the former case the concentrations are somewhat higbse ¢b the surface. In both cases the
concentration profiles show significant structure. Theaopeak around = 0.5 nm is typical
for situations where there is overcharging. As seen in therdigthere are more co-ions (i.e.
anions) than counterions (cations) in the region to thet mgtthe first point where the co-ion and
counterion concentration profiles cross each other (araen@.3 - 0.5 nm; this is most clearly seen
for the three highest concentrations). Therefore the ttatge in this region is negative (same
sign aso). Overall electroneutrality is maintained since this deais neutralized by an excess of
countercharge, due to depletion of co-ions and enrichmierdunterions, near the surface (to the
left of the crossing point).

The presence of an excess of countercharge near the sigtateffect of ion-ion correlations,
as the model does not include chemical specific adsorptionerite surface charge density is
increased the counterion concentration near the surfaceirmdreases. The correlation from the
repulsion between counterions then gives an increasingdpitant contribution to the mean force
on any given counterion. When a counterion is located closke@harged surface, other coun-
terions are depleted from the region between the surfacdhenmn. Some of this depletion is
due to electrostatic forces, but a significant part comes fnard core (excluded volume) inter-

actions. In the GC theory neither of these two effects arsidened, which means that there are

26



more counterions in the region between the ion and the sutfean if ion-ion correlations were
properly taken into account. These intervening ions wedkemet attraction between the ion and
the surface charge. Thus, when correlatiaresconsidered, a larger part of the surface charge is
“exposed” than in GC theory, which causes each counteridetmore strongly attracted to the
surface region in the presence of correlati6hé®

lonic core-core collisions that push counterions towahnéssurface give an additional, but rela-
tively small, contribution to the attraction between themt@rions and the surface. Together, these
effects lead to a large build-up of countercharge near thfaset Likewise, the co-ions are more
strongly repelled from the region near the surface thanipiediby the GC theory. Therefore, the
co-ions that must be present to compensate for the exceagecimms are located predominantly
at some distance from the surface, seen as the co-ion peak iRigure 4.

Most of the countercharge and the accompanying co-ion layelocated within a few tenths
of a nanometer from the surface. For the 0.5 M case the caademnt profiles decay monoton-
ically to the bulk concentration far > 1 nm, while for the higher bulk concentrations there are
oscillations in the concentration profiles that continuthmregion some distance from the surface.
The amplitude decays exponentially with increasing disganom the surface. In some cases this
can be seen in Figure 5 while in other cases the amplitude ssnadl that only the first peak is
visible. Such oscillations are related to the conditionth@bulk solution and occur when the con-
centration is sufficiently large. The wave length of the b&ton is determined by (and the same
as) that of the pair correlation functions in bulk, i.e. ngtthe properties of the interface. For low
concentrations both the profile and the bulk correlatiorcfioms are monotonically decaying, but
a region with excess countercharge and an accompanyingncoeiak still appears if the surface
charge density is sufficiently high; the co-ion peala property of the interface even though the
details of how the concentration profiles decay to bulk catre¢ion are determined by the bulk
correlations.

We will now consider the diffuse parts of the components argh in the double layer as

defined in eq. (9). These quantities reflect the (positiveegative) surface excesses of anions and
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cations in the diffuse part of the double layer. For a gigethe anionic and cationic components of
charge are related via equation (11) and are therefore edwjpiantities. The anionic components
of charge for several bulk concentrations are shown as difunscof the surface charge density in
Figure 6 for both the cases with and without image chargeantmns. The values from the GC

theory are also shown.

Consider first the situation at and near the point of zero éhahig see that for the IC theory
is positive in this region for all concentrations investegh This behavior is in sharp contrast
with the qualitative behavior in the GC theory according taak the components of charge are
predicted to be exactly zero at the point of zero charge. Assitipe value ofg9 corresponds
to depletion of anions, which must be accompanied by an eaqualint of cation depletion when
o =0, there is salt depletion at the point of zero charge. Fosyiseem considered here, where the
electrolyte is symmetric, the IC theory shares the featutie @C theory that close to the point of
zero charge the surface charge is compensated by increapkdioin of co-ions and enrichment
of counterions in equal measures. Furthermore, image ehatgractions attract both anions and
cations towards the surface to the same degree. For thesmesthe IC theory curves in panel (a)
are similar to those in panel (b) apart from a vertical disptaent around = 0; they have about
the same derivative in the regier2 < o < 2 uCl/cnf.

Consider next the situation for more negative surface chdegsities. When the negative
surface charge density is made larger in magnitude, theetieplof anions (that are co-ions to
the surface) initially increases but reaches a maximum hed tecreases with more negative
surface charge density for all electrolyte concentratiortss tendency is most prominent in the
absence of image charge interactions. Again, the resulenvidn correlations are taken into
account are in sharp contrast to those from GC theory, arwptd which the depletion of co-ions
should tend asymptotically to a plateau value. A decrease jri.e. Ac?® < 0, with increasingly
negativeo implies a relative enrichment of salt in the diffuse parttué double layer. Both co-
ions and counterions are brought in, the latter to a largeméthan needed to compensate for the

increase in negative surface charge. This can be seen faomdquation (11), which implies that
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Acd + Ao = —AcY, where the rhs is positive in the current caséed > |Ac| wheno decreases.

5.3 Sensitivity to System Parameters
5.3.1 Dielectric Permittivity

In this section we consider the effect of varying the dieglegbermittivity of the wall as well as
the solvent. In Figure 7 the anionic components of chargé@e values of the wall permittivity
are shown, corresponding to the extreme cases of a “vacuiatt”and a “conducting” wall as
well as the case where the wall permittivity is the same asdhéhe solvent. The distance of
closest approach between the ions and the dielectric discity is 0.3 nm ¢'¥ = —0.3 nm) in
all calculations. The salt depletion for small surface geatensities is largest for tleg, = 1 case
and smallest in the,, = o case. This can be explained by the self-image interactibmesn the
ions and the wall that is repulsive whep= 1 and attractive wheg, = o, corresponding to image
charges of the same and the opposite sign as that of the @rgle;hiespectively.

For large negative surface charge densities the rate oédserin the depletion with increas-
ingly negative surface charge density is largest inge- 1 case and smallest in tlsg = « case.
This is not surprising as the image charges of an ion alsoaat® with all other ions, hence the
contribution to the ionic pair potentials. The image intti@s increase the repulsion between
counterions close to the wall fay, = 1, enhancing ion enrichment due to correlations. The op-
posite is the case whegy, = o, the value that is applicable to the mercury surface. Fohnliig
charged surfaces the contribution from image charges tpahgotential thus has an effect on the
components of charge that is opposite to that due to therealfe interaction.

In Figure 8 the permittivity of the wall is assumed to be theeaas for the solvent, i.e. there
are no image charges. The anionic components of charge astofuof surface charge density
are shown for solvent permittivities 2.0, 1.5, 1.25, 1.® and 0.8 times that of water. As we
see in the figure, a decrease in permittivity leads to an asgén the co-ion depletion far near
zero and a decrease for large negativeThis is expected since the deviation from the GC theory

should increase as the ion-ion interactions becomes srongoth the overcharging for large
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negative surface charge densities and the depletion fdt surace charge densities are enhanced
as the surface charge density is increased. This explaipshetcurves for different values of the
permittivity cross each other. It is not obvious, howevdrywhis should happen at about the same
point for all the curves, which is the case. It is notable thatsurface excess appears to depend
more strongly on the permittivity for low permittivitiesah for high. Compare, for instance, the
pair corresponding to 2 and 1.5 times the permittivity of @vaand the pair corresponding to 1
and 0.8. Changing the solvent permittivity changes the tiroas in bulk as well as close to the
surface whereas changing the wall permittivity only givies to changes in the correlations close
to the surface. Our results in Figure 8 are consistent witketof Boda and coworkefs.

In the partition function for the PM, the temperature enterBu;; andBv; only as the prod-
uct €T (the productBu® and BV are independent of because these potentials are either
zero or infinite). Since the produel for waterdecreases by about 14 % as the temperature in-
creases from 0 to 100C, only two of the curves in Figure 8, the ones correspondirigdaad 0.9
times the permittivity of water, lie within the range thateigpected to be experimentally relevant
for the aqueous MgSfsystem. For other systems, such as salts of other valenes gd/or
non-aqueous solvents, a larger range of electrostatidiogugirengths may be relevant, however.
While solvents with a dielectric permittivity exceeding tloé water by a factor above 1.5 are vir-
tually non-existent, the strength of the electrostatienattions that correspond to divalent salt in a
high permittivity medium is similar to that correspondimget monovalent salt in a low permittivity

medium.

5.3.2 lon Size

In this section we compare the results obtained with a coatioumt in which the cation diameter is
doubled, i.e.d;; = 0.60,d__ = 0.46 andd, _ = 0.53 nm. Although this set of diameters gives
very poor values for the activity coefficients, and therefocan be rejected as a satisfactory model
of MgS Oy, this choice of cation diameter is not completely arbitr&gr several magnesium salts

with monovalent anions the diametér. = 0.60 nm gives good agreement with experimental
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activity coefficients, as mentioned in Section 4.4 above.

In Figure 9 the concentration profiles are shown for two sigrfeharge densities. For a concen-
tration of 0.5 M and small surface charge density: —0.95 uC/cnf, there is some depletion close
to the wall. For 1.0 M solutions there happens to be about ashrdapletion of anions as there
is enrichment of cations, a situation similar to the GC tlggmedictions for low surface charge
density. The detailed behavior of the concentration p®fdehowever, not like that expected from
the GC theory since the concentration profiles are non-nemmat For higher concentrations, 1.5
and 2.0 M, there is a large degree of enrichment close to tHemathe profiles show perceivable
structure up to about 1 nm from the wall. For the higher serfatarge density;-9.95 uClcng,
the oscillatory structure of the concentration profilesasypronounced for these concentrations.
Careful investigation of the concentration profiles reveat bscillations are present in all cases,
but they are hard to see on the scale of the figure for the lowgastentrations. Since the oscil-
latory structure is induced by the bulk correlations, datidns are present for all surface charge
densities, but they are less prominent in the upper pane.l8fige enrichment close to the walls
at high concentrations and the oscillations in the conegintr profiles make the structure superfi-
cially reminiscent of that a hard sphere fluid close to a haatl, % at least for small surface charge
densities and large concentrations. This illustratesekeluded volume constraints are important
for the structure of the electrolyte in this case. The analeih the hard-sphere system must not
be carried too far, however.

In Figure 10 the anionic component of charge is shown as aittmof surface charge density
for the “big cation” model. The differences with respecthe tsmall cation” model, Figure 6, are
striking. Only for 0.5 M concentration there is a maximum dhe curve beyond that is almost
flat. Fortuitously, at a concentration of 1.0 M the degreeeagldtion is qualitatively similar to that
predicted by GC theory. For higher concentrations ther@islapletion but enrichment of salt at
the point of zero charge (not shown). In these cases, theinegarface charge density on the
wall has to be very high to cause any depletion of anions.

Itis instructive to compare the results for the “small catiand “large cation” situation because
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they can be identified as stemming from two different reginfé® “small cation” model belongs
to the “electrostatic” regime where electrostatic intéicats dominate whereas the “large cation”
model at high concentrations belongs to the “core” regimeratihe packing constraints for the
repulsive hard cores become dominant. In the latter regimeenmuld not expect the assumption
to hold thatd, _ is the diameter that dominates the system properties. dutrestatic regime
is characterized by depletion of salt near a weakly chargestface whereas the core regime
is characterized by enrichment. Using this classificattbe,1.0 M concentration of the “large
cation” model would fall right at the boundary between the tegimes. Bulk activity coefficients
are useful to illustrate the characterization of the systbmg these lines. An activity coefficient of
less than one (negative excess chemical potential) irefichat attractive interactions dominate in
bulk whereas a value of greater than one indicates predowwenaf repulsive interactions (positive
excess chemical potential). A wall prevents nearby ionsifiateracting with other ions, simply
because there can be no ions inside the wall. The excessadigroiential should thus be expected
to decrease in magnitude but retain its sign as ions are htelgse to an uncharged interface. This
would give rise to an effective repulsive force between tlal and the ions in the electrostatic
regime but an effective attractive force in the core regiiifee difference between the correlations
in bulk and those close to the surface thus gives a contobub the total potential of mean
force that may counteract, or work in concert with, any diieteraction between ions and walls.
As the total potential of mean force depends on the interastand concentration profiles in a
complicated way, not much more can be said in general abeuldtails of its distance dependence
on the basis of bulk chemical potentials only. Converselydeafinite conclusion can be drawn
about the direct interactions between ions and walls iresystwhere the deviation from ideality
is large unless that deviation is taken into account in therdenation of the concentration profiles.
The large differences between the “small cation” and theg8acation” models indicate that
the properties of a model double layer is sensitive to thpgnttes of the salt model, especially for
the rather large concentrations studied here. With respecmponents of charge, the two models

predict deviations from GC theory that for the larger coniions are in opposite directions. This
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sensitivity highlights the importance of using rationatemia in the selection of the parameters for

the salt model, as we have done in Section 4.4.

5.3.3 Distance of closest approach of ions to the surface

In this section we relax the constraint that the anions ardc#tions have the same distance of
closest approach to the surface. See Figure 11 for a sketitte gfystem considered here. The
origin of the coordinate system is placed at the plane ofedbapproach of theations, that we
write with a subscript aﬂ}r’”. We allow the anions to approach the surface up to the Gildrgepl
of the solvent, that we for purpose of illustration take tddmated atZ®" = 29V = —0.3 nm. To
avoid an unphysical singularity of the self-image intei@ctthe dielectric discontinuity must be
placed atz < Z°" . For this reason we consider the valued.4, —0.5 and—0.6 nm forZ'® rather
than take® = —0.3 nm as we do elsewhere. This range of valueg¥8ris considered in order
to establish the sensitivity of the model predictions wehpect to this parameter.

The anionic components of charge are shown in Figure 12. dreéises witt?®" # 729" and
Z1d — _0.6 and—0.5 nm (the upper two thick curves in the figure), the comptnehncharge
for moderate and large negative surface charge densitegugte similar to the cases with equal
distance of closest approach (thin curves). For small sartharge densities the dashed thin
curve, for which case no image charge interactions are diecluis not very similar to the other
three curves.

The most extreme case, wit?" = —0.3 nm andZ’® = —0.4 nm (the bottom thick curve),
displays much less depletion close to the point of zero &#rgn any of the other cases. Note
thatzZ® = —0.4 nm corresponds to just 0.1 nm between the dielectriodiswity and the plane
of closest approach for the anions. Since the radius oftsula).23 nm this would correspond to
a significant portion of the charge distribution on a reafadalion being inside the metal. In this
situation the assumption that the force on the ion is weltesgnted by the image charge force
on a point charge at the ion center is not a reasonable maatelyilb severely overestimate the

strength of these forces. Even in this case, however, th@ooants of charge for large negative
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surface charge densities are remarkably similar to thase the other variants of the model.

We can thus conclude that the predictions of the model fgelaegative surface charge densi-
ties are insensitive to the details of the wall-ion intei@tinvestigated in this section. Otherwise
stated, any conclusion based on comparison to experimdgtiafor such surface charge densities

is robust.

6 Comparison with Experimental Data

In this section results from capacitance and electrocapilineasurements from refd.and®* are
presented and compared with results from the GCS(0) and IG&£0)ies. As we make no at-
tempt to model chemical specific adsorption we will mainlgue on the subset of the data that
corresponds to zero or negative surface charge, wherefispmatsorption is expected to be weak
or absent. (Below we shall investigate whether this expectas justified.) Our main focus will
be to determine which features of the data can be explaingdd@sonable parameter values within

the framework of ICS(0) theory in its present form and whidcitfees cannot.

6.1 Components of Charge

Experimental data for the cationic component of charge foeecury/MgSQ solution interface is
given in ref. 23 for MgSQ@ concentrations 0.1, 0.2, 0.5, 1.0, 1.5 and 2.0 M and for sartharge
densities down to about17 pC/cnf. The thickness of the zeroth order Stern layer, here defised a
|Zo" — 29IV| 2% s used as an adjustable parameter to fit the ICS(0) resuhe experimental data.
This thickness only affects the contributiary from the inner part of the double layer, equation
(8). In practice we vary™V sincezZ°" = 0 here. The same thickness is then used for the GCS(0)
interpretation. Note that the ionic sizes have been detexdhirom bulk data, see Section 4.4, so
no additional fitting parameter was needed.

A comparison between the experimental data and the thearegsults from GCS(0) and

ICS(0) calculations is made in Figure 13, where the anionfomanent of charge is presented.
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We consider the four concentrations where results werar@ztadrom AHNC calculations (cf.
end of Section 4.3). The anionic and the cationic componehtharge and the total surface
charge density are related via eq. (6) (this equation wad igsebtain the experimentat_ from
o.). Itis preferable to plot_ for negative surfaces since the co-ion component of chaagess
considerably more slowly than the counterion componengrdfore, differences between the ex-
perimental data and the theoretical predictions are m@&arlgl visible. Note, however, that the
range of surface charge densities in the figure extends sbatémto the positive range, where the
anions become counterions.

As seen in Figure 13, the ICS(0) result for 0.5 M bulk conceitmnawith 2%V = —0.35 nm
agrees with the experimental data within the experimemaeértainty foro < —1 puC/cnf. The
valuez¥V = —0.35 nm was used here for all ICS(0) and GCS(0) curves. Chang&¥'ilave
the effect of shifting eaclo_ curve vertically in proportion to the bulk electrolyte cemtration,
cf. equation (8). The value &V may in principle depend on the concentration, but this is not
considered in our fit. It is therefore the shapes of the cura®r than their absolute values in any
point that are to be given most weight in the comparison withexperimental data. The 1.0 and
1.5 M results agree reasonably well with the experimentsersame interval, while there are quite
large deviations for the 2.0 M case. The main message frosetgeaphs is that ICS(0) results
are able to predict the experimentally found maximum, whi&impossible in GCS(0) theory.
For the lower part of the concentration range, the agreemesten quantitative. The only way
in which the maxima can be explained in terms of a mean field G@8ry is by assuming that
Mg?+ adsorbs specifically in conjunction with a relatively thick-free layer, which would be
rather artificial and hence difficult to justify, especiadly since there is no positive evidence for
specific adsorption of Mg ions at the point of zero charge (see below). Thus, our ®sldarly
demonstrate the action of ion-ion correlations in the eledouble layer.

In the original experimental papé?,much of the variation ob_ with concentration was ex-
plained by assuming a thickness of about 0.44 nm for therea{ayer. The anionic component

of charge from solely such a layer (shown in Figure 13), @&, as a function otr is always a
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horizontal line, hence the maxima cannot be accounted ftimisnway. The discrepancy between
this thickness and our estimate 0.35 nm is due to the factstirae depletion of anions is in the
ICS(0) theory accounted for ia® and arises from the ion-ion correlations in the diffuse pért
the double layer.

The ICS(0) curves in Figure 13 are calculated in presenceajécharge effects. In Figure 14
we show the corresponding results without image chargese, kiee have selecter'V = —0.30
nm, which gives a reasonable agreement with the experiinéata foro < —4 pClcnt for the
0.5 and 1.0 M cases. If instead we had chog®f = —0.35 nm, the agreement for the 1.0 M
case would have deteriorated somewhat while that for 1.5 Mlidvbave improved (not shown).
The difference of 0.05 nm iz® is sufficient to accommodate a large part of the differences
between the curves in panels (a) and (b) of Figure 6. Therdaaéedepletion in the absence of
attractive image charge interactions is to a large extempemsated by a thinner ion-free layer.
Thus, excluding image charge effects does not have a laiget eh the possibility to obtain a fit
between theory and experiment. The behaviar offor small negative surface charge densities is
better described when images are included. On the other, ti@ntrend in the experimental data
for large negative surface charge densities appears tottex beproduced by the model without
images. Because the scatter is so large in the experimemttadelathe data can be accommodated
by both the “image” and “no image” variant of ICS(0) theory. Nefinite conclusion can thus be
drawn about their relative merits.

The magnitude of the effect of image charges depends on tagido of the dielectric dis-
continuity via the parametef’® in egs. (17) and (20). As mentioned earlier, we have selected
the value—0.3 nm forZ®, corresponding to a dielectric discontinuity 0.3 nm frora filane of
closest approach of the ions. One must remember that theugadistances and ion sizes used in
the PM are merely effective parameters that do not necésgare precise information about the
geometrical distances, but it is important that these patars have reasonable magnitudes.

For positive surface charge densities, we see in Figure di3hle experimentad_ value de-

creases very strongly with increasiimg more strongly than the ICS(0) theory predicts for the
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parameters used. In order to show the behavior of the cormp®pécharge over a range that also
includes larger positive surface charge densitiesc#ti®nic component of charger,, is shown
as a function of surface charge density in Figure 15. Forthagaurface charges the agreement
between the ICS(0) and experimental values is very good ekmeihe 2.0 M case (eq. (6) implies
that the deviations must be as large as in Figure 13). Howfargrositive surface charges the the-
oretical results deviate very strongly from the experimédata. In fact, for large positive this
deviation is much larger than the difference between thdtsesf the GCS(0) and ICS(0) theories.
Even if one would allow anions to enter into the inner layeiraSection 5.3.3, one would not
obtain good agreement between the ICS(0) theory and exparforgositive surface charges (not
shown). All of this suggests that strong specific chemicabaggtion of scﬁ— ions on positively
charged mercury surfac®shas to be taken into account. As will be seen below, the beha¥i

the potential at the point of zero charge also supports sorthiion.

6.2 Potential at the Electrocapillary Maximum

The potential at the electrocapillary maximum (point ofzeharge) for the mercury/MgSGo-
lution interface with respect to the sulfate-reversiblghtgpSOy| reference electrode, i.e. for the
cell Hg|HgoS 04 MgSOy(n™)|Hg, is given in ref. 23 for ten concentrations of Mg$On order

to compare the position of the electrocapillary maximumaeein different concentrations, the
potential scale must be such that the reference electrodeafected by changes in electrolyte
concentration. From the data in ref. 23 we have thereformutated the potential with respect to
the reference electrode Hég,SOy|MgSOs(1M)| by subtracting the potential of the concentration
cell Hg|Hga SO Mg SOy (n'%) | IMgSOs(1M)|HgoSOs|Hg, calculated via the Nernst equation. We
used activity coefficients taken from ref. 37, which we caoteg to the molarity scale using densi-
ties from ref. 30. Herep®K denotes the concentration of the solution in contact wighrtiercury
electrode. The results are shown in Figure 16. It can be setns figure that the potential de-
creases with concentration in an almost perfectly linefasjion, changing at a rate of abet8.5

mV/M.
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A negative shift of the position of the electrocapillary nmaMm on an increase in concentration
is often quoted as evidence for chemical specific adsorpfianions. The argument is that specific
chemical adsorption of anions tends to induce a positiviasercharge on the mercury, so that a
more negative potential must be applied to attain the pdiaeo surface charge density than in
their absencé? This approach contains the implicit assumption that, adipred by GC theory,
the diffuse layer potential at the point of zero charge dagsdepend on the bulk concentration.
However, when correlation effects are taken into accounhéncalculation of the diffuse layer
potential this needs not be the case. In the present caseawidarly symmetric electrolyte the
diffuse layer potential at the point of zero charge is indakdost constant over the range of
concentrations considered, as can be seen from Figure 3, Tdtake ion-ion correlations into
account does not invalidate this criterion for detectingcsfic adsorptionn thiscase. The tentative
conclusion is therefore that sulfate ions are chemicalgcsjzally adsorbed at the point of zero
charge but that magnesium ions are not (or at least muchtlesgly so). It must be kept in mind
that this conclusion may be subject to change with furtheneenent of ICS model of the diffuse
layer. A difference in the distance of closest approach ¢ostirface between anions and cations,
such as the one considered in Section 5.3.3, could condgieaplain much of the shift in the
point of zero charge, for instance.

The conclusion that sulfate is specifically adsorbed at thiatf zero charge is consistent
with the interpretation of experiments on #&04.%! The conclusions reached in that work have,
however, been contest@423 The objections raised are not applicable to the potential cansid-
ered in the present work, despite that the experiments ayesumilar. The crucial difference is
that in ref. 51 potential scale conversions are carried puisie of an approximately calculated cell
potentials for cells with a liquid junction potentials, wkas in ref. 23 measured cell potentials are
used. Note that the approximations used in ref. 51 may afiettt the conclusions about the shift
of the electrocapillary maximum with concentration andséncegarding the components of charge

in that work.
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7 Concluding Remarks

The results above show that for concentrations up to ab&mMland surface charge densities
more negative than aboutl pC/cnt, the properties of the double layer at the Hg/aqueous MgSO
interface are well described by ICS(0) but not by GCS(0) thedrge ICS(0) theory correctly
predicts the feature of the experimental data in ref. 23ttle&nionic component of charge reaches
a maximum and then decreases with increasingly negatifaceucharge density. GCS theory
would be unable to give an explanation of these experimédtlires of the components of charge
unless a sophisticated Stern layer is included. The cortibmaf a zeroth order Stern layer and
adsorption due to ion-ion correlations in the diffuse layaturally accommodates the experimental
behavior with only one fitting parameter (the width of therBtayer), that simply adds a constant
shift (proportional to the bulk concentration) of the thetozal curves. In our view, this constitutes
strong evidence of the importance of ion-ion correlatiangliectrical double layers. As far as
we are aware this is the first unambiguous experimental dstradion of the action of ion-ion
correlations in this context.

Image charges give rise to some enrichment near the sufatedmpensates for the depletion
due to ion-ion correlations. This is particularly importamainly close to the point of zero charge.
For larger surface charge densities the image chargey patthteract charge inversion by weak-
ening the ion-ion correlations close to the surface. Theselasions are valid for materials with
an infinite permittivity, as for a metal. Had the permittwlieen much smaller than that of water,
a very common situation, the reverse would apply.

For positive surfaces the deviation between the model apdrerental components of charge
are attributed to chemical specific adsorption of sulfatkis Ts an interesting distinction: at the
positive side the double layer seems to be dominated by iiizoin the Stern layer, whereas on
negative surfaces the ICS(0) model prevails. Although weatanmodel the adsorption on positive
surfaces here, we do expect that the ICS theory can be exténdezht the specific adsorption
of ions, e.g. by the inclusion of a short-range non-eletétasadsorption potential for the ions,

which gives rise to the Stern layer of adsorbed ions. Thelibgum between free and adsorbed
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ions will then automatically be taken into account in the elodWVhen ion-ion correlations are
considered in the modeling of chemically specifically atisdrion layers, one has the advantage
that the effect of lateral interactions within that layervesll as correlations with all ions would
be included automatically. Actually, such an approach wdélp to overcome the most-evasive
problem in Stern theory, viz. establishing the mean paaéatithe inner Helmholtz plane. If the
IC model and the choice of the parameters are adequate swaafysis is expected to lead to a
chemical specific adsorption Gibbs energy that is indepstmafehe surface charge.

Deviations from GCS behavior become stronger with incregastrength of the electrostatic
interactions. Electrolytes with ions of higher valencyrtitao would therefore be more promising
when one wants to quantify deviations from PB theory and ncakeparisons with the predictions
of theories containing ion-ion correlations. The pradtiogpediment is that trivalent ions tend
to hydrolyze, producing strongly chemically adsorbing ptemes. Hence, in practice realistic
opportunities for testing the model remain scarce and thigoehtion given here may appear to be
one of the few feasible.

As the long-range electrostatic interactions depend onlghe ionic valencies and the solvent
and wall permittivities, one would expect that it is possiti find chemically dissimilar systems
where the electrostatic interactions are similar. If tlsisndeed the case, it would provide an
opportunity for further tests of the validity of ion-ion ¢etations as a mechanism for overcharging.
As the strength of the electrostatic interactions can bagbaeither by changing the valency of the
electrolyte or the relative permittivity of the solvent,maqueous electrolytes might be appropriate
for testing the generality of the conclusions drawn abow.ifstance, one would expect that an
electrolyte consisting of a 1:1 salt in a solvent with refagpermittivity of about 20 would behave
as a 2:2 salt in water. Similarly a double layer with monora@unterions in a solvent of relative
permittivity 20 would be similar to a double layer with diealt counterions in water of twice the
surface charge density. The dropping mercury electrodeappo be a suitable setup, perhaps
also for experiments employing non-aqueous electrolytéadt there are some examples of such

experiments in the literature:>> Another option may be to study the double layer on dispersed
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oxides in the presence of non-hydrolyzing multivalent etdgte. Awaiting such applications the

system investigated by us remains unique for the reasotesistethe last paragraphs of Section 1.
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Figure Captions

Figure 1: lllustration of how the interface between mercangl an agueous MgSGolution is
modeled. The mercury phase is modeled as an ideal conduletogf = «) and the solvent as
a dielectric continuum with relative permittivity. The dielectric discontinuity is located ¢
indicated by a dashed vertical line. The vertical ling&t indicates the position of the plane of
closest approach of the ion centers. The dashed-dotteidaldithe atz° indicates the location
of the surface charge and the vertical full linez®t" indicates the position of the Gibbs dividing
plane of water. Note tha®'® is specifieda priori while 2%V is used as a fitting parameter. No
special assumptions are made about the relation bet#®erz® andz°" although we expect that
they should be close to each other for the model to be reali$tie curves are sketches of ionic

concentration profiles and the horizontal dashed line shibe/bulk concentration of electrolyte.

Figure 2: Comparison between experimental (symbols) andifpre model, PM, (curves)
activity coefficients,f,, of aqueous MgS@solutions for various values af, . The PM values
are calculated within the HNC approximation. The distangeslosest approach between the
cations and aniongl, _, are indicated in the figure. The diameter of the anidns is taken to
be 0.46 nm throughout and the diameter of the catidns, follows from the assumed additivity
of the radii. The value 0.38 nm is the one useddgr in the calculations in this work unless

otherwise stated.

Figure 3: The diffuse layer potentigld (panels a and c) and the inverse of the corresponding
capacitanc€? (panels b and d) as functions of surface charge density &syistem described
in Figure 1 for the bulk electrolyte concentrations indécht The thick curves are from IC the-
ory, calculated using the AHNC method with the PM pair int&ien potential, see Figure 2. The
thin curves are from GC theory. Panels (a) and (b) show thdtsefor a mercury surface (im-
age charge interactions included) while panels (c) andh{oyvghe corresponding results without

image charge interactions.

Figure 4: Concentration profiles in the diffuse part of theldeuayer from IC theory for the
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system with image charges considered in Figure 3 for theddalirolyte concentrations indicated.
In panel (a)o = —0.95 uC/cn? and in panel (bjy = —9.95 uC/cnt. The full curves denota, (2),
the cation (counterion) concentration profile, and the ddsturves denote_(z), the anion (co-

ion) concentration profile, respectively.

Figure 5: Same as Figure 4, but the dielectric constant om &ides of the charged surface is

set equal to that of water, i.e. no image charge interacaoasncluded.

Figure 6: Diffuse layer part of the anionic component of geavd, as a function of surface
charge density for the MgS(bulk concentrations indicated. (a) Results for a mercuryaser
(image charge interactions included). (b) Correspondisglte without image charge interactions.
The bold curves are from IC calculations whereas the this ane from GC theory. Systems as in
figs. Figure 4 and Figure 5. (Note that the abscissa scaleduative polarization to the left and

positive to the right contrary to the usual convention ircetechemistry.)

Figure 7: Diffuse layer part of the anionic component of ¢feaais a function of surface charge
density for 1.0 M concentration for wall permittivities cesponding to vacuum, water and a per-
fect conductor, as indicated in the figure. The dielectscdntinuity is assumed to lie 0.3 nm from

the plane of closest approach of the ions.

Figure 8: Diffuse part of the anionic component of charge dsnation of surface charge
density for 1.0 M MgSQ@ solutions with dielectric constants 2, 1.5 1.25, 1, 0.9 a®dtidnes that
of water,e. Image charge interactions amet included. Except for the full curve, corresponding
to the dielectric constant of water, longer dashes mearehjgermittivity. Selected values of the

permittivity are shown in the figure.

Figure 9: Same as Figure 5, but for large ions. The ionic diarseised ard, , =0.60,d__ =

0.46 andd, _ = 0.53 nm.

Figure 10: Same as the IC results in Figure 6 b, but for largéos. Same ionic sizes as in

Figure 9.
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Figure 11: lllustration of the variants of the double layeydal considered in Section 5.3.3. In
contrast to the system considered elsewhere in this pagsemted in Figure 1, the coordinates of
the plane of closest approach of the aniaf$, and the cationsz'f”, are different. Otherwise, the
symbols have the same meaning. The origin of the coordiyaters is placed &, i.e. Z°" = 0.
The Gibbs surface of the solvent is assumed to coincide Welptane of closest approach of the
anions and is taken to be locatedzat —0.3 nm, i.e.z°V = 729" = —0.3 nm. For®, the values

—0.6,—0.5 and—-0.4 nm are considered (marked in the figure as dashed vdities).

Figure 12: The thick curves show the anionic components afgeh(total, not only the diffuse
part) for a model where the anions can approach the surfackse as up to the Gibbs plane
of the solvent, here taken to be locatedZ&tY = —0.3 nm, cf. Figure 11. The bulk MgSO
concentration is 0.5 M ardf'® = —0.6 nm (long-dashed curve}'® = —0.5 nm (medium-dashed
curve) andZ® = —0.4 nm (short-dashed curve). The thin curves corresporttet6.6 M curves
from Figure 6, with (full curve) and without (dashed curvepgige charges, witt®" taken as-0.3
nm. The vertical line is the the Stern layer contributionh®e tomponents of charge corresponding

to this value.

Figure 13: Anionic component of charge, , for the mercury/MgS@® solution interface as
a function of surface charge density for the electrolytecemtrations indicated. The symbols
are experimental data from ref. 23, small symbols corredpgo_ calculated from capacitance
measurements and large symbolsoto from electrocapillary curves. The dashed lines are the
predictions of GCS(0) theory and the full lines are ICS(0) issumage charge interactions with
the mercury surface are included. The contributiowtofrom a zeroth order Stern layer (an ion
free layer) of thickness 0.35 nm has been added to the thearetirves, i.e.z%V = —0.35 nm,
cf. eq. (8). The thin, horizontal lines correspond to thetdbation to o_ solely from an ion
free layer of thickness 0.44 nm, as assumed in ref. 24, see (Bbote that the abscissa scale
has negative polarization to the left and positive to thétrigontrary to the usual convention in

electrochemistry.)
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Figure 14: Same as figure Figure 13 but without image chatgeactions. The thickness of

the Stern layer is 0.30 nne®!Y = —0.30 nm, for the theoretical curves.

Figure 15: Cationic component of charge,, as a function of surface charge density for the

same system as in figure Figure 13 (the same notation is usedhrfigures).

Figure 16: Measured potential of the electrocapillary nmaxin with respect to a HHlg,SOs[MgS Oy (1M)

reference electrode as a function of the concentration d®g Data taken from ref. 23.
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Abstract

The ability of the primitive model and a closely related model to reproduce theriexen-
tal activity coefficients of aqueous solutions of several divalent metkdtss is investigated.
Both models gave a fair representation of the variation of the activity ceeftec over the
range where reliable experimental data are available. However, the twelsmrédicted sig-
nificantly different values of the absolute activity coefficients. Theseplations are recon-
ciled by noting that the variation of the activity coefficients at low concentnatigc 10 mM)
is different in the two models. This reveals that the thermodynamic propefti2® @lec-
trolytes are sensitive to the form of the interaction potential even for lowamnations. The
ion diameters that give the best agreement between the experimentallendted activity
coefficients are found to be significantly smaller than the expected geonietricfhydrated
cations. There is a tendency towards smaller cation size with increasing atomien but

some exceptions to this trend were also found.

Keywords: primitive model electrolytes, sulfates, ion pairing, Monte Canmkation, hyper-

netted chain approximation

1 Introduction

Many sulfates with divalent metal cations (referred to agakgnt sulfates” below) are very soluble,
although calcium sulfate (gypsum) and barium sulfate aré kmewn examples of the contrary.
The bulk thermodynamic properties of solutions of divalenifates show large deviations from
ideal solution behavior and are remarkably similar forefi#int cations. Close inspection of the
activity coefficients for the aqueous solutions of divaleunifates of beryllium, magnesium, man-
ganese, nickel, copper, zinc and cadmium reveals a systeftiatugh not completely universal)
trend towards a lower activity coefficient for a given cortcation with increasing atomic number
of the cation. Atomic number correlates with many propesrtleat are potentially important for
ionic interactions, such as ionic size and polarizabiksom a fundamental point of view, it would

be of great interest to elucidate the details of the solveetamed ion-ion interactions that give
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rise to the differences in thermodynamic properties andthese interactions vary with the cation
properties.

Accurate modeling of aqueous electrolytes for all but thestaldute concentrations is a diffi-
cult problem. This is especially true for electrolytes djlinvalence types where the strong electro-
static interactions between ions give rise to association,pairing”. For symmetric electrolytes
in agueous solution at room temperature, the divide seetresietween 1:1 and 2:2 electrolytes:
1:1 electrolytesusually do not exhibit significant ion pairing whereas 2:2 electredyinvariably
do. Following Bjerrum, ion pairing is frequently describedterms of an equilibrium between
“free” and “paired” ions, characterized by an equilibriumnstant! This leads to a description
where the ion-pair is formally treated as a separate chéspegies.

In apparent contradiction to this view are models that dardgaly the free ions, interacting by
some set of pair potentials that define the details of the md@te contradiction is apparent rather
than real because ion pairing arises as a consequence ofténactions in the latter approach,
showing up as a strong peak in the anion-cation pair digtabudunction. This requires proper,
non-linear treatment of the electrostatic interactionfwd, in approximate theories where the
electrostatic interactions are treated in a linear, Debyekel-like fashion ion pairing cannot be
treated correctly. Itis instructive to recall that Bjerrumeory in its original form is an approximate
theory for the primitive model (PM) of electrolyte solutgnwherein the ions are modeled as
charged hard spheres and the solvent as a dielectric cantinntended to remedy this problem.
To describe ion paring in terms of a chemical equilibrium get of equilibria) is to sacrifice a
detailed representation of the ion-ion distribution fumies for an approximate, conceptual simpler
one. Although such a description is capable of fitting expental data, it does not imply the
presence of any attractive interaction in addition to tleetebstatic one. On the other hand, the
presence of such non-electrostatic interactions is hgodetclude. What can be said with certainty
is that if the ion pairing can be described in terms of a chahequilibrium, the cation-anion
interaction is strong compared to the thermal energy.

The PM is able to give a reasonable fit to the experimentaligctoefficients of MgSQ for



moderate electrolyte concentrations with the ion sizesl asefitting parameters Since the PM
only contains the Coulomb interactions and the ionic size,presumably not a very faithful rep-
resentation of the details of the inter-ionic potentialisTimmediately raises questions about just
how sensitive the model predictions are to the details ob#tevior of the interaction potential for
short to intermediate distances, where the deficiencigseoPM are likely to be the most severe.
Experience with 1:1 electrolytes shows that it is relaihedsy to find a model that approximately
reproduces the thermodynamic properties of real solutfdhis possible to acquire similar agree-
ment with experimental thermodynamic data with modelsigdramatically different structural
propertiest Clearly, the relative ease of fitting bulk thermodynamic dstmore of a liability than
an asset in the search for the “true” pair potential. (ThedWtue” is in quotation marks because
the full solvent-averaged interaction potential is knowmdntain many-body ternsThere is no
guarantee that there is such a thing as a unique best intgracttential that is limited to pairwise
terms, except, of course, in the limit of infinite dilutiorThus, the most one can reasonably hope
for when trying to determine the inter-ionic interactiortgutials by fitting experimental data is to
find the broad, qualitative features of the interaction ptité.

For some applications it is essential to know the interagbiotential explicitly. The theoretical
treatment of electrical double layers and inhomogeneocetrelyte solutions is an example of
this. See ref. 6 for an example of such an application. It ighvooting that while a description
of electrolytes containing ions of high valency in terms oéBym-type ion pairing is likely to
give a reasonable description of the bulk properties, iteidain to be misleading for electrical
double layers. Due to the excess of counterions in the ¥cafiany charged surface, a simple ion
pairing picture cannot be expected to give an accurate ipéscr of the deviations from ideality.
The deviations from ideality in that situation originateintg from repulsion between counterions
(to the surface) rather than attraction between ions of sipgpceharges. This example shows that
it is important to construct models in terms of explicit ir#etion potentials in order to make
correct generalizations. A simple and robust model with fiéing parameters is preferable in

this context to a highly parametrized, less robust modetna¥ the latter type of models can



give a better description of the properties of the bulk sofut This is in contrast to the task
of simply describing experimental data in a compact form #llaws easy interpolation. For this
purpose highly parametrized expressions such as the Bimatiorf are suitable and the increased
computational effort needed to treat models with explidiéraction potentials is hardly justified.

The modeling of electrolytes on the level of ionic interan8 may also offer improved prospects
for putting activity coefficients on the absolute scale. Wkaneant by absolute scale here is a
scale with a non-interacting standard state, where theigolis taken to be ideal. The set of tab-
ulated activity coefficients generally considered mosab#? have been obtained by isopiestic
determination of the osmotic coefficients from which thewaigt coefficients are obtained by in-
tegration of the Gibbs-Duhem equation. This integratioregithe difference in excess chemical
potential from the value at the lower bound range of integnatorresponding to 0.1 m concentra-
tion in ref. 8. For the activity coefficients to be given on dsalute scale the integration has to be
carried out all the way from zero concentration, where tHetgm is truly ideal. This is a source
of great uncertainty in the determination of the standaehubal potential: even for high quality
data this quantity is often not accurately known. This latian does not detract from the validity
of the activity coefficients for most purposes, because difilgrences in (chemical) potential have
physical significance. However, from a fundamental pointiefv it is somewhat unsatisfying to
be unable to compare the activity coefficients on the absa@cdle. Such a comparison would be
necessary to fully quantify the differences between thieifit divalent sulfates.

By fitting one (or more) parameter(s) appearing in a model taat€ coefficient data and
subsequently calculating the activity coefficients frora theory with the same parameters, the
absolute activity coefficients can be obtained. Indeed; $hiategy is commonly used to treat
experimental data, see for instance ref. 9 where the Pitaeatm®n is used and ref. 10 where the
problem is treated in terms of a Bjerrum-like chemical equilim model. The strategy of using
theory in this way to extract absolute activity coefficiefitsn measured osmotic coefficients is a
somewhat risky one. This is so because it is in effect anpotation of the osmotic coefficient

as a function of concentration over a range in which the fonctaries quickly. For this reason,



it is important that the theory that is used has a sound palykasis. (Debye-Hickel theory is of
limited applicability in practice for 2:2 electrolytes, gfste that this theory is an exact limiting law.
The reason is that the concentration range in which thigyhewalid is very narrow compared to
the range over which the interpolation has to be made.) Cealygthe ability, or lack of such, of
a model to furnish a good extrapolation to lower concerdgretican be used as a test of the model.

Measurements of the electromotive force (EMF) of electemaical cells can be used for this
purpose. The EMF is directly related to the chemical poatiofithe salt through the Nernst equa-
tion. Thus, this method is experimentally independent frawpiestic measurements of the osmotic
coefficients. EMF measurements are possible down to comatemis that are orders of magnitude
smaller than those amenable to isopiestic experimentsrantherefore useful for testing theories
in the low concentration regime. However, for EMF measurmesiéo yield activity coefficients
on an absolute scale, the EMF for zero concentration has tieteemined through extrapolation.
Over the last century, many attempts have been made to deeeattivity coefficients of divalent
sulfates on the basis of such data?® The extrapolation to zero concentration in refs. 13,18-21
relies on the use of the PM, evaluated using various appeitheories, which are only valid for
low concentrations. The validity of the PM thus directlyeaffs the reliability of this extrapola-
tion. In the experimental setup used in réfs2%an alternative route for the determination of the
activity coefficients on an absolute scale was used. Thikodets based on relating the absolute
activity coefficients of the electrolyte of interest to tbasf a set of auxiliary electrolytes. Thus,
the activity coefficients given in these papers must be demed more reliable than those from the
older studies.

The primary goal of the current paper is to investigate thityabf the PM as well as another,
closely related, model to reproduce the experimentaliactivefficients for solutions of a range of
divalent sulfates. Such an analysis enables the abilityefriodels to accommodate the difference
between chemically distinct but physically similar salisbe tested. The comparison between
two similar models enables estimation of the sensitivityha thermodynamic properties to the

assumptions about the form of the interaction potentiabc&p emphasis is placed on the ability



of each model to furnish a reliable extrapolation to low crtcations with parameters determined
from experimental data for moderate to high concentrations

A secondary goal is to test the accuracy of the hypernettathdNC) approximation for
electrolyte models that give realistic values for the atstivoefficients. Whenever no great error is
incurred by doing so, it is preferable to use integral equetineory over simulation, as the former
requires much less computational effort, for evaluatirgggioperties of a given model. The HNC
approximation have been tested bef@reshowing great promise as a quantitative théarsome
regions of parameter space, though not in otherd® There is even a region in parameter space
where no physical solution exist for the P¥1 As the region in parameter space that is relevant
for 2:2 salts in water partly overlaps with the region wheiGHtheory is inaccurate, comparison
with simulation is necessary to establish the applicahiinge in concentration, for the actual ion
sizes used.

The outline of this paper is as follows: First, the pair pdeda defining the two model in-
teraction potentials that we consider are given. Then,hberetical methods used, Monte Carlo
simulation and HNC theory, are presented. The procedurtittiog the parameters of the model
potentials to experimental osmotic coefficients at mo@ecaincentration is then described, fol-
lowed by the results of the fitting procedure for each of theleh@otentials. The activity coeffi-
cients for low concentrations for the same parameter vatethen calculated and compared with

experimental data from EMF measurements.

2 Modeling of Sulfates

2.1 The Primitive Model

The PM is defined by the pair interaction potentig¥ (r), that is given by

Ul (r) = U™ (r) + () (1)



whereuicjore(r) is a hard sphere potential that is zero for dij and infinite forr < d;j, whered;;

is the diameter associated with the interaction betweenranfispecies and one of speciesand

r = |r —r'| wherer andr’ are the positions of the ions. The ted¥?! (r) is the Coulomb potential

given by
ZiZj€s
Coul 1<)
C — 7= 2
Ui (1) 4TEEQT 2)
whereZ;, | =1, |, is the ionic valency (with sign)kyp is the unit chargegy is the permittivity of

vacuum anc is the relative permittivity of the solution. The value ottrelative permittivity is
taken as that of the pure solvent, 78.36 for water at 25%C.

Here, we make the assumption that the ionic diameters ariéivadso thatd,_ = (d, +
d__)/2. Note that as the ion sizes in the PM are not necessarily geimsizes, but rather serves
to approximate the repulsive forces between pairs of idns,additivity is not self evident. It is
our expectation thad, _ is the by far most important parameter in the model as it detes the
strength of the Coulomb interaction at contact and therebyd#gree of ion pairing. Here, we
keepd__ fixed to the crystal diameter of sulfate, 4.6%Aand usel., , as a fitting parameted, _
follows from additivity. This prescription is motivated lilge expectation that the cation is more
strongly hydrated than the anion.

While the PM may be regarded as the simplest member of a clas®déls composed of
the generic long-range Coulomb interaction and a specifict-sange interaction, it is just one
member of an infinite set of possible ones. We think it is pnide consider also another member
of this class of models, described in section 2.2 below, @epto guard against the possibility that

the PM may be a pathological case in one way or another.

2.2 The Solvent Structure Primitive Model

Simulations consistently show that the ionic interactias an intermediate-range oscillatory com-
ponent arising from ordering of the solvent. This is the das#h for the short-range part of the

potential of mean forc&—31and that of the effective potential that reproduces thepiaiecorrela-



tion functions32-34The details of this potential are of course dependent ondateeffield used in
the simulation, but the qualitative conclusion about thistexce of an oscillatory contribution to
the interaction potential is robust. The approach in thestumwork is to adopt a simple expression
that has the expected qualitative features. Instead ofjubmion sizes to fit experimental data, a
parameter in the short range potential, the explicit exgpoasfor which is given below, serves this
purpose.

A very simple expression that reproduces the expectedtgtiadi behavior of the short ranged

part of the potential of mean force between cations and angon

dsCOS<27Tr_d(:ij) exp(— r_dg”)
S

U5 (r) = aij . ; 3)

wheredij is the ion diameterds is a length scale associated with the solvent andgives the
energy scale. We refer to the model defined by adding eq. (8)etd®M interaction potential,
ed. (1), as the “solvent structure primitive model”, abhbagsd “SSPM”. (The same value dfj is
used in eq. (3) and for the hard cores.) This name is due totbhef the solvent in creating the
oscillatory behavior of the potential of mean force that @).seeks to mimic. In principle, all of
the parameters of eq. (3) could be used as fitting paramdtersa binary electrolyte this would
correspond to no less than seven parameters. While a largeenwhfitting parameters does not
automatically disqualify a model, this is clearly an inagmiately large number if comparison
with the one-parameter version of the PM considered herebs imeaningful.

The size parameters for ions and solveit,andds, are constrained to values obtained from
independent information. The length scale parameter ofthent,ds, was taken as 2.76 A, the
typical inter-atomic spacing in liquid watéf. The ion diametersli; were taken asd£ + ds for
dy, 2d® for d__ andd® +dP +ds/2 for d, _, with d® denoting the “bare” radius. In all cases
the value ofdib was taken as the recommended value for the crystallographidiameter from
ref. 26. The energy scale parameter_ is used as a fitting parameter and, anda__ are set

to zero. This prescription is motivated by the expectatltat the anion-cation interaction is the



most important interaction in the system. This choice ofrditers together with the form ufj (r)
ensures that a anion-cation pair closer ttianlr d® + ds will be repelled due to the short-ranged
part of the pair potential. Betweet? 4 d° +ds/2 andd® +d® + ds there is a soft repulsion from
u3_(r) and smaller distances are forbidden by the infinitely répeilbard cores. This is meant
to model the free energy cost of displacing water moleculas fthe first solvation shell of the
cations. The diameters associated with interactions lestwke-charged ions may be considered
a compromise to maintain additivity.

We emphasize that the model defined by eq. (3) together witlptascriptions for the ion
sizes above is not predicted by any theory but is an ansate madhe basis of our qualitative
expectations of the appearance of the potential. While tladitgtive features that the form of eq.
(3) seeks to mimic are features that are consistently sesmination, the details are unlikely to be
faithfully represented; this potential is at best a skefcine true interaction potential. The reason
why we investigate such a model is rather to establish to exiaint the ability to fit experimental
data depends on the actual form of the potential. We notethiedbrm used here is analogous to
the one used it? for 1:1 electrolytes, but that the pre-factor and the piiptions for what ion-sizes
to use differ.

In Figure 1 the interaction potentials betweerfZand S(ﬁ‘ are shown for the PM and SSPM,
see Section 4.1 below. Note that the Coulomb potential is ¢meirgant contribution to the total
potential even in the SSPM. The extra potentigl nowhere accounts for more than half the
value of the potential, which is the case at contact, andagpsompletely unimportant beyond
10 A. Of courseps _ gives rise to a large change in tfaece between ions for some separations,
particularly close to anion-cation contact. The fact tifat gives a modest contribution relative to
the total interaction potential does not necessarily mbeanthis contribution is unimportant. On
the contrary, a weak attraction superimposed on a strorecatn may have a larger effect than
the weak interaction alone. The reason is that the intenagitential enters the Boltzmann factor
and thus the response in density due to a change in potentigpendent on the strength of the

original interaction potential in a non-linear way.
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3 Theoretical Methods

3.1 The HNC Approximation

The Ornstein-Zernike (OZ) equation for a bulk system is gilg

i) = Gij(r) + 3 nm/him(|r —F)emi (P )dr, @)

whereh;j(r) is the total correlation function andl;(r) is the direct correlation function for ion
specied and j. The total correlation function is related to the pair disttion function,g;j(r),
by gij(r) = hij(r) + 1. The hypernetted chain (HNC) approximation has the form elation

betweerhj(r) andcij(r) ,
Gij(r) = —Buij(r) + hij(r) —log[1+ hij (r)]. (5)

Together, these two relations betweg(r) andc;j(r) form a system of equations from which
these functions can be calculated giwgf(r). Here, the standard procedure of solving the set of
equations composed of (4) and (5) by Picard iteration is eygul2® The numerical difficulties
caused by the long-range Coulomb interactions are handleéldebgnethod described in ref. 37.
Briefly, for a starting guess for the set@f’s eq. (4) is solved with respect to the sethpfs by
taking the Fourier transform of this equation. Due to thevotution theorem eq. (4) then takes
the form of an algebraic equation that is solved for the Fauransform of the set df;j's. Then
the inverse Fourier transforms are calculated and a newsdaethe set ofij’s is obtained from
eg. (5). The procedure is repeated until convergence.

The accuracy of the HNC approximation tends to be good facisystems. A known excep-
tion is systems with strong, attractive electrostaticriatéons at low density. For PM electrolytes
there is a region where there is no solution for the HNC appration. This region has been
mapped out for the “restricted primitive model”, i.e. the Rlith the constraintd, , =d__ =d, _

andZ, = —Z_.%*In the vicinity of the region of no solution there are systéimarrors in the total
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correlation functions. For the anion-cation correlationdtion the height of the peak at contact
is then too low; the degree of ion pairing in the system is vesténated. In the like-charged ion
correlation functions the errors of the HNC approximatishew up as a spurious peak about one
ion radius from the contact distané®At higher concentrations both these errors are less impor-
tant: the peak height in the unlike-charged ion correlatigrction is better represented and the
peak in the like-charged ion correlation function is hereua feature of the system. The error in
the HNC approximation is that this peak does not disappedo¥o concentrations. For aqueous
2:2 electrolytes with sizes around those considered hieeereilgion where this problem becomes
severe starts at concentrations below about 0.2 M and yagéad$ worse for lower concentrations.
Moreover, the HNC approximation also shows a more seveomsistency between the compress-
ibility and virial routes for calculation of thermodynanypcoperties for 2:2 salts than for 1:1 and
1.2 salts. The accuracy of the HNC approximation thus cabaaéken for granted in the present
case. For this reason, MC simulations are employed to tegrédictions about the activity coeffi-
cients from HNC theory. Note that the HNC approximation erthodynamically consistent in the
limited sense that the “energy” route to thermodynamic prtes is consistent with the “virial”
route3%40Because of the presence of a region where no solution exisbtneressibility route is
unpractical for the calculation of osmotic coefficients actlvity coefficients on an absolute scale
for the PM of solutions of divalent sulfates. For this reaaththermodynamic quantities presented

in this work are calculated via the energy/virial route.

3.2 MC Simulation

All simulations presented in this work are performed usimg standard Metropolis Monte Carlo
method for the canonical ensemble using 242 pairs of ionk thié concentration determined
by the box size. Periodic boundary conditions with the mimmimage convention were used.
The simulation was run for 50 million configurations of eduration followed by 150 million

configurations. The long equilibration was performed inepried guard against the possibility that

non-representative configurations formed by the initialkd@m placement of the particles would
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persist for many steps due to the strong forces acting in&élt&.s

The excess chemical potential was evaluated using a variahe Widom insertion method.
The basic implementation of this method is that a trial itisarof a particle is made at random
into the simulation box and the interaction with all othertjgdes is evaluated. The excess free
energy in units okgT is simply the ensemble average of the Boltzmann factor aessatwith the
insertion of a particle at a random location. In chargedesyst the naive implementation of this
method displays very poor convergence with increasingsysize. This is because the insertion
gives rise to a non-electroneutral system. To remedy tlablpm an approximate but accurate

modification of this scheme was usétl.

3.3 Fitting to Experimental Data

Experimental activity coefficients and osmotic coefficgnitsulfates with the cations Be, Mg?*,
Mn?+, Ni%t, Cu/?t, Zn®t and Cd* were taken from ref. 8. To cast the osmotic coefficient in a
form that is compatible with the definition of this quantityMcMillan-Mayer type models the data
was converted from Lewis-Randall to McMillan-Mayer scaleading to the procedure described
in.42 Empirical expressions for the densities of the salt sohstiivom ref. 43 were used.

The activity coefficient data are based on isopiestic measents of the osmotic coefficient
for concentrations above some lowest concentratigrD.1 mol/kg in this case, followed by inte-

gration according to the Gibbs-Duhem equation according to

Iy (m) = — Iy (mo) + /r:(l‘ o(m))dinn. (6)

The osmotic coefficients and activity coefficients thus aonessentially the same information.
The accuracy of the absolute value of the activity coefficismlependent on the activity coeffi-
cient for concentratiomy. If y;(mp) is not reliably known, only theatio of activity coefficients

(or equivalently, difference in excess chemical potept@lthat for a given concentration can be

calculated. For this reason, the osmotic coefficient wad tseetermine the optimal parameters
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for each model. In ref. 8y, () is simply set to 0.150 (on the Lewis-Randall scale, though the
difference between the McMillan-Mayer and Lewis-Randadlls@re insignificant for this concen-
tration) for all the divalent sulfates. (See ref. 44 for deta

In order to obtain meaningful information about the ioniteiractions from such a fit the num-
ber of parameters must be kept to a minimum. Otherwise, theresk that the model becomes so
flexible that a good fit can be obtained regardless of any relseme between the model potential
and the true potential. What number of parameters is reakouabinately depends on the number
of independent pieces of information that has to be simatiasly fitted. Because we limit our-
selves to a single type of information here, we considerutlpnt to use a single fitting parameter,
as described in Sections 2.1 and 2.2.

The root mean square deviation between the experimentahandetical osmotic coefficients,

1/2

5 | Zm(@(nm) — ¢7P(nm))®

. ™)

where @(nm) and ¢*P(ny) are the theoretical (from the HNC approximation) and experital
osmotic coefficient for concentratian, andN is the number of different concentrations consid-
ered, was used as the figure of merit for the fit. We have usediN@ approximation in order
to calculate the model osmotic coefficient because the atzewaluation of osmotic coefficients
from simulations would require very long runs. The valuehd fitting parameter that minimized
0 was considered best. The results thus obtained are sulmlyquadidated by comparison of
the activity coefficients to the results from simulations thfee optimal parameters. The nine data
point corresponding to 0.2 to 1.0 m concentration was usedN = 9. It is not reasonable to
expect McMillan-Mayer type models to be applicable for aamications much higher than 1 or 2
M, although the limit of the range of validity cannot be knoavpriori. The lower limit of 0.2 m is
imposed due to the fact that the HNC approximation is not mtetfor the PM at low concentra-
tions under conditions of high electrostatic coupling. Usiohs of different divalent sulfates have

different density. Thus the osmotic coefficients are natwakted at exactly the same concentration
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interval in terms of molar concentrations. However, théedénce between the salts in the width
of the concentration interval is small, less than one peream not likely to skew the comparison

between the fits for different cations.

4 Results

4.1 Determination of Model Parameters
4.1.1 ThePM

For all divalent sulfates considered here the cation diam&as adjusted to the value that min-
imized & while the anion diameter was fixed to 4.6 A, the crystallobiagliameter of a sulfate
ion. The results are summarized in Table 1. The optimal wahti® are in the order of one to a
few percent of the typical values of the osmotic coefficientfie concentration range considered.
A more detailed comparison between theory and experimentate in Figure 2. While the PM
shares with the experimental data the feature that the asoumfficient goes through a minimum
in the concentration range of the figure, the position of thetimum is well reproduced only in
the case of BeSg For the other salts, the minimum in the model is consisggriticed at too low
concentrations.

The theoretical activity coefficients, presented in therigas Infy /f'e" where f'" is the
activity coefficient for 0.2 m concentration, appear to ogluce the experimental trends more
faithfully. The deviations are quite insignificant up to centrations around 1.5 M but for con-
centrations larger than that the agreement rapidly detgas (Figure 2). The apparently better
agreement between theoretical and experimental actigijficients than between theoretical and
experimental osmotic coefficients is not due to any thermadyic inconsistency, but is merely
a consequence of the way in which the activity coefficientd @smotic coefficients are related
by the Gibbs-Duhem equation. Thatfln varies more quickly with concentration thanis a

consequence of that the osmotic coefficient appears in tbgremd of eq. (6). The same rela-
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tive deviation between theory and experiment fof lnis thus less conspicuous than that {or
on the scales of the figures for most of the concentrationearfiyote that eq. (6) is written in
terms of molalities rather than molarities. This does ntgdfthe argument, however.) The PM
systematically underestimates the osmotic coefficientifelower concentrations considered and
overestimate it for higher concentrations. This has thesequence that the error incurred in the
activity coefficient from the integration in the lower haffthe concentration range is canceled to
some degree by the error from the upper half. The level ofeagesit for the experimental and the-
oretical activity coefficients for concentrations arounbl Inay thus be improved by cancellation

of errors and may therefore give an overly favorable imposssf the model.

4.1.2 The SSPM

Here both the cation and anion sizes are held constant arshéngy scale parameter _ is used

as a fitting parameter, as explained in detail in section ZlZ parameters that optimiZeare
shown in Table 2. Typically the values &fare lower than the corresponding ones for the PM by a
factor of two to three. Only for BeS{Ihe agreement is slightly worse than for the PM. Note that
for this salt, the cation diameter used here is similar toctitéeon radius that gives the best fit for
the PM. In light of this it is not surprising that the optimallue ofa _ is small: for this salt the
PM and SSPM are very similar.

In Figure 3 the osmotic and activity coefficients obtainexahfrthe model are compared to their
experimental counterparts. The main merit of the SSPM coetp® the PM is that it reproduces
the position of the minimum in the osmotic coefficient as acfion of concentration quite faith-
fully. While the agreement between theory and experimens @aéend to higher concentrations
than for the PM for MgS®, MnSQy, and CdSQ, this is not so for BeS@ The activity coefficients
are in better agreement with experiment for concentratign® about 1 M for the SSPM than for
the PM. However, the concentration range in which theoryexmeriment are in agreement is not

very different for the PM and the SSPM models.
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4.2 Test of the HNC approximation against simulation

In Figure 4 the mean activity coefficients calculated in théGHapproximation for the PM are
compared with those from simulation. The agreement is rkeaidy close for the entire concen-
tration range, especially so in light of that the criteridriteermodynamic consistency between the
compressibility and energy/virial routes for calculatafihermodynamic quantities is not fulfilled
to a very high accuracy for 2:2 saft8 The agreement between HNC and simulations for the activ-
ity coefficients indicates that the energy/virial routeédiditely preferable over the compressibility
route in terms of accuracy. This is fortunate because thegghwrial route is also more compu-
tationally expedient. A corresponding comparison for tisBl is made in Figure 5. Note that
this model does not seem to share with the PM the problemttkatks a solution in the region
of parameter space corresponding to 2:2 salts at modenatewstvations. The agreement between
theory and simulation is good up to about 1 M, but above thigceatration there is a consider-
able deviation. Fortuitously, and fortunately, the uppanaentration limit of the range where the
HNC approximation is accurate coincides with the upper eatration limit of the range where
the model agrees with the experimental data. For low coragons the agreement between the
HNC approximation and simulation is fair, but the activityefficients are slightly overestimated
by the HNC theory. This is especially true for the concermgratange of about 1 mM to 100 mM,
where the deviation is at most a few percent.

Figure 6 shows a comparison between the pair distributiontfons calculated for the SSPM
in the HNC approximation and by simulation. It is clear thafidencies of the HNC approxi-
mation that are well documented for the soft-core analodubeoPM?3 are also present for the
SSPM. For example, the height of the pealgin_(r) is underestimated by ten to twenty percent
in the concentration range considered. Good agreemenebatthie activity coefficients obtained
by simulation and theory is found for the SSPM at small cotregions & 100 mM). This is
surprising in light of the deficiencies . (r) from the HNC approximation. Nevertheless, the
consistency between the virial and compressibility rofbesalculating the osmotic coefficients

is comparable to that for the PM (not shown). This suggesiistiie energy/virial route to thermo-
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dynamic observables is subject to some cancellation ofethat compensates for the structural
deficiencies of the theory. Indeed, this conclusion is &iast with the observation made in ref.
23 that closures that improve the predictions for stru¢ipn@perties over the HNC approximation

do not necessarily give improved predictions for thermahgit quantities.

4.3 Comparison With Experiments

In Figure 7 the mean activity coefficients of Zn$Obtained from the PM and the SSPM are
compared with two experimental studies for ZnS@nSQ, is chosen as the main example because
this salt has been widely studied experimentally. The éxpantal data sets, from refd.and 8
which are shown in the figure, are not the only ones availabthe literature. Those sets were
chosen because they cover a wide range of concentrationshend a large degree of mutual
agreement despite the fact that different types of cellewseed. In ref. 21 the same cell is used as
inref. 11. There is good agreement between the results@utan these studies for concentrations
of 5 mM and above. However, when the activity coefficients @mesented on a scale that is
intended to be absolute, there is limited agreement. Thigisase for different experimental data
sets as well as between experiment and theory. The disaiegaretween the experimental data
sets can reasonably be explained by that the values of tlezimental activity coefficients on an
absolute scale are dependent on an extrapolation to zecewwation. Such an extrapolation is
very sensitive to the data points for very small concerdratj where the experimental errors are
likely to be the largest. The good agreement between expetathdata sets for low concentration
in panel (a) of Figure 7 is an illusion created by strong wedjtithe inaccurate low concentration
points in the extrapolation. By representing the data asaie of the activity coefficient to that for

a finite concentration, the data can be compared withouhgawi take into account the accuracy
of the extrapolation procedure. We emphasize that thesedpresentations have the exact same
physical significance. For concentrations between 10 mMadomait 1 M (see also Figure 3 and
Figure 2) the PM and the SSPM do not show large differenceswbmpared in this way. In fact,

the difference between the models is smaller than the axpetal error. Nevertheless, the absolute
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values of the logarithm of the activity coefficients are eliéint in this region by about ten percent.
This difference implies that the behavior of the two modelsstrbe quite different in the low
concentration region to fulfill the condition that the atgivcoefficient is one at infinite dilution.
This dependence on the details of the interaction poteftrdbw concentration is unfortunate:
it calls into question the reliability of the practice of ngi“theory assisted extrapolation” to put
the the activity coefficients on an absolute scale. This lesian is underlined by the comparison
between model and experimental activity coefficient datafigSO, and CdSQ in Figure 8 and
Figure 9. For MgSQ@the SSPM is apparently superior to the PM whereas for GdB®opposite

is true. As the PM and SSPM are just two members of a wide classodels of comparable
plausibility it is our opinion that it is hardly meaningfub speculate which one, if any, can be

considered best in general without additional information

5 Discussion and Conclusions

The cation diameters that give the best fit between the s=Balh PM and experiments are much
smaller than the expected geometric size of hydrated divalations. Furthermore, there is a
general, but not universal, trend that the the ionic rades@ases with increasing atomic number.
This would appear to suggest that the optimal PM diameteahasverse relation to the “bare”
diameter. If the selected diameters from ref. 26 are to bentals accurate our results do not
support such a relationship, except in as much that the itmtive smallest bare ion size has the
largest value ofl, ; and vice versa. Obviously, caution must be applied in drgwipnclusions
about the size of ions in solution on the basis of apparesssizcrystals. This is especially true
in this case, where a small relative error in the size of the imight change the conclusion.

The small cation sizes obtained here are in most cases mos#r ¢b the bare ion diameter than
any reasonable “hydrated” size. Note, however, that fonthgnesium halides a cation diameter
commensurate with strong hydration was obtained usingrgfitrocedure similar to the one used

here?® This clearly illustrates that the effective diameters afsan the PM is really a property of

19



the interaction between pairs of ions rather than geomptdperties of individual hydrated ions.
This carries the implication that it might be possible to i the agreement with experiments by
making the ion sizes non-additive, so that the distanceasfedt approach between a magnesium
ion and a sulfate ion need not be the arithmetic mean of thardie of closest approach between
two magnesium ions and two sulfate ions. Since the Coulonabdntion between like charged ions
causes the ions to stay well separated on average, regaodiiieir distance of closest approach,
this would likely only have a large effect for high concetitras.

For the SSPM the value af; _ increases with increasing atomic number, with the values fo
the first row transition metal cations being approximatejya. Note thatr, — doesnot carry the
interpretation as some “strength of hydration”. The efigfcthe first hydration shell is assumed
to be included first and foremost in the ion sizes, that arecsedl on the basis of geometrical
considerations only. There are good reasons to suspethéedtions considered here are strongly
hydrated: even the largest one,Cdis smaller than N&, and has twice the charge. If one accepts
the notion that the strength of solvation should be roughbpprtional to the field strength at
the surface of the ion, as is often argued, see for instarfcelTe the conclusion must be that
Cd?* is more strongly solvated than Nawhich is itself strongly solvated. It is, however, not
unreasonable to expect that the sulfate oxygens mightaeplater molecules in the hydration
shell of the cation, thereby allowing smaller cation-anéistances. The feature of _ that is
probably most important is the attractive well constitubgdthe first minimum in this oscillatory
potential. The peakig. _ coincides closely with this minimum, butin its absegge would have
a cusp at anion-cation contact. Thus, a larger valug,of has the main effect that the potential
in this region is more negative. In that sense the fits for thlealRd SSPM are commensurate: a
smallerd. . and a largemr. _ both gives rise to stronger attraction between anions atidnsa
The conclusion is thus that the pair potential is more reyeilsr less attractive for ions of light
elements than for heavy. (Although no definite trend couldibeerned within the set of first row
transition metals considered.)

Comparison between the fits obtained with the PM and SSPMriiigsthat these two models
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can be made to agree with experimental data to a similar gxteterms of the relative activity
coefficients, over a large concentration range even thdugledtion sizes are in some cases very
different. However, the two models give rather differerguiés for theabsolute activity coeffi-
cients. Table 3 shows the activity coefficient at 0.1 M comion and for the purpose of this
discussion that may be taken as insignificantly differemnfthe 0.1 m concentration which is the
lowest one considered in ref. 8, for which the activity cadint is taken to be 0.150 for all diva-
lent sulfates considered therein. (The difference betvleehewis-Randall and McMillan-Mayer
scales is hardly significant for this concentration.) Thievég coefficients predicted by the PM
and SSPM differ greatly for this concentration. Thereftine, PM and SSPM must also disagree
about the absolute activity coefficients at higher conediatns. This reveals a subtlety in the mod-
eling of 2:2 electrolytes: the thermodynamic properties sensitive to the details of the short-
and intermediate-range interaction potential down to &engall concentrations. Thus, in order to
understand the relative importance of Coulomb and non-Cduloteractions in determining the
thermodynamic behavior of electrolytes, reliable infotima about the activity coefficient in the
range 0.1-10 mM is needed for a range of salts.

In refs1318-21the PM was used for the extrapolation to infinite dilutionalesated using var-
ious approximate theories valid for low concentrations.e Tdn sizes that were found in those
works to give the best fit to experimental data are roughlyroemsurate with those obtained here.
The values ofl, _ corresponding to our cation sizes are only by a few tenth ok &om any of
those obtained in ref§318-21for the same cation. The difference between the sizes autainthe
different works is of similar magnitude. The comparisonhagkperiment in section 4.3 indicates
that the activity coefficients from the PM agree reasonal@j with experiments down to about
10 mM concentration. For lower concentrations the agre¢inetween different experiments is
not good enough for any definite conclusion to be drawn. Hewef/the more recent data from
ref. 18 are to be believed the agreement is at least fair oettiire experimental range. The data
from ref. 11 closely follows the SSPM curve but the data frah 21 (not shown) for the same

cell are closer to the data from ref. 18. Comparison with expental data for different salts yield
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the same conclusion, i.e. down to a few mM the PM and SSPM dmneaningfully distinguish-
able by comparison of the relative activity coefficientstfiose for 0.2 m concentration), and for
smaller concentration experimental uncertainty makeand o choose between them. Neverthe-
less, both models agree fairly well with experiments ovdeast three orders of magnitude. The
behavior of the relative (but not the absolute) activityfioent also appears to be insensitive to
the details of the interaction potential as the SSPM givescafnparable to that of the PM except
for very low concentrations. We expect that this is the cagenly for the two models considered
here but also for a wider class of models.

The expectation that the PM is unable to fit the entire comagah range for which solutions
can be preparéd is borne out in that the activity coefficients for conceritnag much above 1 M
are poorly reproduced by the sizes that give a reasonabtddivar concentrations. Nevertheless,
the optimum ion size is roughly the same over at least thréersrof magnitude. The PM should
thus be regarded as a crude but fairly life-like model up tocemtrations of about 1-1.5 M, where
the agreement with experiment quickly deteriorates wittreasing concentration, see Figure 2.
In our opinion, it is hardly meaningful to try to extend thencentration range where a fit can be

obtained to higher concentrations as the assumption wiagthe PM are hard to justify for high

References
(1) Bjerrum, N.Z. Electrochem. 1918 24, 321.
(2) Lund, M.; Jbnsson, B.; PedersenMar. Chem. 2003 80, 95.
(3) Ramanathan, P. S.; Friedman, HJLChem. Phys. 1971, 54, 1086.
(4) Friedman, H. L.; Zebolsky, D. M.; Kalman, B.Solution Chem. 1976 5, 1976.
(5) McMillan, W. G.; Mayer, J. EJ. Phys. Chem. 1945 13, 276.
(6) Wernersson, E.; Kjellander, R.; LyklemaJJPhys. Chem. C 2009 submitted.

(7) Pitzer, K. SJ. Phys. Chem. 1973 77, 268.

22



(8) Robinson, R. A.; Stokes, R. Hectrolyte Solutions; Dover Publications, 2002.
(9) Rard, J. A.; Miller, D. GJ. Chem. Eng. Data 1981, 26, 33.
(10) Pitzer, K. SJ. Chem. Soc., Faraday Trans. 21972 68, 101.
(11) Bray, U. B.J. Am. Chem. Soc. 1927, 49, 2372.
(12) Getman, F. HJ. Phys. Chem. 193Q 34, 1454.
(13) La Mer, V. K.; Parks, W. GJ. Am. Chem. Soc. 1931, 53, 2040.
(14) Masaki, K.; Ikkatai, TBull. Chem. Soc. Japan 1932 7, 238.
(15) Demassieux, N.; Fedoroff, Binn. de Chimie, Ser. 11 1941, 16, 215.
(16) Fedoroff, BAnn. de Chimie, Ser. 11 1941, 16, 154.
(17) Davies, W. G.; Otter, R. J.; Prue, J.[Esc. Faraday Soc. 1957, 24, 103.
(18) Malatesta, F.; Zamboni, R. Solution Chem. 1997, 26, 791.

(19) Malatesta, F.; Carbonaro, L.; Fanelli, N.; Ferrini, Siacomelli, A.J. Solution Chem. 1999
28, 593.

(20) Malatesta, F.; Trombella, S.; Fanelli, W.Solution Chem. 200Q 29, 685.
(21) Copperthwaite, I. A.; La Mer, V. KI. Am. Chem. Soc. 1931, 53, 4333.
(22) Valleau, J. P.; Cohen, L. K.; Card, D. 8l.Chem. Phys. 198Q 72, 5924.
(23) Duh, D.-M.; Haymet, A. D. JJ. Chem. Phys. 1992 97, 7716.

(24) Belloni, L.J. Chem. Phys. 1993 98, 8080.

(25) Handbook of Chemistry and Physics, 52nd ed.; Weast, R. C., Ed.; The Chemical Rubber Co.:
Cleveland, OH, 1971.

23



(26) Marcus, Ylon Properties; Marcel Dekker, Inc.: New York, 1997.

(27) Dang, L. X.; Rice, J. E.; Kollman, P. A. Chem. Phys. 199Q 93, 7528.

(28) Guardia, E.; Rey, R.; Padré, J. 8hem. Phys. 1991, 155, 187.

(29) Guardia, E.; Rey, R.; Padro, J. A Chem. Phys. 1991, 95, 2823.

(30) Gavryushov, S.; Linse, B. Phys. Chem. B 2006 110, 10878.

(31) Gavryushov, Sl. Phys. Chem. B 2006 110, 10888.

(32) Lyubartsev, A. P.; Laaksonen, Rhys. Rev. E 1995 52, 3730.

(33) Lyubartsev, A. P.; Laaksonen, Rhys. Rev. E 1997, 55, 5689.

(34) Lyubartsev, A. P.; Malja, S.Phys. Rev. E 2002 65, 041202-1.

(35) Ciccarello, S.; Gazzillo, Dl. Chem. Soc., Faraday Trans. 2 1985 81, 1163.

(36) Rasaiah, J. C.; Friedman, H.L.Chem. Phys. 1968 48, 2742.

(37) Ng, K.-C.J. Chem. Phys. 1974 61, 2680.

(38) Rossky, P. J.; Dudowicz, J. B.; Tembe, B. L.; Friedman, H. Chem. Phys. 198Q 73, 3372.
(39) Morita, T.Prog. Theor. Phys. 196Q 23, 829.

(40) Schlijper, A. G.; da Gama, M. M. T.; Ferreira, P.I5Chem. Phys. 1993 98, 1534.
(41) Svensson, B. R.; Woodward, C.Mol. Phys. 1988 64, 247.

(42) Pailthorpe, B. A.; Mitchell, D. J.; Ninham, B. W. Chem. Soc. Faraday Trans. 1984 80,
115.

(43) Novotny, P.; S6hnel, Q. Chem. Eng. Data 1988 33, 49.

(44) Robinson, R. A.; Stokes, R. Htans. Faraday Soc. 1949 45, 612.

24



(45) Rasaiah, J. Q. Chem. Phys. 1972 56, 3071.
(46) Abbas, Z.; Ahlberg, E.; Nordholm, 3.Phys. Chem. B 2009 113, 5905.
(47) Collins, K. D.; Nielson, G. W.; Enderby, J. Biophys. Chem. 2007, 128, 95.

(48) Rasaiah, J. Q. Solution Chem. 1973 2, 301.

25



Tables

Table 1: Optimizes cation diameters for the PM.

cation| d,, (&) | d® (R)2 | 1075
Bet 3.14 0.72 | 0.34
Mg?t | 2.77 1.44 | 1.28
Mn2t | 2.30 1.66 | 1.48
Ni2* 2.11 1.38 | 1.57
CW¥t | 2.07 1.46 | 0.76
Zn?t 2.25 1.50 | 1.06
Ckt | 2.01 1.90 | 0.85

4 The selected values of the ion diameter in crystals from2éf.

Table 2: Optimized interaction strength parameter for the SSPM.

1070

cation| ir | diy (A)?
Bet | 2.5 3.48
Mg%t | 4.4 | 4.20
Mn2t | 5.2 4.42
Ni¢t | 5.1 4.14
Cw¥t | 5.2 4.22
Zn*t | 5.0 4.26
Ckt | 58| 4.66

0.43
0.72
0.55
0.62
0.38
0.33
0.38

2 See Section 2.2.

Table 3: Theoretical activity coefficients for 0.1 M concentation.

cation| fEM(0.1 M) | F5M(0.1 M)
Be*t 0.156 0.166
Mg?+ 0.146 0.165
Mn2+ 0.132 0.160
Ni2+ 0.129 0.155
Cut 0.125 0.155
Zn?t 0.131 0.159
Cdt 0.122 0.157

26



Figure Captions

Figure 1: The best-fit potential of the PM (full curve) and $B@ashed curve) in units &&T for
ZnSQy, see Table 1 and Table 2 in Section 4.1.

Figure 2: In panel (a) the osmotic coefficient as a functionasfcentration is shown. In panel
(b) the logarithm of the the mean activity coefficient relatto its value at 0.2 m is shown. The
symbols are experimental data from ref. 8 and the lines doelleded from the primitive model
(PM) in the HNC approximation. The circles and short-dastedes are for BeSg) diamonds
and medium-dashed curves are for MgStiangles and long dashed curves for MnS(Dd stars
and full curves CdS@Q NiSO4, CuSO4 and ZnSghave been omitted to avoid cluttering the figure.
The curves corresponding to these salts would all fall betwbose for MNnS@and CdSQ. The
cation sizes are chosen to give optimal agreement betweeadaMtic coefficients in the range
0.2t0 1.0 m, see Table 1. Points corresponding to higheresdrations are not considered in the

fit.

Figure 3: Same as Figure 2, but with interaction potentiedeeters taken from Table 2. Here,

itis a,_ rather thard, ; thatis used as a fitting parameter.

Figure 4: Comparison between the HNC approximation (curaed)MC simulation (symbols)
for the PM with four different cation diameters. The circéasl short-dashed curves are flor, =
3.14 A (the size that gives the best fit for BegQdiamonds and medium-dashed curves are for
d,. =277 A (MgSQ), triangles and long dashed curves éor, = 2.30 A (MnSQ,) and stars
and full curves fod, , = 2.01 A (CdSQ). See Table 1.

Figure 5: Comparison between the HNC approximation and MQisition for the SSPM for
four different divalent sulfates. The circles and shorsttad curves are for the parameters that
gives the best fit for BeS§) diamonds and medium-dashed curves are for Mg$@ngles and
long dashed curves for MnS@nd stars and full curves for Cd20OSee Table 2. Note that the

abscissa is in log-scale in the upper pannel.
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Figure 6: Comparison between the HNC approximation (curaed)MC simulation (symbols)
for the pair distribution functiong;;(r) for the SSPM with parameters corresponding to ZpSO
see section 2.2 and table Table 2. Paneba is(r) shown on a log-linear plot and panel lgis_(r)

(full curves and filled circles) and, ;- (r) (dashed curves and open circles) on a linear-linear plot.
The data is shown in this way to enable comparison both fostitengly peakedy; _(r) and the
slowly varyingg,(r). Curves and symbols fag__(r) are not shown because these would be

indistinguishable frong, ;- (r) on the scale of the figure.

Figure 7: Comparison between simulations for the PM (fu$pand the SSPM (dashed lines)
and experimental data (circles and triangles for data frefisi'f and 18 respectively) for the mean
activity coefficient of ZnSQ@. In panel (a) the data is presented as given in the origifi@terce
while in panel (b) the data is shifted to bring the value tozer 0.2 m concentration, in effect

making the excess chemical potential for this concentatat of the standard state.

Figure 8: Comparison between simulations for the PM (fut$pand the SSPM (dashed lines)

and experimental data (symbols), from ref. 18, for the mesainity coefficient of MgSQ.

Figure 9: As Figure 8, but for CdSOData from refs. 19 (triangles) and 13 (circles).
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