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Abstract

This paper proposes a new unit root test in the context of a random autoregressive

coefficient panel data model, in which the null of a unit root corresponds to the joint re-

striction that the autoregressive coefficient has unit mean and zero variance. The asymp-

totic distribution of the test statistic is derived and simulation results are provided to

suggest that it performs very well in small samples.
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1 Introduction

Consider the panel data variable yit, observable for t = 1, ..., T time series and i = 1, ..., N

cross-sectional units. The analysis of such variables has been a growing field of econometric

research in recent years, with a majority of the work focusing on the issue of unit root test-

ing, see Breitung and Pesaran (2008) for a recent review. The main reason for this being the

well-known power problem of univariate tests in cases when T is small, and the potential
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gain that can be made by pooling across a cross-section of similar units. The most com-

mon approach, pioneered by Levin et al. (2002), is to assume that yit admits to a first-order

autoregressive representation with a common slope coefficient,

yit = ρyit−1 + uit,

where uit is a stationary disturbance term with zero mean. A pooled least squares t-statistic

is then computed, and the null hypothesis that ρ = 1 is tested against the alternative that

| ρ | < 1.

The major limitation of this approach is that ρ is restricted to be the same for all units.

The null makes sense, but the alternative is too strong to be held in any interesting empir-

ical cases. For example, when testing for price convergence, one can formulate the null as

implying that none of the regions under study converges. But it does not make any sense to

assume that all the regions will converge at the same rate if they do converge.

Im et al. (2003) relax the assumption of a common autoregressive coefficient under the

alternative. The idea is very simple. Take the above model and substitute ρi for ρ, which in

the usual formulation where ρi is fixed results in N separate autoregressive models, one for

each unit. Thus, instead of looking at a single pooled t-statistic, we now look at N individual

t-statistics, which can be combined for example by taking the average. The resulting average

statistic tests the null that ρi = ρ = 1 for all i against the alternative that | ρi | < 1 for a

positive fraction of N.

But this is basically the same as saying that the null should be rejected if at least one of

the individual tests end up in a rejection at the appropriate significance level, which brings

us back to the original problem, namely that T has to be large. But if T is large enough for

valid inference at the individual level, then there is hardly no point in pooling. This leaves us

with an intricate dilemma. On the one hand, we would like to exploit the additional power

that becomes available when we pool, and when we do this we would like to allow for some

heterogeneity in ρi. On the other hand, this allowance requires T to be large, in which case

we can just as well go back to doing unit-by-unit inference.

The appropriate response here depends on the relative size of N and T. But if only N

is large enough, then it should be possible to devise powerful tests that are informative in

an average sense, even if T is small. This leads naturally to the consideration of a random
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specification for ρi. In particular, suppose that

ρi = 1 + ci,

where ci is an independently distributed random variable with mean µc and variance ω2
c .

Then the null of a unit root corresponds to the joint restriction that µc = ω2
c = 0, while the

alternative is that µc 6= 0 or ω2
c > 0, or both.

This random specification of ci has many advantages is comparison to the traditional

fixed specification. Firstly, working with incompletely specified models inevitably leads to

a loss of efficiency. The random specification reduces the number of parameters that need

to be estimated, and is therefore expected to lead to more powerful tests. Secondly, the ran-

dom specification is more general, because fixed coefficients are special random variables.

Whether something is random or not should be decided by considering what would happen

if we were to replicate the experiment. Is it realistic to assume that ci stays the same under

replication? If not, then the random specification is more appropriate. Thirdly, by consider-

ing not only the mean of ci but also the variance, random coefficient tests account for more

information, and are therefore expected to be more powerful. Fourthly, the alternative hy-

pothesis does not rule out the possibility that some of the units may be explosive.

Taking this random coefficient model as our starting point, the goal of this paper is to

design a procedure to test the null hypothesis that µc = ω2
c = 0, which has not received

much attention in the previous literature. In fact, the only attempt that we are aware of is

that of Ng (2008), who uses a random coefficient model as a basis for proposing an estimator

of the fraction of units with a unit root. However, this procedure does not exploit the fact

that under the null hypothesis the variance of ci is zero, which makes it suboptimal from a

power point of view. It is also rather restrictive in nature, and cannot be easily generalized

to accommodate for example high-order serial correlation.

Our testing methodology is rooted in the Lagrange multiplier principle, and can be seen

as a generalization of the recent time series work of Distaso (2008) and Ling (2004), who

consider the problem of testing for a unit root when the autoregressive coefficient is time-

varying. It is also very similar to the seminal approach of Schmidt and Phillips (1992), from

which it inherits many of its distinctive features. The test is for example based on a very

convenient detrending procedure that imposes the null hypothesis, and if a linear trend is

included the test statistic is asymptotically invariant with respect to the presence of a level
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break. It is also very straightforward and easy to implement.

The asymptotic analysis reveals that the Lagrange multiplier test statistic has a limiting

chi-squared distribution that is free of nuisance parameters under the null hypothesis. We

also study the limiting behavior of the statistic under local alternative hypotheses. We show

that in the case of either a constant that may by heterogeneous across units, or a constant

and trend that are homogenous the test has power against alternatives that shrink towards

the unit root at rate 1√
NT

. However, we also show that in the presence of a heterogeneous

trend the test does not have any power in such neighborhoods, which is a reflection of the

so-called incidental trends problem.

A small simulation study is also undertaken to evaluate the small-sample properties of

the test, and the results show that the asymptotic properties are borne out well, even in very

small samples.

The rest of the paper is organized as follows. Section 2 introduces the model, while

Section 3 derives the Lagrange multiplier test statistic and its asymptotic properties, which

are evaluated using both simulated and real data in Sections 4 and 5, respectively. Section 6

concludes. Proofs and derivations of important results are provided in the appendix.

A word on notation. The symbols →w and →p will be used to signify weak convergence

and convergence in probability, respectively. As usual, yT = Op(Tr) will be used to sig-

nify that yT is at most order Tr in probability, while yT = op(Tr) will be used in case yT

is of smaller order in probability than Tr.1 In the case of a double indexed sequence yNT,

T, N → ∞ will be used to signify that the limit has been taken while passing both indices to

infinity jointly. Restrictions, if any, on the relative expansion rate of T and N will be specified

separately.

2 Model and assumptions

The data generating process of yit is given by

yit = dit + zit, (1)

where dit is the deterministic part of yit, while zit is the stochastic part. The typical elements

of dit include a constant and a linear time trend, and this is also the specification considered

here. Specifically, using p to denote the lag length, then dit = αi + βi(t− p), which nests two

1If yT is deterministic, then Op(Tr) and op(Tr) are replaced by O(Tr) and o(Tr), respectively.
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models. In model 1, there is no trend, while in model 2, there is both an intercept and trend.

The parameters αi and βi can be either known or unknown to be estimated along with the

other parameters of the model.

The stochastic part is assumed to evolve according to a first-order autoregressive process,

zit = ρizit−1 + uit, (2)

or equivalently,

∆zit = cizit−1 + uit

with the error uit following a stationary and invertible autoregressive process of order p,

φi(L)uit = εit, (3)

where φi(L) = 1− ∑
p
j=1 φjiLj is a polynomial in the lag operator L and εit is an error term

that satisfies the following assumptions.

Assumption 1.

(a) εit is independent across both i and t with mean zero, variance σ2
i < ∞ and E(ε3

it) = 0,

(b) 1
N ∑N

i=1 κi → κ < ∞, where κi = E(ε4
it)/σ4

i ,

(c) αi, βi and φi(L) are non-random with the roots of φi(L) falling outside the unit circle,

(d) zi0, ..., zip are Op(1).

Assumption 2. εit is normally distributed.

The assumed independence across i is restrictive but is made here in order to make the

analysis of ρi more manageable. Some possibilities for how to relax this condition are dis-

cussed in Section 3. Normality is also not necessary. More precisely, while needed for de-

riving the true Lagrange multiplier test statistic, normality is not needed when deriving its

asymptotic distribution. The following assumptions are more important in that regard.

Assumption 3.

(a) ci is independent across i with mean µc and variance ω2
c ,
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(b) ci and εit are mutually independent.

Assumption 4. N
T → 0 as N, T → ∞.

The requirement that the mean and variance of ci are equal across i is made for conve-

nience, and can be relaxed as long as the cross-sectional averages of these moments have

limits such as µc and ω2
c , respectively. However, the assumption that ci and εit are indepen-

dent is crucial. Assumption 4 is standard when testing for unit roots in panels. The reason is

the assumed heterogeneity in αi, βi, φi(L) and σ2
i , whose elimination induces an estimation

error in T, which is then aggravated when pooling across N. The condition that N
T → 0

prevents the estimation from having a dominating effect, see Section 3 for a more detailed

discussion and for some results when it fails.

Having laid out the assumptions we now continue to discuss the hypothesis of interest.

In the conventional setup when ci is fixed the null hypothesis of a unit root is formulated

as that ρi = 0 for all i, while the alternative hypothesis is usually formulated as in Im et al.

(2003). That is, it is assumed that ci < 0 for a significant fraction of N, implying that although

some of the units may be non-stationary most of them are stationary.

When ci is random, this formulation changes. The null of a unit root now becomes

H0 : ρi = 0 almost surely,

which can be written in an equivalent fashion as

H0 : µc = ω2
c = 0.

A violation of this null occurs if µc 6= 0 or ω2
c > 0, or both, implying that while some units

may be non-stationary, the probability of this happening is very small. It also implies that

there are not just stationary and non-stationary units, but also explosive units, which seems

like a relevant scenario in most applications, especially in financial economics, where data

tend to exhibit explosive behavior.2 Explosive behavior is also more likely if N is large,

which obviously increases the probability of extreme events regardless of the application

considered. There is also the question to what extent researchers can work with regular unit

root tests without prior knowledge of the location of the roots.

2In Section 5 we consider as an example the housing market of the United States, which has recently experi-
enced a spectacular rise in prices. Periods of hyperinflation and stock markets with rational bubbles are other
examples of applications with possibly explosive data, see for example Nielsen (2008) and Phillips et al. (2009).
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In any case, with such a formulation of the alternative hypothesis, we only learn whether

the test is consistent and if so at what rate. Therefore, to be able to evaluate the power

analytically, in this paper we consider an alternative in which ρi is local-to-unity as N, T →
∞. In particular, the following formulation is adopted:

H1 : ρi = 1 +
ci√
NT

,

where ci again satisfies Assumption 3. This corresponds to an autoregressive coefficient that

approaches one with increasing values of N and T. If ci < 0, then ρi approaches one from

below and so yit is locally stationary, whereas if ci > 0, then ρi approaches one from above

and so yit is locally explosive. In the limit as N, T → ∞ we see that ρi → 0, and hence the

distribution of ρi collapses with the mean going to one and the variance going to zero.

The rate of shrinking is given by 1√
NT

. Coincidentally, this is also the rate of consistency

of the pooled least squares estimator of ρi under the null, which is going to turn out to form

the basis of our test statistic. Being an estimate of the slope of the mean function, it is logical

to expect that the main effect of the local-to-unity specification of ρi is to induce via µc a

non-centrality of the asymptotic distribution of the test statistic.

3 The test procedure

In this section, we first consider the true Lagrange multiplier test statistic, which is based

on the assumption that the parameters of the model are all known. We then show how this

analysis extends to the more realistic case when the parameters are unknown. Finally, we

discuss some generalizations.

3.1 The true Lagrange multiplier test statistic

Define wit = φi(L)(yit − dit), which in the model with a trend can be written as

wit = φi(L)
(
yit − αi − βi(t− p)

)
= yit −Φ′

iyit − µi − βiφi(L)(t− p), (4)

whose first difference is given by

∆wit = φi(L)(∆yit − βi) = ∆yit −Φ′
i∆yit − λi, (5)

where µi = φi(1)αi + φi(L)zip, λi = φi(1)βi and yit = ( yit−1, ..., yit−p )′ is the vector of lags

with Φi = ( φ1i, ..., φpi )′ being the associated vector of slope coefficients. If there is no trend,
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βi = 0 and so wit = yit −Φ′
iyit − µi. In any case, by using (1) to (3),

∆wit = ciwit−1 + εit (6)

or, in terms of the observed variable,

yit = yit − ∆wit + ciwit−1 + εit = yit−1 + Φ′
i∆yit + λi + ciwit−1 + εit.

Thus, letting Ft−1 denote the information set available at time t− 1,

E(yit|Ft−1) = yit−1 + Φ′
i∆yit + λi + µcwit−1

and

var(yit|Ft−1) = ω2
c w2

it−1 + σ2
i ,

which can be used to obtain the log-likelihood function L of yip+1, ..., yiT. In particular, sup-

pose that εit is normal, then, apart from constants,

L = −1
2

N

∑
i=1

T

∑
t=p+1

ln
(
var(yit|Ft−1)

)− 1
2

N

∑
i=1

T

∑
t=p+1

(
yit − E(yit|Ft−1)

)2

var(yit|Ft−1)

= −1
2

N

∑
i=1

T

∑
t=p+1

ln
(
ω2

c w2
it−1 + σ2

i
)− 1

2

N

∑
i=1

T

∑
t=p+1

(
(ci − µc)wit−1 + εit

)2

ω2
c w2

it−1 + σ2
i

. (7)

In Appendix A we show that under H0 the log-likelihood is maximized by

σ̌2
i =

1
T − p

T

∑
t=p+1

(∆wit)2,

and that the Gradient and Hessian with respect to µc and ω2
c are given by

g =

[
g1

g2

]
=

N

∑
i=1

T

∑
t=p+1

[
∆ěit ěit−1

1
2((∆ěit)2 − 1)ě2

it−1

]

and

H =

[
H11 H12

H12 H22

]
= −

N

∑
i=1

T

∑
t=p+1

[
−ě2

it−1 ∆ěit ě3
it−1

∆ěit ě3
it−1

1
2(2(∆ěit)2 − 1)ě4

it−1

]
,

respectively, where ěit = wit/σ̌i. We also show that when properly normalized by N and T

the Hessian is asymptotically diagonal. Thus, if all the parameters but σ2
i are known, then

the Lagrange multiplier test statistic can be written as

LM = g′(−H)−1g = ALM + op(1),
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where

ALM = − g1

H11
− g2

H22
=

(
∑N

i=1 ∑T
t=p+2 ∆ěit ěit−1

)2

∑N
i=1 ∑T

t=p+2 ě2
it−1

+

(
∑N

i=1 ∑T
t=p+2((∆ěit)2 − 1)ě2

it−1

)2

2 ∑N
i=1 ∑T

t=p+2
(
2(∆ěit)2 − 1

)
(ěit−1)4

,

which can be interpreted as an asymptotic Lagrange multiplier test statistic.

The formula for ALM is very simple and intuitive. In fact, a careful inspection reveals

that the first part is nothing but the Lagrange multiplier test statistic for testing the null that

µc = 0 given ω2
c = 0. That is, the first part is the Lagrange multiplier unit root statistic based

on the assumption of an homogenous ρi. The second part is the Lagrange multiplier statistic

for testing the null that ω2
c = 0 given µc = 0.

The formula also reveals some interesting similarities with results obtained previously in

the literature. In particular, note how the first part is the squared equivalent of the panel unit

root test considered by Levin et al. (2002).3 The second has no direct resemblance of anything

that has been proposed earlier in the panel unit root literature. However, it can be seen as

a panel version of the test statistic of Leybourne et al. (1996), who consider the problem of

testing the null of a fixed unit root against the randomized alternative in the context of a

single time series. The test statistic as a whole can be regarded as a panel extension of the

time series statistics discussed in Distaso (2008) and Ling (2004).

Even when εit is normal the exact distribution of ALM is untractable. In this paper we

therefore use asymptotic theory to obtain the limiting distribution of ALM as N, T → ∞.

Although this means that N and T must be large for the test to be accurate, it also means that

there is no need for any distributional assumptions like normality.

The asymptotic null distribution of ALM is given in the following theorem.

Theorem 1. Under H0 and Assumptions 1, 3 and 4,

ALM →d X2 +
5
24

(κ − 1) Y2,

where X2 and Y2 are independent chi-squared random variables with one degree of freedom each.

Remarks.

(a) The theorem shows that ALM has the same limiting distribution in both models con-

sidered, and that this distribution is free of nuisance parameters, except for the depen-

dence on κ, the average fourth normalized moment of εit. If εit is normal or if κ = 3,
3The first part of ALM can also be regarded as a panel version of the Lagrange multiplier unit root tests

proposed in the time series literature by for example Ahn (1993) and Schmidt and Phillips (1992).

9



then (κ− 1) = 2 and hence the asymptotic distribution of ALM reduces to X2 + 5
12 Y2.

Thus, normality, or more generally, κ = 3 implies a test distribution that is completely

free of nuisance parameters.

(b) It is interesting to compare the asymptotic distribution of ALM with that obtained

by Ling (2004) when testing for a unit root in a first-order autoregressive model with

conditional heteroskedasticity, which can be reformulated as a random coefficient au-

toregressive model. The distribution of this test for cross-sectional unit i without any

deterministic components is in our notation given by

( ∫ 1
0 Wi(r)dWi(r)

)2

∫ 1
0 Wi(r)2dr

+ (κi − 1)
( ∫ 1

0 Wi(r)2dVi(r)
)2

2
∫ 1

0 Wi(r)4dr
,

where Wi(r) and Vi(r) are two independent standard Brownian motions on r ∈ [0, 1].

The asymptotic distribution of our statistic can be regarded as

lim
N→∞

(
1√
N ∑N

i=1
∫ 1

0 Wi(r)dWi(r)
)2

1
N ∑N

i=1
∫ 1

0 Wi(r)2dr
+ (κ − 1) lim

N→∞

(
1√
N ∑N

i=1
∫ 1

0 Wi(r)2dVi(r)
)2

2
N ∑N

i=1
∫ 1

0 Wi(r)4dr
.

Thus, by just comparing these two distributions, we see that the main effect of sum-

ming over the cross-sectional dimension is to smooth out the Brownian motion depen-

dency for each unit.

(c) The requirement that N
T → 0 as N, T → ∞ is needed because while Φi, µi and λi are

assumed to be known, σ2
i is not and therefore has to be estimated.

Next we summarize the results obtained under H1.

Theorem 2. Under H1 and Assumptions 1, 3 and 4,

ALM →d
µ2

c
2

+ µc
√

2 X + X2 +
5

24
(κ − 1) Y2,

where X and Y are as in Theorem 1.

Remarks.

(a) The first thing to note is that ω2
c does not enter the asymptotic distribution of the test.

The reason for this originates with the rate of shrinking of the local alternative, which is

determined by the normalization of the test statistic. With a composite test statistic like

10



ours, unless the normalization of the different parts is the same, the rate of shrinking

of the local alternative is given by the lowest of the normalizing orders. In our case, the

appropriate normalization for the first part of the test statistic is given by 1√
NT

, while

the normalization of the second part is 1√
NT3/2 . The rate of shrinking is therefore just

enough to manifest µc as a nuisance parameter in the asymptotic distribution of the

first part of the statistic. The normalizing order of the second part, which represents

the test of ω2
c = 0, is higher and ω2

c is therefore kicked out.

(b) The specification of H1 has two effects. The first is to shift the mean of the limiting

distribution of the test. In particular, since µ2
c > 0, this means that the mean shifts to

the left as we move away from H0, suggesting that the test is unbiased and that its

asymptotic local power therefore is greater than the size. The second effect, which is

captured by µc
√

2 X ∼ N(0, 2µ2
c), is to increase the variance of the limiting distribution.

This effect is especially noteworthy as usually there is only the mean effect.

3.2 The feasible Lagrange multiplier test statistic

All results reported so far are based on the assumption that Φi, µi and λi are all known,

which is of course not very realistic. Let us therefore consider using

ŵit = yit − Φ̂′
iyit − µ̂i − λ̂i(t− p) (8)

as an estimator of wit, where µ̂i = yip+1 − Φ̂′
iyip − λ̂i with λ̂i and Φ̂i being the least squares

estimators of λi and Φi, respectively, in the first-differenced regression

∆yit = λi + Φ′
i∆yit + εit, (9)

which is (5) with H0 imposed.4 If there is no trend, then we remove the intercept, and

compute ŵit = yit − Φ̂′
iyit − µ̂i, where µ̂i = yip+1 − Φ̂′

iyip.5 The feasible Lagrange multiplier

statistic in this model is given by

FLM1 =

(
∑N

i=1 ∑T
t=p+2 ∆êit êit−1

)2

∑N
i=1 ∑T

t=p+2 ê2
it−1

+
12

(
∑N

i=1 ∑T
t=p+2((∆êit)2 − 1)ê2

it−1

)2

5(κ̂ − 1) ∑N
i=1 ∑T

t=p+2(∆êit)2ê4
it−1

,

4As shown in Lemma A.1 of Appendix A, under the null hypothesis µ̂i, λ̂i and Φ̂i are the feasible maximum
likelihood estimators of µi, λi and Φi, respectively.

5If in addition there is no serial correlation, then ŵit = yit − µ̂i with µ̂i = yi1.
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where êit = ŵit/σ̂i, σ̂2
i = 1

T−p−1 ∑T
t=p+2(∆ŵit)2 and κ̂ = 1

N(T−p−1) ∑N
i=1 ∑T

t=p+2(∆ŵit)4/σ̂4
i .

The reason for the subscript 1 is to indicate that the statistic has been computed for a par-

ticular choice of model, and that the limiting distribution depends on it. The asymptotic

distribution of FLM1 under H0 is given in the following corollary.

Corollary 1. Under the conditions of Theorem 1,

FLM1 →d X2 + Y2.

Corollary 2 provides the corresponding result under H1.

Corollary 2. Under the conditions of Theorem 2,

FLM1 →d
µ2

c
2

+ µc
√

2 X + X2 + Y2.

Remarks.

(a) The first term in the formula for FLM1 is just the feasible version of the corresponding

term in the formula for ALM and does not require any explanation. The second term,

however, is not as obvious. In Appendix B we show that as N, T → ∞ with N
T → 0

1
NT3

N

∑
i=1

T

∑
t=p+2

(
2(∆êit)2 − 1

)
(êit−1)4 =

1
NT3

N

∑
i=1

T

∑
t=p+2

(∆êit)2ê4
it−1 + op(1) →p 1,

while 1√
NT3/2 ∑N

i=1 ∑T
t=p+2((∆êit)2 − 1)ê2

it−1 →d

√
5
12 (κ − 1) Y, which is the same limit

as for the numerator of the second term in the formula for ALM. The second term

in the formula for FLM1 is therefore asymptotically equivalent to 24
5 (κ − 1) times the

corresponding term in ALM.

(b) As we point out in remark (a) above, FLM1 is scale equivalent to ALM. This is very

interesting because typically demeaning leads to an asymptotic bias that has to be re-

moved in order to prevent the statistic from diverging, see for example Levin et al.

(2002) and Im et al. (2003). We also see that the demeaning has no effect on the local

power. This result is in agreement with the work of Moon et al. (2007), who develop a

point optimal test statistic for the null that µc = 0. According to their results estimation

of intercepts does not affect maximal achievable power.6

6Unfortunately, the optimality property of the single parameter case does not translate directly to the present
multiparameter case. The problem lies in that optimality for the single parameter case follows from maximizing
power in the only direction available under the alternative hypothesis. In our case we have a power surface
defined over all possible values of µc and ω2

c , and hence there is no obvious direction that should be used to
maximize power.

12



(c) It is interesting to compare the local power of the new test with the local power of the

Ztbar test of Im et al. (2003) and the t∗δ test of Levin et al. (2002), two of its most natural

competitors. As Moon and Perron (2008) show, under H1 the latter statistic converges

in distribution to 3
2

√
5
51 µc + N(0, 1). The corresponding result for the former statistic is

given in Harris et al. (2008) and is shown to be 0.282 µc + N(0, 1), where 3
2

√
5
51 > 0.282,

suggesting that t∗δ is most powerful. This can be seen in Figure 1, which plots the power

of all three tests as a function of µc.7 Intuitively, when one-directional alternatives are

considered one-sided tests designed for that purpose should have the highest power.

But when the alternative hypothesis moves in the direction of both µc 6= 0 and ω2
c > 0,

tests for the joint null hypothesis should have higher power. However, as the figure

shows, except for the case when −1.8 < µc < 0, FLM1 is most powerful. The fact

that the new test is most powerful even when the power is taken in the direction of

only µc 6= 0 is due to the rate of shrinking of the local alternative, which dominates the

dependence upon ω2
c , thereby effectively making the test one-directional.

Figure 1: Asymptotic local power as a function of µc.
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7The figure is based on 5,000 replications.
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Although unbiased in the case with a heterogeneous constant, the presence of a trend that

needs to be estimated makes FLM1 divergent. The source of this divergence is the numerator

of the first term in the formula for FLM1, which is no longer mean zero. In fact, as shown

in Appendix C, 1
NT ∑N

i=1 ∑T
t=p+2 ∆êit êit−1 →p − 1

2 as N, T → ∞ with N
T → 0, suggesting that

1√
NT ∑N

i=1 ∑T
t=p+2 ∆êit êit−1 diverges to negative infinity at rate

√
N. But there is not only the

mean effect, there is also a variance effect that works through the second term in the formula.

Specifically, the estimation of the trend slope leads to an increase in variance, from 5
12 (κ− 1)

in model 1 to 1
2(κ − 1) in model 2.

In view of these concerns, a natural candidate for a feasible statistic in model 2 is to use

FLM2 =

(
∑N

i=1 ∑T
t=p+2 ∆êit êit−1 + NT

2

)2

∑N
i=1 ∑T

t=p+2 ê2
it−1

+
2
(

∑N
i=1 ∑T

t=p+2
(
(∆êit)2 − 1

)
ê2

it−1

)2

(κ̂ − 1) ∑N
i=1 ∑T

t=p+2(∆êit)2ê4
it−1

.

However, this statistic has at least two drawbacks. Firstly, quite unexpectedly the usual

practice of removing the nonzero mean of the statistic does not work in the sense that the

asymptotic distribution of the mean-adjusted numerator of the first term of FLM2 is degen-

erate. That is,

1√
NT

N

∑
i=1

T

∑
t=p+2

∆êit êit−1 +
√

N
2

= op(1).

In other words, the asymptotic null distribution of FLM2 comes only from the second term in

the formula. Secondly, and even more importantly, the test has no asymptotic power against

H1. Summarizing this, we have the following theorem.

Theorem 3. Under H0 or H1 and Assumptions 1, 3 and 4,

FLM2 →d X2.

Remarks.

(a) Since the asymptotic distribution under H1 is the same as the one that applies under

H0, the local asymptotic power of FLM2 is equal to the size. This stands in sharp

contrast to the results obtained for ALM and FLM1, which have nontrivial asymptotic

power against H1. This difference is a manifestation of the difficulty in detecting unit

roots in the presence of heterogeneous trends, commonly referred to as the incidental

trend problem, see Moon and Phillips (1999). The absence of local power is therefore

not due to the degeneracy of the first term in the formula for FLM2, which might

otherwise seem like a very reasonable explanation.
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(b) The fact that ALM has nontrivial local power even in the presence of heterogeneous

trends suggests that the problem here is not the presence of trends per se but rather the

estimation thereof. Moon and Perron (2004, 2008), and Harris et al. (2008) consider the

effects of incidental trends when using least squares detrending. Theorem 3 extends

their results to the case of maximum likelihood demeaning.8

(c) Despite the absence of local power, FLM2 is consistent against a non-local alternative

in the sense that the probability of a rejection goes to one as N, T → ∞ for a set of

autoregressive parameters that does not depend on N or T. The rate of the divergence

is
√

NT, which is the same as for the Levin et al. (2002) and Im et al. (2003) tests.9

(d) Although 1√
NT ∑N

i=1 ∑T
t=p+2 ∆êit êit−1 +

√
N

2 is degenerate, 1√
NT ∑N

i=1 ∑T
t=p+2 ∆êit êit−1 +

√
TN
2 is not. However, multiplication by

√
T introduces nuisance parameters that are

otherwise eliminated as T → ∞. It also makes the test dependent upon the distribution

of εit.

3.3 Generalizations

3.3.1 Cross-section dependence

One drawback with the above analysis is that it supposes that the cross-sectional units are

independent, an assumption that is perhaps too strong to be held in many applications.

Accordingly, more recent panel unit root tests such as those of Bai and Ng (2004), Moon and

Perron (2004), Phillips and Sul (2003), and Pesaran (2007) relax this assumption by assuming

that the dependence can be represented by a common factor model. This approach fits very

well with the parametric flavor of our Lagrange multiplier framework, and it will therefore

be used also in this paper.

Suppose that εit in (3) has the factor structure

εit = Θ′
ift + vit, (10)

where we assume for simplicity that ft = ( f1t, ..., frt )′ is an known r-dimensional vector of

common factors with Θi = ( θ1i, ..., θri )′ being the associated vector of factor loadings, which

8Consistent with the results of Moon and Perron (2008), and Moon et al. (2006) our preliminary calcula-
tions suggest that, although absent under H1, the new test has nontrivial power under alternatives that shrinks
towards the null hypothesis at the slower rate of 1

N1/4T .
9A formal proof of this result can be obtained from the corresponding author.
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are assumed to be non-random.10 The error vit is completely idiosyncratic. Both variables are

assumed to satisfy Assumption 1 with ft being independent of ∆yit. Under these conditions,

(6) becomes

∆wit = ciwit−1 + Θ′
ift + vit,

which indicates that the feasible maximum likelihood estimator of Θi in model 2 can be

obtained by running the following least squares regression:

∆yit = λi + Φ′
i∆yit + Θ′

ift + vit. (11)

The factor-adjusted Lagrange multiplier test statistic is defined in exactly the same way as

before but with ŵit given by

ŵit = yit − Φ̂′
iyit − µ̂i − λ̂i(t− p)− Θ̂′

i

t

∑
s=p+2

fs, (12)

where µ̂i = yip+1 − Φ̂′
iyip − λ̂i − Θ̂′

ifp+1 with Φ̂i, λ̂i and Θ̂i coming from the least squares fit

of (11). The asymptotic distribution of this statistic is the same as the one given in Section

3.2 for the case with cross-section independence.

If ft is also unknown, then we proceed as in Bai and Ng (2004), using the method of

principal components to obtain consistent estimates. The trick is to note that under H0,

∆wit = Θ′
ift + vit, which is a nothing but a static common factor model in ∆wit. In other

words, had only ∆wit been known, we could have estimated ft directly by the method of

principal components. However, ∆wit is not known, and we must therefore apply the prin-

cipal components method to ∆ŵit instead, where ŵit is now as in (8). The testing can then be

carried out as before but with ft replaced by its principal components estimate.11

Once this estimation process has been completed, there is of course no claim of validity of

the resulting test, and we do not prove here that this approach is asymptotically valid. How-

ever, intuition suggests that it should perform well in practice, and unreported simulation

evidence confirms this.
10Of course, assuming that the common component enters via the serially uncorrelated error is by no means

the only way in which the factor model can be specified. But it is convenient, see Pesaran (2007) for a detailed
discussion of some alternative specifications.

11There are two ways to eliminate the effects of the common component, depending on the estimation Θi. The
first is the one described in the text, which amounts to replacing ft by its principal components estimate, and
then to estimate Θi by applying least squares to the resulting first-difference regression. The second approach
is to replace both ft and Θi by their principal components estimates. Unreported simulation evidence suggests
that the first approach performs best.
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3.3.2 Structural breaks

Analogous with the time series statistic studied by Amsler and Lee (1995), the asymptotic

null distribution of FLM2 computed under the assumption of a linear trend but no structural

break is unaffected by the presence of a break in the level of yit.

Let Dt = 1(t > τ), where 1(x) is the indicator function and τ indicates the timing of the

break, which may be unit specific. The intuition behind the above result follows from the

fact that 1√
T

Dt = op(1), suggesting that the break has no effect on 1√
T

ŵit. Moreover, since

∆Dt = 0 for all t except when t = τ, the effect on ∆ŵit is eliminated when subtracting the

mean. The asymptotic null distribution of the FLM2 is therefore unaffected.

The problem is that exclusion of the break makes the test biased towards accepting H0.

Thus, although the break does not affect the asymptotic null distribution of the test statistic,

it does reduce its power. To avoid this Dt can be included in the analysis as an additional

deterministic regressor, forming dit = αi + βi(t− p)+ δiDt, where δi measures the magnitude

of the break. The analysis can now be conducted exactly as before, augmenting (9) with Dt

as an additional regressor.

The development of procedures that accommodate breaks that are unknown is of interest

but beyond the scope of the present contribution.

3.3.3 No restrictions on the relative expansion rate of N and T

In applications when N > T Assumption 4 no longer provides a reasonable approximation.

In such cases we need to restrict the degree of heterogeneity that can be allowed. One way

would be to assume that the heterogeneity can be regarded as random noise around an

otherwise fixed mean value. But this induces a dependence on the distribution of the noise,

which then has to be correctly specified. In this section we therefore go all the way and

assume that αi, βi, φi(L) and σ2
i are completely homogeneous across i.

The resulting test statistic is computed as before but with ŵit given by

ŵit = yit − Φ̂′yit − µ̂− β̂

(
(t− p)−

p

∑
j=1

φ̂j(t− p− j)

)
. (13)

where µ̂ = yp+1 − Φ̂′yp − λ̂ with yp+1 = 1
N ∑N

i=1 yip+1 and an analogous definition of yp.

Here λ̂ and Φ̂ = ( φ̂1, ..., φ̂p )′ are the pooled least squares intercept and slope estimators

in a regression of ∆yit onto a constant and ∆yit. The homogenous trend slope β cannot be
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estimated directly, but it can be inferred from λ̂ and Φ̂. Specifically, by using λ = φ(1)β and

a first-order Taylor expansion, it is not difficult to see that β̂ = λ̂
(1−∑

p
j=1 φ̂j)

should be consistent

for β.

Replacing σ̂2
i with σ̂2 = 1

N(T−p−1) ∑N
i=1 ∑T

t=p+1(∆ŵit)2, the feasible homogenous Lagrange

multiplier test statistic in models 1 and 2 has the same form as FLM1, and the asymptotic

distributions under H0 and H1 are the same as the ones given in Corollaries 1 and 2, respec-

tively. Thus, imposing homogeneity of the trend coefficient not only relaxes Assumption

4 but also removes the incidental trends problem and the absence of local power in 1√
NT

neighborhoods.

4 Simulations

In this section, we investigate the small-sample properties of the new test through a small

simulation study using (1)–(3) to generate the data. For simplicity, we assume that φi(L) =

1− φL, αi = βi = 1 and ε it ∼ N(0, 1).

A total of seven configurations of the autoregressive parameter ρi and the drift parameter

ci are considered, where the latter is assumed to be generated as ci ∼ U(a, b). The first

configuration is for analyzing the size of the test, while the remaining six are for analyzing

the power. Three of these are local to the null hypothesis and three are non-local. Specifically,

the following cases are considered:

1. ρi = 1 for all i;

2. ρi = 1 + ci√
NT

with ci = −10 for all i;

3. ρi = 1 + ci√
NT

with ci ∼ U(−20, 0);

4. ρi = 1 + ci√
NT

with ci ∼ U(−40, 20);

5. ρi = 1 + ci with ci = −0.05 for all i;

6. ρi = 1 + ci with ci ∼ U(−0.1, 0);

7. ρi = 1 + ci with ci ∼ U(−0.15, 0.05).

Note that with this specification of ci, µc = 1
2(a + b) and ω2

c = 1
12 (a− b)2. Hence, µc is

the same in cases 2–4, and also in cases 5–7. The only thing that separates for example case
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1 from cases 2 and 3 is therefore the variance, which goes from zero in case 1 to 33.33 in case

2 to 300 in case 3. This direction away from the null is interesting to consider since in our

random coefficient setting there is not just the mean of ci that matters but also the variance.

The data in all six cases are generated for 5,000 panels with T + 100 time series observations,

where the first 100 are disregarded to reduce the effect of the initial value, which is set to

zero.

For the sake of comparison, the Levin et al. (2002) t∗δ statistic and Im et al. (2003) Ztbar

statistic are also simulated. As explained earlier, both are constructed as t-ratios of the null

that ρi = 1 for all i. The difference is that while t∗δ is based on the t-ratio of the pooled

least squares estimator of ρ, Ztbar is based on the average of the individual t-ratios of the

least squares estimator of ρi. As with the new test, Ztbar is fully parametric with respect to

the serial correlation properties of the data, and hence only requires lag augmentation. By

contrast, t∗δ not only requires lag augmentation but also semiparametric estimation of the

so-called long-run variance of uit.

In the simulations the lag length is selected using the Schwarz Bayesian information crite-

rion, which facilitates a data dependent choice. Consistent with the results of Ng and Perron

(1995), the maximum number of lags is allowed to increase with T at the rate 4(T/100)2/9.

To also allow for the possibility of heterogeneous lag lengths, the criterion is evaluated once

for each unit. As for the semiparametric estimation needed for computing t∗δ , we follow

the recommendation of Levin et al. (2002) and use the Bartlett kernel with the bandwidth

parameter set equal to 3.21T1/3.

The t∗δ and Ztbar statistics can be constructed in two ways depending on the choice of

mean and variance adjustment, which can be either asymptotic or sample-specific. Our test

is asymptotic, suggesting that the most appropriate comparison here is obtained by using the

former adjustments. However, since Im et al. (2003) do not provide any asymptotic results

for their test, t∗δ and Zt are simulated based on the small-sample moments.12 For brevity,

we only report the size and power at the 5% significance level. Also, since size accuracy is

not perfect, all powers are adjusted so that each test has the same level of 5% when the null

hypothesis is true. All computational work has been performed in GAUSS.13

12The use of sample-specific adjustment terms is expected to lead to better performance in the simulations,
which is also what we find. The comparison with the Lagrange multiplier test is therefore biased in favor of its
competitors.

13In addition to the results reported here, we have experimented with a large number of different parame-
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Consider first the size results for model 1, which are reported in Table 1. It is seen that

among the three tests considered the best size accuracy is generally obtained by using Ztbar,

with FLM1 performing only marginally worse. In fact, our results suggest that these tests are

remarkably robust even to quite high degrees of serial correlation, a valuable property that

is not very common. Of course, the accuracy is not perfect, and some distortions remain.

In particular, we see that there is a slight tendency for the test to become oversized as N

increases, although the distortions vanish quickly as T increases. The t∗δ test performs worst

with massive size distortions, even when φ = 0 and there is no serial correlation.

The results from the local power of the tests in cases 2–4 are even more encouraging.

Indeed, as Table 1 shows, the new test is almost uniformly more powerful than the other

tests, and this holds even when the power is taken in the direction of only µc < 0, which

is consistent with our asymptotic results on this point, as summarized by Figure 1. We

also see that increasing the variance does not lead to any increase in power, as should be

expected from remark (c) following Corollary 2. Moreover, although there is a small increase

among the smaller values of N and T, the power is quite flat in the sample size, which is in

accordance with our expectations, since asymptotically there is no dependence on N and T.

The poor performance of the t∗δ test is due to overfitting, which apparently can cause

drastic reductions in power. This is in agreement with the results of Westerlund (2009), who

shows that the power of t∗δ depends heavily on the choice of lag length, and to an even greater

extent on the choice of bandwidth. The fact that the new test seems much more robust in this

regard is of some importance from an applied standpoint because these are difficult choices.

Focusing now on the non-local power, we see that while FLM1 keeps its relative advan-

tage in cases 5 and 7, in case 6 Ztbar is ranked first, although not by much. We also see that

while the level of the power is higher than in cases 2–4, in relative terms the t∗δ test is still

dominated by the others. As indicated in remark (c) of Theorem 3, under the non-local alter-

natives considered here, all three tests diverge at rate
√

NT. In agreement with this we see

that increasing values of N and T lead to roughly the same increase in power, and that the

magnitude of the increase is roughly of the expected rate.

Consider next the results reported in Table 2 for model 2. The first thing to notice is the

terizations of the data generating process, including negative autoregressive errors, moving average errors, and
heterogeneous deterministic intercept and trend terms. Except possibly for the usual distortions in the case
with negative moving average errors, the conclusions were not altered. These results are available from the
corresponding author upon request. Some results based on alternative lag selection rules are also available.
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power in cases 2–4, which is almost absent. The theoretical result that the distribution of

the new statistic is the same under the null and local alternative hypotheses implies that the

power should be roughly equal to size, or 5%. Our results are quite suggestive of this. The

results for the non-local alternatives of cases 5–7 are more promising, but the power is still

very low, especially among the smaller values of N and T.

5 An empirical illustration

In a well-functioning market, an increase in demand brought about by for example higher

income should be accompanied by a one-for-one increase in supply, with prices being left

unchanged. By contrast, in a poorly functioning market, demand and supply do not move

one-for-one and therefore prices rise. This is presently the situation in many housing markets

around the world. In the United States, prices have grown so fast that it has raised fears of

speculative bubbles with real prices moving away from real income.14

This development is illustrated in Figure 2, which plots the cross-sectional mean, range

and normal 95% confidence bands for the log of the price-to-income ratio for 49 states be-

tween 1975 and 2003.15 As can be seen, the ratio first increased but then in the early 1980’s,

a period largely consistent with the NBER business cycle peak of January 1980, it started

to decline, levelling off in the early 1990’s. The sharp increase in the end of the sample is

consistent with the NBER peak of March 2001.

Figure 2 suggests that if the absence of speculative bubbles is to be interpreted as a mean-

reversion of the price-to-income ratio, then there is little evidence to support it. It is obser-

vations like this that have recently led many researchers to question the health of the United

States housing market. One such study is that of Holly et al. (2009), in which the authors

deduce evidence of a stable long-run one-to-one relationship between prices and income,

suggesting that the market is actually in good health. However, their unit root test is based

on the assumption that the data are integrated of at most order one, which naturally raises

the question of how the conclusions hold up in case of a violation.16

14These concerns culminated with the eruption of the sub-prime mortgage crisis in mid-2006, which have lead
to plunging property prices and a slowdown in the United States economy.

15The data are taken from Holly et al. (2009), and include for each state the real house price and income, which
are both transformed by taking logs.

16Preliminary evidence at the state level indicates that the fully stationary alternative is inappropriate. Take
for example prices, for which the estimated first-order autoregressive coefficient can be as high as 1.17 for some
states, suggesting the presence of explosive behavior.
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Figure 2: The cross-sectional mean of the price-to-income ratio.
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In this section, we try to shed some light on this issue by reevaluating the results of Holly

et al. (2009) based on the new test. The appropriate number of lags to use is determined as

in Section 4, using Schwarz Bayesian information criterion. Because the of the strong co-

movement in the data the test is implemented while allowing for up to four common factors

with the exact number determined using the IC2 criterion of Bai and Ng (2002).17 Most of

the price and income series also seem to be trending, implying that model 1 with only an

intercept might not provide an accurate description of the data. The approach taken here is

very simple and is based on using the Ayat and Burridge (2000) approach to determine the

significance of the individual trend slopes. Only if the zero slope hypothesis is accepted for

all states do we conclude that model 1 is appropriate. The results suggest that for a majority

of the states the zero slope hypothesis must be rejected. We therefore focus on model 2, but

include the results for model 1 for comparison.

The results are presented in Table 3. In agreement with the findings of Holly et al. (2009),

we see that the factor-adjusted test is unable to reject the unit root null at the 5% level for

17In addition to using the principal components approach of Bai and Ng (2004) to estimate the factors we tried
the cross-sectional average approach of Pesaran (2007) with very little differences in the results.
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prices and income in their levels, but not in their first differences. The fact that the unad-

justed test always rejects is not totally unexpected given the well-known size distortions of

so-called first-generation panel unit root tests in the presence of unattended cross-section de-

pendence. The results for the price-to-income ratio, which also agree with Holly et al. (2009),

show that the variable is trend-stationary, suggesting the presence of a stable long-run one-

to-one relationship between prices and income.

6 Conclusion

This paper has developed a new procedure for testing the null hypothesis of a unit root

in panels where the heterogeneity of the autoregressive coefficient can be assumed to be

random across the cross-section. This is quite important since in most, if not all, related

work, whenever heterogeneity is allowed, it is assumed to be non-random. This means that

each individual coefficient has to be estimated separately, leading to excess variation in the

test. The purpose of the current paper was to device a test that exploits the information that

under the null hypothesis of a unit root, when a random approach is used, the autoregressive

coefficients have unit mean and zero variance. This led us naturally to the consideration of

the Lagrange multiplier, or score, principle.

We have shown that with individual constants, the proposed Lagrange multiplier test

has power in a local neighborhood that shrinks towards the null hypothesis at rate 1√
NT

. The

limiting distribution of the new test statistic is chi-squared and therefore no special table is

required to compute p-values. We have also shown that in the presence of heterogeneous

trends that have to be estimated, although still consistent against non-local alternatives, the

local power of the test is equal to the size.

Finally, we have provided simulation evidence that supports our theoretical results. In

particular, we have shown that when no estimation of deterministic trends is necessary the

new test has good size accuracy and excellent power in comparison to other tests. When

such estimation is necessary, the test typically has no power beyond size.
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Appendix A: Derivation of the true Lagrange multiplier statistic

In this appendix we derive the true Lagrange multiplier statistic. For brevity, the results are

only provided for the case with a trend, which is the most general deterministic specification

considered.

Lemma A.1. Under H0 and Assumptions 1–3 in the model with a trend the maximum likelihood

estimators of σ2
i , µi, λi and Φi are given by

(a) σ̌2
i =

1
T − p

T

∑
t=p+1

ε2
it,

(b) µ̌i = yip+1 −Φ′
iyip − λi,

(c) λ̌i = ∆yi −Φ′
i∆yi,

(d) Φ̂i =

(
T

∑
t=p+2

(∆yit − ∆yi)(∆yit − ∆yi)
′
)−1 T

∑
t=p+2

(∆yit − ∆yi)(∆yit − ∆yi),

where ∆yi = 1
T−p−1 ∑T

t=p+2 ∆yit with an analogous definition of ∆yi.

Proof of Lemma A.1.

Consider (a). With the trend specification of dit,

φi(L)yip+1 = φi(1)(αi + βi) + ρiφi(L)zip + εip+1

for t = p + 1, and for t = p + 2, ..., T,

φi(L)yit = (1− ρi)φi(L)
(
αi + βi(t− p)

)
+ ρiφi(L)(yit−1 + βi) + εit.

Under H0 these two equations reduce to

φi(L)yip+1 = φi(L)(αi + βi + zip) + εip+1 = µi + λi + εip+1, (A1)

φi(L)yit = φi(L)(yit−1 + βi) + εit = φi(L)yit−1 + λi + εit. (A2)

Moreover, under H0 the log-likelihood function in (7) reduces to

L = − T − p
2

N

∑
i=1

ln(σ2
i )− 1

2

N

∑
i=1

1
σ2

i

T

∑
t=p+1

ε2
it. (A3)

Clearly,

∂L
∂σ2

i
= − T − p

2σ2
i

+
1

2σ4
i

T

∑
t=p+1

ε2
it,
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which can be put equal to zero, and then solved for σ2
i , proving (a).

Consider (b). By imposing H0 and then concentrating with respect to σ2
i ,

L = − T − p
2

N

∑
i=1

ln(σ̌2
i ) = − T − p

2

N

∑
i=1

ln

(
1

T − p

T

∑
t=p+1

ε2
it

)
, (A4)

where, making use of (A1) and (A2),

T

∑
t=p+1

ε2
it = ε2

ip+1 +
T

∑
t=p+2

ε2
it =

(
φi(L)yip+1 − µi − λi

)2 +
T

∑
t=p+2

(
φi(L)∆yit − λi

)2.

It follows that

∂L
∂µi

=
1
σ̌2

i

(
φi(L)yip+1 − µi − λi

)
,

implying µ̌i = φi(L)yip+1 − λi = yip+1 −Φ′
iyip − λi.

Moreover, since εip+1, and therefore also ε2
ip+1, is zero when evaluated at µi = µ̂i and

σ2
i = σ̌2

i ,

∂L
∂λi

=
1
σ̌2

i

T

∑
t=p+2

(
φi(L)∆yit − λi

)
,

giving λ̌i = 1
T−p−1 ∑T

t=p+2 φi(L)∆yit = ∆yi −Φ′
i∆yi, which establishes (c).

Similarly, by using λ̌i in place of λi,

T

∑
t=p+1

ε2
it =

T

∑
t=p+2

(
φi(L)∆yit − λ̂i

)2 =
T

∑
t=p+2

(
(∆yit − ∆yi)−Φ′

i(∆yit − ∆yi)
)2,

and so

∂L
∂Φi

=
1
σ̌2

i

T

∑
t=p+2

(
(∆yit − ∆yi)−Φ′

i(∆yit − ∆yi)
)
(∆yit − ∆yi)′,

from which we deduce that

Φ̂i =

(
T

∑
t=p+2

(∆yit − ∆yi)(∆yit − ∆yi)
′
)−1 T

∑
t=p+2

(∆yit − ∆yi)(∆yit − ∆yi).

This establishes (d) and hence the proof of the lemma is complete. ¥

Lemma A.2. Under the conditions of Lemma A.1,

(a)
∂L
∂µc

=
N

∑
i=1

T

∑
t=p+1

∆ěit ěit−1,
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(b)
∂2L

(∂µc)2 = −
N

∑
i=1

T

∑
t=p+1

ě2
it−1,

(c)
∂L

∂ω2
c

=
1
2

N

∑
i=1

T

∑
t=p+1

(
(∆ěit)2 − 1

)
ě2

it−1,

(d)
∂2L

(∂ω2
c )2 = − 1

2

N

∑
i=1

T

∑
t=p+1

(
2(∆ěit)2 − 1

)
ě4

it−1,

(e)
∂2L

∂µc∂ω2
c

= −
N

∑
i=1

T

∑
t=p+1

∆ěit ě3
it−1.

Proof of Lemma A.2.

We prove (a). The proofs of (b) to (e) follow by similar arguments.

From (7),

∂L
∂µc

=
N

∑
i=1

T

∑
t=p+1

(
(ci − µc)wit−1 + εit

)
wit−1

ω2
c w2

it−1 + σ2
i

.

By dividing both the numerator and the denominator by σ2
i , and then imposing H0, we

obtain

∂L
∂µc

=
N

∑
i=1

T

∑
t=p+1

(
(ci − µc)eit−1 + ε it

)
eit−1

ω2
c e2

it−1 + 1
=

N

∑
i=1

T

∑
t=p+1

ε iteit−1 =
N

∑
i=1

T

∑
t=p+1

∆eiteit−1,

where eit = wit/σi and ε it = εit/σi. The required result is obtained by concentrating the

above expression with respect to σ2
i . ¥

The Lagrange multiplier statistic is defined as

LM = g′(−H)−1g, (A5)

where by Lemma A.2,

g =

[
g1

g2

]
=

[
∂L
∂µc
∂L

∂ω2
c

]
, H =

[
H11 H12

H12 H22

]
=

[
∂2L

(∂µc)2
∂2L

∂µc∂ω2
c

∂2L
∂µc∂ω2

c

∂2L
(∂ω2

c )2

]
.

We now show that when properly normalized H is asymptotically diagonal, which yields

the desired result after substituting for g and H in (A5). Let us therefore consider

LM = − (G−1g)′
(
G−1HG−1)−1(G−1g),
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where

G =

[ √
NT 0
0

√
NT3/2

]

is the normalizing matrix. The off-diagonal element of G−1HG−1 is given by

1
NT5/2 H12 = − 1

NT5/2

N

∑
i=1

T

∑
t=p+1

∆ěit ě3
it−1 = − 1

NT5/2

N

∑
i=1

T

∑
t=p+1

w2
i ε its3

it−1

=
1

NT5/2 H◦
12 + R,

where H◦
12 = ∑N

i=1 ∑T
t=p+1 ε its3

it−1, R = 1
NT5/2 ∑N

i=1 ∑T
t=p+1(w2

i − 1)ε its3
it−1, wi = σ2

i /σ̌2
i and

sit = ∑t
k=p+1 ε ik.

Consider H◦
12. Since ε it is independent of sit−1 as well as across both i and t,

1
NT5/2 E(H◦

12) =
1

NT5/2

N

∑
i=1

T

∑
t=p+1

E(ε it)E(s3
it−1) = 0.

Also, by a functional central limit theorem, 1√
T

sit−1 = Op(1), which in turn suggests that a

central limit theorem should apply to 1√
NT2 ∑N

i=1 ∑T
t=p+1 ε its3

it−1. Hence,

1
NT5/2 H◦

12 = Op

(
1√
NT

)

and by the Cauchy–Schwarz inequality,

R =
1

NT5/2

N

∑
i=1

T

∑
t=p+1

(w2
i − 1)ε its3

it−1

≤
[

1
N

N

∑
i=1

(w2
i − 1)2

]1/2

 1

N

N

∑
i=1

(
1

T5/2

T

∑
t=p+1

ε its3
it−1

)2



1/2

= Op

(
1
T

)
,

where we have made used of the fact that wi − 1 = Op(1/
√

T ), as follows from a first-order

Taylor expansion of the inverse of σ̌2
i , which is such that

σ̌2
i =

1
T − p

T

∑
t=p+1

ε2
it = σ2

i + Op

(
1√
T

)
. (A6)

In fact, we even have E(σ̌2
i ) = 1

T−p ∑T
t=p+1 E(ε2

it) = σ2
i , meaning that σ̌2

i is not only consistent

but also unbiased.

It follows that

1
NT5/2 H12 = Op

(
1√
NT

)
+ Op

(
1
T

)
,

29



proving that the Hessian is indeed asymptotically diagonal. Lemma A.3 further shows that

minus the Hessian for σ2
i , µi, λi and Φi tends to a positive definite matrix, verifying that σ̌2

i ,

µ̌i, λ̌i and Φ̂i maximizes the log-likelihood function.

Lemma A.3. Under the conditions of Lemma A.1, as T → ∞

−(G∗)−1H∗(G∗)−1 → H◦ > 0,

where

H∗ =




∂2L
(∂σ2)2

∂2L
∂σ2

i ∂µi

∂2L
∂σ2

i ∂λi

∂2L
∂σ2

i (∂Φi)′
∂2L

∂µi∂σ2
∂2L

(∂µi)2
∂2L

∂µi∂λi

∂2L
∂µi(∂Φi)′

∂2L
∂λi∂σ2

∂2L
∂λi∂µi

∂2L
(∂λi)2

∂2L
∂λi(∂Φi)′

∂2L
∂Φi∂σ2

∂2L
∂Φi∂µi

∂2L
∂Φi∂λi

∂2L
∂Φi(∂Φi)′




, G∗ =




√
T 0 0 0

0 1 0 0
0 0

√
T 0

0 0 0
√

T


 ,

H◦ =




1
2 0 0 0
0 1 0 0
0 0 1 0
0 0 0 σ2

i cov(∆yit).


 .

Proof of Lemma A.3.

From the proof of Lemma A.1 we have that when evaluated at σ̌2
i , µ̌i, λ̌i and Φ̂i minus the

Hessian becomes

−H∗ =
1
σ̌4

i




1
2 (T − p) 0 0 0

0 1 1 σ̌2
i y′ip

0 1 T − p− 1 σ̌2
i (T − p− 1)∆y′i

0 σ̌2
i yip σ̌2

i (T − p− 1)∆yi σ̌2
i ∑T

t=p+2(∆yit − ∆yi)(∆yit − ∆yi)
′




=
1
σ̌4

i
G∗DG∗,

where

D =




1
2

(
1− p

T

)
0 0 0

0 1 1√
T

1√
T

σ̌2
i y′ip

0 1√
T

1− p+1
T σ̌2

i
(
1− p+1

T

)
∆y′i

0 1√
T

σ̌2
i yip σ̌2

i
(
1− p+1

T

)
∆yi σ̌2

i
1
T ∑T

t=p+2(∆yit − ∆yi)(∆yit − ∆yi)
′




.

Note that G∗ > 0. Thus, by using the results of Abadir and Magnus (2005), if we can show

that D > 0, then −H∗ > 0. Towards this end, note that D → H◦ as T → ∞, where cov(∆yit)

is a diagional matrix, which implies det(cov(∆yit)) > 0. Hence, because all the leading

principal minors of H◦ are positive definite, H◦ > 0. ¥
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Appendix B: Asymptotic properties of the true Lagrange multiplier
statistic

Proof of Theorem 1.

Write

ALM =

(
∑N

i=1 ∑T
t=p+1 ∆ěit ěit−1

)2

∑N
i=1 ∑T

t=p+1 ě2
it−1

+

(
∑N

i=1 ∑T
t=p+1((∆ěit)2 − 1)ě2

it−1

)2

2 ∑N
i=1 ∑T

t=p+1(2(∆ěit)2 − 1)ě4
it−1

=

(
∑N

i=1 ∑T
t=p+1 wiε itsit−1

)2

∑N
i=1 ∑T

t=p+1 wis2
it−1

+

(
∑N

i=1 ∑T
t=p+1 w2

i (ε2
it − w−1

i )s2
it−1

)2

2 ∑N
i=1 ∑T

t=p+1 w3
i (2ε2

it − w−1
i )s4

it−1

= I + I I,

where wi and sit are as in Appendix A.

Consider I, which we write as

I =

(
1√
NT ∑N

i=1 ∑T
t=p+1 wiε itsit−1

)2

1
NT2 ∑N

i=1 ∑T
t=p+1 wis2

it−1

=
I2
1

I2
,

where I1 = I◦1 + R1 with I◦1 = 1√
NT ∑N

i=1 ∑T
t=p+1 ε itsit−1 and

R1 =
1√
NT

N

∑
i=1

T

∑
t=p+1

(wi − 1)ε itsit−1

≤
[

1√
N

N

∑
i=1

(wi − 1)2

]1/2

 1√

N

N

∑
i=1

(
1
T

T

∑
t=p+1

ε itsit−1

)2



1/2

= Op

(√
N√
T

)
,

which goes to zero if N
T → 0 as N, T → ∞. It follows that I1 is asymptotically equivalent to

I◦1 , whose expectation is given by

E(I◦1 ) =
1√
NT

N

∑
i=1

T

∑
t=p+1

E(ε it)E(sit−1) = 0.

The computation of the variance is simplified by noting that as T → ∞

1
T

T

∑
t=p+1

ε itsit−1 →w

∫ 1

0
Wi(r)dWi(r),

where Wi(r) is a standard Brownian motion on r ∈ [0, 1]. Thus, by the continuous mapping
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theorem,

var(I◦1 ) → E




(
1√
N

N

∑
i=1

∫ 1

0
Wi(r)dWi(r)

)2



=
1
N

N

∑
i=1

N

∑
j=1

∫ 1

0

∫ 1

0
E(Wi(r)Wj(u))E(dWi(r)dWj(u))

=
1
N

N

∑
i=1

∫ 1

0
E(Wi(r)2)E(dWi(r)2) =

∫ 1

0
rdr =

1
2

,

where the second equality follows from the fact that E(dWi(r)dWj(u)) = 0 for all i 6= j and

r 6= u, while the third uses E(Wi(r)2) = r and dWi(r)2 = dr.

Define Xi =
√

2√
NT ∑T

t=p+1 ε itsit−1, which is independent across i with mean zero and vari-

ance var(Xi) = O(1/N). Therefore, according to Theorem 2 of Phillips and Moon (1999), if

we can show that for all δ > 0,

lim
N, T→∞

N

∑
i=1

E
(
X2

i 1(|Xi| > δ)
)

= 0,

where 1(x) is the indicator function, then ∑N
i=1 Xi →d X ∼ N(0, 1) as N, T → ∞.

To verify this condition we make use of the Cauchy–Schwarz inequality, which yields

E
(
X2

i 1(|Xi| > δ)
) ≤

√
E(X4

i )E(1(|Xi| > δ))

and by further application of the Markov inequality, E(1(|Xi| > δ)) ≤ 1
δ2 E(X2

i ). Thus,

N

∑
i=1

E
(
X2

i 1(|Xi| > δ)
) ≤ 1

δ

N

∑
i=1

√
E(X4

i )E(X2
i ) ≤

1
δ

(
N

∑
i=1

E(X4
i )

)1/2 (
N

∑
i=1

E(X2
i )

)1/2

= O
(

1√
N

)
.

Therefore, since the above condition holds, as N, T → ∞

I◦1 =
1√
2

N

∑
i=1

Xi →d
1√
2

X, (A7)

which, via the continuous mapping theorem, gives (I◦1 )2 →d
1
2 X2.

Consider I◦2 = 1
NT2 ∑N

i=1 ∑T
t=p+1 s2

it−1. As T → ∞

1
T2

T

∑
t=p+1

s2
it−1 →w

∫ 1

0
Wi(r)2dr,
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and therefore

E(I◦2 ) → 1
N

N

∑
i=1

∫ 1

0
E(Wi(r)2)dr =

∫ 1

0
rdr =

1
2

.

Thus, by Corollary 1 of Phillips and Moon (1999), if 1
T2 ∑T

t=p+1 s2
it−1 is uniformly integrable

in T, then I◦2 →p
1
2 as N, T → ∞. But 1

T2 ∑T
t=p+1 s2

it−1 →w
∫ 1

0 Wi(r)2dr, and therefore uniform

integrability is a direct consequence of

E

(
1

T2

T

∑
t=p+1

s2
it−1

)
= tr

(
1

T2

T

∑
t=p+1

E(s2
it−1)

)
→ E

(∫ 1

0
Wi(r)2dr

)
,

see Appendix C of Phillips and Moon (1999).

Hence, because I2 = I◦2 + R2, where

R2 =
1

NT2

N

∑
i=1

T

∑
t=p+1

(wi − 1)s2
it−1

≤
[

1
N

N

∑
i=1

(wi − 1)2

]1/2

 1

N

N

∑
i=1

(
1

T2

T

∑
t=p+1

s2
it−1

)2



1/2

= Op

(
1√
T

)
,

by Taylor expansion and then passing N, T → ∞ with N
T → 0, we obtain

I =
I2
1

I2
=

(I◦1 )2

I◦2
+ Op

(√
N√
T

)
→d X2. (A8)

Next, consider I I, which can be written as

I I =

(
1√

NT3/2 ∑N
i=1 ∑T

t=p+1 w2
i (ε2

it − w−1
i )s2

it−1

)2

2
NT3 ∑N

i=1 ∑T
t=p+1 w3

i (2ε2
it − w−1

i )s4
it−1

=
I I2

1
2 I I2

.

By the same steps used for evaluating I1,

I I1 =
1√

NT3/2

N

∑
i=1

T

∑
t=p+1

(ε2
it − w−1

i )s2
it−1 + Op

(√
N√
T

)
= I I◦1 + Op

(√
N√
T

)
,

implying that I I1 is asymptotically equivalent to I I◦1 as N, T → ∞ with N
T → ∞. In order

to compute the mean of this quantity note that by the unbiasedness of σ̌2
i , E(ε2

it − σ̌2
i ) = 0,

which in turn implies that

E(I I◦1 ) =
1√

NT3/2

N

∑
i=1

T

∑
t=p+1

E(ε2
it − w−1

i )E(s2
it−1) = 0.
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The computation of the variance is simplified by rewriting I I◦1 in the following way:

I I◦1 =
1√

NT3/2

N

∑
i=1

T

∑
t=p+1

(ε2
it − w−1

i )

(
s2

it−1 −
1
T

T

∑
k=p+1

s2
ik−1

)

=
1√

NT3/2

N

∑
i=1

T

∑
t=p+1

(ε2
it − 1)

(
s2

it−1 −
1
T

T

∑
k=p+1

s2
ik−1

)
+ Op

(√
N√
T

)
,

which uses deviations from means. Note that

var

(
1√
T

T

∑
k=p+1

(ε2
ik − 1)

)
=

1
T

T

∑
k=p+1

T

∑
t=p+1

E
(
(ε2

ik − 1)(ε2
it − 1)

)
=

1
T

T

∑
k=p+1

E
(
(ε2

ik − 1)2)

=
1
T

T

∑
k=p+1

(E(ε4
ik)− 1) = κi − 1,

suggesting that

1√
T

t

∑
k=p+1

(ε2
ik − 1) →w

√
κi − 1 Vi(r)

as T → ∞, where Vi(r) is a standard Brownian motion that is independent of Wi(r), see

Lemma A1 of McCabe and Tremayne (1995). It follows that

1
T3/2

T

∑
t=p+1

(ε2
it − 1)

(
s2

it−1 −
1
T

T

∑
k=p+1

s2
ik−1

)
→w

√
κi − 1

∫ 1

0

(
Wi(r)2 −

∫ 1

0
Wi(u)2du

)
dVi(r),

from which we deduce

var(I I◦1 ) → E




(
1√
N

N

∑
i=1

√
κi − 1

∫ 1

0

(
Wi(r)2 −

∫ 1

0
Wi(u)2du

)
dVi(r)

)2



=
1
N

N

∑
i=1

(κi − 1)
∫ 1

0
E

[(
Wi(r)2 −

∫ 1

0
Wi(u)2du

)2
]

dr,

where
∫ 1

0
E

[(
Wi(r)2 −

∫ 1

0
Wi(u)2du

)2
]

dr =
∫ 1

0
E(Wi(r)4)dr− E

[(∫ 1

0
Wi(r)2dr

)2
]

=
∫ 1

0
E(Wi(r)4)dr−

∫ 1

0

∫ 1

0
E(Wi(r)2Wi(u)2)drdu.

By using the moments of Brownian motion,
∫ 1

0
E(Wi(r)4)dr = 3

∫ 1

0
r2dr = 1,

∫ 1

0

∫ 1

0
E(Wi(r)2Wi(u)2)drdu =

∫ 1

0

∫ 1

0
(ru + 2 min{u2, r2})drdu = 2

∫ 1

0

∫ r

0
(ru + 2u2)drdu

=
7
3

∫ 1

0
r3dr =

7
12

,
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and therefore

var(I I◦1 ) → 5
12

lim
N→∞

1
N

N

∑
i=1

(κi − 1) =
5

12
(κ − 1)

as N, T → ∞. The results for the mean and variance of I I◦1 , together with Theorem 2 of

Phillips and Moon (1999), yield I I◦1 →d

√
5
12 (κ − 1) Y as N, T → ∞ with N

T → ∞, where

Y ∼ N(0, 1), implying (I I◦1 )2 →d
5
12(κ − 1) Y2.

As for I I2, note that

I I2 =
1

NT3

N

∑
i=1

T

∑
t=p+1

w3
i (2ε2

it − w−1
i )s4

it−1

=
1

NT3

N

∑
i=1

T

∑
t=p+1

w3
i (ε2

it − w−1
i )s4

it−1 +
1

NT3

N

∑
i=1

T

∑
t=p+1

w3
i ε2

its
4
it−1

=
1

NT3

N

∑
i=1

T

∑
t=p+1

w3
i ε2

its
4
it−1 + Op

(
1√
NT

)
=

1
NT3

N

∑
i=1

T

∑
t=p+1

ε2
its

4
it−1 + Op

(
1√
T

)

= I I◦2 + Op

(
1√
T

)
,

where the last equality follows from the fact that I I1 = Op(1). But

1
T3

T

∑
t=p+1

ε2
its

4
it−1 →w

∫ 1

0
Wi(r)4dWi(r)2 =

∫ 1

0
Wi(r)4dr

as T → ∞, suggesting that by Corollary 1 of Phillips and Moon (1999), as N, T → ∞

I I◦2 →p

∫ 1

0
E
(
Wi(r)4)dr = 3

∫ 1

0
r2dr = 1.

Consequently,

I I =
I I2

1
2I I2

=
(I I◦1 )2

2I I◦2
+ Op

(√
N√
T

)
→d

5
24

(κ − 1) Y2 (A9)

as N, T → ∞ with N
T → 0.

It remains to show that X2 and Y2 are independent. Define

XN =
1√
N ∑N

i=1
∫ 1

0 Wi(r)dWi(r)
√

1
N ∑N

i=1
∫ 1

0 Wi(r)2dr
, YN =

√
12
5

1√
N ∑N

i=1
∫ 1

0 Wi(r)2dVi(r)
√

1
N ∑N

i=1
∫ 1

0 Wi(r)4dr

such that XN →d X and YN →d Y as N → ∞. Hence,

ALM →d lim
N→∞

X2
N +

5
24

(κ − 1) lim
N→∞

Y2
N
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as N, T → ∞ with N
T → 0. By Corollary 5.3 or Park and Phillips (1988), X2

1 and Y2
1 are

independent such that their sum is chi-squared distributed with two degrees of freedom.

But Wi(r) and Vj(r) are independent for all i and j, and therefore X2
N and Y2

N are also inde-

pendent. The proof is completed by noting that the independence is preserved as N → ∞.

¥

Proof of Theorem 2.

By combining (2) and (3) we get

wit = ρt
i φi(L)zip +

t

∑
k=p+1

ρt−k
i εik,

which, via Taylor expansion and insertion of ρi = 1 + ci√
NT

, can be rewritten as

1√
T

wit =
1√
T

t

∑
k=p+1

εik +
1√
T

φi(L)zip +
ci√
NT

(
t
T

φi(L)zip +
t

∑
k=p+1

t− k
T

εik

)
+ op(1)

=
1√
T

t

∑
k=p+1

εik + Op

(
1√
T

)
+ Op

(
1√
N

)
+ op(1). (A10)

Hence, just as under H0, if we assume that N, T → ∞, then 1√
T

eit →w Wi(r). But we also

have ∆eit = (ρi − 1)eit−1 + ε it, from which it follows that

(∆eit)2 = ((ρi − 1)eit−1 + ε it)2 = (ρi − 1)2e2
it−1 + 2(ρi − 1)eit−1ε it + ε2

it

=
c2

i
NT2 e2

it−1 + 2
ci√
NT

eit−1ε it + ε2
it.

Hence,

1√
T

t

∑
k=p+1

((∆eik)2 − 1) =
1√
T

t

∑
k=p+1

(ε2
ik − 1) +

ci

NT5/2

t

∑
k=p+1

e2
ik−1 + 2

ci√
NT3/2

t

∑
k=p+1

eik−1ε ik

=
1√
T

t

∑
k=p+1

(ε2
ik − 1) + Op

(
1√
TN

)
→w

√
κi − 1 Vi(r) (A11)

as T → ∞, and by a similar calculation,

σ̌2
i =

1
T − p

T

∑
t=p+1

(∆wit)2 =
c2

i
NT3

T

∑
t=p+2

w2
it−1 + 2

ci√
NT2

T

∑
t=p+2

wit−1εit +
1
T

T

∑
t=p+2

ε2
it

=
1
T

T

∑
t=p+2

ε2
it + Op

(
1√
NT

)
= σ2

i + Op

(
1√
T

)
. (A12)

Equations (A10) to (A12) imply that the asymptotic results obtained for (I◦1 )2, I◦2 , (I I◦1 )2 and

I I◦2 under H0 apply also under H1.
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Let us therefore decompose ALM into I = I2
1

I2
and I I = I I2

1
I I2

, where I2
1 , I2, I I2

1 and I I2 are

the relevant numerator and denominator terms. We begin by considering I, where

I1 =
1√
NT

N

∑
i=1

T

∑
t=p+2

∆ěit ěit−1 =
1√
NT

N

∑
i=1

T

∑
t=p+2

wi∆eiteit−1

=
1√
NT

N

∑
i=1

T

∑
t=p+2

∆eiteit−1 + Op

(√
N√
T

)

=
1√
NT

N

∑
i=1

T

∑
t=p+2

(
(ρi − 1)e2

it−1 + eit−1ε it
)
+ Op

(√
N√
T

)
= R1 + I◦1 + Op

(√
N√
T

)
,

where I◦1 is as in the proof of Theorem 1, while

E(R1) =
1

NT2

N

∑
i=1

T

∑
t=p+2

E(cie2
it−1) = µc

1
NT2

N

∑
i=1

T

∑
t=p+2

E(e2
it−1) →

µc

2
,

which, via Corollary 1 of Phillips and Moon (1999), gives R1 →p
µc
2 as N, T → ∞. Also, from

the proof of Theorem 1, I◦1 →d
1√
2

X, giving

I2
1 = (R1 + I◦1 )2 + Op

(√
N√
T

)
= R2

1 + 2 R1 I◦1 + (I◦1 )2 + Op

(√
N√
T

)

→d
µ2

c
4

+
µc√

2
X +

1
2

X2.

But we also have that I2 →p
1
2 as N, T → ∞ with N

T → 0, and so

I →d
µ2

c
2

+ µc
√

2 X + X2. (A13)

Next, consider I I, where

I I1 =
1√

NT3/2

N

∑
i=1

T

∑
t=p+2

((∆ěit)2 − 1)ě2
it−1

=
1√

NT3/2

N

∑
i=1

T

∑
t=p+2

(
(ρi − 1)2e2

it−1 + 2(ρi − 1)eit−1ε it − (ε2
it − w−1

i ))w2
i e2

it−1

= R1 + R2 + I I◦1 .

From the proof of Theorem 1 we know that I I◦1 →d

√
5
12 (κ − 1) Y as N, T → ∞ with N

T → 0.

Also,

R1 =
1

N3/2T7/2

N

∑
i=1

T

∑
t=p+2

c2
i w2

i e4
it−1 = Op

(
1√
NT

)
,

R2 =
2

NT5/2

N

∑
i=1

T

∑
t=p+2

ciw2
i e3

it−1ε it = Op

(
1√
NT

)
.

37



Part I I2 can be written as

I I2 =
1

NT3

N

∑
i=1

T

∑
t=p+2

(∆ěit)2ě4
it−1 + Op

(
1√
NT

)

=
1

NT3

N

∑
i=1

T

∑
t=p+2

(
(ρi − 1)2e2

it−1 + 2(ρi − 1)eit−1ε it + ε2
it
)
w3

i e4
it−1 + Op

(
1√
NT

)

= R1 + R2 + I I◦2 + Op

(
1√
NT

)
,

where I I◦2 →p 1, while

R1 =
1

N2T5

N

∑
i=1

T

∑
t=p+2

c2
i w3

i e6
it−1 = Op

(
1

NT

)
,

R2 =
2

N3/2T7/2

N

∑
i=1

T

∑
t=p+2

ciw3
i e5

it−1ε it = Op

(
1√
TN

)
.

Thus, by Taylor expansion,

I I =
I I2

1
I I2

=
(I I◦1 )2

I I◦2
+ Op

(
1√
NT

)
→d

5
24

(κ − 1) Y2. (A14)

which, together with (A13), establishes the required result. ¥

Appendix C: Asymptotic properties of the feasible Lagrange multi-
plier statistic

Lemma C.1. Under the conditions of Corollary 1 and in the model with a trend,

(a) ŵit =
t

∑
k=p+1

(ε ik − εi) + Op(1),

(b) ∆ŵit = εit + Op

(
1√
T

)
,

where εi = 1
T−p−1 ∑T

t=p+2 εit.

Proof of Lemma C.1.

We begin with (a). From (8) and Lemma A.1,

ŵit = yit − Φ̂′
iyit − µ̂i − λ̂i(t− p)

=
t

∑
k=p+1

εik − (Φ̂i −Φi)′yit − (µ̂i − µi)− (λ̂i − βiφi(L))(t− p)

=
t

∑
k=p+1

εik − (Φ̂i −Φi)′yit − (µ̂i − µi)− (λ̂i − λi)(t− p)− βiφ
∗
i (1),
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where the last equality uses the Beveridge–Nelson decomposition of φi(L) as φi(L) = φi(1)+

φ∗i (L)(1− L).

Consider λ̂i. From (A2) we have that φi(L)∆yit = λi + ε it, or

∆yit = Φ′
i∆yit + λi + εit. (A15)

Hence, (∆yit−∆yi) = Φ′
i(∆yit−∆yi) + εit− εi, which is a stationary regression with asymp-

totically exogenous regressors. It follows that as T → ∞

Φ̂i = Φi +

(
T

∑
t=p+2

(∆yit − ∆yi)(∆yit − ∆yi)
′
)−1 T

∑
t=p+2

(∆yit − ∆yi)(εit − εi)

= Φi + Op

(
1√
T

)
.

Hence, since εi = Op(1/
√

T),

λ̂i = ∆yi − Φ̂′
i∆yi = λi − (Φ̂i −Φi)′∆yi + εi = λi + Op

(
1√
T

)
.

A similar calculation reveals that

µ̂i = yip+1 − Φ̂′
iyip − λ̂i = µi − (Φ̂i −Φi)′yip − (λ̂i − λi) = µi + Op

(
1√
T

)
.

By putting everything together,

ŵit =
t

∑
k=p+1

(εik − εi) + Op(1),

where we have made use of the fact that ∑t
k=p+1 εik − (λ̂i − λi)(t− p) = ∑t

k=p+1(εik − εi) +

op(1). This establishes (a), and by similar arguments,

∆ŵit = ∆yit − Φ̂′
i∆yit − λ̂i = εit − (Φ̂i −Φi)′∆yit − (λ̂i − λi) = εit + Op

(
1√
T

)
,

which establishes (b). ¥

Note that if there is no trend in the model, then (λ̂i − λi)(t− p) drops out in the equation

for ŵit, and therefore so does εi. Hence, ∑t
k=p+1(εik − εi) reduces to ∑t

k=p+1 εik.

Note also that since the feasible maximum likelihood estimators converge to their un-

feasible counterparts, and since εip+1 is zero when evaluated at the unfeasible estimators,

observation t = p + 1 can be disregarded when forming the feasible Lagrange multiplier

test statistic.
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Proof of Corollary 1.

This proof follows by a simple adaptation of the proof of Theorem 2. We begin by writing

the test statistic as

FLM1 =

(
1√
NT ∑N

i=1 ∑T
t=p+2 ∆êit êit−1

)2

1
NT2 ∑N

i=1 ∑T
t=p+2 ê2

it−1

+
24

(
1

NT3/2 ∑N
i=1 ∑T

t=p+2
(
(∆êit)2 − 1

)
ê2

it−1

)2

5(κ̂ − 1) 1
NT3 ∑N

i=1 ∑T
t=p+2(∆êit)2ê4

it−1

=
I2
1

I2
+

24
5(κ̂ − 1)

I I2
1

I I2
= I +

24
5(κ̂ − 1)

I I

with an obvious definition of I1, I2, I I1 and I I2.

Consider I1. By Lemma C.1,

σ̂2
i =

1
T

T

∑
t=p+2

(∆ŵit)2 = σ̌2
i + Op

(
1√
T

)
= σ2

i + Op

(
1√
T

)
, (A16)

which we can use to obtain

I1 =
1√
NT

N

∑
i=1

T

∑
t=p+2

∆êit êit−1 =
1√
NT

N

∑
i=1

T

∑
t=p+2

ε itsit−1 + Op

(√
N√
T

)
= I◦1 + Op

(√
N√
T

)

where the second equality uses the same trick as in the proof of Theorem 2, and where I◦1 is

the same as in that proof.

Similarly,

I2 =
1

NT2

N

∑
i=1

T

∑
t=p+2

ê2
it−1 =

1
NT2

N

∑
i=1

T

∑
t=p+2

s2
it−1 + Op

(
1√
T

)
= I◦2 + Op

(
1√
T

)
,

where I◦2 is the same as before. It follows that

I =
(I◦1 )2

I◦2
+ Op

(√
N√
T

)
→d X2

as N, T → ∞ with N
T → 0. But the same steps can be applied to show that I I →d

5
12 (κ −

1) X2. The proof is completed by noting that κ̂ = κ + op(1). ¥

Proof of Corollary 2.

We omit this proof in the paper. The required result is obtained by adapting the proof of

Theorem 2 in the same way as the proof of Theorem 1 was adapted to establish Corollary 1.

¥

Proof of Theorem 3.

40



Consider first the case when H0 holds. Write

FLM2 =

(
1√
NT ∑N

i=1 ∑T
t=p+2 ∆êit êit−1 +

√
N

2

)2

1
NT2 ∑N

i=1 ∑T
t=p+2 ê2

it−1

+

(
1√

NT3/2 ∑N
i=1 ∑T

t=p+1
(
(∆êit)2 − 1

)
ê2

it−1

)2

(κ̂ − 1) 1
NT3 ∑N

i=1 ∑T
t=p+1 ∆ê2

it ê
4
it−1

=
I2
1

I2
+

1
κ̂ − 1

I I2
1

I I2
= I +

1
κ̂ − 1

I I.

Let git = ∑t
k=p+1(ε ik − εi). By using Lemma C.1 and the technique of Theorem 2,

I =

(
1√
NT ∑N

i=1 ∑T
t=p+2 ε itgit−1 +

√
N

2

)2

1
NT2 ∑N

i=1 ∑T
t=p+2 g2

it−1

+ Op

(√
N√
T

)
=

(I◦1 )2

I◦2
+ Op

(√
N√
T

)
,

where g2
it = (git−1 + ∆git)2 = g2

it−1 + (∆git)2 + 2git−1∆git with giT = gip+1 = 0, giving

T

∑
t=p+2

git−1∆git =
1
2
(g2

iT − g2
ip+1)−

1
2

T

∑
t=p+2

(∆git)2 = − 1
2

T

∑
t=p+2

(∆git)2.

But ∆git = ε it + Op(1/
√

T ) and hence

I◦1 =
1√
NT

N

∑
i=1

T

∑
t=p+2

ε itgit−1 +
√

N
2

=
1√
NT

N

∑
i=1

T

∑
t=p+2

∆gitgit−1 +
√

N
2

+ Op

(√
N√
T

)

= −1
2

1√
NT

N

∑
i=1

T

∑
t=p+2

((∆git)2 − 1) + Op

(√
N√
T

)

= −1
2

1√
NT

N

∑
i=1

T

∑
t=p+2

(ε2
it − 1) + Op

(√
N√
T

)
= Op

(√
N√
T

)
,

which uses the fact that 1
T ∑T

t=p+2 ε2
it →p 1 as T → ∞.

Moreover, note that 1√
T

git−1 →w Wi(r)− rWi(1) with t
T → r as T → ∞, and so

1
T2

T

∑
t=p+2

E(g2
it−1) →

∫ 1

0
E
(
Wi(r)2 − 2rWi(r)Wi(1) + r2Wi(1)2)dr =

1
6

,

where we have used that E(Wi(r)2) = E(Wi(r)Wi(1)) = r, and E(Wi(1)2) = 1. Hence, by

Corollary 1 of Phillips and Moon (1999), as N, T → ∞

I◦2 =
1

NT2

N

∑
i=1

T

∑
t=p+2

g2
it−1 →p

1
6

,

from which we deduce that

I = op(1) (A17)
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as N, T → ∞ with N
T → 0.

Next, consider I I, which we write as

I I =

(
1√

NT3/2 ∑N
i=1 ∑T

t=p+1
(
ε2

it − w−1
i

)
g2

it−1

)2

1
NT3 ∑N

i=1 ∑T
t=p+1 ε2

itg
4
it−1

+ Op

(√
N√
T

)
=

(I I◦1 )2

I I◦2
+ Op

(√
N√
T

)
.

Since σ̌2
i is unbiased,

I I◦1 =
1√

NT3/2

N

∑
i=1

T

∑
t=p+1

E(ε2
it − w−1

i )E(g2
it−1) = 0.

The variance of I I◦1 can be computed in the same way as in the proof of Theorem 1. We

begin by rewriting I I◦1 in terms of mean deviations, which gives

I I◦1 =
1√

NT3/2

N

∑
i=1

T

∑
t=p+1

(ε2
it − 1)

(
g2

it−1 −
1
T

T

∑
k=p+1

g2
ik−1

)

→w
1√
N

N

∑
i=1

√
κi − 1

∫ 1

0

(
(Wi(r)− rWi(1))2 −

∫ 1

0
(Wi(u)− uWi(1))2du

)
dVi(r)

as T → ∞, and therefore

var(I I◦1 ) → 1
N

N

∑
i=1

(κi − 1)
∫ 1

0
E

[(
(Wi(r)− rWi(1))2 −

∫ 1

0
(Wi(u)− uWi(1))2du

)2
]

dr,

where
∫ 1

0

(
(Wi(r)− rWi(1))2 −

∫ 1

0
(Wi(u)− uWi(1))2du

)2

dr =
∫ 1

0
(Wi(r)− rWi(1))4dr

−
(∫ 1

0
(Wi(r)− rWi(1))2dr

)2

.

The expected value of the first term on the right-hand side is given by
∫ 1

0
E
(
(Wi(r)− rWi(1))4)dr =

∫ 1

0
E
(
Wi(r)4 − 4rWi(1)3Wi(r) + 6r2Wi(1)2Wi(r)2

− 4r3Wi(1)Wi(r)3 + r4Wi(r)4)dr =
1
10

,

where we have used that E(Wi(1)3Wi(r)) = 3r2, E(Wi(1)Wi(r)3) = 3r, E(Wi(1)2Wi(r)2) =

r + 2r2 and E(Wi(1)4) = 3. The second term can be expanded as
(∫ 1

0
(Wi(r)− rWi(1))2dr

)2

=
∫ 1

0

∫ 1

0
Wi(r)2Wi(u)2drdu

− 4Wi(1)
∫ 1

0

∫ 1

0
rWi(r)Wi(u)2drdu +

2
3

Wi(1)2
∫ 1

0
Wi(r)2dr

+ 4Wi(1)2
∫ 1

0

∫ 1

0
ruWi(r)Wi(u)drdu− 4

3
Wi(1)3

∫ 1

0
rWi(r)dr

+
1
9

Wi(1)4,
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where we know from before that the first term on the right-hand side has expectation 7
12 .

Moreover, since

E(Wi(1)Wi(r)Wi(u)2) = E(Wi(r)Wi(u)3) + E((Wi(u)−Wi(r))Wi(r)Wi(u)2)

+ E((Wi(1)−Wi(u))Wi(r)Wi(u)2)

= E(Wi(u)4) + E((Wi(r)−Wi(u))2Wi(u)2) = ru + 2u2

if u < r and

E(Wi(1)Wi(r)Wi(u)2) = E(Wi(r)4) + 3E((Wi(u)−Wi(r))2Wi(r)2) = 3ru

if r < u, we obtain
∫ 1

0
rE(Wi(1)Wi(r)Wi(u)2)dr =

∫ 1

0
r
(∫ r

0
(ru + 2u2)du + 3

∫ 1

r
rudu

)
dr =

13
30

,

and by a similar calculation,
∫ 1

0

∫ 1
0 ruE(Wi(1)2Wi(r)Wi(u))drdu = 16

45 . But we also have
∫ 1

0
E(Wi(1)2Wi(r)2)dr =

∫ 1

0
E
(
(Wi(1)−Wi(r))2Wi(r)2 + Wi(r)4)dr

=
∫ 1

0
(r + 2r2)dr =

7
6

,
∫ 1

0
rE(Wi(1)3Wi(r))dr =

∫ 1

0
rE(Wi(1)2Wi(r)2)dr =

∫ 1

0
r(r + 2r2)dr = 1,

from which we obtain
∫ 1

0
E

[(
(Wi(r)− rWi(1))2 −

∫ 1

0
(Wi(u)− uWi(1))2du

)2
]

dr =
1

10
− 1

20
=

1
20

.

It follows that as N, T → ∞

var(I I◦1 ) → 1
20

(κ − 1),

which, together with Theorem 2 in Phillips and Moon (1999), yields

I I1 →d
1

20
(κ − 1) Y2

as N, T → ∞ with N
T → ∞.

Also,

E

(
1

T3

T

∑
t=p+2

ε2
itg

4
it−1

)
=

1
T3

T

∑
t=p+2

E(ε2
it)E(g4

it−1) =
1

T3

T

∑
t=p+2

E(g4
it−1)

→
∫ 1

0
E
(
(Wi(r)− rWi(1))4)dr =

1
10

.
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Thus, since the conditions of Corollary 1 in Phillips and Moon (1999) are satisfied, I I◦2 →p
1
10

as N, T → ∞ with N
T → 0, and so

I I →d
1
2
(κ − 1) Y2, (A18)

which establishes the required result under H0.

In order to isolate the effect of the trend under H1 note that from Lemma C.1,

∆ŵit = ∆yit − Φ̂′
i∆yit − λ̂i = ∆yit −Φ′

i∆yit − λ̂i + Op

(
1√
T

)

= ∆yit − ∆yi −Φ′
i(∆yit − ∆yi) + Op

(
1√
T

)
= φi(L)(∆yit − ∆yi) + Op

(
1√
T

)
.

Let Git = ∑t
k=p+1 sik − (t− p− 1)si, where si = 1

T−p−1 ∑T−1
k=p+1 sik. By using (1) and then (2),

φi(L)(∆yit − ∆yi) = φi(L)

(
∆zit − 1

T − p− 1

T

∑
k=p+2

∆zik

)

= (ρi − 1)φi(L)

(
zit−1 − 1

T − p− 1

T−1

∑
k=p+1

zik

)
+ (εit − εi),

= σi((ρi − 1)(sit−1 − si) + ∆git) + Op

(
1√
NT

)

= σi((ρi − 1)∆Git−1 + ∆git) + Op

(
1√
NT

)
,

where the third equality uses that φi(L)zit = ∑t
k=p+1 εik + Op(1). It follows that

∆ŵit = σi((ρi − 1)∆Git−1 + ∆git) + Op

(
1√
T

)
. (A19)

Similarly,

ŵit−1 = (ρi − 1)φi(L)

(
t−2

∑
k=p+1

zik − t− p− 1
T − p− 1

T−1

∑
k=p+1

zik

)
+

t−1

∑
k=p+1

(εik − εi) + Op(1)

= σi((ρi − 1)Git−2 + git−1) + Op(1). (A20)

These results, together with the consistency of σ̂2
i , imply

I1 =
1√
NT

N

∑
i=1

T

∑
t=p+2

∆êit êit−1 +
√

N
2

=
1√
NT

N

∑
i=1

T

∑
t=p+2

((ρi − 1)∆Git−1 + ∆git)((ρi − 1)Git−2 + git−1) +
√

N
2

+ Op

(√
N√
T

)

=
1√
NT

N

∑
i=1

T

∑
t=p+2

(
(ρi − 1)2∆Git−1Git−2 + (ρi − 1)(∆gitGit−2 + ∆Git−1git−1)

+ ∆gitgit−1
)
+
√

N
2

+ Op

(√
N√
T

)
= R1 + R2 + I◦1 + Op

(√
N√
T

)
,
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where I◦1 = op(1) as under H0 and R1 = Op(1/
√

N ).

Consider R2. Note first that by Corollary 1 of Phillips and Moon (1999), as N, T → ∞

R2 =
1√
NT

N

∑
i=1

T

∑
t=p+2

(ρi − 1)(∆gitGit−2 + ∆Git−1git−1)

=
1

NT2

N

∑
i=1

T

∑
t=p+2

ci(∆gitGit−2 + ∆Git−1git−1)

→p µc lim
T→∞

1
T2

T

∑
t=p+2

E(∆gitGit−2 + ∆Git−1git−1). (A21)

Consider E(∆gitGit−2), which can be expanded as

E(∆gitGit−2) = E

[
(ε it − εi)

(
t−2

∑
k=p+1

sik − (t− p− 1)si

)]
= E

(
ε it

t−2

∑
k=p+1

sik

)

− (t− p− 1)E(ε itsi)− E

(
εi

t−2

∑
k=p+1

sik

)
+ (t− p− 1)E(εisi),

where the first term on the right-hand side is zero, while as for the second,

E(ε itsi) =
1

T − p− 1
E

(
ε it

T−1

∑
k=t

sik

)
=

T − t
T − p− 1

.

Similarly,

E

(
εi

t−2

∑
k=p+1

sik

)
=

1
T − p− 1

E

(
T−1

∑
t=p+2

ε it

t−2

∑
k=p+2

sik

)
=

(t− p− 2)(t− p− 3)
2(T − p− 1)

,

E(εisi) =
1

(T − p− 1)2 E

(
T−1

∑
t=p+2

ε it

T−1

∑
k=p+2

sik

)
=

T− p− 2
2(T − p− 1)

,

which yields

E(∆gitGit−2) = − 1
2(T− p− 1)

(
(t− p− 2)(t− p− 3) + 2(T− t)(t− p− 1)

− (T − p− 2)(t− p− 1)
)

. (A22)

Next, consider E(∆Git−1git−1). It holds that

E(∆Git−1git−1) = E
(
(sit−1 − si)(sit−1 − (t− p− 1)εi)

)

= E(s2
it−1)− (t− p− 1)E(sit−1εi)− E(sit−1si) + (t− p− 1)E(εisi),

where E(s2
it−1) = t− p− 1, implying

E(sit−1εi) =
1

T − p− 1
E

(
sit−1

T−1

∑
k=p+1

ε ik

)
=

1
T − p− 1

E(s2
it−1) =

t− p− 1
T − p− 1

.
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Also,

E(sit−1si) =
1

T − p− 1
E

[
sit−1

(
t−1

∑
k=p+1

sik +
T−1

∑
k=t

sik

)]

=
t− p− 1

2(T − p− 1)
((t− p− 2) + 2(T − t)),

E(εisi) =
1

(T − p− 1)2 E

(
T−1

∑
k=p+1

ε ik

T−1

∑
k=p+1

sik

)
=

T − p− 2
2(T− p− 1)

,

from which we deduce that

E(∆Gitgit−1) =
(t− p− 1)(T− t)

2(T − p− 1)
. (A23)

Equations (A21) to (A23) imply

R2 →p µc lim
T→∞

1
T2

T

∑
t=p+2

t− p− 2
T− p− 1

= O
(

1
T

)
.

Hence, I1 = op(1) as N, T → ∞ with N
T → 0, and we already know from before that I2 →p

1
6 .

Therefore, I = op(1). But it also holds that I I ⇒ 1
2(κ − 1) Y2, and so the proof is complete.¥
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Table 1: Size and size-adjusted power at the 5% level for model 1.

φ = 0 φ = 0.5 φ = −0.5
T N FLM1 t∗δ Ztbar FLM1 t∗δ Ztbar FLM1 t∗δ Ztbar

Case 1: ρi = 1 for all i
50 10 8.1 14.7 7.5 7.5 21.9 8.0 8.3 7.3 7.3

20 10.0 21.2 8.8 8.9 33.3 8.9 10.3 9.0 8.6
100 10 6.5 10.3 6.2 6.0 15.2 6.4 6.7 6.1 6.0

20 6.9 13.3 6.0 6.8 21.7 6.4 7.4 6.3 5.9
200 10 5.9 5.3 4.8 6.0 8.3 5.1 6.1 3.5 4.5

20 6.2 6.7 5.4 5.9 11.5 5.5 6.4 3.6 5.4

Case 2: ρi = 1 + ci√
NT

with ci = −10 for all i

50 10 38.2 9.2 33.7 28.1 8.4 30.3 42.7 6.9 35.2
20 43.9 9.6 35.3 32.5 7.9 33.6 48.2 7.2 36.1

100 10 50.3 6.1 37.0 43.5 5.4 34.8 52.7 4.7 38.2
20 57.7 5.6 39.4 50.1 5.5 36.3 59.7 4.3 40.5

200 10 56.3 4.0 41.8 52.6 4.1 38.6 57.9 3.2 41.8
20 67.7 2.9 38.8 66.0 3.4 38.5 68.0 2.2 39.8

Case 3: ρi = 1 + ci√
NT

with ci ∼ U(−20, 0)

50 10 30.8 10.2 34.1 23.5 8.8 29.3 33.5 8.2 35.7
20 34.9 10.1 35.3 27.1 8.7 32.5 38.2 8.1 36.5

100 10 40.4 7.1 37.2 35.0 7.1 34.4 41.2 5.8 37.9
20 46.9 6.5 40.1 41.7 6.1 36.5 48.9 5.4 41.5

200 10 46.2 5.2 42.1 43.4 5.1 39.2 47.1 4.3 42.0
20 56.2 3.9 39.9 54.7 4.1 38.9 55.7 3.0 41.2

Case 4: ρi = 1 + ci√
NT

with ci ∼ U(−40, 20)

50 10 36.6 0.8 2.9 49.3 0.5 2.4 21.7 0.9 3.0
20 17.5 0.0 0.3 32.9 0.0 0.3 7.4 0.0 0.2

100 10 43.0 0.7 3.2 35.5 0.6 3.1 43.4 0.6 3.3
20 36.5 0.1 0.5 24.5 0.1 0.6 57.4 0.1 0.5

200 10 61.9 0.3 4.2 39.8 0.3 4.0 64.8 0.3 4.4
20 72.3 0.0 0.9 37.3 0.0 1.0 77.5 0.0 1.0

Continued overleaf
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Table 1: Continued.

φ = 0 φ = 0.5 φ = −0.5
T N FLM1 t∗δ Ztbar FLM1 t∗δ Ztbar FLM1 t∗δ Ztbar

Case 5: ρi = 1 + ci with ci = −0.05 for all i
50 10 26.3 7.2 23.5 19.8 7.2 22.3 28.9 5.5 24.6

20 52.7 11.0 41.6 39.1 8.7 39.2 57.6 8.2 43.0
100 10 83.9 13.4 72.7 75.7 11.4 67.7 86.6 9.9 75.1

20 99.5 26.1 96.7 98.0 21.6 93.5 99.6 19.6 97.5
200 10 99.9 50.2 100.0 99.8 43.3 99.9 99.9 41.2 100.0

20 100.0 84.7 100.0 100.0 78.4 100.0 100.0 76.0 100.0

Case 6: ρi = 1 + ci with ci ∼ U(−0.1, 0)
50 10 22.7 7.9 23.7 17.1 7.1 21.6 24.3 6.2 24.6

20 41.2 11.6 41.5 31.5 9.5 37.5 44.8 9.2 43.0
100 10 62.8 14.8 68.4 56.6 12.4 62.2 64.4 11.7 70.6

20 88.0 25.8 93.4 84.2 19.4 89.3 88.9 21.0 94.6
200 10 90.9 40.8 98.9 89.2 34.5 98.2 91.4 35.9 99.0

20 98.7 64.6 100.0 98.6 55.8 100.0 98.7 57.7 100.0

Case 7: ρi = 1 + ci with ci ∼ U(−0.15, 0.05)
50 10 19.7 2.0 6.2 19.4 1.5 5.3 25.8 1.7 6.8

20 17.2 0.4 2.2 24.5 0.3 2.1 23.3 0.4 2.1
100 10 48.0 3.2 11.6 41.5 2.2 11.0 59.4 2.8 11.9

20 43.4 0.5 4.8 48.3 0.4 6.0 58.2 0.5 3.7
200 10 77.2 5.3 11.8 62.0 4.7 15.4 76.8 5.2 11.5

20 71.6 0.7 5.9 63.2 0.6 9.6 78.0 0.7 2.7

Notes: The parameter φ refers to the autoregressive coefficient, while t∗δ and Ztbar refer to the
tests of Levin et al. (2002) and Im et al. (2003), respectively.
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Table 2: Size and size-adjusted power at the 5% level for model 2.

φ = 0 φ = 0.5 φ = −0.5
T N FLM1 t∗δ Ztbar FLM1 t∗δ Ztbar FLM1 t∗δ Ztbar

Case 1: ρi = 1 for all i
50 10 6.9 20.0 11.2 7.8 31.4 11.7 5.5 5.4 10.6

20 8.2 31.7 13.9 9.8 50.4 15.0 6.5 6.2 13.4
100 10 6.0 14.9 8.2 6.5 23.4 8.5 5.2 5.3 7.8

20 7.5 20.4 9.6 8.1 35.7 10.2 7.3 5.6 8.9
200 10 6.0 2.7 6.4 6.0 5.7 6.6 5.6 0.9 6.3

20 6.5 2.6 6.8 6.5 6.2 7.4 6.3 0.4 6.6

Case 2: ρi = 1 + ci√
NT

with ci = −10 for all i

50 10 6.2 9.3 11.8 6.2 7.8 11.1 6.5 8.1 12.7
20 6.9 8.2 10.9 6.3 6.9 9.7 7.0 7.5 11.5

100 10 6.4 8.1 13.8 6.1 7.4 12.3 6.7 7.4 14.6
20 6.4 6.0 11.1 6.0 5.7 9.8 6.3 6.0 11.4

200 10 5.6 5.9 13.7 5.7 5.8 12.8 5.5 5.6 14.0
20 5.9 5.3 11.1 6.2 5.3 10.3 6.0 5.1 11.6

Case 3: ρi = 1 + ci√
NT

with ci ∼ U(−20, 0)

50 10 6.3 10.1 13.2 5.8 8.3 11.7 6.2 8.6 14.2
20 7.4 8.7 12.2 6.7 6.7 10.3 7.3 8.1 13.3

100 10 6.4 9.6 14.9 5.8 8.3 13.3 6.4 8.5 15.7
20 5.9 7.0 12.5 5.8 6.5 10.8 5.9 7.1 12.9

200 10 5.3 6.8 15.2 5.4 6.3 14.1 5.4 6.4 15.6
20 5.8 6.0 12.4 5.9 5.8 11.4 5.6 5.7 12.9

Case 4: ρi = 1 + ci√
NT

with ci ∼ U(−40, 20)

50 10 16.4 1.2 1.7 22.3 0.7 1.3 8.8 1.0 2.1
20 2.2 0.0 0.1 5.1 0.0 0.0 1.2 0.0 0.1

100 10 6.1 1.2 2.4 5.0 0.9 1.9 5.5 1.2 2.5
20 4.0 0.1 0.3 3.6 0.1 0.3 7.5 0.1 0.3

200 10 6.6 1.0 2.9 4.8 0.8 2.6 8.6 0.9 3.0
20 7.6 0.2 0.7 3.4 0.2 0.6 14.0 0.2 0.8

Continued overleaf
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Table 2: Continued.

φ = 0 φ = 0.5 φ = −0.5
T N FLM1 t∗δ Ztbar FLM1 t∗δ Ztbar FLM1 t∗δ Ztbar

Case 5: ρi = 1 + ci with ci = −0.05 for all i
50 10 5.7 7.6 9.1 6.2 6.7 8.8 5.8 6.7 9.2

20 7.1 9.1 12.5 6.8 7.3 10.8 7.4 8.1 13.9
100 10 8.4 15.3 29.5 7.3 12.2 24.5 8.2 13.3 31.5

20 9.6 20.6 47.1 8.6 15.9 39.1 9.5 19.5 49.7
200 10 11.6 45.9 93.1 9.9 36.5 88.1 10.7 41.6 94.3

20 17.1 74.5 99.7 16.3 64.2 99.2 16.8 68.5 99.8

Case 6: ρi = 1 + ci with ci ∼ U(−0.1, 0)
50 10 5.9 7.8 9.8 5.7 7.1 9.1 5.8 7.0 10.2

20 7.7 9.8 14.5 6.9 7.3 11.7 7.5 9.1 15.5
100 10 7.6 17.7 33.1 6.8 14.6 27.0 7.5 15.9 35.7

20 8.7 23.8 51.5 8.1 17.9 41.6 8.4 22.8 54.8
200 10 8.8 44.6 87.4 8.3 35.4 82.4 8.8 42.5 89.2

20 12.0 67.6 98.5 12.2 57.4 97.2 11.9 63.9 98.9

Case 7: ρi = 1 + ci with ci ∼ U(−0.15, 0.05)
50 10 4.8 3.2 3.7 5.0 2.5 3.2 6.1 2.8 4.1

20 4.0 0.9 1.5 5.2 0.5 1.0 4.8 0.9 1.8
100 10 7.0 5.1 8.7 6.0 3.7 7.4 8.3 4.6 9.7

20 5.8 1.2 3.5 5.1 0.8 2.7 7.2 1.2 3.6
200 10 10.3 7.0 12.1 8.5 5.9 11.6 9.0 7.0 12.2

20 10.0 1.2 3.3 9.0 1.0 5.0 9.3 1.2 2.4

Notes: See Table 1.

50



Ta
bl

e
3:

Em
pi

ri
ca

lr
es

ul
ts

fr
om

th
e

fe
as

ib
le

La
gr

an
ge

m
ul

ti
pl

ie
r

te
st

.

Pr
ic

es
In

co
m

e
Pr

ic
e-

to
-i

nc
om

e
Fa

ct
or

tr
ea

tm
en

t
M

od
el

Te
st

p-
va

lu
e

Te
st

p-
va

lu
e

Te
st

p-
va

lu
e

Le
ve

ls
N

o
fa

ct
or

s
al

lo
w

ed
1

42
.5

8
0.

00
15

4.
85

0.
00

17
0.

92
0.

00
2

13
.6

6
0.

00
36

.6
2

0.
00

17
.3

6
0.

00
Pr

in
ci

pa
lc

om
po

ne
nt

s
1

10
.0

5
0.

01
3.

48
0.

18
4.

39
0.

11
2

3.
20

0.
07

0.
27

0.
61

5.
20

0.
02

Fi
rs

t-
di

ff
er

en
ce

s
N

o
fa

ct
or

s
al

lo
w

ed
1

91
.8

9
0.

00
24

8.
79

0.
00

10
0.

61
0.

00
2

20
.4

0
0.

00
71

.3
3

0.
00

25
.3

1
0.

00
Pr

in
ci

pa
lc

om
po

ne
nt

s
1

36
.6

2
0.

00
29

.9
8

0.
00

21
.3

7
0.

00
2

7.
50

0.
01

8.
78

0.
00

1.
63

0.
20

N
ot

es
:T

he
pr

in
ci

pa
lc

om
po

ne
nt

s
m

et
ho

d
w

as
im

pl
em

en
te

d
w

it
h

th
e

nu
m

be
r

of
fa

ct
or

s
es

ti
m

at
ed

us
in

g
th

e
IC

2
cr

it
er

io
n

of
Ba

ia
nd

N
g

(2
00

2)
.T

he
or

de
r

of
th

e
la

g
au

gm
en

ta
ti

on
in

th
e

te
st

s
w

as
es

ti
m

at
ed

by
us

in
g

th
e

Sc
hw

ar
z

Ba
ye

si
an

in
fo

rm
at

io
n

cr
it

er
io

n.

51


