
 

Department of Economics 
School of Business, Economics and Law at University of Gothenburg  
Vasagatan 1, PO Box 640, SE 405 30 Göteborg, Sweden  
+46 31 786 0000, +46 31 786 1326 (fax) 
www.handels.gu.se    info@handels.gu.se 

      
 
 
 

                WORKING PAPERS IN ECONOMICS 
 
 

             No 384 
 
 
 
 

Testing for Unit Roots in Panel Time Series Models with 
Multiple Breaks 

 
 
 
 

             Joakim Westerlund 
            
              
 
 
 

           September 2009 
 
 
 
 
 
 

           ISSN 1403-2473 (print) 
            ISSN 1403-2465 (online) 

 
 
 
 
 



TESTING FOR UNIT ROOTS IN PANEL TIME SERIES

MODELS WITH MULTIPLE BREAKS∗

Joakim Westerlund†

University of Gothenburg
Sweden

September 25, 2009

Abstract

This paper proposes two new unit root tests that are appropriate in the presence of an

unknown number of structural breaks. One is based on a single time series and the other

is based on a panel of multiple series. For the estimation of the number of breaks and

their locations, a simple procedure based on outlier detection is proposed. The limiting

distributions of the tests are derived and evaluated in small samples using simulation ex-

periments. The implementation of the tests is illustrated using as an example purchasing

power parity.

JEL Classification: C12; C15; C22; F31.

Keywords: Unit root test; Structural break; Outlier detection; Common factor; Purchas-

ing power parity.

1 Introduction

During the last decade, a great deal of research has focused on the search for the best way to

characterize or model the dynamic properties of macroeconomic and financial time series.

Specifically, the distinction between unit root and stationary processes has become a dom-

inant topic in time series econometrics. Due to its far-reaching economical implications, it
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has also become a central issue in empirical research, where it has been concluded that many

time series can be characterized as unit root processes. The perhaps most canonical exam-

ple being purchasing power parity (PPP), where the non-stationarity of the real exchange

rate has been frequently documented, see for example Choi (2004) for a review of the recent

literature.

An important feature common to most unit root studies of this kind is the assumption of

parameter stability, or no structural change, and there has been only a few recent attempts

to relax it. Yet, ever since the seminal article of Perron (1989), researchers have been well

aware of the potential hazards of falsely imposing parameter stability when testing for a

unit root. Indeed, as Perron (1989) showed, the ability to reject the unit root null can de-

crease substantially when the stationary alternative is true but existing structural breaks are

ignored.

This is important because the way in which traditional unit root testing is carried out

typically involves employing time series that span extended periods of time, which obvi-

ously increases the probability of a structural break. The implication is that the inability of

many empirical studies to reject the unit root null may well be due to an erroneous omission

of structural breaks.

Amsler and Lee (1995) remedy this critic by developing a test based on the Lagrange

multiplier principle. The test, which builds on earlier work by Schmidt and Phillips (1992),

relaxes the assumption of parameter stability by assuming that the level of the series suffers

from a single exogenous, known, break. Although not very unique in itself, this allowance

is actually also what makes the test distinct. Specifically, as Amsler and Lee (1995) show, in

contrast to existing tests, the asymptotic distribution of their test statistic does not depend

on the usual nuisance parameter representing the location of the break, which is of course a

very convenient property in the sense that the same critical values can be used regardless of

the location of the break.

Lee and Strazicich (2003) take issue with the preference of Amsler and Lee (1995) to treat

the break as known, and suggest endogenizing their test using the well-known break esti-

mation procedure of Zivot and Andrews (1992). Specifically, a two-break test is proposed,

where the breakpoints are estimated at the minimum of the test values from across all pos-

sible break dates.

In this paper, we generalize the test of Amsler and Lee (1995) to the case when there is an
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unknown number of breaks in the level of the series. To estimate the unknown breakpoints,

we consider a new procedure based on outlier detection, which is advantageous for at least

two reasons. Firstly, it is simple and computationally less intensive than other procedures

such as the one used by Lee and Strazicich (2003). Secondly, since the estimated breakpoints

are valid under both the unit root null and stationary alternative, this makes the outcome of

the test easy to interpret.

Moreover, given the potential loss of power that comes from ignoring existing breaks in

single time series, it is logical to expect a similar effect when testing for a unit root using

a panel of multiple time series. We therefore also propose a panel version of our new test,

which can be viewed as a generalization of the exogenous one-break panel test studied by

Im et al. (2005).

The limiting distributions of the tests are provided and their small-sample properties

are investigated through a small simulation study. The results suggest that the asymptotic

properties of the tests are borne out well in small samples with small size distortions and

good power. This leads us to the conclusion that the new tests should be a valuable addition

in applied work. The implementation of the tests is also illustrated empirically using as

an example PPP. Using a post-Bretton Woods panel covering 21 countries, we show that

in contrast to what many authors have claimed, the failure of PPP cannot be attributed to

structural change.

The rest of this paper is organized as follows. Sections 2 and 3 present the model, the new

tests and their limiting distributions under the null hypothesis of a unit root with known

breaks, which is extended in Section 4 to the case with unknown breaks. Section 5 is con-

cerned with the simulation study, whereas Section 6 contains the empirical application. Sec-

tion 7 concludes.

2 Model and assumptions

In this section, we generalize the model of Amsler and Lee (1995) in two directions. Firstly,

we allow for multiple breaks, and secondly, we consider a more flexible panel setting. Let us

therefore consider the panel data variable yit, observable for t = 1, ..., T time series and i =

1, ..., N cross-sectional units, whose data generating process can be written in the following
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way:

yit = αi + βit + δ′i Dit + uit, (1)

where Dit is an r-dimensional vector of break dummies such that Djit = 1(t > Bji), where

1(x) is the indicator function and Bji denotes the location of break number j. Thus, in this

model, αi represents the level of the series before any break takes place and δji represents the

change in the level at the time of break j. The error uit has the following decomposition:

uit = λ′i ft + eit, (2)

where the m-dimensional vector of common factors ft and the loading λi represent the com-

mon component of uit, while the scalar eit represent the idiosyncratic component. These are

assumed to be generated as

∆ ft = Π ft−1 + vt, (3)

∆eit = ρieit−1 + wit (4)

with wit satisfying γi(L)wit = εit, where γi(L) = 1− ∑
p
s=1 γisLs is a polynomial in the lag

operator L, and εit is independent across both i and t with mean zero and variance σ2
i . Simi-

larly, Γ(L)vt = ηt, where Γ(L) = Im −∑
q
s=1 ΓsLs with ηt being a mean zero disturbance with

covariance matrix Σ that is independent of εit and across t.

The fact that εit is cross-sectionally independent implies that any dependence across units

is restricted to the common factors. The extent of this dependence is determined by λi. Thus,

the factors make the units correlated through uit. In terms of the PPP example discussion in

the introduction, it is convenient to think of ft as comprised of the common base currency

and possibly also other factors that are common across the members of the panel.

One way to ensure that εit and ηt are independent is to assume that ft is strictly exoge-

nous. Apart from this, however, the restrictions placed on ft are very weak and permit for

a wide range of possibilities when it comes to the order of integration of ft, as determined

by the rank of Π. If the rank is full, the elements of ft are all stationary, whereas if the rank

is zero, then they are all non-stationary. If Π has reduced rank, then the elements of ft are

cointegrated. It should be pointed out, however, that the tests that we propose are designed

to test for a unit root in eit. Thus, unless Π is a full rank matrix, a rejection of the null hypoth-

esis of a unit root in eit does not necessarily mean that yit is stationary. This means that in
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practice ft must also be tested for unit roots, which can be done by using any conventional

unit root test.

For now we also assume that ft, Bji and r are known. But this is only for simplicity, and

can be relaxed at the expense of more complicated proofs, see Sections 4 and 6 for detailed

discussions.

3 The unit root test

Having laid out the key assumptions that characterize the model of interest, in this section

we consider the problem of testing for a unit root in eit. We begin by developing a time series

test that applies to each individual unit, and then we show how these can be combined into

a panel test.

3.1 A time series test

Testing for a unit root in eit is equivalent to testing H0 : ρi = 0 versus H1 : ρi < 0. This re-

striction can be tested using the Lagrange multiplier, or score, principle, which states that the

score must have zero mean when evaluated at the true parameters under the null hypothe-

sis. Suppose therefore that εit is normal, in which case we have the following log-likelihood

function:

L = constant− T − p
2

N

∑
i=1

ln(σ2
i ) +

1
2

N

∑
i=1

1
σ2

i

T

∑
t=p+1

ε2
it,

which can be differentiated with respect to ρi and then evaluated at the restricted maximum

likelihood estimates, giving

∂L
∂ρi

∝
T

∑
t=p+2

QX∆SitQXSit−1,

where QX is the least squares residual operator, with

QXSit = Sit −
T

∑
t=p+2

Sit−1X′
it

(
T

∑
t=p+2

XitX′
it

)−1

Xit

being the residual from regressing Yit onto Xit = (1, ∆Sit−1, ..., ∆Sit−p)′. Moreover,

Sit = yit − α̂i − β̂it− δ̂′i Dit − λ̂′i ft, (5)
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where α̂i = yip+1 − β̂i − δ̂′i Dip+1 − λ̂′i fp+1 is the restricted maximum likelihood estimator of

αi under the null. The corresponding maximum likelihood estimates β̂i, δ̂i and λ̂i of βi, δi

and λi, respectively, are obtained by applying least squares to

∆yit = βi + δ′i ∆Dit + λ′i∆ ft + ∆eit. (6)

The point here is that score is proportional to

τρi =
∑T

t=p+2 QX∆SitQXSit−1

σ̂i

√
∑T

t=p+2(QX∆Sit)2
,

the t-statistic for testing H0 : ρi = 0 versus H1 : ρi < 0 in

∆Sit = ρiSit−1 + φ′i Xit + error. (7)

The asymptotic distribution of this test statistic under H0 can be deduced from Westerlund

and Edgerton (2006), who show that as T → ∞,

1
T

T

∑
t=p+2

QX∆SitQXSit−1 =
1

γi(1)
1
T

T

∑
t=p+2

εitwit−1 + Op

(
1√
T

)

= − 1
2γi(1)

1
T

T

∑
t=p+2

ε2
it + Op

(
1√
T

)
= − σ2

i
2γi(1)

+ Op

(
1√
T

)

with wit = ∑t
s=p+2(εis − εi), and

1
T2

T

∑
t=p+2

(QXSit−1)2 =
1

γi(1)2
1

T2

T

∑
t=p+2

(Q1wit−1)2 + Op

(
1√
T

)

→w
σ2

i
γi(1)2

∫ 1

0
(Q1Vi(s))2ds,

where→w signifies weak convergence, Q1Vi(s) = Vi(s)− ∫ 1
0 Vi(r)dr, Vi(s) = Wi(s)− sWi(1)

and Wi(s) is a standard Brownian motion on s ∈ [0, 1]. As usual, we use yT = Op(Tr) to

signify that yT is at most order Tr in probability, and yT = op(Tr) in case yT is of smaller

order in probability than Tr.1 It follows that as T → ∞,

τρi = − σi

2
√

1
T2 ∑T

t=p+2(Q1wit−1)2
+ Op

(
1√
T

)
→w − 1

2
√∫ 1

0 (Q1Vi(s))2ds
. (8)

There are several things about (8) that are worthy of further discussion. Firstly, the

asymptotic distribution is free of nuisance parameters, which means that it is invariant with

1If yT is deterministic, then Op(Tr) and op(Tr) are replaced by O(Tr) and o(Tr), respectively.
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respect to both the common factors and the breaks. This is of course very convenient be-

cause it means that we may use the same critical values as given in Tables 1A and 1B of

Schmidt and Phillips (1992) for their non-break test, and proceed as if there where no breaks

or cross-section dependence at all. Thus, there is no need to tabulate different critical values

for different break structures as in for example Perron (1989), or for different values of r as

in Pesaran (2007).

The result is also very unusual. In fact, as far as we are aware this is the only test around

that is invariant with respect to both breaks and cross-section dependence. The difference

lies with the first-differencing, which means that we can use standard asymptotic arguments

for stationary processes to show that the estimated coefficients converge to constants as T

grows. This stands in sharp contrast to the conventional Dickey–Fuller approach, which

is based on estimating the parameters from (1) using the data in levels. However, since this

regression is spurious, the estimated regression parameters do not converge to constants, but

in fact remain random even asymptotically. It is this difference that makes the asymptotic

distribution of the new test relatively simple.

Secondly, since the breaks are allowed under both the null and alternative hypotheses,

there is no confusion about the interpretation of the test outcome. Consider for example the

recently proposed unit root test of Kapetanios (2005), which is similar to ours in the sense

that it is general enough to allow for more than one break. The problem with this test is

that the breaks are only permitted under the stationary alternative. Thus, a rejection of the

null does not necessarily imply a rejection of a unit root per se but rather a rejection of a

unit root without breaks, which calls for careful interpretation of the test result in applied

work. In particular, with breaks under the null, researchers might incorrectly conclude that

a rejection of the null indicates evidence of stationarity with a break, when in fact the series

is non-stationary with breaks.2

Thirdly, because the test is asymptotically similar with respect to the breaks under the

null hypothesis, the asymptotic distribution will be unaffected if we were to dispense with

the assumption of known breaks, which is likely to be unduely restrictive for most empirical

purposes. In fact, as shown by Amsler and Lee (1995), the asymptotic distribution of the

2Similarly, Gadea et al. (2004) propose a test for the joint hypothesis of a unit root and no breaks, with which
they find evidence of a stationary real exchange rate suggesting that PPP holds. The above discussion suggests
that this conclusion may be misleading in the sense that the proposed test cannot discriminate between PPP and
a non-stationary real exchange rate with breaks.
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test remains the same even if the breaks are misplaced. Hence, the distribution is unaffected

even if we employ an inconsistent estimator of the breakpoints. The problem is that incorrect

placement or exclusion of the breaks makes the test biased towards accepting the null. Thus,

although the breaks do not affect the null distribution, they do affect the test by reducing its

power, which is why accounting for them is important.

3.2 A panel data test

Given that the asymptotic null distribution of the individual τρi statistic is free of nuisance

parameters, the various panel unit root tests developed in the literature for the case of cross-

sectionally independent errors and no breaks can also be applied to the present more general

case.

Our interest lies in testing the null hypothesis that all units are non-stationary versus

the alternative that there is at least one unit that is stationary, which can be expressed as

H0 : ρi = 0 for all i against H1 : ρi < 0 for some i. Thus, in terms of our empirical application,

we are interested in testing the null of no PPP against the alternative that there is at least

some evidence in favor of PPP.3

For testing this hypothesis, we propose using the following normalized cross-sectional

average of the individual τρi statistics for each unit:

τρ =
1√
Nστ

N

∑
i=1

(τρi − µτ),

where µτ and σ2
τ are the mean and variance of the limiting distribution in (8), which can be

obtained using simulations.4 For this purpose, we generate 10, 000 random walks of length

T = 1, 000. By using these random walks as a simulated Brownian motions, it is possible to

evaluate the expression in (8) and then to compute the moments. The simulated expectation

and variance based on this method are −1.969 and 0.323, respectively.5

The asymptotic distribution of τρ under H0 is readily deduced by using (8), from which

3As pointed out by Choi (2004), a rejection of H0 can be difficult to interpret since it is not clear for which
of the countries of the panel PPP holds. To alleviate this problem, the author suggest a method to sequentially
classify each country. However, since interest usually lies in testing whether there is at least some evidence of
PPP, a test of H0 versus H1 is still informative.

4τρ can be seen as a generalization of the exogenous one-break test studied by Im et al. (2005) in the case of
cross-sectionally independent errors.

5Im et al. (2005) use repeated sampling of the test statistic to compute small-sample critical values for different
combinations of T and pi. These are reported in Table 1 of their paper.
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it follows that as N, T → ∞ with N
T → 0,

τρ = − 1√
Nστ

N

∑
i=1


 σi

2
√

1
T2 ∑T

t=p+2(Q1wit−1)2
+ µτ


 + Op

(√
N√
T

)

= − lim
N→∞

1√
Nστ

N

∑
i=1


 1

2
√∫ 1

0 (Q1Vi(s))2ds
+ µτ


 →w N(0, 1).

This result shows that the main effect of summing over the cross-sectional dimension

is to smooth out the Brownian motion dependency for each unit, leading to an asymptotic

normal distribution. The condition that N
T → 0 as N, T → ∞ is standard even when testing

for unit roots in independent panels. The reason for this is the assumed heterogeneity, whose

elimination induces an estimation error in T, which is then aggravated when pooling across

N. The condition that N
T → 0 prevents this error from having a dominating effect upon τρ.

4 Unknown breaks

4.1 Existing procedures

Arguably, the single most popular unit root testing procedure with unknown breaks is that

of Zivot and Andrews (1992), in which a single breakpoint can be estimated via grid search at

the minimum of the individual unit root test statistics from across all possible breakpoints.

However, as pointed out by Kapetanios (2005), extending this one-break grid search to r

breaks is clearly computationally extremely demanding and practically infeasible for r > 3.6

Another drawback of this approach is that r must be known. Thus, it is not possible to test

whether the number of breaks in fact is equal to r or not.

Moreover, with an invariant test such as ours, this method may well result in deceptive

inference. Consider as an example the LMτ test of Lee and Strazicich (2003), which in their

model A amounts to applying the Zivot and Andrews (1992) procedure to the two-break τi

test.7 The authors argue on page 1083 that:

the asymptotic null distribution of the two-break LM unit root test for model

A is invariant to the location and magnitude of structural breaks. This property

follows from the results shown in Amsler and Lee (1995) for their exogenous

6See Gadea et al. (2004) for a good discussion and illustration of this issue in the context of PPP.
7In Lee and Strazicich (2003) model A refers to the case with two breaks in the constant but no breaks in the

trend, which is the same as (1) with r = 2.
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one-break LM unit root test. Fortunately, this same outcome carries over to the

endogenous break LM unit root test. Thus, the asymptotic distribution of the

endogenous break LM unit root test will not diverge in the presence of breaks

under the null and is robust to their misspecification.

A natural interpretation of this discussion is that because the test is invariant, taking

the minimum should not affect its asymptotic distribution. The asymptotic critical values

should therefore be the same as for the exogenous test of Schmidt and Phillips (1992).

However, this is incorrect. The problem is that by comparing the minimum statistic with

the asymptotic critical value for the exogenous test, one is essentially taking an order statistic

and treating it as an ordinary statistic, which is likely to result in size distortions. The reason

is that because the same critical values are used, LMτ will tend to be too large in absolute

value, thus making it biased towards rejecting the unit root null. This is seen in Table 2 of

Lee and Strazicich (2003), where they report small-sample critical values based on repeated

sampling of the minimum statistic itself, which are of course correct even if the asymptotic

distribution happens to be misspecified.8 For example, the 5% critical value reported in Lee

and Strazicich (2003) is −3.842, while in Schmidt and Phillips (1992) it is only −3.02. Thus,

the asymptotic distribution for the endogenous, minimum, test is not the same as the one

that applies to the exogenous test.

But even if one uses the small-sample critical values, the approach of Lee and Strazicich

(2003) is still flawed in the sense that the precision of the estimated breakpoints is likely to be

very poor. In fact, it is not difficult to see that since the asymptotic distribution in Theorem

1 is independent of Bji, the breakpoint estimator is going to be uniformly distributed, even

asymptotically. Thus, the precision is not only going to be poor but nonexisting, which is

again likely to result in a loss of power.

4.2 A procedure based on outlier detection

Given the above mentioned problems we look for a more feasible approach that does not

require the knowledge of r, and that is less likely to result in deceptive inference. One sug-

gestion towards this end is to treat the estimation problem as a model selection issue, and

to estimate the breakpoints at the minimum of the sum of squared residuals obtained from
8Thus, while their discussion of the asymptotic distribution is potentially misleading, being based on re-

peated sampling of the minimum statistic, the small-sample critical values provided by Lee and Strazicich (2003)
are still correct.
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the test regression in (7). This route is taken by Kapetanios (2005), who proposes a vary

efficient grid search scheme that requires only O(T) least squares operations for any r. Un-

fortunately, this procedure only guaranties consistent estimates of the break fractions under

the stationary alternative, and it may therefore be worthwhile to seek other alternatives.9

An even simpler approach, that is perhaps more natural in our case, is to treat this as an

outlier detection problem, and to estimate the breaks from the first differenced regression

in (6), which in contrast to (7) is always stationary. The standard approach to do this is to

estimate (6) and to construct a t-test for the presence of an outlier. Such a test is constructed

for all possible dates and the maximum is taken. This value is then compared with some

critical value to decide if an outlier is present.

The procedure that we propose is adapted from Chen and Liu (1993), and can be de-

scribed as follows. In case of a unit root the model in differences can be written as

γi(L)∆yit = γi(1)βi + γi(L)δ′i ∆Dit + γi(L)λ′i∆ ft + εt,

which under the null hypothesis of no outlier reduces to

γi(L)∆yit = γi(1)βi + γi(L)λ′i∆ ft + εt,

or

QV∆yit = QVεt, (9)

where QV is the residual operator based on Vit = (1, ∆yit−1, ..., ∆yit−p, ∆ f ′it, ..., ∆ f ′it−p)
′. Sup-

pose now that we would like to test the null hypothesis of the absence of a single outlier at

time b1i, which may or may not be equal to B1i, the true breakpoint. This makes it convenient

to rewrite (9) as

QV∆yit = δ1i∆D1it + QVεt (10)

with δ1i = 0 and ∆D1it = 1(t = b1i). The Wald statistic for testing the null hypothesis that

δ1i = 0 in this regression is given by

wδ1i(b1i) =

(
∑T

t=p+2 ∆D1itQV∆yit
)2

σ̂4
i ∑T

t=p+2(∆D1it)2
,

9Sabatè et al. (2003) uses a similar approach when testing for PPP. The problem is that in order to estimate the
appropriate number of breaks to use in the unit root test, the authors have to assume beforehand that the real
exchange rate is in fact stationary.
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where

T

∑
t=p+2

∆D1itQV∆yit = ∆yib1i −
T

∑
t=p+2

∆yitV ′
it

(
T

∑
t=p+2

VitV′
it

)
Vibi

= εib1i −
T

∑
t=p+2

εitV ′
it

(
T

∑
t=p+2

VitV′
it

)
Vibi = εib1i + Op

(
1√
T

)

and ∑T
t=p+2(∆D1it)2 = 1, and by similar arguments,

σ̂2
i =

1
T

T

∑
t=p+2

(QV∆yit − δ̂1i∆D1it)2 =
1
T

T

∑
t=p+2

(QV∆yit)2 + Op

(
1√
T

)

=
1
T

T

∑
t=p+2

(QVεit)2 + Op

(
1√
T

)
=

1
T

T

∑
t=p+2

ε2
it + Op

(
1√
T

)
= σ2

i + Op

(
1√
T

)
,

where δ̂1i is the least squares estimate of δ1i. It follows that

wδ1i(b1i) =
ε2

ib1i

σ2
i

+ Op

(
1√
T

)
. (11)

where εib1i /σi has mean zero and unit variance. We can define the following test statistic for

the null of no outlier:

wδ1i = max
b1i

wδ1i(b1i).

While free of the nuisance parameters that characterize the serial and cross-sectional correla-

tion properties of the errors, the asymptotic distribution of wδ1i is complicated by the fact that

the maximum has been taken, which is the same problem as in testing for outliers in station-

ary time series. The standard practice in the literature is arbitrary and consists of rejecting

the no outlier null if the maximal t-statistic is greater than some predetermined constant be-

tween three and four, which has no reference to any significance level. As a response to this,

in this section we use extreme value theory to obtain the asymptotic critical value of wδ1i .
10

Suppose that εit is normal, and let w◦
δ1i

= maxb1i ε2
ib1i

/σ2
i , bT = F−1(1− 1/T) and aT =

F−1(1− 1/Te)− bT, where F−1(x) is the inverse of the chi-squared distribution function with

one degree of freedom. By using the results of Embrechts et al. (1997) it can be shown that

w◦
δ1i
− bT

aT
→d G(x) (12)

as T → ∞, where →d denotes convergence in distribution and G(x) = exp(−e−x) is the

10See and Chareka et al. (2006) for a similar approach.
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Gumbel distribution. But wδ1i = w◦
δ1i

+ op(1) from (11), and so we get

∣∣∣∣P
(

wδ1i − bT

aT
≤ x

)
− P

(w◦
δ1i
− bT

aT
≤ x

)∣∣∣∣ ≤ P
(

x− ε ≤ w◦
δ1i
− bT

aT
≤ x + ε

)

+ P
(∣∣∣∣

wδ1i − w◦
δ1i

aT

∣∣∣∣ > ε

)
→ 0

with ε > 0. Hence, (wδ1i − bT)/aT →d G(x) as T → ∞, suggesting that the appropriate

critical value at significance level α is given by Cα = − ln(− ln(1− α)).

Our outlier detection procedure can now be summarized as follows:

1. Regress ∆yit onto Vit and obtain the associated residuals, QV∆yit.

2. Estimate (10) by regressing the step-1 residuals onto ∆D1it and obtain wδ1i(b1i) for all

possible breakpoints p + 1 < b1i < T − p− 1.

3. Compute wδ1i and compare (wδ1i − bT)/aT to the critical value from the Gumbel distri-

bution, Cα.

4. If (wδ1i − bT)/aT < Cα, then there are no outliers, and so the procedure is stopped.

5. However, if (wδ1i − bT)/aT > Cα, an outlier is detected at date

B̂1i = arg max
b1i

wδ1i(b1i),

which is then removed from the data.

6. Once the outlier observation has been removed from the step-1 residuals, (10) is again

estimated and tested for an outlier. This continues until the test fails to reject, or until

the number of observations become too small.

Note that the procedure estimates jointly both the number of breaks and their loca-

tions. Moreover, because we are dealing with differenced series, which are stationary, wδ1i

is asymptotically independent at each step of the iterations. Thus, the same critical values

apply at each step. Also, since (12) only requires identically but not necessarily indepen-

dent errors, the critical values are robust to violations from the unit root restriction used in

deriving (9).

Apart from being simple this procedure has the advantage of not requiring any knowl-

edge about r. In fact, r may be zero. If no outlier is detected, the unit root testing is carried

13



out as described in Section 3 with Sit based on no dummy variables, whereas if there is at

least one outlier, then Sit is augmented with one impulse dummy for each. Each iteration

in the procedure identifies one outlier.11 This is of course very different from the Zivot and

Andrews (1992) procedure, in which a nonzero value of r has to be stipulated beforehand.

Another advantage with using wδ1i is that it constitutes a consistent test regardless of

whether the unit root null is true or not. This again follows from differencing, which means

that we are effectively working with stationary series even though their levels may be non-

stationary. Of course, there is no claim of consistency of the resulting breakpoint estimator,

and we do not prove here the asymptotic properties of B̂ji. However, intuition suggests

that this approach should perform well in practice, and our simulation results confirm this.

Moreover, because of the invariance of the unit root test, consistency of B̂ji is not a require-

ment, at least not under the null.

5 Simulation experiments

5.1 Setup

In this section, we investigate briefly the small-sample properties of the new tests by means

of simulations using (1)–(4) to generate the data. For simplicity, we assume that γi(L) =

1− φL, Γ(L) = Im, εit ∼ N(0, σ2
i ) with σ2

i ∼ U(0.5, 1, 5) and ηt ∼ N(0, Im), so that wit is

heteroskedastic and possibly also autocorrelated but vt is standard normal. Also, since the

order of integration of the common factor did not affect the results, we set Π = −Im.

The data are generated with λi ∼ N(1, 1), αi = βi = 0 and a common breakpoint Bji = Bj

for all i. As for the number of structural breaks, r, we consider two cases. In the first, r = 1

with B1 = 0.3T, while in the second, r = 2 with B1 = 0.3T and B2 = 0.7T. The break

coefficients are generated as δji = δi for all i with δi ∼ N(δ, 1). In the size simulations, we set

ρi = ρ = 0, while in the power simulations, ρ = −0.1.

All results are based on 2, 000 replications, where the first 100 time series observations in

each replication is discarded to avoid possible initial value effects. The significance level is

set to 5% throughout, and all powers are adjusted for size. Some results from the accuracy

of the estimated breakpoints are also reported. All computational work is done in GAUSS.

11Although the maximum number of iterations, and hence outliers, could in principle be restricted, our sim-
ulation results suggest that this is not necessary. In some circumstances it may also make sense to restrict the
length of each regime so as to prevent estimation of neighboring breakpoints, see Section 6 for a discussion.
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In constructing the unit root tests, the lag length p was selected in the same way as in

Vogelsang (1999), namely using a recursive general-to-specific t-test on the last lag with a

significance level of 5% starting at a maximum order of T1/3. For the outlier detection pro-

cedure, the 5% critical value from the Gumbel distribution was used. For the τρi test, the

critical value −3.02 was taken from Table 1A in Schmidt and Phillips (1992). The τρ test

is computed using the simulated moments from Section 3 and compared to the 5% critical

value −1.645 from the standard normal distribution.

5.2 Size and size-adjusted power

We begin by considering the size of the tests. We are interested in comparing τρi with τρ, but

also in analyzing how these tests perform depending on the treatment of the breaks, which

can either be known, estimated or simply ignored. The results are presented in Table 1.

It is seen that within the class of individual and panel tests the ones based on ignoring

the breaks generally perform best, which is to be anticipated given that the asymptotic null

distribution of τρi , and therefore also τρ, is independent of the breaks. Hence, even though

there are breaks in the data generating process, the no-break tests are actually expected to

perform well here. However, the other tests are almost as accurate, and perform only slightly

worse. As expected, none of the tests appear to be affected much by the location of the

breaks.

A notable exception from the otherwise so good performance is when r = 2 and T = 100,

in which case the panel tests tend to become oversized. This is due to the distortions at

the individual level, which, although very small, have a tendency of accumulating and to

become more serious as N grows.

The power results reported in Table 2 generally coincide with what might be expected

from the asymptotic theory. Firstly, the power increases with the size of the sample, which

is presumably a reflection of the consistency of the tests. The panel tests lead to the best

performance by far with almost perfect power in a majority of the ceases. Thus, there are

potentially large power gains to be made by exploring the cross-sectional dimension. Sec-

ondly, within the class of individual and panel tests the no-break tests are generally the least

powerful, which corroborates the result that erroneous omission of breaks should affect the

tests by lowering their power. Thirdly, the tests based on estimated breaks are almost as

powerful as the tests based on known breaks, which is of course very good news in appli-
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cations, where there is usually little or no a priori knowledge about the location of the break

and number of factors.

5.3 Break estimation accuracy

By treating the breaks as unknown, the test results can also be evaluated in terms of the

accuracy of the estimated breaks. Table 3 therefore presents the correct selection frequencies

for both the number of breaks and their locations.

The accuracy does not appear to be affected by the value of ρ, which is consistent with

our outlier detection procedure being valid under both the unit root null and stationary

alternative. We similarly see that the performance is basically the same for the two values

of γ considered. On the other hand, the accuracy depends to a large extent on both the

number of breaks and their magnitude, which is to be expected because a larger number of

smaller breaks are more difficult do detect. With reasonably sized breaks, however, accuracy

is generally good.12

The good precision of the estimated breakpoints is important, not only to the extent that

it ensures good performance of the ensuing unit root tests, but also in its own right because

researchers often seek to draw conclusions regarding these parameters.

5.4 Robustness and discussion

The results for alternative specifications of the common component are not reported but

we describe them briefly. In agreement with theory, setting Π 6= −Im has no effect on the

breakpoint estimator nor the unit root tests. In fact, the results are almost identical. Different

values of λi have also no effect on test performance. The overall picture is therefore the same

as the one given in Tables 1–3 for the case when Π 6= −Im and λi ∼ N(1, 1).

As we have seen, the outlier detection procedure seems quite robust to departures from

a unit root, which is to be expected as the extreme value theory used for deriving the asymp-

totic distribution of the Wald test only requires stationary series. However, normality is

crucial, and we have not yet seen the effects of non-normal errors. Table 4 therefore reports

some results obtained when using alternative error distributions. For simplicity, in this case

we set ρ = 0 with γ = 0, r = 1 and δ = 3 kept fixed.

12An average break size of δ = 3 is quite small in the sense that when viewed as an outlier it is only three
standard deviations of the underlying innovations.
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It is seen that heavy-tailed distributions make the breaks more difficult to detect with

substantially lower correct selection frequencies in many cases, which is in agreement with

the results obtained in most of the literature on outlier detection, see for example Perron

and Rodrı́guez (2003). By contrast, the size of the unit root tests is basically unaffected,

which is to be expected as the central limit theory used here does require any distributional

assumptions, like normal.

As a final note, we simulated the Lee and Strazicich (2003) LMτ test and its panel version,

which was used by Im et al. (2005) in their PPP application. The results suggest that the

size of these tests can be very unreliable with massive distortions in a majority of the cases

considered. We will come back to this in the next section when we revisit the PPP hypothesis.

6 The PPP hypothesis revisited

The PPP hypothesis is the simple proposition that national price levels should tend to equal-

ize when expressed in a common currency so that movements in the real exchange rate

should only reflect stationary deviations from its long-run equilibrium level. Let pit denote

the local currency price index of country i expressed in log terms, and let sit be the log dollar

price of the currency of the same country. Also, let p∗t denote the dollar price index. The log

real exchange rate between country i and the United States can be written as

qit = pit + sit − p∗t .

Empirically, the stationarity of the real exchange rate has been relatively easy to evidence

using data that span long periods of time. However, it has been considerably more difficult

to find such evidence for the relatively short spans of data corresponding to the recent float-

ing exchange rate period that followed the collapse of the Bretton Woods system in 1973.

Consequently, studies such as Choi (2001, 2004) and Papell and Theodoridis (1998) try to

remedy this absence of long-span data under the recent float by using unit root tests that are

based on panel data. Yet, the results have been very mixed and far from convincing.

Im et al. (2005) argue that this weak empirical support may be due to the presence of

structural breaks in the level of the equilibrium real exchange rate.13 If this is the case,

conventional panel data tests based on the no-break assumption will suffer from low power,

13Similar explanations for why PPP does not seem to hold have been put forth by for example Gadea et al.
(2004) and Sabatè et al. (2003).
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which could explain the inability of earlier studies to reject the unit root null. To test this

conjuncture, the authors propose using their newly devised exogenous one-break panel unit

root test.

However, since the breaks are unknown in this case, as they usually are, the authors

suggest modifying their test along the lines of Lee and Strazicich (2003) using the Zivot and

Andrews (1992) minimum procedure to estimate the breaks. Based on four different panels

covering between six and 21 countries from April 1973 to December 1999, the authors are

able to reject the unit root null at the 1% level, which interpreted as providing support in

favor of the PPP hypothesis.

The results reported in this paper suggest that there is an alternative interpretation of

these results. Namely, that they have been spuriously induced by the bias inherent in the

Zivot and Andrews (1992) procedure when applied in this context. In this section, we there-

fore reevaluate the results of Im et al. (2005) using the new tests.

These tests have several advantages in comparison with conventional testing approaches.

Firstly, structural breaks in both the level and slope of the PPP relationship can be taken into

account. Secondly, by using panel data, we can improve upon the power relative to con-

ventional univariate testing approaches. Thirdly, as first pointed out by O’Connell (1998),

by permitting for common factors the cross-sectional dependence induced by the numeraire

country is effectively eliminated. Finally, neither the constant nor the trend is restricted to

zero. Usually there is only a constant, as a time trend is deemed inconsistent with PPP the-

ory. The results obtained from this testing strategy have, however, been very mixed and far

from convincing, leading Hegwood and Papell (1998) to consider so-called trend qualified

PPP, which seems more appropriate in view of the trending behavior of most exchange rates.

In addition, besides its better ability to explain the observed data, the allowance of the trend

makes the model robust against possible Balassa-Samuelson effects.

Clearly, these allowances lead to a very relaxed interpretation of PPP under the stationary

alternative. Thus, if there is only some limited truth to PPP, then our approach should in

principle still be able to detect this. Moreover, as the null hypothesis is that of no PPP, an

acceptance by the panel test not only suggests that this relaxed PPP version fails but also that

it fails for each and every country in the panel. In other words, if the PPP hypothesis does

not survive this very general test, then maybe it is time to consider revising the underlying

theory?
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Data sampled at quarterly frequency is obtained using the International Financial Statis-

tics database of International Monetary Fund, which is the same source used by Im et al.

(2005). As in that study, the countries are grouped into four panels, the Choi (2001) panel,

the European monetary union panel, the European community panel and the OECD panel,

which includes all 21 countries.14 The data starts in 1973Q2 but ends in 1998Q4 due to miss-

ing observations in 1999. Thus, in this panel, N = 21 and T = 104.

Figure 1: The estimated factors.

-2-1
01
23
45

1973Q2 1975Q4 1978Q2 1980Q4 1983Q2 1985Q4 1988Q2 1990Q4 1993Q2 1995Q4 1998Q2
The dollar price index The largest principal component The cross-sectional average

The tests are computed in the same ways as before, but since the common factors are now

unknown in this section we will replace them by estimates. Three estimators are considered.

The first is based on using the dollar price index, p∗t , as an observed factor, which is very

interesting in the sense that it provides an example of the scenario considered in Sections 2–

5. The second estimator is based on using the cross-sectional average of the observed data,

yt, while the third is based on using the principal components method of Bai and Ng (2004).

The latter approach is more general in the sense that it allows us to extract more than one

common factor from the data. But since the co-movement in the real exchange rate is mainly

14See Table 5 for a list of all the countries included in the sample.
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driven by p∗t , in this section we only extract one factor.15

The three factor estimates are plotted in Figure 1. Because the principal components

estimate is only identified up to a scale factor, it is not directly comparable with the other

two. However, it is seen that the principal components estimate is almost a perfect mirror

image of the cross-sectional average, which in turn is quite close to the dollar price index.

The three estimates therefore deliver roughly the same picture.

The results from applying the new tests to the PPP data are reported in Tables 5 and 6.

There is strong evidence in favor of the unit root null. In fact, except for France when using

the principal components method to estimate the common factor, the unit root hypothesis

cannot be rejected at any conventional significance level regardless of whether we use the

panel or the individual time series tests. We also tested for unit roots in the estimated factors

using the Dickey–Fuller test. In agreement with the obvious non-stationarity of these series

as seen in Figure 1, none of tests were able to reject the null of a unit root.

Of course, this not only casts doubts on the test results provided by Im et al. (2005),

but also on the argument that the weak empirical support for PPP is be due to erroneously

omitted breaks. In fact, as seen in Table 5, if we focus on the results based on the dollar

price index as the common factor, the evidence of structural instability is weak. Also, many

of the breaks detected for the other factor estimates can probably be attributed to the same

underlying shift. Take for example Finland, where we estimate six breaks. But four of these,

corresponding to observations 74, 77, 79 and 80, are very close, indicating the presence of a

major break in the early 1990’s, which seems roughly consistent with the formation of the

European Monetary System when Finland, along with most European countries, abolished

its capital controls.

Looking across all 21 countries we see that there is a preponderance of breaks between

observation 11 and 40, corresponding to the 1975Q3–1982Q4 period. This seems very rea-

sonable from an historical point of view with events such as oil price shocks, the formation

of European Monetary System and, in particular, the rise and fall of the dollar. Specifically,

while the breaks found in the late 1970’s agree with the oil price shocks of that period, the

breaks in the early 1980’s are more likely to reflect the start of appreciation of the dollar.

In sum, our results lead us to the conclusion that PPP must be rejected for each country,

15Since the common factor model in (2) is basically the same as in Bai and Ng (2004), this suggests that we
can use their proposal of first taking differences to achieve stationarity, and then to estimate the first-differenced
factor using principal components, which can be accumulated and used in place of ft.
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and therefore for the panel as a whole, which is actually quite remarkable given that our

model is so general.

7 Conclusions

This paper develops two Lagrange multiplier-based unit root tests that permit for multiple

structural breaks in the level of the data. One is based on a single series, while the other is

based on a panel of multiple time series. To estimate the breaks, a new procedure based on

outlier detection is proposed. The new procedure has many distinctive and advantageous

features. Firstly, it is computationally very simple and straightforward to implement. Sec-

ondly, neither the number nor the location of the breaks need be known. In fact, there may

not be any breaks at all. Thirdly, the procedure is valid under both the unit root null and

stationary alternative. Fourthly, the procedure is robust to both serial and cross-sectional

dependence.

In essence, the new procedure allows researchers to move away from testing the unit

root null against a specified number of breaks and towards model selection strategies that

are less dependent on an prespecified number, which should be of considerable interest in

applied work.

We derive the limiting distribution of the new tests and consider their finite-sample prop-

erties through a small simulation study. The results suggest that the asymptotic properties of

the tests are borne out well in small samples, which together with the endogenous treatment

of the breaks, leads us to the conclusion that the new tests should be a valuable addition

to the existing menu of unit root tests. This is illustrated empirically using PPP, where it is

shown that even if the presence of structural breaks and cross-section dependence is taken

into account, the null of a non-stationary real exchange rate cannot be rejected.
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Table 3: Breakpoint estimation accuracy.

ρ = 0 ρ = −0.1
r = 1 r = 2 r = 1 r = 2

δ T N r̂ B̂ r̂ B̂ r̂ B̂ r̂ B̂
Independent errors, γ = 0

3 100 5 37.1 33.2 21.7 19.7 35.9 31.9 20.0 18.2
10 38.1 34.1 21.9 20.1 36.5 32.4 20.4 18.6

200 5 36.3 32.3 21.0 19.3 34.7 30.5 19.3 17.6
10 35.4 31.5 20.3 18.6 33.8 29.8 18.5 17.0

5 100 5 74.8 74.0 65.0 64.1 73.2 72.3 62.7 61.8
10 75.4 74.4 65.4 64.4 73.5 72.5 63.2 62.1

200 5 76.5 75.5 66.8 65.9 74.6 73.5 64.7 63.5
10 75.6 74.7 65.7 64.7 73.7 72.7 63.1 61.9

Serially correlated errors, γ = 0.5
3 100 5 36.4 32.0 20.3 18.2 35.7 31.4 19.4 17.5

10 37.3 32.8 20.8 18.7 36.4 32.0 19.7 17.9
200 5 35.4 30.8 19.8 17.5 34.2 29.7 18.8 16.9

10 34.5 30.2 19.3 17.1 33.4 29.1 18.2 16.3

5 100 5 71.2 69.9 61.8 60.3 71.9 70.6 61.1 59.6
10 71.4 70.0 61.9 60.4 71.9 70.5 60.9 59.5

200 5 69.8 68.3 60.7 59.0 71.5 70.1 61.2 59.8
10 69.1 67.7 59.6 57.7 70.7 69.5 60.2 58.6

Notes: r̂ and B̂ refer to the estimated number of breaks and their locations, respectively.
The numbers reported in the table are the percentage of times when these parameters
are correctly selected. See Table 1 for an explanation of the rest of the features.
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Table 4: Simulation results for different error distributions.

Unit roots Breaks
T N τ1

ρi
τ2

ρi
τ3

ρi
τ1

ρ τ2
ρ τ3

ρ r̂ B̂
εit ∼ t2

100 5 7.5 5.2 5.3 10.9 5.8 6.5 17.9 0.6
10 7.0 5.3 5.2 11.4 5.8 5.9 17.5 0.5

200 5 6.6 4.7 4.8 9.1 5.3 5.8 3.0 0.0
10 6.4 4.2 4.4 8.7 4.5 5.0 3.2 0.0

εit ∼ t10

100 5 6.8 6.5 6.6 8.8 8.3 8.6 33.4 17.7
10 6.5 6.3 6.5 8.9 8.0 10.0 34.2 18.4

200 5 5.7 5.5 5.9 8.4 7.3 7.6 35.7 14.2
10 5.7 5.6 5.9 7.5 7.6 7.8 34.8 13.5

εit ∼ U(−1, 1)
100 5 6.2 5.7 6.1 8.4 7.0 8.4 78.0 78.0

10 6.3 5.9 6.2 10.5 8.3 10.3 78.0 78.0
200 5 5.4 5.1 5.5 7.0 6.2 6.9 77.0 77.0

10 5.9 5.7 5.8 8.8 6.8 8.9 76.2 76.2
εit ∼ U(−2, 2)

100 5 5.9 5.6 6.1 8.1 7.7 8.4 24.5 24.5
10 6.2 6.0 6.2 9.8 8.9 10.3 24.6 24.6

200 5 5.4 5.2 5.5 6.5 6.5 6.9 21.6 21.6
10 5.7 5.6 5.8 8.3 7.3 8.9 21.4 21.4

Notes: See Tables 1 and 3.
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Table 6: Panel unit root tests.

Panel τ1
ρ p-value τ2

ρ p-value τ3
ρ p-value

Choi (2001) 0.83 0.80 2.07 0.98 1.85 0.97
European monetary union 1.47 0.93 2.87 1.00 2.83 1.00
Europen community 1.70 0.96 2.34 0.99 2.58 1.00
OECD 2.31 0.99 2.78 1.00 2.48 0.99

Notes: See Table 5.
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