¥ UNIVERSITY OF GOTHENBURG

Fault Injection Technique for
Evaluating Erlang Test Suites

QUANG HOAT DO
TAIWO DAYO AJAKAIYE

Bachelor of Software Engineering and Management Thesis

Report No. 2009:072
ISSN: 1651-4769

University of Gothenburg
Department of Applied Information Technology
Gothenburg, Sweden, May 2009

Fault Injection Technique for Evaluating Erlang Teg Suites

Quang Hoat Do
IT University of Géteborg
Software Engineering and Management

Gothenburg, Sweden
quangd@ituniv.se

Abstract
In software testing, fault injection involves irjag
abnormalities into software programs. This can then
be used to evaluate test suites by checking how wel
they detect those abnormalities. This study inwlve
finding out what typical faults occur in Erlang pro
grams by analyzing data from Erlang/OTP releases,
official Erlang reference manual, Erlang bug report
and other related studies. It will also include pos-
als of how these faults can be injected into Erlang
programs based on our Erlang development expe-
rience and knowledge. The method adopted in this
study involves the implementation of a fault infact
tool which was evaluated on the test suite of Er-
lang/OTPR13B array module. This study contributes
knowledge to how fault injection can be used to- eva
luate Erlang test suites. This in summary involes
following (1) injecting non-trivial faults one attiame
into a target Erlang program; these are faults that
cannot be detected at compile time, by dialyzéryoa
test suite and cover information, and (2) evalugtin
the program test suite by studying if it can idigntine
injected fault, and if not why.

Keywords: fault injection, test suites, Erlang tadifault.

1. Introduction

In software testing, a test suite is a collectidn o
test cases that are used to test a software progithm
the aim of verifying and validating system’s beluavi
in accordance with customer’'s requirements. A test
suite is effective if it can detect present errdte
more errors it can detect the more effective ifTisst
suites are specific for individual programs, therefit
is logical to evaluate a test suite on the progitin
meant for. When evaluating a test suite on a progra
one is confronted with the problem that one doesn't
really know whether there are any errors in theecod
and if so, how many. One way to evaluate a tesé sui
is to monitor whether one can use it to find thmea
errors in codes as previous ones. One has a lig-of
ported errors from a previous test suite and apjplie
new test suite to see if these errors can be detect
The strength of this evaluation is that it showe oan
find errors in the target program. The weaknesses a
in the first place that there might be few errardhe
program and that it is hard to say that it is gaod
finding errors in general. In the second place, miag
conclude that it is as good as the previous tagtsu

Taiwo Dayo Ajakaiye
IT University of Géteborg
Software Engineering and Management

Gothenburg, Sweden
mailajaks@yahoo.com

already in place if one cannot find more errorsmtha
previous ones have done.

In order to evaluate test suites on software pro-
grams, fault injection technique [1] can be used. |
software testing, fault injection involves injedimab-
normalities into software programs. This can then b
used to evaluate test suites by checking how \welf t
detect those abnormalities. In order to use fanjéck
tion properly, one would like to inject faults intbe
program code that are typical for that kind of code
This differs from programming language to program-
ming language, e.g. in C [44] one can inject faults
around pointer dereferencing, whereas for Java [45]
that would not make sense. It also differs from one
application domain to another, e.g. in a highlyaon
rent programming domain, one would typically like t
inject faults that cause race conditions, whereas i
another domain one probably focuses on out-of-bound
arrays.

In a study titledEvaluating Test Suites and Ade-
quacy Criteria Using Simulation-Based Models of
Distributed Systemig], the authors touched on a test-
ing method based on discrete-event simulations, a
fault-based analysis technique for evaluating test
suites and adequacy criteria, and a series of stase
dies that validate the method and technique. Hbee,
fault-based analysis uses a related form of fanjtci
tion technique on the simulation-based specificat®m
provide a fault against which test suites and tlite-c
ria that formed them can be evaluated. Many studies
[3-21] have also adopted the use of fault injectio
technique in evaluating computer system dependabili
ty, understanding large systems failure, testirggridi
buted object systems, fault injection in distrillte
systems, evaluation of fault tolerant systems, etc.
However, none of these studies [3-21] have adddesse
how fault injection technique can be used for eaglu
ing Erlang program test suites. Erlang [22] waseflev
oped by Ericsson [23] in the early nineties. laison-
current functional programming language with specif
ic features for the development of distributed,ltfau
tolerant systems with soft real-time requirememts.
day, Erlang is used in several application domains
such as computer telephony, banking, TCP/IP pro-
gramming (HTTP, SSL, Email, Instant messaging,
etc) and 3D-modelling. This study will adopt thesus
of fault injection technique based on its apprdpria
ness to be used in evaluating software testingsuit

and will present a way in which fault injection che
used to evaluate Erlang testing suites.

The purpose of this qualitative study is to show
how Fault Injection Technigue can be used to evalua
Erlang software test suites. This will involve fing
out what typical faults occur in Erlang programs by
analyzing data from Erlang/OTP releases, official
Erlang reference manual, Erlang bug reports and re-
lated studies. It will also include proposals onwho
these faults can be injected into Erlang programs
based on our Erlang development experience and
knowledge. This study will help Erlang testers tatev
better test suites by presenting Erlang typicalt$ailt
provides the knowledge and knowhow in support of
developers who want to develop a fault injectiool to
for Erlang programs. This study will also help test
teams to evaluate how effective their test suitesira
terms of how much fault they can detect.

2. Research Method

The goal of the section is to find out how fauk in
jection technique can be used to evaluate testssuit
This includes searching various Erlang sources for
information about what typical faults exist, and-pr
posing ways in which these faults can be injectéd i
Erlang programs. The two phase qualitative approach
illustrated in figure 1 show how this was done.sThi

Erlang Erlang Erlang Related
Reference Bug Releases Studies
Manual Archive
Analysis 1 Analysis 2 Analysis 3 Analysis 4
Validate results of analyses by
Triangulation and Interviews
Erlang typical faults
Phase
Phase 2

Researchers’ experience
and knowledge

;

Propose solutions for
Injecting faults into Erlang programs

v

Validate solutions

Evaluate the solutions

Implements by code inspection and
the various using test suites to
fault injec- - check if faults were
tion solutions iniected or nc

I

Various ways of injecting faults
into Erlang programs

Figure 1 — Research method overview

approach was chosen because there was a need to
explore various Erlang resources for information
about Erlang typical faults. This is required tgeat
meaningful faults into Erlang programs which are
actually encountered while developing or running
Erlang programs. In phase 1, information aboutrigyla
faults were collected and analyzed from 4 datacssur
which are Erlang/OTP releases, official Erlang refe
ence manual, Erlang bug reports and related studies
The outcome of the analysis was validated and the
result was a descriptive list of Erlang typicallfauln
phase 2, based on the typical faults gotten from
phase 1, and together with our Erlang development
experience, we proposed and validated ways in which
these faults could be injected into Erlang programs

2.1. Phase 1

The following sections describe how Erlang typical
faults were realized by analyzing and validatingada
collected from the Official Erlang OTP releases; Er
lang-bug archives, Erlang reference manual andr othe
related studies (see table 1).

2.1.1.Data Collection

The following table describes the data source, data
type (e.g. text, source code etc.), data form (srd-
ten text, audio recording etc.) and data collectige
(e.g. documents, Interviews etc.) of this phasatd
collection.

Table 1 - Data Collection

Data source Type of Data Collection
data form type
Official Erlang OTP releas-| Erlang Written | Documents
es [24] Release text
notes
Official Erlang-bug arc- Text and Written | Documents
hives: May 2009 to Octobel source code| text
2008 [25]
Related study [26][27] Articles Written Documentg
text
Official Erlang Reference | Documen- | Written | Documents
Manual Version 5.7.1 [28] | tation text

2.1.2.Analysis

This section describes how the collected dség (
section 2.1.1) were analyzed. Separate analyses wer
carried out on the data obtained from individuaiada
sources. This was because each data source was
unique and thus required a different analysis. dihe
of these analyses was to find out “what typicalttau
occur in Erlang programs”.

Data source 1

Erlang Reference Manual [28] contains a complete
description of the Erlang programming languagesThi
was an ideal place to look for information on Edan
typical faults, because it contained informatiomowb
what typical faults could occur in Erlang programs.

Analysis 1

The various faults described here and the reasons
why they occur were simply collected from the Edan
reference manual.

Data source 2

The Erlang-bug archives contain Erlang/OTP bugs
that have been continuously reported since Apii20
[25]. This source was considered because we wanted
to see what type of Erlang faults developers eneoun
while developing Erlang programs. We were able to
go through the bug archives from May 2009 to Octo-
ber 2008 based on the available time for this study
Active discussions on Erlang faults between the Er-
lang/OTP development team and regular Erlang de-
velopers also took place here. This provided a omadi
from which reasons why these faults occur could be
easily obtained.

Analysis 2

The reasons for why the bugs reported in these arc-
hives occurred, were carefully studied and collkcte
Referenced modules in the Erlang/OTP releases (see
data source 3 bellow) were also studied to geepele
understand of the root causes of faults that were r
ported.

Data source 3

Erlang/OTP releases [24] comprises of source
code, a release note and documentation. The alailab
releases at the time of conducting this analysisswe
R10B-0 to R13B. This data source was studied when-
ever there was a reference to it from #wang bug
archivedata source above.

Analysis 3

References from thieug archiveqsee Analysis 2)
mostly refer to particular functions or moduleshiit
certain releases. The difference between the mod-
ule/function in the release where the faults were |
cated, and the same module/function in the next re-
lease where the faults were fixed, was studied with
aim of locating the root cause of the fault.

Data source 4

A couple of related studies have been conducted on
distributed and concurrent programs such as Erlang.
Mats Crongvist conducted a study Broubleshooting
a Large Erlang Systeif26]. The system under study
here was AXD 301 (a multi-service switch from
Ericsson AB), with over a 1000 usage registeredtas
when the study was conducted. Another study titled
Typing for Reliable Distributed Systems - Recent Ad
vanceg[27], touched on using advanced type systems
for statically detecting non-trivial programming @is
in distributed and concurrent programs. These studi
were chosen because they identified several typical
faults that occur in Erlang and distributed systems

Analysis 4

Erlang typical faults such as deadlock, race condi-
tion. were presented during the course of carrging
the studies described above. These faults weréestud
and relevant ones were collected and documented.

2.1.3.Validation

The results of all the analyses conducted on data
obtained from the Official Erlang OTP releases, Er-
lang-bug archives, Erlang reference manual andr othe
related studies (see section 2.1.2) were validtatdu
Erlang typical faults by conductingiangulation and
interviews(see below). This two strategies of valida-
tion were adopted to make the validation procesemo
concrete. The outcome of this validation led toea d
scriptive list of Erlang typical faults which areep
sented in the result section of this study (se¢iaec
3.1).

Triangulation

Triangulation [29] is a way of validating data col-
lected from different data sources especially wien
comes to small exploratory research such as this
study. Thus, this method has been adopted based on
its suitability. Applied to this study, faults obtad
from each data source were validated to be Erlang
typical fault by examining other data sources for
prove supporting this.

Interviews

Erlang typical faults collected by analyzing the-va
ious data sources in section 2.1.2 were also \elida
by conducting interviews with Erlang developers and
researchers. This method of validation was adojsted
order to get an input from those that actually paog
in Erlang and encounter these faults from timéne1

2.2. Phase 2

This phase was part of the steps that would show
how fault injection technique can be used to evalua
Erlang testing suites (see figure 1: phase 2). ;Thus
built on the result of Phase 1(see section 2.1)s Th
phase contained data collection, analysis and aalid
tion. It resulted in solutions on how non-triviaults
can be injected into Erlang programs (see sectidn 3

2.2.1.Data collection

This phase built on the various Erlang typical f&ul
realized from Phase 1 (see section 3.1). Proposing
how faults can be injected into Erlang programuat r
time required familiarity and development exper&nc
with the Erlang programming language. Therefore,
these typical faults and our Erlang developmentexp
rience and knowledge served as the data source for
this phase.

2.2.2.Analysis

The aim of the analysis conducted here was to find
out how the typical faults from Phase 1 can be in-
jected into Erlang programs at run time. Based aum o
development experience and knowledge of the Erlang
Programming language, we proposed solutions to how
this can be done. The various Erlang typical faults
described in section 3.1 were analyzed, firstly by
checking if they could not be detected at compile
time, and secondly that they could not be deteoted

evaluated by available Erlang tools suchdédyzer
andcover(see below). The reason for carrying out all
this checks was that we did not want to injectiativ
faults. Thus, solutions to how faults can be irgdct
into Erlang programs would be proposed for non-
compile time faults that couldn't be detected oa-ev
luated bydialyzer and the information frormcover
analysis These faults arfailed function clause match
deadlocks, race conditiorand failed case clause
match.A fault can only occur in a program if condi-
tions that cause it to arise are present; for exantipe
chance ofdeadlocksoccurring in an Erlang program
with only one process is very rare. With this imdhi
solutions were only proposed for the faults that ba
validated with the chosen target program. In ofder
the fault injection solutions to be validated, alfa
injection tool was implemented that executed tha-so
tions. This tool was then evaluated on the target p
gram.

Dialyzer

Dialyzer is a static analysis tool that identifies
software discrepancies such as type errors, unaeach
ble code etc. in a single Erlang module or appboeat
[30]. Usingdialyzeras a criterion for screening which
faults should or should not be used for fault itifgt
eliminates trivial faults such as type errors (&upng
argumentsn section 3.1.5) or unreachable code (e.g.
calling a non existing functioim section 3.1.9).

Cover

Coveris a coverage analysis tool for Erlang pro-
grams. It can be used to verify test cases andakem
sure that all relevant code is covered. It may &lso
helpful when looking for bottlenecks in the cod@&][3
Fault injection is irrelevant if faults are injedten the
code areas that are not covered by the availabte te
cases. With these test cases, injecting fault thsu
areas will never be detected. One of the conditions
with fault injection is that, it shouldn’t be impsible
for test suites to detect the injected faults. Haave
test suites cannot detect faults that are not tiefemn
the part of code they test. Therefareyeris used as a
criterion for evaluating where faults should be in-
jected, which in this case are parts of the coder=al
by available test suites.

The next section describes how the solutions were
implemented, what target program was used and how
the proposed solutions were validated.

2.2.3.Validation

The solutions provided in the previous section
needed to be evaluated on Erlang programs in eoder
validate their workability. This was done by imple-
menting a Fault Injection Tool (FIT) which executed
these solutions. The FIT used Erlasymtax_too[32]
to traverse through the target program until isgeta
point in the code where faults can be injected. Whe
using the syntax_togl an Erlang module is trans-
formed into a list of Erlangyntax_tree [33], where

each tree represents a part of the module, lelf'shis

list amodule syntax tre€clements of this list could be
attributes such as module name, exported functions,
function definition and other parts which make bp t
Erlang module. Eaclsyntax_treecomposes of sub-
trees which in turn arsyntax_treesLeaf of asyn-
tax_treeis defined as the tree whose sub-tree is an
empty list. Hence, the way to traverse through an E
lang module is using recursion to traverse deep int
each syntax tree’'s sub trees until its leaves are
reached. Faults were injected into an Erlang progra
by traversing through the module syntax tree until
appropriate places for fault injection were fouseg
section 3.3).

The FIT was evaluated by injecting faults ir@o
target program. The target program in this case was
the array module [34] from theErlang OTPrelease
R13B.Thearray module was chosen because it came
with an official pre-written test suite with 100%de
coverage (see Appendix B), and developed using the
widely usedEunit unit testing framewor[35]. After
using the FIT to inject faults into the target pam,
the output code was inspected to determine if the
faults were injected or not. Tharay test suitewas
also evaluated by checking if it could detect the i
jected fault. During the fault injection and code i
spections, several new faults were discovered that
could be injected into the module in question. What
made these faults interesting was that they cotluk’
detected by the available test suite. These faurks
presented in section 3.2 while solutions on howy the
can be injected are presented in section 3.3. Tihe o
come of this process led to a list of validatediohs
on how to inject certain faults into Erlang progeam
(see section 3.3).

3. Results

The aim of this study was to find out how fault in-
jection technique can be used to evaluate Erlasig te
suites. In other to do this we set out to do twagh:
(1) find out what typical faults occur in Erlangopr
grams by analyzing data from Erlang/OTP release
notes, official Erlang documentation and Erlang bug
reports, and (2) propose how these faults can be in
jected into Erlang programs based on our Erlang de-
velopment experience and knowledge. This section
presents the results of our findings based on the m
thod utilized in section 2.

3.1. Erlang typical faults

The following sections describe Erlang typical
faults; they are the validated results of the asialy
carried out in Phase 1(section 2.1). These faat® h
been collected by going through the several differe
resources.

3.1.1.Failed function clause match

This fault occurs when the pattern of a funts
argument does not match any clause within that-func
tion [28]. An example of this fault occurring ingr

grams can be drawn from the bug found in Er-
lang/OTP R12B-5 by Matt Evans.

‘The inets HTTP code does not handle HTTP statute ¢
206 (Partial Content) responses when using streaming.
Handling this is required when a server streams/qudrt of
a file (i.e., a range) and thus returns 206 ratllean 200.
Without this fix, on Linux the client would just toand eat
100% of the CPU.’

Official Erlang bug Reports [36]

Taking a closer look at thaets/src/http_client/
httpc_handler.erimodule in Erlang releasB12B-5
we observed that there was actually no clause han-
dling status code 206 (see below).

%% Stream to caller
stream(BodyPart, Request = #request{stream = Self},
200) when Self == self;Self == {self,once} ->
httpc_response:send(Request#request.from,
{Request#request.id, stream, BodyPart}),
{<<>>, Request};
stream(BodyPart, Request = #request{stream = File-
name}, 200) when is_list(Filename) ->
% Stream to file
case file:open(Filename, [write, raw, append,
delayed_write]) of
{ok, Fd} -> stream(BodyPart,
Request#request{stream = Fd}, 200);
{error, Reason} ->
exit({stream_to_file_failed, Reason})
end;
stream(BodyPart, Request = #request{stream =
200) -> % Stream to file
case file:write(Fd, BodyPart) of
ok -> {<<>>, Request};
{error, Reason} ->
exit({stream_to_file_failed, Reason})

Fd},

end;
stream(BodyPart, Request,_) ->
% only 200 responses can be streamed
{BodyPart, Request}.

According toHypertext Transfer Protocol - HTTP
/1.1 [37], http applications are not required to under-
stand all registered codes but such understanding i
desirable. In this case, the status code had rent be
recognized inR12B-5inets/src/http_client/httpc_han-
dler.erl. This led to a critical fault (blocks and con-
sumes 100% of CPU) occurred in a Linux machine
running this application. The reason why this hap-
pened by looking at the code above is that, anly cal
received by thestream function that doesn’'t match
any previous clause is caught at the shaded clduse.
case where thetreamfunction is called with status
code 206 (e.gstream(BodyPart, Request = #re-
quest{stream = Fd}, 206) will be handled in
stream(BodyPart, Request,). This will result in a
wrong behavior because status code 206 should be
handled differently or at least as 200 [37]. Tlaslf
was noted and fixed in Erlang release R13A, by ac-
cepting any status code passed to the stream dancti
and handling status code 200 and 206 the same way.
See code below.

%% Stream to caller
stream(BodyPart, Request = #request{stream = Self},
Code) when ((Code == 200) or (Code == 206)) and
((Self == self) or (Self == {self,once})) ->
httpc_response:send(Request#request.from,
{Request#request.id, stream, BodyPart}),
{<<>>, Request};

stream(BodyPart, Request = #request{stream = Self},
404) when Self == self; Self == {self, once} ->
httpc_response:send(Request#request.from,
{Request#request.id, stream, BodyPart}),
{<<>>, Request};

stream(BodyPart, Request = #request{stream = File-
name}, Code) when ((Code == 200) or (Code ==
206)) and is_list(Filename) -> % Stream to file
case file:open(Filename,[write, raw, append,
delayed_write]) of
{ok, Fd} ->
stream(BodyPart,Request#request{stream
= Fd}, 200);
{error, Reason} ->
exit({stream_to_file_failed, Reason})
end;

stream(BodyPart,Request=#request{stream = Fd},Code)
when ((Code == 200) or (Code == 206)) ->
% Stream to file
case file:write(Fd, BodyPart) of
ok -> {<<>>, Request};
{error, Reason} ->
exit({stream_to_file_failed, Reason})
end;

stream(BodyPart, Request,_) ->
% only 200 and 206 responses can be streamed
{BodyPart, Request}.

3.1.2.Race condition

This fault occurs when accesses to a shared re-
source are not properly synchronized [38]. An exam-
ple of this fault happening in an Erlang program ca

be taken from a program that was running
lists:foreach(fun erlang:garbage_collect/1,

erlang:processes()) every ten minutes [39]. While
this program was been tested, some abnormal beha-
viors such as stucten_server was discovered [40]
This led to the uncovering of a race condition faul
all R11's and R12’s versions of thénp emulator
[41]. Quoting the Erlang/OTP team, the reason the
fault occurred was:
‘A process being garbage collected via thgar-
bage_collect/1 BIF or the check_process_code/2 BIF
didn't handle message receive and resume correciing
the garbage collect. When this occurred, the preces
turned to the state it had before the garbage collestead
of entering the new state.’

Rickard Green, Erlang/OTP, Ericsson AB [42]

This shows that any program that runs two or more
processes in parallel is capable of experiencirg th
type of fault if processes sharing or using the esam
recourses are not properly scheduled and synchro-
nized.

3.1.3.Deadlocks

This fault occurs when two or more processes are
waiting for the other to finish [26]. Deadlock was
tagged a common fault in Erlang during a study on
Troubleshooting a Large Erlang Systg@6]. This
study involved a large industrial software projpat
marily developed in Erlang, where the implementatio
and testing phases were studied with a focus on pro
gramming errors. This project involved around 2.1
million lines of code contributed by about 300 pro-
grammers. Another study title@lyping for Reliable
Distributed Systems - Recent Advan[24, also de-
scribed deadlock as non-trivial fault in distribdind

concurrent programs such as Erlang. This fault has
also been confirmed to be a typical Erlang fawdtrfr
interviews conducted with several Erlang developers
and a researcher. The transcripts from the intexvie
can be viewed in Appendix A.

3.1.4.Runaway process

Runaway process occurs when a process consumes
resources (such as memory or CPU time), without
doing any useful work; this is typically the resafta
non-terminating loop [26]. Runaway process was
tagged a common fault in Erlang during a study on
Troubleshooting a Large Erlang Systg26]. This
fault has also been confirmed to be a typical Eylan
fault from interviews conducted with several Erlang
developers and researchers. See Appendix A for tran
scripts from the interviews conducted.

3.1.5.Wrong argument

This fault occurs when a function is called with an
argument having a wrong data type, or when the ar-
gument is badly formed [28]. For example, a call is
made to a function that receives a string and agsive
it to an atom, but a number is passed to it instemth
as list_to_atom(5). This fault has been docu-
mented as a typical fault in Erlang reference mhnua
and has also been confirmed to be a typical Erlang
fault from interviews conducted with several Erlang
developers and a researcher (See Appendix A).

3.1.6.Bad argument in arithmetic expression

This fault occurs when an arithmetic expression is
provided with wrong operand [28]. For example, an
addition between a number and an Erlang atom such
as10+a will result in a fault because arithmetic ad-
dition can only be made with numeric data typeshsuc
asint, float. This fault has been documented as a typi-
cal fault in Erlang reference manual and has been e
perienced in practice based on the interviews con-
ducted with Erlang developers and a researcheerRef
to Appendix A for more on the interviews.

3.1.7.Failed case expression match

This fault occurs when no matching branch is found
when evaluating a case expression [28]. For exgmple
the piece of code below will result infailed case
expression matchecauseonnect will not match any

of the available branches. This fault has been de-
scribed as a typical fault in Erlang reference nanu
and has also been confirmed to be a typical Erlang
fault from interviews conducted with several Erlang
developers and researchers. See Appendix A for tran
scripts from the interviews.

Function definitionz(a) ->
case A of
reply -> response;
call -> answer
end.

Function caltl f(connect)

3.1.8.Failed match expression
This fault occurs when the value from the tigh
hand side of a pattern match expression does not

match with the value on the left hand side [28].
For example, the following piece of coglame,
FirstName} = {name, “John”, "doe"} will result in

a failed match expressiofault because the left hand
tuple expects a tuple with an ateame and any other
literal to be matched with it but instead gets pleu
with size three. This fault has been documented as
typical fault in Erlang reference manual and ha® al
been confirmed to be a typical Erlang fault frortein
views conducted with several Erlang developersaand
researcher. See Appendix A for transcripts from the
interviews.

3.1.9.Calling a non-existing function

This fault occurs when a function call is made to a
non-existing function [28]. This fault has been doc
mented as a typical fault in Erlang reference mhnua
and has also been confirmed to be a typical Erlang
fault from interviews conducted with several Erlang
developers and a researcher. See Appendix A for tra
scripts from the interviews.

3.1.10. System limit

System limitoccurs when a system limit has been
reached [28]. For example if the maximum process
limit of an Erlang program is 1000 as returnedeby
lang:system_info(process_limit). Then a system
limit fault will occur if the program tries to create
more than 1000 process. Just likeerviewee 1said
(See Appendix A), this might indeed be quite common
in a not configured environment where system re-
sources have not been properly configured and also
during machine load. This fault has also been docu-
mented as a typical fault in Erlang reference mhnua

3.2. Target program'’s faults

While the array module was used as the target
program for evaluating the fault injection toolols
tions (see 2.2.3), several faults were discovered.
These faults are presented here because this digcov
shows another approach in which fault injection can
be used to evaluate Erlang test suite. Apart frook-
ing at external resources for typical faults than be
used during fault injection with the aim of evaiogt
the test suite of the program in question. Oneatan
study the internals of the program for possibldtau
that can be injected. These faults can then bergene
lized to the level where they can be injected witzer
similar programs. The following sections presem th
generalized faults.

3.2.1.0mitted guard

This fault occurs when a certain guard required for
a function to work correctly is missing. An exampde
a function that does the division between two num-
bers; there should be a guard to check for divisipn
zero which leads to a fault, suchvagn Y =/=0 in
the function below
div(X, Y) -> X /Y.

3.2.2.Missing Constraint

This fault arises when some constraints required
by a function to work correctly is missing. An exam
ple is a function that returns the absolute of miper;
there should be aif statement to handle the case
where input is a negative number in the function
abs(X) -> X. Such arnif statement could be added to
this function as

abs(X) ->
ifX>=0->X;

true -> -X
end.

3.2.3.Under specification

This fault occurs when there is an extra constraint
in a function that limits its accepted inputs. Bels
an example of a function that returns the doubla of
number. The extra constrairt> 0 is not needed in
this case; otherwise the function will not be atie
handle negative numbers.

double(X) when is_number(X), X > 0 -> X*2.

3.2.4.Swapped argument

This fault occurs in a function definition where
two of its arguments are in the wrong order. Belsw
an example of a function that returns the weekday f
the input date. The order of argumemtsith andDay
is not correct.

weekday(Year,Day,Month) ->

case calendar:day_of_the_week(Year,Month,Day) of
1 ->"Monday";

"Tuesday";

"Wednesday";

"Thursday";

"Friday";

"Saturday";

"Sunday"

No oA wN
VAR VARVARVS

end.

3.3. Solutions for injecting typical faults into
Erlang programs

This section presents the various ways of injecting
faults into Erlang programs. It is the validatedules
from the analysis conducted pinase 2of the research
method (see section 2.2), which includes both solu-
tions for injecting the validated typical faultscanew-
ly discovered faults in the targatray module.

For each fault, the solution is provided wiiolu-
tion description on how it can be injected into the tar
get program, thélgorithm for injecting the fault, an
Examplefrom the array module in the Erlang/OTP,
the Test casesghat test this part of code, tltput of
the test suitdbefore and after injecting the fault, and
the Meaning of test suite’s outputbat explains the
reason for the result from the test cases aftecfing
fault in comparison to the previous one.

As mentioned in the research method (section 2.2),
the solutions for injecting faults into Erlang prams
should be non-trivial. This means the programsrafte
fault injection must be compiled normally withourtya
warnings. The fault should also be injected in cesle
code by checking witltover [31] and should not be
detected bylialyzer[30].

The diagram below depicts an encapsulation of
how failed function clause match, failed case expres-
sion match(see section 3.1pmitted guard, missing
constraint, under specificatiorand swapped argu-
mentfaults (see section 3.2) will be injected into the

Transform the target module intdviodule syntax tree
Create an emptCandidate lis;

Search for the next candidate;
Add to the
Candidate list

no
Candidateist
empty ?
»| NO
v

Take the next candidate from tBandidate list
Locate this candidate in tfModule syntax tree
Inject the fault into Module syntax treg
Compile module;

Have next
candidat?

Figure 2 — Fault injection algorithm
target Erlang program (tharray module). Module
syntax treds a list ofsyntax_tree (see section 2.2.3).
Candidateis asyntax_treein the Module syntax tree
where a particular type of fault can be injectedr F
example, it is a function when the fault to be abgel
is failed function clause matabr anif statement when
the fault to be injected imissing constraintCandi-
date listis a list of Candidates gotten from going
through theModule syntax treeThe highlighted parts
are unique for each fault injection solution andl bé
described in more detail under the following setdio

3.3.1.Failed function clause match
Solution

This fault is injected by removing the last funetio
clause from a function with at least two function
clauses. It is typical in Erlang that the lastuska
should be the one that handles all other remaining
cases. Removing this will create more severe fault,
which should be detected by a good test suite.

Algorithm

The algorithm for injecting this fault follows the
one described in Figure 2. The highlighted parth@
figure should be replaced as in the table below.

Original parts
Search for the next candidate;

Replaced parts

Search for a function with at
least two function clauses;
Inject the fault by removing
the last function clause;

Inject the fault into Module syntax tre

Example

The function in thearray module prior to injecting
the failed function clause matcfault looked like be-
low:

new_1([fixed | Options], Size, _, Default) ->
new_1(Options, Size, true, Default);
new_1([{fixed, Fixed} | Options], Size, _, Default)
when is_boolean(Fixed) ->
new_1(Options, Size, Fixed, Default);
new_1([{default,Default} | Options],Size,Fixed,_) - >
new_1(Options, Size, Fixed, Default);
new_1([{size, Size} | Options], _, _, Default)
when is_integer(Size), Size >= 0 ->
new_1(Options, Size, true, Default);
new_1([Size | Options], _, _, Default)
when is_integer(Size), Size >= 0 ->
new_1(Options, Size, true, Default);
new_1([], Size, Fixed, Default) ->
new(Size, Fixed, Default);
new_1(_Options, _Size, _Fixed, _Default) ->
erlang:error(badarg).

After injecting the fault, the highlighted function
clause was removed and this function looks like:

new_1([fixed | Options], Size, _, Default) ->
new_1(Options, Size, true, Default);
new_1([{fixed, Fixed} | Options], Size, _, Default)
when is_boolean(Fixed) ->
new_1(Options, Size, Fixed, Default);
new_1([{default, Default} | Options], Size, Fixed,

>
new_1(Options, Size, Fixed, Default);
new_1([{size, Size} | Options], _, _, Default)

when is_integer(Size), Size >= 0 ->
new_1(Options, Size, true, Default);
new_1([Size | Options], _, _, Default)
when is_integer(Size), Size >= 0 ->
new_1(Options, Size, true, Default);
new_1([], Size, Fixed, Default) ->
new(Size, Fixed, Default).

Test cases

Below are some of the test cases included in the
array module test suite. These test cases test that the
function handles the task performed by the removed
clause.

?_test(new(10)),

?_assert(new(fixed) =:= new(0)),

?_assert(new(10) =:= new([{size,0}, {size,5},
{size,10}])),

?_assert(17 =:= array:size(new(17))),

?_assert(is_array(new(10))),

?_test(set(9, 17, new(10))),

?_assert([undefined] =:= to_list(new(1))),

?_assert([] =:= sparse_to_list(new(1))),

?_assert([{0,undefined},{1,undefined}] =:=

to_orddict(new(2))),

Output of test suite before injecting fault
All 284 tests passed.

Output of test suite after injecting fault
Failed: 41. Skipped: 0. Passed: 243.

Meaning of test suite’s outputs
The injected fault was easily detected by the test
suite because there were test cases covering it.

3.3.2.Failed case clause match
Solution

This fault is injected by removing the last case
clause from aase statement with at least two case
clauses. lItis typical in Erlang that the lastecaluse
usually handles the remaining cases. Removing this
will create more severe fault, which should be de-
tected by a good test suite.

Algorithm

The algorithm for injecting this fault follows the
one described in Figure 2. The highlighted parthén
figure should be replaced as in the table below.

Original parts Replaced parts

Search for the next candidate; Search for @asestatement
with at least two case clauseés;
Inject the fault by removing
the last case clause;

Inject the fault into Module syntax trg

Example
The function inthe array modulgrior to injecting
thefailed case clause matdhult looked like below:
sparse_push_tuple(0, _D, _T,L)-> L;
sparse_push_tuple(N, D, T, L) ->
case element(N, T) of
D -> sparse_push_tuple(N - 1, D, T, L);
E -> sparse_push_tuple(N - 1, D, T, [E | L])
end.

After injecting the fault, the highlighted clausasv
removed and the function looked like:
sparse_push_tuple(0, _D, _T,L)-> L;
sparse_push_tuple(N, D, T, L) ->

case element(N, T) of
D -> sparse_push_tuple(N -1, D, T, L)
end.

Test cases

Below are the test cases included in #reay
module test suite which test the part of code whieze
fault was injected. The target functieparse_push_
tuple/4 was called by functiosparse_to_list/1

sparse_to_list_test_() ->
NO = ?LEAFSIZE,
[?_assert([] =:= sparse_to_list(new())),
?_assert([] sparse_to_list(new(1))),
?_assert([] =:= sparse_to_list(new(1,

{default, 0}))),
?_assert([] =:= sparse_to_list(new(2))),
?_assert([] =:= sparse_to_list(new(2,

{default, 0}))),
?_assert([] =:= sparse_to_list(new(NO,

{default,0}))),
?_assert([] =:= sparse_to_list(new(NO+1,

{default,1}))),
?_assert([] =:= sparse_to_list(new(N0+2,

{default,2}))),
?_assert([] =:= sparse_to_list(new(666,

{default,6}))),

?_assert([1,2,3] =:= sparse_to_list(set(2,3,
set(1,2,set(0,1,new()))))),
?_assert([3,2,1] =:= sparse_to_list(set(0,3,
set(1,2,set(2,1,new()))))),
?_assert([0,1] =:= sparse_to_list(set(N0-1,1,
set(0,0,new())))),
?_assert([0,1] =:= sparse_to_list(set(NO,1,
set(0,0,new())))),

?_assert([0,1] =:= sparse_to_list(set(NO+1,1,
set(0,0,new())))),
?_assert([0,1,2] =:= sparse_to_list(
set(NO*10+1,2,set(N0*2+1,1,set(0,0,new()))))),
?_assertError(badarg, sparse_to_list(
no_array))].

Output of test suite before injecting fault
All 284 tests passed.

Output of test suite after injecting fault
Failed: 6. Skipped: 0. Passed: 278.

Meaning of test suite’s outputs

The injected fault was easily detected by the test
cases. This means the test suite is effective dnoug
detecting the injected fault.

3.3.3.0Omitted guard
Solution

This fault is injected by removing thehen guard
from a function clause of a function containindeast
one guard. Even though this is particular in dney
module, this solution can be applied to any other E
lang programs that using guard.

Algorithm

The algorithm for injecting this fault follows the
one described in Figure 2. The highlighted parth@
figure should be replaced as in the table below.

Original parts Replaced parts

Search for the next candidate; Search for a function contaip-
ing at least avhen guard;
Inject the fault into Module syntax trg Inject the fault by removing &
when guard in the function;

Example
The function in therray module prior to injecting
theomitted guardault looked like below:

new_1([fixed | Options], Size, _, Default) ->
new_1(Options, Size, true, Default);
new_1([{fixed, Fixed} | Options], Size, _, Default)
when is_boolean(Fixed) ->
new_1(Options, Size, Fixed, Default);
new_1([{default, Default} | Options], Size, Fixed,
) ->
new_1(Options, Size, Fixed, Default);
new_1([{size, Size} | Options], _, _, Default)
when is_integer(Size), Size >=0 ->
new_1(Options, Size, true, Default);
new_1([Size | Options], _, _, Default)
when is_integer(Size), Size >= 0 ->
new_1(Options, Size, true, Default);
new_1([], Size, Fixed, Default) ->
new(Size, Fixed, Default).
new_1(_Options, _Size, _Fixed, _Default) ->
erlang:error(badarg).

After injecting the fault, the highlighted guard sva
removed and this function looked like:

new_1([fixed | Options], Size, _, Default) ->
new_1(Options, Size, true, Default);
new_1([{fixed, Fixed} | Options], Size, _, Default)
->
new_1(Options, Size, Fixed, Default);
new_1([{default, Default} | Options], Size, Fixed,
) ->
new_1(Options, Size, Fixed, Default);
new_1([{size, Size} | Options], _, _, Default)
when is_integer(Size), Size >= 0 ->
new_1(Options, Size, true, Default);
new_1([Size | Options], _, _, Default)
when is_integer(Size), Size >= 0 ->
new_1(Options, Size, true, Default);

new_1([], Size, Fixed, Default) ->
new(Size, Fixed, Default).
new_1(_Options, _Size, _Fixed, _Default) ->
erlang:error(badarg).

Test cases
Below are the test cases included in #reay
module test suite. These test cases test the duncti
clause contains the removed guard.
?_test(new({fixed,true})),
?_test(new({fixed,false})),
?_test(new([{size,100},{fixed,false},
{default,undefined}])),
?_assert(new() =:= new([{size,0},
{default,undefined},{fixed,false}])),
?_assert(new() =:= new(0, {fixed,false})),
?_assert(new(10, []) =:= new(10,
[{default,undefined} {fixed,true}])),
?_assertMatch(#array{size=N0,max=N0,elements=N0},
new(NO, {fixed,false})),
?_assertMatch(#array{size=N01,max=N1,elements=N1},
new(NO1, {fixed,false})),
?_assertMatch(#array{size=N1,max=N1,elements=N1},
new(N1, {fixed,false})),
?_assertMatch(#array{size=N11,max=N2,elements=N2},
new(N11, {fixed,false})),
?_assertMatch(#array{size=N2, max=N2, default=42,
elements=N2},new(N2,[{fixed,false},{default,42}])),
?_assert(is_array(new(10, {fixed,false})))
?_assertNot(is_fix(new({fixed,false}))),
?_assertNot(is_fix(new(10, {fixed,false}))),
?_assert(is_fix(new({fixed,true}))),
?_assert(is_fix(new(10, {fixed,true}))),
?_assert(is_fix(fix(new({fixed,false})))),
?_assertError(badarg, set(10, 17, fix(new(10,
{fixed,false})))),
?_assert(new(17, {fixed,false}) =:= relax(new(17)))
?_assert(new(100, {fixed,false}) =:=
relax(fix(new(100, {fixed,false})))),
?_assert(array:size(resize(array:set(99, 0, new(10,
{fixed,false})))) =:= 100),
?_assert(sparse_size(array:set(99, 0, new(10,
{fixed,false}))) =:= 100),

Output of test suite before injecting fault
All 284 tests passed.

Output of test suite after injecting fault
All 284 tests passed.

Meaning of test suite’s outputs

The outputs show that the injected fault was not
detected by the test suite. The reason is eitleetetst
suite is not effective enough and/or there is some
problem with the code. Examining the test suite-con
firms that there wasn’t any negative test casetHiw
function clause, i.e. test case with one of thaiiss
{fixed, Any} while Any is anything other thamue
or false . An example of a test case which covers this
and that could be included in the test suite is
?_assertError(badarg,new({fixed,any})) How-
ever, a closer look at the code reveals that the re
moved guardvhen is_boolean(Fixed) in this case is
unnecessary code. In other words, this is an over-
specification phenomenon where in this case the pro
grammer was not 100% sure that the second argument
of the tupleffixed, value} is always a Boolean val-
ue. In thearray module, an array is created with either
function new/o , new/2 or new/2 , which will call func-
tion new_0/3 where the array size is either fixed or
not. This will in turn call functiomew_1/4 with the
Fixed input as eitherffixed, true} or {fixed,
false}

10

3.3.4.Missing Constraint
Solution

This fault is injected by replacing tliestatement
with one of its clauses. Even though this is speéif
the array module, this solution can be applied to any
other Erlang program that usesifigtatement.

Algorithm

The algorithm for injecting this fault follows the
one described in Figure 2. The highlighted parthén
figure should be replaced as in the table below.

Original parts Replaced parts

Search for the next candidate; Search for aif statement
with at least two clauses;
Inject the fault into Module syntax trg Inject the fault by replacing
theif statement with one of
its clauses;

Example
The function in thearray module prior to injecting
themissing constrainfault looked like below:

resize(Size,#array{size = N,max = M,elements = E}=A)
when is_integer(Size), Size >= 0 ->
if Size >N ->
{E1, M1} = grow(Size-1, E,
if M>0->M;
true -> find_max(N-

1, ?LEAFSIZE)

end),
Attarray{size = Size,
max = if M >0 -> M1;

true -> M
end,
elements = E1};

Size <N ->

Attarray{size = Size};
true ->

A

end;

resize(_Size, _) ->
erlang:error(badarg).

After injecting the fault, the highlighted code was
removed and the function looked like:

resize(Size, #array{size = N, max = M, elements =
E}=A)
when is_integer(Size), Size >= 0 ->
{E1, M1} = grow(Size-1, E,
ifM>0->M;
true -> find_max(N-1, ?LEAF-
SIZE)
end),
Attarray{size = Size,
max =if M >0 -> M1;
true -> M
end,
elements = E1};
resize(_Size, _) ->
erlang:error(badarg).

Test cases
Below are the test cases included in #reay

module test suite. These test cases test the duncti
that contains the replacédstatement.
resize_test_() ->

[?_assert(resize(0, new()) =:= new()),

?_assert(resize(99, new(99)) =:= new(99)),

?_assert(resize(99, relax(new(99))) =:= re-
lax(new(99))),

?_assert(is_fix(resize(100, new(10)))),

?_assertNot(is_fix(resize(100, relax(new(10))))),

?_assert(array:size(resize(100, new())) =:= 100),

?_assert(array:size(resize(0, new(100))) =:= 0),

?_assert(array:size(resize(99, new(10))) =:= 99),

?_assert(array:size(resize(99, new(1000))) ==
99),

?_assertError(badarg, set(99, 17, new(10))),

?_test(set(99, 17, resize(100, new(10)))),

?_assertError(badarg, set(100, 17, resize(100,
new(10)))),

?_assert(array:size(resize(new())) =:= 0),
?_assert(array:size(resize(new(8))) =:= 0),

?_assert(array:size(resize(array:set(7, 0,
new()))) =:= 8),

?_assert(array:size(resize(array:set(7, 0,
new(10)))) =:= 8),

?_assert(array:size(resize(array:set(99, 0,

new(10,{fixed,false})))) =:= 100),
?_assert(array:size(resize(array:set(7, undefined

new()))) =:= 0),

?_assert(array:size(resize(array:from_list([1,2,3,u n
defined]))) =:= 3),

?_assert(array:size(resize(array:from_orddict([{3,0 }
,{17,0},{99,undefined}])))
=:=18),
?_assertError(badarg, resize(foo, bad_argument))]

Output of test suite before injecting fault
All 284 tests passed.

Output of test suite after injecting fault
All 284 tests passed.

Meaning of test suite’s outputs

The outputs show that the injected fault was not
detected by the test suite. The reason is thatreite
test suite is not sufficient and/or there is somabfem
with the code. Examining the code exposes an “over-
implementation” phenomenon in the code. In this
case, the second and the last clause of the albove
statement are not needed. The first clause already
ers the second and the third ones. The new arzay si
is always set, even when new size equals the durren
one. In addition, thenax andelements attributes were
implemented in a way that they are only changed
when the new array size is greater than both tie cu
rent one and the curreitx value.

While studying the test cases, it showed that only
the array size was tested when the array was tksize
Thus there isn't any test case testingrthe andele-
ments attributes when resizing the array with a differ-
ent size. Such test cases can be written as below.

?_assert((resize(5,new(15,
[{fixed,false}])))#array.max =:= (new(15,
[{fixed,false}]))#array.max),
?_assert((resize(5,new(15,
[{fixed,false}])))#array.elements =:= (new(15,
[{fixed,false}]))#array.elements),
?_assert((resize(101,new(15,
[{fixed,false}])))#array.max =:= 1000),
?_assert((resize(101,new(15,
[{fixed,false}])))#array.elements =:= 1000)

3.3.5.Under specification

Solution

This fault is injected by adding to then guard one
more constraint that limits the accepted input of a
function. Even though this is specific to theray
module, this solution can be applied to any other E
lang program that does comparison with a guard.

11

Algorithm

The algorithm for injecting this fault follows the
one described in Figure 2. The highlighted parth@
figure should be replaced as in the table below.

Original parts Replaced parts

Search for the next candidate; Search for a function con-
taining at least a comparisor|
guard (e.g. N > 100);

Inject the fault into Module syntax trg Inject the fault by adding tq
the comparison guard one
more constraint that limits
the accepted input;

Example

The function in therray module prior to injecting

theunder specificatiotiault looked like below:
new(Size, Options) when is_integer(Size), Size >= 0
>
new_0(Options, Size, true);
new(_,) ->
erlang:error(badarg).

After injecting the fault, the highlighted constrai
was added and the function looked like:

new(Size, Options) when is_integer(Size), Size >= 0)
Size =< 1000 ->
new_0(Options, Size, true);

new(_, _)->

erlang:error(badarg).

Test cases

Below is the test case included in #reay module
test suite. This is the only test case that témtsarget
function clause.
-define(LEAFSIZE, 10).
-define(NODESIZE, ?LEAFSIZE).

NO = ?LEAFSIZE,
N1 = ?NODESIZE*NO,
N2 = ?NODESIZE*N1,

?_assertMatch(#array{size=N2, max=N2,
default=42,elements=N2},
new(N2, [{fixed,false},{default,42}])),

Output of test suite before injecting fault
All 284 tests passed.

Output of test suite after injecting fault
All 284 tests passed.

Meaning of test suite’s outputs

The outputs show that the injected fault was not
detected by the test suite. This is because tisen® i
test case that verifies an array can be created avit
size more than 1000.

3.3.6.Swapped arguments
Solution

This fault is injected by swapping two arguments
of a function containing more than one argumentaAs
minimum, one of the arguments must be unusedt i.e.
starts with the “_” sign. Even though this is sfiedo
the array module, this solution can be applied to any
other Erlang programs that contain a function daus
with unused arguments.

Algorithm

The algorithm for injecting this fault follows the
one described in Figure 2. The highlighted parth@
figure should be replaced as in the table below.

Original parts
Search for the next candidate;

Replaced parts

Search for a function with at
least two arguments where
one of them must be unused;
Inject the fault into Module syntax trg Inject the fault by swapping
the unused argument with
any other one;

Example
The function in therray module prior to injecting
theswapped argumetiault looked like below:

new_1([fixed | Options], Size, _, Default) ->
new_1(Options, Size, true, Default);
new_1([{fixed, Fixed} | Options], Size, _, Default)
when is_boolean(Fixed) ->
new_1(Options, Size, Fixed, Default);
new_1([{default,Default} | Options],Size,Fixed,_) - >
new_1(Options, Size, Fixed, Default);
new_1([{size, Size} | Options], _, _, Default)
when is_integer(Size), Size >= 0 ->
new_1(Options, Size, true, Default);
new_1([Size | Options], _, _, Default)
when is_integer(Size), Size >= 0 ->
new_1(Options, Size, true, Default);
new_1([], Size, Fixed, Default) ->
new(Size, Fixed, Default);
new_1(_Options, _Size, _Fixed, _Default) ->
erlang:error(badarg).

After injecting the fault, the highlighted argumgnt
were swapped and the function looked like:

new_1([fixed | Options], Size, _, Default) ->
new_1(Options, Size, true, Default);
new_1([{fixed, Fixed} | Options], Size, _, Default)
when is_boolean(Fixed) ->
new_1(Options, Size, Fixed, Default);
new_1([{default, Default} | Options], Size, _,

Fixed) ->
new_1(Options, Size, Fixed, Default);
new_1([{size, Size} | Options], _, _, Default)

when is_integer(Size), Size >=0 ->
new_1(Options, Size, true, Default);
new_1([Size | Options], _, _, Default)
when is_integer(Size), Size >= 0 ->
new_1(Options, Size, true, Default);
new_1([], Size, Fixed, Default) ->
new(Size, Fixed, Default);
new_1(_Options, _Size, _Fixed, _Default) ->
erlang:error(badarg).

Test cases

Below are some of the test cases included in the
array module test suite. These test cases test the func-
tion clause contains the swapped arguments.

?_test(new({default,undefined})),
?_test(new([{size,100},{fixed,false},{default,undef i

nedj}])),
?_test(new([100,fixed,{default,0}])),
?_assert(new(10, m == new(10, [{de-

fault,undefined},{fixed,true}])),
?_assertError(badarg, new([{default,0} | fixed])),
?_assertMatch(#array{size=N2, max=N2, de-
fault=42,elements=N2},

new(N2,
[{fixed,false}{default,42}])),
?_assert(4711 =:= default(new({default,4711}))),
?_assert(0 =:= default(new(10, {default,0}))),
?_assert(array:get(0, new(1,{default,0})) =:= 0),
?_assert(array:get(0, reset(0, new({default,42})))
== 42),
?_assert(array:get(0, reset(0,
new({default,42})))) =:= 42),

set(0, 17,

12

Output of test suite before injecting fault
All 284 tests passed.

Output of test suite after injecting fault
All 284 tests passed.

Meaning of test suite’s outputs

The outputs show that the injected fault was not
detected by the test suite. The reason is thatreite
test suite is not effective enough and/or thersoine
problem with the code. Examining the test suiteegav
an expression that the following test case wasatdiss
?_assert(new([{default, 5}, 20, fixed]) =:=

new([20 ,fixed ,{default, 5}])).

However, a closer look at the code reveals that the
Boolean variable Fixed was implemented to accept
any value rather than juste or false . That code
was written as:
if Fixed -> 0;

true -> E
end,

Although according to the local specification, vari
ableFixed can only berue or false , it would also
be better to write the code to accept only thesgega
This is proved by having the test result of 48 testes
failed with the replaced code when the fault was in
jected. Such a code can be written as:

case Fixed of
true -> 0;
false -> E
end,

4. Discussion

The aim of this study is to show how fault injec-
tion technique can be used to evaluate Erlang test
suites. A qualitative approach with data collection
analysis and validation phases was adopted. We will
discuss certain reasons behind some decisions that
were made, some issues that occurred along the way,
how things could have been done differently and so
on. We will also touch on some interesting poimd a
findings in the results of this study.

4.1. Approach

Several data sources were used during diiecco
tion, these includes the official Erlang OTP retesas
Erlang-bug archives, Erlang reference manual and
related studies (see table 1). However the origiteai
was to gather data from only the official Erlang®OT
release R10B — 0 to R13B by comparing the source
codes of all neighboring releases (e.g. R11B-0 and
R10B-10) with the aim of locating what bug fixes
were found or fixed from previous releases. This wa
one way of gathering Erlang faults, but we had sdve
difficulties while using this approach. One problem
was that the information available in the releases
on what bug fixes were made, was not detailed
enough to relate to what piece of code or module it
occurred in. This left room for a lot of uncertgimn
the root cause of documented bugs. An example of
this lack of detail can be seen below:

---asnl-1.6.10

OTP-7953 The anonymous part of the decode that
splits the ASN1 TLV into Tag Value tuples has been
optimized.

OTP-7954 A faulty receive case that catched al |
messages in the initialization of the driver has
been removed, the initialization has been restruc-
tured.

R13B Release note [43]

Another problem was that Erlang consist of a
number of applications. Hence, one must have some
familiarity with all the applications in each reggain
order to easily locate where the bugs occurreddbase
on the insufficient information available in théease
notes. This will take much longer time than theiqubr
of ten weeks used for this study. Therefore, fauysi
on more data sources made it easier to gatherderlan
typical faults especially since there were alresaiye
studies in this field and also some official docuitae
tion on Erlang typical faults available (see settio
2.1.2).

The solutions that were proposed on how jecin
faults into Erlang programs were validated by build
ing a fault injection tool that implemented thoséus
tions (2.2.3). This not only certified the solutioas
valid but also showed how fault injection can be au
tomated. This automation is particularly useful whe
it comes to using fault injection with larger pragrs
that have many lines of codes. It is also useful be
cause it can be reused on several Erlang programs.
This way of validating was however costly for this
study since one has to develop a tool which requdre
reasonable amount of development time and the tech-
nical knowhow.

The purpose of this study was to understand how
fault injectiontechnique can be used to evaluate Er-
lang test suites. This was approached by firstitignd
out what typical faults occur in Erlang programs by
analyzing data from Erlang sources such as Er-
lang/OTP release notes, official Erlang documenitati
and Erlang bug reports and other related studies. P
posals were then made on how non trivial faultfhiwit
in them could be injected into Erlang programs.sThi
approach has produced meaningful results and has
been successful in this study. However, there @amges
drawbacks when it comes to looking for faults e
be used for fault injection. Majority of the typica
faults gathered were eventually not used for fault
jection (see section 3.3). This was because most of
them were either trivial or not suitable for fairjec-
tion, and thus were not part of those used to avalu
Erlang test suites at the end. A better approaalidvo
have been gathering not just Erlang typical faldts,
faults that are ideal for fault injection from thery
beginning.

It is interesting to see that all the typical fautbl-
lected (see section 3.1) were actually detectethby
test suite of tharray module while the faults discov-
ered when working with the program (see sectiop 3.2
went undetected. This shows, according to thisystud

13

that an effective way to inject faults which midsa
missed by the test suite is by having internal know
ledge of the target program. Even though these-unde
tected faults have been generalized to the poimrevh
they can be injected into other related Erlang pro-
grams, it still remains uncertain whether they it

be easily detected.

Having this in mind, another approach that can be
used in carrying out fault injection, is by manyall
injecting faults into a target Erlang program. Tdes
faults can then be generalized to the level whieeg t
can be injected into other similar programs. This
process of manually injecting faults can be autechat
by using a fault injection tool. Automating the pess
makes it a lot easier and less time consuming when
injecting faults into many different other prograrnts
also reduces the risk of incorrect fault injectere to
human error. This approach also has its drawback as
the generalization made here, are less suitablpréoer
grams that are not similar to the target one. kane
ple, if the target program is not database origritezh
it might be difficult to inject faults which are gical
in database oriented programs. Thus, selectingrdiff
ent target programs from different domains mighaibe
good idea when gathering faults that will be genera
lized. This will make the generalization applicatdea
wider range of different Erlang programs

4.2. Typical Faults

The reason for injecting typical faults is thatythe
are faults that can be found in Erlang programs and
there is a high probability of it occurring duriaad
after the development time of the program. An exam-
ple of this is theailed functionclause matchdiscov-
ered in Erlang/OTP release that was written by expe
rienced developers (see section 3.1).

4.3. Fault Injection Solutions

In order for a fault to occur in an Erlang gram,
conditions that cause the fault to arise must lesemt
in that program. For exampled@adlockfault cannot
occur in a program that runs on just one proceks T
finding means that the choice of what typical fault
that can be injected into a program depends on how
the program is constructed.

We have chosen to inject non-trivial Erlang typical
faults from the ones described in section 3.1. Thus
typical faults such asvrong argumentwere not in-
jected because they could be easily detected amd ev
luated by already available tools such as statidyan
ers (e.g.dialyze) and coverage tools (e.govel.
Faults discovered while evaluating the fault injact
tool on the targetrray module were also injected
(see 3.2). This was however generalized so that the
can also be injected into other similar Erlang pro-
grams.

5. Conclusion
Fault injection is a technique that involves inject
ing abnormalities into software programs [1]. Ttés

then be used to evaluate test suites by checkimg ho
well they detect those abnormalities. Test suite $&t
of test cases created to test a particular progvam
the purpose of finding faults that exist in thadbgmam.
A test suite is effective if it is able to deteatags that
exist in its target program. The more errors ieded,
the more effective it is. This study showed howltfau
injection can be used to evaluate Erlang test suite
This was done by (1) injecting non-trivial faultseoat
a time into a target Erlang program, these aretsaul
that cannot be detected at compile timedtajyzeror
by a test suite andoverinformation, and (2) evaluat-
ing the program test suite by studying if it caentify
the injected fault, and if not why.

We applied fault injection on tharray module in
the Erlang OTPrelease R13Band evaluated its pre-
written test suite. The evaluation was carried loyt
injecting six non trivial faults, one at a time and
checking if they can be detected by the test sQitd.
of the six faults injected, two were detected by tibst
suite while four went undetected. A thorough stofly
the code where the faults were injected and the tes
cases covering those revealed two things: some miss
ing test cases and some program code in need of im-
provement. However, the overall evaluation showed
that the evaluated test suite was effective enangh
detecting faults in the targatray module.

One very important part of fault injection is hayin
the right fault to inject into the target prograNever-
theless, it is not possible to know the right faulb
inject for every individual program; therefore & i
necessary to inject as many faults as possible. We
have been able to come up with some typical Erlang
fault during the course of this study. However r¢his
still need to explore more resources for more $ault
which can be used for fault injection. Further sesl
could focus more on this.

6. Acknowledgement

We would like to say thanks to our supervisor,
Thomas Arts for the reviews and support we got dur-
ing the course of the study.

7. References

[1] Jeffery M. Voas and Gary McGraw, 1998Boft-
ware fault injection: inoculating programs
against errors New York: Wiley

[2] Matthew J. Rutherford et al., 200&yvaluating
Test Suites and Adequacy Criteria Using Simula-
tion-Based Models of Distributed SysterisEE
Transactions on Software Engineering

[3] Mei-Chen Hsueh et al.,199Fault Injection -
Techniques and toqldEEE Computer Society
Press Los Alamitos, CA, USA

[4] Sébastien Tixeuil et al., 2008, language-driven
tool for fault injection in distributed systenGrid
Computing Workshop

14

[5] Sudipto Ghosh, 200Fault Injection Testing for
Distributed Object SystemsTOOLS39, IEEE
Computer Society Washington, DC, USA

[6] Chillarege, R. Bowen, N.S., 1989nderstanding
large system failures-a fault injection experiment
IBM - NY

[7] Jean Arlat et al., 199Fault Injection and De-
pendability Evaluation of Fault-Tolerant Systems
Technical Report: LAAS-CNRS#91260, Univer-
sity of Bologna

[8] Nik Looker. et al., 2005A Comparison of Net-
work Level Fault Injection with Code Insertion
IEEE Computer Society Washington, DC, USA

[9] Scott Dawson et al., 1998, software fault injec-
tion tool on real-time MachlEEE Computer So-
ciety Washington, DC, USA

[10]Seungjae Han et al., 199BOCTOR: An inte-
grated software fault injection environment for
distributed real-time systemdEEE Computer
Society Washington, DC, USA

[11] Sébastien Tixeuil et al, 200&n Overview of
Existing Tools for Fault-Injection and Dependa-
bility Benchmarking in Grids 2nd CoreGRID
Workshop on GRID and Peer to Peer Systems
Architecture, Paris

[12]Michel Cukier et al, 1999%-ault Injection Based
on a Partial View of the Global State of a Distri-
buted SystemMlEEE Computer Society Washing-
ton, DC, USA

[13]Jeffrey Voas, 1997,Fault Injection for the
Masses |IEEE Computer Society Press Los Ala-
mitos, CA, USA

[14]Jolo V. Carreira et al., 199Bault Injection Spot-
Checks Computer System DependabiligEE
Spectrum

[15]Jeffrey A. Clark and Dhiraj K. Pradhan , 1995,
Fault injection: A method for validating comput-
er-system dependabilityEEE Computer Society

[16]Douglas M. Blough and Tatsuhiro Torii, 1997,
Fault-Injection-Based Testing Of Fault-Tolerant
Algorithms In Message-Passing Parallel Com-
puters IEEE Computer Society Washington,
DC, USA

[17]Ghani A. Kanawati et al, 1995;ERRARI: A
Flexible Software-Based Fault and Error Injec-
tion SystemIEEE Computer Society Washing-
ton, DC, USA

[18] Timothy K. Tsai and Ravishankar K. lyer, 1995,
FTAPE: A Fault Injection Tool to Measure Fault
Tolerance National Aeronautics and Space Ad-
ministration, Washington, D.C

[19] Scott Dawson et al., 1996RCHESTRA: A prob-
ing and fault injection environment for testing
protocol implementations<Computer Performance
and Dependability Symposium, 1996., Proceed-
ings of IEEE International

[20]Thomas M. Galla et al, 200&oftware Imple-
mented Fault Injection for Safety-Critical Distri-
buted Systems by Means of Mobile AgeRts-
ceedings of the 37th Hawaii International Confe-
rence on System Sciences, IEEE Computer Socie-
ty Washington, DC, USA

[21] Scott Dawson et al, 1998esting of fault-tolerant
and real-time distributed systems via protocol
fault injection Proceedings of FTCS-26, IEEE
Computer Society Washington, DC, USA

[22] Erlang/OTP, 2009,http://erlang.org/index.html
last accessed 2009-04-22

[23] Ericsson, 2009, http://www.ericsson.com/last
accessed 2009-06-08

[24]Erlang/OTP releases, 2008ttp://erlang.org/dow
nload.htm| last accessed 2009-04-22

[25] Official Erlang bugs archives, 200Bitp://www.
erlang.org/pipermail/erlang-bugslast accessed
2009-05-19

[26]Mats Cronqvist, 2004Troubleshooting a Large
Erlang SystemErlang’04, ACM New York, NY,
USA.

[27]Pawet T. W., 2005Typing for Reliable Distri-
buted Systems - Recent AdvancB$SN-2005
IEEE Workshop on Dependable Software - Tools
and Methods, Yokohama, Japan.

[28] Official Erlang Reference Manual, 2008ttp://
erlang.org/doc/last accessed 2009-05-19.

[29]John W. Creswell, 200&Research Design: Qua-
litative, Quantitative, and Mixed Methods Ap-
proachesSage Publications Inc

[30] Dialyzer, 2009 http://erlang.org/doc/apps/dialyze
r/dialyzer_chapter.htrifst accessed 2009-05-31

[31]Cover, 2009http://www.erlang.org/doc/apps/tool
s/part_frame.html last accessed 2009-06-08

[32] Erlang Syntax Tool, 200%ittp://www.erlang.org/
doc/apps/syntax_tools/index.htmlast accessed
2009-05-21.

[33]Erlang Syntax Tree, 2008ttp://www.erlang.org/
doc/apps/syntax_tools/index.htmlast accessed
2009-06-24.

[34]The array module, 200%ttp://erlang.org/doc/
man/array.htmllast accessed 2009-07-02

[35] Eunit, 2009,http://www.erlang.org/doc/apps/euni
t/part_frame.htmllast accessed 2009-05-21

15

[36]Erlang Bug Report, 2008ttp://www.erlang.org/
pipermail/erlang-bugs/2009-February/001216.
html last accessed 2009-06-02

[37]HTTP/1.1, 2009, http://www.w3.0rg/Protocols/
rfc2616/rfc2616.htmllast accessed 2009-05-21.

[38]Robert H. B. Netzer and Barton P. Miller, 1992,
What are race conditions?: Some issues and for-
malizations ACM New York, NY, USA.

[39]Erlang Bug Report, 200%ittp://www.erlang.org/
pipermail/erlang-bugs/2009-January/001159.html
last accessed 2009-06-07

[40]Erlang Bug Report, 200%ittp://www.erlang.org/
pipermail/erlang-bugs/2009-January/001158.html
last accessed 2009-06-07

[41]Erlang Bug Report, 200%ttp://www.erlang.org/
pipermail/erlang-bugs/2009-January/001168.html
last accessed 2009-06-07

[42] Erlang/OTP, 200%%ttp://www.erlang.org/downlo
ad/patches/otp_src_R12B-5_OTP-7738.readme,
last accessed 2009-06-07

[43]R13B Release note, 2008ttp://www.erlang.org/
download/otp_src_R13B.readme last accessed
2009-06-24

[44]Brian W.Kernighan and Dennis M. Ritchie, 1978,
The C Programming Language, 1st editidn-
glewood Cliffs, NJ: Prentice Hall

[45]Java, 2009, http://www.java.com/en/download/
whatis_java.jsp last accessed 2009-07-02

16

Appendix A - Interviews

This interview has been conducted separately with 3

experienced Erlang developers and an academic re-

searcher within the field of Erlang. We haven't
guested for their names to be published in thislart

re-

thus their names will be given as interviewee 13 2,
and 4. The interview question was not open because
we were not trying to explore the problem area fwha

are Erlang typical faults) but rather to validaiedf
ings that we already have on Erlang typical faults.

The question wasAre the following faults (I — XVIII)
Erlang typical fault®”

Fault |

the shared resource are not properly synchronized

Race condition- This fault occurs when accesses td

Answers

Interviewee 1 | Race conditions are very common as
soon as you try to do anything which
involves concurrency. | would howeve
think that inserting race conditions is
quite hard, since you would need to
identify them to be able to provoke
them deliberately. If you've identified
them, it should be possible to fix them
You can however change timing aspe
during runtime | guess.

r

Cts

Yes, | found this problem usually early
stage of a bigger project, or adding ne
features to a complex system. It was
quite rare, if the design was good be-
fore.

Interviewee 2

w

Yes, this is a rather common and impg
tant type of error. This type of error is
very hard to find in unit-tests and ofter]
shows up late in the development
process. But | fail to see how that cou
relate to fault injection!?

Interviewee 3

Interviewee 4 | Happens occasionally, can be difficult

to find as it can seem intermittent.

Fault II

Deadlocks- This fault occurs when two or more
processes are waiting for the other to finish.

Answers

Interviewee 1 | Yes and no. | wouldn't say that Dead-
written by an experienced Erlang pro-
grammer. I've however experienced
deadlocks when interacting with data-
bases, trying to dispatch table locknig
requests over OS threads, to avoid loc
ing the Emulator. A verry common new
bee mistake would be to go a
gen_server:call(self(), whatever) inside
any callback function, but this is very
quickly identified and usually not re-
peated.

locks are common in any Erlang system

Yes, | had this problem a few times, in
bigger projects it is usually time con-

Interviewee 2

suming to debug the reason.

Interviewee 3 | Yes

Interviewee 4
to find & correct.

Happens occasionally, but normally easy

Fault Il

Runaway process This fault occurs when a proces
consumes resources (such as memory or CPU tim
without doing any useful work. Typically this iseth
result of a non-terminating loop.

),

Answers

| haven't seen this too much to be
honest, but I've hard quite recently
about this happening in one of our|
production systems :) In this case
was a badly formulated guard.

Thing fibonacci without checking if
input data is negative.

Interviewee 1

—

Yes, this happens sometimes, an othe
example not to terminate unused liste
ers (processes only waiting for input

messages and forward them after son
work).

Interviewee 2

=

n

Interviewee 3 | Yes

Happens occasionally, but normally
easy to find & correct.

Interviewee 4

Fault IV

Wrong arguments - This fault occurs when a func-
tion is called with wrong data type of the argument
the argument is badly formed.

Answers

Interviewee 1 | Yes, extremely common.

Yes, this is one of the most common

problems when extending an already
existing code. | usually make this erro
when writing a big code part, through
several modules, and | forget to updat
the return values of a function at func-
tion call from the other module.

Interviewee 2

D

Interviewee 3 | Not very often

Common enough. | mostly do it when
using functions with nested arguments
lists of tagged tuples that contain lists
of...

Interviewee 4

Fault V

Bad argument in arithmetic expression- This fault
occurs when an arithmetic expression is providet v
bad arguments.

=.

Answers

Interviewee 1 | Quite common. Good example is ti-
mouts, which can usually be an integg

or the atom infinity.

=

Interviewee 2 | No, for me usually this is not a typical
error, but this can depend on the code

written.

Interviewee 3 | No

This happens regularly but is normally
found very quickly if in the local mod-
ule. It can go undetected if it's used in

Interviewee 4

library function that doesn't use guard

oY

17

Fault VI

expression does not match with pattern of thediedt.

Failed match expression- This fault occurs when
result from the right hand side of a pattern madc

Fault XI

Failed try expression match- This fault occurs whe
no matching branch is found when evaluating a
expression.

Answers

Answers

Interviewee 1 | Yes this is quite common. Mostly dur-

ing development or testing though.

Interviewee 2 | Yes, one of the most typical error. Es-
pecially after extending existing code,
when the right hand side is a result of

function call, what changed.

Interviewee 3 | Yes, mostly because one has change

the format of a record or tuple.

Interviewee 4 | The "badmatch", probably the most

common basic error I've seen.

Fault VII

Failed function clause match- This fault occurs
when argument’s pattern of a function call does
match any clause of that function.

not

Answers

Interviewee 1 | Yes this is quite common, but also
the easiest to debug, since there i

very much information available :)

Interviewee 2 | Yes, really typical error, very common

Interviewee 3 | Yes

Interviewee 4 | This occurs regularly enough. Mostly
when calling modules from other appli

cations or library functions.

Fault IX

Failed case expression match This fault occurs
when no matching branch is found when evaluatin
case expression.

ga

Answers

Interviewee 1 | Yes, quite common, unless ppl. te

to use an Other clause in the end.

nd

Interviewee 2 | Yes, really typical error, very common

Interviewee 3

No, its a trivial code-coverage problem

Interviewee 4 | This occurs regularly enough but mos
designers have a catch-all default cas

at the end of their statements.

m

Fault X

Interviewee 1 | Not very common. But then we

don't use try very much.

Interviewee 2 | Yes, typical error, common one.

Interviewee 3 | No, it's a trivial code-coverage probler

=

Interviewee 4 | I've seen this occasionally.

Fault XII

Calling a nor-existing function - This fault occurs when
function call is made to a non-existing function.

Answers

Quite common as a result of a typo. C
be caught easily with testcases / dialy
though.

Interviewee 1

rer

Yes, it happened a few times, usually
not during new development, but ex-
tending old codebase.

Interviewee 2

Yes, but it is an easy to find problem
and an easy to fix problem, thus itis n
very interesting from a fault perspec-
tive.

Interviewee 3

I've done this when coding but normal
find it very quickly.

Interviewee 4

Fault XIII

Faulty fun - This fault occurs when there is someth
wrong with a fun.

ng

Answers
Interviewee 1 | No, not really.
Interviewee 2 | Yes, it happens, but very rare.
Interviewee 3 | Too vague

Interviewee 4 | That description might be a little vague
if | ever found a problem in a fun I'd
probably classify it as a case clause,
wrong arguments or whatever other
heading it might fall under. The fact

that it's in a fun isn't the root cause.

Fault XIV

Wrong number of arguments applied to a fui - This fault

some default behaviour.

in a receive..after expression is evaluated to Hung else

h ! _ _ occurswhen wrong number of arguments is applied to

Failed if expression match- This fault occurs when afun

none of the guards in an if expression evaluated to ANSWErS

true. Interviewee 1 | No not really.

_ Answers _ Interviewee 2 | Yes, it happened, but very rare.

Interviewee 1 | Less common, probably since the _ Interviewee 3 | No, it's a trivial code-coverage problem
statement 'tse”_ IS I§S§ common. Itjis Interviewee 4 | I've seen this delivered in systems long
often used as "if this is tue do that after it should have been found. De-
otherwise nothing, so there is usally pending on how the function behaves
a true -> ok clase in the end... its' not as easy to test for as it first ap-

Interviewee 2 | Yes, typical error, but not very com- pears. Normally occurs when an API
mon. has changed.

Interviewee 3 | No, it's a trivial code-coverage problem

Interviewee 4 | Don't think I've seen this one. Most
designers handle the catch-all ‘else’ wjth Time out value - This fault occurs when the timeout vallie

than an integer or infinity.

18

Answers

Interviewee 1

Not so common, but it is possible to
have a negative value if you decreme
a timeout in a loop, which would give
an error.

—

n

Interviewee 2

Yes, it happened, but very rare.

Interviewee 3

Again, it's a trivial code-coverage prol
lem

Interviewee 4

I've never seen this one, but I'm sure

t

happens ;-)

Fault XVI

Unavailable process- This fault occurs when tryin
to link to a non-existing process.

Answers

Interviewee 1

No, not very common. We usual
spawn_link anyway. Or add mon
tors.

Interviewee 2

Yes, it happened, usually in big sys-
tems, running the system. During som

e

non-expected rare scenarios, after some

failover, some process still try to link a
non-existing one.

Interviewee 3

Linking to a non-existing process can-
not be considered an error, it is some-
thing that normally happens in a fault-
tolerant system.

Interviewee 4

I've seen this good few times. Normall
happens when one process has crash

or a start-up sequence isn't right.

Fault XVII

Evaluating a throw outside a catch- This fault oc-
curs when trying to evaluate a throw outside altatc|

Answers

Interviewee 1

Never seen :)

Interviewee 2

Yes, very rarely, but happened.

Interviewee 3

It's a trivial code-coverage problem

Interviewee 4

| never use throws in my code unless
absolutely have to so I've not seen thi
one before. Might not recognise it in
someone else's code as a result.

Fault XVIII

System limit - This fault occurs when a system linhit
has been reached.

Answers

Interviewee 1

Yes, this is quite common in a not
configured environment.

Interviewee 2

Yes, usually during the first (load) test
ing the erlang system different system
limits are reached, it happens during
later (load) tests, but not so frequent.

Interviewee 3

No

Interviewee 4

Yes, I've seen this under load a few

times. I've often wondered how to hant

dle it in SW, how to reliably detect tha
the machine is under load and how be

to reject new jobs.

Appendix B - Coverage for the array
module

Below is the output of the coverage analysis con-
ducted on the target array module. Cover coverage
analysis tool was used to analyze if the array rfeodu
test suite covers all code parts and lines. Theubut
shows that all code parts and lines are covered.

Eshell V5.7.1 (abort with *G)

1> cover:compile(array).

{ok,array}

2> eunit:test(array).

All 284 tests passed.

ok

3> cover:analyze(array, coverage, line).

{ok,[{{array,0}.{0,1}},
{{array,184},{1,0}},
{{array,228},{1,0}},
{{array,249},{1,0}},
{{array,251},{1,0}},
{{array,254},{1,0}},
{{array,256},{1,0}},
{{array,259},{1,0}},
{{array,262},{1,0}},
{{array,264},{1,0}},
{{array,267},{1,0}},
{{array,270},{1,0}},
{{array,272},{1,0}},
{{array,274},{1,0}},
{{array,277},{1,0}},
{{array,278},{1,0}},
{{array,279},{1,0}},
{{array,281},{1,0}},
{{array,286},{1,0}},
{{array,288},{1,0}},
{{array,301},{1,0}},
{{array,303},{1,0}},
{{array,315},{1,0}},
{{array,316}{1,...}},

4> cover:analyze(array, coverage, module).
{ok {array,{658,1}}}
5>

19

