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Abstract 

Modeling the natural growth of tumors is of value for evaluation of tumor progression and optimization 

of treatment strategies. However, modeling tumor growth based on clinical data is hampered by the 

limited data available, since therapy is in general initiated as early as possible after diagnosis. Most 

descriptions of tumor growth rate are thus based on two data points per tumor, and assuming 

exponential tumor growth. The time needed for a tumor to double in volume, doubling time (DT), is 

widely used for quantification of tumor growth rate. Growth rate can also be quantified using specific 

growth rate (SGR), equal to ln2/DT. Some studies have shown non-exponential growth characteristics if 

tumors are observed for a relatively long period, usually with a reduced relative growth rate with time. 

Current criteria for evaluation of tumor response to therapy, e.g. RECIST, use change in tumor size as a 

measure and do not consider the natural tumor growth during observation. Knowledge of the natural 

growth model would thus provide a better assessment of therapeutic response. 

In this study, mathematical analyses and computer simulations were used for theoretical evaluation of 

parameters for tumor growth, together with evaluation and application to clinical data. DT and SGR 

were compared for their accuracy as a quantity for tumor growth rate. The relation between growth 

rate and tumor volume was used for estimation of tumor growth model and tumor dissemination rate. 

A general model for tumor response to therapy was developed assuming that an effective treatment 

may decrease the cell proliferation rate (cytostatic effect) and/or increase the cell loss rate (cytotoxic 

effect) of the tumor. 

The results showed that, beside the fact that DT is not defined when two consecutively measured tumor 

volumes are equal, when DT is used for quantification of tumor growth rate, data is transformed to a 

nonlinear scale. This causes an asymmetrical frequency distribution of DT, erroneous estimation of the 

average growth rate, and sometimes contradictory results, compared to SGR. In addition, with limited 

number of tumor volume measurements, curve fitting of different growth models is not sufficient to 

estimate the true growth model. Analysis of the correlation between growth rate and the volume of 

tumor may give better estimate of tumor growth model for some types of tumors. Formation times and 

formation rates of metastases may also be estimated by the linear regression of SGR with the logarithm 

of tumor volume. Furthermore, tumor response was found to be equal to the logarithm of the ratio of 

post-treatment tumor volume to the volume of corresponding untreated tumor. Neglecting the natural 

growth characteristics of tumors results in underestimation of treatment effectiveness using the current 

routine criteria. The presented model may also facilitate integration of data from tumor size changes 

with data from functional imaging, e.g. PET or MRI, for therapeutic efficacy assessment. 

In conclusion, SGR should replace DT for quantification of tumors growth rate. The relation between 

growth rate and tumor volume may facilitate estimation of non-exponential growth characteristics of 

tumors or metastatic dissemination rate. Tumor response to therapy can be assessed with a general 

continuous dimensionless quantity for both cytotoxic and cytostatic agents.  

Keywords: tumor, growth, modeling, response, therapy 
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Introduction 

Modeling tumor growth 

Modeling the natural (therapy-naive) growth of tumors is of value in the study of tumor 

progression, along with that it will be supportive for optimization of screening programs, 

prognostication (Bassukas, Hofmockel et al. 1996), optimal scheduling of chemotherapy 

(Norton 1988) and radiation therapy, and assessment of tumor spread (number and size 

distribution of metastases, including micro-metastases) (Iwata, Kawasaki et al. 2000; Withers 

and Lee 2006), information that is valuable for targeted radionuclide therapy (Williams, Duda et 

al. 1988; Withers, Peters et al. 1995; Bernhardt, Ahlman et al. 2003). 

 

Tumor response to therapy may also be studied by analyzing the effect of therapy on the 

natural growth of tumor. However, there are mainly two types of growth models for tumors: 

exponential and non-exponential. 

Exponential growth model 

According to the Exponential growth model, tumor volume increases exponentially by time: 

 

,        (1) 

 

where  is the exponential growth constant, and V and V0 are the tumor volume at times t and 

0, respectively. This model implies that the tumor volume can increase indefinitely and the 

growth rate of tumor is proportional to its volume: 

 

αV
dt

dV
        (2)  

 

Tumor volume doubling time (DT) 

Tumor volume doubling time, DT, was introduced for quantification of tumor growth rate in 

1956 when Collins et al. proposed a graphical method to estimate the DT of tumors (Collins, 

Loeffler et al. 1956). DT is the time needed for a tumor to double in volume. The mathematical 

approach for estimation of DT was then proposed in 1961 (Schwartz 1961): 

 

)/Vln(V

)ln2t(t
DT

12

12  ,       (3) 
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where V1 and V2 are two tumor volume estimates at two different occasions, t1 and t2, 

respectively. DT has been widely used as a quantity for tumor growth rate since its 

introduction. There are flaws with DT as a quantity for tumor growth rate: the frequency 

distribution of DT in a population is not normal and there are tumors with very long DT values 

in a population (Spratt 1969). Therefore, mean DT, DTm, does not indicate the average growth 

rate and DT is not suitable for common statistical testing. Some researchers have approximated 

the frequency distribution of DT by a log-normal distribution (Spratt and Spratt 1964; Shackney, 

McCormack et al. 1978; Balmukhanov, Turdugulov et al. 1982; Kuroishi, Tominaga et al. 1990; 

Usuda, Saito et al. 1994). The average growth rate is then estimated by DTlog, calculated as the 

antilog to the arithmetic mean of the logarithms of doubling times (Spratt 1969; Gregory, 

Richards et al. 1991; Spratt, Meyer et al. 1995). The logarithm of DT, log(DT), is also proposed to 

be more suitable for statistical testing (Spratt 1969). DTlog is mathematically equal to geometric 

mean DT, DTgm, which is also used to estimate the average growth rate (Kuroishi, Tominaga et 

al. 1990; Blomqvist, Wiklund et al. 1993; Usuda, Saito et al. 1994).  It is also clear from Eq. 3 

that DT is not defined when the estimated tumor volumes are equal.  The reason for these 

flaws with DT has not previously been studied. 

 

Specific growth rate (SGR) 

From Eq. 2, the exponential growth constant, , is equal to the specific growth rate, SGR, of 

tumor: 

 

dt

dV

V

1
SGR        (4) 

 

SGR is the relative change in tumor volume per unit time, and can be given as percent per unit 

time. For an exponentially growing tumor, SGR is a constant for each tumor, i.e., SGR is 

independent of tumor volume or age. The exponential model can thus be rewritten as 

SGR(t)=SGR0, where SGR0 is the value of SGR at time t0=0. More rapidly growing tumors have 

higher SGR values, SGR=0 represents non-growing tumors, and negative SGR values can be 

assigned to tumor regression. 

 

According to Eq. 1 and Eq. 4, SGR of a tumor can be estimated with two volume measurements 

(V1, V2) at two different occasions (t1, t2): 
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12

12

tt

)/Vln(V
SGR


       (5) 

 

From Eq. 3 and Eq. 5, the relation between SGR and DT is as follows: 

 

SGR

ln2
DT         (6) 

 

However, in the clinics and in clinical studies SGR is not known and tumor growth rate is usually 

quantified using DT. Accuracy of tumor growth rate quantities, SGR and DT, has not previously 

been studied.  

 

Non-exponential tumor growth models 

Studies have shown that tumor growth rate may decline with time (Hart, Shochat et al. 1998; 

Bajzer 1999; Afenya and Calderon 2000), which results in non-exponential growth model of 

tumors. Growth deceleration has been observed in animal models (Wennerberg, Willen et al. 

1988), for solid tumors in clinical studies (Spratt, von Fournier et al. 1993; Spratt, Meyer et al. 

1996), and in leukemia (Afenya and Calderon 2000). Growth deceleration is attributed to 

several factors, including prolonged cell cycle, reduced growth fraction, decreased availability 

of oxygen (Pavelic, Porter et al. 1978), decreased cell proliferation rate with increased cell loss 

rate (Bassukas and Maurer-Schultze 1987), tumor-related systemic factors (DeWys 1972), and 

allometric growth control (Prehn 1991). A number of non-exponential growth models are 

available in the literature, among which the Gompertzian model is widely used (Araujo and 

McElwain 2004). 

 

The Gompertzian model 

According to the Gompertzian growth model, the variation of tumor volume by time is as 

follows (Marusic, Bajzer et al. 1994; Afenya and Calderon 2000): 

 

 ,      (7) 

 

where  is comparable with the growth constant in the exponential model, i.e. SGR at t=o, and 

λ is a constant for growth retardation. The Gompertzian model decreases to the exponential 
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model (Eq. 1) when λ approaches zero (λ→0). According to the Gompertzian model, the tumor 

cannot grow indefinitely, but asymptotically approaches a maximum equal to , when t→∞. 

 

Tumor growth model in clinical studies 

The basic method to find the growth model of tumors is by direct curve fitting. Using this 

method, different growth model equations are fitted to the volume of each individual tumor 

and the model with the best fitting can be selected. In clinical studies, where the natural 

growth of tumor can be followed for a limited period, the exponential model is usually used to 

describe the growth of tumors. Proposals for new quantitative approaches to analyze tumor 

growth models in clinical settings are thus needed.  

 

The SGR of different tumor types or even metastases of the same type, in the same patient, and 

in the same tissue are not necessarily the same. The variation of SGR among the tumors can be 

a result of biological differences between tumors, or growth retardation. If the growth model of 

tumors is the Gompertzian then larger tumors will have lower SGR values and vice versa. From 

Eq. 7, the relation between SGR and tumor volume is as follows: 

 

      (8) 

 

Eq. 8 shows that SGR decreases linearly by the logarithm of tumor volume if the growth model 

is Gompertzian. Eq. 8 does not include time, which makes it possible to use data from tumors 

without the knowledge of the age of each tumor. The feasibility of estimating the non-

exponential growth parameter of tumors, i.e. λ in Eq. 7-8, based on growth rate relation with 

tumor volume needs to be investigated.  

 

Tumor response to therapy 

Assessment of tumor response to therapy is necessary for evaluation of the efficacy of novel 

anticancer drugs in clinical trials. It may also be valuable in individualized therapy rather than 

standardized treatment regimen in daily clinical practice. Traditional anticancer agents exhibit 

cytocidal effect by actively destroying tumor cells and, therefore, tumor shrinkage has been 

used as measure of treatment efficacy. 

 

Response Evaluation Criteria in Solid Tumors (RECIST) 
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The Response Evaluation Criteria in Solid Tumors (RECIST) is currently adopted by academic and 

industrial groups (Miller, Hoogstraten et al. 1981; Therasse, Arbuck et al. 2000), where 

response to therapy is categorized as follows: Complete response (CR): the disappearance of all 

target lesions; Partial response (PR): at least a 30% decrease in the sum of the longest diameter 

of target lesions; Progressive disease (PD): at least a 20% increase in the sum of the longest 

diameter of target lesions or the appearance of one or more new lesions; Stable disease (SD): 

neither sufficient shrinkage to qualify for partial response nor sufficient increase to qualify for 

progressive disease (Therasse, Arbuck et al. 2000). Appropriateness of RECIST criteria, e.g. 

whether the change in tumor size is a proper endpoint for response assessment, has been 

widely discussed (Barnacle and McHugh 2006; Tuma 2006; Twombly 2006; Eisenhauer 2007).  

 

Limitations of RECIST 

The following four limitations can be identified in the RECIST criteria: 

 

Firstly, the idea behind RECIST is that a treatment regimen is effective if the tumor size is 

reduced. However, there are emerging numbers of anticancer drugs, which inhibit tumor 

growth rather than actively destroy tumor cells. Traditional response evaluation criteria, 

including RECIST, may not be appropriate to assess the efficacy of such cytostatic agents, which 

do not result in tumor regression to a point of PR or CR. General means of assessment of both 

cytocidal and cystostatic effects must, therefore, be developed (Michaelis and Ratain 2006; 

Gwyther and Schwartz 2008). 

 

Secondly, the natural growth rate of tumor is not considered in RECIST. A certain treatment 

that kills the same relative amount of tumor cells in two different tumor types will give 

different results, according to RECIST, if the natural proliferation rates of tumor cells are 

different. 

 

Thirdly, adopting the RECIST criteria will convert a continuous variable, as tumor response, into 

a discrete variable; resulting in loss of information. This will make comparison of individual, or 

combination of, treatments less accurate. Furthermore, attempts to relate treatment efficacy 

to molecular or cellular characteristics of tumors, e.g. by systems biology approach, will be 

difficult when data is categorized.  

 

Fourthly, many studies have shown that the effect of treatment on tumors can be assessed by 

means of changes in tumor characteristics other than size, e.g., estimated by positron emission 
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tomography (PET) or magnetic resonance imaging or spectroscopy (MRI/MRS). RECIST does not 

accommodate integration of physiological or functional imaging parameter into anatomical 

changes in tumor, and, therefore, new methods must be developed (Jaffe 2008). 

 

The log-ratio (LR) method 

Karrison et al. (Karrison, Maitland et al. 2007), based on suggestions by Lavin et al. (Lavin 1981), 

demonstrated that clinical trial designs that treat change in tumor size as a continuous variable 

rather than categorizing the changes are feasible (Karrison, Maitland et al. 2007). They used the 

logarithm of the ratio of tumor volume after therapy to that at baseline as a continuous end-

point for quantification of tumor response, denoted as LR (log-ratio) (Karrison, Maitland et al. 

2007).  

 

Limitation of LR method 

The main flaw with LR method is that the natural growth of tumor between measurement at 

baseline and therapy initiation and also during therapy is neglected. 
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Aims 
The aims of this work were 

 

1) To determine an accurate quantity for tumor growth rate. (Papers I, II) 

 

2) To develop a method for estimation of tumor growth rate and dissemination rate in clinical 

settings. (Paper III) 

 

3) To develop a general measure for assessment of tumor response to therapy, where the 

natural tumor growth rate is taken into account. (Paper IV) 
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Material and Methods 

Quantitative analysis of tumor growth and dissemination 

SGR versus DT: influence of measurement uncertainties (paper I) 

To determine the most accurate quantity for tumor growth rate, equivalent doubling time, DTe, 

was compared to DT. DTe is DT calculated for mean SGR in a population. DT, log(DT), and SGR, 

the frequency distribution of these parameters and variation of their means, DTm, DTlog, and 

DTe, were analyzed by computer simulations and  clinical data. 

 

Monte Carlo simulations 

Computer simulations were done using a Monte Carlo code, written in visual basic 6.0 

(Microsoft, USA), for typical values of measurement time interval and DT (Table 1) (Rew and 

Wilson 2000).  

 

For each time interval 105 simulations were done. In each simulation, V1 and V2 were generated 

and SGRi and DTi were estimated for the range of i indices 1-105. For each time interval, DTm, 

DTlog, mean SGR (SGR ), and DTe were calculated, where  

100000/)SGR...SGR(SGRSGR 10000021    (9) 

and 

SGR/ln(2)DTe  .      (10) 

The relative uncertainty of SGR )SGR σ( SGR  was calculated and compared to the expected 

uncertainty calculated from Eq. 4, which can be rewritten as   )t/(t)ln(V)ln(VSGR 1212  , giving 

)t/(t)/V(σ)/V(σ)t/(tσσσ 12
2

22V
2

11V12
2

2lnV
2

1lnVSGR  .   (11) 

If both sides of the above equation are divided by SGR and SGR on the right side is replaced 

from Eq. 5, then: 

2
22V

2
11V12SGR )/V(σ)/V(σ)}t{DT/(t2)/ln(1/SGRσ  .  (12) 

Since DT is inversely proportional to SGR, the simulation will generate unstable results for SGR 

close to zero. Therefore, SGR values between -0.0000693 and +0.0000693, corresponding to DTi 

with absolute values longer than 10000 days, were excluded from the calculations.  
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Since the logarithm of negative and zero values are undefined, the following method was used 

in the calculation of DTlog in the presence of negative DTi values: the absolute value of the 

minimum possible DT (-10000) plus one, i.e. 10001, was added to all DT values, and the mean of 

their logarithms was calculated. Thereafter, DTlog was derived by subtracting 10001 from the 

obtained mean value. To investigate how the exclusion of negative growth rate values can 

influence the average growth rate estimators, DTm, DTlog, and DTe, the simulation was then 

repeated excluding SGR values less than +0.0000693. 

 

Clinical data 

DTm, DTlog, and DTe were calculated for several types of tumors using quantitative data from 

previously published clinical studies (Table 1)(Blomqvist, Wiklund et al. 1993; Saito, Matsuzaki 

et al. 1998; Nishida, Kaneko et al. 1999; Wang, Sone et al. 2000; Furukawa, Iwata et al. 2001; 

Nakajima, Moriguchi et al. 2002; Winer-Muram, Jennings et al. 2002; El Sharouni, Kal et al. 

2003). The results were then compared with computer simulations. 
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SGR versus DT regardless of measurement uncertainties (paper II) 

 

Variation of DT per unit SGR 

According to Eq. 6, the variation of DT with SGR is: 

 

2SGR

ln(2)

ΔSGR

ΔDT
        (13) 

 

Table 1) Clinical data on tumor growth obtained from the literature. W, M, and P denote well, moderate, and 

poorly differentiated, respectively. n=number of tumors 

Study Tumor 

Measurement 

time interval 

(d) 

Doubling 

time range 

(d) 

n Reference 

1 Pancreatic carcinoma Not published 18-232 12 (Nishida, Kaneko et al. 1999) 

2 Pancreatic carcinoma 99-751 64-255 9 (Furukawa, Iwata et al. 2001) 

3 Adenocarcinoma (lung) 159-396 72-131 8 (Wang, Sone et al. 2000) 

4 Adenocarcinoma (lung) 25-1212 (-1350)-964 15 (Winer-Muram, Jennings et al. 2002) 

5 Bronchioalveolar (lung) 39-973 36-1092 9 (Winer-Muram, Jennings et al. 2002) 

6 Squamous cell lung carcinoma 43-536 (-1214)-225 16 (Winer-Muram, Jennings et al. 2002) 

7 Non small cell lung carcinoma 82-948 48-698 6 (Winer-Muram, Jennings et al. 2002) 

8 Non small cell lung cancer 16-99 8-171 18 (El Sharouni, Kal et al. 2003) 

9 Small cell lung cancer 299-386 54-132 4 (Wang, Sone et al. 2000) 

10 Sarcoma (lung metastases) 14-819 7-1172 21 (Blomqvist, Wiklund et al. 1993) 

11 Hepatocellular carcinoma (W) 43-252 38-274 19 (Nakajima, Moriguchi et al. 2002) 

12 Hepatocellular carcinoma (W) 63-763 76-720 15 (Saito, Matsuzaki et al. 1998) 

13 Hepatocellular carcinoma (M) 13-224 17-91 9 (Nakajima, Moriguchi et al. 2002) 

14 Hepatocellular carcinoma (M) 91-210 94-380 6 (Saito, Matsuzaki et al. 1998) 

15 Hepatocellular carcinoma (P) 20-182 20-78 6 (Nakajima, Moriguchi et al. 2002) 
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It shows that the variation of DT per unit SGR is not constant for the whole range of SGR; it 

quickly decreases with increasing the absolute value of SGR. Variation of DT per unit SGR was 

plotted for SGR values between -5 %/d and +5 %/d, corresponding to DT values of -14 days to -

∞ and 14 days to +∞, respectively. 

 

Clinical data 

Two examples from previously published articles were found that could represent the 

difference between the results of statistical analyses based on DT and SGR. In the first study, 

the authors found statistically significant difference between DT of prostate specific antigen 

(PSA) before and after treatment in each of 9 out of 12 patients (Guess, Jennrich et al. 2003). 

Using the signed rank test, they could also detect a significant positive shift in the frequency 

distribution of DT after treatment. In the present study, increase rate of PSA before and after 

treatment was compared in 12 patients using DT as well as SGR of PSA by student’s t-test (Table 

2). (Note: The authors of the original article used a method to study PSA level variations in each 

patient, while in the current study the PSA change in the group of patients was studied). In the 

second example, the authors examined the DT of serum CA 19-9 in patients with pancreatic 

cancer (Nishida, Kaneko et al. 1999). A significant correlation was found between the DT of the 

serum level of CA 19-9 and the DT of tumor volume in 11 out of 75 patients, where both DT 

values were available. In the present study, the corresponding SGR values of the DT of tumor 

marker as well as the DT of tumor volume were calculated (Table 3) and the correlation 

between the two variables was examined. 

 

Analysis of tumor growth in clinical settings (paper III) 

Clinical data 

Data from population studies 

Data from clinical studies were retrieved from the literature based on the availability of tumor 

volume estimates and corresponding measurement time intervals. Correlation between the 

growth rate and the volume of tumor was calculated for the following types of tumors: 

meningioma (Nakamura, Roser et al. 2003; Nakasu, Fukami et al. 2005), hepatocellular 

carcinoma (Saito, Matsuzaki et al. 1998; Nakajima, Moriguchi et al. 2002; Taouli, Goh et al. 

2005), pancreatic carcinoma (Furukawa, Iwata et al. 2001), and primary lung cancer (Wang, 

Sone et al. 2000). 

Data from individual patients 

The first patient was diagnosed with primary midgut carcinoid and liver metastases. The 

primary tumor was surgically resected in 1995. Growth data were obtained from 8 CT 

examinations performed annually during 1995-2002. During this period the patient was treated 

with octreotide (Sandostatin, Sandoz/Novartis, Basel, Switzerland) for hormonal symptom 
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relief, and interferon alfa-2b (IntronA, Schering-Plough Corporation, New Jersey, USA) was 

given at three occasions without clinical response. The volume of each tumor was measured by 

point counting: a transparent paper with square millimeters was used to measure the tumor 

area in CT slices and the tumor volume in the slice was estimated by multiplying the tumor area 

and the slice thickness. The total volume of the tumor was calculated as the sum of tumor 

volumes from the different CT slices.  

 

The second patient was diagnosed with primary renal cell carcinoma with lung metastases. The 

growth of 7 lung metastases in this untreated patient was studied. A total of 32 conventional 

two-dimensional AP chest radiographs from the patient were available from 1989 to 1999. The 

area of each tumor in each radiograph was then estimated using Osiris (cf. 

http://www.sim.hcuge.ch/osiris/01_Osiris_Presentation_EN.htm). Each tumor was assumed to 

be equal to the volume of a sphere with the diameter of a circle with the same area as the 

estimated tumor area in the radiograph. Since the lining border of the tumor could not be 

clearly defined in all images, the number of available data points may be different for different 

metastatic tumor masses. 

 

Direct curve fitting 

The exponential (Eq. 1) and the Gompertzian (Eq. 7) growth curves were fitted to the volume of 

any metastases in individual patients. The curve fittings were performed using Matlab 6.5.1 

with the curve fitting toolbox (The MathWorks, USA). 

 

SGR deceleration analysis 

Correlation between tumor growth rate and its volume for each group of tumors was studied as 

follows. (1) SGR values were calculated according to Eq. 5 for each pair of consecutive tumor 

volume measurements. (2) Each SGR value was assigned to the geometric mean of the two 

volumes. (3) Correlation between SGR and the logarithm of tumor volume was calculated for all 

SGR values for the same tumor type in a population or for the same type of metastasis in the 

same host tissue in the same patient.  

 

The relatively large number of tumors in one of the meningioma studies (Nakamura, Roser et 

al. 2003) enabled us to draw the frequency distribution of tumors in small (< 6 cm3) and large 

(>6 cm3) groups and compare SGR between the groups using Student’s t-test. 

 

Metastasis formation rate estimations 
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For data from individual patients (two cases), the analysis was continued as follows. (1) 

Assuming V0=10-9 cm3 (one cell), Eq. 7 with parameters obtained from the regression line 

between SGR and the logarithm of tumor volume was assumed to represent the general 

Gompertzian growth model of the metastases (with variable formation time). Formation time 

of each tumor was obtained by the best fitting of the general growth model to the volume of 

the tumor. (2) Formation time of the earliest metastasis was set to zero and the number of 

metastases as a function of time after formation of the first metastasis was obtained. (3) To 

study the applicability of the standard curve fitting method, the exponential and the 

Gompertzian curves were fitted to the growth of each tumor and the best fits were estimated. 

The metastasis formation rate was calculated as above according to the best exponential fit to 

each tumor.  

 

Modeling tumor response to therapy (paper IV) 

 

Kinetics of tumor growth 

Eq. 5 can be used to estimate the SGR of tumors at any time period. If SGR is time dependent, 

as for non-exponentially growing tumors, Eq. 5 can be rewritten as follows: 

 

 ,      (14) 

 

where SGR(t) is the SGR at time t. The value of SGR(t) depends on the level of cell proliferation 

rate, CPR(t), and cell loss rate, CLR(t), at time t: 

 

      (15) 

 

Tumor response to therapy (TR) 

If the natural growth of tumor is interrupted by therapy, an effective therapeutic agent may 

increase the CLR (cytotoxic effect) and/or decrease the CPR (cytostatic effect) of tumor. An 

effective treatment will thus decrease SGR to SGR′ regardless of the mechanism of the 

therapeutic effect:  

 

ΔSGR(t)-SGR(t)(t)RSG  ,     (16) 
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where ΔSGR(t) is the effect of treatment at time t. Temporal variation of SGR′ depends on all 

factors that naturally affect tumor growth as well as the effect of therapy. Readjustment and 

integration of the above equation over time gives: 

 

dt(t)SGR'dtSGR(t)dtSGR(t)Δ

t

t

t

t

t

t i ii

    ,  

 

where ti and t are the time of therapy initiation and efficacy assessment, respectively. The right 

side of the above equation can be replaced using Eq. 14, which gives: 

 

)
V

V
ln(-)

V

V
ln(dtSGR(t)Δ

i

t

i

n

t

ti

 , 

 

where Vi is tumor volume at time of therapy initiation, and Vt and Vn are the volume of treated 

and corresponding (hypothetical) non-treated tumor at time of efficacy assessment, 

respectively. The left side of the above equation is the overall effect of treatment during time 

from treatment initiation to time of efficacy assessment, and can be denoted as TR (tumor 

response). Since ln(Vn/Vi)-ln(Vt/Vi)=-ln(Vt/Vn): 

 

        (17) 

 

Based on the above equation, TR is a general continuous dimensionless quantity for tumor 

response to both cytotoxic and cytostatic therapeutic effects. TR can thus be calculated by the 

logarithm of the ratio of post-treatment volume of tumor to the volume that the tumor would 

have (at time of efficacy assessment) if the growth was not interrupted by therapy. The value of 

Vn can be estimated having the natural growth model of tumor.  

 

Eq. 17 was transformed by replacing Vn with the following assumptions: (1) Tumor volume at 

first diagnostic investigation is Vd; (2) therapy is initiated ∆tpre days after measurement of Vd; (3) 

tumor grows exponentially with SGR(t)=SGR0 during this period and tumor volume at time of 

therapy initiation is Vi; (4) tumor response is assessed ∆tpost days after therapy initiation and 
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tumor volume at time of efficacy assessment is Vt;  (5) tumor would continue to grow with SGR0 

if the growth was not interrupted and its volume would be Vn at time of efficacy assessment. 

 

Non-Hodgkin’s lymphoma patients treated with 131I labeled anti-B1 antibody 

TR values were calculated for treatment of non-Hodgkin’s lymphoma patients with 131I labeled 

anti-B1 antibody, where data was from a previously published article (Sgouros, Squeri et al. 

2003). The study was selected based on the availability of tumor volumes and the time of pre- 

and post- treatment volume estimations in each patient: information which is necessary for TR 

calculation. Total tumor burden was assessed by drawing contours around all lymphoma lesions 

identified on whole-body CT or MRI. Variations of total tumor burden in 11 patients before and 

after treatment were estimated from figure 2 in the original article (Sgouros, Squeri et al. 2003). 

Two more patients are included in the original article, where tumors disappeared after 

treatment. Those data were excluded in the present study. To estimate the natural growth rate 

of Non-Hodgkin’s lymphomas in the present study the average post-treatment re-growth rate 

of 5 tumors  was used. 
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Results 

Tumor growth and dissemination 

SGR versus DT: influence of measurement uncertainties (paper I) 

Monte Carlo simulations 

Figure 1 shows the simulated frequency distributions of DT (panel A), log(DT) (panel B), and SGR 

(panel C) for different time intervals (1, 5, 10, 50, 100, and 200 days), when the relative 

uncertainty of the volume measurement was 10%. For a time interval of 200 days (2 DTtrue), all 

DT values were positive and the frequency distribution of DT was symmetric and centered at 

DT=100 days (Fig. 1A). When the time interval was 100 days (1 DTtrue) the frequency distribution 

of DT was positively skewed and the peak shifted towards lower DT values. When the time 

interval was 50 days (0.5 DTtrue) the peak shifted more towards lower DT values and negative 

DT values appeared in the data as a very small peak in the negative range. The peak in the 

negative range increased further with decreasing time interval. With a 1 day time interval the 

two peaks were very close and symmetric in relation to zero and appeared as a single peak 

centered at zero (Fig. 1A).  Therefore, mean DT was close to zero for very short time intervals. 

Theoretically, when the time interval approaches zero the position of two peaks asymptotically 

approaches zero with a height of infinity. If negative values of DT were excluded, the peaks on 

the negative side of the frequency distribution of DT disappeared. Variations in the frequency 

distribution of log(DT) (Fig. 1B) were comparable to that of DT. For the time intervals of 200 and 

100 days all DT values were positive and only one peak appeared in the frequency distribution 

of log(DT) centered at 4.6 (=log 100) for 200 days and slightly shifted to the left for 100 days. 

For shorter time intervals, where negative DT values appeared in data, the peak shifted more to 

lower values in relation to 4.6, when negative DT values were excluded (Fig. 1B). When negative 

DT values were included for 50, 10, and 1 day time intervals the symmetry point was shifted to 

9.21 (=log 10001), see Materials & Methods, comparable to zero in the frequency distribution 

of DT (Fig. 1B-insert b). For a 1 day time interval the two peaks looked like a single peak 

centered at 9.21.  Therefore, also DTlog was close to zero for very short time intervals (Fig. 2).  

The frequency distribution of SGR was symmetric for all time intervals studied. The mean SGR 

was equal to the true SGR (0.7 %/d) and its uncertainty increased with decreased time interval. 

The expected uncertainty of SGR from Eq. 12 and the calculated uncertainty of SGR from the 

simulations were well correlated (R2>0.999). 

 

The results of the computer simulations of DTm, DTlog, and DTe are shown in Figure 2. When the 

time interval was very long compared to DTtrue, all DT estimators were equal to DTtrue of the 

tumor (Fig. 2A). When the time interval decreased, DTm overestimated DTtrue with a maximum 

deviation of about 30%. For very short time intervals compared to DTtrue, DTm underestimated 

DTtrue and approached zero for time intervals down to a few days. DTlog showed a similar 
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variation as DTm, with a maximum overestimation of about 20%, but a larger underestimation 

than DTm for short time intervals. Neglecting small fluctuations at very short time intervals, DTe 

was equal to DTtrue for all time intervals studied (Fig. 2A). When the negative growth rate values 

were excluded, DTm and DTlog followed a similar shape as when the negative values were 

included (Fig. 2B), i.e., overestimation up to a maximum and then decreasing with decreasing 

time interval. However, the ranges of deviation from DTtrue were different. When negative 

values were excluded DTm was much higher, while DTlog was closer to when negative values 

were included. Furthermore, DTe decreased with decreasing time interval and was lower than 

DTlog, which in turn was lower than DTtrue when negative values were excluded. Then, DTe 

approached zero for very short time intervals down to a few days. 

 

 

 

 

Figure 1) Simulated frequency distributions of A) DT, B) log(DT), and C) SGR at measurement time 

intervals from 1 to 200 days. The relative uncertainty of volume estimation was 10% and the true 

DT was 100 days. For 50, 10, and 1 day measurement time intervals, negative DT values were 

excluded for panel B, while included for the insert b and panels A and C. Note the different scales 

of the y-axes of all panels, and the different scales of the x-axes of Figure 2B.  
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Clinical data 

DTm, DTlog, and DTe values estimated from the previously published clinical data on several 

types of tumors are presented in Figure 3. The measurement time intervals varied between 13 

and 1212 days. The estimated doubling times from these papers were between -1350 and 1172 

days. The only study containing negative growth rates was that of adenocarcinoma and 

squamous cell lung carcinoma (31). For all studies including only positive growth rates, DTe was 

lower than DTlog, which was lower than DTm (Fig. 3A). On average, DTlog and DTm were 25% 

(range 3-88%) and 76% (range 6-317%) higher than DTe, respectively.  If the negative growth 

rates were included, negative DTm was obtained, while DTe was still positive (data not shown). 

 

The SGR values from clinical data are summarized in Fig. 3B. Since SGR and DT are reciprocally 

related (Eq. 6), a higher SGR value in Fig. 3B corresponds to a shorter DTe in Fig. 3A and vice 

versa. Such trend was not always seen for DTm and DTlog values, since they may over- or 

underestimate the true DT of tumors depending on volume measurement uncertainties and the 

time interval.  

 

 

 

Figure 2) Simulated results of DTm, DTlog, and DTe for maximum 10% volume measurement uncertainty and 

different measurement time intervals. The true DT value was 100 days. Negative values of growth rate were 

included in panel A and excluded in panel B. For proper scaling of the DT axis and clear presentation of 

deviations from true DT, DTm values of 454, 471, and 776 at 28, 20, and 14 days time intervals were excluded 

from panel B, respectively. 
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SGR versus DT regardless of measurement uncertainties (paper II) 

Variation of DT per unit SGR 

Figure 4 shows the variation of DT per 1 %/d change in SGR based on Eq. C. Each %/d of SGR 

corresponds to a change in DT of 3 days when the SGR is ±5 %/d. With decreasing the absolute 

value of SGR, each %/d change of SGR corresponds to a higher value on the DT scale, with 69 

days at ±1 %/d and approaching infinity at SGR=0. A DT of 1 day does not represent the same 

growth rate when the tumor is slowly growing as when the tumor is rapidly growing (Fig. 4). For 

a slowly growing tumor with low SGR, DT increases considerably with a slight decrease in SGR. 

For a rapidly growing tumor with high SGR, DT decreases slightly even with a large increase in 

SGR. DT understates the growth rate of slowly growing tumors and overstates the growth rate 

of rapidly growing tumors. 

 

Figure 3) A) DTm, DTlog, and DTe and B) SGR values determined from previously published clinical data. 

Numbers in brackets show the study number according to Table 1. Abbreviations: PC: pancreatic carcinoma 

(Nishida, Kaneko et al. 1999; Furukawa, Iwata et al. 2001). Primary lung cancers: ADN: adenocarcinoma 

(Wang, Sone et al. 2000; Winer-Muram, Jennings et al. 2002), BAC: bronchioalveolar (Winer-Muram, Jennings 

et al. 2002), SCC: squamous cell carcinoma (Winer-Muram, Jennings et al. 2002), NSC: non-small cell 

carcinoma (Winer-Muram, Jennings et al. 2002), NSCLC: non-small cell lung cancer (El Sharouni, Kal et al. 

2003), SCLC: small cell lung cancer (Wang, Sone et al. 2000). MLC: metastatic lung cancer from bone and soft 

tissue (Blomqvist, Wiklund et al. 1993). HCC: hepatocellular carcinoma (Saito, Matsuzaki et al. 1998; Nakajima, 

Moriguchi et al. 2002). W, M, and P denote well, moderate, and poorly differentiated tumors, respectively.  



20 

 

 

 

Clinical data 

For the clinical studies, the difference between DT of PSA level before and after treatment was 

not statistically significant (p>0.1), but the difference between SGR of PSA level before and 

after treatment was statistically significant (p<0.002) (Table 2). In addition, the correlation 

Table 2) Increase rate of PSA level before and after treatment initiation. DT values were retrieved from a 

previously published clinical study, Guess et al. (2003) (Guess, Jennrich et al. 2003), and the corresponding SGR 

values were calculated (Eq. 6). The difference between DT of PSA level before and after treatment is not 

statistically significant (p>0.1). The difference between SGR of PSA level before and after treatment is 

statistically significant (p<0.002). Note: Patient ID is the same ID used in the original paper. 

PatientID 

DT (months) SGR (%/month) 

Before treatment After treatment Before treatment After treatment 

3 3.97 13.43 17.46 5.16 

7 5.67 10.11 12.22 6.86 

8 1.14 2.91 60.80 23.82 

9 3.37 7.71 20.57 8.99 

11 1.58 16.49 43.87 4.20 

13 10.5 7.97 6.60 8.70 

15 2.66 11.95 26.06 5.80 

17 3.64 3.27 19.04 21.20 

18 2.04 4.96 33.98 13.97 

20 2.33 3.24 29.75 21.39 

21 6.29 -155.49 11.02 -0.45 

22 5.12 -645.51 13.54 -0.11 
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Figure 4) Change in DT per %/d change in SGR, dDT/dSGR, versus SGR. dDT/dSGR changes slightly for rapidly 

growing tumors, whereas it changes largely for slowly growing tumors and approaches ∞ when SGR 

approaches zero, i.e., DT approaches ∞. 
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between DT of CA 19-9 level and DT of tumor volume was statistically significant (p<0.0001), 

but the correlation between SGR of CA 19-9 and SGR of tumor volume was not statistically 

significant (p>0.3) (Table 3). 

 

 

 

Analysis of tumor growth in clinical settings (paper III)  

Tumors growth deceleration in the population data 

The correlation between SGR and the logarithm of the volume was statistically significant for 

one study on meningiomas (Nakamura, Roser et al. 2003) and was not statistically significant 

for any of the other studies (Table 4). The difference between the growth rates of the large and 

small meningioma tumors with significant SGR deceleration was statistically significant 

(p<0.001), with higher SGR for smaller tumors (Fig. 6). 

Table 3) Growth rate of tumor volume as well as the increase rate of serum CA 19-9 in 11 patients with 

pancreatic cancer. DT values were retrieved from a previously published clinical study, Nishida et al. 

(1999) (Nishida, Kaneko et al. 1999), and the corresponding SGR values were calculated (Eq. 6). The 

correlation between DT of CA 19-9 level and DT of tumor volume is statistically significant (p<0.0001). 

The correlation between SGR of CA 19-9 and SGR of tumor volume is not statistically significant (p>0.3). 

Note: Patient no. is the case number used in the original paper. 

Patient 

no. 

CA 19-9 DT 

(d) 

Tumor DT 

(d) 

CA 19-9 SGR 

(%/d) 

Tumor SGR 

(%/d) 

2 8.3 34.8 8.4 2.0 

6 39.7 44.6 1.7 1.6 

9 46.3 34.5 1.5 2.0 

26 36.5 21.2 1.9 3.3 

35 30.4 47.7 2.3 1.5 

36 67.1 112.8 1.0 0.6 

40 44.7 70.6 1.6 1.0 

47 24.7 18.4 2.8 3.8 

50 42.7 50.6 1.6 1.4 

62 137.5 231.6 0.5 0.3 

68 42.3 39.3 1.6 1.8 
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Tumors growth models in individual patients 

For the patient with liver metastases from a primary midgut carcinoid and the patient with lung 

metastases from a primary renal cell carcinoma, it was possible to examine direct curve fitting 

for most tumors, because the tumors had been followed for relatively long periods: up to 7 and 

10 years, respectively. The volume of each tumor in the liver (except for two metastases), or in 

the lungs, could be well described either by the exponential or by the Gompertzian model. The 

two metastases in the liver were only observed at two occasions, and the Gompertzian model 

requires three data points for curve fitting. Based on the results of the direct model fitting it 

was not possible to select the most probable growth model of each tumor. However, the 

estimated tumor formation times and SGR0 values were different when estimated by the 

different models. The estimated formation time of one of the tumors in the liver, obtained by 

the exponential fit, was not realistic (5 years before the birth of the patient). For the best 
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Figure 6) Frequency distribution of SGR in two groups of small (n=20) and large (n=21) 

meningioma tumors, based on data from reference (Nakamura, Roser et al. 2003). 

Mean SGR was 20 %/y and 6 %/y for small and large tumors, respectively. 

 

Table 4) Correlation between the specific growth rate, SGR, and the logarithm of tumor volume in groups 

of patients diagnosed with the same type of tumor. n: number of tumors. r: correlation coefficient. NS: not 

statistically significant 

Tumor type (reference) n r
2
 r p-value 

Meningiomas (Nakamura, Roser et al. 2003) 41 0.2424 -0.4923 <0.01 

Meningiomas (Nakasu, Fukami et al. 2005) 36 0.0104 -0.1020 NS 

Hepatocellular carcinoma (Nakajima, Moriguchi et al. 2002) 34 0.0380 0.1949 NS 

Hepatocellular carcinoma (Saito, Matsuzaki et al. 1998) 21 0.0134 -0.1158 NS 

Hepatocellular carcinoma (Taouli, Goh et al. 2005) 16 0.0014 -0.0374 NS 

Pancreatic carcinoma   (Furukawa, Iwata et al. 2001) 9 0.0041 -0.0640 NS 

Primary lung cancer (Wang, Sone et al. 2000) 12 0.1619 -0.4024 NS 
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exponential fits the SGR values were 0.14-0.33 %/d. These values correspond to DT values of 7-

17 months. 

 

Figure 7 shows the best exponential and Gompertzian model curve fits for the volume of the 

largest metastasis in the liver. It shows that the two models could fit well with the volume of 

tumor in a short time interval, whereas the extrapolated formation times of tumor differ 

widely: 1947 and 1982 with the exponential and Gompertzian models, respectively. The 

estimated SGR at time of formation of tumor (SGR0) was also largely different: 0.14 %/d and 1.1 

%/d with the exponential and the Gompertzian models, respectively. These values correspond 

to DT values of 17 months and 2 months, respectively. 

 

 

The negative correlation between SGR and the logarithm of tumor volume was statistically 

significant (r2=0.33, p<0.005) for the liver metastases, and the estimated λ and SGR0 values 

were 0.00023 and 0.79 %/d, respectively. Curve fitting of the general Gompertzian growth 

model to data for the liver metastases are shown in Fig. 8. The same growth curve is shifted in 

time to fit the volume of each tumor. 

 

For the patient with lung metastases, the SGR values for the best exponential fits were 0.14-

0.39 %/d. These values correspond to DT values of 6-17 months, respectively. 

For this patient the negative correlation between SGR and the logarithm of tumor was not 

statistically significant. The estimated λ and SGR0 values were 0.00007 and 0.46 %/d, 

respectively. However, the general Gompertzian growth model based on these parameters 

 

Figure 7) The best exponential (dashed line) and Gompertzian (solid line) model curve fits to the logarithm of 

the volume of metastasis A in the liver with extrapolation to the volume of one cell. b is the birth of patient. 
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could be fitted to data from each metastasis in the patient. The same growth curve could be 

shifted in time to fit the volume of each tumor, as for liver metastases (Fig. 8). 

 

Metastasis formation rates in individual patients 

Figure 9 shows the number of metastases as a function of time in each patient. The number of 

metastases increased exponentially by time assuming that the tumors grow either 

exponentially with different growth rates or according to a general Gompertzian model. The 

increase rate of the number of metastases based on the Gompertzian model was higher than 

the rate based on the exponential model. 

 

 

 

 

Figure 9) The number of metastases vs. the time from formation of the first metastasis. The metastasis 

formation rates were determined for the metastases in the liver and the lungs according to the exponential 

and Gompertzian growth models. Values in parentheses show the constant of exponential increase rate (y
-1

). 

 

Figure 8) The logarithm of the tumor volume vs. time for all metastases in the liver with the general 

Gompertzian growth model curve fits. 
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Tumor response model (paper IV) 

General tumor response model for exponentially growing tumors 

When the tumor response model developed in the present study (Eq. 17) is applied to an 

exponentially growing tumor, TR is related to tumor volume and growth rate as follows (Fig. 

10): 

 

 .   (18) 

 

The first term on the right hand side of the above equation, LR, is the treatment effectiveness 

where the natural growth of tumor is neglected and is equivalent to the log ratio (LR) measure 

suggested by Kharison et al. (Karrison, Maitland et al. 2007). LR values less than -0.5, between -

0.5 and +1, and larger than +1 correspond to progressive disease, stable disease, and partial 

response according to RECIST, respectively. The second term, e1, and the third term, e2, 

represent tumor growth prior to and after treatment initiation, respectively. The overall effect 

of tumor growth from time of diagnosis to time of efficacy assessment, ∆t, sums up as follows: 

 

     (19) 

 

The above equation indicates that evaluation of treatment effectiveness by comparing the 

volume of treated tumor with pre-treatment tumor volume underestimates the effect of 

therapy by Err.  

 

Tumor response to pure cytostatic effect 

If a therapeutic drug has pure cytostatic effect, i.e., the drug inhibits tumor growth, but does 

not destroy existing tumor cells, and if the drug can completely block tumor growth, the tumor 

volume at time of efficacy assessment will be the same as the tumor volume at time of 

treatment initiation, Vi. The cytostatic efficacy of treatment is then e2=ln(Vn/Vi)  (Fig. 10). If the 

drug can partially control tumor growth, the tumor volume at time of efficacy assessment will 

be larger than Vi (closer to Vn) and the treatment efficacy will be less than e2 in Fig. 10. Note 

that tumor volume at time of efficacy assessment is, however, larger than tumor volume at 

time of diagnosis, Vd. According to RECIST, a Vt of more than 1.73Vd (20% increase in diameter) 

will be considered as progressive disease. For a tumor with doubling time shorter than 27 days 
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(SGR>2.6 %/d) and a treatment that completely blocks tumor growth, the drug will be 

considered without any effect and be categorized as progressive disease according to RECIST.  

 

Non-Hodgkin’s lymphoma patients response to therapy 

Estimated TR values of the applied treatment for the patients are shown in Table 5. Assuming a 

treatment that has only pure cytostatic effect, i.e. Vt=Vi, TR values were also calculated. Based 

on mean and standard deviation values from data in Table 5, frequency distribution of TR and 

LR were approximated with corresponding normal distribution with the same mean and 

standard deviation values. These distributions are shown in Fig.  11A-B for the observed TR and 

LR values as well as TR and LR values calculated for pure cytostatic treatment, respectively. 

 

Table 5) Treatment efficacy values for non-Hodgkin’s lymphoma patients treated with 
131

I labeled anti-

B1 antibody, retrieved from ref. (Sgouros, Squeri et al. 2003) and treatment efficacy calculated for a 

pure cytostatic treatment that can completely block tumor growth. 

Patient 

no. 

Treatment efficacy (observed) 

Treatment efficacy (calculated 

for a hypothetical pure 

cytostatic effect) 

TR LR 

Category 

according 

to RECIST 

TR LR 

Category 

according 

to RECIST 

1 2.65 0.73 SD 1.26 -0.31 SD 

2 7.42 2.56 PR 2.68 -0.79 PD 

3 5.15 1.00 SD 1.57 -0.79 PD 

4 4.451 2.4 PR 0.94 -0.24 SD 

5 2.80 1.39 PR 0.94 -0.16 SD 

6 4.50 -0.33 SD 2.83 -1.26 PD 

7 6.38 2.13 PR 1.42 -0.63 PD 

8 2.60 0.37 SD 1.26 -0.47 SD 

9 3.18 1.17 PR 1.10 -0.31 SD 

10 2.14 -0.46 SD 1.42 -0.79 PD 

11 4.52 0.32 SD 0 -0.94 PD 
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Figure 10)  Variation of the volume of a hypothetical exponentially growing tumor before and after 

treatment. TR=tumor response, LR=log-ratio measure for treatment effectiveness based on ref. (Karrison, 

Maitland et al. 2007), e1 and e2= underestimation of TR if pre-treatment or post-treatment growth of 

tumor is neglected, respectively. Err=overall underestimation of TR if pre-treatment and post-treatment 

growth of tumor are neglected (TR=LR+e1+e2).  
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Figure 11) A) Frequency distribution of TR and LR values based on the treatment results of 11 non-

Hodgkin’s lymphoma patients. The mean and standard deviation values were obtained from the 

sample and the corresponding normal distributions were drawn. TR: mean=4.16, standard 

deviation=1.69, LR: mean= 1.02, standard deviation=1.03. B) Frequency distribution of treatment 

efficacy for the same data as panel A by assuming that a treatment has only cytostatic effect. TR: 

mean=1.4, standard deviation=0.69. LR: mean= - 0.61, standard deviation=0.34. 
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Discussion 

SGR versus DT (Paper I, II) 

The results clearly show that selecting a proper variable for tumor growth rate is crucial. 

Recalculation of the previously published clinical data, as well as computer simulations and 

mathematical analysis, showed that quantitative analyses based on tumor growth rate can lead 

to erroneous and even contradictory results depending on the variable used for growth rate: 

SGR or DT. 

 

The quantity of tumor growth rate is used in a wide range of studies, e.g., when classifying 

tumors according to their growth rate (Arai, Kuroishi et al. 1994), or when the correlation 

between tumor growth rate with other factors is studied, e.g. patient survival (Balmukhanov, 

Turdugulov et al. 1982; Kuroishi, Tominaga et al. 1990; Arai, Kuroishi et al. 1994; Shiomi, 

Nishiguchi et al. 2001), radionuclide concentration in tumor (Duhaylongsod, Lowe et al. 1995; 

Shiomi, Nishiguchi et al. 2001), therapeutic effectiveness (Tsunoda, Shibusawa et al. 1992), and 

histological characteristics of tumor tissue (Lindell, Hartman et al. 2007). Furthermore, the 

results of all quantitative studies based on changes in growth rate may be different if 

parameters such as SGR and DT are used. To demonstrate such effects results based on 

published DT values were compared with those from calculated corresponding SGR values. 

These examples were selected, because the contradictory results of using SGR and DT could 

clearly be demonstrated. Otherwise, any set of tumor volume or tumor marker data collected 

at several time points can be selected to compare the results of quantitative analyses using DT 

and SGR. In general, the theoretical bases for the difference between DT and SGR are valid for 

any variable that might be measured with DT or SGR. 

 

SGR is the exponential tumor growth constant, which is the correct measure of tumor growth 

rate. SGR is least influenced by uncertainties of the measurement procedure and its frequency 

distribution is symmetric for an exponentially growing tumor, i.e. SGR is suitable for common 

statistical tests. When the growth rate of a tumor is measured with DT, the scale of 

measurement is nonlinearly transformed from the correct scale of SGR to the incorrect scale of 

DT (Eq. 6). The SGR of a tumor in clinical observations is in the order of a few tenths %/d to a 

few %/d. DT does not uniformly indicate the difference between growth rates of tumors 

throughout all ranges. In addition, DT does not have an absolute zero in its scale and DT is not 

defined when the growth rate is zero. Furthermore, the frequency distribution of DT (and log 

DT) is not symmetric, while most of the common statistical tests are based on the assumption 

of normally distributed variables.  
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Tumors may follow non-exponential growth model, e.g., the Gompertzian. Non-exponential 

growth models assume that the growth rate depends on time or size of tumor. The growth 

model of a non-exponentially growing tumor cannot be explained by a single value, and more 

parameters are needed to describe the true growth model of each tumor. As a result, the non-

exponential growth characteristics of tumors cannot be observed with only two volume 

measurements. In this work the difference between DT and SGR as quantities of tumor growth 

rate (at any time point or size) was studied. Therefore, the results are valid whether the growth 

rate is constant (exponential growth) or varying by time or size of tumor (non-exponential 

growth). However, non-exponential growth is not usually observed in natural growth of tumors 

in clinical studies, because the tumors can be followed only for a short time before the start of 

any treatment.  

 

Assuming that SGR is normally distributed the DT distribution will be positively skewed. This 

result is expected according to the nonlinear relationship between DT and SGR. It doesn’t mean 

that SGR is normally distributed in clinical observations, but the frequency distribution of SGR 

can represent the true distribution of growth rates of tumors (whether it is normal or not). 

Studies have shown that the frequency distribution of DT in clinical observations is positively 

skewed and the logarithmic transformation of DT is used by some researchers (Spratt and 

Spratt 1964; Spratt 1969; Shackney, McCormack et al. 1978; Balmukhanov, Turdugulov et al. 

1982; Kuroishi, Tominaga et al. 1990; Usuda, Saito et al. 1994). However, the logarithmic 

transformation cannot fully compensate for the asymmetry of DT distribution. Data on the real 

frequency distribution of SGR in clinical observations is not available, because DT has been the 

variable used for quantification of tumor growth rate so far. Furthermore, the true frequency 

distribution of tumor growth rate is not known in most studies and statistical approaches based 

on normal distribution of variable are used, e.g., Student’s t-test (Satkauskas, Batiuskaite et al. 

2005; Lee, Kim et al. 2008). Therefore, the same approach was used to compare groups of 

tumors both for SGR and DT, regardless of the distribution type of variables. This reveals 

another aspect of the importance of selecting a proper variable for tumor growth rate. 

Variations of tumor growth rate due to biological factors or measurement uncertainties are 

asymmetrically expressed by DT. DTm can thus correctly estimate the average growth rate of 

tumors only when the frequency distribution of DT is symmetric, i.e., when the uncertainty of 

growth rate estimation and the difference between the growth rates of tumors are relatively 

low. DTe is the only estimator that can give the true average growth rate of tumors. All 

measurement results, including negative SGR values, should be included in the calculation of 

mean SGR. It should be noted that the inclusion of negative values does not mean that such 

values must exist. Winer-Muram et al. observed the erroneous estimation of the average 

growth rate with DTm and made a better estimation by the reciprocal of the average of 

reciprocals of DT values (Winer-Muram, Jennings et al. 2002). The results of that method are 

comparable with those using SGR as growth rate parameter. 
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Differences in growth rates of tumors are mainly a result of different growth fractions, GF 

(fraction of tumor volume which consists of proliferating cells), and cell loss rates, CLR, i.e., the 

duration of cell cycle does not play a major role in the varying kinetics of tumor growth (Fingert, 

Campisi et al. 1993; Rew and Wilson 2000). Such a growth pattern can quantitatively be 

described using SGR. If the absolute value of CLR is added to the SGR of tumor volume, the SGR 

of the entire tumor in the absence of cell loss is obtained. The SGR of the proliferating cells can 

then be obtained by dividing the result by GF. In general, the volumetric SGR of a tumor with 

polyclonal cell population (a heterogeneous SGR distribution within the tumor) is the mean of 

SGR values weighted by the fraction of each cell component, including stromal and tumor cell 

populations, i.e., for a tumor with n cell components: V=V1+V2…+Vn, then 

V·SGRV=V1·SGR1+V2·SGR2…+Vn·SGRn. Similar to DTm within a population, calculation of 

volumetric growth rate of tumor as mean DT of its components will result in erroneous 

estimations of the growth rates. 

 

Tumor growth and dissemination in clinical studies (Paper III) 

The correlation between tumor doubling time and its volume is usually used in clinical studies, 

where the growth decline with tumor size is to be assessed (Nakamura, Roser et al. 2003; 

Ozono, Miyao et al. 2004). However, by definition this technique is not mathematically valid 

according to the Gompertzian growth model. The present study was thus based on the linear 

relationship between SGR and the logarithm of tumor volume according to the Gompertzian 

model. Our approach enabled us to estimate metastasis formation times and rates. Akanuma 

previously attempted to find the model constants for the Gompertzian growth model using the 

linear correlation between growth rate and the logarithm of tumor volume (Akanuma 1978). 

His method was based on a graphical estimation of SGR at different tumor volumes. Tumors 

were scaled according to their doubling time and very high or negative values were excluded. 

 

There are a number of non-exponential growth models available. In this work, only the 

Gompertzian growth model was evaluated because it is the most commonly adopted model in 

clinical studies (Bajzer 1999; Afenya and Calderon 2000). The approach is, however, 

theoretically applicable to any growth model.  

 

The results show that fitting of different growth curves to the volume of each tumor is not 

sufficient to estimate the true growth model of tumors, when the observation of tumor growth 

is limited in time, e.g. in clinical observations. In two patients, the growth of metastases was 

followed for several years, and still the direct curve fitting was insufficient to estimate the true 

growth model. It is also hazardous to extrapolate growth curves, because different growth 

models may converge during a short time period and then diverge. Estimations of tumor 

formation times or metastasis formation rates, based on extrapolations, can be largely 
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erroneous. The development of more precise quantitative approaches to retrieve all 

information from available clinical data is therefore crucial. A previous clinical study called for 

more accurate quantification of the growth rates of human cancer, providing data that is 

essential for understanding the biological variance of human cancers (Spratt, Meyer et al. 

1995). Variances in the observed growth rates of tumors of the same type either in one patient 

or in a population can be due to: (a) measurement uncertainties, (b) growth deceleration with 

increasing tumor volume, or (c) other biological differences between tumors. In this work a 

mathematically more correct approach was developed, compared to conventional methods, to 

analyze tumor growth in clinical studies. The results showed that for measurement of tumor 

growth rate at a specific time or volume, SGR is a more appropriate variable than DT, also when 

the variance was induced by measurement uncertainties (Paper I) or biological factors (Paper 

II).  

 

In Paper III the relation between SGR and the logarithm of tumor volume was used to assess 

the growth model of tumors in clinical studies. The growth model of groups of tumors of the 

same type either in one patient or in a group of patients was examined. A significant correlation 

between SGR and the logarithm of tumor volume in each group of tumors indicates that growth 

deceleration is an important factor in variances in the observed growth rates of tumors of the 

same type either in one patient or in a population. A general Gompertzian growth model might 

then estimate the growth of all tumors, i.e., the smaller tumors represent the growth of larger 

tumors when they were of small size and vice versa. Lack of correlation between SGR and the 

logarithm of tumor volume indicates that biological factors other than growth deceleration due 

to volume are more important in the variances in the observed growth rates of tumors of the 

same type either in one patient or in a population. These tumors may grow exponentially with 

different growth rates, or according to the Gompertzian model, but the model constants, SGR0 

and λ, may be distributed heterogeneously among the tumors. 

 

The correlation between SGR and the logarithm of tumor volume was statistically significant 

regarding the growth of meningiomas in a group of patients from the literature (Nakamura, 

Roser et al. 2003). Further analysis by dividing the material into small and large tumors also 

supported this result. A similar growth model observed for a group of patients with one tumor 

type corroborates that the response rate in this group is a suitable measure to assess the 

efficacy of novel therapeutics. The result from the second study of meningiomas (Nakasu, 

Fukami et al. 2005) was different with no significant correlation between SGR and the logarithm 

of tumor volume. 

 

According to the linear regression of tumor SGR with the logarithm of its volume, the growth of 

liver metastases in the carcinoid patient were described by a general growth model. This 
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patient was treated with octreotide. Since, based on curve fitting results, none of tumors in this 

patient deviate from exponential growth, the treatment was assumed to have no effect on 

growth of these tumors. The growth of lung metastases in the patient with renal cell carcinoma 

might biologically differ widely, but were still describable by a general growth model. Analysis 

of the metastasis formation rate showed that the estimated number of metastases was in line 

with such an interpretation. Carcinoid liver metastases probably grew according to a general 

Gompertzian growth model, while renal cancer metastases in the lungs probably grew 

exponentially with different growth rates. No evidence of non-exponential growth was 

observed. This result also highlights the need for careful interpretation of model fitting results. 

 

A higher metastasis formation rate in Fig. 9 does not necessarily mean a larger number of 

metastases at a time point, because the time origin in this figure is the time of the formation of 

the first metastasis, which is different for different models. A decelerating growth model, e.g. 

the Gompertzian model, implies a higher metastasis formation rate than the exponential 

model, but the number of metastases should be calculated for any specific time to compare 

different models. The estimated number of liver metastases in the patient with ileum carcinoid 

was 9 and 22 at the time of primary surgery using the exponential and the Gompertzian 

models, respectively. The value of 9 metastases is not realistic, since 24 metastases were 

imaged beside the studied metastases. The Gompertzian model thus provided the best 

estimate of the number of liver metastases. The estimated number of lung metastases in the 

patient with renal cell carcinoma was 14 and 84 at the time of primary surgery according to the 

exponential and the Gompertzian models, respectively. The value of 84 metastases is probably 

not realistic, since only one small, non-growing, metastasis was imaged beside the 7 lesions 

studied. If other metastases were present, they should have grown to visible size during 10 

years of follow-up. Here, the exponential model thus provided the best estimate of the number 

of lung metastases. Our results emphasize the importance of correct information on tumor 

growth to estimate the number and size distribution of metastases correctly. 

 

Tumor response to therapy (Paper IV) 

The presented quantity for objective assessment of solid tumor response to therapy, TR, is a 

general continuous measure regardless of the mechanism of the effect: cytotoxic and/or 

cytostatic. Studies have shown that tumor growth rate is a valuable parameter for, e.g., 

prediction of recurrence after surgery (Cucchetti, Vivarelli et al. 2005) and survival of patients 

(Blankenberg, Teplitz et al. 1995), and the change in tumor growth rate can serve as a surrogate 

end-point for determination of therapy response (Haney, Thompson et al. 2001). In this study, a 

simplified formula was derived based on the effect of therapy on kinetics of tumor growth. 

Tumor response was measured by the logarithm of the ratio of post-treatment tumor volume 

to the volume of tumor (at time of efficacy assessment) if therapy was not initiated. TR=0 
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indicates no effect and larger TR values distinguish more effective therapies from less effective 

ones. Negative TR value indicates post-treatment tumor swelling or increased growth rate.  

 

The log-ratio (LR) measure for tumor response to therapy, which was used by Kharison et al. 

(Karrison, Maitland et al. 2007) is calculated as the logarithm of the ratio of post-treatment 

tumor volume to the pre-treatment tumor volume. The natural growth of tumor between 

diagnosis and therapy initiation as well as after therapy is neglected in the LR value. There 

might be a few weeks or longer delay between tumor diagnosis and initiation of therapy due to 

practical limitations or necessity of further evaluations. Tumors continue to grow during this 

period. The volume of a tumor with doubling time of 70 days will increase 23% during a three 

week period. Repopulation of tumor cells during therapy is also an important factor that should 

not be neglected (Davis and Tannock 2000; Kim and Tannock 2005). TR values are thus larger 

than corresponding LR values for the same set of tumors. The overall under-estimation of 

treatment effectiveness by LR (Err) is larger for a rapidly growing tumor or when the time 

between pre-treatment and post-treatment volume assessments is long. The relative 

importance of Err also depends on the response effect level obtained, i.e., for a more effective 

treatment LR is less affected by this error.  

 

The generally used methods when comparing the post-treatment volume of tumor with the 

pre-treatment volume, e.g. in RECIST, will thus result in underestimation of treatment 

effectiveness. Analysis of the radionuclide therapy of Non-Hodgkin’s lymphoma patients 

showed that six of eleven patients would be categorized as having progressive disease, 

according to RECIST, if a pure cytostatic therapy that could completely block tumor growth was 

initiated. It has already been shown that RECIST underestimates the effect of imatinib on 

metastatic gastrointestinal stromal tumor (Choi, Charnsangavej et al. 2007). The fact that 

treatment effectiveness is underestimated by LR or RECIST has important implications on 

assessing the efficacy of new anticancer drugs or different combinations of therapies. 

 

The fact that clinical trial designs based on LR values are feasible was demonstrated (Karrison, 

Maitland et al. 2007), which suggests that TR can also be used for such studies. The main 

difference between TR and LR is the reference volume of tumor for efficacy assessment, which 

is the volume of corresponding untreated tumor or pre-treatment volume of tumor for TR and 

LR, respectively. Statistical aspects of using such continuous variables in clinical trials, e.g. 

handling extreme cases as complete disappearance of lesions are discussed elsewhere 

(Karrison, Maitland et al. 2007).  It is also noteworthy that any natural growth model can be 

used in the TR calculation (Eq. 17) when determining Vn.  
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The major limitation with TR, compared to LR, is the need of knowledge of the natural growth 

model and growth rate of the tumor. The natural growth rate can in theory be estimated 

before treatment initiation. In practice, treatment is usually initiated as early as possible after 

diagnosis. In the present study no such data was available and the growth rate was assumed to 

be the average re-growth rate of tumors after therapy, which in reality might be clearly 

different from the true growth rate of tumors before treatment. In this case, these data were 

used only for demonstration without any clinical interpretation of the results. If tumor volumes 

at two occasions prior to start of therapy are available, e.g. having two CT scans at diagnostic 

investigation and an investigation just before therapy initiation, natural SGR of tumor and 

consecutively Vn can be calculated. Taking both inter- and intra-operator as well as inter-scan 

variability into account, an increase of the measured volume by more than 25% is needed for a 

95% likelihood of being real growth rather than measurement inaccuracy. For an exponentially 

growing tumor increase of the measured volume will be more than 25% if the measurement 

time interval between two investigations is longer than 0.32 DT. If tumor volume prior to 

treatment is only available at one occasion, e.g. the first diagnostic imaging, tumor volume at 

time of therapy initiation can be estimated by back-extrapolation of volume regression curve 

during therapy, which might be described by exponential model (Stein, Figg et al. 2008). That 

measure together with the first tumor volume available can be used for estimation of the 

natural SGR of tumor.  

 

Tumor structure can be rather non-homogenous consisting of, e.g., different clones of cancer 

cells (with different sensitivities to an anticancer agent), stroma, and necrotic areas. The value 

of SGR of a tumor may thus be obtained from the spatial distribution of SGR values within the 

tumor: 

 

 

V

dzdydxz)y,sgr(x,
V

1
SGR ,    (20) 

 

where sgr(x,y,z) is for each part of tumor and SGR is for tumor volume. An effective treatment 

can reduce sgr(x,y,z) differently in different parts of the tumor depending on, e.g., 

pharmacokinetics and dose response of a systemically used agent. This will accordingly cause a 

reduction in SGR of tumor as was used in the presented model (Eq. D). Studies have shown that 

functional imaging variables might be correlated with tumor growth rate, e.g. using PET 

(Duhaylongsod, Lowe et al. 1995; Tann, Sandrasegaran et al. 2008). Further developments in 

this field may facilitate tumor SGR estimation by a functional imaging before treatment and 

also integration of TR based anatomical changes in tumor into other means of tumor response 

assessment by functional imaging with MRI (Chenevert, McKeever et al. 1997) or PET 

(Stroobants, Goeminne et al. 2003; Boss, Olmos et al. 2008). 



36 

 

Conclusions 
Quantification of the volumetric growth rate of tumor using doubling time can give very 

different results compared to using the specific growth rate, which is a correct quantity for 

tumor growth rate. The average growth rate of tumors must also be estimated by the mean 

SGR or its equivalent doubling time. The uncertainty of SGR can be reduced with increasing 

measurement time interval, or decreasing volume measurement uncertainties. In addition, SGR 

is a suitable parameter for common statistical testing based on the assumption of normally 

distributed parameters. This conclusion is also valid for determination of the increase rate of 

tumor marker level, whether it is correlated with the growth rate of tumor volume or not. 

 

With limited measurements available in clinical studies fitting of different growth curves to the 

data is not sufficient to estimate the true growth model of tumors. Analysis of the correlation 

between growth rate and the volume of tumor may give better estimate of tumor growth 

model for some types of tumors. Formation times and formation rates of metastases may also 

be estimated by the linear regression of SGR with the logarithm of tumor volume. 

 

Available criteria for assessment of tumor response to therapy, including RECIST, neglect 

natural growth rate of tumor, which leads to underestimation of treatment effectiveness. 

Logarithm of the ratio between treated tumor volume and the volume of corresponding non-

treated tumor is a general continuous quantity for tumor response, useful for both cytostatic 

and cytotoxic treatments. The concept may also accommodate integration of anatomical 

changes of tumor into changes in other biological characteristics of tumor after therapy. 
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Further studies 

 

This work can be categorized as translational research, where basic theory is directly applied to 

patient related data. It ended up with a new framework for quantitative studies in clinical 

settings rather than conclusive interpretations based on the presented clinical data. The results 

will hopefully lead to enhanced use of frequency distributions of SGR, and studies of correlation 

between SGR and different variables, e.g., different tumor markers levels or tumor volume, 

based on larger number of patient data to facilitate decisive interpretations in clinical studies. 

However, for future formulations based on SGR, it must be noted that SGR is a mathematical 

concept that can be virtually calculated and the absolute relative growth rate of tumor 

approaches SGR when the measurement time interval approaches zero. While %/d is 

appropriate for tumor growth rate in clinical settings, %/h or %/min are more appropriate for 

more rapidly growing tumors, e.g., in animal models or cell culture, respectively. 

 

An interesting feature of SGR is its capability for future multiscale modelings, where data on, 

e.g., cellular heterogeneities within tumor quantified with, e.g., functional imaging (SPECT, PET 

or MRI), can be linked to volumetric changes of tumor. Anatomical and functional means of 

evaluation of tumor response to therapy can also be integrated within such models. 

 

Tumor response, TR, measure formulated in this work can be used for future clinical trials on 

novel, or combinations of, anticancer therapeutic modalities. Accurate measure of TR facilitates 

a more correct evaluation of therapeutic efficacy in correlation with other variables, e.g., tumor 

size or growth rate and patient survival.  

 

TR is the measure of the effect of therapy on natural growth of tumor. However, the same 

approach can be used for evaluation of the effect of any other factor that may influence the 

tumor growth e.g., the function of the immune system. 
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