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Abstract
During the last decade non-linear machine-learning methods have gained popularity among QSAR

modelers. The machine-learning algorithms generate highly accurate models at a cost of increased model

complexity where simple interpretations, valid in the entire model domain, are rare.

This thesis focuses on maximizing the amount of extracted knowledge from predictive QSAR models

and data. This has been achieved by the development of a descriptor importance measure, a method

for automated local optimization of compounds and a method for automated extraction of substructural

alerts. Furthermore different QSAR modeling strategies have been evaluated with respect to predictivity,

risks and information content.

To test hypotheses and theories large scale simulations of known relations between activities and de-

scriptors have been conducted. With the simulations it has been possible to study properties of methods,

risks, implementations and errors in a controlled manner since the correct answer has been known. Sim-

ulation studies have been used in the development of the generally applicabledescriptor importance

measure and in the analysis of QSAR modeling strategies. The use of simulationsis spread in many

areas, but not that common in the computational chemistry community. The descriptor importance mea-

sure developed can be applied to any machine-learning method and validations using both real data and

simulated data show that the descriptor importance measure is very accurate for non-linear methods.

An automated method for local optimization of compounds was developed to partlyreplace manual

searches made to optimize compounds. The local optimization of compounds makeuse of the informa-

tion in available data and deterministically enumerates new compounds in a space spanned close to the

compound of interest. This can be used as a starting point for further compound optimization and aids

the chemist in finding new compounds. An other approach to guide chemists in the process of optimiz-

ing compounds is through substructural warnings. A fast method for significant substructure extraction

has been developed that extracts significant substructures from data with respect to the activity of the

compound. The method is at least on par with existing methods in terms of accuracy but is significantly

less time consuming.

Non-linear machine-learning methods have opened up new possibilities for QSAR modeling that

changes the way chemical data can be handled by model algorithms. Therefore properties ofLocal

andGlobalQSAR modeling strategies have been studied. The results show thatLocalmodels come with

high risks and are less accurate compared toGlobalmodels.

In summary this thesis shows thatGlobal QSAR modeling strategies should be applied preferably

using methods that are able to handle non-linear relationships. The developed methods can be interpreted

easily and an extensive amount of information can be retrieved. For the methods to become easily

available to a broader group of users packaging with an open-source chemical platform is needed.

Keywords: machine-learning, QSAR, descriptor importance, local and global models,method of man-

ufactured solutions, automated compound optimization, drug design
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1. Introduction

1.1. Background and Significance
In general terms, the drug discovery process consists of several parts. The first objective is

to decide on a disease area in which research will be invested. The disease area defines the

field where a future drug is supposed to act, for instance the gastrointestinal system. Within

this field it is important to find and establish a biological target which affects the disease and

which is possible to regulate using a pharmaceutical intervention. Once this is established an

assay is set up to test compounds for activity towards the target. When the assay is in place

a screening is performed to find compounds that have some initial activity towards the target,

altering the biological activity of the target such that a change in disease course or symptoms

is achieved. When a set of active compounds have been found an iteration loop starts that aims

at optimizing one or several series of compounds for the primary target and a range of safety

targets and parameters to make sure that the compound will enter the body in an active form

and find its way to the active site. At the active site the compound should perform its task

for a period of time, usually a few hours, and then the compound should be degraded by the

mechanisms in the body and leave, without turning into reactive metabolites.

All the above criteria need to be fulfilled before a compound can become a drug. To develop a

drug based on experimental testing only is a very expensive task and that is wherecomputational

chemistrycomes in. With computational methods it is possible to predict some aspects of the

behavior of compounds based on their structure. One common method for this is referred to as

Quantitative Structure-Activity Relationship (QSAR) modeling. To construct a QSAR model

a set of compounds with known activity is needed. New compounds are then predicted using

the model. QSAR models are widely used for prediction of compound activities at various

biological targets and the general inferences from these models guide chemists seeking changes

to optimize their compounds.

Making a predictive QSAR model is not an easy task, and makingit interpretable is even

harder. In this work methods and theories have been developed to aid and guide modelers and

chemists in their everyday work. Firstly a method of non-linear QSAR model interpretation

was developed and then extended with a method to automatically replace substructures with

undesired properties in potential drug compounds. Then a method for for automated extraction

of sub-structural alerts from a data set was developed. Finally an investigative study is presented

that compares different QSAR modeling strategies.
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1.2. QSAR
The aim of QSAR modeling is to obtain a relation between structures or properties of com-

pounds and a measured activity to be able to predict the activity of new compounds and deter-

mine mechanisms of action on this activity.The structures and properties of the compounds are

expressed by variables referred to as descriptors. Thus, QSAR represents an attempt to math-

ematically correlate a set of descriptors with activities by the use of statistics. This means that

any QSAR model is an approximation of a relation between the activity, y and the descriptors,

x that can be viewed as a mathematical function,y = f (x).

To set up a QSAR model a data set is needed containing compounds with known activity.

Activities used in QSAR equations include chemical measurements and responses from biolog-

ical assays. From the chemical structure of the compounds descriptors are derived representing

properties or structures (which for example can include physicochemical parameters to account

for hydrophobicity, topology, electronic properties and steric effects) that are present in the com-

pounds. The descriptors can be determined empirically or more commonly by computational

methods.1 When both activity and descriptors exist for the data a machine-learning method can

be used to approximate the functionf .

QSAR methods are currently being applied in many disciplines, among them are drug design

and environmental risk assessment.2–4 Historically only linear models were used and these are

still popular today due to the straight forward interpretation of the results. For this reason

non-linear models are commonly viewed as hard to interpret and these model algorithms or

models are sometimes referred to as black-box models.5,6 However, non-linear models have

the potential to more accurately describe important phenomena but there is a need for a simple

method for knowledge extraction from these models, which isan objective of the work presented

in this thesis.

1.2.1. QSAR History

QSAR dates back to the 19th century. In 1863, A.F.A. Cros at theUniversity of Strasbourg

observed that toxicity of alcohols to mammals increased as the water solubility of the alcohols

decreased.7 In the 1890’s, Hans Horst Meyer of the University of Marburg and Charles Ernest

Overton of the University of Zurich, working independently, noted that the toxicity of organic

compounds were dependent on the lipophilicity.7,8

Little additional development of QSAR occurred until the work of Louis Hammett,9 who

correlated electronic properties of organic acids and bases with their equilibrium constants and

reactivity. Hammett observed that adding substituents to the aromatic ring of benzoic acid had

an orderly and quantitative effect on the dissociation constant. Hammett also observed that

substituents have a similar effect on the dissociation of other organic acids and bases.

QSARs based on Hammett’s relationship utilize electronic properties as descriptors. Diffi-
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culties were encountered when investigators attempted to apply Hammett-type relationships to

biological systems, indicating that other structural descriptors were necessary.

Robert Muir, a botanist at Pomona College, was studying the biological activity of com-

pounds that resembled indoleacetic acid and phenoxyaceticacid,10 which function as plant

growth regulators. In an attempt to correlate the structures of the compounds with their activ-

ities, he consulted Corwin Hansch. Using Hammett sigma parameters to account for the elec-

tronic effect of substituents did not lead to a meaningful QSAR. However, Hansch recognized

the importance of lipophilicity, expressed as the octanol-water partition coefficient, on biolog-

ical activity.11 This parameter is recognized to provide a measure of membrane permeability,

since a compound needs to have lipophilic properties to enter a membrane and hydrophilic

properties to pass through. The octanol-water partition coefficient is also a driving force when

drugs bind into targets.

QSAR models are now developed using a variety of parameters such as descriptors of the

structural properties of molecules, descriptors to account for the shape, size, lipophilicity, po-

larisability, and other properties.12

1.2.2. Concept of Inverse QSAR

The concept of Inverse QSAR, IQSAR, is to take a desired activity and find the descrip-

tors,13,14 i.e. finding x = f −1(y). With this information it is possible to find compounds that

have the desired properties.15 This translates into an effort to build compounds with superior

properties towards one or several chemical or biological targets. This means that the modeler

select activity ranges that are beneficial and the model determines descriptor values that cor-

respond to the preferences. Based on the selected parametersmatching compounds are built.

Designing molecules by the use of inferences from QSAR models is not new, but the complex-

ity of many problems addressed by QSAR models today renders highly complex models where

simple interpretations are often rare. When a QSAR model gives an undesired prediction it is a

signal to the chemist that the compound needs to be modified tobecome a potential drug. This

work traditionally consists of database and literature searches which together with inferences

from the QSAR model aid the chemist in finding novel promisingmodifications to the com-

pound. The approaches used leave a difficult task to the chemists in finding new substituents

that will result in more favorable properties. Resulting in avery time consuming procedure that

is highly dependent on the skill and expertise of the chemists.

The IQSAR approach is intended to replace large parts of the work that chemists do when

searching and enumerating new molecules and fragments.
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1.2.3. Traditional QSAR Modeling Approaches

In the literature two distinctly different QSAR modeling strategies have been applied, com-

monly denoted “Local” and “Global” QSAR models. For example, Guha,et al.16 defines the

global model as the model built on the entire training data and that there may be groups of

molecules in the data set that exhibits specific sets of features that relates to the activity or in-

activity of the compounds. Such a set should in that case represent a “Local” structure activity

relationship. This local set is suggested to be extracted byfingerprint or descriptor similarity.

Zhang,et al. 17 use the Euclidean norm in descriptor space to determine which compounds

are chemically similar, and thereby “Local”. The assumption that molecules that are close in

descriptor space or fingerprint space will tend to have the same properties has been studied by

Martin, et al.18 They try to relate fingerprint similarity to biological activity, but find no clear

connection. Boström,et al.19 have made a pairwise comparison of compounds binding to the

same biological target where all pairs have a Tanimoto similarity of at least 80%. They conclude

that the binding mode is preserved but the shape and water architecture of the binding site can

be significantly different, mainly due to side-chain movements, resulting in unexpected activity

changes in QSAR models.

When generating QSAR models on a subset of the available data compounds or examples are

left out which means that information is also left out. This raises three important questions. Can

one actually gain accuracy by doing this? Are there any risksor drawbacks with this kind of

removal of information? Is important information left out?In the literature there are examples

of QSAR models based on subsets of the data20 as well as all available data21 which give good

accuracy.

1.3. Machine Learning
Machine learning is the science that focuses on making machines able to learn. The field

evolved from the broader artificial intelligence field whichaims to mimic intelligent abilities of

humans by machines. Learning in this context is restricted to inductive inference where data is

used to build knowledge that is later used to predict new data. Machine learning can be divided

into two major categories, supervised and unsupervised learning. Unsupervised learning tries

to find regularities or irregularities in the data whereas supervised learning uses data coupled

to a known response, which should be an answer to a question regarding the data, reported for

each point in the data, denoted example. If the response is discrete the task is a classification

problem while if the response is continuous it is a regression problem.

In this work supervised learning has been used. The goal of supervised learning is to ap-

proximate the function that maps the properties, descriptors, of the examples with a response,

activity. The mapping is constructed using training data and can be tested on a validation set or
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using cross validation. A validation set is a part of the dataset withheld during training of the

model. The cross validation approach splits the data set inn subsets and for each subset a model

is built using the remains of the data and tested on the subset. There are also other measures to

assess for example model errors and if a model generalizes. These methods can be algorithm

specific, like the out of bag error for Random Forest (RF)22 and the number of support vectors

for Support Vector Machines (SVM).23

Different machine-learning methods have different ways of deriving these approximations.

More detailed descriptions of the methods used in this work can be found in the following

sections and in the references for Partial Least Squares (PLS),24 RF25 and in SVM.26

1.3.1. Random Forests

Random Forest (RF) is an ensemble classifier, which means that it builds ensembles or sets

of classifiers which used together become more accurate thana single classifier. An RF consists

of a set of decision trees which all cast a vote that is weighted and added to the final prediction.

The algorithm for inducing an RF was developed by Leo Breiman and Adele Cutler.22 The term

originates from random decision forests introduced by Tin Kam Ho.27 The method combines

“bagging”,bootstrapaggregating, as described by Breiman28 and random selection of features,

introduced independently by Ho27,29and Amit and Geman30 to construct a collection of decision

trees where variation is controlled.

The bagging approach takes a training set,J with n examples and generatesm new training

setsJi of sizeni ≤ n by sampling uniformly fromJ with replacement, the remaining examples

are used to calculate an error estimate of theJith training set.

In an RF eachJi training set is used to construct a decision tree. For each node in the tree,

a small subset of descriptors is chosen at random, with replacement, from the complete set of

descriptors. The best split is calculated and the data is separated with respect to the split. The

tree is built from the root up adding nodes until all exampleshave been separated,i.e. the tree

is not pruned.

This generatesm trees and thusm models which are combined to a single predictor, the RF

model. The way that the models are combined depends on the type of response, for regression

the output is averaged and for classification voting is used.

Breiman22 prove two important properties of RF. Using the strong law of large numbers,

Breiman shows that with increasing number of decision trees the generalization error for RF

almost surely converges which means that the RF algorithm does not over-fit data with respect

to the number of trees used. Secondly Breiman obtained an upper bound on the generalization

error in terms of the strength of the classifiers and correlation between them in terms of the raw

margin function.

Since RF is a tree based ensemble method where conditions are imposed on the descriptors
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at each individual node it will take discrete steps in the descriptor space so the model function

will be comprised of piece-wise constant functions.

1.3.2. Support Vector Machines

Support Vector Machines (SVM)31,32have their theoretical foundation in Statistical Learning

Theory provided by Vapnik.23 The work of Vapnik provides conditions and proofs for good gen-

eralization of learning algorithms. Large margin classification and regression techniques have

emerged from the theory of generalization and works by maximizing the margin,i.e. optimizes

the location of the decision boundary so that examples end upon the correct side with as large

margin as possible. This results in a decision boundary withlarge margins to almost all training

examples. The most widely studied class of large margin classifiers are SVM.

SVM have an interpretation as a hyperplane separation in a high dimensional feature space23

and maps the training data using a kernel function and to achieve the separation. The kernel

computes similarities for all examples. Most commonly usedkernel functions are Radial Basis

Function (RBF) kernels and polynomial kernels. Training examples and previously unseen ex-

amples are assumed to be close to the training examples, independently identically distributed.

Hence, the large margin then ensures that these examples arecorrectly classified as well,i.e.

the decision rule generalizes. The kernel function needs tobe positive definite assuring that the

optimization problem can be solved efficiently.

Support Vector Machines are based on a substantial amount ofstatistical learning theory.

Conditions for the kernel, both kernel function and kernel applicability, are supplied by Mercer’s

theorem33 where a symmetric positive definite function is representedas a sum of a convergent

sequence of product functions. Furthermore Karush, Kuhn and Tucker34,35 stated conditions

that must be fulfilled for a solution to be an optimal solution. These conditions are necessary

but not sufficient,i.e. the solution can be locally optimal, but the conditions on the kernel from

Mercer’s theorem result in a convex optimization problem, hence it has no local optimum. The

above states that if the conditions are fulfilled there existan optimal solution to the problem.

To apply this using a learning algorithm Valiant36 introduced a theory of probably approxi-

mately correct learning. The goal of Valiants theory was that for an arbitrary distribution the

probability that a learning algorithm would select a decision function with a low generalization

error, approximately correct, should be high. Based on the above work Vapnik and Chervo-

nenkis gave necessary and sufficient conditions for consistency of a learning process using risk

minimization.37

1.3.3. Partial Least Squares

Partial Least Squares (PLS), was developed by Herman Wold38,39 for econometrics but first

gained popularity in chemometric research and later in industrial applications. It was designed
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primarily to deal with data sets with missing values and moredescriptors than examples. When

y is a column vector with the corresponding row vectorxi in a matrix X where the length

of xi is at maximum the length ofy, modeling can be accomplished using ordinary multiple

regression. When the number of descriptors is large comparedto the number of examples, the

covariance matrix is likely to be singular and the regression approach is no longer possible.

Unlike principal component analysis that is based on the eigenvectors of the covariance matrix

of X. PLS, however, finds principal components fromX that are correlated withy. This means

that PLS searches for a set of components that performs a simultaneous decomposition ofX

andy with the constraint that these components explain as much aspossible of the covariance

betweenX andy. This tends to greatly reduce the number of descriptive variables used for the

actual regression problem and will reduce co-linearity andselect descriptors that are linearly

correlated with the responses.

1.3.4. Descriptor Importance Measures

One of the most important aspects of a model, besides that it should be predictive, is that of

model interpretation. For linear models that is fairly simple, since it is possible to look at the

contribution to the model from any descriptor. The descriptor with the highest absolute valued

coefficient will be the most influential descriptor, thus a change in the property described by the

descriptor is likely to give the largest change in outcome. This is however not true for modeling

techniques that handle non linearity.

There is work presented where modelers have tried to derive general rules and importance

measures for non-linear models based on all the data. Franke, et al.40 computes gradients once

for each variable and then the contributions are added to each molecule to achieve the globally

most important variables. Guha,et al.16 divide the global space modeled into subspaces and

uses linear regression to model these smaller sets of data. They then discuss the issue of inter-

pretability for the data as a whole. These methods implicitly assumes that the most important

descriptor in a specific point or subspace of the complete model space will be the most impor-

tant descriptor everywhere. This kind of assumption reduces the non-linear model back to a

linear one, and it is likely that most of the inferences made with this reduced set of rules are

less accurate if the data actually contains non-linear features. An example of a global descriptor

importance measure for a non-linear machine-learning algorithm is the functionimportance

in RF, R.41

The contribution here is a way of local interpretation of non-linear models, where the impor-

tance measure is isolated for each prediction in the data, resulting in a local guidance, allowing

the chemist to improve activity for that particular compound.
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1.4. Simulations - a Way to Deeper Understanding
When doing computer based modeling it is of the highest importance to test methods and

implementations. This tells the modeler how the algorithmswork and if they contain errors.

This can of course to some extent be accomplished using real data, but the difficulties with

real data is that it is not completely controlled. There are inevitably errors in real data and the

underlying relationship is not fully known. To test new algorithms and implementations it is

therefore good to use simulated data, where all parameters can be controlled. This strategy of

simulating data has been successfully applied in other fields and introduced as twilight zone

simulations42 or the method of manufactured solutions. It is a technique where a predefined

solution to the problem is used. This can be applied to QSAR modeling by drawing descriptors

from statistical distributions and deciding on a mathematical function, based on the descriptors,

that is to be the response. In this way the exact relationshipbetween the descriptors and the

response is known. The concept involves looking at the real problem at hand, then trying to

construct an example that is as simple as possible yet retaining the difficulties of the real data.

For example, take a classification problem in drug discoverywhere there is a binary response

and a set of descriptors computed from the structure of the compounds. The task is to classify

the data. First, look at the descriptors and try to approximate them with statistical distributions.

To make it simple, reduce the dimensionality of the problem and only use a small set of descrip-

tors, based on the obtained distributions. This results in half a data set, the response is needed

as well and therefore a function is decided upon that generates the response based on the sim-

ulated descriptors. At this stage everything has been controlled; the descriptors, the response

function that the method should approximate and the response for the constructed examples.

The results from this case represent the ideal conditions and to obtain realistic conditions it is

possible to introduce errors in the descriptors, in the response and in the mapping between the

descriptors and the response. All these properties are now controlled by the modeler and he

or she can study both behavior and properties of the algorithm and implementation of interest

resulting in an increased knowledge of how the methods and the specific software work and at

the same time it can be used to find implementation errors. Whenthe method has been tested

and qualified using simulations it can be trusted with real data.

1.4.1. Example

To show how the method of manufactured solutions can be used and at the same time show

some properties of the machine-learning algorithms presented earlier, the following example

has been chosen. Here the descriptor space is two dimensional and spans a range from−π to

π, in each direction respectively. The data points in descriptor space are uniformly distributed

and there are 200 points for each descriptor. A training set with 800 points has been drawn

randomly without replacement. The function defining the relationship between the response,y,
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and the descriptors,x1 andx2, for Data set Iis fI = cosx2/(1+ x2
1), Figure 1(a). The response,

y = fI (x1, x2) was computed for every data point. Figure 1(a) shows the original function

and Figures 1(b)-1(d) show how the different machine-learning algorithms, trained using the

training set, predict the functionfI over the complete descriptor space. It is thus possible to see

that the RF is built up using piecewise constant functions andthat the SVM with an RBF kernel

results in a smooth decision function. It is also clear that PLS, being a linear method, can not

describe the non-linear relationship. Deriving knowledge, based on only one observation, is not
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Figure 1: Contour plots of the function forData set I

sufficient. If however this is performed multiple times with a range of training set sizes and a

range of seeds∗ generating consistent results.

∗Seed is a number used to initialize a pseudo random number generator in order to produce the same sequence of
random numbers each time it is used.
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1.5. Graph Theory
The description of compounds as graphs is important in this work. Therefore a general de-

scription of graphs and related concepts used will be presented here.43,44

In mathematics a graph is a finite set of points called nodes connected by links called edges.

This corresponds to the atoms and bonds in chemical structures, but to describe chemical struc-

tures as graphs different labels on the nodes and edges are needed, referred to ascoloring. The

normal representation of a compound is a simple colored graph, i.e. it contains colored nodes

and edges, it can contain cycles but no loops. A loop is when a node connects to itself using

an edge. The nodes can have different number of edges, a node with three edges has degree or

valence three and cannot have more edges connected to it. If the node is fully connected it is

saturated. In chemical structures all nodes need to be saturated in order to form a compound.

So far the graph has been used to describe the whole compound but graphs can also describe

parts of compounds and such graphs are called subgraphs. In graph theory it is possible to have

directional edges, which can only be traversed in one direction. In this work that concept is

used together with trees. A tree is a graph that contains no cycles. When chemical structures

are represented with trees the cycles in the graph must be opened up, which means that one node

can be represented more than once. The directed tree structure is useful for making subgraphs

comparable. To compare two graphs where the nodes and edges are enumerated differently a

representation that is independent of the enumeration is needed. Such a representation is called

canonical and the problem of comparing graphs to decide if they are identical is referred to as

the graph isomorphism problem.

1.6. Molecular Representation
There are a number of formats for molecular representation,many of which capture the chem-

ical structure through a graph. This is the basis of the chemical representation from which it is

possible to compute molecular properties for the molecule as a whole and for its substructures.

To translate the graph theory definitions into its chemical counterpart is simple. The nodes

from graph theory correspond to the atoms and the edges correspond to the bonds. If larger

compounds such as proteins are represented it is common to define amino-acids as nodes to

simplify the format. From the graph based approach simplifications have been made that allows

compounds to be described using short ASCII strings for use inspreadsheets. One commonly

used example of this is Simplified Molecular Input Line EntrySpecification (SMILES) and was

developed by Dave Weininger at Daylight.45,46 The SMILES is a string obtained by writing

the atom labels of the nodes encountered in a depth-first search of a graph representation of a

compound. All hydrogen atoms are removed and cycles are broken up to turn the compound

into a directed acyclic graph. The atom pairs where cycles have been broken are given a numeric
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suffix to allow for reconnection. Parenthesis are used to indicate branching. Since the atoms

in a compound are connected by different kinds of bonds the single bond is omitted and the

double and triple bonds are expressed by= and# respectively. Aromaticity is written using

small letters for the atoms. All atoms represented by two syllables are written within a bracket.

Stereo chemistry over a double bond is indicated using/ and\. For tetrahedral carbons@ or

@@ is added to account for R and S enantiomers. The way this is implemented in the SMILES

language is however not R and S but rather the clockwise and anti clockwise positioning of

the structures attached to the chiral carbon as they are written in the SMILES. For example

OC[C@H](CC)NC is the same asOC[C@@H](NC)CC.

The above describes the whole compound, but for modeling purposes substructures or prop-

erties of compounds are often used. Substructures can be encoded using SMiles ARbitrary

Target Specification (SMARTS)47 which is similar to SMILES but offers a wider range of node

labels for finding substructures that are similar but not exactly identical. For example an aro-

matic carbon would be represented asc, to match any aromatic carbon or nitrogen the SMARTS

could be[c,n]. If any aromatic atom should match the SMARTS could be just ana. In short

SMILES are used to describe compounds and SMARTS are used to search for substructures

within compounds.

1.6.1. Signatures

For this work a central representation is the signature descriptor developed by Faulon,et

al.48 The signature of an atom is a canonical representation of theenvironment surrounding the

atom. The signatures can be calculated for different heights which corresponds to how far away

the environment to the atom is defined in the signature. At height zero only the atom itself is

considered. For height one the signatures contains the information from the current atom to its

nearest neighbors, including the connecting bonds.

The signature of an arbitrary atom is a tree representation of a subgraph to the graph of the

molecule, such that all neighbor atoms up to a specified distance, height, from the atom are

taken into account. The tree is represented with a string written in depth-first order. The atom

types are given within square brackets and a step away from the parent is indicated with an

ordinary bracket. The signature for an atom bound to a neighbor atom will then look like this:

[atom_type](bond_type[neighbor-atom_type]), see Figure 2. With the tree representa-

tion this means that the layer underneath an atom is composedof the neighbors of that atom,

the second layer is composed of the neighbors neighbors except the atom itself.
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height 0 h

height 1 c

height 2 h h h

[h]

[h](_[c])

[h](_[c](_[h]_[h]_[h]))

Figure 2: A tree representation of methane and the atom signatures of the hydrogen for the
heights 0 to 2.

1.7. Enumeration of New Compounds from a Set of Signatures
A method to generate new compounds has been described by Visco, et al.13 and Church-

well, et al.49 where compounds are decomposed into building blocks represented as signatures.

These building blocks define a space in which all possible compounds are built.

The method starts off with a set of compounds and the corresponding signatures. Using

the signatures of the compounds, connectivity constraints, created by comparing parts of the

signatures, are set up that govern how the signatures can be combined to form new compounds.

The constraints form a system of linear equations.

As stated above the signatures describe a center atom, itsn layers of surrounding atoms and

the bond types connecting the atoms. By looking at the environment around the center atom it

is possible to see what the surroundings of another atom mustbe in itsn− 1 layers to connect

to the center atom. For each signature, in the set of heightn signatures spanning the space, the

heightn−1 signature,n−1τ, is computed along with the heightn−1 signatures for the first layer

neighbors,n−1στ. To form a bond between two atomsi, j described by the signaturesnτi and
nτ j, at least one of then−1στ j must match then−1τi and vice versa. In this comparison a direction

is imposed on the bondi → j. For each such pair of heightn − 1 signatures an equation is

set up such that for eachnτ the number of possible connection pairs is counted and addedas a

coefficient to the equation, see Figure 3. The sign of the coefficient depends on which signature

is searched first. If no equation comparingn−1τi →
n−1τ j or n−1τ j →

n−1τi exists, thenn−1τi

will get a positive coefficient and then−1τ j will get a negative coefficient. if the heightn − 1

signatures fori and j are identical no direction can be imposed on the comparison and a dummy

variable needs to be added to balance the equation.

Figure 3 contains a visual example of the process described above. The first sub-figure, 3(a),

contains one compound and all atom signatures of height 1. Each signature has a colored center

atom and the light blue dots represent the surrounding atomsfor each signature. There are

five different signature types of height 1 in this compound, marked with brown, green, dark

blue, yellow and red. The interconnectivity among the signatures is described in Figure 3(b).
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For example the brown colored signature matches the green colored one since the center atom

of the green signature is represented in the brown colored height 1 signature as a neighboring

atom, light blue. When a pair of signatures matches it means that they can form a bond so

if a compound in the example has a brown signature, it must also have a green one. This

knowledge can be transformed to mathematical constraints that governs how the signatures can

be combined, see Figure 3(c).

(a) Compound Signatures

(b) Matching Signatures (c) Forming Constraint Equations

Figure 3: A visual representation of what the signatures represent, how they canbe combined
and how constraints are formed.
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In the cases where the connection environments are identical for both atoms a dummy vari-

able, gray labeled in the example, has to be added to balance the equation. The coefficients of

these equations form a constraints matrix that defines how new compounds can be built. Since

the representation of signatures in compounds is an enumeration of atom types and their neigh-

boring environment, solutions to the system of equations must be vectors with non-negative

components,i.e. the solutions are Diophantine solutions. To solve the system of equations a

Diophantine equation solver algorithm developed by Devie,et al.50 has been used. This algo-

rithm does a stack based search and retrieves the complete set of minimal solutions, where a

minimal solution is a solution which can not be obtained by combining other solutions, using

integer multiples. The algorithm starts from the origin andmoves stepwise in descriptor space.

The vector of a valid step is pushed on to a stack and each new step starts with a pop, taking the

vector from the top of the stack. For each pop the algorithm evaluates possible steps in descrip-

tor space and pushes the vectors for the steps that were allowed. A step in a descriptor direction

is only allowed if it represents a move closer towards the origin in constraint space. A minimal

solution to the system of equations is found when a step reaches the origin in constraint space.

The stack based version of this algorithm prevents the search from finding the same minimal

solution many times by blocking descriptor directions in a way so that a particular subspace will

only be searched once. The solutions to the system of equations in Figure 3(c) are presented in

Table 1.

x x x x x x

a 1 1 1

b 1 1 1

c 1 1

Table 1: Solutions to the system of equations in Figure 3(c).
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NH2

(a) a+ 5 ∗ c

OH

(b) b+ 5 ∗ c

NH2

NH2

NH2

NH2

NH2NH2

(c) 2 ∗ a+ 4 ∗ c

OH

OH

OH

OH

OHOH

(d) 2 ∗ b+ 4 ∗ c

NH2

OH

NH2

OH

NH2OH

(e) a+ b+ 4 ∗ c

Figure 4: Compounds based on linear combinations of the solutions in Table 1.
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Linear combinations of the solutions with minimal support are made to find all solutions in

the subspace. A compound can be viewed as a connected graph where all vertices (atoms)

are saturated and therefore resulting solutions must also fulfill a graphicality equation.15 The

graphicality equation determines if a set of vertices can establish a connected graph and if so

how many cycles it contains and can be derived using the following relations from graph theory.

If a compoundG hasn atoms andmbonds, then its cyclomatic number is

c = m− n+ 1 (1)

which is the number of independent cycles inG. Let gi be the number of atoms inG with heavy

atom valenceϑ = i, then another way of counting the atoms is

n =
ϑmax∑

i=1

gi (2)

and the corresponding expression for the bonds is

2m=
ϑmax∑

i=1

i · gi . (3)

By substituting Equation (2) and (3) into (1) the graphicality equation can be written as

ϑmax∑

i=1

(i − 2)gi + 2 = 2c. (4)

All possible compounds are created from the signatures according to the solutions. This

was accomplished using an algorithm proposed by Visco,et al.13 The algorithm recursively

reassembles atoms from the signatures representing the solutions to form possible compounds

and it only allows the canonical structures to be built and thus reduces the construction time.

Some compounds assembled from the solutions in Table 1 are presented in Figure 4.

This method has a nice feature since it is deterministic,i.e. it is ensured that all compounds in

the searched space are found. However, it is computationally costly and due to the complexity

of the problem, slow for a complete regeneration of drug-like compounds. The number of

published applications thus far has been quite limited and usually describe limitations where

signatures represent larger parts of the compounds that haswell known linkers like amino-acid

chains and polymers.
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1.8. Finding Substructural Alerts in Data
The drug discovery process is dependent on warning systems that use substructural alerts to

notify chemists of potential risks. These systems include for example warnings for genotoxic-

ity and mutagenicity.51–53 The extraction of substructural alerts can however be accomplished

without the use of commercial software.

Perhaps the most simple method to extract substructural alerts from data is to utilize chemical

expert knowledge. A more advanced method is to manually cluster the data and to identify sub-

structures by visual comparison. The extraction of substructural alerts using chemical expert

knowledge or any other manual technique is time consuming and generates subjective sub-

structures since it is dependent on the skill and expertise of the chemist. There are however

computational methods that mines molecular substructuresfrom data.54

The best methods available today grow substructure graphs from the atom types by computing

frequent cliques, where a clique is a set of pairwise adjacent vertices or an induced subgraph

which is a complete graph.55 The clique based techniques starts with the individual nodes in the

graph and grows the substructures by combining nodes until no more substructures can be found

that obey the user specified occurrence threshold. This is anexhaustive search of substructures

in the data and is well suited for finding substructures, but it comes with a high computational

effort.

There are also methods that utilize MCS computations but those are primarily designed to

identify privileged structures,i.e. the scaffold from which compounds are built. In such cases

MCS computations are applied after clustering of the compounds56 and the substructures there-

fore describes chemical classes of compounds in the data.

In this thesis an approach to mine chemical data for substructures that can separate the data

is presented. The method is faster than existing methods andgenerates fewer substructures yet

retains the predictive properties.
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2. Contribution to the Field

2.1. Model Interpretability
One goal has been to investigate the interpretability of predictive QSAR models. As described

in Section 1.3.4 many attempts have been made to find the most important descriptors for

a data set as a whole or in, by chemists predefined, subsets within that data set. There has

however been little work on describing the local space around the compound of interest with

respect to the model function. The local behavior is of high interest to the chemists since, if

a compound is considered to be active against a primary target but needs to gain specificity to

reduce side effects, one would like to make small changes to the existing compound to optimize

its properties instead of finding a completely new compound.To facilitate these changes one

needs to find the property or descriptor for which a small value change would result in the largest

change in activity. For this purpose, as shown in PaperI , the gradient of the model function can

be used.

As stated in Section 1.3 not all machine-learning algorithms have simple analytic expressions

for the model function that allows for analytical derivation. The RF method generates a model

function that is composed of many piecewise constant functions, such a function has no simple

analytical gradient but a discrete gradient can be computedinstead.

Inferences from gradient computations can be used to rank the descriptors in order of impor-

tance with respect to a specific prediction. In this work gradients have been used together with

the signature descriptor described in Section 1.6.1. The use of signatures or other substruc-

tural descriptors like SMARTS, see Section 1.6, have the advantage of being easy to understand

since the substructure can be mapped back onto the compound,see Figure 5. This enables a

direct coupling between the descriptor and the compound andthis visualization facilitates the

interaction between the modeler and the synthetic chemist.

2.1.1. Theory

If the QSAR model is viewed as a function, then at any point in afunction the local behavior

can be approximated using its Taylor series, which is an infinite sum of the derivatives of the

function in that point.

f (a) +
f ′(a)
1!

(x− a) +
f ′′(a)
2!

(x− a)2 + ... (5)

If an infinite number of terms is used the function can be completely described, but in this

work the Taylor series has been truncated after the second term, such that only the prediction
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NH2

C l
C l

NH2

Figure 5: A compound with displayed substructures represented as signatures andSMARTS.
The signature[c](p[c]p[c]_[n]) or SMARTSNc(c)c is displayed in red.

and the gradient of the function is used to describe the localneighborhood. Gradients can be

computed for any sufficiently smooth function and the gradient of a QSAR function is the partial

derivatives of the function with respect to each descriptor.

∇ f (x) = (
∂ f
∂x1
,
∂ f
∂x2
, ...,
∂ f
∂xn

) (6)

By looking at the magnitude of the partial derivatives the descriptors that influence the local

neighborhood the most can be found. In the work of PaperI only the descriptor corresponding

to the largest component of the gradient has been considered.

Support Vector Machines

For SVM an analytical expression of the gradient can be obtained. The SVM decision func-

tion is a sum of weights times the kernel function where the weights are constants. So deriving

the gradient of the decision function for SVM amounts to computing the partial derivatives of

the kernel function.

Random Forest

In the case of RF models, in general, there is no easy way of obtaining an analytical ex-

pression of the model function. Instead, one can compute thejth component of the discrete

gradient,

D f

Dxj
=
β1 f ′(x + hj) + β2 f ′(x) + β1 f ′(x − hj)

2β1 + β2
, (7)

whereβ1 andβ2 are smoothing coefficients. The step size in thej-direction in attribute space

is hj and the corresponding second-order accurate partial derivative is f ′j = ( f (x + hj) − f (x −

hj))/2hj.



2.2 A C O 21

Partial Least Squares

PLS, and any other linear model (fPLS = k1x1 + k2x2 + .. + knxn) has a trivial gradient, being

the constantki for each descriptor in the model, and as such the gradient will be constant over

the complete space spanned by the descriptors.

The above work corresponds to PaperI . With this method it is possible to interpret any non-

linear QSAR model and by doing so chemists can be guided on what to change and how that

change is believed to affect the compound. The method, does not give an answer to how this

change should be facilitated or what the substructure can bereplaced with. To solve this prob-

lem the idea have been to combine this method of knowledge extraction with an molecular

enumeration algorithm which is the objective of PaperII described in the following section.

2.2. Automated Compound Optimization
Today tedious literature and database searches are made by chemists to optimize a compound

with an undesired predicted or known biological activity. Most QSAR models reveal only the

prediction but can also, if used as described in Section 2.1 indicate what needs to be changed.

The model can however not indicate how to do the change or givesuggestions of more optimal

compounds.

This approach makes use of the data behind the QSAR model and the QSAR model itself.

It takes a compound with an undesired prediction and isolates the substructure corresponding

to the largest gradient in the QSAR model. To replace the substructure a set of compounds is

needed. For this reason the QSAR training set has to be searched for compounds similar to the

substructure of interest. The set of similar compounds together with the substructure, repre-

sented as a compound, can be used to form constraints describing the interconnectivity between

all atoms, described as signatures, in these compounds. With the set of similar compounds at

hand, the procedure for generating compounds described in Section 1.7 was used, and new sub-

structures were generated. The substructures were then combined with the remains of the query

compound, if possible, and predicted with the QSAR model. Once this process is completed

one has a set of deterministically built substructures thatcan be used to replace the active sub-

structure. After replacement all new compounds were predicted with the QSAR and presented

to the chemist. This provides the chemist with ways to optimize the compound and learn more

about the local properties around the compound of interest.
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2.2.1. Theory

In the process outlined above, and described in detail in this section, the manual searches

together with replacement structure generation are automated. The different steps in this method

are visualized in Figure 6 where the starting point is a querycompound which needs to be

predicted for a biological activity or a set of activities using multiple QSAR models.

The descriptors used in the QSAR models were signatures48,57 and the model function can

be generated using any machine-learning method, for example RF25 or SVM.58 The local in-

terpretation of machine-learning models described in Paper I and in Section 2.1 can be used

to extract the signature with the most significant contribution to the QSAR prediction of the

compound. This most significant signature corresponds to positions in the compound where

changes possibly need to be made to get a different prediction from the the QSAR model. The

following procedure was only performed for compounds that receive unfavorable predictions.

From the significant signature located by the QSAR model a substructure based on the sig-

nature had to be cut out from the compound. This substructurewas generated by cutting bonds

from the atoms at a specified distance from the center atom of the signature. If an atom at this

distance belonged to a ring the search was extended to embed the ring. Each atom for which

a bond was cut has been kept as an anchor atom and for each such atom a SMARTS47 was

generated that described the atoms around the bond that was cut. To recombine generated sub-

structures and the original end groups this SMARTS must match. If the query compound could

not be cut, it was treated as a substructure throughout the remainder of this algorithm. However,

it did not go through the recombination step where SMARTS have been used.

At this point the substructure that needs to be replaced was retrieved. To setup constraints

for the Diophantine equation solver a subspace around the substructure was spanned using

neighbors to the retrieved substructure. The neighbors, were located based on similarity. The

near neighbor search was conducted in a database of compounds for which measured activity

was available for the specific endpoints and in particular the endpoint that the QSAR model

approximates. From these neighbor compounds a set was chosen that covered a range in activity

around the query compound.

A method to generate new compounds has been described by Visco, et al.13 and Church-

well, et al.49 This Algorithm was briefly described in Section 1.7.

The implementation used in this work differs slightly from that used by Churchwell,et al.49

Most of the changes have been applied to constrain the size ofthe new substructures59 and to

reduce the computational time. These restrictions have been imposed mainly on the solutions to

the Diophantine equation solver. The first restriction blocks steps in an attribute direction once

it has reached a given threshold. Another restriction was imposed to avoid the computation of

solutions where the sum of signatures exceeds a predefined threshold. When linear combina-
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Query Compound

QSAR prediction

Significance Analysis

Substructure Generation
Near Neighbor Generation

Constraints Generation

Diophantine Equation Solver
Linear Combination of Solutions

Signature Generation

Check Graphicality
Signature based QSAR Predictions

Enumeration of new Substructures

Reattaching Query Endgroups

QSAR predictions on the Generated Molecules

Display Results

1: QSAR

2: Constraining Chemical Space

3: Generating Molecules

4: Building Molecules

Figure 6: Flowchart displaying the different steps of the work flow, where the blue dashed box
indicates the work of Viscoet al13 and Churchwellet al49 described in Section 1.7
and the red dotted boxes indicate the part of the method described here.
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tions of the solutions were made, an upper and lower bound wasset on the size of a solution to

ensure that the new substructures had a similar size to the original substructure and to reduce

computational time.

At this point all possible combinations of signatures that may result in potential substructures

have been computed. Here it can be useful to impose more restrictions on the solutions. If

QSAR models have been built using signatures of heighth or less then the solutions representing

non-built substructures can be used to predict the properties of the new substructures even before

they are built.

In a recursive procedure, all possible substructures were built from the signatures correspond-

ing to each solution, respectively. This was accomplished using an implementation of the al-

gorithm proposed by Visco,et al.13 The algorithm recursively reassembled atoms from the

solutions to form possible substructures and it only allowed the canonical structures to be built

and thus reduced the construction time by not building duplicate structures.

Since the Diophantine equation solver is deterministic it ensures that all possible substruc-

tures within the subspace defined by the constraints matrix were found. The substructures built

were preprocessed in the same way as the query compound and additional filters were applied

to omit structures with specific ring sizes. Different filters can be applied based on the specific

problem at hand. If the query compound had anchor atoms, SMARTS were generated that de-

scribed the anchor atoms and their required neighbors in thesubstructure. The end groups were

attached to the generated substructures if the SMARTS patterns from the end groups could be

matched onto the substructure, it was then a complete compound. In the case where an end

group could be attached to several points in the substructure, all permutations were assembled.

The generated compounds were preprocessed in the same way asthe query compound and any

duplicates were removed. If the query compound could not be partitioned into a substructure

and its corresponding end groups, substructures from the above step were the complete new

compounds. A final filtering step can be applied to remove compounds with undesired proper-

ties. Examples of such filters are drug likeness, ring compositions and molecular weight. For

the new compounds, QSAR predictions were obtained for the different biological endpoints of

interest.

2.3. Finding Significant Substructures
The aim of this method is to automatically generate substructural alerts based on chemical

data in an objective way. It is of highest importance to reduce the risk of subjectiveness when

generating these substructures since the outcome of the algorithm should represent the data

modeled and not be a matter of choice. The method should preferably generate substructures

that: can create high-performing models, are easy to understand and visualize.



2.3 F S S 25

The method presented in PaperIII mines chemical data using signatures and significance

testing. The signatures used in this work are similar to those presented by Faulon,et al.48,57

Each node in the signature tree can be arbitrarily labeled but in this case the Sybyl atom-type60

corresponding to the atom has been used.

For a substructure to be statistically significant at a certain level, it was required that thep-

value was below this level. Furthermore thep-value alone is not sufficient for a substructure to

accurately describe an activity. With increasing number ofoccurrences of a specific substructure

in the data the accuracy for a givenp-value will decrease. In addition to the level of significance

a lowest level of classification accuracy needs to be imposedon the substructures.

For classification, where substructures are used as indicators for compounds belonging to a

certain class, the class representation follows a binomialdistribution. An outcome for a specific

substructure can be said to be the occurrence of itself in a number of compounds with a certain

activity and the occurrence in a number of compounds withoutthat activity. To see whether

such an outcome is likely to come from a specific binomial distribution thep-value was used.

Thep-value is the probability of obtaining the outcome or any other less probable outcome. The

outcome has to be related to the occurrence of the activity inthe total number of compounds,

i.e. even compounds where the substructure does not exist. For example, a data set withn

compounds hasm compounds with a specific activity label wherem ≤ n. In the data set a

substructure is found inn′, n′ ≤ n compounds and the amount of those compounds with the

specific activity label ism′, m′ ≤ m. The accuracy for the substructure in the training data ism′

n′

and thep-value is
∑n′

i=m′
n′!

m′!(n′−m′)! ∗ (m
n )m′ ∗ (1− (m

n ))(n′−m′).

For data where a specific activity was overrepresented it waspossible to obtain significant

substructures with only one or two occurrences in the data. To avoid this a lower bound on the

number of compounds a substructure exists in have to be used.

The algorithm takes a data set with a classifier response, thresholds for thep-value, substruc-

ture occurrence and the accuracy. In the initial step all height zero signatures were computed

from the compounds in the data set and for each signature the total number of compounds it

exists in was recorded together with the number of occurrences with respect to the activity of

each compound. For each signature, if the number of occurrences was above the threshold the

accuracy of the signature was computed for each activity compared to the all the other activities.

If the accuracy for an activity was above the accuracy threshold thep-value was computed. If

the p-value was below its threshold the signature was labeled significant in discriminating the

activity. If the signature was significant, the search for significant substructures was terminated

in that direction. For the signatures that passed the occurrence threshold the search was ex-

tended to the next height. The above procedure was repeated until no signature could fulfill the

thresholds on accuracy,p-value and occurrence.
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2.4. Evaluation of QSAR Modeling Strategies
Section 1.2.3 describes different QSAR modeling approaches used today. The questions

asked there are the cornerstones for this work on QSAR modeling strategies.

There is a need to test and validate differences inLocalandGlobalQSAR modeling strategies

and how different numerical routines and modeling algorithms handle those differences. The

aim of this work was to:

• gain knowledge about the expected predictive performance of LocalandGlobalmodeling

strategies

• investigate possible risks in terms of the definition and usage of applicability domains for

LocalandGlobal modeling strategies

It was also interesting to see how the different machine-learning algorithms make use of the

available information. To allow for a deeper understandingof the strategies and a significant

amount of this work has been conducted on simulated data.

The information content in a QSAR model is defined by its response and the descriptors

used. Depending on the information at hand different modeling strategies can be applied. In

this work, Local andGlobal modeling strategies have been compared using two levels of in-

formation content, denotedIdeal andRestricted. For theIdeal case all relevant information

to accurately describe the underlying relationship is contained by the descriptors, acomplete

descriptor set. For theRestrictedcase the descriptors are missing relevant information, anin-

complete descriptor set, and cannot be used to describe the underlying relationshipbut merely

an approximation to it. For these two levels either an entiredata set,Global, or a subset of the

data,Local, can be used. This defines aGlobal model as a model built using the entire data

set, all available information. ALocal model, on the other hand, is a model built for a specific

example using neighbors from the entire data set. The definition of neighbors can vary, but in

this work it was based on a descriptor or fingerprint similarity.

The Global modeling strategy has been applied with the two levels of information content,

Ideal Model Global, IMG,andRestricted Model Global, RMG, as illustrated in Figure 7.IMG

uses a complete descriptor set andRMG uses only a subset of these descriptors for model

building. For eachGlobal case two correspondingLocal cases have been applied that locates

near neighbors in aRestrictedor anIdeal fashion. Following the structure in Figure 7, in the

IMG branch theLocalcases both use a complete descriptor set for building modelsand making

predictions. TheIdeal Model Ideal Local, IMIL,use the complete descriptor set to identify near

neighbors but theIdeal Model Restricted Local, IMRL,only make use of aRestrictedsubset

of descriptors for identifying near neighbors. In theRMG branchLocal modeling cases both

use an incomplete descriptor set for model building and predictions butRestricted Model Ideal
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Data

Ideal Model
Global, IMG

Restricted Model
Global, RMG

Ideal Model
Ideal Local,

IMIL

Ideal Model
Restricted Local,

IMRL

Restricted Model
Ideal Local, RMIL

Restricted Model
Restricted Local,

RMRL

Figure 7: The differentLocal andGlobal strategies that have been applied to the data. The
dashed box indicates theLocal strategies.

Local, RMIL,use a complete descriptor set for finding near neighbors andRestricted Model

Restricted Local, RMRL,use theRestrictedsubset of descriptors for identifying near neighbors.
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The global and local modeling strategies above can be summarized as follows:

• IMG constructsGlobal models where all the information about the underlying relation-

ship is known and expressed by the descriptors.

• RMGdescribesGlobal models which can not correctly describe the underlying relation-

ship.

• TheRMRLcase results inLocal models that make use of a neighborhood and a descrip-

tor set that can not completely describe the problem at hand.This can be described as

the normal case when building QSAR models since the underlying relationship can not

be properly described but one makes use of all information athand for finding the best

possible models and near neighbors.

• In the IMIL case results inLocal models where all the information about the underlying

relationship is known.IMIL can be directly compared with theRMRLcase where the

difference is loss of information forRMRL.

• RMIL represents theLocal model case where external information is added in the neigh-

bor search, which can be relevant in describing the underlying relationship. The addition

of this type of information can lead to a model that is trulyLocal with respect to the

underlying relationship.

• The IMRL case describesLocal models where theLocal neighborhood is partially unac-

counted for or cannot be correctly described, as opposed toRMIL. In fact the underlying

relationship is properly described by the descriptors but the near neighbors has not been

selected in accordance to the underlying relationship.

The different modeling strategies and risk assessments were evaluated using various machine-

learning algorithms. To assess individual model performance a cross-validation approach was

used, which is commonly used in literature.61 A data set was divided inton subsets by uni-

form sampling of examples without replacement. Each subsetwas treated as a test set with the

remaining examples as the training set. For each test set an overall prediction metric was com-

puted. If the response was binary this metric was defined as the prediction accuracy and if the

response was real valued the root-mean square error was usedinstead. The prediction metric

was averaged for all test sets.

The generation ofGlobal models was straightforward; for each test set a model was built on

the remaining examples of the data.Local models were generated for each example in a test

set and for each such example near neighbors were retrieved from the remaining examples of

the data, not included in the particular test set. Near neighbors were found by using different
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similarity operators such as Euclidean norm on descriptorsor Tanimoto distance on chemical

fingerprints. The number of neighbors was either explicitlyset or a cut-off value for the simi-

larity was be used. If aLocal model could not be built under the specified similarity constraint

the correspondingGlobalmodel was used to predict that compound. With the predictions from

bothLocalandGlobalmodeling strategies at hand it was possible to directly compare and asses

prediction accuracies and errors.

To assess risks ofLocal versusGlobal modeling strategies, by comparing errors and accu-

racies for compounds within and outside of the domain of applicability, the domain of appli-

cability had to be defined for the models. AGlobal model should be able to handle all data

so the domain of applicability was defined to be the complete data set. For theLocal models,

by definition, an example for which a model was constructed byretrieval of near neighbors,

was within theapplicability domain. On the other hand if such a model was used for any other

example it was used outside its domain of applicability.
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3. Results and Discussion

3.1. Model Interpretability
Here the example from Section 1.4.1 has been used again but this time in an extended form.

The simulations have been implemented inR62 using the following packages for machine

learning: pls63 for PLS, randomForest41 for RF ande107164 for SVM. For each predic-

tion the discrete gradient of the model function was computed and compared to the analytical

gradient of the function. The models were trained using the default settings in the respective

packages.

The descriptor space was the same as in the example in Section1.4.1 and the function like-

wise. A test set of 100 data points has been drawn together with each training set consisting of

100, 200 400 and 800 data points. For each set 5 different seeds have been used, for full details

see PaperI .

Examples of the most significant components forData set Iare presented in Figure 8. The

figure shows the most significant component of the gradient plotted at each test point using the

first seed and a training set size of 800 data points. The underlying contour plot represents the

correct areas of significance, yellow indicating component1 and red indicating component 2.

For both RF and SVM the most significant component was correctly computed for almost all

of the points in the test set, whereas PLS predicts the secondcomponent to be largest every-

where. This shows the usefulness of the gradient as a local importance measure for information

retrieval from machine-learning models. In PaperI it has been shown that the inferences from

the largest component of the gradient for QSAR models based on signatures were relevant for

describing the data. This was demonstrated using AMES mutagenicity data and compared to

the toxicophores reported by Kazius,et al.65

3.2. Automated Compound Optimization
The work flow was demonstrated using AMES mutagenicity data from CCRIS66 from which

compounds and corresponding activity has been collected according to the conditions described

by Kazius,et al.65 including for example removal of organo-metals.

Figure 9(a) shows an example compound, the substructure that needed replacement,O=N-N,

and the extended substructure that was replaced using the method. Figure 9(b) and 9(c) show

examples of the generated compounds. For this particular case 2700 new compounds were

generated, of which 800 were predicted to be positive and 1900 predicted negative,i.e. not

mutagens.

The method has been tested using 303 of the positive compounds from the AMES data set



32 3 RESULTS AND DISCUSSION

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

x

y

2

2

2

2

2

2

2

2
2

2

2
2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2
2

2

2

2

2
2

2

2

2

2

2
2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2 2

2

2
2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

(a) PLS approximation
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(b) RF approximation
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(c) SVM approximation

Figure 8: The most significant component of the gradient plotted at each test point. This was
based on the gradient computed for the PLS, RF and SVM models with the firstseed
and a training set size of 800 data points. The underlying contour plot represents
the correct areas of significance, yellow indicating component 1 and red indicating
component 2.
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(a) Compound and selected substructure, to be replaced

(b)
Examples of generated compounds predicted negative

(c) Examples of generated compounds predicted positive

Figure 9: A compound with an unfavorable prediction and examples of the generated com-
pounds.
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collected by Kazius,et al.65 These computations took roughly one month using six computing

cores for building models and solving the system of Diophantine equations. The rebuilding

process was distributed on a heterogeneous grid using at maximum 100 nodes for rebuilding

compounds. The computational time for the individual compounds varied between a few min-

utes for aliphatic compounds to several days for some of the bicyclic aromatic compounds. Up

to 15000 compounds have been generated for a single query, but in some cases only a handful

of compounds have been generated. The amount of generated compounds affects the computa-

tional time needed. Out of the 303 compounds 181 were predicted to be positive by the model

and the corresponding statistics (covering number of generated compounds, percentage gener-

ated compounds predicted positive, computational time, number of minimal solutions and the

number of steps taken by the Diophantine equation solver) for those computations are provided

in the supporting information of PaperII . The remaining compounds were predicted to be neg-

ative by the model and therefore not optimized. In the set of optimized compounds, 18 of the 28

approved toxicophores described by Kazius,et al. were covered (see supporting information of

PaperII for details). The fact that 40% of the compounds were predicted negative was however

a drawback. One reason for that may be that local QSAR models were used for retrieving the

substructure instead of a global model. A global model wouldhave been more accurate over the

entire domain, which presumably would have affected the outcome. To thoroughly study local

and global QSAR models an investigative study of their properties and risks was conducted,

PaperIV .

These results show that the automated work-flow for molecular optimization is a useful tool

in drug development. To enumerate and rebuild complete compounds with the algorithms pro-

posed by Visco,et al.13 and Churchwell,et al.49 is a costly procedure when it comes to drug

like compounds containing multiple cycles. In drug discovery small changes in the chemical

structure can have a considerable effect on the activity.67,68 By adding the identification of sig-

nificant substructures and limiting the size of similar substructures, as proposed here, it was

possible to regenerate compounds that are valid in a drug-design context.

The computational time needed for the method increases dramatically with the number of

unique signatures due to the combinatorial explosion of possible compounds. The reason for

this was that the method is a deterministic search method, meaning that all signature com-

binations that may result in new compounds will be found but it may take long time to find

them. With a higher number of unique signatures the chemicaldiversity among the generated

molecules will be higher and therefore a trade-off between computational time and chemical

diversity has to be made.
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3.3. Finding Significant Substructures
Today substructural alerts are applied in many areas of drugdiscovery to warn chemists of

potential problems with functional groups. The tool that has been developed in the present work

aids the modeler or chemist in finding the substructures thatactually separates the data at hand.

Similarly it is possible to evaluate existing substructural alerts. This method finds substructures

that are overrepresented in the data. It will however not replace chemical knowledge, which

guides the field today. Chemical knowledge is however subjective and if an alert based on

chemical knowledge is not separating the data it is likely that the alert is not alone responsible

for the outcome.

To depict the substructuresOgham69 was used to create molecular visualizations of each sub-

structure projected on a compound, like in Figure 5. For eachsignificant signature the signature

string together with the accuracy,p-value, signature similarity, positive and negative countwas

written to a spreadsheet table together with the visualization of the substructure on one of the

molecules.

The work flow was demonstrated using AMES mutagenicity data from CCRIS66 from which

compounds and corresponding activity have been collected according to the conditions de-

scribed by Kazius et al.65 The data set has been divided into 10 subsets and evaluated using

cross validation, where the model has been trained on the remains of the data and tested on the

subset. An external validation set of 880 compounds reported by Young,et al.70 has also been

used. The method has been compared togaston,71 gSpan72 andPAFI.73 These three meth-

ods retrieves frequent subgraphs from the data. The frequent subgraphs have been converted

to SMARTS47 and based on the SMARTS significant substructures have been retrieved based

on p-value, accuracy and occurrence. The data analysis have been performed according to the

procedure described by Kazius,et al.65 where compounds that contains no significant substruc-

tures have been classified as negative. In contrast to Kaziuset al. the threshold for the accuracy

has been 80% and the threshold for thep-value has been 0.05.

The method has been applied with different number of required hits (5, 10, 20, 50 and 100).

The results have been visualized in Figures 10, 11, 12. Figure 10 shows the accuracies for

the methods at the different numbers of required hits on the test data and the validation data

respectively. It shows that the possibility to mine the dataon a low occurrence threshold results

in an increased accuracy. Figure 11 shows the computationaleffort for training and predicting

using the different methods. It shows that the complexity of the significant signatures method is

lower than the the complexity for the other methods. FinallyFigure 12 shows how the number

of generated substructures vary for the different methods with different number of required hits.

For PAFI, Gaston andgSpan the training time and the prediction time are very similar. One

reason for this could be that in the prediction all matches ofa substructure on a compound was
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located whereas in the training only the first match was sufficient for the method. The SMARTS

matching was conducted usingOEChem.74 For 5 and 10 required hitsGaston andgSpan crashed

on insufficient memory, and forPAFI this happened for 5 required occurrences.
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Figure 10: Average test and validation accuracy for the methods used on the AMES data
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Figure 11: Average training and prediction times for the methods used on the AMES data

The method in PaperIII illustrates a complete automated work flow for smarts like pattern

generation. The method treats the data objectively and generates a set of significant substruc-

tures according to the user defined constraints. By displaying active and inactive substructures

the algorithm can aid the user in changing the compounds to hit or avoid hitting the target of

interest. The method is computationally inexpensive compared to existing methods and the

results indicate that it can replace large parts of the analysis that is performed manually today.
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Figure 12: The logarithm of the number of generated alerts for each method

3.4. Evaluation of QSAR Modeling Strategies
Local or Global modeling strategies has been investigated using simulated and real data, and

the results clearly show that use of all available data is preferable. Here only the regression case

for the simulated data is presented. Complete results for both the simulated and the real data

can be found in PaperIV and its corresponding supporting information.

3.4.1. Experimental Setup

In the simulation studies all parameters for the underlyingrelationship were known, the an-

swer to the problem was known and thereby it was possible to design responses based on differ-

ent combinations of descriptors and to study the effect ofLocalandGlobalmodeling strategies

thoroughly.

In this case descriptors have been drawn from the gamma distribution function resulting in

a descriptor set that will mimic the distribution of real chemical descriptors. The simulated

descriptor space consists of three different descriptors,d1,d2 and d3, drawn such thatd1 ∈

Γ(4,1), d2 ∈ Γ(9,1) andd3 ∈ Γ(7.4,1). The function determining the response isf j = cos(d2 j −

d̄2)/(1 + (d1 j − d̄1)2) + 1.2 ∗ sin(1.3 ∗ (d3 j − d̄3)) wheredi j is the jth point drawn from theith

descriptor above and̄di is the mean of the drawn points for that descriptor.

For each modeling strategy 10 seeds have been used and for each seed 1000 examples have

been generated. The examples have been drawn uniformly into10 bins and each bin has been

used as a test set with the remaining data as a training set. This results in 100Globalmodels for

each case and 10000Localmodels since for each point in the respective test sets aLocalmodel

has been built. TheLocal modeling strategy has been tested using 10, 20, 50, 100, 200,400,

600 and 800 near neighbors from the training set. The near neighbors have been selected using

the Euclidean norm as a distance metric in descriptor space.The results of the simulations are

presented as the averaged accuracy or Root-Mean Square Error(RMSE) for each case.
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All Simulations were conducted inR62 using the machine-learning librariese107175 for

SVM, randomForest76 for RF andpls77 for PLS. The accuracy of SVM models is very

sensitive to parameter optimization and therefore the SVM models have been optimized using a

grid search over theγ parameter (2n,n = [−5 : 0]) and theε parameter (2n,n = [−5 : −1]). The

γ parameter is the exponent in the RBF kernel function andε is the tolerance of the termination

criterion, controlling the width of the loss-insensitive zone in the loss function.

These simulations have resulted in a vast amount of data. Allthe results can be obtained from

the histograms in PaperIV and the corresponding supporting information. The essenceof the

results are presented here in a simplified manner.

Figure 13 display the averaged overall RMSE of theGlobal and theLocal models using the

different number of near neighbors, defined above, within the applicability domain for the RF

algorithm. The first Figure, 13(a) shows theRMRL and theRMIL cases. From this it was

possible to see that forRMRL, where no new information was added in theLocal model, there

will be no predictive gain,i.e. no change in RMSE. If however information was added, like

in the RMIL case, the predictivity will increase,i.e. the error decreases for models with few

near neighbors. In Figure 13(b) theIMIL case is added showing lower error which means that

by adding the information to theGlobal model the result would be even better than theLocal

RMIL model. Finally, Figure 13(c) shows the full picture where the IMRL case shows that the

errors increase if theLocal neighborhood was retrieved without all necessary information with

respect to the underlying relationship.

Figure 14(a) shows that the errors increase dramatically for Local models with few near

neighbors for predictions outside of the intended applicability domain. This visualizes the risk

of local models. That is followed by Figure 14(b) which showsthat for most models the chance

that the local models should predict better is below 50% within the applicability domain and

outside the applicability domain the chances are even worse. This does not hold for theRMIL

case but if that extra information was added to theGlobal model, theIMG case, then the effect

vanishes.

In the paper RF, SVM and PLS are compared for both regression and classification models.

The results for RF and SVM are very similar, but the PLS models differ. This is shown in

Figure 15.

Compare theGlobal models in Figure 15(a) and 13(c). TheIMIL cases for RF shows a low

error but the PLS show a high error. In fact the error is the same for IMIL andRMRLwhich

implies that PLS can not describe the non linearity in the data. Further more Figure 15(b) and

14(a) show that there is a substantial difference in error between PLS and RF outside of the

applicability domain. This shows that there is a large risk associated with the use ofLocal

models and in particularLocal PLS models, note that the two Figures display different ranges



3.4 E  QSAR M S 39

of RMSE values.

This shows that non-linear machine-learning methods are capable of handlingGlobal data

sets. Linear methods however fail to handle the non linearized in the data and can not utilize

the extra information for this non-linear case. When the underlying relationship is linear, all

machine-learning models give approximately the same errors, as can be seen in the Supporting

Information of PaperIV .
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Figure 13: RMSE of the RF machine-learning algorithm for the differentLocal model cases,
and their respectiveGlobal counterparts, within the applicability domain
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(a) RMSE of the RF machine-learning algorithm for
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Figure 15: RMSE of the PLS machine-learning algorithm for the differentLocal model cases,
and their respectiveGlobal counterparts
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3.4.2. Computational Costs

The computational effort for neighbor extraction, building and predicting theLocal models

is shown in Figure 16. The figure indicates that there is a substantial growth in CPU time

needed as the number of neighbors increases, which indicates that buildingLocal models is

time consuming. Here it is important to remember that aLocal model is built for each query,

thus building local models using 800 near neighbors almost amounts to building as many global

models as there are queries.
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Figure 16: CPU time needed to train the local models with respect to the number of neighbors.
The computations where run on a heterogeneous grid.

3.4.3. Discussion

For a predictive modeling system there is an interest in being able to predict all incoming

compounds. When doing predictive modeling the model with thehighest overall accuracy is

most commonly the best and preferred model. Sometimes this approach does not lead to an

accurate enough model and in an attempt to overcome this problem models based on a sub-

domain of the data are built.78 The sub-domain should then capture the problem in a more

accurate way. PaperIV questions the use of sub-domain models for predictive modeling on

three major points:

1. There is no statistically validated improvement in accuracy forLocalmodels

2. The risk of falling outside of the applicability domain ofthe Local model is high. Ad-

ditionally, outside the applicability domain the accuracyof theLocal model is very poor

compared to the accuracy of theGlobal model
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3. There appears to be a substantial increase in computational cost associated with theLocal

models

The obvious questions are: How can the modeler be sure that future compounds will fall

within the model space and that this sub space really is relevant for the issue of interest? If

several sub-domain models are built, which one is to be trusted?

The results show that aLocal modeling strategy is only better than aGlobal strategy if ad-

ditional information, which is relevant for the underlyingrelationship, is added in the neighbor

search. If aLocal model according to the definition used here, performs betterthan aGlobal

model it is advisable to add that additional information, used to retrieve near neighbors, to the

Globalmodel which will then be even better. This is exemplified in Figure 13(c) by comparing

RMG andRMIL. Here information that is important for the underlying relationship has been

added in the neighbor search for theLocalmodel resulting in a lower RMSE for the models that

use few near neighbors. TheGlobal model updated with the same information isIMG and that

model is more accurate than the bestRMIL model. Figure 15 also shows a substantial difference

in RMSE for the different PLS models which is due to the fact that the PLSIMG cannot utilize

the extra information and performs approximately as itsRMGcounterpart, which indicates that

the additional information in theIdeal compared to theRestrictedcase is of non-linear nature

with respect to the response.

The seriesIMRL show a case where theLocal neighborhood is known not to beLocal with

respect to the underlying relationship. Here theLocal modeling strategy will give less accurate

models compared to theGlobal modeling strategy.

Figure 16 show that the computational cost for predicting data sets usingLocal models, as

they have been defined in this study, is generally higher compared toGlobal models. Thus it

appears that to maintain a prediction system usingLocalmodels a large computational resource

needs to be dedicated for these computations.
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4. Concluding Remarks and Future Perspective

PaperI – III utilizes substructures in compounds to visualize chemicalliabilities, retrieve and

replace fragments with undesired properties. The results indicate that substructures are impor-

tant in describing compound properties. Compound properties such as clogP are in most cases

calculated from structures and substructural properties so when substructures, like signatures,

are used as descriptors for QSAR modeling molecular properties are implicitly accounted for.48

Using substructures can reduce modeling errors that arise from multiple mappings,i.e. from

substructures via for example clogP and polar surface to thebiological response of interest.

In PaperI the most important component of the decision function was retrieved by gradient

computations. Further analysis of what the gradients can reveal could be a topic for future stud-

ies. An analysis of more than the single most important component could possibly improve the

method as well as a more thorough investigation of the effects of smoothing for the discrete

gradient computations or some estimate on step size.

The local optimization method presented in PaperII spans the molecular space around the

compound of interest in a good way but is however still time consuming. The most time con-

suming part is the Diophantine equation solver, and a parallel implementation of that step could

potentially improve the method. In the method description compounds with high fingerprint

similarity to the query substructure are used. It could be interesting to study the behavior of

the method if the compounds for setting up the system of constraints equations were selected in

other manners. For example compounds could be selected at random or using similarity but in

a range that is moderately similar to the query substructure.

PaperIII shows that it is sufficient to search a subspace to find common features that can

separate data in a good way. This use of the signatures is interesting since the complexity of

the signature generation algorithm is polynomial whereas the complexity of a general substruc-

ture generation algorithm is exponential. This property could perhaps be utilized in maximum

common substructure searches, where it could potentially reduce the computational time sig-

nificantly for large data sets.

The study of the performance and properties of local and global modeling strategies in Paper

IV shows that the local modeling strategies is associated withrelatively high computational

costs, high risks in usingLocal and theLocal models give no reliable increased predictive

performance. If there is interest in studying local properties, then a global model could be

applied and using the gradient computations outlined in Paper I , local behavior could be studied.
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The results from PaperIV suggests that buildingGlobalmodels and keeping them updated with

new information that might affect the underlying relationship is the best way to consistently

assure accurate models.
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