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Abstract

This paper points to some of the common myths and facts that have emerged from 20

years of research into the analysis of unit roots in panel data. Some of these are well-

known, others are not. But they all have in common that if ignored the effects can be

very serious. This is demonstrated using both simulations and theoretical reasoning.

JEL classification: C13; C33.
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1 Introduction

Starting with the working paper versions of Quah (1994) and Breitung and Meyer (1994)

that were available already in 1989, the literature concerned with the analysis of unit roots

in panel data covers more than 20 years. While during the first decade the topic was rather

peripheral, it has by now become a very active research area, see for example Choi (2006)

and Breitung and Pesaran (2008) for recent surveys of the literature. Today panel unit root

tests are standard econometric tools within most fields of empirical economics, especially in

macroeconomics and financial economics, and some are now available in commercial soft-

ware packages such as EViews and STATA.

∗Preliminary versions of the paper were presented at seminars in Amsterdam, Maastricht and Paris. The
authors would like to thank seminar participants, and in particular Uwe Hassler, Jean-Pierre Urbain and Franz
Palm for helpful comments and suggestions. Thank you also to the Jan Wallander and Tom Hedelius Foundation
for financial support under research grant number W2006–0068:1.
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405 30 Gothenburg, Sweden. Telephone: +46 31 786 5251, Fax: +46 31 786 1043, E-mail address:
joakim.westerlund@economics.gu.se.
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In the beginning when the panel unit root literature was still in its infancy econometri-

cians tended to view extensions of the conventional unit root analysis to panel data as a

rather straightforward and less exciting exercise. However, it has since then become clear

that this is not the case. Indeed, subsequent work has revealed a number of surprising re-

sults and it seems fair to say that adapting conventional unit root analysis to a panel data

framework has revealed fundamental differences in the way statistical inference with non-

stationary data is performed.

In line with this development the current paper argues that extensions of existing time

series unit root tests to panels can sometimes be deceptive in their simplicity. In particular,

we argue that the usual practice of looking at the testing problem from a time series perspec-

tive gives rise to a number of myths, and increases the risk of overlooking important facts,

some of which are well-known, others are not. However, they all share the feature that if ig-

nored the effects upon analysis can be dramatic, with deceptive inference as a result. In fact,

as we shall see, in most cases ignorance will actually cause the panel unit root statistic to be-

come divergent, thus leading to a complete breakdown of the whole test procedure. Proper

understanding of these myths and facts is therefore key in any research with non-stationary

panel data.

The plan of the paper is the following. Section 2 focuses on the simplest case without

any deterministic terms, short-run dynamics or cross-sectional dependence. Although ad-

mittedly very restrictive, this setup allows us to focus on some of the most basic differences

between the analysis of time series and panel data. In Section 3 we generalize the setup

of Section 2 to allow for deterministic constant and trend terms. The analysis reveal that

this small change has major implications for the asymptotic analysis. Models with short-run

dynamics are considered in Section 4 and in Section 5 we address the problems that arise

when the cross-sectional units are no longer independent. Section 6 offers some concluding

remarks.

2 The simplest case

Consider the double indexed variable yit, observable for t = 1, ..., T time periods and i =

1, ..., N cross-sectional units. Initially we will assume that yit has no deterministic part, so
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that

yit = ys
it, (1)

where ys
it is the stochastic part of yit, which is assumed to evolve according to the following

first-order autoregressive (AR) process:

ys
it = ρiys

it−1 + ε it, (2)

or, equivalently,

∆yit = (ρi − 1)yit−1 + ε it = αiyit−1 + ε it. (3)

In this section we assume that the error ε it is mean zero and independent across both i and t.

To make life even simpler, we assume that the errors are homoscedastic so that E(ε2
it) = σ2

for all i and t. Note that while unduely restrictive for most practical purposes, this data

generating process has the advantage of being simple and illustrative.

The null hypothesis of interest is

H0 : αi = 0 for all i,

which corresponds to a fully non-stationary panel. As for the alternative hypothesis, we will

consider two candidates, H1a and H1b. The first is specified as

H1a : αi = α < 0 for all i,

and corresponds to a fully stationary panel with the same degree of mean reversion for all

units. It is therefore quite restrictive. The second alternative is more relaxed. It reads

H1b : αi < 0 for i = 1, ..., N1 with
N1

N
→ δ1 > 0 as N1, N → ∞,

which corresponds to a mixed panel with δ1 being the limiting fraction of stationary units.

Note that in this formulation, there are no homogeneity restrictions with regards to the de-

gree of mean reversion. Note also that at this point we make no assumptions concerning

the remaining N − N1 slopes, αN1+1, ..., αN , which may all be zero, negative or a mixture of

both. However, we do require that δ1 > 0, as otherwise the panel would escape stationarity

as N1, N → ∞.
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The two alternative hypotheses H1a and H1b are chosen to match the two tests that will

be of primary interest in this paper, the Levin et al. (2002) test and the Im et al. (2003) test,

henceforth LLC and IPS, respectively.

Before considering these tests, however, it is useful to introduce some notation. In par-

ticular, we define M = ∑N
i=1 Mi, where

Mi =

(
M11i M12i

· M22i

)
=

T

∑
t=2

(
(∆yit)2 yit−1∆yit

· y2
it−1

)

is the non-normalized moment matrix of the variables contained in the regression in (3),

whose asymptotic counterpart is given by

M◦
i =

(
M◦

11i M◦
12i

· M◦
22i

)
=

(
σ2

∫ 1
0 Wi(s)dWi(s)

· ∫ 1
0 Wi(s)2ds

)
,

where Wi(s) is a standard Brownian motion on s ∈ [0, 1]. In particular, it holds that
(

1
T M11i

1
T M12i

· 1
T2 M22i

)
⇒ σ2M◦

i

as T → ∞, where the symbol ⇒ signifies weak convergence.

The results reported in this paper are derived using either the joint limit method wherein

N, T → ∞ simultaneously, or the sequential limit method wherein one of the indices is

passed to infinity before the other, see Phillips and Moon (1999). In any case, since the

purpose here is more to illustrate rather than to prove, details that are not essential for the

understanding of the main point will be omitted. The derivations will therefore not be com-

plete, and readers are referred to the relevant original works for a more detailed treatment.

Having introduced the main notation, we now go on to discuss the IPS and LLC tests.

With no serial correlation or heteroskedasticity, and no deterministic constant or trend terms,

the Levin and Lin (1992) statistic is given by

τLLC =
M12

σ̂
√

M22
= α̂

√
M22

σ̂
,

where σ̂2 = 1
NT (M11 − α̂ M12) with α̂ = M12/M22 being the least squares estimator of α,

whose standard error is given by σ̂/
√

M22. Note that although in this setting the Levin and

Lin (1992) statistic is the same as the LLC statistic that assumes no deterministic component

and no short-run dynamics, at times it will be important to keep the distinction, as this

similarity is not always going to hold when we go on to discuss more general models.
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The IPS test is given by

τIPS =
√

N(τ − E(τ))√
var(τ)

,

where τ = 1
N ∑N

i=1 τi and τi is the usual Dickey and Fuller (1979), or DF, test statistic,

τi =
M12i

σ̂i
√

M22i
= α̂i

√
M22i

σ̂i

with an obvious definition of σ̂2
i and α̂i. It is well-known that

τi ⇒
M◦

12i√
M◦

22i

as T → ∞. The constants E(τ) and var(τ) are simply the mean and variance of this limiting

distribution. Note that since M◦
i is identically distributed, E(τ) and var(τ) do not need to

carry an i index.

Fact 1: The IPS and LLC statistics are standard normally distributed as N → ∞.

In order to establish the asymptotic normality of τLLC and τIPS we invoke two of the most

important tools of the analysis of non-stationary panel data, the weak law of large numbers

and the Lindeberg–Levy central limit theorem.

Consider first the LLC statistic, which can be written as

τLLC =
M12

σ̂
√

M22
=

1
T
√

N
M12

σ̂
√

1
NT2 M22

.

We begin by analyzing the denominator under H0, which by the law of large numbers as

N → ∞ becomes

1
NT2 M22

p→ lim
N→∞

1
N

N

∑
i=1

1
T2 E(M22i) = lim

N→∞

1
N

N

∑
i=1

1
T2

T

∑
t=2

E(y2
it−1)

= σ2 1
T2

T−1

∑
t=1

t = σ2 T− 1
2T

,

where
p→ signifies convergence in probability. Similarly, 1

NT M12
p→ 0 and 1

NT M11
p→ σ2 as

N → ∞, from which we deduce that α̂
p→ 0 and σ̂2 p→ σ2.

Moreover,

var
(

1
T

M12i

)
=

1
T2

T

∑
t=2

var(yit−1∆yit) = σ2 1
T2

T

∑
t=2

var(yit−1) = σ2 1
T2 E(M22i)

= σ4 T − 1
2T

.
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In view of this result and the assumed independence across i, we have that by the Lindeberg–

Levy central limit theorem as N → ∞

1
T
√

N
M12 =

1
T
√

N

N

∑
i=1

M12i
d→ σ2

√
T + 1

2T
N (0, 1),

where d→ denotes convergence in distribution. Thus, by putting everything together we get

τLLC =
1

T
√

N
M12

σ̂
√

1
T2 N M22

d→ N (0, 1).

Note that this result holds for any T. Hence, the asymptotic normality of the LLC statistic

does not require T → ∞. However, if individual specific parameters relating to for example

deterministic terms or short-run dynamics are introduced, then this is no longer true. The

reason is that consistent estimation of these parameters requires T → ∞, see for example

Harris and Tzavalis (1999) and LLC.

In a similar manner it can be shown that τIPS also has a standard normal limiting distri-

bution as N → ∞ with T held fixed. In particular, as pointed out by IPS as long as E(τ) and

var(τ) are evaluated for a finite T, then by the Lindeberg–Levy central limit theorem,

τIPS
d→ N (0, 1).

Thus, as long as N → ∞ normality of these statistics does not require passing T → ∞, a fact

that is oftentimes not considered, even in theoretical work.

The performance under the stationary alternative is the topic of the next section.

Myth 1: The IPS test is more powerful than the LLC test

It has become standard to treat τLLC as a test against H1a and τIPS as a test against H1b.

Therefore, since H1b is less restrictive than H1a, one might be led to believe that τIPS should

dominate τLLC in terms of power, at least under the heterogeneous alternative. But this is

only a myth.

Consider first the case when the slope coefficient αi is fixed under the alternative. If H1a

holds, then we write

1√
NT

τLLC = α

√
1

NT M22

σ̂
+ (α̂− α)

√
1

NT M22

σ̂
= Op(1) + Op

(
1√
NT

)
Op(1),

6



which implies that τLLC = Op(
√

NT ). Similarly, if H1b holds, and assuming for simplicity

that the last N − N1 units are non-stationary,
√

var(τ) τIPS =
1√
N

N

∑
i=1

(τi − E(τ))

=

√
N1

N
1√
N1

N1

∑
i=1

(τi − E(τ)) +

√
1− N1

N
1√

N − N1

N

∑
i=N1+1

(τi − E(τ))

=
√

δ1 Op(
√

NT ) +
√

1− δ1 Op(1),

where we have used that

1√
T

E(τi) =
αi

σ
E

(√
1
T

M22i

)
+ Op

(
1√
T

)
→ αi√

1− ρ2
i

6= E(τ)

as T → ∞, implying

1
N1

N1

∑
i=1

(τi − E(τ))
p→ E(τi)− E(τ) = Op(

√
T )

so that 1√
N1

∑N1
i=1(τi − E(τ)) = Op(

√
N1T ), which is Op(

√
NT ) provided that δ1 > 0. It

follows that τIPS = Op(
√

NT ).

The rate of divergence is therefore the same for both tests, suggesting that their ability

to reject the null should also be the same provided that N and T are large enough. Note

also that the rate of divergence of τIPS is independent of the value taken by δ1, as long as

δ1 > 0. The divergence rate of this test in a panel where for example only half of the units

are stationary is therefore the same as that in a panel where all units are stationary.

Consider next the case when αi is local-to-unity,

H1c : αi =
ci

T
√

N
, (4)

where ci < 0 is a constant such that 1
N ∑N

i=1 ci → c as N → ∞. Let us assume for simplicity

that yi0 = 0, then by Taylor expansion

1
σ
√

T
yit =

1
σ
√

T

t

∑
j=0

ρ
j
iε it−j ' 1

σ
√

T

t

∑
j=0

ε it−j +
ci

σ
√

NT

t

∑
j=1

j
T

ε it−j

⇒ Wi(s) +
ci√
N

Ui(s)

as T → ∞, where Ui(s) =
∫ s

0 Wi(r)dr. Thus, by subsequently passing N → ∞,

1
σ2T

√
N

N

∑
i=1

T

∑
t=2

yit−1ε it
d→ 1√

2
N (0, 1) + c lim

N→∞

1
N

N

∑
i=1

E
(∫ 1

0
Ui(s)dWi(s)

)

∼ 1√
2
N (0, 1),
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which uses the fact that E
( ∫ 1

0 Ui(s)dWi(s)
)

= 0. But we also have 1
T2 N M22

p→ σ2

2 as N, T →
∞, and so we get

τLLC =
1

σ̂
√

1
NT2 M22

1
T
√

N

N

∑
i=1

T

∑
t=2

(
ci

T
√

N
y2

it−1 + yit−1ε it

)
d→ N

(
c̄√
2

, 1
)

.

It is interesting to note that the denominator of the LLC statistic does not contribute to the

local power of the test, which stands in sharp contrast to the DF statistic, whose local power

depends on both the numerator and the denominator.

Let us now consider the local power of the IPS statistic. Using Taylor expansion and then

inserting

1
σ2T

T

∑
t=2

yit−1∆yit ⇒
∫ 1

0

(
Wi(r) +

ci√
N

Ui(r)
) (

dWi(r) +
ci√
N

Wi(r)
)

dr

=
∫ 1

0
Wi(r)dWi(r) +

ci√
N

(∫ 1

0
Ui(r)dWi(r) +

∫ 1

0
Wi(r)2dr

)
+ Op

(
1
N

)

= M◦
12i +

ci√
N

(R1i + M◦
22i) + Op

(
1
N

)
,

1
σ2T2

T

∑
t=2

y2
it−1 ⇒

∫ 1

0

(
Wi(r) +

ci√
N

Ui(r)
)2

=
∫ 1

0
Wi(r)2dr +

2ci√
N

∫ 1

0
Wi(r)Ui(r)dr + Op

(
1
N

)

= M◦
22i +

2ci√
N

R2i + Op

(
1
N

)
,

we obtain

τi ⇒ M◦
12i√

M◦
22i

+
ci√
N

(√
M◦

22i +
R1i√
M◦

22i
− M◦

12iR2i

(M◦
22i)3/2

)
+ Op

(
1
N

)
.

It follows that as N, T → ∞,

τIPS
d→ N (0, 1) +

c√
var(τ)

E

(√
M◦

22i +
R1i√
M◦

22i
− M◦

12iR2i

(M◦
22i)3/2

)
.

Using simulations where the Brownian motion Wi(r) is approximated by a random walk

of length T = 1, 000 we find

E

(√
M◦

22i +
R1i√
M◦

22i
− M◦

12iR2i

(M◦
22i)3/2

)
= 0.6221 − 0.0794 + 0.0382 = 0.581.
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Since 0.581/
√

var(τ) = 0.581/0.985 = 0.6 < 1/
√

2 = 0.707 it follows that the local power

of the IPS test is always smaller than that of the LLC test. We also see that the power only

depends on the mean of ci and not on the variance. Thus, just as in the case when αi is treated

as fixed we find that the power does not depend on the heterogeneity of the alternative.

To illustrate these findings a small simulation experiment was conducted using (1), (2)

and (4) with ε it ∼ N (0, 1) and yi0 = 0 to generate the data. Two specifications are consid-

ered. In the first, ci = c for all i, suggesting a completely homogenous AR parameter, while

in the second, ci ∼ U(2c, 0). Hence, var(ci) = c2/3 > 0 whenever c < 0 and so the individ-

ual AR coefficients are no longer restricted to be equal. However, the mean is still c, just as

in the first specification. The empirical rejection frequencies are based on 5,000 replications

and the 5% critical value.1 The results are summarized in Table 1. We see that in agreement

with the theoretical results, τLLC is uniformly more powerful than τIPS. We also see that the

actual power corresponds roughly to the asymptotic power, at least for large samples and

small values of c.

Table 1: Power against different local alternatives.

ci = c ci ∼ U(2c, 0)
T, N c LLC IPS LLC IPS

20 −1 15.4 12.5 15.3 12.4
−2 33.5 24.0 31.3 23.3
−5 90.4 73.8 76.6 67.9

50 −1 16.6 13.1 16.2 12.8
−2 36.6 26.8 33.9 26.1
−5 93.7 80.4 85.0 75.9

100 −1 16.8 13.3 16.5 13.3
−2 38.7 26.8 36.7 26.1
−5 94.8 83.5 89.8 79.9

Asymptotic −1 17.4 14.8 17.4 14.8
−2 40.9 32.8 40.9 32.8
−5 97.1 91.23 97.1 91.2

Notes: The table reports the 5% rejection frequencies when
the AR parameter is set to αi = ci/T

√
N.

1From now on all simulations will be conducted at the 5% level using 5,000 replications. Also, in order to
reduce the effect of the initial condition, the last 100 observations of each cross-sectional unit will henceforth be
disregarded.
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3 Models with deterministic terms

Myth 2: Deterministic components should be treated as in the DF approach

In the presence of deterministic constant and trend terms, LLC and IPS suggest following

the DF proposal of using least squares demeaning. One might therefore think that this is

also the simplest way to handle such terms. This is only a myth.

Consider the model

yit = µi + ys
it, (5)

where the constant µi now represents the deterministic part of yit, while ys
it again represents

the stochastic part. As usual, the allowance for deterministic terms of this kind makes it

necessary to appropriately augment the regression in (3). Let us therefore introduce xit to

denote a generic vector containing all regressors other than yit−1 with γi being the associated

vector of slope coefficients. In the current case with a constant this yields

∆yit = αiyit−1 − αiµi + ε it = αiyit−1 + γixit + ε it, (6)

where γi = −αiµi and xit = 1 for all i and t. The matrix of sample moments is augmented

accordingly as

Mi =




M11i M12i M13i

M12i M22i M23i

M′
13i M′

23i M33i


 =

T

∑
t=2




(∆yit)2 yit−1∆yit ∆yitx′it
yit−1∆yit y2

it−1 yit−1x′it
xit∆yit xityit−1 xitx′it




with xit ordered last. Moreover, since the focus here is on αi and not on γi, the analysis will

be carried out in two steps, where the first involves projecting ∆yit and yit−1 upon xit. The

second step is then to test for a unit root in the resulting projection errors, which can be

written in terms of the partitions of Mi as

Mp
abi = Mabi − Ma3i M−1

33i M3bi.

The corresponding limiting projection error is defined as

M◦p
abi = M◦

abi − M◦
a3i (M◦

33i)
−1 M◦

3bi

with an obvious definition of M◦
abi.

Also, except for Mp, to simplify the notation let us from now on suppress any depen-

dence upon p. For example, we write σ̂2 = 1
NT (Mp

11 − α̂ Mp
12) and α̂ = Mp

12/Mp
22, which are

10



the same definitions as in Section 2 but with the elements of Mp in place of the corresponding

elements of M.

Consider now the DF approach of using least squares demeaning, in which case

Mp
abi = Mabi − 1

T
Ma3i M3bi,

so that for example Mp
12i = ∑T

t=2(yit−1 − yi)∆yit, where yi = 1
T ∑T

t=2 yit is the mean of yit.

The limiting version of this quantity is given by M◦p
12i =

∫ 1
0 (Wi(s)−W i)dWi(s), where W i =

∫ 1
0 Wi(s)ds. Thus, since E(M◦p

12i) = −1/2 under H0, we have that in the sequential limit as

T → ∞ and then N → ∞

1
TN

Mp
12 ⇒ σ2 1

N

N

∑
i=1

M◦p
12i

p→ σ2E(M◦p
12i) = − σ2

2
.

Since σ̂2 p→ σ2 and 1
T2 E(Mp

22i) → σ2

6 we have that as N, T → ∞

1√
N

τLLC =
1

TN Mp
12

σ̂
√

1
T2N Mp

22

p→ −
√

6
2

and by further use of 1
T2 var(Mp

12i) → σ4

12 ,
√

12N
σ2

(
1

TN
Mp

12 +
σ2

2

)
d→ N (0, 1).

It follows that

τc
LLC =

√
2N

(
1

TN Mp
12 + σ̂2

2

)

σ̂
√

1
NT2 Mp

22

d→ N (0, 1).

This is the bias-adjusted LLC statistic, which has been superscripted by c to indicate that it

is robust to the presence of the constant in the model. The point here is that least squares

demeaning is not enough to get rid off the effect of µi. There is also a bias that needs to be

accounted for, which complicates the testing considerably. This is the so-called Nickell bias

(Nickell, 1981).

As mentioned in Section 2, as soon as one moves away from the most simple case with

no deterministic components and no short-run dynamics, the statistic proposed in Levin and

Lin (1992) need not be the same as the one in LLC. In the current setting Levin and Lin (1992)

suggest using

τc
LL =

√
5

2
τLLC +

√
15N

8
,
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which is even more complicated than τc
LLC, as now it is not only the bias of the numerator but

the bias of the whole test statistic that is subtracted. To appreciate the effect fo this change

let us begin by expanding τc
LL as

2√
5

τc
LL = τLLC +

√
3N
2

=
√

N
1

NT Mp
12

σ̂
√

1
NT2 Mp

22

+
√

N
1
2 σ2

σ
√

σ2

6

=

√
N

( 1
NT Mp

12 + 1
2 σ2)

σ̂
√

1
NT2 Mp

22

− 1
2

σ2
√

N


 1

σ̂
√

1
NT2 Mp

22

− 1

σ
√

σ2

6


 ,

which, by Taylor expansion of the second term, yields

2√
5

τc
LL '

√
N

( 1
NT Mp

12 + 1
2 σ2)

√
σ̂2 1

NT2 Mp
22

+ σ̂2

√
27

2σ16

√
N

(
1

NT2 Mp
22 −

σ2

6

)

+
1

NT2 Mp
22

√
27

72σ16

√
N

(
σ̂2 − σ2)

d→
σ2√
12
N (0, 1)

σ
√

σ2

6

+ σ2

√
27

2σ16
σ2
√

45
N (0, 1),

where we have used that 1
T2 var(Mp

22i) → σ4

45 and
√

N(σ̂2 − σ2) = op(1), see Lemma 2 of

Moon and Phillips (2004). It follows that

2√
5

τc
LL

d→
(

1√
2

+
√

3
10

)
N (0, 1) ∼ 2√

5
N (0, 1),

or τc
LL

d→ N (0, 1).

Thus, although the end result is the same as for τc
LLC, the route to normality is more com-

plicated than for τc
LL, and involves additional approximations, which is suggestive of poor

small-sample properties. On the other hand, the bias-adjustment of LLC requires estimation

of σ2, which obviously increases the variability of their test.

The relationship between the two statistics is easily seen by noting that

2√
5

τc
LL = τLLC +

√
3N
2

= τLLC +
1
2

√
N

σ√
σ2

6

= τLLC +
1
2

√
N plim

N, T→∞

σ̂√
1

NT2 Mp
22

= τLLC +
1
2

√
N plim

N, T→∞
T
√

N
σ̂√
Mp

22

,

which is asymptotically equivalent to

τc
LLC =

√
2 τLLC +

NT√
2

σ̂√
Mp

22

.
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However, the demeaning not only complicates the route to normality but also impact the

local power of the tests. Consider τc
LLC. From Moon and Perron (2008) we have that under

H1c,

1
σ
√

T
(yit − yi) ⇒ Wi(s)−W i +

ci√
N

(Ui(s)−Ui) + Op

(
1

N3/4

)

as T → ∞, which implies

1
σ2T

Mp
12i ⇒ M◦p

12i +
ci√
N

(
M◦p

22i +
∫ 1

0
(Ui(r)−Ui)dWi(r)

)
+ Op

(
1

N3/4

)
.

Using E(M◦p
12i) = σ2/2, E(M◦p

22i) = σ2/6, var(M◦p
12i) = σ2/12 and

E
(∫ 1

0
(Ui(r)−Ui)dWi(r)

)
= − E(Wi(1)Ui) = − 1

6

it is possible to show that as N, T → ∞
√

12N
σ2

(
1

NT
Mp

12 +
σ2

2

)
d→ N (0, 1) +

√
12 c E

(
M◦p

22i +
∫ 1

0
(Ui(r)−Ui)dWi(r)

)

∼ N (0, 1).

Hence, under the typical sequence of local alternatives given by (4) the limiting distribution

of the numerator of τc
LLC does not depend on ci. For the denominator we have

1
σ2T2 Mp

22i ⇒ M◦p
22i +

2ci√
N

∫ 1

0
(Wi(r)−W i)(Ui(r)−Ui)dr + +Op

(
1

N3/4

)
,

suggesting that as T → ∞ and then T → ∞

1
NT2 Mp

22 ⇒ σ2 1
N

N

∑
i=1

M◦p
22i + Op

(
1√
N

)
p→ σ2 E(M◦p

22i) =
σ2

6
,

from which it follows that

τc
LLC =

√
2N

(
1

TN Mp
12 + σ̂2

2

)

σ̂
√

1
NT2 Mp

22

d→ N (0, 1).

In other words, unlike τc
LL, τc

LLC does not have any power against H1c. This is illustrated in

Figure 1, which plots the local power as a function of c when the data are generated from (1),

(2) and (4) with ci ∼ U(2c, 0). As in Table 1, the results are based on 5,000 replications and

the 5% critical value. Note in particular how the power function of τc
LL is strictly increasing

in c, while that of τc
LLC is flat. As it turns out this loss of power can be easily explained, an

issue that we will discuss to some extent in Section 4.
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Figure 1: Local power of τc
LL and τc

LLC.
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The point here is that these complications are all due to the fact that the constant is re-

moved by least squares demeaning. Thus, in order to avoid bias and corrections thereof, one

needs to consider alternatives to least squares demeaning. For example, Breitung and Meyer

(1994) suggest using the initial value yi0 as an estimator of γi, and to test for a unit root in a

regression of ∆yit on y∗it−1 = yit−1 − yi0. To see how this is going to affect the results, note

that

E(∆yity∗it−1) = E
(
∆yit (yit−1 − yi0)

)
= E

(
ε it

t−1

∑
s=1

ε is

)
= 0.

In other words, using yi0 as an estimator of γi removes the bias. In fact, it is not difficult to

show that as N, T → ∞

τc
BM =

∑N
i=1 ∑T

t=2 y∗it−1∆yit

σ̂
√

∑N
i=1 ∑T

t=2(y∗it−1)2

d→ N (0, 1),

where τc
BM is the Breitung and Meyer (1994) statistic.

Interestingly, as pointed out by Phillips and Schmidt (1992), yi0 is also the maximum

likelihood estimator of γi under H0, which has been shown to lead to significant power gains

14



when compared to least squares demeaning, see Madsen (2003). In fact, it is not difficult to

see that under H1c,

τc
BM

d→ N
(

c√
2

, 1
)

as N, T → ∞, which is the same results we obtained earlier for the LLC statistic in the model

without any deterministic terms.

To examine the extent of these gains in small samples Table 2 reports some results based

on data generated from (1), (2) and (4) with ci ∼ U(2c, 0). Consistent with the results of

Madsen (2003) we see that the tests based on removing the initial condition are almost uni-

formly more powerful than those based on least squares demeaning. We also see that this

increase in power comes at no cost in terms of size accuracy. Note that the LLC results are

for the Levin and Lin (1992) test.

Table 2: Size and local power for different demeaning procedures.

LLC IPS
c N T LS ML LS ML

0 10 50 7.1 7.1 7.3 5.8
20 50 6.8 6.9 7.4 6.3
10 100 6.4 7.5 4.8 5.4
20 100 6.6 7.0 5.3 5.8

−1 10 50 10.1 11.9 9.4 8.5
20 50 9.3 12.9 9.7 10.3
10 100 8.6 13.5 6.7 10.0
20 100 9.6 13.2 8.2 11.2

−2 10 50 13.2 18.5 10.5 12.5
20 50 12.5 20.1 11.6 14.4
10 100 10.9 18.0 7.0 14.4
20 100 11.7 19.9 10.0 16.2

−5 10 50 25.9 41.0 19.8 31.2
20 50 23.7 46.1 20.9 37.3
10 100 21.6 39.8 15.3 33.3
20 100 24.0 43.3 17.3 36.8

Notes: The table reports the 5% rejection frequencies when the
AR parameter is set to αi = ci/T

√
N, where ci ∼ U(2c, 0). LS

and ML refer to demeaning by least squares and maximum
likelihood, respectively, where the latter is based on removing
the first observation from yit. LLC refer to the Levin and Lin
(1992) test
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Another possibility is to demean yit−1 recursively as yit−1 − 1
t−1 ∑t−1

s=0 yis, which can be

used instead of y∗it−1 to produce yet another unbiased and standard normally distributed

test statistic.

These alternative demeaning approaches can be seen as special cases of a more gen-

eral class of test statistics. In particular, letting ∆yi =
(

∆yi2, . . . , ∆yiT
)′ and yi,−1 =

(
yi0, . . . , yiT−1

)′, these statistics can be written as

∑N
i=1(∆yi)′Cyi,−1

σ̂
√

∑N
i=1 y′i,−1C′Cyi,−1

.

The matrix C has the property that C ιT = 0, where ιT is a vector of ones. Therefore, pre-

multiplying yi,−1 by C eliminates the individual specific constant. The statistic has expecta-

tion zero if

E
(
(∆yi)′Cyi,−1

)
= σ2 tr(CD) = 0,

where D is a matrix with elements djk = 1 if j < k and djk = 0 for j ≥ k. Note that in the

case of least squares demeaning, C = IT − 1
T ιT ι′T, where IT is the identity matrix. Since in

this case tr(CD) 6= 0, bias correction is needed.

The same principle can be used to construct bias-corrected statistics in models with

trends, an issue to be discussed in the next section.

Fact 2: Incidental trends reduces the local power of the LLC test

Suppose now that instead of (5) we have

yit = µi + βi t + ys
it, (7)

where βi t is a unit specific trend term, giving

∆yit = − αiµi + (αi + 1)βi − αiβi t + αiyit−1 + ε it = αiyit−1 + γ′i xit + ε it

with xit =
(

1, t
)′.

The incidental trends problem refers to the need of having to estimate the trend coeffi-

cient βi, whose number goes to infinity as N → ∞, which reduces the discriminatory power

against H0, see Moon and Phillips (1999). In particular, as we will now demonstrate the

presence of trends even has an order effect on the neighborhoods around the unit root null

for which asymptotic power is non-negligible.
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As Moon et al. (2007) show in the case with incidental trends the LLC statistic is asymp-

totically equivalent to

τt
LLC =

193
112

τLLC +

√
252
772

10
T

√
Mp

22

σ̂
,

where the superscript t indicates invariance with respect to the trend, while τLLC is now

the LLC statistic based on the detrended data. Moon and Perron (2004) consider another

statistic, which in the present setting may be written as

τt
MP = τLLC +

NT
2

σ̂√
Mp

22

.

It follows that
√

193
112

τt
LLC = τt

MP +
15
2T

(
Mp

22 − 1
15 σ̂2)

σ̂
√

Mp
22

,

suggesting that τt
LLC will inherit some of the asymptotic properties of τt

MP. In particular, from

Theorem 4 of Moon and Perron (2004) we know that τt
MP has power within 1

N1/4T neighbor-

hoods of H0, but not for any higher powers of N and T. In particular, τt
MP has no power

against H1c when the neighborhood is of order 1
T
√

N
. The above relationship imply that τt

LLC

has the same property. Thus, just as in the case of an intercept, we see that the presence of

the trend leads to a loss of power. This is illustrated in Table 3, which plots the local power

of the LLC and IPS tests for some different values of c when αi is generated according to (4)

with ci ∼ U(2c, 0). In accordance with the theoretical results we see that the power can be

very low and practically nonexisting in many cases if there is a trend in the model.

In view of the previous myth one might think that this loss of power is due to the fact

that the detrending is carried out using least squares. However, this is not true. Take

as an example the study of Breitung (2000), who proposes a generalized version of the

demeaning by initial value procedure discussed in the previous section. Specifically, us-

ing yi0 and 1
T ∑T

t=2 ∆yit = 1
T (yiT − yi0) as estimators of the constant and trend, respec-

tively, Breitung (2000) proposes replacing (8) with a regression of ∆y∗it on y∗it−1, where y∗it =

yit − yi0 − 1
T (yiT − yi0) t and

∆y∗it = st

(
∆yit − 1

T − t
(yiT − yit)

)
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Table 3: Local power in the presence of incidental trends.

c N T LLC IPS

−1 10 50 9.9 10.9
20 50 10.6 12.2
10 100 6.9 7.7
20 100 8.2 8.4

−4 10 50 13.4 12.4
20 50 12.6 14.3
10 100 10.2 9.4
20 100 10.0 10.4

−8 10 50 22.8 22.1
20 50 20.0 20.5
10 100 16.9 14.6
20 100 14.9 14.9

Notes: The table reports the 5% rejection
frequencies when the AR parameter is set
to αi = ci/T

√
N, where ci ∼ U(2c, 0).

with s2
t = (T − t)/(T− t + 1). The effect of this is easily seen by noting that

E(∆y∗ity
∗
it−1) = st E

((
∆yit − 1

T − t
(yiT − yit)

) (
yit − yi0 − 1

T
(yiT − yi0)

))

= st E
((

∆ys
it −

1
T − t

(ys
iT − ys

it)
) (

ys
it − ys

i0 −
1
T

(ys
iT − ys

i0)
))

= st E
((

ε it − 1
T − t

(ys
iT − ys

it)
) (

ys
it−1 −

t− 1
T

ys
iT

))

= st

(
t− 1

T
σ2 − (t− 1)(T − t)

(T − t)T
σ2

)
= 0,

showing that the bias has been successfully eliminated.

However, as Moon et al. (2006) show, just as with τt
MP and τt

LLC, the Breitung (2000)

test has no power in neighborhoods that shrinks to zero at a faster rate than 1
N1/4T . The

reduced power effect in the presence of trends is therefore not specific to τt
MP and τt

LLC but

is a general property of this type of tests. In fact, as Ploberger and Phillips (2002) show, the

panel unit root test that maximizes the average local power has significant power in local

neighborhoods that shrink at the same rate, 1
N1/4T .
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Myth 3: The initial condition does not affect the asymptotic properties of the tests

The power of panel unit root tests is usually evaluated while assuming that all N units are

initiated at zero. Although this is a convenient assumption that simplifies the theoretical

considerations, it is very unrealistic and, as we will see, by no means innocuous. Suppose

for example that yit is generated according to (5) with a constant and where ys
it is as in (2).

But suppose now that instead of setting ys
i0 to zero, we set

ys
i0 =

σ√
1− ρ2

i

ηi

where ηi is independent and identically distributed with mean η and variance σ2
η . Note that

for ρi < 1 and ηi ∼ N(0, 1) this initial condition implies that ys
it is stationary.

Similar to what we had before when ys
i0 = 0, Harris et al. (2009) show that under H1c, as

T → ∞

1
σ
√

T
(yit − yi) ⇒ ηi

N1/4

(
r− 1

2

) √−ci

2
+ Wi(s)−W i +

ci√
N

(Ui(s)−Ui)

+ Op

(
1

N3/4

)
,

where Ui(s) is again the integral of Wi(r) over [0, s], implying

1
σ2T

Mp
12i ⇒ M◦p

12i +
ci√
N

(
M◦p

22i +
∫ 1

0
(Ui(r)−Ui)dWi(r)

)

− ηi

N1/4

√−ci

2

∫ 1

0

(
r− 1

2

)
dWi(r) + Op

(
1

N3/4

)
.

It follows that as N, T → ∞
√

12N
σ2

(
1

NT
Mp

12 +
σ2

2

)
d→ N (0, 1) +

√
12 c E

(
M◦p

22i +
∫ 1

0
(Ui(r)−Ui)dWi(r)

)

− plim
N→∞

1
N3/4

N

∑
i=1

ηi

√−ci

2

∫ 1

0

(
r− 1

2

)
dWi(r).

But E
(
ηi
√−ci/2

∫ 1
0 (r − 1/2)dWi(r)

)
= 0, suggesting that the last term on the right-hand

side is Op(1/N1/4). Thus, since the second term is zero,
√

12N
σ2

(
1

NT
Mp

12 +
σ2

2

)
d→ N (0, 1),

which is the same result as the one we obtained when ys
i0 = 0. By further using 1

T2 N Mp
22

p→
σ2/6 it follows that τc

LLC
d→ N (0, 1). Thus, just as before the asymptotic distribution of τc

LLC
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is independent of both c and ys
i0. However, this is not the case with the IPS test. In fact, as

Harris et al. (2009) show,

τc
IPS

d→ N (0, 1) + c
(

0.282− 0.135(η2 + σ2
η)

)
,

which shows that the local power of the IPS test is decreasing in η2 and σ2
η . In particular,

note that if the initial condition is large enough so that 0.282 > 0.135(η2 + σ2
η), then this test

is no longer unbiased. This is illustrated in Figures 2 and 3, which plot the local power of the

IPS test for different combinations of N and η when σ2
η = 0 and αi is generated as in (4) with

ci = −10 for all i. We see that if there is a constant present then the power is decreasing in

both N and η, while if there is no deterministic component then the power is almost perfect.

Figure 2: Local power of τc
IPS for different initial values.
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4 Models with short-run dynamics

Myth 4: Lag augmentation removes the effects of serial correlation

Suppose that (1) holds so that yit is purely stochastic, but that the error ε it in (2) is no longer

independent across t. In particular, suppose that ε it follows a stationary and invertible AR
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Figure 3: Local power of τIPS for different initial values.
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process of order p,

φ(L)ε it =

(
1−

p

∑
j=1

φjLj

)
ε it = ε it −

p

∑
j=1

φjε it−j = eit, (8)

where L is the lag operator and eit is a mean zero error that has variance σ2 for all i but is

otherwise independent across both i and t. As with the homoskedasticity of eit the assump-

tion of homogenous lag coefficients is not necessary but is made here in order to simplify the

presentation. In particular, it means that the long-run variance of ε it,

ω2 =
σ2

φ(1)2 ,

does not have to carry an i index.

Under H0, (1), (2) and (8) can be combined to obtain the following augmented DF (ADF)

regression:

∆yit = αiyit−1 +
p

∑
j=1

φj∆yit−j + eit = αiyit−1 + γ′xit + eit, (9)

where xit =
(

∆yit−1, . . . , ∆yit−p
)′ is now the vector of lagged differences with γ =

(
φ1, . . . , φp

)′ being the associated vector of lag coefficients. This gives rise to the ADF
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test statistic,

τi =
Mp

12i

σ̂i

√
Mp

22i

= α̂i

√
Mp

22i

σ̂i
,

where σ̂2
i = 1

T (Mp
11i − α̂i Mp

12i) and α̂i = Mp
12i/Mp

22i, which again suppress the dependence

upon p. Note also that in this setup Mp
abi takes the projection onto the lags of ∆yit rather than

onto a vector of deterministic components as in Section 3.

Under H0, using Me
12i and Me

13i to denote M12i and M13i with eit in place of ∆yit,

1
T

Mep
12i =

1
T

Me
12i −

1
T

Me
13i M−1

33i M32i =
1
T

Me
12i +

1
T

Op(
√

T )Op

(
1
T

)
Op(T)

=
1
T

Me
12i + Op

(
1√
T

)
,

1
T2 Mp

22i =
1

T2 M22i − 1
T2 M23i M−1

33i M32i =
1

T2 M22i − 1
T2 Op(T)Op

(
1
T

)
Op(T)

=
1

T2 M22i + Op

(
1
T

)
.

These results, together with 1
T Mp

11i
p→ σ2 and

(
1
T Me

12i
1

T2 M22i

)
⇒

(
σω M◦

12i
ω2 M◦

22i

)

imply that

τi =
Mp

12i

σ̂i

√
Mp

22i

⇒ M◦
12i√

M◦
22i

.

Thus, the asymptotic distribution of τi is not affected by the presence of short-run dynamics,

suggesting that the distribution of the IPS statistic should be unaffected too, see Section 4

of IPS. In other words, with this test lag augmentation successfully removes the short-run

dynamics of the panel. This is also true for the LLC statistic if the model does not include

deterministic terms. To see this note that

1
T
√

N
Mp

12
d→ σ ω√

2
N (0, 1)

as N, T → ∞. Furthermore,

1
NT2 Mp

22
p→ ω2

2
,

from which it follows that

τLLC =
Mp

12

σ̂
√

Mp
22

d→ N (0, 1).
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Thus, lag augmentation removes the effect of the short-run dynamics also for the LLC statis-

tic. However, the situation changes dramatically if the model includes a constant or a linear

time trend. Consider for example the case with short-run dynamics and a constant, in which

we let xit =
(

1, ∆yit−1, . . . , ∆yit−p
)′ and re-define Mp

12i and Mp
22i accordingly. This

yields

lim
N, T→∞

E
(

1
TN

Mp
12

)
= σ ω lim

N→∞

1
N

N

∑
i=1

E(M◦
12i) → − σ ω

2
.

It follows that in this case lag augmentation does not remove short-run parameters from the

mean of the statistic. To cope with this problem LLC propose a bias and serial correlation

corrected version of τLLC, which we again denote by τc
LLC. The problem is that since the

mean of τLLC depends on both σ2 and ω2, for the bias-correction to work these parameters

have to be estimated consistently, an issue that will be considered in more detail below. It

follows that in the presence of deterministic terms lag augmentation alone is not enough to

remove the short-run parameters from the asymptotic distribution of the LLC statistic.

For the estimation of ω2 LLC propose using

ω̂2
i =

1
T

T

∑
t=2

(∆yit)2 +
2
T

q−1

∑
j=1

(
1− j

q

) T

∑
t=j+1

∆yit∆yit−j,

which is the conventional Newey and West (1994) long-run variance estimator. It is impor-

tant to note that by using ∆yit this estimator is in fact imposing H0. Thus, if H0 holds then

we have from Andrews (1991) that ω̂2
i

p→ ω2 as T → ∞ with q → ∞ and q
T → 0, suggesting

that

ω̂ =
1
N

N

∑
i=1

ω̂i
p→ ω.

This indicates that the following bias-corrected statistic can be used

τc
LLC =

√
2 τLLC +

NT√
2

ω̂√
Mp

22

,

whose asymptotic distribution can be obtained by writing

τc
LLC =

√
2N

( 1
TN Mp

12 + 1
2 σ̂ ω̂

)

σ̂
√

1
NT2 Mp

22

d→
σω√

6
N (0, 1)

σ
√

ω2

6

∼ N (0, 1),

which is the result presented in Theorem 5 of LLC. However, although theoretically not an

issue as long as q → ∞ and q
T → 0, in practice the optimal q to use in a given sample is never
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known, which of course adds to the variability of the statistic. Then there is also the problem

that ω̂2 tends to zero under H1a, an issue that we will discuss more in the next section.

To sidestep these difficulties, Breitung and Das (2005) propose to pre-whiten the vari-

ables. Their idea is as follows. Under H0 we have

∆yit =
p

∑
j=1

φj∆yit−j + eit, (10)

or, in terms of levels,

yit =
t

∑
s=1

∆yis =
p

∑
j=1

φj

t

∑
s=1

∆yis−j +
t

∑
s=1

eis =
p

∑
j=1

φjyit−j + ys
it,

where ys
it is as in (2) but with H0 imposed. It is a random walk with serially uncorrelated

increments eit. For simplicity we also assume that yi0 = 0. Thus, in contrast to 1√
T

yit, whose

long-run variance is given by ω2, the long-run variance of 1√
T

ys
it is just σ2. For the estimation

of the lag coefficients φj, Breitung and Das (2005) recommend using the above regression in

first differences with H0 imposed. For a fixed p this yields

1√
T

y∗it =
1√
T

ys
it −

p

∑
j=1

(φ̂ij − φj)
1√
T

yit−j =
1√
T

ys
it + Op

(
1√
T

)
Op(1),

where φ̂ij is the least squares estimate of φj in (10), which means that
√

T(φ̂ij − φj) = Op(1).

Similarly,

∆y∗it = eit −
p

∑
j=1

(φ̂ij − φj)∆yit−j = eit + Op

(
1√
T

)
.

Thus, replacing ∆yit and yit by ∆y∗it and y∗it, respectively, eliminates the effects of the serial

correlation without requiring any estimation of ω2.

In Table 4 we compare the size accuracy of the IPS and LLC tests using both least squares

lag augmentation and pre-whitening. The data are generated from (1), (2) and (8) with p = 1,

which makes φ1, the first-order AR coefficient, an interesting nuisance parameter to study.

For the choice of lag length we consider three alternatives. The first is to ignore the serial

correlation and to set p = 0, while the second is to set p equal to its true value. The third

alternative is to chose p in a data-dependent fashion by using the Schwarz Bayesian infor-

mation criterion with a maximum of five lags.

The first thing to notice is the size distortions that result from ignoring the serial corre-

lation, especially when φ1 = −0.5, and the effectiveness by which they are removed in the

two correction procedures. Note also that there are basically no differences in the results

depending on whether p is treated as known or not.
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Table 4: Size for different corrections for short-run dynamics.

φ1 = 0.5 φ1 = −0.5
LLC IPS LLC IPS

N T Aug Pre Aug Pre Aug Pre Aug Pre

No lags
10 20 7.5 7.5 3.8 3.8 13.4 13.4 21.7 21.7
20 20 5.2 5.2 3.1 3.1 22.4 22.4 31.7 31.7
40 20 2.7 2.7 0.6 0.6 45.1 45.1 54.4 54.4
10 50 4.8 4.8 1.7 1.7 29.2 29.2 42.0 42.0
20 50 2.8 2.8 0.4 0.4 50.0 50.0 67.5 67.5
40 50 0.7 0.7 0.1 0.1 82.9 82.9 90.6 90.6

The true number of lags
10 20 8.9 7.1 5.6 3.5 8.4 7.6 4.5 4.0
20 20 8.9 5.8 3.5 2.7 7.6 7.2 3.2 3.0
40 20 8.2 6.1 2.0 0.9 6.0 5.7 1.7 1.3
10 50 7.5 6.7 3.6 2.6 6.5 6.0 3.5 3.4
20 50 6.9 5.5 3.5 2.8 6.2 5.8 3.6 3.5
40 50 6.1 5.3 2.5 2.0 5.2 5.2 2.8 2.7

The Schwarz Bayesian information criterion
10 20 10.0 7.3 6.0 3.2 8.1 8.0 4.8 4.2
20 20 9.3 6.8 4.3 2.8 7.9 7.1 3.5 3.0
40 20 8.0 5.9 2.1 0.9 6.0 5.3 2.1 1.5
10 50 7.5 6.7 3.6 2.6 6.4 6.1 3.4 3.4
20 50 6.9 5.6 3.6 2.8 6.3 5.8 3.6 3.4
40 50 5.9 5.2 2.5 1.7 5.2 5.3 2.9 2.7

Notes: The table reports the 5% rejection frequencies under H0. φ1 refers to the
first-order AR serial correlation parameter. Aug and Pre refer to least squares
augmentation and pre-whitening, respectively.

Fact 3: The long-run variance estimator of LLC is inconsistent under the alternative hy-
pothesis

Provided that q → ∞ such that q
T → 0, then we have that under H0, ω̂2

i −ω2 = op(1), which

via Taylor expansion gives

ω̂ =
1
N

N

∑
i=1

ω̂i =
1
N

N

∑
i=1

ω + op(1)
p→ ω

as N, T → ∞. Thus, provided that H0 holds, ω̂ is consistent for ω, which as we have seen

is a requirement for τc
LLC to be asymptotically normal. The problem is that if H0 is false,
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because yit is stationary, ∆yit is over-differentiated with no variance at zero frequency. Thus,

in contrast to what happens under H0, in this case ω̂2
i does not converge to ω2 but in fact

goes to zero suggesting that ω̂ should go to zero too. In fact, as Westerlund (2008) shows, if

q → ∞ with N, T → ∞ and q
T → 0,

ω̂ = Op

(
1√
q

)
.

From Section 2 we know that τLLC = Op(
√

NT ) under H1a, suggesting that τc
LLC is of the

same order. Therefore, to determine the effect of the inconsistency of ω̂2 on

τc
LLC =

√
2 τLLC +

NT√
2

ω̂√
Mp

22

,

we only need to consider the second term, the bias, which under H1a can be written as

NT√
2

ω̂√
Mp

22

=
√

NT√
2

ω̂
1√

1
NT Mp

22

=
√

NT Op

(
1√
q

)
Op(1).

In order to appreciate the implications of this last result, suppose that q is set independent

of T, so that the bias term is Op(
√

NT ). The problem here is that while τLLC → −∞, the bias

term is diverging at the same rate but in the opposite direction, which means that τc
LLC is not

a consistent test. The only way to make τc
LLC consistent is therefore to set q as a function of T,

ensuring that the order of the bias term is lower than Op(
√

NT ), and hence that τc
LLC → −∞.

To illustrate these results Table 5 reports the size-adjusted power of τc
LLC for three dif-

ferent bandwidth selection rules. The first is the automatic rule of Newey and West (1994),

while the other two are deterministic, and involve setting q either equal to 4(T/100)2/9 as

suggested by Newey and West (1994) or equal to 3.21T1/3 as in LLC. The data are generated

from (2), (4) and (5) with ci ∼ U(0, 2c). In agreement with the results of Westerlund (2008) we

see that the power can be very low and practically nonexisting unless b = 3.21T1/3, which

is also the most generous rule considered. For example, if T = 100, then 4(T/100)2/9 = 4

while 3.21T1/3 ' 15, an increase by almost a factor of four.

5 Cross section dependence

Fact 4: Cross-section dependence leads to deceptive inference

We consider two types of dependence, weak and strong. The first type refers to a situation

in which all the eigenvalues of the covariance matrix of yit are bounded as N → ∞, which
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Table 5: Size-adjusted power of the LLC test for different bandwidths.

Bandwidth selection rule
c N T NW 4(T/100)2/9 3.21T1/3

5 10 100 3.9 3.9 6.2
20 100 3.6 3.5 5.0
10 200 1.9 1.6 3.5
20 200 2.5 2.5 2.8

10 10 100 3.9 3.6 10.8
20 100 3.7 3.7 7.9
10 200 2.1 1.3 5.6
20 200 2.7 1.8 3.9

20 10 100 7.2 6.0 38.5
20 100 6.8 6.8 29.7
10 200 5.2 1.6 20.6
20 200 3.4 2.0 11.6

40 10 100 40.4 39.7 86.0
20 100 27.3 28.3 85.2
10 200 31.4 8.9 73.3
20 200 18.5 4.2 65.2

Notes: The table reports the 5% size-adjusted rejection frequencies when
the AR parameter is set to αi = ci/T

√
N, where ci ∼ U(0, 2c). NW

refers to the automatic bandwidth selection rule of Newey and West (1994).

rules out the presence of unobserved common factors, but allows the cross-sectional units

to be for example spatially correlated. The second type of dependence refers to a situation

when at least one eigenvalue diverges with N, which arises when there are common factors

present.

Suppose as in the previous section that (3) holds so that




∆y1t
...

∆yNt


 =




α1 0
. . .

0 αN







y1t−1
...

yNt−1


 +




ε1t
...

εNt




or, in matrix format,

∆yt = Π yt−1 + εt.

However, instead of looking at the case when ε it is dependent across t, we now consider the

case when it is dependent across i.
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In particular, let us begin by assuming that all eigenvalues of the covariance matrix

Ω = cov(εt) = E(εtε
′
t)

are bounded as N → ∞, which means that the dependence is of the weak form. By the

spectral decomposition, Ω = Ω1/2(Ω1/2)′ = VΛV ′, where Λ is the diagonal matrix with the

ordered eigenvalues λ1 ≥ ... ≥ λN along the diagonal, while V is the matrix of orthonormal

eigenvectors. Let y∗t =
(

y∗1t, . . . , y∗Nt
)′ = Ω−1/2yt, which under H0 is nothing but a

vector of uncorrelated random walks.

The above assumptions imply that M12 can be written as

M12 =
T

∑
t=2

y′t−1∆yt =
T

∑
t=2

(y∗t−1)
′Λ∆y∗t =

N

∑
i=1

λi

T

∑
t=2

y∗it−1∆y∗it =
N

∑
i=1

λi M∗
12i.

Let λ2 = lim
N→∞

1
N ∑N

i=1 λ2
i . By using the results of the previous sections,

1
NT

M12
p→ lim

N→∞

1
N

N

∑
i=1

λi
1
T

E(M∗
12i) = λ

1
T

E(M∗
12i) = 0

such that 1
T
√

N
M12

d→ 1√
2

√
λ2N (0, 1) as N, T → ∞. Similarly,

1
NT2 M22 =

1
NT2

T

∑
t=2

y′t−1yt−1 =
1

NT2

N

∑
i=1

λi M∗
22i

p→ λ
1

T2 E(M∗
22i) →

1
2

λ,

where the limit is taken as N → ∞ followed by T → ∞. This result, together with σ̂2 p→ λ,

suggest that as N, T → ∞

τLLC =
1

T
√

N
M12

σ̂
√

1
NT2 M22

d→
1√
2

√
λ2N (0, 1)
√

λ
√

λ
2

∼
√

λ2

λ
N (0, 1),

which summarizes Theorem 1 of Breitung and Das (2005). In other words, if the dependence

is weak then τLLC is still the asymptotically normal. However, as long as λi 6= λj for at least

some i 6= j,
√

λ2

λ
> 1 and so the variance will tend to increase with deceptive inference as a

result. A similar result applies to τIPS. That is, the IPS test will also tend to be misleading in

the presence of weak cross-section dependence.

These results suggest a simple correction that can be used to remove the effects of the

weak dependence. Specifically, letting v1 ≥ ... ≥ vN denote the eigenvalues of Ω̂, the esti-

mated covariance matrix, then we have that as N, T → ∞

v√
v2

τLLC
d→ N (0, 1)
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where v2 = 1
N ∑N

i=1 v2
i with an obvious definition of v. Thus, by exploiting the asymptotic

distribution of τLLC we can derive another test statistic whose asymptotic distribution is free

of nuisance parameters and that has not been considered before.

In order to analyze the effects of strong dependence, suppose that

yit = θi ft + ys
it, (11)

which can be written in matrix format as

yt =




θ1
...

θN


 ft +




ys
1t
...

ys
Nt


 = Θ ft + ys

t ,

where ys
it, the idiosyncratic component of yit, again evolves according to (2) but now ε it is

independent across both i and t. The common factor ft is assumed to be a scalar such that

ft = δ ft−1 + ut, (12)

where | δ | < 1 and ut is a mean zero and unit variance disturbance that is uncorrelated both

across t and with ε it. Under these conditions, and imposing H0,

∆yt = Θ∆ ft + ∆ys
t = Θ

(
(δ− 1) ft + ut

)
+ εt,

which in turn implies that

Ω = E
(
∆yt∆y′t

)
=

(1− δ )2

1− δ2 Θ Θ′ + σ2 IN .

The main difference here in comparison to the case with weak dependence is the presence

of ft, which suggests that the largest eigenvalue is no longer bounded but is in fact Op(N).

Intuitively, the information regarding the common component Θ ft accumulates as we sum

up the observations across i and therefore the largest eigenvalue will increase with N.

To see how the presence of ft is going to change the previous results, write

1
NT

M12 =
1

NT

T

∑
t=2

(Θ ft−1 + ys
t−1)

′(Θ∆ ft + εs
t)

=
1

NT

T

∑
t=2

(
ft−1Θ′Θ∆ ft + (ys

t−1)
′εt + f ′t−1Θ′εt + (ys

t−1)
′Θ∆ ft

)
,

where, letting F denote the sigma field generated by ft,

1
NT

T

∑
t=2

f ′t−1Θ′εt =
1

NT

N

∑
i=1

T

∑
t=2

θi ft−1ε it
p→ lim

N→∞

1
N

N

∑
i=1

θi
1
T

T

∑
t=2

ft−1E(ε it|F ) = 0
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as N → ∞, suggesting that 1√
NT ∑T

t=2 f ′t−1Θ′εt = Op(1). Moreover, since

1
T
√

N

T

∑
t=2

(ys
t−1)

′εt = Op(1)

where 1
T
√

N ∑T
t=2(ys

t−1)
′Θ∆ ft is of the same order, we obtain

1
NT

M12 =
1

NT

T

∑
t=2

ft−1Θ′Θ∆ ft + Op

(
1√
N

)
=

1
NT

N

∑
i=1

T

∑
t=2

θ2
i ft−1∆ ft + Op

(
1√
N

)

p→ − 1− δ

1− δ2 θ2

as N, T → ∞, where θ2 = lim
N→∞

1
N ∑N

i=1 θ2
i .

Also,

1
NT2 M22 =

1
NT2

T

∑
t=2

(Θ ft−1 + ys
t−1)

′(Θ ft−1 + ys
t−1)

=
1

NT2

T

∑
t=2

(ys
t−1)

′ys
t−1 + Op

(
1
T

)
p→ σ2

2
,

where we have used that 1
NT ∑N

i=1 ∑T
t=2 θ2

i f 2
t−1

p→ (1−δ)2

1−δ2 θ2 as N, T → ∞, and that

1
T
√

N

T

∑
t=2

(ys
t−1)

′Θ ft−1 =
1

T
√

N

N

∑
i=1

T

∑
t=2

θiys
it−1 ft−1 =

1
T

T

∑
t=2

ft−1

t

∑
s=1

1√
N

N

∑
i=1

θiε is

d→ 1
T

T

∑
t=2

ft−1

t

∑
s=1

σ
√

θ2N (0, 1)

as N → ∞, which is Op(1) as T → ∞.

By collecting these results we obtain

σ̂√
N

τLLC
p→ −

1−δ
1−δ2 θ2
√

σ2

2

,

or τLLC = Op(
√

N ) suggesting that the size of the LLC test will tend to one as N → ∞.

As for the IPS test, note that

1
T

M12i =
1
T

T

∑
t=2

yit−1∆yit =
1
T

T

∑
t=2

(θ ft−1 + ys
it−1)(θi∆ ft + ε it)

=
1
T

T

∑
t=2

ys
it−1ε it + θi

1
T

T

∑
t=2

ys
it−1∆ ft + θ2

i
1
T

T

∑
t=2

ft−1∆ ft + Op

(
1√
T

)
,

while

σ̂2
i

1
T2 M22i = σ̂2

i
1

T2

T

∑
t=2

y2
it−1 = σ̂2

i
1

T2

T

∑
t=2

(θi ft−1 + ys
it−1)

2

= σ̂2
i

1
T2

T

∑
t=2

(ys
it−1)

2 + Op

(
1
T

)
= Ui + Op

(
1
T

)
.
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Thus, by Taylor expansion,

τi =
M12i

σ̂i
√

M22i
' τs

i +
θi√
Ui

1
T

T

∑
t=2

ys
it−1∆ ft +

θ2
i√
Ui

1
T

T

∑
t=2

ft−1∆ ft + Op

(
1√
T

)
,

where τs
i is the DF test based on ys

it. Taking expectations, and then passing T → ∞, we get

E(τi|F ) = E(τs
i |F ) +

1
T

T

∑
t=2

E
(

θi√
Ui

ys
it−1

∣∣F
)

∆ ft

+ E
(

θ2
i√
Ui

∣∣F
)

1
T

T

∑
t=2

ft−1∆ ft + Op

(
1√
T

)
→ C 6= E(τ),

where C < ∞ henceforth denotes a generic real number. By subsequently passing N → ∞,
√

var(τ)
N

τIPS =
1
N

N

∑
i=1

(τi − E(τ))
p→ E

(
τi − E(τ)|F)

= C− E(τ) 6= 0,

showing that τIPS = Op(
√

N ). Thus, just as with the LLC test the size of the IPS test will

tend to one as N → ∞.

Summarizing the results reported in this section we find that the presence of cross-section

dependence is likely to lead to misleading inference. The extreme case being when the de-

pendence is of the strong form, in which the test statistics actually become divergent. This

last result is particularly interesting since in our setup ft is stationary, and the presence of

unit roots usually eliminates the effects of such variables. This is illustrated in Table 6, which

depicts the size of the LLC and IPS tests in the presence of a single common factor. For sim-

plicity the data are generated from (2) and (11) with no deterministic components or serial

correlation. The factor is generated according to (10) with AR coefficient δ = 0 and loading

θ. The results show that the distortions are increasing in N, which is clearly in agreement

with the theoretical predictions.

Myth 5: Sequential limits imply joint limits

As pointed out by Phillips and Moon (1999), the sequential limit theory, wherein T is passed

to infinity before N, is very straightforward to apply and generally leads to quick asymptotic

results in a variety of settings. The main reason for this is that the passing of T → ∞ while

holding N fixed in the first step allows one to focus only on the first-order terms, as the

higher order terms are eliminated prior to averaging over N. However, this feature can also

be deceptive in its simplicity because it hides the need to control the relative expansion rate

of the two dimensions. Indeed, as Phillips and Moon (1999) show, sequential convergence
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Table 6: Size in the presence of a common factor.

θ N T LLC IPS

0 10 50 7.4 4.3
20 50 6.1 3.3
10 100 6.7 4.0
20 100 6.1 4.6

1 10 50 29.7 41.4
20 50 53.2 64.1
10 100 47.3 59.9
20 100 73.3 84.5

2 10 50 92.0 95.0
20 50 99.4 99.8
10 100 99.1 99.7
20 100 100.0 100.0

Notes: The table reports the 5% rejection frequencies
under H0. θ refers to the factor loading.

does not necessarily imply convergence in the joint limit as N, T → ∞ simultaneously. In

some situations the sequential limit theory may therefore break down. The problem is that

the connection between the two methods is not well understood, and many researchers view

breakdowns as extreme events.

Consider as an example the generalized least squares test of Breitung and Das (2005) and

Harvey and Bates (2005),

τGLS =
∑T

t=2 y′t−1Ω̂−1∆yt√
∑T

t=2 y′t−1Ω̂−1yt−1

,

which is suitable for testing H0 in the presence of weak cross-section dependence. Here yt is

again the vector stacking yit, while Ω̂ is such that
√

T (Ω̂−Ω) = Op(1).

We begin by deriving the sequential limit distribution of τGLS, and then we show that

this distribution need not be the same as the one obtained when using joint limits.

By the consistency of Ω̂ and then Taylor expansion,

Ω̂−1 = Ω−1 + Op

(
1√
T

)
.

Moreover, by a functional central limit theorem, 1√
T

yt ⇒ B(s) as T → ∞, where B(s) =

Ω1/2W(s) and W(s) is a vector standard Brownian motion. It follows that as T → ∞ with N
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kept fixed,

τGLS =
1
T ∑T

t=2 y′t−1Ω̂−1∆yt√
1

T2 ∑T
t=2 y′t−1Ω̂−1yt−1

⇒
∫ 1

0 B(s)′Ω−1dB(s)√∫ 1
0 B(s)′Ω−1B(s)ds

=

∫ 1
0 W(s)′dW(s)√∫ 1
0 W(s)′W(s)ds

.

But the elements of W(s) are independent, suggesting that as N → ∞

∫ 1
0 W(s)′dW(s)√∫ 1
0 W(s)′W(s)ds

=
1√
N

∫ 1
0 W(s)′dW(s)

√
1
N

∫ 1
0 W(s)′W(s)ds

d→ N (0, 1).

Thus, in the sequential limit as T → ∞ and then N → ∞

τGLS
d→ N (0, 1).

Consider next the joint limit of the same test statistic. By using the results of Breitung

and Das (2005),

1
T
√

N

T

∑
t=2

y′t−1Ω̂−1∆yt =
1

T
√

N

T

∑
t=2

y′t−1Ω−1∆yt + Op

(
N√

T

)
,

1
NT2

T

∑
t=2

y′t−1Ω̂−1yt−1 =
1

NT2

T

∑
t=2

y′t−1Ω−1yt−1 + Op

(√
N√
T

)

as N, T → ∞, from which it follows that

τGLS =
1

T
√

N ∑T
t=2 y′t−1Ω̂−1∆yt√

1
NT2 ∑T

t=2 y′t−1Ω̂−1yt−1

=
1

T
√

N ∑T
t=2 y′t−1Ω−1∆yt√

1
NT2 ∑T

t=2 y′t−1Ω−1yt−1

+ Op

(
N√

T

)

=
1

T
√

N ∑T
t=2(y∗t−1)

′∆y∗t√
1

NT2 ∑T
t=2(y∗t−1)′y

∗
t−1

+ Op

(
N√

T

)
,

where y∗t is again a vector of uncorrelated random walks. As for the first term on the right-

hand side, it is easily seen that

1
T
√

N ∑T
t=2(y∗t−1)

′∆y∗t√
1

NT2 ∑T
t=2(y∗t−1)′y

∗
t−1

d→
1√
2
N (0, 1)
√

1
2

∼ N (0, 1).

Thus, only if we assume that N√
T
→ 0 as N, T → ∞ do we end up with the same asymptotic

distribution as before. In other words, although this does not turn up in the derivations, the

sequential limit is not going to work if N2 >> T. This makes sense even from an empiri-

cal point of view, as Ω̂ is singular unless T ≥ N, a fact not accounted for when using the

sequential limit method. It also explains the poor small sample properties of the test if T is

small relative to N2, as documented by Breitung and Das (2005).
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Of course, this example is still quite specific, which makes it difficult to appreciate the

generality of the critique. Let us therefore consider another example. In particular, let us

reconsider the limiting null distribution of τIPS under the assumption that ε it is normal,

independent and identically distributed, in which case we know from Phillips (1987) that

1√
T

yit = σWi(s) + Op

(
1
T

)
.

Since
√

T(σ̂2
i − σ2) = Op(1) from LLC, we obtain

τi =
M12i

σ̂i
√

M22i
=

M◦
12i√

M◦
22i

+ Op

(
1
T

)
,

implying that

τIPS =
√

N(τ − E(τ))√
var(τ)

=
1√

N var(τ)

N

∑
i=1

(τi − E(τ))

=
1√

N var(τ)

N

∑
i=1

(
M◦

12i√
M◦

22i
− E(τ)

)
+ Op

(√
N

T

)
,

where the first term on the right-hand side converges to a standard normal distribution as

N → ∞. Thus, for τIPS to be asymptotically normal, one needs to assume that
√

N
T → 0

as N, T → ∞, as otherwise the Op(
√

N/T) remainder will not disappear. A similar result

applies to τLLC. The point here is that if we use the sequential limit method where N is

treated as fixed in the first step then this remainder is Op(1/T), which vanishes as T → ∞.

The sequential limit method therefore breaks down unless
√

N
T → 0. But if this result holds

in the current very restrictive case with normal innovations, it is expected to hold also under

more relaxed conditions. The risk of breakdown of the sequential limit method is therefore

more of a rule rather than an exception.

Figures 4 and 5 illustrate this point by plotting the size of the LLC and IPS tests at the 5%

level when T is set as a function of N. If T = N the condition that
√

N
T → 0 is satisfied, while

if T =
√

N, then the condition is violated. The model includes a constant but otherwise there

are no nuisance parameters to correct for. In contrast to the case when T = N, in which both

tests tend to perform well, we see that setting T =
√

N generally leads to substantial size

distortions, especially for the IPS test.

Fact 5: The IPS and LLC tests fail under cross-unit cointegration

Suppose that (10) holds, and that αi < 0 for all i, while δ = 1 so that ft is the only source

of non-stationarity in yit. Under these conditions, yit and yjt are cointegrated, a situation
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Figure 4: Size of τLLC when T is set as a function of N.
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Figure 5: Size of τIPS when T is set as a function of N.
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commonly referred to as cross-unit cointegration.

By analogy to the case when | δ | < 1,

1
NT

M12 =
1

NT

T

∑
t=2

(Θ ft−1 + ys
t−1)

′(Θut + εs
t)

=
1

NT

T

∑
t=2

(
ft−1Θ′Θut + (ys

t−1)
′εt + f ′t−1Θ′εt + (ys

t−1)
′Θut

)

=
1

NT

N

∑
i=1

T

∑
t=2

θ2
i ft−1ut + Op

(
1√
N

)
⇒ θ2

∫ 1

0
W(s)dW(s)

as N, T → ∞, where W(s) is now a scalar standard Brownian motion. Moreover,

1
NT2 M22 =

1
NT2

T

∑
t=2

(Θ ft−1 + ys
t−1)

′(Θ ft−1 + ys
t−1)

=
1

NT2

N

∑
i=1

T

∑
t=2

θ2
i f 2

t−1 + Op

(
1√
N

)
⇒ θ2

∫ 1

0
W(s)2ds,

showing that

σ̂√
N

τLLC ⇒ θ2
∫ 1

0 W(s)dW(s)√
θ2

∫ 1
0 W(s)2ds

or τLLC = Op(
√

N ).

Remember that if there is no cross-dependence, τLLC
d→ N (0, 1). Thus, for this test the

left-tail critical value at the 5% level is given by −1.645. But the size is given by

lim
N, T→∞

P(τLLC < −1.645) = lim
N, T→∞

P
(

1√
N

τLLC < −1.645√
N

)

= P
(∫ 1

0
W(s)dW(s) < 0

)
' 0.7,

see Breitung and Das (2008). In other words, the size of τLLC is upwards biased in the pres-

ence of cross-unit cointegration.

The analysis of τIPS is very similar to the case when | δ | < 1. We begin by noting that

1
T

M12i =
1
T

T

∑
t=2

(θi ft−1 + ys
it−1)(θiut + ∆ys

it)

= θ2
i

1
T

T

∑
t=2

ft−1ut + θi
1
T

T

∑
t=2

ft−1∆ys
it +

1
T

T

∑
t=2

ys
t−1∆ys

it + Op

(
1√
T

)
,

σ̂2
i

1
T2 M22i = σ̂2

i
1

T2

T

∑
t=2

(θi ft−1 + ys
it−1)

2 = σ̂2
i

1
T2

T

∑
t=2

θ2
i f 2

t−1 + Op

(
1
T

)

= Vi + Op

(
1
T

)
.
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Thus, using τ f to denote the DF test based on ft,

τi = τ f +
θi√
Vi

1
T

T

∑
t=2

ft−1∆ys
it +

1√
Vi

1
T

T

∑
t=2

ys
t−1∆ys

it + Op

(
1√
T

)
.

Clearly, E(τi|F ) → C 6= E(τ), where C again denotes a real positive number, and so
√

var(τ)
N

τIPS =
1
N

N

∑
i=1

(τi − E(τ))
p→ C− E(τ) 6= 0,

which shows that τIPS = Op(
√

N ).

Consequently, the presence of cross-unit cointegrating relationships causes the IPS and

LLC statistics to become divergent, which is in agreement with the simulation results of

Banerjee at al. (2005), showing that the presence of such relationships can lead to severe size

distortions.

Myth 6: Factor based tests are based on very relaxed assumptions

An important feature of the factor model in (10) is that ft and ys
it can have different orders

of integration, see for example Bai and Ng (2008). In most other work on panel unit root

tests with common factors this is not the case. In particular, consider the data generating

process adopted by Moon and Perron (2004), Moon et al. (2007), Pesaran (2007) and Phillips

and Sul (2003), which in the case with a single factor and no deterministic components can

be written as

yit = ρiyit−1 + wit

with wit = θigt + vit, where gt and vit are independent of each other as well as across both i

and t. This specification differs from (10) in that it essentially specifies the dynamics of the

observed series, whereas (10) specifies the dynamics of unobserved components. Assuming

yi0 = 0 and ρi = ρ for all i, the above model can be written in terms of (10) as follows

yit = ρiyit−1 + θigt + vit = θi(ρ ft−1 + gt) + (ρys
it−1 + vit) = θi ft + ys

it.

It follows that if ρ = 1, then ft = ft−1 + gt and ys
it = ys

it−1 + vit, and both variables are

non-stationary. Conversely, if | ρ | < 1, then both variables are stationary. The common

and idiosyncratic components of the above model are therefore restricted to have the same

order of integration. Note that when ρi is heterogeneous, then the above model cannot be
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expressed in terms of (10). But under the null that ρi = 1 for all i, then it is nested in (10). One

study that explicitly takes (10) as the data generating process is that of Bai and Ng (2004).

This study is therefore less restrictive than the above mentioned studies.

An even more general approach is proposed by Breitung and Das (2008), who treat the

above AR model as a reduced form regression where wit does not necessarily has to have a

common factor structure. One important advantage of this approach is that no factor struc-

ture needs to be estimated.

6 Concluding remarks

This paper points to six myths and five facts that are oftentimes overlooked when consider-

ing the problem of testing for a unit root in panel data. Suppose for example that one would

like to test the null hypothesis that the variable yit has a unit root versus the alternative that

it is stationary with a nonzero mean, a very common research scenario. The by far most com-

mon way of carrying out such a test is to use the traditional DF approach of applying least

squares to an intercept-augmented autoregression. Being so common it is easy to get the

impression that demeaning in this way is the best way to accommodate the nonzero mean

in yit. But this is only a myth. Indeed, as we show in the paper the inclusion of the intercept

introduces a bias in the estimated AR coefficient, which then has to be corrected somehow.

However, in so doing we find that the resulting corrected test is likely to suffer from low

power and may even become inconsistent in some circumstances. As a response to this a

few alternative demeaning procedures are suggested.

In this example, although applying traditional time series techniques leads to a larger

computational burden and poorer small-sample performance, usually there are no funda-

mental shortcomings or flawed inference. Unfortunately, this is not always the case. Quite

on the contrary, we find that ignoring these myths and facts will in many cases lead to seri-

ous side-effects, including a complete breakdown of the whole test procedure. One example

of such a situation is when yit is contaminated by cross-section dependence in the form of

common factors, in which case a failure to account for these factors can cause the test statistic

to become divergent.

The implication is that one should be careful not to approach the testing problem from

a too narrow and stylized perspective. In particular, we believe that the usual practice of
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looking at the problem from mainly a time series perspective can be deceptive in its simplic-

ity, typically ignoring many important issues such as cross-sectional dependence, incidental

trends and joint limit restrictions.
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