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Abstract.  
 

In this paper we assume that choice of commodities at the individual (household) level 

is made inside the budget set and that the choice can be described by a probability 

density function. We prove that law of demand
( )

0
x

E x

p





is valid for one(x) or two 

choice variables (x, y)*. 

The law of demand at the market level is valid by summation. 

We use general probabilistic density functions p(x), p(x, y) defined over the bounded 

budget set to calculate E(x) and prove law of demand. The expected demand functions 

are homogeneous of degree zero in prices and income ( , , )x yp p m .The commodities x 

and y are normal goods**.  

 

The present approach is less complex in a mathematical sense compared to other 

approaches and is descriptive in its nature. 

 

Why not keep descriptions as simple as possible? 

 

Entia non sunt multiplicanda praetor necessitatem 

Beings ought not to be multiplied except out of necessity 

 

“Occam´s razor” 

 

Encyclopedia Brittannica 

 

 

Keywords: Law of Demand and other properties of consumer demand, 

Microeconomics, Consumer theory , Consumer behaviour, Choice described in 

random terms, Expected individual and market demand.  

 

JEL classification: C60, D01, D11 

 

* The proof can be used in higher dimensions 

**In this text the words referring to traditional theory like normal goods or own 

price negativity etc should be seen as average (expected) properties. 

 

 

 



Introduction  

 

We here present the neoclassical theory and some later modifications in attempts   

to prove law of demand. 

In section 1 we give our proof and in the appendix a few examples  

 

Traditional theory and law of demand 

 

The traditional neoclassical theory assumes a utility description of consumer 

preferences and that 

 

 x y

x

the consumer makes his choice of commodities (x,y)

by maximizing his utility function u(x,y) subject to a budget constraint.

( , ) is maximized over the budget set D= (x,y): x 0,y 0, p p

where p ,p

u x u x y m   

y  are prices of (x,y) and m is income(budget)

 

The result of this maximization gives the individual demand functions 

( , , ), ( , , )x y x yx p p m y p p m  

Assuming the utility function u(x, y) is an increasing quasi concave function it is 

proven that the demand function has the following property 

( , , ) 0x y

x

x x
x p p m

p m

 
 

 
 

For more details see Jehle and Reny (2001 pp 82-83) 

It is not possible to exclude the Giffen case where 

0 since 0 is possible in the theory (inferior good)
x

x x

p m

 
 

 
 

The law of demand in this context is formulated  

“If the demand for a goods increases when income increases, then the demand for that 

goods must decrease when its price increases” Varian (2006 p 147). 

0 since 0 (normal good)
x

x x

p m

 
 

 
 

The normal goods assumption is sufficient to give law of demand at the individual 

and market level (sum of individual demands) and is used in economic literature. 

 

Some other approaches to obtain law of demand. 

 

In the literature Quah (2000), Hildenbrand (1983) and Härdle; Hildenbrand , and 

Jerison (1991) are different examples how to prove law of demand. 

 

Stronger assumptions on utility functions to obtain law of demand at the 

individual level. Since law of demand is valid at the individual level it is valid at the 

market level by summation. 

Quah (2000) identifies sufficient conditions on an agents indirect utility 

function ( , , )x yp p m  which guarantees law of demand at the individual level. They 

are convexity in prices of the indirect utility function. and a numerical condition  see 

Quah (2000 p 916).Earlier studies used assumptions to guarantee strict inequality as 



concave utility functions and a numerical condition  see Quah (2000 p 912).Utility 

maximization is a  maintained hypothesis. 

 

Income (expenditure) distributional assumptions to obtain law of demand at the 

market level 

Hildenbrand (1983) takes a different route. Referring to Hicks “ A study of individual 

demand is only a means to the study of market demand” Hildenbrand (1983 p 997) 

proves that the “law of demand” holds for the  market(mean) demand function, 

i..e., 
1

h
0

( )
0 where F ( ) ( , ) ,  1 h  where h is commodity h.h

h

h

F p
p f p w dw l

p


   

   

Hence, the partial market demand curve for every commodity is strictly decreasing. 

Hildenbrand (1983 p 998). The paper extends the result for more general distribution 

functions ( )w  than the uniform used in the text above. Hildenbrand also points out: 

“This remarkably simple result shows clearly that aggregating individual demand over 

a large group of individuals can lead to properties of the market demand function F 

which, in general, individual demand functions f do not posses. There is a qualitative 

difference in market and individual demand functions. This observation shows that the 

concept of a “representative consumer”, which is often used in the literature, does not 

simplify  the analysis ; on the contrary, it might be misleading.” 

 

Härdle; Hildenbrand , and Jerison (1991) takes a more general approach in proving 

Law of demand  at the market level: 

“In conclusion, assuming that the mean Slutsky matrix S(p) is negative semidefinite, a 

sufficient condition for monotonicity of F is that the mean income effect matrix M(p) 

is positive definite. This property does not follow from an assumption on 

“rational” individual behaviour.” 

 

Summarising the referred literature most of it tries to obtain law of demand by 

maintaining the utility maximization hypotheses. Only Härdle; Hildenbrand , and 

Jerison (1991) leaves it by concentrating on income distribution and the aggregate 

level. 

All results however are obtained by using considerable mathematical complexity in 

the analysis. 

 

The present approach is less complex in a mathematical sense and is descriptive 

in its nature. 

We assume choice is made inside the budget set and that the choice can be 

described by a probability density function. 

 

1 Proof of law of demand for positive density functions p(x) and p(x,y) 

 

One dimensional frequency function of choice p(x). 

To find the frequency function p(x) we start by assuming a positive continuous 

function f(x)>0 defined on the interval I = (0, c) Let a<c. 

 

 

 

 



Define 

 

0 0

x

( ) ( )  and G(a)= ( ) . We then have

( ) m
( ) . 0<G(a)<aF(a), a= , ( ) 0

( ) p

a a

F a f x dx xf x dx

G a
E x a f x

F a



  

 
 

F (a) is the area below the positive function f(x) and the frequency function  

p(x, a)=f(x)/F(a). Note that the parameter a is part of the frequency function and that 

a is a variable in the expected value function. 

 

Properties of E(x) 

 

Next we want to find some properties of E(x). Homogeneity of degree zero in price 

and income is obvious since a  is homogeneous of degree zero in price and 

income. 

To find sensitivity to price and income we can use the chain rule  of 

differentiation
( ) ( ) ( ) ( )

 and  
x x

E x dE x a E x dE x a

m da m p da p

   
 

   
 

We take 

 

 

2 2

2 0 0

( ) 1 1
'( ) ( ) '( ) ( ) ( ( ) ( ) ( ) ( ))

( ) ( )

( )
( ) ( ) 0

( )

a a

dE x
G a F a F a G a af a F a f a G a

da F a F a

f a
a f x dx xf x dx

F a

   

   

 

(1.1)       
( )

0
dE x

da
  

 

We have found that the expected demand function follows the law of demand and is 

a normal good for all continuous choice frequency functions. 

( ) ( )
0 and 0

x

E x E x

p m

 
 

 
 

 

The same result is obtained if we change variables. Let x=au. We then find 
1 1

2

0 0

1 1

0 0

( , ) ( , ) ( )
( )  where a is the Jacobian of the transformation.

( )( , ) ( , )

For the change of variable formula see Buck(1956) p244.

a uf a u du a uf a u du G a
E x

F aa f a u du f a u du
  

 

 

 

We differentiate  

(1.2(     
 2

( ) 1
'( ) ( ) '( ) ( ) 0

( )

dE x
G a F a F a G a

da F a
  

 

following the result (1.1)) above. 

The latter result (1.2) will be useful when we turn to two dimensional choices. 

 

 

 



Choice in two dimensions 

 

To find the frequency function p(x, y) we start by assuming a positive continuous 

function f (x, y)>0 defined in a set E, where D E . 

For the function f(x, y) we first integrate over the budget set  

D= 2

2( , ) in R :  and x 0, 0x yx y p x p x m y     

 to find the constant K. ( ( , ) 1)
D

Kf x y dxdy  . 

The function f(x, y) is now turned into a frequency function p(x, y) = f(x, y)/K 

 

To make the calculations somewhat simpler we do some change of variables. 

 
x y

2

m m
We put x=u =au and y=v =bv to integrate over the set

p p

D = (u,v)  : u 0, v 0,u+v 1R    

 

We then have 
´

( , ) ( ( ), ( ))
D D

f x y dxdy ab f x u y v dudv   

where the Jacobian (= ab)of the transformation is taken outside the integral on the 

right side. 

For change of variable formulas see Buck (1956 p 244). 

 

Homogeneity of degree zero a property of frequency functions (p(x, y)) 

 

  The change of variables where 

x y

m m
we put x=u =au and y=v =bv 

p p
 

shows how the transformation connecting ( x, y ) space and (u, v) space is 

homogeneous in degree zero in prices and budget. . We then have 

´ ´

2

( , ) ( ( ), ( )) ( ( ), ( ))
x y D D

m
f x y dxdy f x u y v dudv ab f x u y v dudv

p p
     

homogeneous of  degree zero and ( )
D

xf x dx as well. 

 

Calculating E(x) 

 

 

To find E(x) we first integrate f(x, y) over the area D’   

´ ´

1 1

0 0

( ( ), ( )) ( , , , )

( , . , ) .

D D

u

ab f x u y v dudv ab f u v a b dudv

ab du f u v a b dv



  

 
 

We now put the last integral 

1

0

( , , , ) ( , , )

u

f u v a b dv F u a b



  and the volume below 

f(x,y) is 



1

0

( , , )ab F u a b du .The next integral to be calculated is 

´

1 1 1

0 0 0

( , , , )

( , . , ) ( , , )

D

u

aba uf u v a b dudv

aba udu f u v a b dv aba uF u a b du









  
 

We now find 

1 1

0 0

1 1

0 0

( , , ) ( , , )
( , )

( )
( , )

( , , ) ( , , )

aba uF u a b du a uF u a b du
G a b

E x
F a b

ab F u a b du F u a b du

  
 

 

 

Finding the properties of E(x) 

 

Next we want to find other properties of E(x). The chain rule of differentiation help us 

to find sensitivity in relation to income (m) and prices )( , )x yp p . 

As an example 
( ) ( )

x x

E x E x a

p a p

  


  
 

We first differentiate wrt a. and use the result (1.2) in one dimension 

( )
0

E x

a





 

This in turn gives us 

 

( ) ( )
0 and 0

x

E x E x

m p

 
 

 
 

Law of demand is valid for all continuous frequency functions p (x. y). 

The property is additive so the law of demand is valid at the aggregate (market) 

level as well. As noted x (and y) are normal goods. 
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Appendix – a few examples  

 

In an earlier working paper Larsson (2008) several examples are given. We 

therefore only give a small sample. 

Even if law of demand is valid for all density functions we also illustrate the 

stochastic approach by calculating some examples to make it more practical. 

Traditional theory in expected form 

 To facilitate a comparison with traditional theory we note that it can be expressed in 

expected values as well since estimation and/or testing the theory mostly handle the 

same properties to E(x) as to x. In testing and/or estimation we have 

E(x) = ( , , ) ( ) ( , , )x y x yx p p m E x p p m   

where  is a random error term with E( )=0  . This assumption gives the result that the 

expected demand function has the same slope as the ordinary demand function 

x xp pEx x , and so on for the other properties.  

The independent properties of demand functions in traditional theory are 

Budgetbalancedness E ( ( , , ) ( , , ))x x y y x yp x p p m p y p p m m   

and negative semidefiniteness of the symmetric substitution matrix. 

 
x y

x y

p p

m m

p p

Ex Ex Ex
Ex Ey

Ey Ey Ey

   
   
   

. 

 For details see Jehle and Reny (1991 pp 82-83) 

 

Expected choice is confined to stay inside the budget set, not on the budget line as 

in traditional theory. This implies that budgetbalancedness is not a property in 

the present approach 

A first example makes a comparison: For f(x, y) =
2

2

2
,  p(x,y)=

60

x y
x y

a bab
  

corresponds to a “Cobb-Douglas” utility function we have 

 

( )
2

( )
3

x

y

m
E x

p

m
E y

p





  

The utility maximizing solution in expected form for the function f(x, y) = 2x y  

E(x) = x=
2

, ( )
3 3x y

m m
E y y

p p
   

We also have expected expenditure 
5

( )
2 3 6

x y x y

x y

m m m
E p x p y p p m

p p
      

We are relatively close to the budget constraint. But the budgetbalancedness 

property is not valid. 

The expected demand functions were obtained by integrating a “Cobb-Douglas” 

function over a bounded set (bounded by the budget constraint) .The parameters 

( , ,x ym p p ) in the integration now are variables in the expected demand functions. 

 



A second example has no unique solution in utility theory (a constant utility) 

and the interior solutions are independent of price and income. 

The following example shows 

 

0

0

0

0

1 2
( ) ( )

3 3

1 2
( ) ( )

3 3

y

x

x

y

E x m p y x
p

E y m p x y
p

  

  

 

the expected demand functions obtained by integrating a uniform distribution over a 

bounded set. The set is bounded by the budget constraint and lower bounds 0 0( , )x y on 

consumption. Given the expected demand we can study properties such as own price 

and cross price derivatives, income derivatives, homogeneity and symmetry properties 

as in ordinary theory. In the example given we 

have , , , , , ,( ) 0, ( ) 0, ( ) 0, ( ) 0, ( ) ( )
x y x y xp m p p p pE x E x E x E y E x E y      

In words: Own prise derivative negative (law of demand ), cross price derivatives 

negative( x and y are gross complementary commodities ), income derivative positive 

(normal good) . The own price elasticity is inelastic
( )

1
( )

x
Expx

x

E x p
El

p E x


  


. 

The expected substitution matrix.is not symmetric in general as seen next. 

 

Numerical example. 

 

 

x y 0 0Numerical values for m=100, p 10,  p 5,  x =5 and y =6 are

2 1
E(x)=5 ,  E(y)=7

3 3

 

 

Average expenditure 0,933m < m. 

Note the relative closeness to m due to the tight lower border. Identify lower bounds 

and the choice and/or preferences inside the set matter less. The substitution 

matrix in the numerical example is nonsymmetric and negative definite. 

 

7 1 17 4 8

1 130 5 3 90 45

1 2 22 8 830 15

3 3 3 90 45

       
      

                
          

. 

 

 

x

y

Exp

Exp

Exm

( ) 7
The own price elasticity El

( ) 17

( ) 3
The cross price elasticity El

( ) 17

( ) 10
The income elasticity El

( ) 17

x

x

y

y

E x p

p E x

E x p

p E x

E x m

mE x

 
 


 
 



 


 

 

Note the homogeneity condition in elasticities hold (sum of elasticities =0). 



For elasticity forms in traditional theory see Shone (1975 p 91). 

 

Why use of the uniform choice frequency functions might be reasonable. 

  As a start we assume limited knowledge of preferences.  The uniform distribution 

assumption might reflect our ignorance of what determines the choice inside the 

bounded budget set. If we know that choice is taken place in the set we know that 

expected choice changes when the “walls” (budget line and lower bounds) of the set 

changes. A uniform distribution can also approximate a more complex function if we 

use a lower bound as in the example. 

 The assumption also makes for simple calculations (used before in economics) and 

produces some results. To quote Krugman (2008): “express your ideas in the simplest 

possible model.”  

 

 

 

 

 

 

 


