
Model Based Testing of Data 
Constraints
Testing the Business Logic of a Mnesia Application 
with Quviq QuickCheck

Nicolae Paladi

Bachelor Thesis in Software Engineering

Report No. 2009:004
ISSN: 1651-4769

University of Gothenburg
Department of Applied Information Technology
Gothenburg, Sweden, May 2009



Abstract
Correct implementation of data constraints, such as refer-
ential integrity constraints and business rules is an essen-
tial precondition for data consistency. Though most modern
commercial DBMSs support data constraints, the latter are
often implemented in the business logic of the applications.
This is especially true for non relational DBMS like Mnesia,
which do not provide constraints enforcement mechanisms.
This case study examines a database application which uses
Mnesia as data storage in order to determine, express and
test data constraints with Quviq QuickCheck, adopting a
model-based testing approach. Some of the important stages
of the study described in the article are: reverse engineer-
ing of the database, analysis of the obtained database struc-
ture diagrams and extraction of data constraint, validation
of constraints, formulating the test specifications and finally
running the generated test suits. As a result of running the
test suits randomly generated by QuickCheck, we have de-
tected several violations of the identified and validated busi-
ness rules. We have found that the applied methodology is
suitable for applications using non relational, unnormalized
databases. It is important to note the methodology applied
within the case study is not bound to a specific application
or DBMS, and can be applied to other database applications.

1. Introduction
Referential integrity is the database-related practice ofen-
suring that implied relationships between tables are en-
forced. Most modern Database Management Systems (DBMSs),
especiallyrelational DBMSs have built in mechanisms for
defining and ensuring basic data constraints [24]. However,
in practice far from all constraints are defined in the database
management system itself, but many are rather encoded in
the application using the data. For example, an application
supporting an internet shop would impose a relation be-
tween a customer willing to make a purchase and the credit
balance of that customer. In a purely relational database, one
could hard code that the credit must at least be the purchase
amount, but this is hardly ever done, since this constraint
is based on a business strategy that may well change or is
different for different customers.

Many database applications have a layered architecture,
part of the data constraints are hard coded as relational con-
straints in the DBMS, other constraints are implemented
in the business logic of the application. There are several
reasons for implementing constraints in the business logic
rather than in the DBMS. For example, the above mentioned
situation in which one wants to get flexibility in the rela-
tionship; either in the future or for special subset of the cus-
tomers. Other reasons may be purely social, such as lack of
developer time or required expertise and insight, or strictly
technical. An excellent example of the latter case is Mne-
sia [26], a distributed DBMS, appropriate for telecommu-
nications applications and other Erlang [2] applications

which requires continuous operation and exhibit soft real-
time properties. According to Mattsson et al, [26], Mnesia
employs anextended relational model, which results in the
ability to store arbitrary Erlang terms in the attribute fields.
However, Mnesia is not a relational database and does not
have any mechanisms for ensuring database constraints other
than ensuring them in the business logic of the application.

Problem: ensuring the constraints

When data constraints cannot be ensured by a DBMS alone,
then those constraints are much less visible in the software
design. As a consequence, constraints are often implicitly
defined and certain parts of an application may acciden-
tally violate a constraint. Constraint violation may result the
database to be in an inconsistent state and software assuming
certain properties of the data may crash. In addition, viola-
tion of constraints may impact the business, since it may be
possible to perform actions that the business disallows.

When software needs to be reliable, the constraints imple-
mented in the business logic need to be satisfied and there-
fore it should be tested that they cannot be violated by exe-
cuting the application.

Defining and enforcing database constraints within rela-
tional (and to a lesser extent object oriented) databases has
long been in the focus of both academia and industry. The
SQL implementation [17] of database constraints is cur-
rently supported by most relational DBMSs. A simple ex-
ample is that the SQL standard for ensuring referential in-
tegrity (which is a typical example of a database constraint)
is supported by DBMS like MySQL, Microsoft SQL Server,
DB2, Oracle and even MS Access (through its graphical re-
lational tool) [9]. However, this does only solve simple re-
lations and not the more dynamic relations captured by the
business rules.

There has been little research done on the topic of en-
suring business rule constraints, especially when we con-
sider databases which do not use SQL. Furthermore, pre-
vious research assume the database to be in at least the 3rd
normal form [22] or higher, and do not consider the case
of unnormalized databases [14], [12], [15]. Nevertheless,
non-relational unnormalized databases are rapidly becoming
more popular.

The case: a large Mnesia application

Recently, Castro and Arts [4] have developed a method for
testing business logic constraints with Quviq QuickCheck.
They used their method to verify business logic constraints
in an application on top of a normalized relational database.
In this paper we show that the method is also applicable to
unnormalized, non-relational databases and that we are able
to identify business logic violations in existing applications.

Kreditor AB is a Stockholm-based financial organization
which has developed for its operations a database applica-
tion implemented in Erlang using Mnesia for data storage.
The application, further referred to as theKred application,

1



uses an unnormalized database supported by a non relational
database system.In this paper we show that the method of
Arts and Castro is applicable to Kreditor’s database ap-
plication. We show that we can identify violations of the
constraints. Therefore, it will help improve the existing
solutions for testing data constraints for non relational
database systems, and minimize the occurrence of situa-
tions when invalid data input can lead to data corruption.

As part of this study, we have reverse engineered the Kred
application to create its database schema and the correspond-
ing entity-relationship (ER) diagram. Besides, we have iden-
tified a number of data constraints that are implemented in
the business logic of the application.

The presented approach is generally applicable to non-
relational databases, but in particular to Erlang applications
build upon Mnesia.

2. Related Research
We base our case study on the method developed by Castro
and Arts [4], which is a general methodology for testing
data consistency of database applications. In this approach,
the system under test is modeled as a state machine, the
state of which is examined after consecutive calls to database
interface functions. In the method, the focus lies on keeping
the state as simple as possible and not making the state a
copy of the database; only data generated by the interface
functions (such as unique keys, etc), should be stored in
the state, the rest is assumed to be correctly stored. The
state machine model is tested against the real application
with QuickCheck, (cf. [5]). The novelty of the method of
Castro and Arts is that business rules are formulated as data
invariants and are checked after each test.

The method is applied to a normalized, relational database
and invariants are described and executed as SQL queries.

2.1 Other approaches

Chan and Cheung support the idea that current “tradi-
tional” approaches in software testing cannot reveal many
of the software errors which can lead to database corrup-
tion. Therefore, they suggest the idea of extending the white
box testing approach with the inclusion of SQL statements
that are embedded into the database application. In order to
do that, they suggest to convert the SQL statements to the
general programming language in which the application is
implemented and include them into the white box testing
framework [10].

In addition, Chanet al propose to integrate SQL state-
ments and the conceptual data models of an application for
fault-based testing. In their paper, they propose a set of mu-
tation operators based on the standard types of constraints
used in the enhanced entity-relationship model. The oper-
ators are semantic in nature and guide the construction of
affected attributes and join conditions of mutated SQL state-
ments [11].

Chayset al have developed a framework for testing re-
lational database applications called AGENDA. AGENDA
has a strong reliance on the relational model and SQL and
its use has not been described for non-relational databases
[12].

Dietrich and Paschke describe a test-driven approach to
the development and validation of business rules [16]. They
propose a way to develop JUnit test cases based on formal
rules, however they propose a manual implementation of the
test cases.

As a complement to the above method, Kuliamin’s de-
scription of the UniTestK test development technology [25]
contains some practical advice on using models to test large
complex systems. In particular, the author describes the use
of well known software engineering concepts such as mod-
ularization, abstraction and separation of concerns in order
to manage the stages of determining the interface functions,
development of the model, and finally the development of
the test scenario.

3. Research Approach
The project has been carried out with an emphasis on quan-
titative post positivist approach, focused on a combination
of qualitative in-depth analysis of the database application
under examination, and empirical observation of the results
of an extensive set of randomly generates test instances.

In the light of Boudreau’s claim that “Field experiments
involve the experimental manipulation of one or more vari-
ables within a naturally occurring system and subsequent
measurement of the impact of the manipulation on one or
more dependent variables” [8], this study heavily relies on
field experiments which will focus on studying the change of
the variables in the Kred application as a response to certain
alterations of the database. Furthermore, during the study
we have not only observed and measured the occurrence of
changes, but also compared them with theexpectedalter-
ations. Based on the outcome of the latter comparison, we
have been able to draw conclusions on whether the business
logic of the system conforms to the requirement of maintain-
ing the data in a consistent state. Other methods used include
interviews [23], data analysis, and heuristic estimationsof
the functionality limits of the system under examination for
test design purposes [27].

In the course of the project we had to answer several ques-
tions concerned with database representation, identification
of database constraints, as well as their codification. This
section will describe the tools used, as well as the steps taken
to conduct this study.

3.1 Limitations of the study

This study focused on database applications implemented in
Erlang and which use Mnesia as data storage. Despite the
fact that both Erlang and Mnesia have highly concurrent and

2



distributed properties, such aspects have not been taken into
consideration in the current study.

3.2 Tools

3.2.1 Test generation tools

In order to fully leverage the power of the formal veri-
fication approach adopted for testing the business logic,
we choose QuickCheck to generate and execute the tests.
Quviq QuickCheck is a specification based testing tool [5]
which tests the software with randomly generated test cases,
which follow a formal specification expressed in Erlang.
QuickCheck has several libraries for expressing higher level
system specifications like the state machine library that we
used.

There are several other test generation tools available,
which are listed below1:

• TVEDA, a tool developed by France Telecom CNET
[28], which generates tests against formal specifications
written in TTCN, which is an ISO test suit notation stan-
dard [31], [34]. This tool is used by France Telecom,
mainly for testing telecommunication protocols.

• TorX is anon-the-flytesting tool. i.e. which offers support
for test generation and test execution in an integrated
manner. It generates tests against specifications expressed
in PROMELA and LOTOS [30].

• Blom and Jonsson describe a case study of automatic test
generation for a telecom application implemented in Er-
lang. In their detailed paper, the authors also describe the
test generation algorithm, as well as a formal specifica-
tion language, Erlang-EFSM [7]. However, it is not fully
developed and has not moved further from the concept
state described in the article.

QuickCheck’s support of Erlang and library for state ma-
chines, together with a larger number of previous case stud-
ies, has made it the preferred tool for our research project.
However, it is important to note that the method followed in
our case study is generalizable, and it is not strictly boundto
either QuickCheck or the Kred application.

3.2.2 Structure visualization

As a consequence of the compelling lack of suitable database
reverse engineering tools as well as of database structure vi-
sualization tools that could be used for Mnesia, Dia has been
used to visualize the database structure, both the ER diagram
and the Database schema. Dia is a lightweight open source
tool that has been chosen particularly for its relatively exten-
sive capabilities [35]. While Dia may not be a specialized
database visualization tool, its capabilities allow to plot the
structure of databases as complex as the database used by
the Kred application.

1 Far from being a complete list, this is an example selection of test genera-
tion and execution tools

3.3 Examination of the database structure

One of the first steps in our work has been the manual
examination of the database structure. Reverse engineering
of relational databases has been in the focus of research, and
several approaches are available.

To mention a few, Premerlany and Blaha offer a generic
approach to reverse-engineering legacy relational databases
[29]. In their paper the authors describe a manual process
of analysis, deconstruction and visualization of the database
model, which consists of seven steps. Premerlany and Blaha
support the idea that reverse engineering of legacy databases
should be carried out in a flexible, interactive approach. The
authors also claim that an approach based on rigid, batch-
oriented compilers will most likely fail [29].

Similarly, Andersson describes the process of Extracting
an Entity Relationship Schema from a Relational Database
through Reverse Engineering [1]. In his approach, Andres-
son also use an ER model extended with multi-valued and
complex data, as well as multi-instantiation. This makes
the latter approach suitable for reverse engineering of the
database under assessment.

The method described by Premerlany and Blaha has nu-
merous similarities with the current study, and in partic-
ular the focus on large unnormalized databases, the con-
sideration of the lack of enforcement for foreign keys, as
well as consideration of the “optimized or flawed schemas
which are often found in practice” , [19]. Furthermore, this
approach is suggested by the authors as suitable for large
legacy databases with little or no semantic advice avail-
able [29]. However, this method is not entirely applicable,
mainly due to its focus onrelational database systems, as
well as due to the large effort required to reverse engineer
the database structure, especially since reverse engineering
of Mnesia databases isnot a central issue for this project.

Following the above idea, reverse engineering of the Kred
database has been performed in an iterative process consist-
ing of the steps described below.

• Determine Candidate Keys, a step focusing on identify-
ing the primary keys of the tables. In case of Mnesia,
this is facilitated by the peculiarities of record definition,
where thefirst element of the record serves as a key to
the record.

• Determining Foreign-key Groupsby observation of the
tables’ elements, search for synonyms, homonyms, and
fields with the same name.

• Discovering associationsby revealing additional links
of all types between the tables, with the help of code
comments and other semantic information. However as
Premerlany and Blaha state, “one should be careful at
this stage, since reverse engineering produces hypothesis,
which must nevertheless be validated with the help of
semantic understanding”.

3



• Performing the transformationby transferring of the dis-
covered information, based on decisions on the exact
representation of certain components. For example, in
many cases a one-to-one relationship implies that the el-
ement can be represented as an attribute (even perhaps a
complex attribute) rather than entity. Furthermore, N-ary
associations should be decomposed into binary (rarely
ternary [29]) relationships, for a more realistic visualiza-
tion of the database structure. Other similar steps must be
considered as well.

An additional consideration to be added to the process is
the earlier mentioned ability of Mnesia to store Erlang terms
of arbitrary complexity in the attribute fields, for examplea
record that in itself would candidate for being an entity.

The goal of the described method is to obtain a visual
representation of the database schema, the corresponding ER
diagram of the most important components of the database,
as well as getting acquainted with the overall structure and
functioning of the database. The iterative approach allows
to gradually add entities, based on their relevance to the
identification of data constraints.

3.4 Identification of data constraints

In order to test the business logic, we need to find the data
constraints. However, it is often the case that data constraints
are not explicitly documented, and identifying them is not a
trivial task. There have been several case studies focusingon
the extraction of business rules from COBOL programs [21]
and applications using object oriented databases [6]. Un-
fortunately these efforts resulted in very narrow automated
solutions, suitable for the specific purpose of the respective
studies. Therefore, in the current project we approach the
identification of database constraints from two directions:
an analysis of the database reverse engineered into a visual
structure and individual in-depth interviews with severalof
the developers of the Kred application.

The analysis of the visual representation of the database
structure focused on the key elements of the database struc-
ture, such as the schema tables and primary keys, entities
within the ER diagram as well as the relationships between
them. We used Chen’s notation for entity-relationship mod-
eling [13], particularly since in this notationrelationships
are first class objects and can thus have attributes of their
own. The latter is important for modeling Mnesia databases,
where the relationship between two tables can be expressed
in a table containing several additional elements. We express
such elements as attributes of the relationship in the entity-
relationship diagram. The first step in identifying constraints
is to note the primary and foreign keys of the entities in order
to establish the relations between the entities. For example,
if two entities have a relationship between them, and share
a set of foreign keys (which are primary keys in other ta-
bles), we expect the values of the foreign keys to be equal
in all cases. Multiplicity will not be a deciding factor in this

process, since it cannot be precisely determined without ad-
ditional semantic information. This approach will help iden-
tify a part of the referential integrity constraints withinthe
application.

The identified constraints have been validated during a
presentation to the system developers. Furthermore, inter-
views with the developers have identified additional seman-
tic information determining domain specific data constraints.
The goal has been to identify an initial set of constraints that
were recognized by the developers, rather than identifying
all of constraints, which would require a lot of effort for a
non-trivial large scale system. The initial set has been used to
perform testing and to evaluate whether our approach could
find inconsistencies in the data.

The ER diagram, together with the database schema pro-
duced as a result of the above mentioned reverse engineering
of the database should yield enough information to deter-
mine part of the constraints. We have identified the follow-
ing two categories of data constraints: referential integrity
constraints, and domain specific data constraints.

3.4.1 Referential integrity constraints

As mentioned above, Mnesia does not provide support for
referential integrity constraints. Therefore, referential in-
tegrity should be embedded in the business logic imple-
mentation. Referential integrity checks are easiest to dis-
cover, by examining the ER and the schema representation
of the database as previously described. An example of a
referential constraint identified in the current project. It is
expressed as an SQL query, and should return NULL in case
the constraint is satisfied. This particular example describes
the relation between the tablesptrans andpbal:

SELECT ‘ptrans‘.‘ano‘
FROM ptrans, pbal

WHERE
((‘ptrans‘.‘pbal key‘ =‘pbal‘.‘key‘)
AND NOT

(‘ptrans‘.‘invno‘ =‘pbal‘.‘invno‘ ))

This example constraint ensures that thepbal events (i.e.
events that influence the payments balance of the account)
and theptrans events (i.e. events that are related to a per-
sonal account but do not influence the payment balance of
the account) refer to the same invoice number, in case the
ptrans table contains the key of the pbal event. Since there
is a simple direct relationship between the two tables, it is
likely that the constraint has been identified and checked by
the developers, hence the probability of revealing an incon-
sistency error is quite low.

3.4.2 Domain specific data constraints

Business rules are domain- and business-specific constraints
which are expected to be expressed in the business logic.
Identification of domain specific data constraints is difficult,
especially in the situation when semantic information about
the system is not available. This task requires a combina-

4



tion of the above mentioned analysis of the schema repre-
sentation and ER model of the database, code analysis and
finally interviews with the developers familiar with the sys-
tem. Code analysis includes tracing the events generated
by the execution of the interface functions, examination of
event logs and static code review. Below follows an example
constraint, which is similarly to the previous one expressed
in SQL and should return NULL in case the constraint holds.

SELECT ‘pbal‘.‘key‘

FROM ‘pbal‘, ‘invoice‘

WHERE

((‘invoice‘.‘invno‘ = ‘pbal.invno‘)

AND

(‘invoice‘.flags‘ = ?FI IS PACC))

This slightly more complex domain specific business rule
ensures that the invoices that have their ’pstatus’ flag set to
“?FI IS PACC”, which means that they belong to a personal
account and therefore should have at least one payment
balance (pbal) entry. Certainly such a constraint should not
be incorporated into the implementation of the DBMS and
is therefore left to the business logic implementation.

3.5 Testing data constraints

Before actually testing the identified data constraints, they
have first been validated by the developers familiar with the
system. This is needed in order to avoid errors in formulating
constraints as a result of the lack of familiarity with the
system. The earlier mentioned methodology of Castro and
Arts is used to test the data constraints. Below are the stages
of the methodology, adapted to the specifics of the project.
A more thorough description can be found in [4].

Since the system under test uses Mnesia as data stor-
age, the identified data constraints will have to be converted
to Query List Comprehensions (QLC), which is Mnesia’s
query language. This query is written as an invariant to val-
idate that the business rules hold before and after test ex-
ecution. For example, the business rule presented above is
expressed using QLC as follows:

invariant pbal() ->

QH = (qlc:q([Pb#pbal.key ‖
Pb <- mnesia:table(pbal),

Inv <- mnesia:table(invoice),

Pb#pbal.invno == Inv#invoice.invno,

Inv#invoice.flags == ?FI IS PACC])),

{atomic, Response} =

mnesia:transaction(fun() -> qlc:e(QH) end),

Response /= [].

The state of the database will be checked against the
invariant both at the start and end of the test case, thus
ensuring that the business rule is respected. A very important
aspect at this point is the correct design of the test cases that
will be run. A few test cases selected by the developers will
be insufficient, because of the developers assuming system

constraints that may not hold. Instead, a large number of test
cases, that are valid operations but are extremely unlikelyto
ever happen during system operation, has to be generated.

The next step will be to identify the available interface
functions to modify the states of the system. Depending on
the architecture and the implementation of the system under
test, this stage can be very time consuming. In examining the
choice of the interface functions it is important to note their
position relative to the implementation of the business logic.

If the interface functions are determined, generators are
written for sequences of interface calls to the system. The
generators will produce only the minimal set of data which is
needed for the interface calls, in order to produce valid state
transitions. At the same time, the generated data sets should
be as varying as possible, in order to explore any potential
non standard behavior of the application.

We present a few of the generators we developed to show
what they look like and how similar they are to Erlang func-
tions. The following generator would generate lists of items
that can be used as an argument to an interface function. The
generator shown below will produce sequences of varying
length containing fairly different item sets. The generators
for artno, vat anddiscountwill produce small natural num-
bers:

list(#item{artno = nat(),

description = list(char()),

vat = choose(nat),

flags = 0,

discount = nat(),

The generator forprice will produce large numbers with
two decimals. Finally, the generator forquantitywill pro-
duce either very large values, or small values for the quantity
parameter. This will produce values at the boundaries rather
than obtaining a normal distribution of number, as the use of
choose/1 would yield.

price = ?LET({H,F},{nat(), choose(0,99)},
(H*100)+ F\ 100),

quantity = ?LET({N,T,I},{nat(),choose(0,1),largeint()},
N + T*abs(I))})

It can be argued that the values of these sequences do
not affect the business logic, and are artificial, hard coded
sequence of goods would suffice. However, this depends on
the implementation of the business rules and the price paid
for random generation is extremely low.

For the selected interface functions, a local function is
written in order to validate that the response from the inter-
face function corresponds to the expected result. For exam-
ple, the interface function via theestore_server module
that is used to activate a reservation gets a local variant as
follows:

activate reservation(Reservation, Items, Pno) ->

Result =

5



estore server:handler(

’undefined’,

{call, activate reservation,

[Reservation, Items, Pno, (...))]}),
Person = person:read d(Pno),

Blacklisted = (Person#person.blacklisted == 1),

case Result of

{false,{response,[{array, ["no risk",Invno]}]}}
when not Blacklisted -> Result;

{false,{response,{fault, -4,"blocked"}}}
when Blacklisted -> Result;

-> exit(unexpected value)

end.

First the function is called and the result is stored, after
that, the result is compared to the expected outcome.

After having added all the interface functions, QuickCheck
will create test cases by running sequences of generated in-
terface calls. The results will be validated through the ex-
pected values, and finally the invariant will be checked. A
situation in which the invariant evaluates to ’false’ would
mean that the business rule has been invalidated, and the
database is in an inconsistent state. The available test se-
quence will make it possible to observe the exact actions
that have invalidated the data constraints. Furthermore,
QuickCheck will automatically shrink the test sequence to a
minimal failing case in order to show the exact cause of the
error.

3.6 Analysis of the test results

The results collected by running the tests developed accord-
ing to the above described methodology will be used to
evaluate the way the business logicactually enforces the
data constraints in contrast to theexpectedenforcement of
data constraints. Furthermore, the data will be used to verify
whether the approach is fully applicable to database applica-
tions which use non-relational unnormalized databases.

4. Results
4.1 Reverse engineering

One of the obtained results is the reverse engineered ER dia-
gram and a raw representation of the schema of the database.
The obtained ER diagram is a useful artifact for Kreditor,
and together with the initial set of defined and formalized
constraints will contribute to the current system documenta-
tion. At the same time, it is an essential document for our test
approach, since we extract constraints from this ER diagram
that we use to test against.

We used the data in the schema files, the table descrip-
tions to obtain our first rough estimate of the ER diagram. A
schema is a set of record definitions, each record has a name,
thetable name, and a number of fields, corresponding to the
table fields. We initially assumed each record to correspond
to an entity and the fields to attributes. After that we assume
equal field names (attributes) to symbolize relations. Thatis,
if a entity pbal has an attributeinvnoand the entityptrans

also has an attributeinvno, then we assume that these enti-
ties are related and the attributes are replaced by a relation
symbol. The kind of relation is unknown, it can be one-to-
one, many-to-one, or something else, but that is impossible
to infer from the schema file.

In the second iteration of the reverse engineering pro-
cess, 18 of the entities were transformed into relationships.
This was done in order to both reduce the complexity of the
ER model, as well as bring the ER model close to the ac-
tual structure of the database. For example, the entityper-
sonalemailwas converted to a relationship between

6



Figure 1. Fragment of the ER model of the database

estoreandperson. The other elements contained in the
personalemailwere noted as the attributes of this relation-
ship.

The primary key of each table is assumed to be the first
field of the record definition, since that’s the standard in
Mnesia. In this way we visualized the ER diagram using
43 of the 87 tables that the developers considered as most
relevant.

Of course, we identified entities that had more than one
attribute in common with each other. For example, the entity
pbal and ptrans have 2 attributes in common:invno and
key. Sincekeyalso occurred in a third entity, viz.pacc, we
created two relations between the entities, as depicted in
Figure 1.

There is, of course, a risk that certain attributes have the
same name, but do not identify a relationship. Similarly, it
may be the case that there is a relationship between fields
that have different names. In our case for example the at-
tributesinvno andocr expressed a relation, whereocr is a
non-standard name for the invoice number. In addition, it is
totally unclear what kind of relation the attributes symbol-
ize. Therefore, we consulted the domain experts to look at
the ER diagram and provide us with feedback.

This revealed a number of unclarities in the author’s
model of the database, for example the already mentioned
relation hidden behindinvnoandocr, but also more sophis-
ticated issues. For example, thePno which is used as an
alias forPersonal Numberthroughout the database imple-
mentation, can be used to denote both the Personal Number
for physical persons, as well the Organization number for
legal entities. Therefore, the relation between two entities is
context dependent and a zero-to-many relationship.

After consulting the developers, the resulting ER diagram
contained 23 entities and 36 relations and a total of 250
attributes. Obviously, attempting to discover all data con-
straints that can be found in the ER diagram would be a
daunting task, therefore we only selected a subset of pos-

sible constraints for the five weeks we had left for our case
study.

4.2 Constraints Identified

For the purpose of the project, 24 constraints have been iden-
tified and recorded for further testing. The constraints were
initially expressed in SQL in order to be validated during in-
dividual interviews with developers. Unexpectedly, of the24
identified constraints only 16 have been considered as valid,
while the other 8 were considered as either irrelevant, or not
true for the system.

The reason for such large number of invalid constraints
can be explained either by the misinterpretations and mis-
cellaneous errors in the process of reverse engineering the
database, or by the often statedlack of familiarity with the
system. However, the identification of invalid, or false con-
straints should not be considered as a waste of time. This
is simply because formulating and discussing theseincor-
rect constraints made it possible to both learn that not all
relations are relevant at some point in the business process,
despite their apparent semantic similarities.

In any case, even a reduced set of constraints is important,
since no other constraints of the Kred application have been
recorded earlier. The above mentioned constraint

SELECT ‘ptrans‘.‘ano‘

FROM ptrans, pbal

WHERE

((‘ptrans‘.‘pbal key‘=‘pbal‘.‘key‘)

AND NOT

(‘ptrans‘.‘invno‘=‘pbal‘.‘invno‘ ))

was remarked as particularly relevant, since there have
been situations in the past when this constraint was not
respected.

4.2.1 Failing constraints

We used QuickCheck to generate random sequences of calls
to the interface functions, or in other words, have users of
the system “go wild on it. After each such sequence we
validated the identified constraints. Surprising enough, we
detected that two of them could be violated.

Contrary to the earlier expectations that the referential
constraints are most likely to hold (in contrast with the do-
main specific business logic, the errors in which are more
difficult to spot), the constraint provided earlier as an exam-
ple, did not pass the test (the output details are ignored):

QuickCheck has found a counterexample whenptrans.invno
is not equal topbal.invno, when pbal.pno is equal with
ptrans.pno. This data constraint has been detected through
the analysis of the ER diagram and later confirmed by sev-
eral developers as correct. However, in someapparently
rare cases this referential integrity constraint does not hold.
QuickCheck’s shrinking technique made analysis of this rare
case an easy task.

7



A second failing constraint that has been discovered was
a “domain specific data constraint” (according to the above
classification). It will not be described further, however its
discovery demonstrates that the applied methodology allows
us to discover both failing referential integrity data con-
straints, and domain specific business rules.

4.3 Constraints testing results

4.3.1 Validation of the test specifications

When constraints are violated by a sequence of interface
calls, one needs to ensure oneself that indeed the constraint
should hold and the sequence of calls introduces an error.
When recognizing this, the error can be fixed and the same
sequence can be executed again, now not resulting in a
violation.

However, what do we know if a constraint is not violated?
Probably we simply formulated a database query that is
always satisfied and does not really describe the constraint
we wanted to validate. For each constraint we also wanted to
check that this constraint expressed what we intended. This
is problem similar to ensuring that your test suite is correct.
Several methods to do so exist.

• Mutation testing, which involves changing the source
code of the system under test [36], [33].

• Fault injection, a method involving altering the source
code to test code paths that might not be visited [3].

• The use and probation of various test design approaches:
using classification trees [18], the Z method [20], or
even a combination of the two [32].

• Deliberately alter a constraint so that itmustfail, and test
that it actually fails during test execution.

• Introduce a change in the implementation of the system –
the change should produce a controlled fault that would
invalidate a constraint (that otherwise holds) during test
execution.

We believe that combining all (or several) of the de-
scribed methods would yield the highest certainty that the
test specifications are correct. However, this section willde-
scribe the application of the second method, and namely the
deliberate introduction of a software fault that would invali-
date a certain constraint during test execution.

In order to apply this approach, the following constraint
has been chosen:

SELECT ‘invoice‘.‘pno‘

FROM ‘invoice‘, ‘estore data‘

WHERE

(‘invoice‘.‘eid‘ = ‘estore data‘.‘eid‘

AND NOT

(‘invoice‘.‘pno‘ in ‘estore data‘.‘customers‘))

This constraint ensures that whenever a new customer makes
a purchase in the estore, they are added to the list of cus-
tomers in the estoredata table of the corresponding estore.

This example has been chosen both for its simplicity
(which becomes highly valuable in an unknown and com-
plex system) and for the relatively low effort of adding a
fault that would violate the constraint. To produce this fault,
the code is altered to that the customers list of estoredata is
emptied each time a new invoice is added. Though it might
seem rather raw, the constraint is guaranteed to fail once
there are some invoices added.

Once the tests are run, QuickCheck quickly spot an ex-
ample sequence in which this property is violated. It might
be worth noting that despite the apparent triviality of the de-
scribed bug, other existing test suites did not discover it.

5. Discussion
The results of the project show that overall, the method de-
scribed in the paper of Castro and Arts [4] and applied to
the present case is easily extendable and applicable to appli-
cation which use databases such as Mnesia. The quality and
time efficiency of applying this methodology depends signif-
icantly on the level of documentation of the system, the ap-
plication’s complexity and the clarity of the application’s im-
plementation. The approach produces several positive out-
comes, namely the updated ER model of the database, and a
schema representation of some of the tables. The most im-
portant outcome however, is the set of specifications and for-
malized constraints that is available once this method has
been applied. Such a test framework can be used (and con-
tinuously updated) later to ensure that the data constraints
are always ensured when new functionality and components
are being developed.

As mentioned above, there are two main steps in the
methodology (performed iteratively), namelyidentification
of the constraints, anddevelopment of the test specifications.
There are several factors that influence the outcome of the
test procedure using the above described method.

5.1 Available Documented Constraints

First of all, the availability of documented constraints would
significantly facilitate the testing process. However, thefact
that there is a set of documented constraints does not im-
ply that one need not search for additional constraints. Con-
sidering that documentation can be outdated or incomplete,
the constraints identification process should precede the con-
straints testing stage. Nevertheless, explicitly formulating
the business constraints along the development of the sys-
tem would greatly facilitate their later testing.

5.2 System Documentation

Availability of system documentation is also important when
defining the data constraints and developing the test spec-
ifications. Semantic information, extracted out of the sys-
tem documentation can add details to the ER model of the
database in case it is developed through reverse engineering,
or increase its understanding, in case it is readily available.

8



Furthermore, system implementation can help obtain thedo-
main knowledgenecessary for an effective detection of the
data constraints. The experience of this project has shown,
that a combination of absent documentation and insufficient
domain knowledge can lead to a situation when 33% (8 out
of 24) of the identified constraints will be unusable.

At the same time, absence of documentation is a fact of
live and documentation easily gets outdated. The formalized
constraints together with a QuickCheck framework are help-
ful in keeping the documentation alive, since changes in the
program may make test cases fail.

5.3 Choice of Interfaces

A limitation encountered during the study was that the cho-
sen XMLRPC interface did not provide access to the entire
functionality of the Kred application. In the process of daily
usage, the data within the application is modified through
other existing system interfaces as well, for example the
GUI. However, the effort required for the extra set up for
the GUI testing was disproportionally high compared with
the overall scope of the project. The inability to fully mimic
all peculiarities of data handling during the tests has thus
prevented us from a more thorough examination of the busi-
ness logic. We can assume, that in a database application
with multiple data access interfaces, a complete testing of
the business logic also requires simultaneous testing of all
available application interfaces.

In case that all, or most of the above conditions are ful-
filled, the testing process can be focused on developing the
test specifications. However, the current project has followed
a different path and the following steps have been taken:

• Reverse engineer the database to obtain the database
schema and ER model.

• Analyze the ER diagram to determine initial data con-
straints.

• Analyze the source code to identify other business logic
constraints.

• Verify the obtained constraints with the developers who
posses the domain knowledge about the system under
test.

• Determine the interface functions that will be called in
the testing process.

• Design test cases to test the data constraints.

• Implement the test case specifications using QuickCheck

• Run the tests and analyze the results.

6. Conclusions
In this case study we wanted to evaluate the methodology
of Castro and Arts [4] for testing data consistency of data-
intensive applications by examining a database application
which uses an unnormalized non relational database. We
have adopted a customized approach for extracting the data

constraints by reverse engineering the database and express-
ing the constraints in a database-specific query language.
Further, we have tested several interface functions with the
QuickCheck testing tool and revealed a constraint violation.

There were several notable points in the process of con-
straint testing according to the adopted methodology. First,
reverse engineering of the database structure is a crucial
stage for the identification of data constraints. We have ex-
amined an unnormalized non relational database, and reverse
engineered it according to a simplified version of the method
described by Premerlany and Blaha [29] to obtain an ER di-
agram of the database. We have seen that important elements
like multiplicity cannot be inferred without semantic infor-
mation and can therefore affect the elicitation of database
constraints.

The obtained ER model was used to extract and define
data constraints that were present in the application. We
have determined two types of constraints, namely referential
constrains and business rules. Referential constraints can be
identified by examining the ER model of the database and
represent constraints based on foreign key relations between
tables. We have seen that, despite our expectations and their
relative discoverability referential integrity constraints can
contain implementation faults, since we have found a viola-
tion of a referential constraint during the testing process.

On the other hand business rules cannot, in most of the
cases, be identified through the examination of the database
ER model, and therefore require the semantic knowledge
of domain experts. We did not discover any violations of
the business rules that have been tested. One of the reasons
for this is the relatively small number of business rule con-
straints that were identified and tested. Another possible rea-
son is the choice of system interface to be tested.

We have observed that the ratio of invalid or else incorrect
constraints out of the total number of identified constraints
was significantly higher in the first stages of the project, after
the first iteration of database reverse engineering. Later on,
the number of valid constraints has grown together with the
understanding of the internals of the database application.
Based on this, we can state that there might be a connection
between the understanding of the application’s implementa-
tion and the efficiency of the constraints elicitation process.
On the other hand, improving and refining the process of
constraints elicitation –both referential constraints and busi-
ness rules – would be a topic for further research.

As mentioned above, in the current study we have exam-
ined a selection of data constraints and tested them with a
limited number of interface functions. However, a complete
elicitation of the data constraints present in the Kred appli-
cation would require a revision and completion of the ER
database model, further analysis of the relations between the
entities in the model and interviews with domain experts.

We have limited ourselves and did not explore the ef-
fects of distribution and concurrency on the data constraints

9



within the application, despite both of them being important
properties of Mnesia. Studying the effect of these two as-
pects can also be the topic of future research.

Taking into account the findings of the project, we can
state that the adopted methodology could be applied to
database applications which use non relational database
management systems (particularly Mnesia), and unnormal-
ized databases. We also contributed by applying the ap-
proach of Premerlany and Blaha to non relational databases
and thus touching upon the topic of reverse engineering
Mnesia databases.

Acknowledgments
The authors would like to thank everyone who has con-
tributed to this paper with corrections, feedback and valu-
able input. Special thanks to the operational and software
development teams at Kreditor for their help and support.

References
[1] M. Andersson, “Extracting an entity relationship schema from

a relational database through reverse engineering,” inER
’94: Proceedings of the13th International Conference on the
Entity-Relationship Approach, (London, UK), pp. 403–419,
Springer-Verlag, 1994.

[2] J. Armstrong,Programming Erlang: Software for a Concur-
rent World. Pragmatic Bookshelf, 2007.

[3] J. Arlat, A. Costes, Y. Crouzet, J. C. Laprie, and D. Powell,
“Fault injection and dependability evaluation of fault-tolerant
systems,”IEEE Trans. Comput., vol. 42, no. 8, pp. 913–923,
1993.

[4] T. Arts and L. M. Castro, “Testing data consistency of data-
intensive applications using quickcheck,” Technical report
ITU, to be published, 2009.

[5] T. Arts, J. Hughes, J. Johansson, and U. Wiger, “Testing tele-
coms software with Quviq QuickCheck,” inERLANG ’06:
Proc. of the 2006 ACM SIGPLAN workshop on Erlang, pp. 2–
10, ACM, 2006.

[6] N. Bassiliades and I. P. Vlahavas, “Modelling constraints with
exceptions in object-oriented databases,” inER ’94: Proc.
of the13th Int. Conf. on the Entity-Relationship Approach,
(London, UK), pp. 189–204, Springer-Verlag, 1994.

[7] J. Blom and B. Jonsson, “Automated test generation for indus-
trial erlang applications,” inERLANG ’03: Proceedings of the
2003 ACM SIGPLAN workshop on Erlang, (New York, NY,
USA), pp. 8–14, ACM, 2003.

[8] M.-C. Boudreau, D. Gefen, and D. W. Straub, “Validation in
information systems research: A state-of-the-art assessment,”
MIS Quarterly, vol. 25, no. 1, pp. 1–16, 2001.

[9] C. Calero, M. Piattini, and M. Genero, “Empirical valida-
tion of referential integrity metrics,”Information and Software
Technology, vol. 43, no. 15, pp. 949 – 957, 2001.

[10] M. Y. Chan and S. C. Cheung, “Testing database applications
with sql semantics,” inIn Proc. of the 2nd Int. Symp. on
Cooperative Database Systems for Advanced Applications,
pp. 363–374, Springer, 1999.

[11] W. K. Chan, S. C. Cheung, and T. H. Tse, “Fault-based test-
ing of database application programs with conceptual data
model,” in QSIC ’05: Proc. of the Fifth Int. Conf. on Quality
Software, (Washington, DC, USA), pp. 187–196, IEEE Com-
puter Society, 2005.

[12] D. Chays, Y. Deng, P. G. Frankl, S. Dan, F. I. Vokolos, and
E. J. Weyuker, “An agenda for testing relational database
applications: Research articles,”Softw. Test. Verif. Reliab.,
vol. 14, no. 1, pp. 17–44, 2004.

[13] P. P.-S. Chen, “The entity-relationship model—towarda uni-
fied view of data,”ACM Trans. Database Syst., vol. 1, no. 1,
pp. 9–36, 1976.

[14] K. H. Davis and A. K. Arora, “Converting a relational
database model into an entity-relationship model,” inProc. of
the Sixth Int. Conf. on Entity-Relationship Approach, pp. 271–
285, 1988.

[15] Y. Deng, P. Frankl, and D. Chays, “Testing database transac-
tions with agenda,” inICSE ’05: Proceedings of the 27th int.
conf. on Software engineering, (New York, NY, USA), pp. 78–
87, ACM, 2005.

[16] J. Dietrich and A. Paschke, “On the test-driven development
and validation of business rules,” inInformation Systems Tech-
nology and its Applications, 4th Int. Conf., 23-25 May, 2005,
Palmerston North, New Zealand, volume 63 of LNI, pp. 31–
48, GI, 2005.

[17] A. Eisenberg and J. Melton, “Background sql:1999, formerly
known as sql3,”Commun. ACM, 2008.

[18] M. Grochtmann and D. benz Ag, “Test case design using
classification trees,” 1994.

[19] J.-L. Hainaut, “Database reverse engineering: Models, tech-
niques and strategies,” inProc. Of the 10 th Int. Conf. on
Entity-Relationship Approach.

[20] S. Helke, T. Neustupny, and T. Santen, “Automating testcase
generation from z specifications with isabelle,” inZUM ’97:
Proc. of the 10th Int. Conf. of Z Users on The Z Formal
Specification Notation, (London, UK), pp. 52–71, Springer-
Verlag, 1997.

[21] H. Huang, W.-T. Tsai, S. Bhattacharya, X. Chen, Y. Wang,
and J. Sun, “Business rule extraction techniques for cobol
programs,” vol. 10, (New York, NY, USA), pp. 3–35, John
Wiley & Sons, Inc., 1998.

[22] W. Kent, “A simple guide to five normal forms in relational
database theory,”Commun. ACM, vol. 26, no. 2, pp. 120–125,
1983.

[23] F. N. Kerlinger,Foundations of Behavioral Research. Har-
court Brace Jovanovich, 1986.

[24] M. Ketabchi, S. Mathur, T. Risch, and J. Chen, “Comparative
analysis of rdbms and oodbms: a case study,” inCompcon
Spring ’90. Intellectual Leverage. Digest of Papers. Thirty-
Fifth IEEE Comp. Soc. Int. Conf., (New York, NY, USA),
pp. 528–537, IEEE, 1990.

[25] V. V. Kuliamin, “Model based testing of large-scale software:
How can simple models help to test complex system,” inIn
Proc. of 1-st Int. Symp. on Leveraging Applications of Formal
Methods, pp. 311–316, 2004.

10



[26] H. Mattsson, H. Nilsson, and C. Wikstrom, “Mnesia - a dis-
tributed robust dbms for telecommunications applications,” in
PADL ’99: Proc. of the First Int. Workshop on Practical As-
pects of Declarative Languages, (London, UK), pp. 152–163,
Springer-Verlag, 1998.

[27] J. Nielsen and V. L. Phillips, “Estimating the relativeusability
of two interfaces: heuristic, formal, and empirical methods
compared,” inCHI ’93: Proc. of the INTERACT ’93 and CHI
’93 conf. on Human factors in computing systems, pp. 214–
221, ACM, 1993.

[28] M. Phalippou and R. Castanet, “Relations d’implantation et
hypotheses de test sur des automates a entrees et sorties = im-
plementation relations and test hypotheses on input-output au-
tomata,” inTravaux Universitaires - These nouveau doctorat,
(Universite de Bordeaux 1, Talence, FRANCE), 1994.

[29] W. J. Premerlani and M. R. Blaha, “An approach for reverse
engineering of relational databases,”Commun. ACM, vol. 37,
no. 5, pp. 42–ff., 1994.

[30] G. J. Tretmans and A. F. E. Belinfante, “Automatic testing
with formal methods,” Technical Report TR-CTIT-99-17, En-
schede, December 1999.

[31] J. Tretmans, P. Kars, and E. Brinksma, “Protocol conformance
testing: A formal perspective on iso is-9646,” inProc. of the
IFIP TC6/WG6.1 Fourth Int. Workshop on Protocol Test Sys-
tems IV, (Amsterdam, The Netherlands), pp. 131–142, 1992.

[32] H. Singh, M. Conrad, and S. Sadeghipour, “Test case de-
sign based on z and the classification-tree method,” inICFEM
’97: Proc. of the 1st Int. Conf. on Formal Engineering Meth-
ods, (Washington, DC, USA), p. 81, IEEE Computer Society,
1997.

[33] S. De Souza, D. R. S. Maldonado, J. C. Fabbri, S. Camargo,
P. Ferraz, D. Souza, and W. Lopes, “Mutation testing applied
to estelle specifications,”Software Quality Control, vol. 8,
no. 4, pp. 285–301, 1999.

[34] I. O. for Standardization, “Information technology, open sys-
tems interconnection, conformance testing methodology and
framework. international standard is-9646,” (Geneve, CH),
p.290-294, ISO, 1991.

[35] G. project, “http://projects.gnome.org/dia/,” 2009.

[36] W. E. Wong and A. P. Mathur, “Reducing the cost of mutation
testing: an empirical study,”J. Syst. Softw., vol. 31, no. 3,
pp. 185–196, 1995.

11


