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Abstract

During the last decade non-linear machine-learning methods have gaipeatapty among QSAR
modelers. The machine-learning algorithms generate highly accurate mbaelsshof increased model
complexity where simple interpretations, valid in the entire model domain, are rare

This thesis focuses on maximizing the amount of extracted knowledge freaicive QSAR models
and data. This has been achieved by the development of a descriptotang@mmeasure, a method
for automated local optimization of compounds and a method for automatedtmxtratsubstructural
alerts. Furthermore fierent QSAR modeling strategies have been evaluated with respect taipirlic
risks and information content.

To test hypotheses and theories large scale simulations of known relatiovedn activities and de-
scriptors have been conducted. With the simulations it has been possibldytgpetperties of methods,
risks, implementations and errors in a controlled manner since the corsyetahas been known. Sim-
ulation studies have been used in the development of the generally appliesaeptor importance
measure and in the analysis of QSAR modeling strategies. The use of simulat&pread in many
areas, but not that common in the computational chemistry community. Thepdesgnportance mea-
sure developed can be applied to any machine-learning method and vakdadiog both real data and
simulated data show that the descriptor importance measure is very acourada{flinear methods.

An automated method for local optimization of compounds was developed to pgwthce manual
searches made to optimize compounds. The local optimization of compoundsisea&Ethe informa-
tion in available data and deterministically enumerates new compounds in a ppaced close to the
compound of interest. This can be used as a starting point for furtherazordpptimization and aids
the chemist in finding new compounds. An other approach to guide chemists pndbess of optimiz-
ing compounds is through substructural warnings. A fast method foifis@mt substructure extraction
has been developed that extracts significant substructures from tlateespect to the activity of the
compound. The method is at least on par with existing methods in terms of egturtas significantly
less time consuming.

Non-linear machine-learning methods have opened up new possibilitiesSARQ@nodeling that
changes the way chemical data can be handled by model algorithms. dreepedperties ofocal
andGlobal QSAR modeling strategies have been studied. The results sholotteimodels come with
high risks and are less accurate compare@ltbal models.

In summary this thesis shows th@tobal QSAR modeling strategies should be applied preferably
using methods that are able to handle non-linear relationships. The dedeigthods can be interpreted
easily and an extensive amount of information can be retrieved. For theodseth become easily
available to a broader group of users packaging with an open-sduecgaal platform is needed.

Keywords: machine-learning, QSAR, descriptor importance, local and global madelsod of man-
ufactured solutions, automated compound optimization, drug design
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1. Introduction

1.1. Background and Significance

In general terms, the drug discovery process consists efaleparts. The first objective is
to decide on a disease area in which research will be invesibd disease area defines the
field where a future drug is supposed to act, for instance #strgintestinal system. Within
this field it is important to find and establish a biologicalt which dects the disease and
which is possible to regulate using a pharmaceutical iet@rgn. Once this is established an
assay is set up to test compounds for activity towards tlgeetatWhen the assay is in place
a screening is performed to find compounds that have sonial iadtivity towards the target,
altering the biological activity of the target such that ache in disease course or symptoms
is achieved. When a set of active compounds have been founeratian loop starts that aims
at optimizing one or several series of compounds for the gmyntarget and a range of safety
targets and parameters to make sure that the compound w&H e body in an active form
and find its way to the active site. At the active site the conmagbshould perform its task
for a period of time, usually a few hours, and then the compahould be degraded by the
mechanisms in the body and leave, without turning into reachetabolites.

All the above criteria need to be fulfilled before a compouad lbecome a drug. To develop a
drug based on experimental testing only is a very expenaskednd that is whei@mputational
chemistrycomes in. With computational methods it is possible to mtestbme aspects of the
behavior of compounds based on their structure. One comnetinaa for this is referred to as
Quantitative Structure-Activity Relationship (QSAR) maddgl To construct a QSAR model
a set of compounds with known activity is needed. New compeware then predicted using
the model. QSAR models are widely used for prediction of coumal activities at various
biological targets and the general inferences from thesetaguide chemists seeking changes
to optimize their compounds.

Making a predictive QSAR model is not an easy task, and maikingerpretable is even
harder. In this work methods and theories have been dewklopgid and guide modelers and
chemists in their everyday work. Firstly a method of norein QSAR model interpretation
was developed and then extended with a method to automwtieplace substructures with
undesired properties in potential drug compounds. Thentaaddor for automated extraction
of sub-structural alerts from a data set was developedIl¥farainvestigative study is presented
that compares éfierent QSAR modeling strategies.
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1.2. QSAR

The aim of QSAR modeling is to obtain a relation between $tmas or properties of com-
pounds and a measured activity to be able to predict theityatfznew compounds and deter-
mine mechanisms of action on this activity. The structures@operties of the compounds are
expressed by variables referred to as descriptors. ThuBRQ&8presents an attempt to math-
ematically correlate a set of descriptors with activitigshe use of statistics. This means that
any QSAR model is an approximation of a relation between thigity, y and the descriptors,
x that can be viewed as a mathematical functios, f (x).

To set up a QSAR model a data set is needed containing compauitid known activity.
Activities used in QSAR equations include chemical measergs and responses from biolog-
ical assays. From the chemical structure of the compourstsigéors are derived representing
properties or structures (which for example can includesmlochemical parameters to account
for hydrophobicity, topology, electronic properties atet® efects) that are present in the com-
pounds. The descriptors can be determined empirically aeroommonly by computational
methods! When both activity and descriptors exist for the data a machéarning method can
be used to approximate the functién

QSAR methods are currently being applied in many discigliaenong them are drug design
and environmental risk assessméritHistorically only linear models were used and these are
still popular today due to the straight forward interprigtatof the results. For this reason
non-linear models are commonly viewed as hard to interpndtthese model algorithms or
models are sometimes referred to as black-box motfeldowever, non-linear models have
the potential to more accurately describe important phemantout there is a need for a simple
method for knowledge extraction from these models, whieimisbjective of the work presented
in this thesis.

1.2.1. QSAR History

QSAR dates back to the 19th century. In 1863, A.F.A. Cros atthigersity of Strasbourg
observed that toxicity of alcohols to mammals increasedhasvater solubility of the alcohols
decreased.In the 1890's, Hans Horst Meyer of the University of Marburgi&Charles Ernest
Overton of the University of Zurich, working independentipted that the toxicity of organic
compounds were dependent on the lipophilicity.

Little additional development of QSAR occurred until therwof Louis Hammett who
correlated electronic properties of organic acids andsash their equilibrium constants and
reactivity. Hammett observed that adding substituenteeatromatic ring of benzoic acid had
an orderly and quantitativeffect on the dissociation constant. Hammett also observed tha
substituents have a similaffect on the dissociation of other organic acids and bases.

QSARs based on Hammett’s relationship utilize electronapprties as descriptors. fbt
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culties were encountered when investigators attemptegply &lammett-type relationships to
biological systems, indicating that other structural diggars were necessary.

Robert Muir, a botanist at Pomona College, was studying thdiwal activity of com-
pounds that resembled indoleacetic acid and phenoxyaaeitic:® which function as plant
growth regulators. In an attempt to correlate the strustofehe compounds with their activ-
ities, he consulted Corwin Hansch. Using Hammett sigma petensito account for the elec-
tronic dfect of substituents did not lead to a meaningful QSAR. Howedansch recognized
the importance of lipophilicity, expressed as the octamaler partition cofficient, on biolog-
ical activity.}! This parameter is recognized to provide a measure of memipameability,
since a compound needs to have lipophilic properties torenteembrane and hydrophilic
properties to pass through. The octanol-water partiticefficeent is also a driving force when
drugs bind into targets.

QSAR models are now developed using a variety of parametets & descriptors of the
structural properties of molecules, descriptors to actéarthe shape, size, lipophilicity, po-
larisability, and other properti€'s.

1.2.2. Concept of Inverse QSAR

The concept of Inverse QSAR, IQSAR, is to take a desired agtaritd find the descrip-
tors,'34j.e. finding x = f~%(y). With this information it is possible to find compounds that
have the desired propertié3This translates into anfilert to build compounds with superior
properties towards one or several chemical or biologiagts. This means that the modeler
select activity ranges that are beneficial and the modefm@ies descriptor values that cor-
respond to the preferences. Based on the selected parametieting compounds are built.
Designing molecules by the use of inferences from QSAR nsadeiot new, but the complex-
ity of many problems addressed by QSAR models today rendgins/tcomplex models where
simple interpretations are often rare. When a QSAR modebkgiveundesired prediction it is a
signal to the chemist that the compound needs to be modifieddome a potential drug. This
work traditionally consists of database and literatured®ss which together with inferences
from the QSAR model aid the chemist in finding novel promismgdifications to the com-
pound. The approaches used leavefAdlilt task to the chemists in finding new substituents
that will result in more favorable properties. Resulting weay time consuming procedure that
is highly dependent on the skill and expertise of the chesmist

The IQSAR approach is intended to replace large parts of thrk tihat chemists do when
searching and enumerating new molecules and fragments.
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1.2.3. Traditional QSAR Modeling Approaches

In the literature two distinctly dierent QSAR modeling strategies have been applied, com-
monly denoted “Local” and “Global” QSAR models. For exampBha,et al.*® defines the
global model as the model built on the entire training datd #yat there may be groups of
molecules in the data set that exhibits specific sets of featihat relates to the activity or in-
activity of the compounds. Such a set should in that cas@sept a “Local” structure activity
relationship. This local set is suggested to be extractefiniggrprint or descriptor similarity.
Zhang,et al. 1’ use the Euclidean norm in descriptor space to determinenwdompounds
are chemically similar, and thereby “Local’. The assumptioat molecules that are close in
descriptor space or fingerprint space will tend to have theesaroperties has been studied by
Martin, et al.18 They try to relate fingerprint similarity to biological adtiy, but find no clear
connection. Bostronet al.!® have made a pairwise comparison of compounds binding to the
same biological target where all pairs have a Tanimoto anityl of at least 80%. They conclude
that the binding mode is preserved but the shape and watgtextuire of the binding site can
be significantly diferent, mainly due to side-chain movements, resulting ixpeeted activity
changes in QSAR models.

When generating QSAR models on a subset of the available datpaunds or examples are
left out which means that information is also left out. Ttases three important questions. Can
one actually gain accuracy by doing this? Are there any mskdrawbacks with this kind of
removal of information? Is important information left out?the literature there are examples
of QSAR models based on subsets of the thaia well as all available datawhich give good
accuracy.

1.3. Machine Learning

Machine learning is the science that focuses on making mashable to learn. The field
evolved from the broader artificial intelligence field whigims to mimic intelligent abilities of
humans by machines. Learning in this context is restriciédductive inference where data is
used to build knowledge that is later used to predict new.ddtgehine learning can be divided
into two major categories, supervised and unsupervisadifea Unsupervised learning tries
to find regularities or irregularities in the data wheregsesuised learning uses data coupled
to a known response, which should be an answer to a quesgardiag the data, reported for
each point in the data, denoted example. If the responseadsetie the task is a classification
problem while if the response is continuous it is a regrespioblem.

In this work supervised learning has been used. The goalpdrsised learning is to ap-
proximate the function that maps the properties, desaesptaf the examples with a response,
activity. The mapping is constructed using training dats @en be tested on a validation set or



1.3 MACHINE LEARNING 5

using cross validation. A validation set is a part of the degwithheld during training of the
model. The cross validation approach splits the data sesutsets and for each subset a model
is built using the remains of the data and tested on the subBete are also other measures to
assess for example model errors and if a model generalizesseTmethods can be algorithm
specific, like the out of bag error for Random Forest (R@nd the number of support vectors
for Support Vector Machines (SVM):

Different machine-learning methods hav&eatent ways of deriving these approximations.
More detailed descriptions of the methods used in this wark lse found in the following
sections and in the references for Partial Least SquareS)(®PIRF?® and in SVYM?28

1.3.1. Random Forests

Random Forest (RF) is an ensemble classifier, which meang thaitds ensembles or sets
of classifiers which used together become more accurateathiggle classifier. An RF consists
of a set of decision trees which all cast a vote that is wetyated added to the final prediction.
The algorithm for inducing an RF was developed by Leo Breimah/sdele Cutler?® The term
originates from random decision forests introduced by TamkHo2’ The method combines
“bagging”, bootstrapaggegaing, as described by Breim&hand random selection of features,
introduced independently by H6?°and Amit and Gemai{ to construct a collection of decision
trees where variation is controlled.

The bagging approach takes a training Setjith n examples and generatesnew training
setsJ; of sizen; < n by sampling uniformly fromJ with replacement, the remaining examples
are used to calculate an error estimate ofjfie training set.

In an RF eachJ; training set is used to construct a decision tree. For eadk iothe tree,
a small subset of descriptors is chosen at random, withgepiant, from the complete set of
descriptors. The best split is calculated and the data @raggd with respect to the split. The
tree is built from the root up adding nodes until all examglage been separatdack. the tree
is not pruned.

This generatem trees and thus models which are combined to a single predictor, the RF
model. The way that the models are combined depends on thefyesponse, for regression
the output is averaged and for classification voting is used.

Breimar?? prove two important properties of RF. Using the strong lawasfé numbers,
Breiman shows that with increasing number of decision treesgeneralization error for RF
almost surely converges which means that the RF algorithra doeover-fit data with respect
to the number of trees used. Secondly Breiman obtained am bppad on the generalization
error in terms of the strength of the classifiers and colimidietween them in terms of the raw
margin function.

Since RF is a tree based ensemble method where conditionmposed on the descriptors
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at each individual node it will take discrete steps in thecdpsor space so the model function
will be comprised of piece-wise constant functions.

1.3.2. Support Vector Machines

Support Vector Machines (SVM)*?have their theoretical foundation in Statistical Learning
Theory provided by Vapnik? The work of Vapnik provides conditions and proofs for good-ge
eralization of learning algorithms. Large margin clasatiien and regression techniques have
emerged from the theory of generalization and works by meximg the marginj.e. optimizes
the location of the decision boundary so that examples erahupe correct side with as large
margin as possible. This results in a decision boundary lartie margins to almost all training
examples. The most widely studied class of large margirsifiass are SVM.

SVM have an interpretation as a hyperplane separation igradimensional feature spaée
and maps the training data using a kernel function and tceaelthe separation. The kernel
computes similarities for all examples. Most commonly ulsechel functions are Radial Basis
Function (RBF) kernels and polynomial kernels. Training epkes and previously unseen ex-
amples are assumed to be close to the training examplegeandently identically distributed.
Hence, the large margin then ensures that these examplesrageetly classified as well,e.
the decision rule generalizes. The kernel function neebs faositive definite assuring that the
optimization problem can be solveffieiently.

Support Vector Machines are based on a substantial amowstatistical learning theory.
Conditions for the kernel, both kernel function and kerngllegability, are supplied by Mercer’s
theoreni® where a symmetric positive definite function is represeased sum of a convergent
sequence of product functions. Furthermore Karush, KulthTarcke?*3° stated conditions
that must be fulfilled for a solution to be an optimal solutidrhese conditions are necessary
but not siticient,i.e. the solution can be locally optimal, but the conditions omkkrnel from
Mercer’s theorem result in a convex optimization probleende it has no local optimum. The
above states that if the conditions are fulfilled there earsbptimal solution to the problem.
To apply this using a learning algorithm Validhtintroduced a theory of probably approxi-
mately correct learning. The goal of Valiants theory wag thaan arbitrary distribution the
probability that a learning algorithm would select a demsiunction with a low generalization
error, approximately correct, should be high. Based on tlwealwork Vapnik and Chervo-
nenkis gave necessary andistient conditions for consistency of a learning processgiask
minimization3’

1.3.3. Partial Least Squares
Partial Least Squares (PLS), was developed by Herman ¥#ltbr econometrics but first
gained popularity in chemometric research and later instréal applications. It was designed
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primarily to deal with data sets with missing values and na@gcriptors than examples. When
y is a column vector with the corresponding row veckpiin a matrix X where the length
of x; is at maximum the length of, modeling can be accomplished using ordinary multiple
regression. When the number of descriptors is large comparénx® number of examples, the
covariance matrix is likely to be singular and the regressipproach is no longer possible.
Unlike principal component analysis that is based on thereigctors of the covariance matrix
of X. PLS, however, finds principal components frénthat are correlated witin. This means
that PLS searches for a set of components that performs dtaimaaus decomposition of
andy with the constraint that these components explain as muplossble of the covariance
betweenX andy. This tends to greatly reduce the number of descriptiveatsdes used for the
actual regression problem and will reduce co-linearity selgct descriptors that are linearly
correlated with the responses.

1.3.4. Descriptor Importance Measures

One of the most important aspects of a model, besides thabuld be predictive, is that of
model interpretation. For linear models that is fairly sleysince it is possible to look at the
contribution to the model from any descriptor. The desoriptith the highest absolute valued
codticient will be the most influential descriptor, thus a changthe property described by the
descriptor is likely to give the largest change in outcontasTs however not true for modeling
techniques that handle non linearity.

There is work presented where modelers have tried to deewergl rules and importance
measures for non-linear models based on all the data. Fran&k*® computes gradients once
for each variable and then the contributions are added to madtecule to achieve the globally
most important variables. Guhet al.!® divide the global space modeled into subspaces and
uses linear regression to model these smaller sets of da&y. then discuss the issue of inter-
pretability for the data as a whole. These methods impjieiisumes that the most important
descriptor in a specific point or subspace of the completeetrghce will be the most impor-
tant descriptor everywhere. This kind of assumption redube non-linear model back to a
linear one, and it is likely that most of the inferences madth ¥his reduced set of rules are
less accurate if the data actually contains non-lineaufeat An example of a global descriptor
importance measure for a non-linear machine-learningriéhgo is the functionimportance
inRF, R*

The contribution here is a way of local interpretation of #imear models, where the impor-
tance measure is isolated for each prediction in the detaltimeg in a local guidance, allowing
the chemist to improve activity for that particular compdun



8 1 INTRODUCTION

1.4. Simulations - a Way to Deeper Understanding

When doing computer based modeling it is of the highest inamoe to test methods and
implementations. This tells the modeler how the algoritivmesk and if they contain errors.
This can of course to some extent be accomplished using ata) dut the dficulties with
real data is that it is not completely controlled. There aevitably errors in real data and the
underlying relationship is not fully known. To test new aigfoms and implementations it is
therefore good to use simulated data, where all paramederbe& controlled. This strategy of
simulating data has been successfully applied in othersfiail introduced as twilight zone
simulationg? or the method of manufactured solutions. It is a techniquere/ta predefined
solution to the problem is used. This can be applied to QSAReing by drawing descriptors
from statistical distributions and deciding on a matheo@fiunction, based on the descriptors,
that is to be the response. In this way the exact relationséipveen the descriptors and the
response is known. The concept involves looking at the reddlem at hand, then trying to
construct an example that is as simple as possible yet iegatine dificulties of the real data.
For example, take a classification problem in drug discovérgre there is a binary response
and a set of descriptors computed from the structure of thgpoonds. The task is to classify
the data. First, look at the descriptors and try to approtertteem with statistical distributions.
To make it simple, reduce the dimensionality of the problech@nly use a small set of descrip-
tors, based on the obtained distributions. This resultalhahdata set, the response is needed
as well and therefore a function is decided upon that geeethe response based on the sim-
ulated descriptors. At this stage everything has been aibedr the descriptors, the response
function that the method should approximate and the regpfmrsthe constructed examples.
The results from this case represent the ideal conditiodd@nbtain realistic conditions it is
possible to introduce errors in the descriptors, in thearsp and in the mapping between the
descriptors and the response. All these properties are patvatled by the modeler and he
or she can study both behavior and properties of the algorithd implementation of interest
resulting in an increased knowledge of how the methods amdjibcific software work and at
the same time it can be used to find implementation errors. illemethod has been tested
and qualified using simulations it can be trusted with retédda

1.4.1. Example

To show how the method of manufactured solutions can be usgdtathe same time show
some properties of the machine-learning algorithms ptedegarlier, the following example
has been chosen. Here the descriptor space is two dimehaimhapans a range frorr to
7, in each direction respectively. The data points in desmrigpace are uniformly distributed
and there are 200 points for each descriptor. A training sét 800 points has been drawn
randomly without replacement. The function defining thatiehship between the respongge,
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and the descriptorsy andx,, for Data set lis f; = cosx,/(1 + x3), Figure 1(a). The response,
y = fi(Xg, X)) was computed for every data point. Figure 1(a) shows thgirai function
and Figures 1(b)-1(d) show how thefférent machine-learning algorithms, trained using the
training set, predict the functiofy over the complete descriptor space. It is thus possiblego se
that the RF is built up using piecewise constant functionsthatthe SVM with an RBF kernel
results in a smooth decision function. It is also clear tHe Fbeing a linear method, can not
describe the non-linear relationship. Deriving knowledzpesed on only one observation, is not

(c) RF approximation (d) SVM approximation

Figure 1: Contour plots of the function fdData set |

suficient. If however this is performed multiple times with a garof training set sizes and a
range of seedgenerating consistent results.

*Seed is a number used to initialize a pseudo random numberagenin order to produce the same sequence of
random numbers each time it is used.
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1.5. Graph Theory

The description of compounds as graphs is important in tlikwTherefore a general de-
scription of graphs and related concepts used will be pteddrere’®44

In mathematics a graph is a finite set of points called nodesexied by links called edges.
This corresponds to the atoms and bonds in chemical stes;tbut to describe chemical struc-
tures as graphs filerent labels on the nodes and edges are needed, referreddiomsg. The
normal representation of a compound is a simple coloredngiag it contains colored nodes
and edges, it can contain cycles but no loops. A loop is wheod& iwonnects to itself using
an edge. The nodes can havéelient number of edges, a node with three edges has degree or
valence three and cannot have more edges connected tohe hode is fully connected it is
saturated. In chemical structures all nodes need to beasatlin order to form a compound.

So far the graph has been used to describe the whole compatigtalphs can also describe
parts of compounds and such graphs are called subgraphsghn theory it is possible to have
directional edges, which can only be traversed in one daectin this work that concept is
used together with trees. A tree is a graph that contains aexyWhen chemical structures
are represented with trees the cycles in the graph must medpg, which means that one node
can be represented more than once. The directed tree s&ustuseful for making subgraphs
comparable. To compare two graphs where the nodes and edgeswanerated fferently a
representation that is independent of the enumeratioreidete Such a representation is called
canonical and the problem of comparing graphs to decideeyf #re identical is referred to as
the graph isomorphism problem.

1.6. Molecular Representation

There are a number of formats for molecular representatiamy of which capture the chem-
ical structure through a graph. This is the basis of the cbalnepresentation from which it is
possible to compute molecular properties for the molecsile &@hole and for its substructures.

To translate the graph theory definitions into its chemicairterpart is simple. The nodes
from graph theory correspond to the atoms and the edgesspormd to the bonds. If larger
compounds such as proteins are represented it is commorfite @enino-acids as nodes to
simplify the format. From the graph based approach simptifims have been made that allows
compounds to be described using short ASCII strings for usprieadsheets. One commonly
used example of this is Simplified Molecular Input Line Erfapecification (SMILES) and was
developed by Dave Weininger at Daylightt*® The SMILES is a string obtained by writing
the atom labels of the nodes encountered in a depth-firsttsefa graph representation of a
compound. All hydrogen atoms are removed and cycles areshrok to turn the compound
into a directed acyclic graph. The atom pairs where cycles haen broken are given a numeric
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sufix to allow for reconnection. Parenthesis are used to indibatnching. Since the atoms
in a compound are connected byfdrent kinds of bonds the single bond is omitted and the
double and triple bonds are expressed=bgnd # respectively. Aromaticity is written using
small letters for the atoms. All atoms represented by twiablds are written within a bracket.
Stereo chemistry over a double bond is indicated ugiagd\. For tetrahedral carbor@or

@@ is added to account for R and S enantiomers. The way this iemgnted in the SMILES
language is however not R and S but rather the clockwise andlackwise positioning of
the structures attached to the chiral carbon as they aréeewiih the SMILES. For example
OC[C@H] (CC)NC is the same a8C[C@@H] (NC)CC.

The above describes the whole compound, but for modelinggses substructures or prop-
erties of compounds are often used. Substructures can leleshaising SMiles ARDbitrary
Target Specification (SMART3) which is similar to SMILES but fiers a wider range of node
labels for finding substructures that are similar but notdyadentical. For example an aro-
matic carbon would be representedtato match any aromatic carbon or nitrogen the SMARTS
could be[c,n]. If any aromatic atom should match the SMARTS could be jusi.aim short
SMILES are used to describe compounds and SMARTS are usezhtohsfor substructures
within compounds.

1.6.1. Signatures

For this work a central representation is the signaturergesc developed by Fauloret
al.“*® The signature of an atom is a canonical representation arthieonment surrounding the
atom. The signatures can be calculated féfiedent heights which corresponds to how far away
the environment to the atom is defined in the signature. Aghteiero only the atom itself is
considered. For height one the signatures contains themiatton from the current atom to its
nearest neighbors, including the connecting bonds.

The signature of an arbitrary atom is a tree representatiansabgraph to the graph of the
molecule, such that all neighbor atoms up to a specifiedrdistaheight, from the atom are
taken into account. The tree is represented with a stringesrin depth-first order. The atom
types are given within square brackets and a step away frenpdhent is indicated with an
ordinary bracket. The signature for an atom bound to a neigatom will then look like this:
[atom_type] (bond_type[neighbor-atom_type]), see Figure 2. With the tree representa-
tion this means that the layer underneath an atom is compishe neighbors of that atom,
the second layer is composed of the neighbors neighborpetteeatom itself.
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height 0 h [h]
height 1 Cc [h]1(_[cD)
height2 h h h [h]1(_[cl1(_[h]l_[h]_[h]1))

Figure 2: A tree representation of methane and the atom signatures of the hydagte f
heights 0 to 2.

1.7. Enumeration of New Compounds from a Set of Signatures

A method to generate new compounds has been described by, ¥isal.'®* and Church-
well, et al.** where compounds are decomposed into building blocks repres as signatures.
These building blocks define a space in which all possiblepmmds are built.

The method startsfbwith a set of compounds and the corresponding signaturesngUs
the signatures of the compounds, connectivity constragnesated by comparing parts of the
signatures, are set up that govern how the signatures cammiigreed to form new compounds.
The constraints form a system of linear equations.

As stated above the signatures describe a center atomlayers of surrounding atoms and
the bond types connecting the atoms. By looking at the enwisatt around the center atom it
Is possible to see what the surroundings of another atom Ipeuist itsn — 1 layers to connect
to the center atom. For each signature, in the set of heiglgnatures spanning the space, the
heightn - 1 signature?'z, is computed along with the height- 1 signatures for the first layer
neighbors™1o-.. To form a bond between two atorng described by the signaturés and
"r;, at least one of th%flaﬁ. must match thé&1r; and vice versa. In this comparison a direction
is imposed on the bond— j. For each such pair of height— 1 signatures an equation is
set up such that for ea¢h the number of possible connection pairs is counted and aasled
codficient to the equation, see Figure 3. The sign of thefament depends on which signature
is searched first. If no equation comparitigr; — "r; or "r; — "1y exists, ther !t
will get a positive cofficient and thé'-!z; will get a negative co@écient. if the height - 1
signatures for andj are identical no direction can be imposed on the comparisdraaummy
variable needs to be added to balance the equation.

Figure 3 contains a visual example of the process describagka The first sub-figure, 3(a),
contains one compound and all atom signatures of heightdh &gnature has a colored center
atom and the light blue dots represent the surrounding afomsach signature. There are
five different signature types of height 1 in this compound, market fariown, green, dark
blue, yellow and red. The interconnectivity among the sigres is described in Figure 3(b).



1.7 BEvuMERATION OF NEw COMPOUNDS FROM A SET OF SIGNATURES 13

For example the brown colored signature matches the grderedoone since the center atom
of the green signature is represented in the brown colorgghhg signature as a neighboring

atom, light blue. When a pair of signatures matches it meaausthiey can form a bond so

if a compound in the example has a brown signature, it must ladse a green one. This

knowledge can be transformed to mathematical constrdiatgbverns how the signatures can
be combined, see Figure 3(c).

o oY o

ol r\rrj‘ o

(a) Compound Signatures

Surrounded by:

Signature Coefficient
Q
S
N S N N, commem—
c > § '
3 g NC| 1 -1
T C:O 1 -1
- CC 2 2 2 -2
(b) Matching Signatures (c) Forming Constraint Equations

Figure 3: A visual representation of what the signatures represent, how thdyecanmbined
and how constraints are formed.
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In the cases where the connection environments are idéefdardaoth atoms a dummy vari-
able, gray labeled in the example, has to be added to balha@guation. The céiécients of
these equations form a constraints matrix that defines hawcoenpounds can be built. Since
the representation of signatures in compounds is an entiorecd atom types and their neigh-
boring environment, solutions to the system of equationstrbe vectors with non-negative
componentsi.e. the solutions are Diophantine solutions. To solve the sysiEequations a
Diophantine equation solver algorithm developed by Dewig|.*>° has been used. This algo-
rithm does a stack based search and retrieves the compteiémeimal solutions, where a
minimal solution is a solution which can not be obtained bgnbming other solutions, using
integer multiples. The algorithm starts from the origin amolves stepwise in descriptor space.
The vector of a valid step is pushed on to a stack and each eevsstrts with a pop, taking the
vector from the top of the stack. For each pop the algorithatuates possible steps in descrip-
tor space and pushes the vectors for the steps that wereedll@wstep in a descriptor direction
is only allowed if it represents a move closer towards thgioiin constraint space. A minimal
solution to the system of equations is found when a step esaitie origin in constraint space.
The stack based version of this algorithm prevents the Bdaom finding the same minimal
solution many times by blocking descriptor directions ina\so that a particular subspace will
only be searched once. The solutions to the system of eqggatid=igure 3(c) are presented in
Table 1.

L ® O
all 1 1
b 1 1 1
c 1 1

Table 1: Solutions to the system of equations in Figure 3(c).
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(@) a+5=*c (b) b+5=*c

NH, NH,
H,N NH,
NH, HaN

(c)2xa+4=c

OH OH
) @OH
HO

(d)2«b+4=xc

NH, NH,
HO NH,
HO

(e)a+b+4xc

OH

OH

Figure 4: Compounds based on linear combinations of the solutions in Table 1.
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Linear combinations of the solutions with minimal suppa#g eade to find all solutions in
the subspace. A compound can be viewed as a connected gragh alhvertices (atoms)
are saturated and therefore resulting solutions must al§ih & graphicality equatiort> The
graphicality equation determines if a set of vertices cdaldish a connected graph and if so
how many cycles it contains and can be derived using theWailprelations from graph theory.
If a compoundz hasn atoms andn bonds, then its cyclomatic number is

c=m-n+1 (1)

which is the number of independent cycleginLet g; be the number of atoms @ with heavy
atom valence? = i, then another way of counting the atoms is

0max

n=>9 )

i=1
and the corresponding expression for the bonds is

2m:ﬁixi~gi. ©))

i=1
By substituting Equation (2) and (3) into (1) the graphigadijuation can be written as

Imax
Z(i ~2)g +2=2c 4)
i=1

All possible compounds are created from the signaturesrdicigpto the solutions. This
was accomplished using an algorithm proposed by Vist@l.'* The algorithm recursively
reassembles atoms from the signatures representing th@sslto form possible compounds
and it only allows the canonical structures to be built angstreduces the construction time.
Some compounds assembled from the solutions in Table 1 esemted in Figure 4.

This method has a nice feature since it is determinisécit is ensured that all compounds in
the searched space are found. However, it is computatjooaditly and due to the complexity
of the problem, slow for a complete regeneration of drug-ldompounds. The number of
published applications thus far has been quite limited andlly describe limitations where
signatures represent larger parts of the compounds thatdlbknown linkers like amino-acid
chains and polymers.
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1.8. Finding Substructural Alerts in Data

The drug discovery process is dependent on warning systeahsde substructural alerts to
notify chemists of potential risks. These systems includeekample warnings for genotoxic-
ity and mutagenicity’’—>3The extraction of substructural alerts can however be aptished
without the use of commercial software.

Perhaps the most simple method to extract substructuréd &lem data is to utilize chemical
expert knowledge. A more advanced method is to manuallyeritise data and to identify sub-
structures by visual comparison. The extraction of subtiiral alerts using chemical expert
knowledge or any other manual technique is time consumimgemerates subjective sub-
structures since it is dependent on the skill and experfigheochemist. There are however
computational methods that mines molecular substrucfrvesdata®*

The best methods available today grow substructure grapimsthe atom types by computing
frequent cliques, where a clique is a set of pairwise adfaeenices or an induced subgraph
which is a complete grapf?. The clique based techniques starts with the individual addéhe
graph and grows the substructures by combining nodes untilare substructures can be found
that obey the user specified occurrence threshold. Thisexlaaustive search of substructures
in the data and is well suited for finding substructures, babdimes with a high computational
effort.

There are also methods that utilize MCS computations butthos primarily designed to
identify privileged structures,e. the sc#old from which compounds are built. In such cases
MCS computations are applied after clustering of the comgstiand the substructures there-
fore describes chemical classes of compounds in the data.

In this thesis an approach to mine chemical data for sulistes that can separate the data
is presented. The method is faster than existing methodgemerates fewer substructures yet
retains the predictive properties.
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2. Contribution to the Field

2.1. Model Interpretability

One goal has been to investigate the interpretability adiptere QSAR models. As described
in Section 1.3.4 many attempts have been made to find the mpsiriant descriptors for
a data set as a whole or in, by chemists predefined, subsétis Whiat data set. There has
however been little work on describing the local space aidhe compound of interest with
respect to the model function. The local behavior is of higeriest to the chemists since, if
a compound is considered to be active against a primaryttaugeneeds to gain specificity to
reduce sideféects, one would like to make small changes to the existingopoamd to optimize
its properties instead of finding a completely new compourafacilitate these changes one
needs to find the property or descriptor for which a smallealange would result in the largest
change in activity. For this purpose, as shown in Papire gradient of the model function can
be used.

As stated in Section 1.3 not all machine-learning algorghvave simple analytic expressions
for the model function that allows for analytical derivatiorhe RF method generates a model
function that is composed of many piecewise constant fanstisuch a function has no simple
analytical gradient but a discrete gradient can be compuostdad.

Inferences from gradient computations can be used to ran#te¢bcriptors in order of impor-
tance with respect to a specific prediction. In this work grats have been used together with
the signature descriptor described in Section 1.6.1. Tleeofisignatures or other substruc-
tural descriptors like SMARTS, see Section 1.6, have thaatdge of being easy to understand
since the substructure can be mapped back onto the compsemdrigure 5. This enables a
direct coupling between the descriptor and the compoundfasdiisualization facilitates the
interaction between the modeler and the synthetic chemist.

2.1.1. Theory

If the QSAR model is viewed as a function, then at any pointfuretion the local behavior
can be approximated using its Taylor series, which is anitafsum of the derivatives of the
function in that point.

f'(a)
11

(@)
2!

f(a) + (x—a) +

(x—a)®+ ... (5)

If an infinite number of terms is used the function can be cetety described, but in this
work the Taylor series has been truncated after the secomg $eich that only the prediction
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NH,,
H,N

Cl
Cl

Figure 5: A compound with displayed substructures represented as signatur&SvBXRITS.
The signaturéc](p[c]p[c]_[n]) or SMARTSNCc(c)cis displayed in red.

and the gradient of the function is used to describe the loemjhborhood. Gradients can be
computed for any dticiently smooth function and the gradient of a QSAR functmthe partial
derivatives of the function with respect to each descriptor

of of of

\A§ =(—, —, .., —
() (axl’axz’ " 0%,

) (6)
By looking at the magnitude of the partial derivatives thecdgsors that influence the local
neighborhood the most can be found. In the work of P&merly the descriptor corresponding
to the largest component of the gradient has been considered

Support Vector Machines

For SVM an analytical expression of the gradient can be nbthi The SVM decision func-
tion is a sum of weights times the kernel function where thaghts are constants. So deriving
the gradient of the decision function for SVM amounts to cating the partial derivatives of
the kernel function.

Random Forest

In the case of RF models, in general, there is no easy way ofnotigaan analytical ex-
pression of the model function. Instead, one can computgttheomponent of the discrete
gradient,

Df  Buf(x+hy) +B2f/(x) + puf (x — hy)
DXj B 2;81 +ﬁ2 ’

(7)

wherep; andp, are smoothing cdicients. The step size in thedirection in attribute space
is hj and the corresponding second-order accurate partialadieevs f; = (f(x + hj) - f(x -
h;))/2h;.
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Partial Least Squares

PLS, and any other linear moddb(s = kix; + Koxo + .. + knX,) has a trivial gradient, being
the constank; for each descriptor in the model, and as such the gradiehbaitonstant over
the complete space spanned by the descriptors.

The above work corresponds to PapeWith this method it is possible to interpret any non-
linear QSAR model and by doing so chemists can be guided oh wlthange and how that
change is believed toffect the compound. The method, does not give an answer to hew th
change should be facilitated or what the substructure caedlaced with. To solve this prob-
lem the idea have been to combine this method of knowledgaatdn with an molecular
enumeration algorithm which is the objective of Palpedlescribed in the following section.

2.2. Automated Compound Optimization

Today tedious literature and database searches are matlefysts to optimize a compound
with an undesired predicted or known biological activityod QSAR models reveal only the
prediction but can also, if used as described in Sectionrglitate what needs to be changed.
The model can however not indicate how to do the change orsgiggestions of more optimal
compounds.

This approach makes use of the data behind the QSAR modehar@SAR model itself.
It takes a compound with an undesired prediction and issléie substructure corresponding
to the largest gradient in the QSAR model. To replace thetautisre a set of compounds is
needed. For this reason the QSAR training set has to be sebimhcompounds similar to the
substructure of interest. The set of similar compoundsttmgewith the substructure, repre-
sented as a compound, can be used to form constraints degchb interconnectivity between
all atoms, described as signatures, in these compounds. thiditset of similar compounds at
hand, the procedure for generating compounds describestting 1.7 was used, and new sub-
structures were generated. The substructures were thdsimmednwith the remains of the query
compound, if possible, and predicted with the QSAR modelceXhis process is completed
one has a set of deterministically built substructures¢hatbe used to replace the active sub-
structure. After replacement all new compounds were ptediwith the QSAR and presented
to the chemist. This provides the chemist with ways to o@the compound and learn more
about the local properties around the compound of interest.
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2.2.1. Theory

In the process outlined above, and described in detail ;1gbction, the manual searches
together with replacement structure generation are autmmahe diferent steps in this method
are visualized in Figure 6 where the starting point is a queEmynpound which needs to be
predicted for a biological activity or a set of activitieang multiple QSAR models.

The descriptors used in the QSAR models were signattiéand the model function can
be generated using any machine-learning method, for exaRI°® or SVM.%8 The local in-
terpretation of machine-learning models described in Phaéd in Section 2.1 can be used
to extract the signature with the most significant contrdouto the QSAR prediction of the
compound. This most significant signature corresponds sitipos in the compound where
changes possibly need to be made to gefiemdint prediction from the the QSAR model. The
following procedure was only performed for compounds tkative unfavorable predictions.

From the significant signature located by the QSAR model atsutture based on the sig-
nature had to be cut out from the compound. This substruetasegenerated by cutting bonds
from the atoms at a specified distance from the center atolmeddignature. If an atom at this
distance belonged to a ring the search was extended to einéethg). Each atom for which
a bond was cut has been kept as an anchor atom and for eachtsaocla SMARTS' was
generated that described the atoms around the bond thatnvakbaecombine generated sub-
structures and the original end groups this SMARTS must imat¢he query compound could
not be cut, it was treated as a substructure throughout thaineler of this algorithm. However,
it did not go through the recombination step where SMART SHaeen used.

At this point the substructure that needs to be replaced etagved. To setup constraints
for the Diophantine equation solver a subspace around thstrsicture was spanned using
neighbors to the retrieved substructure. The neighbores Weeated based on similarity. The
near neighbor search was conducted in a database of congptarnahich measured activity
was available for the specific endpoints and in particularehdpoint that the QSAR model
approximates. From these neighbor compounds a set wascihageovered a range in activity
around the query compound.

A method to generate new compounds has been described by, ¥isal.'* and Church-
well, et al.*® This Algorithm was briefly described in Section 1.7.

The implementation used in this workfidirs slightly from that used by Churchwed, al.*°
Most of the changes have been applied to constrain the sitteeafew substructurésand to
reduce the computational time. These restrictions have ipggosed mainly on the solutions to
the Diophantine equation solver. The first restriction kfosteps in an attribute direction once
it has reached a given threshold. Another restriction wassad to avoid the computation of
solutions where the sum of signatures exceeds a predefireghtiid. When linear combina-
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Figure 6: Flowchart displaying the éfierent steps of the work flow, where the blue dashed box
indicates the work of Viscet al'® and Churchwelkt al*® described in Section 1.7
and the red dotted boxes indicate the part of the method described here.
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tions of the solutions were made, an upper and lower boundsetasn the size of a solution to
ensure that the new substructures had a similar size to tp@arsubstructure and to reduce
computational time.

At this point all possible combinations of signatures thaymesult in potential substructures
have been computed. Here it can be useful to impose moreéctests on the solutions. If
QSAR models have been built using signatures of hdightess then the solutions representing
non-built substructures can be used to predict the pr@sasfithe new substructures even before
they are built.

In a recursive procedure, all possible substructures welglmm the signatures correspond-
ing to each solution, respectively. This was accomplish&dguan implementation of the al-
gorithm proposed by Visceet al.® The algorithm recursively reassembled atoms from the
solutions to form possible substructures and it only alldwes canonical structures to be built
and thus reduced the construction time by not building dapdi structures.

Since the Diophantine equation solver is deterministiaguzes that all possible substruc-
tures within the subspace defined by the constraints magne found. The substructures built
were preprocessed in the same way as the query compound ditidrzal filters were applied
to omit structures with specific ring sizes.fl@irent filters can be applied based on the specific
problem at hand. If the query compound had anchor atoms, SMARere generated that de-
scribed the anchor atoms and their required neighbors isuhstructure. The end groups were
attached to the generated substructures if the SMARTSrpatteom the end groups could be
matched onto the substructure, it was then a complete camapoln the case where an end
group could be attached to several points in the substectllrpermutations were assembled.
The generated compounds were preprocessed in the same taycagery compound and any
duplicates were removed. If the query compound could notargtioned into a substructure
and its corresponding end groups, substructures from tbeeastep were the complete new
compounds. A final filtering step can be applied to remove aamgds with undesired proper-
ties. Examples of such filters are drug likeness, ring comipas and molecular weight. For
the new compounds, QSAR predictions were obtained for tfierdnt biological endpoints of
interest.

2.3. Finding Significant Substructures

The aim of this method is to automatically generate subgtratalerts based on chemical
data in an objective way. It is of highest importance to redilne risk of subjectiveness when
generating these substructures since the outcome of tbethlg should represent the data
modeled and not be a matter of choice. The method shouldrpldyegenerate substructures
that: can create high-performing models, are easy to utatetsand visualize.



2.3 HNDING SIGNIFICANT SUBSTRUCTURES 25

The method presented in Pagdr mines chemical data using signatures and significance
testing. The signatures used in this work are similar toghm®sented by Fauloet al.*8>7
Each node in the signature tree can be arbitrarily label&thlihis case the Sybyl atom-typfe
corresponding to the atom has been used.

For a substructure to be statistically significant at a aeffevel, it was required that thp-
value was below this level. Furthermore fhalue alone is not dficient for a substructure to
accurately describe an activity. With increasing numberoaiurrences of a specific substructure
in the data the accuracy for a givervalue will decrease. In addition to the level of significanc
a lowest level of classification accuracy needs to be imposdtie substructures.

For classification, where substructures are used as indsciir compounds belonging to a
certain class, the class representation follows a binodisaiibution. An outcome for a specific
substructure can be said to be the occurrence of itself im#beuof compounds with a certain
activity and the occurrence in a number of compounds withloatt activity. To see whether
such an outcome is likely to come from a specific binomialritistion the p-value was used.
The p-value is the probability of obtaining the outcome or anyeotless probable outcome. The
outcome has to be related to the occurrence of the activitlyartotal number of compounds,
i.e. even compounds where the substructure does not exist. Bonpde, a data set with
compounds has compounds with a specific activity label where< n. In the data set a
substructure is found in’, i < n compounds and the amount of those compounds with the
specific activity label isr, rrf < m. The accuracy for the substructure in the training da\% is
and thep-value is}." m,(n, 7 ()™ 5 (1= (m))O=m),

For data where a specific activity was overrepresented itpgasible to obtain significant
substructures with only one or two occurrences in the daiavdid this a lower bound on the
number of compounds a substructure exists in have to be used.

The algorithm takes a data set with a classifier responsshhblids for thep-value, substruc-
ture occurrence and the accuracy. In the initial step alifitezero signatures were computed
from the compounds in the data set and for each signaturethlenumber of compounds it
exists in was recorded together with the number of occuaemath respect to the activity of
each compound. For each signature, if the number of ocagsamas above the threshold the
accuracy of the signature was computed for each activitypewed to the all the other activities.
If the accuracy for an activity was above the accuracy tlolesstine p-value was computed. If
the p-value was below its threshold the signature was labelatfigignt in discriminating the
activity. If the signature was significant, the search fgngicant substructures was terminated
in that direction. For the signatures that passed the oeccerthreshold the search was ex-
tended to the next height. The above procedure was repeatiedaisignature could fulfill the
thresholds on accuracg;value and occurrence.
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2.4. Evaluation of QSAR Modeling Strategies

Section 1.2.3 describesffirent QSAR modeling approaches used today. The questions
asked there are the cornerstones for this work on QSAR nmagsirategies.

There is a need to test and validat&eliences ih.ocalandGlobal QSAR modeling strategies
and how diferent numerical routines and modeling algorithms handbeetlditerences. The
aim of this work was to:

e gain knowledge about the expected predictive performahteaalandGlobalmodeling
strategies

e investigate possible risks in terms of the definition andyesa applicability domains for
LocalandGlobal modeling strategies

It was also interesting to see how thdtdient machine-learning algorithms make use of the
available information. To allow for a deeper understandifthe strategies and a significant
amount of this work has been conducted on simulated data.

The information content in a QSAR model is defined by its respoand the descriptors
used. Depending on the information at hanfladtent modeling strategies can be applied. In
this work, Local and Global modeling strategies have been compared using two levels-of i
formation content, denoteldleal and Restricted For theldeal case all relevant information
to accurately describe the underlying relationship is @imetd by the descriptors, @mplete
descriptor set For theRestrictedcase the descriptors are missing relevant informationn-an
complete descriptor seand cannot be used to describe the underlying relatiormstimperely
an approximation to it. For these two levels either an et setGlobal, or a subset of the
data,Local, can be used. This definesiobal model as a model built using the entire data
set, all available information. Aocal model, on the other hand, is a model built for a specific
example using neighbors from the entire data set. The definif neighbors can vary, but in
this work it was based on a descriptor or fingerprint simyari

The Global modeling strategy has been applied with the two levels afrmftion content,
Ideal Model Global, IMGandRestricted Model Global, RMG:s illustrated in Figure AMG
uses a complete descriptor set dRMG uses only a subset of these descriptors for model
building. For eaclGlobal case two correspondirigocal cases have been applied that locates
near neighbors in Restrictedor anldeal fashion. Following the structure in Figure 7, in the
IMG branch thd_ocal cases both use a complete descriptor set for building madelsnaking
predictions. Theédeal Model Ideal Local, IMILuse the complete descriptor set to identify near
neighbors but thédeal Model Restricted Local, IMRIgnly make use of &estrictedsubset
of descriptors for identifying near neighbors. In tR&G branchLocal modeling cases both
use an incomplete descriptor set for model building andiptieds butRestricted Model Ideal
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Ideal Model Restricted Model
Global, IMG Global, RMG
'(" 1deal Model Ideal Model ; Restricted Model \.
1
1| Ideal Local, Restricted Local, [E:;t Egtf; Né(,)\;ljﬁj Restricted Local, |
l\ IMIL IMRL ! RMRL !
/

______________________________________________

Figure 7: The diferentLocal and Global strategies that have been applied to the data. The
dashed box indicates th@cal strategies.

Local, RMIL,use a complete descriptor set for finding near neighborsResdricted Model
Restricted Local, RMRIuse theRestrictedsubset of descriptors for identifying near neighbors.
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The global and local modeling strategies above can be surredaas follows:

e IMG constructsGlobal models where all the information about the underlying refat
ship is known and expressed by the descriptors.

¢ RMGdescribesslobal models which can not correctly describe the underlyingticaia
ship.

e TheRMRLcase results ihocal models that make use of a neighborhood and a descrip-
tor set that can not completely describe the problem at hahis can be described as
the normal case when building QSAR models since the unaeyisglationship can not
be properly described but one makes use of all informatidmaatl for finding the best
possible models and near neighbors.

¢ In theIMIL case results ihocal models where all the information about the underlying
relationship is known.IMIL can be directly compared with tfRMRL case where the
difference is loss of information f&MRL

¢ RMIL represents theocal model case where external information is added in the neigh-
bor search, which can be relevant in describing the undeylgelationship. The addition
of this type of information can lead to a model that is trilgcal with respect to the
underlying relationship.

e ThelMRL case describdsocal models where theocal neighborhood is partially unac-
counted for or cannot be correctly described, as opposBdAid. In fact the underlying
relationship is properly described by the descriptors betrtear neighbors has not been
selected in accordance to the underlying relationship.

The diferent modeling strategies and risk assessments were @aisng various machine-
learning algorithms. To assess individual model perforreaan cross-validation approach was
used, which is commonly used in literatlfeA data set was divided into subsets by uni-
form sampling of examples without replacement. Each subastireated as a test set with the
remaining examples as the training set. For each test setemalloprediction metric was com-
puted. If the response was binary this metric was definedeapréidiction accuracy and if the
response was real valued the root-mean square error wasnssead. The prediction metric
was averaged for all test sets.

The generation o&lobal models was straightforward; for each test set a model waisdvui
the remaining examples of the dataocal models were generated for each example in a test
set and for each such example near neighbors were retriementfie remaining examples of
the data, not included in the particular test set. Near righwere found by using filerent
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similarity operators such as Euclidean norm on descriggoiBanimoto distance on chemical
fingerprints. The number of neighbors was either expli@ty or a cut-& value for the simi-
larity was be used. If &ocal model could not be built under the specified similarity coaist
the correspondin@lobal model was used to predict that compound. With the predisticom
bothLocalandGlobal modeling strategies at hand it was possible to directly amepnd asses
prediction accuracies and errors.

To assess risks dfocal versusGlobal modeling strategies, by comparing errors and accu-
racies for compounds within and outside of the domain ofiappllity, the domain of appli-
cability had to be defined for the models. @lobal model should be able to handle all data
so the domain of applicability was defined to be the complata det. For théocal models,
by definition, an example for which a model was constructeddbyeval of near neighbors,
was within theapplicability domain On the other hand if such a model was used for any other
example it was used outside its domain of applicability.
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3. Results and Discussion

3.1. Model Interpretability

Here the example from Section 1.4.1 has been used againidtittle in an extended form.

The simulations have been implementeckfit using the following packages for machine
learning: pls®® for PLS, randomForest*! for RF ande1071% for SVM. For each predic-
tion the discrete gradient of the model function was comgaied compared to the analytical
gradient of the function. The models were trained using #fault settings in the respective
packages.

The descriptor space was the same as in the example in Séctidnand the function like-
wise. A test set of 100 data points has been drawn togethereaith training set consisting of
100, 200 400 and 800 data points. For each setférént seeds have been used, for full details
see Pape.

Examples of the most significant componentsBata set lare presented in Figure 8. The
figure shows the most significant component of the gradieitqa at each test point using the
first seed and a training set size of 800 data points. The lymgicontour plot represents the
correct areas of significance, yellow indicating comporfeand red indicating component 2.
For both RF and SVM the most significant component was coyrectinputed for almost all
of the points in the test set, whereas PLS predicts the secamgonent to be largest every-
where. This shows the usefulness of the gradient as a lopairtance measure for information
retrieval from machine-learning models. In Papérhas been shown that the inferences from
the largest component of the gradient for QSAR models basesigmatures were relevant for
describing the data. This was demonstrated using AMES reateity data and compared to
the toxicophores reported by Kazile,al.5®

3.2. Automated Compound Optimization

The work flow was demonstrated using AMES mutagenicity datiafCCRIS® from which
compounds and corresponding activity has been collectsat@ding to the conditions described
by Kazius,et al.?® including for example removal of organo-metals.

Figure 9(a) shows an example compound, the substructuredlded replacemertizN-N,
and the extended substructure that was replaced using tiednd=-igure 9(b) and 9(c) show
examples of the generated compounds. For this particuke 2800 new compounds were
generated, of which 800 were predicted to be positive and J®6dicted negative,e. not
mutagens.

The method has been tested using 303 of the positive compdtumd the AMES data set
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(c) SVM approximation

Figure 8: The most significant component of the gradient plotted at each test pdirg.whs
based on the gradient computed for the PLS, RF and SVM models with thesidt
and a training set size of 800 data points. The underlying contour plodgepts
the correct areas of significance, yellow indicating component 1 and dichting
component 2.
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(a) Compound and selected substructure, to be replaced
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Examples of generated compounds predicted negative
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(c) Examples of generated compounds predicted positive

Figure 9: A compound with an unfavorable prediction and examples of the generated c
pounds.
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collected by Kaziuset al.%® These computations took roughly one month using six comguti
cores for building models and solving the system of Diopim@nequations. The rebuilding
process was distributed on a heterogeneous grid using atmaax100 nodes for rebuilding
compounds. The computational time for the individual coomuts varied between a few min-
utes for aliphatic compounds to several days for some of ityelic aromatic compounds. Up
to 15000 compounds have been generated for a single queiip, $ome cases only a handful
of compounds have been generated. The amount of generatgubunds &ects the computa-
tional time needed. Out of the 303 compounds 181 were pestlictbe positive by the model
and the corresponding statistics (covering number of gegedrcompounds, percentage gener-
ated compounds predicted positive, computational timenber of minimal solutions and the
number of steps taken by the Diophantine equation solvethise computations are provided
in the supporting information of PapBr. The remaining compounds were predicted to be neg-
ative by the model and therefore not optimized. In the septifized compounds, 18 of the 28
approved toxicophores described by Kazeisal. were covered (see supporting information of
Paperl for details). The fact that 40% of the compounds were predioegative was however
a drawback. One reason for that may be that local QSAR modsis used for retrieving the
substructure instead of a global model. A global model wbialee been more accurate over the
entire domain, which presumably would havféeated the outcome. To thoroughly study local
and global QSAR models an investigative study of their pridgpe and risks was conducted,
PapernV.

These results show that the automated work-flow for mole@pémization is a useful tool
in drug development. To enumerate and rebuild complete oanqgts with the algorithms pro-
posed by Viscoet al.'® and Churchwellgt al.*° is a costly procedure when it comes to drug
like compounds containing multiple cycles. In drug disagvemall changes in the chemical
structure can have a considerabfieet on the activity?’:% By adding the identification of sig-
nificant substructures and limiting the size of similar gubgures, as proposed here, it was
possible to regenerate compounds that are valid in a draigraeontext.

The computational time needed for the method increasesati@atly with the number of
unique signatures due to the combinatorial explosion o$iptes compounds. The reason for
this was that the method is a deterministic search methodnimg that all signature com-
binations that may result in new compounds will be found bumay take long time to find
them. With a higher number of unique signatures the chendigalsity among the generated
molecules will be higher and therefore a trad&fmetween computational time and chemical
diversity has to be made.
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3.3. Finding Significant Substructures

Today substructural alerts are applied in many areas of disgpvery to warn chemists of
potential problems with functional groups. The tool thag haen developed in the present work
aids the modeler or chemist in finding the substructuresatiaially separates the data at hand.
Similarly it is possible to evaluate existing substructatarts. This method finds substructures
that are overrepresented in the data. It will however notapchemical knowledge, which
guides the field today. Chemical knowledge is however subgeind if an alert based on
chemical knowledge is not separating the data it is likedt the alert is not alone responsible
for the outcome.

To depict the substructur@gham® was used to create molecular visualizations of each sub-
structure projected on a compound, like in Figure 5. For saghificant signature the signature
string together with the accuraqyvalue, signature similarity, positive and negative couas
written to a spreadsheet table together with the visuatimaif the substructure on one of the
molecules.

The work flow was demonstrated using AMES mutagenicity datafCCRIS® from which
compounds and corresponding activity have been colleatedrding to the conditions de-
scribed by Kazius et &° The data set has been divided into 10 subsets and evaluaten us
cross validation, where the model has been trained on thainsrof the data and tested on the
subset. An external validation set of 880 compounds regdiyeYoung,et al.”® has also been
used. The method has been comparedaston,’* gSpan’? andPAFI.”® These three meth-
ods retrieves frequent subgraphs from the data. The freéqudagraphs have been converted
to SMARTSY and based on the SMARTS significant substructures have let@gved based
on p-value, accuracy and occurrence. The data analysis havepee®rmed according to the
procedure described by Kaziwet,al.® where compounds that contains no significant substruc-
tures have been classified as negative. In contrast to Kakzalsthe threshold for the accuracy
has been 80% and the threshold for pjrealue has been.05.

The method has been applied wittifdrent number of required hits (5, 10, 20, 50 and 100).
The results have been visualized in Figures 10, 11, 12. €i@0rshows the accuracies for
the methods at the filerent numbers of required hits on the test data and the tialideata
respectively. It shows that the possibility to mine the data low occurrence threshold results
in an increased accuracy. Figure 11 shows the computatffioal for training and predicting
using the diferent methods. It shows that the complexity of the signitisagnatures method is
lower than the the complexity for the other methods. FinBlyure 12 shows how the number
of generated substructures vary for thetient methods with éierent number of required hits.
ForPAFI, Gaston andgSpan the training time and the prediction time are very similaneO
reason for this could be that in the prediction all matches sxfibstructure on a compound was
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located whereas in the training only the first match wa@ant for the method. The SMARTS
matching was conducted usiogChem. " For 5 and 10 required hiaston andgSpan crashed
on insuficient memory, and foPAF1I this happened for 5 required occurrences.

L L L L L \
5 10 20 50 100 5 10 20 50 100

Proposed Method —— g Proposed Method —— gSpan
gaston gaston PAFI ——

(a) Test accuracy (b) Validation accuracy

Figure 10: Average test and validation accuracy for the methods used on the AMES da
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(a) Training times (b) Prediction times

Figure 11: Average training and prediction times for the methods used on the AMES data

The method in Papdil illustrates a complete automated work flow for smarts likegoa
generation. The method treats the data objectively andrgtasea set of significant substruc-
tures according to the user defined constraints. By displegative and inactive substructures
the algorithm can aid the user in changing the compoundst tor lavoid hitting the target of
interest. The method is computationally inexpensive caoegbdo existing methods and the
results indicate that it can replace large parts of the aisathat is performed manually today.
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Proposed Method —— gSpan
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(a) Generated substructures

Figure 12: The logarithm of the number of generated alerts for each method

3.4. Evaluation of QSAR Modeling Strategies

Local or Global modeling strategies has been investigasetyisimulated and real data, and
the results clearly show that use of all available data ikepable. Here only the regression case
for the simulated data is presented. Complete results fdr thet simulated and the real data
can be found in PapéY and its corresponding supporting information.

3.4.1. Experimental Setup

In the simulation studies all parameters for the underly&lgtionship were known, the an-
swer to the problem was known and thereby it was possiblesigdeesponses based offfeli-
ent combinations of descriptors and to study tifea of LocalandGlobal modeling strategies
thoroughly.

In this case descriptors have been drawn from the gammabdishn function resulting in
a descriptor set that will mimic the distribution of real ofieal descriptors. The simulated
descriptor space consists of thredfelient descriptorsg;, d, and ds, drawn such that; €
r41),d, e 1'(9,1) andd; € I'(7.4,1). The function determining the response;is- cos,; —
do)/(1 + (dyj — dy)?) + 1.2 = sin(13 * (d3; — ds)) Whered; is the jth point drawn from théth
descriptor above and is the mean of the drawn points for that descriptor.

For each modeling strategy 10 seeds have been used and lfiosesst 1000 examples have
been generated. The examples have been drawn uniformljt@bens and each bin has been
used as a test set with the remaining data as a training setrélults in 10@lobal models for
each case and 100Q@cal models since for each point in the respective test setgal model
has been built. Theocal modeling strategy has been tested using 10, 20, 50, 1004200,
600 and 800 near neighbors from the training set. The neghbers have been selected using
the Euclidean norm as a distance metric in descriptor speoeresults of the simulations are
presented as the averaged accuracy or Root-Mean SquardEM&8E) for each case.
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All Simulations were conducted iR®? using the machine-learning libraries071" for
SVM, randomForest’® for RF andpls’’ for PLS. The accuracy of SVM models is very
sensitive to parameter optimization and therefore the S\dets have been optimized using a
grid search over the parameter (2 n = [-5 : 0]) and thes parameter (2n =[-5:-1]). The
y parameter is the exponent in the RBF kernel functionsaisdhe tolerance of the termination
criterion, controlling the width of the loss-insensitivere in the loss function.

These simulations have resulted in a vast amount of datdhéhesults can be obtained from
the histograms in Papdéy and the corresponding supporting information. The essehtie
results are presented here in a simplified manner.

Figure 13 display the averaged overall RMSE of @lebal and theLocal models using the
different number of near neighbors, defined above, within thécadity domain for the RF
algorithm. The first Figure, 13(a) shows tRMRL and theRMIL cases. From this it was
possible to see that f®MRL, where no new information was added in thecal model, there
will be no predictive gainj.e. no change in RMSE. If however information was added, like
in the RMIL case, the predictivity will increaseég. the error decreases for models with few
near neighbors. In Figure 13(b) thdIL case is added showing lower error which means that
by adding the information to th&lobal model the result would be even better than ltloeal
RMIL model. Finally, Figure 13(c) shows the full picture where BIRL case shows that the
errors increase if theocal neighborhood was retrieved without all necessary infoionatith
respect to the underlying relationship.

Figure 14(a) shows that the errors increase dramaticatly-ézal models with few near
neighbors for predictions outside of the intended applitgldomain. This visualizes the risk
of local models. That is followed by Figure 14(b) which shahat for most models the chance
that the local models should predict better is below 50% iwithe applicability domain and
outside the applicability domain the chances are even wdrsis does not hold for thRMIL
case but if that extra information was added to@iebal model, thedMG case, then thefiect
vanishes.

In the paper RF, SVM and PLS are compared for both regressibilaasification models.
The results for RF and SVM are very similar, but the PLS modéferd This is shown in
Figure 15.

Compare th&slobal models in Figure 15(a) and 13(c). THdIL cases for RF shows a low
error but the PLS show a high error. In fact the error is theestbonIMIL and RMRLwhich
implies that PLS can not describe the non linearity in thad&urther more Figure 15(b) and
14(a) show that there is a substantiafelience in error between PLS and RF outside of the
applicability domain. This shows that there is a large riskomiated with the use dfocal
models and in particuldrocal PLS models, note that the two Figures displafjedent ranges
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of RMSE values.

This shows that non-linear machine-learning methods gpalta of handlingslobal data
sets. Linear methods however fail to handle the non linedrim the data and can not utilize
the extra information for this non-linear case. When the dyawy relationship is linear, all
machine-learning models give approximately the same €rascan be seen in the Supporting
Information of PapelV .
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Figure 13: RMSE of the RF machine-learning algorithm for théfelientLocal model cases,
and their respectiv&lobal counterparts, within the applicability domain
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Figure 15: RMSE of the PLS machine-learning algorithm for théelientLocal model cases,
and their respectiv&lobal counterparts
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3.4.2. Computational Costs

The computationalféort for neighbor extraction, building and predicting thecal models
is shown in Figure 16. The figure indicates that there is atankial growth in CPU time
needed as the number of neighbors increases, which ingitdzaé buildingLocal models is
time consuming. Here it is important to remember th&baal model is built for each query,
thus building local models using 800 near neighbors almmsiuants to building as many global
models as there are queries.
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2500 |
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cpu time (s)
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.
Global 10 20 50 100 200 400 600 800
Nr of Neighbors
RMRL = RMIL IMRL s ML —

(a) Regression models

Figure 16: CPU time needed to train the local models with respect to the number of neighbors
The computations where run on a heterogeneous grid.

3.4.3. Discussion

For a predictive modeling system there is an interest indoainle to predict all incoming
compounds. When doing predictive modeling the model withhigdest overall accuracy is
most commonly the best and preferred model. Sometimes pipioach does not lead to an
accurate enough model and in an attempt to overcome thigepnoimodels based on a sub-
domain of the data are builf. The sub-domain should then capture the problem in a more
accurate way. Papé¥ questions the use of sub-domain models for predictive nioglein
three major points:

1. There is no statistically validated improvement in aacyrfor Local models

2. The risk of falling outside of the applicability domain tbfe Local model is high. Ad-
ditionally, outside the applicability domain the accuradyhe Local model is very poor
compared to the accuracy of tidobal model
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3. There appears to be a substantial increase in compuabtiost associated with thecal
models

The obvious questions are: How can the modeler be sure thaefaompounds will fall
within the model space and that this sub space really isantefor the issue of interest? If
several sub-domain models are built, which one is to bedd?st

The results show that laocal modeling strategy is only better thartdobal strategy if ad-
ditional information, which is relevant for the underlyingjationship, is added in the neighbor
search. If d.ocal model according to the definition used here, performs b#ttar aGlobal
model it is advisable to add that additional informatiorediso retrieve near neighbors, to the
Global model which will then be even better. This is exemplified igu¥e 13(c) by comparing
RMG and RMIL. Here information that is important for the underlying tedaship has been
added in the neighbor search for thecal model resulting in a lower RMSE for the models that
use few near neighbors. Ti&obal model updated with the same informatioN4G and that
model is more accurate than the bB8MIL model. Figure 15 also shows a substantifkdence
in RMSE for the diferent PLS models which is due to the fact that the IM& cannot utilize
the extra information and performs approximately afkitéG counterpart, which indicates that
the additional information in thieleal compared to th&estrictedcase is of non-linear nature
with respect to the response.

The seriesMRL show a case where thacal neighborhood is known not to Hencal with
respect to the underlying relationship. Here tloeal modeling strategy will give less accurate
models compared to thelobal modeling strategy.

Figure 16 show that the computational cost for predicting d&ts using.ocal models, as
they have been defined in this study, is generally higher esatptoGlobal models. Thus it
appears that to maintain a prediction system ukimgpal models a large computational resource
needs to be dedicated for these computations.
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4. Concluding Remarks and Future Perspective

Paper — 11l utilizes substructures in compounds to visualize chenfigdailities, retrieve and
replace fragments with undesired properties. The resudisate that substructures are impor-
tant in describing compound properties. Compound progestieh as clogP are in most cases
calculated from structures and substructural propertestsen substructures, like signatures,
are used as descriptors for QSAR modeling molecular priggeate implicitly accounted fo
Using substructures can reduce modeling errors that awse fultiple mappingsi.e. from
substructures via for example clogP and polar surface tdithlegical response of interest.
In Paperl the most important component of the decision function wasereed by gradient
computations. Further analysis of what the gradients caateould be a topic for future stud-
ies. An analysis of more than the single most important carepbcould possibly improve the
method as well as a more thorough investigation of tfiecés of smoothing for the discrete
gradient computations or some estimate on step size.

The local optimization method presented in Palpespans the molecular space around the
compound of interest in a good way but is however still timastoning. The most time con-
suming part is the Diophantine equation solver, and a gaialplementation of that step could
potentially improve the method. In the method descriptiompounds with high fingerprint
similarity to the query substructure are used. It could leresting to study the behavior of
the method if the compounds for setting up the system of cains$ equations were selected in
other manners. For example compounds could be selecteddaimaor using similarity but in
a range that is moderately similar to the query substructure

Paperlll shows that it is sfficient to search a subspace to find common features that can
separate data in a good way. This use of the signatures restitey since the complexity of
the signature generation algorithm is polynomial whereasbomplexity of a general substruc-
ture generation algorithm is exponential. This propertyld@erhaps be utilized in maximum
common substructure searches, where it could potenti@tlyge the computational time sig-
nificantly for large data sets.

The study of the performance and properties of local andalmimdeling strategies in Paper
IV shows that the local modeling strategies is associated neitttively high computational
costs, high risks in usingocal and theLocal models give no reliable increased predictive
performance. If there is interest in studying local projesttthen a global model could be
applied and using the gradient computations outlined ireFAajpocal behavior could be studied.
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The results from PapdY suggests that buildinGlobalmodels and keeping them updated with
new information that mightféect the underlying relationship is the best way to consilten
assure accurate models.
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