

University of Gothenburg
Department of Applied Information Technology
Gothenburg, Sweden, May 2009

Fault Injection Technique for
Evaluating Erlang Test Suites

QUANG HOAT DO
TAIWO DAYO AJAKAIYE

Bachelor of Software Engineering and Management Thesis

Report No. 2009:072
ISSN: 1651-4769

 2

Fault Injection Technique for Evaluating Erlang Test Suites

Quang Hoat Do
IT University of Göteborg

Software Engineering and Management
Gothenburg, Sweden

quangd@ituniv.se

Taiwo Dayo Ajakaiye
IT University of Göteborg

Software Engineering and Management
Gothenburg, Sweden

mailajaks@yahoo.com

Abstract

In software testing, fault injection involves injecting
abnormalities into software programs. This can then
be used to evaluate test suites by checking how well
they detect those abnormalities. This study involves
finding out what typical faults occur in Erlang pro-
grams by analyzing data from Erlang/OTP releases,
official Erlang reference manual, Erlang bug reports
and other related studies. It will also include propos-
als of how these faults can be injected into Erlang
programs based on our Erlang development expe-
rience and knowledge. The method adopted in this
study involves the implementation of a fault injection
tool which was evaluated on the test suite of Er-
lang/OTP R13B array module. This study contributes
knowledge to how fault injection can be used to eva-
luate Erlang test suites. This in summary involves the
following (1) injecting non-trivial faults one at a time
into a target Erlang program; these are faults that
cannot be detected at compile time, by dialyzer or by a
test suite and cover information, and (2) evaluating
the program test suite by studying if it can identify the
injected fault, and if not why.

Keywords: fault injection, test suites, Erlang typical fault.

1. Introduction

In software testing, a test suite is a collection of
test cases that are used to test a software program with
the aim of verifying and validating system’s behavior
in accordance with customer’s requirements. A test
suite is effective if it can detect present errors; the
more errors it can detect the more effective it is. Test
suites are specific for individual programs, therefore it
is logical to evaluate a test suite on the program it is
meant for. When evaluating a test suite on a program,
one is confronted with the problem that one doesn't
really know whether there are any errors in the code
and if so, how many. One way to evaluate a test suite
is to monitor whether one can use it to find the same
errors in codes as previous ones. One has a list of re-
ported errors from a previous test suite and applies the
new test suite to see if these errors can be detected.
The strength of this evaluation is that it shows one can
find errors in the target program. The weaknesses are
in the first place that there might be few errors in the
program and that it is hard to say that it is good in
finding errors in general. In the second place, one may
conclude that it is as good as the previous test suites

already in place if one cannot find more errors than
previous ones have done.

In order to evaluate test suites on software pro-
grams, fault injection technique [1] can be used. In
software testing, fault injection involves injecting ab-
normalities into software programs. This can then be
used to evaluate test suites by checking how well they
detect those abnormalities. In order to use fault injec-
tion properly, one would like to inject faults into the
program code that are typical for that kind of code.
This differs from programming language to program-
ming language, e.g. in C [44] one can inject faults
around pointer dereferencing, whereas for Java [45]
that would not make sense. It also differs from one
application domain to another, e.g. in a highly concur-
rent programming domain, one would typically like to
inject faults that cause race conditions, whereas in
another domain one probably focuses on out-of-bound
arrays.

In a study titled Evaluating Test Suites and Ade-
quacy Criteria Using Simulation-Based Models of
Distributed Systems [2], the authors touched on a test-
ing method based on discrete-event simulations, a
fault-based analysis technique for evaluating test
suites and adequacy criteria, and a series of case stu-
dies that validate the method and technique. Here, the
fault-based analysis uses a related form of fault injec-
tion technique on the simulation-based specification to
provide a fault against which test suites and the crite-
ria that formed them can be evaluated. Many studies
[3-21] have also adopted the use of fault injection
technique in evaluating computer system dependabili-
ty, understanding large systems failure, testing distri-
buted object systems, fault injection in distributed
systems, evaluation of fault tolerant systems, etc.
However, none of these studies [3-21] have addressed
how fault injection technique can be used for evaluat-
ing Erlang program test suites. Erlang [22] was devel-
oped by Ericsson [23] in the early nineties. It is a con-
current functional programming language with specif-
ic features for the development of distributed, fault-
tolerant systems with soft real-time requirements. To-
day, Erlang is used in several application domains
such as computer telephony, banking, TCP/IP pro-
gramming (HTTP, SSL, Email, Instant messaging,
etc) and 3D-modelling. This study will adopt the use
of fault injection technique based on its appropriate-
ness to be used in evaluating software testing suites,

 3

and will present a way in which fault injection can be
used to evaluate Erlang testing suites.

The purpose of this qualitative study is to show
how Fault Injection Technique can be used to evaluate
Erlang software test suites. This will involve finding
out what typical faults occur in Erlang programs by
analyzing data from Erlang/OTP releases, official
Erlang reference manual, Erlang bug reports and re-
lated studies. It will also include proposals on how
these faults can be injected into Erlang programs
based on our Erlang development experience and
knowledge. This study will help Erlang testers to write
better test suites by presenting Erlang typical faults. It
provides the knowledge and knowhow in support of
developers who want to develop a fault injection tool
for Erlang programs. This study will also help test
teams to evaluate how effective their test suites are in
terms of how much fault they can detect.

2. Research Method

The goal of the section is to find out how fault in-
jection technique can be used to evaluate test suites.
This includes searching various Erlang sources for
information about what typical faults exist, and pro-
posing ways in which these faults can be injected into
Erlang programs. The two phase qualitative approach
illustrated in figure 1 show how this was done. This

Figure 1 – Research method overview

 approach was chosen because there was a need to
explore various Erlang resources for information
about Erlang typical faults. This is required to inject
meaningful faults into Erlang programs which are
actually encountered while developing or running
Erlang programs. In phase 1, information about Erlang
faults were collected and analyzed from 4 data sources
which are Erlang/OTP releases, official Erlang refer-
ence manual, Erlang bug reports and related studies.
The outcome of the analysis was validated and the
result was a descriptive list of Erlang typical faults. In
phase 2, based on the typical faults gotten from
phase 1, and together with our Erlang development
experience, we proposed and validated ways in which
these faults could be injected into Erlang programs.

2.1. Phase 1

The following sections describe how Erlang typical
faults were realized by analyzing and validating data
collected from the Official Erlang OTP releases, Er-
lang-bug archives, Erlang reference manual and other
related studies (see table 1).

2.1.1. Data Collection

The following table describes the data source, data
type (e.g. text, source code etc.), data form (e.g. writ-
ten text, audio recording etc.) and data collection type
(e.g. documents, Interviews etc.) of this phase’s data
collection.

Table 1 - Data Collection
Data source Type of

data
Data
form

Collection
type

Official Erlang OTP releas-
es [24]

Erlang
Release
notes

Written
text

Documents

Official Erlang-bug arc-
hives: May 2009 to October
2008 [25]

Text and
source code

Written
text

Documents

Related study [26][27] Articles Written
text

Documents

Official Erlang Reference
Manual Version 5.7.1 [28]

Documen-
tation

Written
text

Documents

2.1.2. Analysis
 This section describes how the collected data (see
section 2.1.1) were analyzed. Separate analyses were
carried out on the data obtained from individual data
sources. This was because each data source was
unique and thus required a different analysis. The aim
of these analyses was to find out “what typical faults
occur in Erlang programs”.

Data source 1

Erlang Reference Manual [28] contains a complete
description of the Erlang programming language. This
was an ideal place to look for information on Erlang
typical faults, because it contained information about
what typical faults could occur in Erlang programs.

 Analysis 1

The various faults described here and the reasons
why they occur were simply collected from the Erlang
reference manual.

Researchers’ experience
and knowledge

Phase 1

Phase 2

Validate solutions

Erlang
Bug

Archive
Erlang

Reference
Manual

Erlang
Releases

Related
Studies

Analysis 2 Analysis 1 Analysis 3 Analysis 4

Validate results of analyses by
Triangulation and Interviews

Erlang typical faults

Propose solutions for
Injecting faults into Erlang programs

Implements
the various
fault injec-

tion solutions

Evaluate the solutions
by code inspection and

using test suites to
check if faults were

injected or not

Various ways of injecting faults
into Erlang programs

 4

Data source 2
The Erlang-bug archives contain Erlang/OTP bugs

that have been continuously reported since April 2003
[25]. This source was considered because we wanted
to see what type of Erlang faults developers encounter
while developing Erlang programs. We were able to
go through the bug archives from May 2009 to Octo-
ber 2008 based on the available time for this study.
Active discussions on Erlang faults between the Er-
lang/OTP development team and regular Erlang de-
velopers also took place here. This provided a medium
from which reasons why these faults occur could be
easily obtained.

Analysis 2

The reasons for why the bugs reported in these arc-
hives occurred, were carefully studied and collected.
Referenced modules in the Erlang/OTP releases (see
data source 3 bellow) were also studied to get a deeper
understand of the root causes of faults that were re-
ported.

Data source 3

Erlang/OTP releases [24] comprises of source
code, a release note and documentation. The available
releases at the time of conducting this analysis were
R10B-0 to R13B. This data source was studied when-
ever there was a reference to it from the Erlang bug
archive data source above.

Analysis 3

References from the bug archives (see Analysis 2)
mostly refer to particular functions or modules within
certain releases. The difference between the mod-
ule/function in the release where the faults were lo-
cated, and the same module/function in the next re-
lease where the faults were fixed, was studied with
aim of locating the root cause of the fault.

Data source 4

A couple of related studies have been conducted on
distributed and concurrent programs such as Erlang.
Mats Cronqvist conducted a study on Troubleshooting
a Large Erlang System [26]. The system under study
here was AXD 301 (a multi-service switch from
Ericsson AB), with over a 1000 usage registered as at
when the study was conducted. Another study titled
Typing for Reliable Distributed Systems - Recent Ad-
vances [27], touched on using advanced type systems
for statically detecting non-trivial programming errors
in distributed and concurrent programs. These studies
were chosen because they identified several typical
faults that occur in Erlang and distributed systems.

 Analysis 4

Erlang typical faults such as deadlock, race condi-
tion. were presented during the course of carrying out
the studies described above. These faults were studied
and relevant ones were collected and documented.

2.1.3. Validation
The results of all the analyses conducted on data

obtained from the Official Erlang OTP releases, Er-
lang-bug archives, Erlang reference manual and other
related studies (see section 2.1.2) were validated to be
Erlang typical faults by conducting triangulation and
interviews (see below). This two strategies of valida-
tion were adopted to make the validation process more
concrete. The outcome of this validation led to a de-
scriptive list of Erlang typical faults which are pre-
sented in the result section of this study (see section
3.1).

Triangulation

Triangulation [29] is a way of validating data col-
lected from different data sources especially when it
comes to small exploratory research such as this
study. Thus, this method has been adopted based on
its suitability. Applied to this study, faults obtained
from each data source were validated to be Erlang
typical fault by examining other data sources for
prove supporting this.

Interviews

Erlang typical faults collected by analyzing the var-
ious data sources in section 2.1.2 were also validated
by conducting interviews with Erlang developers and
researchers. This method of validation was adopted in
order to get an input from those that actually program
in Erlang and encounter these faults from time to time.

2.2. Phase 2

This phase was part of the steps that would show
how fault injection technique can be used to evaluate
Erlang testing suites (see figure 1: phase 2). Thus, it
built on the result of Phase 1(see section 2.1). This
phase contained data collection, analysis and valida-
tion. It resulted in solutions on how non-trivial faults
can be injected into Erlang programs (see section 3.3).

2.2.1. Data collection

This phase built on the various Erlang typical faults
realized from Phase 1 (see section 3.1). Proposing
how faults can be injected into Erlang program at run
time required familiarity and development experience
with the Erlang programming language. Therefore,
these typical faults and our Erlang development expe-
rience and knowledge served as the data source for
this phase.

2.2.2. Analysis

The aim of the analysis conducted here was to find
out how the typical faults from Phase 1 can be in-
jected into Erlang programs at run time. Based on our
development experience and knowledge of the Erlang
Programming language, we proposed solutions to how
this can be done. The various Erlang typical faults
described in section 3.1 were analyzed, firstly by
checking if they could not be detected at compile
time, and secondly that they could not be detected or

 5

evaluated by available Erlang tools such as dialyzer
and cover (see below). The reason for carrying out all
this checks was that we did not want to inject trivial
faults. Thus, solutions to how faults can be injected
into Erlang programs would be proposed for non-
compile time faults that couldn’t be detected or eva-
luated by dialyzer and the information from cover
analysis. These faults are failed function clause match,
deadlocks, race condition and failed case clause
match. A fault can only occur in a program if condi-
tions that cause it to arise are present; for example, the
chance of deadlocks occurring in an Erlang program
with only one process is very rare. With this in mind,
solutions were only proposed for the faults that can be
validated with the chosen target program. In order for
the fault injection solutions to be validated, a fault
injection tool was implemented that executed the solu-
tions. This tool was then evaluated on the target pro-
gram.

Dialyzer

Dialyzer is a static analysis tool that identifies
software discrepancies such as type errors, unreacha-
ble code etc. in a single Erlang module or applications
[30]. Using dialyzer as a criterion for screening which
faults should or should not be used for fault injection,
eliminates trivial faults such as type errors (e.g. wrong
arguments in section 3.1.5) or unreachable code (e.g.
calling a non existing function in section 3.1.9).

Cover

Cover is a coverage analysis tool for Erlang pro-
grams. It can be used to verify test cases and to make
sure that all relevant code is covered. It may also be
helpful when looking for bottlenecks in the code [31].
Fault injection is irrelevant if faults are injected in the
code areas that are not covered by the available test
cases. With these test cases, injecting fault in such
areas will never be detected. One of the conditions
with fault injection is that, it shouldn’t be impossible
for test suites to detect the injected faults. However
test suites cannot detect faults that are not injected in
the part of code they test. Therefore, cover is used as a
criterion for evaluating where faults should be in-
jected, which in this case are parts of the code covered
by available test suites.

The next section describes how the solutions were
implemented, what target program was used and how
the proposed solutions were validated.

2.2.3. Validation

The solutions provided in the previous section
needed to be evaluated on Erlang programs in order to
validate their workability. This was done by imple-
menting a Fault Injection Tool (FIT) which executed
these solutions. The FIT used Erlang syntax_tool [32]
to traverse through the target program until it gets to a
point in the code where faults can be injected. When
using the syntax_tool, an Erlang module is trans-
formed into a list of Erlang syntax_trees [33], where

each tree represents a part of the module, let’s call this
list a module syntax tree. Elements of this list could be
attributes such as module name, exported functions,
function definition and other parts which make up the
Erlang module. Each syntax_tree composes of sub-
trees which in turn are syntax_trees. Leaf of a syn-
tax_tree is defined as the tree whose sub-tree is an
empty list. Hence, the way to traverse through an Er-
lang module is using recursion to traverse deep into
each syntax tree’s sub trees until its leaves are
reached. Faults were injected into an Erlang program
by traversing through the module syntax tree until
appropriate places for fault injection were found (see
section 3.3).

 The FIT was evaluated by injecting faults into a
target program. The target program in this case was
the array module [34] from the Erlang OTP release
R13B. The array module was chosen because it came
with an official pre-written test suite with 100% code
coverage (see Appendix B), and developed using the
widely used Eunit unit testing framework [35]. After
using the FIT to inject faults into the target program,
the output code was inspected to determine if the
faults were injected or not. The array test suite was
also evaluated by checking if it could detect the in-
jected fault. During the fault injection and code in-
spections, several new faults were discovered that
could be injected into the module in question. What
made these faults interesting was that they couldn’t be
detected by the available test suite. These faults are
presented in section 3.2 while solutions on how they
can be injected are presented in section 3.3. The out-
come of this process led to a list of validated solutions
on how to inject certain faults into Erlang programs
(see section 3.3).

3. Results

The aim of this study was to find out how fault in-
jection technique can be used to evaluate Erlang test
suites. In other to do this we set out to do two things:
(1) find out what typical faults occur in Erlang pro-
grams by analyzing data from Erlang/OTP release
notes, official Erlang documentation and Erlang bug
reports, and (2) propose how these faults can be in-
jected into Erlang programs based on our Erlang de-
velopment experience and knowledge. This section
presents the results of our findings based on the me-
thod utilized in section 2.

3.1. Erlang typical faults
The following sections describe Erlang typical

faults; they are the validated results of the analysis
carried out in Phase 1(section 2.1). These faults have
been collected by going through the several different
resources.

3.1.1. Failed function clause match
 This fault occurs when the pattern of a function’s
argument does not match any clause within that func-
tion [28]. An example of this fault occurring in pro-

 6

grams can be drawn from the bug found in Er-
lang/OTP R12B-5 by Matt Evans.
 ‘The inets HTTP code does not handle HTTP status code
206 (Partial Content) responses when using streaming.
Handling this is required when a server streams only part of
a file (i.e., a range) and thus returns 206 rather than 200.
Without this fix, on Linux the client would just block and eat
100% of the CPU.’

Official Erlang bug Reports [36]

Taking a closer look at the inets/src/http_client/
httpc_handler.erl module in Erlang release R12B-5,
we observed that there was actually no clause han-
dling status code 206 (see below).

%% Stream to caller
stream(BodyPart, Request = #request{stream = Self},

200) when Self == self;Self == {self,once} ->
 httpc_response:send(Request#request.from,

{Request#request.id, stream, BodyPart}),
 {<<>>, Request};
stream(BodyPart, Request = #request{stream = File-

name}, 200) when is_list(Filename) ->
 % Stream to file
 case file:open(Filename, [write, raw, append,

delayed_write]) of
{ok, Fd} -> stream(BodyPart,
 Request#request{stream = Fd}, 200);
{error, Reason} ->

 exit({stream_to_file_failed, Reason})
 end;
stream(BodyPart, Request = #request{stream = Fd},

200) -> % Stream to file
 case file:write(Fd, BodyPart) of

ok -> {<<>>, Request};
{error, Reason} ->

 exit({stream_to_file_failed, Reason})
 end;
stream(BodyPart, Request,_) ->

% only 200 responses can be streamed
{BodyPart, Request}.

 According to Hypertext Transfer Protocol - HTTP
/1.1 [37], http applications are not required to under-
stand all registered codes but such understanding is
desirable. In this case, the status code had not been
recognized in R12B-5 inets/src/http_client/httpc_han-
dler.erl. This led to a critical fault (blocks and con-
sumes 100% of CPU) occurred in a Linux machine
running this application. The reason why this hap-
pened by looking at the code above is that, any call
received by the stream function that doesn’t match
any previous clause is caught at the shaded clause. A
case where the stream function is called with status
code 206 (e.g. stream(BodyPart, Request = #re-

quest{stream = Fd}, 206) will be handled in
stream(BodyPart, Request,_). This will result in a
wrong behavior because status code 206 should be
handled differently or at least as 200 [37]. This fault
was noted and fixed in Erlang release R13A, by ac-
cepting any status code passed to the stream function
and handling status code 200 and 206 the same way.
See code below.
%% Stream to caller
stream(BodyPart, Request = #request{stream = Self},

Code) when ((Code == 200) or (Code == 206)) and
((Self == self) or (Self == {self,once})) ->

 httpc_response:send(Request#request.from,
{Request#request.id, stream, BodyPart}),

{<<>>, Request};

stream(BodyPart, Request = #request{stream = Self},
404) when Self == self; Self == {self, once} ->

httpc_response:send(Request#request.from,
{Request#request.id, stream, BodyPart}),
{<<>>, Request};

stream(BodyPart, Request = #request{stream = File-

name}, Code) when ((Code == 200) or (Code ==
206)) and is_list(Filename) -> % Stream to file

case file:open(Filename,[write, raw, append,
delayed_write]) of

{ok, Fd} ->
stream(BodyPart,Request#request{stream
= Fd}, 200);

{error, Reason} ->
exit({stream_to_file_failed, Reason})

 end;

stream(BodyPart,Request=#request{stream = Fd},Code)

 when ((Code == 200) or (Code == 206)) ->
% Stream to file

case file:write(Fd, BodyPart) of
ok -> {<<>>, Request};
{error, Reason} ->

exit({stream_to_file_failed, Reason})
 end;

stream(BodyPart, Request,_) ->

% only 200 and 206 responses can be streamed
{BodyPart, Request}.

3.1.2. Race condition

This fault occurs when accesses to a shared re-
source are not properly synchronized [38]. An exam-
ple of this fault happening in an Erlang program can
be taken from a program that was running
lists:foreach(fun erlang:garbage_collect/1,

erlang:processes()) every ten minutes [39]. While
this program was been tested, some abnormal beha-
viors such as stuck gen_server was discovered [40].
This led to the uncovering of a race condition fault in
all R11’s and R12’s versions of the smp emulator

[41]. Quoting the Erlang/OTP team, the reason the
fault occurred was:
‘A process being garbage collected via the gar-

bage_collect/1 BIF or the check_process_code/2 BIF
didn't handle message receive and resume correctly during
the garbage collect. When this occurred, the process re-
turned to the state it had before the garbage collect instead
of entering the new state.’

Rickard Green, Erlang/OTP, Ericsson AB [42]

This shows that any program that runs two or more
processes in parallel is capable of experiencing this
type of fault if processes sharing or using the same
recourses are not properly scheduled and synchro-
nized.

3.1.3. Deadlocks

This fault occurs when two or more processes are
waiting for the other to finish [26]. Deadlock was
tagged a common fault in Erlang during a study on
Troubleshooting a Large Erlang System [26]. This
study involved a large industrial software project pri-
marily developed in Erlang, where the implementation
and testing phases were studied with a focus on pro-
gramming errors. This project involved around 2.1
million lines of code contributed by about 300 pro-
grammers. Another study titled Typing for Reliable
Distributed Systems - Recent Advances [27], also de-
scribed deadlock as non-trivial fault in distributed and

 7

concurrent programs such as Erlang. This fault has
also been confirmed to be a typical Erlang fault from
interviews conducted with several Erlang developers
and a researcher. The transcripts from the interviews
can be viewed in Appendix A.

3.1.4. Runaway process
Runaway process occurs when a process consumes

resources (such as memory or CPU time), without
doing any useful work; this is typically the result of a
non-terminating loop [26]. Runaway process was
tagged a common fault in Erlang during a study on
Troubleshooting a Large Erlang System [26]. This
fault has also been confirmed to be a typical Erlang
fault from interviews conducted with several Erlang
developers and researchers. See Appendix A for tran-
scripts from the interviews conducted.

3.1.5. Wrong argument

This fault occurs when a function is called with an
argument having a wrong data type, or when the ar-
gument is badly formed [28]. For example, a call is
made to a function that receives a string and converts
it to an atom, but a number is passed to it instead such
as list_to_atom(5). This fault has been docu-
mented as a typical fault in Erlang reference manual
and has also been confirmed to be a typical Erlang
fault from interviews conducted with several Erlang
developers and a researcher (See Appendix A).

3.1.6. Bad argument in arithmetic expression
This fault occurs when an arithmetic expression is

provided with wrong operand [28]. For example, an
addition between a number and an Erlang atom such
as 10 + a will result in a fault because arithmetic ad-
dition can only be made with numeric data types such
as int, float. This fault has been documented as a typi-
cal fault in Erlang reference manual and has been ex-
perienced in practice based on the interviews con-
ducted with Erlang developers and a researcher. Refer
to Appendix A for more on the interviews.

3.1.7. Failed case expression match
This fault occurs when no matching branch is found
when evaluating a case expression [28]. For example,
the piece of code below will result in a failed case
expression match because connect will not match any
of the available branches. This fault has been de-
scribed as a typical fault in Erlang reference manual
and has also been confirmed to be a typical Erlang
fault from interviews conducted with several Erlang
developers and researchers. See Appendix A for tran-
scripts from the interviews.
Function definition: f(A) ->
 case A of
 reply -> response;
 call -> answer
 end.

Function call: f(connect)

3.1.8. Failed match expression
 This fault occurs when the value from the right
hand side of a pattern match expression does not

match with the value on the left hand side [28].
For example, the following piece of code {name,

FirstName} = {name, “John”, ”doe”} will result in
a failed match expression fault because the left hand
tuple expects a tuple with an atom name and any other
literal to be matched with it but instead gets a tuple
with size three. This fault has been documented as a
typical fault in Erlang reference manual and has also
been confirmed to be a typical Erlang fault from inter-
views conducted with several Erlang developers and a
researcher. See Appendix A for transcripts from the
interviews.

3.1.9. Calling a non-existing function

This fault occurs when a function call is made to a
non-existing function [28]. This fault has been docu-
mented as a typical fault in Erlang reference manual
and has also been confirmed to be a typical Erlang
fault from interviews conducted with several Erlang
developers and a researcher. See Appendix A for tran-
scripts from the interviews.

3.1.10. System limit

System limit occurs when a system limit has been
reached [28]. For example if the maximum process
limit of an Erlang program is 1000 as returned by er-

lang:system_info(process_limit). Then a system
limit fault will occur if the program tries to create
more than 1000 process. Just like Interviewee 1 said
(See Appendix A), this might indeed be quite common
in a not configured environment where system re-
sources have not been properly configured and also
during machine load. This fault has also been docu-
mented as a typical fault in Erlang reference manual.

3.2. Target program’s faults

While the array module was used as the target
program for evaluating the fault injection tool / solu-
tions (see 2.2.3), several faults were discovered.
These faults are presented here because this discovery
shows another approach in which fault injection can
be used to evaluate Erlang test suite. Apart from look-
ing at external resources for typical faults that can be
used during fault injection with the aim of evaluating
the test suite of the program in question. One can also
study the internals of the program for possible faults
that can be injected. These faults can then be genera-
lized to the level where they can be injected into other
similar programs. The following sections present the
generalized faults.

3.2.1. Omitted guard

This fault occurs when a certain guard required for
a function to work correctly is missing. An example is
a function that does the division between two num-
bers; there should be a guard to check for division by
zero which leads to a fault, such as when Y =/= 0 in
the function below
div(X, Y) -> X / Y.

 8

3.2.2. Missing Constraint
This fault arises when some constraints required

by a function to work correctly is missing. An exam-
ple is a function that returns the absolute of a number;
there should be an if statement to handle the case
where input is a negative number in the function
abs(X) -> X. Such an if statement could be added to
this function as
abs(X) ->
if X >= 0 -> X;
 true -> -X
end.

3.2.3. Under specification

This fault occurs when there is an extra constraint
in a function that limits its accepted inputs. Below is
an example of a function that returns the double of a
number. The extra constraint X > 0 is not needed in
this case; otherwise the function will not be able to
handle negative numbers.

double(X) when is_number(X), X > 0 -> X*2.

3.2.4. Swapped argument

This fault occurs in a function definition where
two of its arguments are in the wrong order. Below is
an example of a function that returns the weekday for
the input date. The order of arguments Month and Day
is not correct.

weekday(Year,Day,Month) ->
case calendar:day_of_the_week(Year,Month,Day) of

1 -> "Monday";
2 -> "Tuesday";
3 -> "Wednesday";
4 -> "Thursday";
5 -> "Friday";
6 -> "Saturday";
7 -> "Sunday"

end.

3.3. Solutions for injecting typical faults into

Erlang programs
This section presents the various ways of injecting

faults into Erlang programs. It is the validated results
from the analysis conducted in phase 2 of the research
method (see section 2.2), which includes both solu-
tions for injecting the validated typical faults and new-
ly discovered faults in the target array module.

For each fault, the solution is provided with Solu-
tion description on how it can be injected into the tar-
get program, the Algorithm for injecting the fault, an
Example from the array module in the Erlang/OTP,
the Test cases that test this part of code, the Output of
the test suite before and after injecting the fault, and
the Meaning of test suite’s outputs that explains the
reason for the result from the test cases after injecting
fault in comparison to the previous one.

As mentioned in the research method (section 2.2),
the solutions for injecting faults into Erlang programs
should be non-trivial. This means the programs after
fault injection must be compiled normally without any
warnings. The fault should also be injected in covered
code by checking with cover [31] and should not be
detected by dialyzer [30].

The diagram below depicts an encapsulation of
how failed function clause match, failed case expres-
sion match (see section 3.1), omitted guard, missing
constraint, under specification, and swapped argu-
ment faults (see section 3.2) will be injected into the

Figure 2 – Fault injection algorithm

target Erlang program (the array module). Module
syntax tree is a list of syntax_trees (see section 2.2.3).
Candidate is a syntax_tree in the Module syntax tree
where a particular type of fault can be injected. For
example, it is a function when the fault to be injected
is failed function clause match or an if statement when
the fault to be injected is missing constraint. Candi-
date list is a list of Candidates gotten from going
through the Module syntax tree. The highlighted parts
are unique for each fault injection solution and will be
described in more detail under the following sections.

3.3.1. Failed function clause match
Solution

This fault is injected by removing the last function
clause from a function with at least two function
clauses. It is typical in Erlang that the last clause
should be the one that handles all other remaining
cases. Removing this will create more severe fault,
which should be detected by a good test suite.

no

Start

Search for the next candidate;

Found ?

Have next
candidate?

End

yes

yes

no

Write the new module to new file;

Candidate list
empty ?

no

yes

Take the next candidate from the Candidate list;
Locate this candidate in the Module syntax tree;
Inject the fault into Module syntax tree;
Compile module;

no

yes

Add to the
Candidate list;

Transform the target module into a Module syntax tree;
Create an empty Candidate list;

Compile
warnings ?

 9

Algorithm
The algorithm for injecting this fault follows the

one described in Figure 2. The highlighted parts in the
figure should be replaced as in the table below.

Original parts Replaced parts

Search for the next candidate; Search for a function with at
least two function clauses;

Inject the fault into Module syntax tree Inject the fault by removing
the last function clause;

Example

The function in the array module prior to injecting
the failed function clause match fault looked like be-
low:
new_1([fixed | Options], Size, _, Default) ->
 new_1(Options, Size, true, Default);
new_1([{fixed, Fixed} | Options], Size, _, Default)
 when is_boolean(Fixed) ->
 new_1(Options, Size, Fixed, Default);
new_1([{default,Default} | Options],Size,Fixed,_) - >
 new_1(Options, Size, Fixed, Default);
new_1([{size, Size} | Options], _, _, Default)
 when is_integer(Size), Size >= 0 ->
 new_1(Options, Size, true, Default);
new_1([Size | Options], _, _, Default)
 when is_integer(Size), Size >= 0 ->
 new_1(Options, Size, true, Default);
new_1([], Size, Fixed, Default) ->
 new(Size, Fixed, Default);
new_1(_Options, _Size, _Fixed, _Default) ->

 erlang:error(badarg).

After injecting the fault, the highlighted function

clause was removed and this function looks like:
new_1([fixed | Options], Size, _, Default) ->
 new_1(Options, Size, true, Default);
new_1([{fixed, Fixed} | Options], Size, _, Default)
 when is_boolean(Fixed) ->
 new_1(Options, Size, Fixed, Default);
new_1([{default, Default} | Options], Size, Fixed,
_) ->
 new_1(Options, Size, Fixed, Default);
new_1([{size, Size} | Options], _, _, Default)
 when is_integer(Size), Size >= 0 ->
 new_1(Options, Size, true, Default);
new_1([Size | Options], _, _, Default)
 when is_integer(Size), Size >= 0 ->
 new_1(Options, Size, true, Default);
new_1([], Size, Fixed, Default) ->
 new(Size, Fixed, Default).

Test cases

Below are some of the test cases included in the
array module test suite. These test cases test that the
function handles the task performed by the removed
clause.
?_test(new(10)),
?_assert(new(fixed) =:= new(0)),
?_assert(new(10) =:= new([{size,0}, {size,5},

{size,10}])),
?_assert(17 =:= array:size(new(17))),
?_assert(is_array(new(10))),
?_test(set(9, 17, new(10))),
?_assert([undefined] =:= to_list(new(1))),
?_assert([] =:= sparse_to_list(new(1))),
?_assert([{0,undefined},{1,undefined}] =:=

to_orddict(new(2))),

Output of test suite before injecting fault

All 284 tests passed.

Output of test suite after injecting fault

Failed: 41. Skipped: 0. Passed: 243.

Meaning of test suite’s outputs
The injected fault was easily detected by the test

suite because there were test cases covering it.

3.3.2. Failed case clause match
Solution

This fault is injected by removing the last case
clause from a case statement with at least two case
clauses. It is typical in Erlang that the last case clause
usually handles the remaining cases. Removing this
will create more severe fault, which should be de-
tected by a good test suite.

Algorithm

 The algorithm for injecting this fault follows the
one described in Figure 2. The highlighted parts in the
figure should be replaced as in the table below.

Original parts Replaced parts

Search for the next candidate; Search for a case statement
with at least two case clauses;

Inject the fault into Module syntax tree Inject the fault by removing
the last case clause;

Example

The function in the array module prior to injecting
the failed case clause match fault looked like below:
sparse_push_tuple(0, _D, _T, L) -> L;
sparse_push_tuple(N, D, T, L) ->
 case element(N, T) of

D -> sparse_push_tuple(N - 1, D, T, L);
E -> sparse_push_tuple(N - 1, D, T, [E | L])

 end.

After injecting the fault, the highlighted clause was

removed and the function looked like:
sparse_push_tuple(0, _D, _T, L) -> L;
sparse_push_tuple(N, D, T, L) ->
 case element(N, T) of

D -> sparse_push_tuple(N - 1, D, T, L)
 end.

Test cases

Below are the test cases included in the array
module test suite which test the part of code where the
fault was injected. The target function sparse_push_

tuple/4 was called by function sparse_to_list/1 .
sparse_to_list_test_() ->
 N0 = ?LEAFSIZE,
 [?_assert([] =:= sparse_to_list(new())),
 ?_assert([] =:= sparse_to_list(new(1))),
 ?_assert([] =:= sparse_to_list(new(1,

{default, 0}))),
 ?_assert([] =:= sparse_to_list(new(2))),
 ?_assert([] =:= sparse_to_list(new(2,

{default, 0}))),
 ?_assert([] =:= sparse_to_list(new(N0,

{default,0}))),
 ?_assert([] =:= sparse_to_list(new(N0+1,

{default,1}))),
 ?_assert([] =:= sparse_to_list(new(N0+2,

{default,2}))),
 ?_assert([] =:= sparse_to_list(new(666,

{default,6}))),
 ?_assert([1,2,3] =:= sparse_to_list(set(2,3,

set(1,2,set(0,1,new()))))),
 ?_assert([3,2,1] =:= sparse_to_list(set(0,3,

set(1,2,set(2,1,new()))))),
 ?_assert([0,1] =:= sparse_to_list(set(N0-1,1,

set(0,0,new())))),
 ?_assert([0,1] =:= sparse_to_list(set(N0,1,

set(0,0,new())))),

 10

 ?_assert([0,1] =:= sparse_to_list(set(N0+1,1,
set(0,0,new())))),

 ?_assert([0,1,2] =:= sparse_to_list(
set(N0*10+1,2,set(N0*2+1,1,set(0,0,new()))))),

 ?_assertError(badarg, sparse_to_list(
no_array))].

Output of test suite before injecting fault
All 284 tests passed.

Output of test suite after injecting fault

Failed: 6. Skipped: 0. Passed: 278.

Meaning of test suite’s outputs
The injected fault was easily detected by the test

cases. This means the test suite is effective enough in
detecting the injected fault.

3.3.3. Omitted guard
Solution

This fault is injected by removing the when guard
from a function clause of a function containing at least
one guard. Even though this is particular in the array
module, this solution can be applied to any other Er-
lang programs that using guard.

Algorithm

The algorithm for injecting this fault follows the
one described in Figure 2. The highlighted parts in the
figure should be replaced as in the table below.

Original parts Replaced parts

Search for the next candidate; Search for a function contain-
ing at least a when guard;

Inject the fault into Module syntax tree Inject the fault by removing a
when guard in the function;

Example
The function in the array module prior to injecting

the omitted guard fault looked like below:
new_1([fixed | Options], Size, _, Default) ->
 new_1(Options, Size, true, Default);
new_1([{fixed, Fixed} | Options], Size, _, Default)
 when is_boolean(Fixed) ->
 new_1(Options, Size, Fixed, Default);
new_1([{default, Default} | Options], Size, Fixed,
_) ->
 new_1(Options, Size, Fixed, Default);
new_1([{size, Size} | Options], _, _, Default)
 when is_integer(Size), Size >= 0 ->
 new_1(Options, Size, true, Default);
new_1([Size | Options], _, _, Default)
 when is_integer(Size), Size >= 0 ->
 new_1(Options, Size, true, Default);
new_1([], Size, Fixed, Default) ->
 new(Size, Fixed, Default).
new_1(_Options, _Size, _Fixed, _Default) ->

 erlang:error(badarg).

After injecting the fault, the highlighted guard was

removed and this function looked like:
new_1([fixed | Options], Size, _, Default) ->
 new_1(Options, Size, true, Default);
new_1([{fixed, Fixed} | Options], Size, _, Default)
->
 new_1(Options, Size, Fixed, Default);
new_1([{default, Default} | Options], Size, Fixed,
_) ->
 new_1(Options, Size, Fixed, Default);
new_1([{size, Size} | Options], _, _, Default)
 when is_integer(Size), Size >= 0 ->
 new_1(Options, Size, true, Default);
new_1([Size | Options], _, _, Default)
 when is_integer(Size), Size >= 0 ->
 new_1(Options, Size, true, Default);

new_1([], Size, Fixed, Default) ->
 new(Size, Fixed, Default).
new_1(_Options, _Size, _Fixed, _Default) ->

 erlang:error(badarg).

Test cases

Below are the test cases included in the array
module test suite. These test cases test the function
clause contains the removed guard.
?_test(new({fixed,true})),
?_test(new({fixed,false})),
?_test(new([{size,100},{fixed,false},

{default,undefined}])),
?_assert(new() =:= new([{size,0},

{default,undefined},{fixed,false}])),
?_assert(new() =:= new(0, {fixed,false})),
?_assert(new(10, []) =:= new(10,

[{default,undefined},{fixed,true}])),
?_assertMatch(#array{size=N0,max=N0,elements=N0},

new(N0, {fixed,false})),
?_assertMatch(#array{size=N01,max=N1,elements=N1},

 new(N01, {fixed,false})),
?_assertMatch(#array{size=N1,max=N1,elements=N1},

 new(N1, {fixed,false})),
?_assertMatch(#array{size=N11,max=N2,elements=N2},

 new(N11, {fixed,false})),
?_assertMatch(#array{size=N2, max=N2, default=42,

elements=N2},new(N2,[{fixed,false},{default,42}])),
?_assert(is_array(new(10, {fixed,false})))
?_assertNot(is_fix(new({fixed,false}))),
?_assertNot(is_fix(new(10, {fixed,false}))),
?_assert(is_fix(new({fixed,true}))),
?_assert(is_fix(new(10, {fixed,true}))),
?_assert(is_fix(fix(new({fixed,false})))),
?_assertError(badarg, set(10, 17, fix(new(10,

{fixed,false})))),
?_assert(new(17, {fixed,false}) =:= relax(new(17))) ,
?_assert(new(100, {fixed,false}) =:=

relax(fix(new(100, {fixed,false})))),
?_assert(array:size(resize(array:set(99, 0, new(10,

{fixed,false})))) =:= 100),
?_assert(sparse_size(array:set(99, 0, new(10,

{fixed,false}))) =:= 100),

Output of test suite before injecting fault
All 284 tests passed.

Output of test suite after injecting fault
All 284 tests passed.

Meaning of test suite’s outputs
The outputs show that the injected fault was not

detected by the test suite. The reason is either the test
suite is not effective enough and/or there is some
problem with the code. Examining the test suite con-
firms that there wasn’t any negative test case for this
function clause, i.e. test case with one of the inputs is
{fixed, Any} while Any is anything other than true
or false . An example of a test case which covers this
and that could be included in the test suite is
?_assertError(badarg,new({fixed,any})) . How-
ever, a closer look at the code reveals that the re-
moved guard when is_boolean(Fixed) in this case is
unnecessary code. In other words, this is an over-
specification phenomenon where in this case the pro-
grammer was not 100% sure that the second argument
of the tuple {fixed, Value} is always a Boolean val-
ue. In the array module, an array is created with either
function new/0 , new/1 or new/2 , which will call func-
tion new_0/3 where the array size is either fixed or
not. This will in turn call function new_1/4 with the
Fixed input as either {fixed, true} or {fixed,

false} .

 11

3.3.4. Missing Constraint
Solution

This fault is injected by replacing the if statement
with one of its clauses. Even though this is specific to
the array module, this solution can be applied to any
other Erlang program that uses an if statement.

Algorithm

The algorithm for injecting this fault follows the
one described in Figure 2. The highlighted parts in the
figure should be replaced as in the table below.

Original parts Replaced parts

Search for the next candidate; Search for an if statement
with at least two clauses;

Inject the fault into Module syntax tree Inject the fault by replacing
the if statement with one of
its clauses;

Example

The function in the array module prior to injecting
the missing constraint fault looked like below:

resize(Size,#array{size = N,max = M,elements = E}=A)
 when is_integer(Size), Size >= 0 ->
 if Size > N ->
 {E1, M1} = grow(Size-1, E,
 if M > 0 -> M;
 true -> find_max(N-
1, ?LEAFSIZE)
 end),
 A#array{size = Size,
 max = if M > 0 -> M1;
 true -> M
 end,
 elements = E1};
 Size < N ->
 A#array{size = Size};
 true ->
 A
 end;
resize(_Size, _) ->
 erlang:error(badarg).

After injecting the fault, the highlighted code was

removed and the function looked like:
resize(Size, #array{size = N, max = M, elements =
E}=A)
 when is_integer(Size), Size >= 0 ->
 {E1, M1} = grow(Size-1, E,
 if M > 0 -> M;
 true -> find_max(N-1, ?LEAF-
SIZE)
 end),
 A#array{size = Size,
 max = if M > 0 -> M1;
 true -> M
 end,
 elements = E1};
resize(_Size, _) ->
 erlang:error(badarg).

Test cases
Below are the test cases included in the array

module test suite. These test cases test the function
that contains the replaced if statement.
resize_test_() ->
 [?_assert(resize(0, new()) =:= new()),
 ?_assert(resize(99, new(99)) =:= new(99)),
 ?_assert(resize(99, relax(new(99))) =:= re-
lax(new(99))),
 ?_assert(is_fix(resize(100, new(10)))),
 ?_assertNot(is_fix(resize(100, relax(new(10))))),

 ?_assert(array:size(resize(100, new())) =:= 100),

 ?_assert(array:size(resize(0, new(100))) =:= 0),
 ?_assert(array:size(resize(99, new(10))) =:= 99),
 ?_assert(array:size(resize(99, new(1000))) =:=
99),

 ?_assertError(badarg, set(99, 17, new(10))),
 ?_test(set(99, 17, resize(100, new(10)))),
 ?_assertError(badarg, set(100, 17, resize(100,
new(10)))),

 ?_assert(array:size(resize(new())) =:= 0),
 ?_assert(array:size(resize(new(8))) =:= 0),
 ?_assert(array:size(resize(array:set(7, 0,
new()))) =:= 8),
 ?_assert(array:size(resize(array:set(7, 0,
new(10)))) =:= 8),
 ?_assert(array:size(resize(array:set(99, 0,
new(10,{fixed,false})))) =:= 100),
 ?_assert(array:size(resize(array:set(7, undefined ,
new()))) =:= 0),

?_assert(array:size(resize(array:from_list([1,2,3,u n
defined]))) =:= 3),

?_assert(array:size(resize(array:from_orddict([{3,0 }
,{17,0},{99,undefined}])))
 =:= 18),
 ?_assertError(badarg, resize(foo, bad_argument))] .

Output of test suite before injecting fault
All 284 tests passed.

Output of test suite after injecting fault

All 284 tests passed.

Meaning of test suite’s outputs
The outputs show that the injected fault was not

detected by the test suite. The reason is that either the
test suite is not sufficient and/or there is some problem
with the code. Examining the code exposes an “over-
implementation” phenomenon in the code. In this
case, the second and the last clause of the above if
statement are not needed. The first clause already cov-
ers the second and the third ones. The new array size
is always set, even when new size equals the current
one. In addition, the max and elements attributes were
implemented in a way that they are only changed
when the new array size is greater than both the cur-
rent one and the current max value.

While studying the test cases, it showed that only
the array size was tested when the array was resized.
Thus there isn’t any test case testing the max and ele-

ments attributes when resizing the array with a differ-
ent size. Such test cases can be written as below.
?_assert((resize(5,new(15,

[{fixed,false}])))#array.max =:= (new(15,
[{fixed,false}]))#array.max),

?_assert((resize(5,new(15,
[{fixed,false}])))#array.elements =:= (new(15,

[{fixed,false}]))#array.elements),
?_assert((resize(101,new(15,

[{fixed,false}])))#array.max =:= 1000),
?_assert((resize(101,new(15,

[{fixed,false}])))#array.elements =:= 1000)

3.3.5. Under specification
Solution
This fault is injected by adding to the when guard one
more constraint that limits the accepted input of a
function. Even though this is specific to the array
module, this solution can be applied to any other Er-
lang program that does comparison with a guard.

 12

Algorithm
The algorithm for injecting this fault follows the

one described in Figure 2. The highlighted parts in the
figure should be replaced as in the table below.

Original parts Replaced parts

Search for the next candidate; Search for a function con-
taining at least a comparison
guard (e.g. N > 100);

Inject the fault into Module syntax tree Inject the fault by adding to
the comparison guard one
more constraint that limits
the accepted input;

Example

The function in the array module prior to injecting
the under specification fault looked like below:
new(Size, Options) when is_integer(Size), Size >= 0
->
 new_0(Options, Size, true);
new(_, _) ->
 erlang:error(badarg).

After injecting the fault, the highlighted constraint

was added and the function looked like:
new(Size, Options) when is_integer(Size), Size >= 0 ,
Size =< 1000 ->
 new_0(Options, Size, true);
new(_, _) ->
 erlang:error(badarg).

Test cases

Below is the test case included in the array module
test suite. This is the only test case that tests the target
function clause.
-define(LEAFSIZE, 10).
-define(NODESIZE, ?LEAFSIZE).

N0 = ?LEAFSIZE,
N1 = ?NODESIZE*N0,
N2 = ?NODESIZE*N1,

?_assertMatch(#array{size=N2, max=N2,

default=42,elements=N2},
 new(N2, [{fixed,false},{default,42}])),

Output of test suite before injecting fault

All 284 tests passed.

Output of test suite after injecting fault

All 284 tests passed.

Meaning of test suite’s outputs
The outputs show that the injected fault was not

detected by the test suite. This is because there is no
test case that verifies an array can be created with a
size more than 1000.

3.3.6. Swapped arguments
Solution

This fault is injected by swapping two arguments
of a function containing more than one argument. As a
minimum, one of the arguments must be unused, i.e. it
starts with the “_” sign. Even though this is specific to
the array module, this solution can be applied to any
other Erlang programs that contain a function clause
with unused arguments.

Algorithm
The algorithm for injecting this fault follows the

one described in Figure 2. The highlighted parts in the
figure should be replaced as in the table below.

Original parts Replaced parts

Search for the next candidate; Search for a function with at
least two arguments where
one of them must be unused;

Inject the fault into Module syntax tree Inject the fault by swapping
the unused argument with
any other one;

Example

The function in the array module prior to injecting
the swapped argument fault looked like below:

new_1([fixed | Options], Size, _, Default) ->
 new_1(Options, Size, true, Default);
new_1([{fixed, Fixed} | Options], Size, _, Default)
 when is_boolean(Fixed) ->
 new_1(Options, Size, Fixed, Default);
new_1([{default,Default} | Options],Size,Fixed,_) - >
 new_1(Options, Size, Fixed, Default);
new_1([{size, Size} | Options], _, _, Default)
 when is_integer(Size), Size >= 0 ->
 new_1(Options, Size, true, Default);
new_1([Size | Options], _, _, Default)
 when is_integer(Size), Size >= 0 ->
 new_1(Options, Size, true, Default);
new_1([], Size, Fixed, Default) ->
 new(Size, Fixed, Default);
new_1(_Options, _Size, _Fixed, _Default) ->
 erlang:error(badarg).

After injecting the fault, the highlighted arguments
were swapped and the function looked like:

new_1([fixed | Options], Size, _, Default) ->
 new_1(Options, Size, true, Default);
new_1([{fixed, Fixed} | Options], Size, _, Default)
 when is_boolean(Fixed) ->
 new_1(Options, Size, Fixed, Default);
new_1([{default, Default} | Options], Size, _,

Fixed) ->
 new_1(Options, Size, Fixed, Default);
new_1([{size, Size} | Options], _, _, Default)
 when is_integer(Size), Size >= 0 ->
 new_1(Options, Size, true, Default);
new_1([Size | Options], _, _, Default)
 when is_integer(Size), Size >= 0 ->
 new_1(Options, Size, true, Default);
new_1([], Size, Fixed, Default) ->
 new(Size, Fixed, Default);
new_1(_Options, _Size, _Fixed, _Default) ->
 erlang:error(badarg).

Test cases

Below are some of the test cases included in the
array module test suite. These test cases test the func-
tion clause contains the swapped arguments.

?_test(new({default,undefined})),
?_test(new([{size,100},{fixed,false},{default,undef i
ned}])),
?_test(new([100,fixed,{default,0}])),
?_assert(new(10, []) =:= new(10, [{de-
fault,undefined},{fixed,true}])),
?_assertError(badarg, new([{default,0} | fixed])),
?_assertMatch(#array{size=N2, max=N2, de-
fault=42,elements=N2},
 new(N2,
[{fixed,false},{default,42}])),
?_assert(4711 =:= default(new({default,4711}))),
?_assert(0 =:= default(new(10, {default,0}))),
?_assert(array:get(0, new(1,{default,0})) =:= 0),
?_assert(array:get(0, reset(0, new({default,42})))
=:= 42),
?_assert(array:get(0, reset(0, set(0, 17,
new({default,42})))) =:= 42),

 13

Output of test suite before injecting fault
All 284 tests passed.

Output of test suite after injecting fault

All 284 tests passed.

Meaning of test suite’s outputs
The outputs show that the injected fault was not

detected by the test suite. The reason is that either the
test suite is not effective enough and/or there is some
problem with the code. Examining the test suite gave
an expression that the following test case was missed:
?_assert(new([{default, 5}, 20, fixed]) =:=

 new([20 ,fixed ,{default, 5}])).

However, a closer look at the code reveals that the
Boolean variable Fixed was implemented to accept
any value rather than just true or false . That code
was written as:

if Fixed -> 0;
 true -> E
end,

Although according to the local specification, vari-
able Fixed can only be true or false , it would also
be better to write the code to accept only these values.
This is proved by having the test result of 48 test cases
failed with the replaced code when the fault was in-
jected. Such a code can be written as:
case Fixed of
 true -> 0;
 false -> E
end,

4. Discussion

The aim of this study is to show how fault injec-
tion technique can be used to evaluate Erlang test
suites. A qualitative approach with data collection,
analysis and validation phases was adopted. We will
discuss certain reasons behind some decisions that
were made, some issues that occurred along the way,
how things could have been done differently and so
on. We will also touch on some interesting points and
findings in the results of this study.

4.1. Approach
 Several data sources were used during data collec-
tion, these includes the official Erlang OTP releases,
Erlang-bug archives, Erlang reference manual and
related studies (see table 1). However the original plan
was to gather data from only the official Erlang OTP
release R10B – 0 to R13B by comparing the source
codes of all neighboring releases (e.g. R11B-0 and
R10B-10) with the aim of locating what bug fixes
were found or fixed from previous releases. This was
one way of gathering Erlang faults, but we had several
difficulties while using this approach. One problem
was that the information available in the release notes
on what bug fixes were made, was not detailed
enough to relate to what piece of code or module it
occurred in. This left room for a lot of uncertainty on
the root cause of documented bugs. An example of
this lack of detail can be seen below:

--- asn1-1.6.10 ----------------------------------- -

 OTP-7953 The anonymous part of the decode that
splits the ASN1 TLV into Tag Value tuples has been
optimized.

 OTP-7954 A faulty receive case that catched al l
messages in the initialization of the driver has
been removed, the initialization has been restruc-
tured.

R13B Release note [43]

 Another problem was that Erlang consist of a
number of applications. Hence, one must have some
familiarity with all the applications in each release in
order to easily locate where the bugs occurred based
on the insufficient information available in the release
notes. This will take much longer time than the period
of ten weeks used for this study. Therefore, focusing
on more data sources made it easier to gather Erlang
typical faults especially since there were already some
studies in this field and also some official documenta-
tion on Erlang typical faults available (see section
2.1.2).

 The solutions that were proposed on how to inject
faults into Erlang programs were validated by build-
ing a fault injection tool that implemented those solu-
tions (2.2.3). This not only certified the solutions as
valid but also showed how fault injection can be au-
tomated. This automation is particularly useful when
it comes to using fault injection with larger programs
that have many lines of codes. It is also useful be-
cause it can be reused on several Erlang programs.
This way of validating was however costly for this
study since one has to develop a tool which requires a
reasonable amount of development time and the tech-
nical knowhow.

The purpose of this study was to understand how
fault injection technique can be used to evaluate Er-
lang test suites. This was approached by first finding
out what typical faults occur in Erlang programs by
analyzing data from Erlang sources such as Er-
lang/OTP release notes, official Erlang documentation
and Erlang bug reports and other related studies. Pro-
posals were then made on how non trivial faults with-
in them could be injected into Erlang programs. This
approach has produced meaningful results and has
been successful in this study. However, there are some
drawbacks when it comes to looking for faults that can
be used for fault injection. Majority of the typical
faults gathered were eventually not used for fault in-
jection (see section 3.3). This was because most of
them were either trivial or not suitable for fault injec-
tion, and thus were not part of those used to evaluate
Erlang test suites at the end. A better approach would
have been gathering not just Erlang typical faults, but
faults that are ideal for fault injection from the very
beginning.

It is interesting to see that all the typical faults col-
lected (see section 3.1) were actually detected by the
test suite of the array module while the faults discov-
ered when working with the program (see section 3.2)
went undetected. This shows, according to this study,

 14

that an effective way to inject faults which might be
missed by the test suite is by having internal know-
ledge of the target program. Even though these unde-
tected faults have been generalized to the point where
they can be injected into other related Erlang pro-
grams, it still remains uncertain whether they will not
be easily detected.

Having this in mind, another approach that can be
used in carrying out fault injection, is by manually
injecting faults into a target Erlang program. These
faults can then be generalized to the level where they
can be injected into other similar programs. This
process of manually injecting faults can be automated
by using a fault injection tool. Automating the process
makes it a lot easier and less time consuming when
injecting faults into many different other programs. It
also reduces the risk of incorrect fault injection due to
human error. This approach also has its drawback as
the generalization made here, are less suitable for pro-
grams that are not similar to the target one. For exam-
ple, if the target program is not database oriented, then
it might be difficult to inject faults which are typical
in database oriented programs. Thus, selecting differ-
ent target programs from different domains might be a
good idea when gathering faults that will be genera-
lized. This will make the generalization applicable to a
wider range of different Erlang programs

4.2. Typical Faults

The reason for injecting typical faults is that they
are faults that can be found in Erlang programs and
there is a high probability of it occurring during and
after the development time of the program. An exam-
ple of this is the failed function clause match discov-
ered in Erlang/OTP release that was written by expe-
rienced developers (see section 3.1).

4.3. Fault Injection Solutions
 In order for a fault to occur in an Erlang program,
conditions that cause the fault to arise must be present
in that program. For example a deadlock fault cannot
occur in a program that runs on just one process. This
finding means that the choice of what typical faults
that can be injected into a program depends on how
the program is constructed.

We have chosen to inject non-trivial Erlang typical
faults from the ones described in section 3.1. Thus,
typical faults such as wrong argument were not in-
jected because they could be easily detected and eva-
luated by already available tools such as static analyz-
ers (e.g. dialyzer) and coverage tools (e.g. cover).
Faults discovered while evaluating the fault injection
tool on the target array module were also injected
(see 3.2). This was however generalized so that they
can also be injected into other similar Erlang pro-
grams.

5. Conclusion

Fault injection is a technique that involves inject-
ing abnormalities into software programs [1]. This can

then be used to evaluate test suites by checking how
well they detect those abnormalities. Test suite is a set
of test cases created to test a particular program with
the purpose of finding faults that exist in that program.
A test suite is effective if it is able to detect errors that
exist in its target program. The more errors it detects,
the more effective it is. This study showed how fault
injection can be used to evaluate Erlang test suites.
This was done by (1) injecting non-trivial faults one at
a time into a target Erlang program, these are faults
that cannot be detected at compile time, by dialyzer or
by a test suite and cover information, and (2) evaluat-
ing the program test suite by studying if it can identify
the injected fault, and if not why.

We applied fault injection on the array module in
the Erlang OTP release R13B, and evaluated its pre-
written test suite. The evaluation was carried out by
injecting six non trivial faults, one at a time and
checking if they can be detected by the test suite. Out
of the six faults injected, two were detected by the test
suite while four went undetected. A thorough study of
the code where the faults were injected and the test
cases covering those revealed two things: some miss-
ing test cases and some program code in need of im-
provement. However, the overall evaluation showed
that the evaluated test suite was effective enough in
detecting faults in the target array module.

One very important part of fault injection is having
the right fault to inject into the target program. Never-
theless, it is not possible to know the right faults to
inject for every individual program; therefore it is
necessary to inject as many faults as possible. We
have been able to come up with some typical Erlang
fault during the course of this study. However, there is
still need to explore more resources for more faults
which can be used for fault injection. Further research
could focus more on this.

6. Acknowledgement

We would like to say thanks to our supervisor,
Thomas Arts for the reviews and support we got dur-
ing the course of the study.

7. References
[1] Jeffery M. Voas and Gary McGraw, 1998, Soft-

ware fault injection: inoculating programs
against errors, New York: Wiley

[2] Matthew J. Rutherford et al., 2008, Evaluating
Test Suites and Adequacy Criteria Using Simula-
tion-Based Models of Distributed Systems, IEEE
Transactions on Software Engineering

[3] Mei-Chen Hsueh et al.,1997, Fault Injection -
Techniques and tools, IEEE Computer Society
Press Los Alamitos, CA, USA

[4] Sébastien Tixeuil et al., 2005, A language-driven
tool for fault injection in distributed systems, Grid
Computing Workshop

 15

[5] Sudipto Ghosh, 2001, Fault Injection Testing for
Distributed Object Systems, TOOLS39, IEEE
Computer Society Washington, DC, USA

[6] Chillarege, R. Bowen, N.S., 1989, Understanding
large system failures-a fault injection experiment,
IBM - NY

[7] Jean Arlat et al., 1992, Fault Injection and De-
pendability Evaluation of Fault-Tolerant Systems,
Technical Report: LAAS-CNRS#91260, Univer-
sity of Bologna

[8] Nik Looker. et al., 2005, A Comparison of Net-
work Level Fault Injection with Code Insertion,
IEEE Computer Society Washington, DC, USA

[9] Scott Dawson et al., 1995, A software fault injec-
tion tool on real-time Mach, IEEE Computer So-
ciety Washington, DC, USA

[10] Seungjae Han et al., 1995, DOCTOR: An inte-
grated software fault injection environment for
distributed real-time systems, IEEE Computer
Society Washington, DC, USA

[11] Sébastien Tixeuil et al, 2006, An Overview of
Existing Tools for Fault-Injection and Dependa-
bility Benchmarking in Grids, 2nd CoreGRID
Workshop on GRID and Peer to Peer Systems
Architecture, Paris

[12] Michel Cukier et al, 1999, Fault Injection Based
on a Partial View of the Global State of a Distri-
buted System, IEEE Computer Society Washing-
ton, DC, USA

[13] Jeffrey Voas, 1997, Fault Injection for the
Masses, IEEE Computer Society Press Los Ala-
mitos, CA, USA

[14] Jolo V. Carreira et al., 1999, Fault Injection Spot-
Checks Computer System Dependability, IEEE
Spectrum

[15] Jeffrey A. Clark and Dhiraj K. Pradhan , 1995,
Fault injection: A method for validating comput-
er-system dependability, IEEE Computer Society

[16] Douglas M. Blough and Tatsuhiro Torii, 1997,
Fault-Injection-Based Testing Of Fault-Tolerant
Algorithms In Message-Passing Parallel Com-
puters, IEEE Computer Society Washington,
DC, USA

[17] Ghani A. Kanawati et al, 1995, FERRARI: A
Flexible Software-Based Fault and Error Injec-
tion System, IEEE Computer Society Washing-
ton, DC, USA

[18] Timothy K. Tsai and Ravishankar K. Iyer, 1995,
FTAPE: A Fault Injection Tool to Measure Fault
Tolerance, National Aeronautics and Space Ad-
ministration, Washington, D.C

[19] Scott Dawson et al., 1996, ORCHESTRA: A prob-
ing and fault injection environment for testing
protocol implementations, Computer Performance
and Dependability Symposium, 1996., Proceed-
ings of IEEE International

[20] Thomas M. Galla et al, 2004, Software Imple-
mented Fault Injection for Safety-Critical Distri-
buted Systems by Means of Mobile Agents, Pro-
ceedings of the 37th Hawaii International Confe-
rence on System Sciences, IEEE Computer Socie-
ty Washington, DC, USA

[21] Scott Dawson et al, 1996, Testing of fault-tolerant
and real-time distributed systems via protocol
fault injection, Proceedings of FTCS-26, IEEE
Computer Society Washington, DC, USA

[22] Erlang/OTP, 2009, http://erlang.org/index.html,
last accessed 2009-04-22

[23] Ericsson, 2009, http://www.ericsson.com/ last
accessed 2009-06-08

[24] Erlang/OTP releases, 2009, http://erlang.org/dow
nload.html, last accessed 2009-04-22

[25] Official Erlang bugs archives, 2009, http://www.
erlang.org/pipermail/erlang-bugs/, last accessed
2009-05-19

[26] Mats Cronqvist, 2004, Troubleshooting a Large
Erlang System, Erlang’04, ACM New York, NY,
USA.

[27] Paweł T. W., 2005, Typing for Reliable Distri-
buted Systems - Recent Advances, DSN-2005
IEEE Workshop on Dependable Software - Tools
and Methods, Yokohama, Japan.

[28] Official Erlang Reference Manual, 2009, http://
erlang.org/doc/, last accessed 2009-05-19.

[29] John W. Creswell, 2008, Research Design: Qua-
litative, Quantitative, and Mixed Methods Ap-
proaches, Sage Publications Inc

[30] Dialyzer, 2009, http://erlang.org/doc/apps/dialyze
r/dialyzer_chapter.html,last accessed 2009-05-31

[31] Cover, 2009, http://www.erlang.org/doc/apps/tool
s/part_frame.html last accessed 2009-06-08

[32] Erlang Syntax Tool, 2009, http://www.erlang.org/
doc/apps/syntax_tools/index.html last accessed
2009-05-21.

[33] Erlang Syntax Tree, 2009, http://www.erlang.org/
doc/apps/syntax_tools/index.html last accessed
2009-06-24.

[34] The array module, 2009, http://erlang.org/doc/
man/array.html, last accessed 2009-07-02

[35] Eunit, 2009, http://www.erlang.org/doc/apps/euni
t/part_frame.html last accessed 2009-05-21

 16

[36] Erlang Bug Report, 2009 http://www.erlang.org/
pipermail/erlang-bugs/2009-February/001216.
html last accessed 2009-06-02

[37] HTTP/1.1, 2009, http://www.w3.org/Protocols/
rfc2616/rfc2616.html last accessed 2009-05-21.

[38] Robert H. B. Netzer and Barton P. Miller, 1992,
What are race conditions?: Some issues and for-
malizations, ACM New York, NY, USA.

[39] Erlang Bug Report, 2009, http://www.erlang.org/
pipermail/erlang-bugs/2009-January/001159.html
last accessed 2009-06-07

[40] Erlang Bug Report, 2009, http://www.erlang.org/
pipermail/erlang-bugs/2009-January/001158.html
last accessed 2009-06-07

[41] Erlang Bug Report, 2009, http://www.erlang.org/
pipermail/erlang-bugs/2009-January/001168.html
last accessed 2009-06-07

[42] Erlang/OTP, 2009, http://www.erlang.org/downlo
ad/patches/otp_src_R12B-5_OTP-7738.readme,
last accessed 2009-06-07

[43] R13B Release note, 2009, http://www.erlang.org/
download/otp_src_R13B.readme , last accessed
2009-06-24

[44] Brian W.Kernighan and Dennis M. Ritchie, 1978,
The C Programming Language, 1st edition, En-
glewood Cliffs, NJ: Prentice Hall

[45] Java, 2009, http://www.java.com/en/download/
whatis_java.jsp , last accessed 2009-07-02

 17

Appendix A – Interviews

This interview has been conducted separately with 3
experienced Erlang developers and an academic re-
searcher within the field of Erlang. We haven’t re-
quested for their names to be published in this article,
thus their names will be given as interviewee 1, 2, 3
and 4. The interview question was not open because
we were not trying to explore the problem area (what
are Erlang typical faults) but rather to validate find-
ings that we already have on Erlang typical faults.

The question was “Are the following faults (I – XVIII)
Erlang typical faults?”

Fault I
Race condition - This fault occurs when accesses to
the shared resource are not properly synchronized.

Answers
Interviewee 1 Race conditions are very common as

soon as you try to do anything which
involves concurrency. I would however
think that inserting race conditions is
quite hard, since you would need to
identify them to be able to provoke
them deliberately. If you've identified
them, it should be possible to fix them.
You can however change timing aspects
during runtime I guess.

Interviewee 2 Yes, I found this problem usually early
stage of a bigger project, or adding new
features to a complex system. It was
quite rare, if the design was good be-
fore.

Interviewee 3 Yes, this is a rather common and impor-
tant type of error. This type of error is
very hard to find in unit-tests and often
shows up late in the development
process. But I fail to see how that could
relate to fault injection!?

Interviewee 4 Happens occasionally, can be difficult
to find as it can seem intermittent.

Fault II
Deadlocks - This fault occurs when two or more
processes are waiting for the other to finish.

Answers
Interviewee 1 Yes and no. I wouldn't say that Dead-

locks are common in any Erlang system
written by an experienced Erlang pro-
grammer. I've however experienced
deadlocks when interacting with data-
bases, trying to dispatch table locknig
requests over OS threads, to avoid lock-
ing the Emulator. A verry common new-
bee mistake would be to go a
gen_server:call(self(), whatever) inside
any callback function, but this is very
quickly identified and usually not re-
peated.

Interviewee 2 Yes, I had this problem a few times, in
bigger projects it is usually time con-
suming to debug the reason.

Interviewee 3 Yes

Interviewee 4 Happens occasionally, but normally easy
to find & correct.

Fault III
Runaway process - This fault occurs when a process
consumes resources (such as memory or CPU time),
without doing any useful work. Typically this is the
result of a non-terminating loop.

Answers
Interviewee 1 I haven't seen this too much to be

honest, but I've hard quite recently
about this happening in one of our
production systems :) In this case it
was a badly formulated guard.
Thing fibonacci without checking if
input data is negative.

Interviewee 2 Yes, this happens sometimes, an other
example not to terminate unused listen-
ers (processes only waiting for input
messages and forward them after some
work).

Interviewee 3 Yes

Interviewee 4 Happens occasionally, but normally
easy to find & correct.

Fault IV
Wrong arguments - This fault occurs when a func-
tion is called with wrong data type of the argument, or
the argument is badly formed.

Answers
Interviewee 1 Yes, extremely common.
Interviewee 2 Yes, this is one of the most common

problems when extending an already
existing code. I usually make this error
when writing a big code part, through
several modules, and I forget to update
the return values of a function at func-
tion call from the other module.

Interviewee 3 Not very often

Interviewee 4 Common enough. I mostly do it when
using functions with nested arguments,
lists of tagged tuples that contain lists
of...

Fault V
Bad argument in arithmetic expression - This fault
occurs when an arithmetic expression is provided with
bad arguments.

Answers
Interviewee 1 Quite common. Good example is ti-

mouts, which can usually be an integer
or the atom infinity.

Interviewee 2 No, for me usually this is not a typical
error, but this can depend on the code
written.

Interviewee 3 No

Interviewee 4 This happens regularly but is normally
found very quickly if in the local mod-
ule. It can go undetected if it's used in a
library function that doesn't use guards.

 18

Fault VI
Failed match expression - This fault occurs when
result from the right hand side of a pattern matches
expression does not match with pattern of the left one.

Answers
Interviewee 1 Yes this is quite common. Mostly dur-

ing development or testing though.
Interviewee 2 Yes, one of the most typical error. Es-

pecially after extending existing code,
when the right hand side is a result of a
function call, what changed.

Interviewee 3 Yes, mostly because one has changed
the format of a record or tuple.

Interviewee 4 The "badmatch", probably the most
common basic error I've seen.

Fault VII
Failed function clause match - This fault occurs
when argument’s pattern of a function call does not
match any clause of that function.

Answers
Interviewee 1 Yes this is quite common, but also

the easiest to debug, since there is
very much information available :)

Interviewee 2 Yes, really typical error, very common.

Interviewee 3 Yes

Interviewee 4 This occurs regularly enough. Mostly
when calling modules from other appli-
cations or library functions.

Fault IX
Failed case expression match - This fault occurs
when no matching branch is found when evaluating a
case expression.

Answers
Interviewee 1 Yes, quite common, unless ppl. tend

to use an Other clause in the end.
Interviewee 2 Yes, really typical error, very common.

Interviewee 3 No, its a trivial code-coverage problem

Interviewee 4 This occurs regularly enough but most
designers have a catch-all default case
at the end of their statements.

Fault X
Failed if expression match - This fault occurs when
none of the guards in an if expression evaluated to
true.

Answers
Interviewee 1 Less common, probably since the

statement itself is less common. It is
often used as "if this is tue do that,
otherwise nothing, so there is usally
a true -> ok clase in the end...

Interviewee 2 Yes, typical error, but not very com-
mon.

Interviewee 3 No, it’s a trivial code-coverage problem

Interviewee 4 Don't think I've seen this one. Most
designers handle the catch-all 'else' with
some default behaviour.

Fault XI
Failed try expression match - This fault occurs when
no matching branch is found when evaluating a try
expression.

Answers
Interviewee 1 Not very common. But then we

don't use try very much.
Interviewee 2 Yes, typical error, common one.

Interviewee 3 No, it’s a trivial code-coverage problem

Interviewee 4 I've seen this occasionally.

Fault XII
Calling a non-existing function - This fault occurs when a
function call is made to a non-existing function.

Answers
Interviewee 1 Quite common as a result of a typo. Can

be caught easily with testcases / dialyzer
though.

Interviewee 2 Yes, it happened a few times, usually
not during new development, but ex-
tending old codebase.

Interviewee 3 Yes, but it is an easy to find problem
and an easy to fix problem, thus it is not
very interesting from a fault perspec-
tive.

Interviewee 4 I've done this when coding but normally
find it very quickly.

Fault XIII
Faulty fun - This fault occurs when there is something
wrong with a fun.

Answers
Interviewee 1 No, not really.
Interviewee 2 Yes, it happens, but very rare.

Interviewee 3 Too vague

Interviewee 4 That description might be a little vague,
if I ever found a problem in a fun I'd
probably classify it as a case clause,
wrong arguments or whatever other
heading it might fall under. The fact
that it's in a fun isn't the root cause.

Fault XIV
Wrong number of arguments applied to a fun - This fault
occurs when wrong number of arguments is applied to
a fun.

Answers
Interviewee 1 No not really.
Interviewee 2 Yes, it happened, but very rare.

Interviewee 3 No, it’s a trivial code-coverage problem

Interviewee 4 I've seen this delivered in systems long
after it should have been found. De-
pending on how the function behaves
its' not as easy to test for as it first ap-
pears. Normally occurs when an API
has changed.

Fault XV
Time out value - This fault occurs when the timeout value
in a receive..after expression is evaluated to something else
than an integer or infinity.

 19

Answers
Interviewee 1 Not so common, but it is possible to

have a negative value if you decrement
a timeout in a loop, which would give
an error.

Interviewee 2 Yes, it happened, but very rare.

Interviewee 3 Again, it’s a trivial code-coverage prob-
lem

Interviewee 4 I've never seen this one, but I'm sure it
happens ;-)

Fault XVI
Unavailable process - This fault occurs when trying
to link to a non-existing process.

Answers
Interviewee 1 No, not very common. We usually

spawn_link anyway. Or add moni-
tors.

Interviewee 2 Yes, it happened, usually in big sys-
tems, running the system. During some
non-expected rare scenarios, after some
failover, some process still try to link a
non-existing one.

Interviewee 3 Linking to a non-existing process can-
not be considered an error, it is some-
thing that normally happens in a fault-
tolerant system.

Interviewee 4 I've seen this good few times. Normally
happens when one process has crashed
or a start-up sequence isn't right.

Fault XVII
Evaluating a throw outside a catch - This fault oc-
curs when trying to evaluate a throw outside a catch.

Answers
Interviewee 1 Never seen :)
Interviewee 2 Yes, very rarely, but happened.

Interviewee 3 It’s a trivial code-coverage problem

Interviewee 4 I never use throws in my code unless I
absolutely have to so I've not seen this
one before. Might not recognise it in
someone else's code as a result.

Fault XVIII
System limit - This fault occurs when a system limit
has been reached.

Answers
Interviewee 1 Yes, this is quite common in a not

configured environment.
Interviewee 2 Yes, usually during the first (load) test-

ing the erlang system different system
limits are reached, it happens during
later (load) tests, but not so frequent.

Interviewee 3 No

Interviewee 4 Yes, I've seen this under load a few
times. I've often wondered how to han-
dle it in SW, how to reliably detect that
the machine is under load and how best
to reject new jobs.

Appendix B – Coverage for the array

module

Below is the output of the coverage analysis con-
ducted on the target array module. Cover coverage
analysis tool was used to analyze if the array module
test suite covers all code parts and lines. The output
shows that all code parts and lines are covered.

Eshell V5.7.1 (abort with ^G)
1> cover:compile(array).
{ok,array}
2> eunit:test(array).
 All 284 tests passed.
ok
3> cover:analyze(array, coverage, line).
{ok,[{{array,0},{0,1}},
 {{array,184},{1,0}},
 {{array,228},{1,0}},
 {{array,249},{1,0}},
 {{array,251},{1,0}},
 {{array,254},{1,0}},
 {{array,256},{1,0}},
 {{array,259},{1,0}},
 {{array,262},{1,0}},
 {{array,264},{1,0}},
 {{array,267},{1,0}},
 {{array,270},{1,0}},
 {{array,272},{1,0}},
 {{array,274},{1,0}},
 {{array,277},{1,0}},
 {{array,278},{1,0}},
 {{array,279},{1,0}},
 {{array,281},{1,0}},
 {{array,286},{1,0}},
 {{array,288},{1,0}},
 {{array,301},{1,0}},
 {{array,303},{1,0}},
 {{array,315},{1,0}},
 {{array,316},{1,...}},
 {{array,...},{...}},
 {{...},...},
 {...}|...]}
4> cover:analyze(array, coverage, module).
{ok,{array,{658,1}}}
5>

