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ABSTRACT

IL-17 orchestrates the accumulation of neutrophils to sites of infection and the release
of microbicidal substances, and therefore plays a critical role in the innate immune
response to infection. IL-17 is also involved in certain chronic inflammatory diseases
in which dysfunctional control of neutrophil accumulation and turnover constitutes an
important pathogenic factor. This pro-inflammatory potential of 11.-17 in host defence
and in inflammatory diseases has been studied extensively. However, there is now also
published evidence that IL-17 has more complex actions, including inflammation-
resolving potential under certain conditions. With this in mind, the aims of this thesis
were to investigate endogenous and exogenous methods to regulate the production of
IL-17 and to elucidate the role that IL-17 plays in resolving ongoing inflammation.
More specifically, we looked at whether the cells in the lung produce IL-17 after
exposure to lipopolysaccharide (LPS) from the Gram-negative Escherichia coli bacteria,
and whether anti-inflaimmatory pharmacotherapies could be used to regulate the
production of 11.-17 in these cells. We also examined whether IL.-17 contributes to
neutrophil turnover through the regulation of macrophage phagocytosis of apoptotic
neutrophils. Finally, we investigated whether I1.-17 down-regulates the release of the
upstream regulator 1L-23.

We found that LPS induced sustained I1.-17 production and release from T cells that
reside in lung tissue and that are recruited to the bronchoalveolar space in a mouse
model of acute inflammation z# vive. In addition, population of cells other than T cells
contributed to IL.-17 production in the lung tissues and in the bronchoalveolar space.
LPS-induced II-17 production from T cells in lung tissues and in the bronchoalveolar
space was inhibited by the anti-inflammatory drug dexamethasone. Furthermore, we
found that IL.-17 stimulated macrophage phagocytosis of apoptotic neutrophils and
patticles, and induced neutrophil apoptosis in an 7 vitro study on isolated murine and
human cells. Finally, we found that that IL.-17 inhibited the release of the upstream
regulator I1.-23, both in the bronchoalveolar space in mice 7z vivo and in isolated
human cells of the monocyte lineage.

A major finding is that the production of 1L.-17 can be regulated exogenously by anti-
inflammatory drugs and endogenously by an IL-17-induced feedback loop, which, in
turn, may protect against excessive, 1L-23-induced IL-17 signalling. In addition, we
demonstrate that IL-17 has both pro-inflaimmatory and inflammation-resolving
actions; IL.-17 accumulates neutrophils after stimulation with LPS, while it also induces
the phagocytosis of apoptotic neutrophils, thereby controlling the total turnover of
neutrophils. That IL-17 induces the apoptosis of neutrophils and increases the
phagocytosis of these cells indicates a potentially valuable strategy to mitigate
conditions in which necrotic neutrophils are an important contributor to severe and
sometimes life-threatening conditions, such as chronic lung allograft rejection and
acute respiratory distress syndrome.
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INTRODUCTION

Innate immunity

Host defence comprises innate and adaptive immune responses. Innate
immunity relies on less-specific but more rapidly recruited cells that secrete
antimicrobial peptides, complement factors, and reactive oxygen species (ROS)
(1). Unlike the cells of the innate immune system, the cells of the adaptive
immune system, which include lymphocytes, have specific receptors, e.g., T-cell
and B-cell receptors, for the recognition of a specific antigens (2). Owing to
their receptors, lymphocytes can act in a very specific and effective manner. The
drawback is that the adaptive immune responses are usually delayed, as
compated to innate immune responses. It takes 4-7 days for an adaptive
response to occur, which is a relatively long time for the host in terms of

defending against rapidly replicating microbial intruders (2).

Pathogen-associated molecular patterns and their receptors

The cells of the innate immune system also recognize antigens, such as bacterial
peptides, although the strategy used by innate immune cells to recognize
microbial ‘danger signals’ is based on the recognition of pathogen-associated
molecular patterns (PAMPs). These are constitutive and conserved factors
produced by microorganisms but not by the host. Usually, PAMPS are
components that are essential for microbial survival. For example,
lipopolysaccharide (LPS), peptidoglycan (PGN), and lipoteichoic acids (IT'As)
are all components of bacteria, but are not made by eukaryotic cells. Therefore,
these components are recognized as foreign materials by the innate immune

system, which in turn signals the presence of infection (3-4).
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To sense infection, the innate immune system has evolved pattern-recognition
receptors (PRRs), which recognize and bind PAMPs (3). The innate immune
system uses a variety of intracellular, cell-surface-localised, and secreted PRRs.
The principal functions of PRRs include activation of proinflaimmatory
signalling pathways, phagocytosis, opsonisation, and the complement and

coagulation cascades (1, 3).

Neutrophils

The recruitment of neutrophils to the site of inflammation is one of the first
lines of defence against invading pathogens. Neutrophils, which belong to the
innate arm of the immune system, are professional phagocytes that take up and
degrade microorganisms using combinations of reactive oxygen species (ROS),
antimicrobial peptides, and proteases. Neutrophils also phagocytose apoptotic
cells, although the extent of this phagocytosis is not entirely clear (5-6). Once
inside the neutrophil, the phagocytosed microorganism or apoptotic cell is
sequestered in a specialised compartment, called the phagosome, which
subsequently fuses with a lysosome, which contains digestive enzymes, to form
the phagolysosome. To ensure complete digestion of the ingested materials, the
membrane-bound nicotinamide adenine dinucleotide phosphate (NADPH)-
oxidase system is activated. This system generates large quantities of ROS,

which are subsequently released into the phagolysosome.

Nentrophilic granules

Neutrophils contain four types of granules that are designed to kill microbes
during the different stages of neutrophil activation: 1) azurophilic granules,
which contain myeloperoxidase (MPO), bactericidal permeability-increasing
protein, defensins, and serine proteases; 2) specific granules, which contain
lactoferrin, cathelicidin, lysozyme, and collagenase; 3) gelatinase granules, which
contain gelatinase, leukolysin, and lysozyme; and 4) secretory granules, which
contain complement receptors 1 and 3 (CR1 and CR3), N-formyl peptide
receptors (FPRs), CD14, and CD16 (7). The different granules are produced at

14



specific stages of neutrophil maturation, and they differ in their propensities to
be released upon neutrophil activation. Secretory granules are more readily
released into the extracellular milieu than gelatinase granules, which in turn are
more readily released than specific granules. Azurophilic granules are assumed

to contribute mainly to degradation within the phagolysosome.

Neuntrophil extracellular traps

Neutrophil extracellular traps (NETSs) constitute a relatively newly discovered
weapon in the lethal arsenal of neutrophils. NETSs, which are web-like structures
that contain chromatin and high concentrations of proteases and MPO, can be
released from neutrophils (8). The formation of NET's occurs within minutes of
the sensing of infection, and they trap and kill both Gram-positive and Gram-

negative bacteria, as well as fungi (9-11).

Macrophages

Macrophages are also professional phagocytes, although whereas neutrophils
have a focus in phagocytosing microbes, macrophages additionally removes
cellular debris and apoptotic cells, and present antigens that have been
phagocytosed. Monocytes that migrate from the blood to tissues can, depending
on the environment and recruitment factors, differentiate into macrophages or
dendritic cells (DCs). The prevailing milieu further decides the type of
macrophage that is generated. Macrophages have been traditionally categorised
into two subtypes: 1) the classically activated inflammatory type 1 macrophage;
and 2) the alternatively activated macrophage or resident type 2 macrophage
(12). Additional macrophage subtypes, with morte or less distinct characteristics,
have also been described (13).

Currently, the main macrophage subtypes are designated as classically activated
macrophages, wound-healing macrophages, and regulatory macrophages (13).
Classically activated macrophages are characterised by the production of
cytokines, such as intetferon-y (INF-y) and tumour-necrosis factor-o (TNF-o),

enhanced microbe or tumour killing capabilities, and the secretion of high levels
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of cytokines, such as IL-23, I1I.-1, and IL.-6. These macrophages also support
the development and proliferation of IL-17-producing cells (14-17), an aspect
that will be discussed in detail later in this thesis. Wound-healing macrophages
are distinguished by IL-4 production, and they promote wound healing by
generating new extracellular matrix (18). These macrophages are poor presenters
of antigens, do not express pro-inflammatory cytokines, have lower production
levels of oxygen radicals and nitrogen radicals, and are weaker at intracellular
killing of microbes (13). The third type of macrophage, the regulatory
macrophage, differentiates in response to LPS in combination with immune
complexes, prostaglandins, apoptotic cells, IL-10 or other cytokines (13, 19).

These macrophages produce IL-10 and sphingosine kinase (13, 20).

Acute inflammation

Inflammation is initiated when a tissue suffers damage by microbial infection,
injury from outside, or the loss of barrier function. PAMPs from the microbes
or danger signals derived from host cell injury stimulate cells, such as
macrophages and structural cells, to release chemoattractants and heat-shock
proteins. Cells of the innate immune system, particularly neutrophils, and
depending on the infectious triggers, other cells, such as eosinophils, are
recruited by chemoattractants from the circulation to the site of the trauma (21).
The endothelium of the vasculature opens to facilitate the passage of recruited
cells, chemokines, and pro-inflaimmatory mediators (22). At the site of the
trauma, neutrophils and macrophages secrete antibacterial peptides,
complement factors, and ROS, so as to eradicate the potentially harmful stimuli,
and the debris is scavenged by phagocytosis. Subsequently, if the resolution
system is functioning propetly, the inflaimmation is resolved and the tissue

returns to normal homeostasis (23).
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Necrosis

Necrosis is a form of cell death that results from toxic injury, hypoxia or stress.
When there is excessive apoptosis and inefficient phagocytosis, i.e., during
inflammation, the apoptotic neutrophils undergo necrosis, in what is termed
‘secondary necrosis’. In both these types of necrosis, the membrane loses its
integrity and toxic cellular contents and debris reach the surrounding tissues,
thereby worsening the ongoing inflaimmation. The cellular remnants are cleared
by macrophages, in a process that alters the macrophage phenotype to a more
pro-inflammatory form (i.e., a classically activated macrophage). In many cases,
the debris from cells that have undergone necrosis contains high levels of
endogenous danger signals, such as heat-shock proteins, uric acid, histones,
DNA, and high mobility group box 1 (HMGB1) protein (24). These damage-
associated molecular pattern molecules (DAMPs), which are self antigens that
normally are not accessible for immune system recognition but are produced or
exposed during cell stress or necrosis, can be immunogenic and increase the risk
for autoimmune reactions (25-26). In similarity to their microbial counterparts,
the PAMPs, the DAMPs bind to various receptors, including the receptor for
advanced glycation end-products (RAGE), TLR2, TLR4, and TLRY, and
generate a danger signal, which in turn accelerates the inflaimmation cascade

(26).
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Figure 1. Acute inflammation in the airways. Inflammation is initiated by LPS binding to
TLR4 on resident macrophages, which in turn release chemoattractants that recruits neutrophils.
The endothelium becomes leaky to facilitate the passage of recruited neutrophils, and the
epithelium is gradually destroyed. Macrophages and neutrophils secrete antibacterial mediators
to eradicate the potentially harmful stimuli. The neutrophils become necrotic and the toxic
cellular contents and debris exacerbate the inflammation. The macrophages and some of the
epithelial cells are adapted from Nazure Reviews Inmmunnology.

IL-17
Cellular sources of IL-17

T helper-17 cells

DIFFERENTIATION OF T HELPER-17 CELLS

The differentiation of naive T cells to T helper-17 (Th17) cells is promoted by
the cytokines transforming growth factor § (TGFB) and IL-6 (15, 27-28). TGFp
and IL-6 induce the Th17 lineage-specific transcription factors retinoic acid-
related orphan receptor (ROR)yt and RORa (29-31). TGFB and IL-6 are
required for TH17-cell differentiation, partly owing to their inhibition of T
helper-1 (Th1) and T-regulatory (Treg) cell differentiation. Thus, TGFp blocks

18



Th1l cell commitment by inhibiting the transcription factor T-bet, and 1L.-6
reduces the expression of the transcription factor forkhead box P3 (FOXP3),
which is critical for Treg differentiation (27). The Thl17 lineage-specific
transcription factors RORyt and RORa are nuclear hormone receptors that
belong to a family of retinoic acid receptor-related orphan nuclear hormone
receptors. Although the ligands for these nuclear hormone receptors have not
been completely mapped out, studies have shown that provitamin D3
(cholesterol and 7-dehydrocholesterol) is a natural ligand for RORa (32). RORyt
and RORa have been shown to have redundant and synergistic functions; in
RORyt-deficient mice, Th17 cells persist, albeit in lower numbers than in wild-
type mice (30). Th17 cells have also been shown to be promoted by stimulation
of the aryl hydrocarbon receptor (AhR), which is a ligand-dependent
transcription factor that binds many types of exogenous and endogenous
ligands (33-34). These ligands include environmental toxins (e.g., dioxins),

resveratrol, and lipoxin A4 (35-37).

EXPANSION AND STABILISATION OF THI7 CELLS

Three cytokines expand and stabilise the phenotype of Th17 cells: 11.-21, 1L.-23,
and IL-1 (30, 38-44). IL-21 is an IL-6-induced cytokine that appears to act in an
autocrine loop, since it is both produced by Th17 cells and promotes the
expansion of Th17 cells (29-30, 39-40). I1.-23 is a member of the IL-12 cytokine
family, which includes I1.-12, IL.-23, IL-27, and IL-35, all of which are involved
in the regulation of T-cell responses. 11-23 is produced by cells of the
monocytic lineage, i.e., monocytes, dendritic cells, and macrophages, in response
to infectious stimuli (42). The I1.-23 molecule is a heterodimer of the p19 and
p40 subunits. The p40 subunit is shared with IL-12, while the p19 subunit
appears to be unique to I1-23 (42). IL.-23 was the first cytokine implicated in the
regulation of I11.-17 expression, and I1.-23 was initially thought to be critical for
the differentiation of Th17 cells (43-44). However, it has been shown that naive
T cells do not express the I1.-23 receptor (IL-23R) and do not differentiate into
Th17 cells in response to 11.-23 zn vitro, suggesting that I1.-23 is not required for
the initial differentiation of Th17 cells (14, 45). In contrast, IL-23 inhibits the
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Th1 and Treg differentiation transcription factors T-bet and FoxP3 in CD4* T
cells from naive mice, and expands Th17 cells from 7z wvivo-primed memory
CD4+ T cells (14, 46-47). Therefore, I1.-23 is important for the stabilisation and
expansion of the Th17-cell phenotype. The role of IL-1 in the promotion of
Th17 cells is suggested to be primarily linked to synergy with IL-23 (38).

THI7-SPECIFIC CELL SURFACE MARKERS

To date, no single Th17-specific marker unique for only Th17 cells has been
identified, although marker combinations that distinguish Th17 cells have been
proposed.

The receptor for I11.-23 (IL-23R), which is expressed on many IL-17-producing
cells, as well as on cells that apparently do not produce IL-17, is an important
marker ofTh17 cells (48-49). The CC-chemokine receptor 6 (CCRO) is another
receptor that is expressed on Th17 cells, although it is also found in abundance
on B cells, DCs, and other subsets of T cells (50-51). CCR6 binds to CC-
chemokine ligand 20 (CCL20), which is produced in various tissues, such as the
joints, intestines, and lungs (50, 52-53). CCL20 recruits haematopoietic cells,
and it has been associated with the generation of lymphoid tissue (50, 52-53).
Th17 cells are able to produce their own CCL20, which suggests that Th17 cells
use a paracrine mechanism to steer their chemotaxis to inflamed tissues (48, 50).
The C-type, lectin-like receptor CD161 is expressed on subsets of NK, CD4,
and CD8 T cells, and has been suggested to be a surface marker for Th17 cells
(54-55). CD161 binds to the proliferation-induced lymphocyte-associated
receptor (PILAR), and it has been demonstrated to function as a co-activating

receptor that promotes antigen-dependent T-cell proliferation (56).
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Cells shown to produce IL-17

Differention TGFB TGFB Mast cells

cytokines L6 L6 mediator(s)
Proliferation- IL-23 IL-23 IL-23 1L-23 IL-23 IL-23
promoting IL-1B IL-1B IL-1B IL-1B
cytokines IL-21
Lineage-specific STAT3 RORyt RORyt RORyt RORyt
transcriptional IRF4 AhR AhR AhR
regulators RORyt 1d2

RORa

AhR

@ E @ . ! : N
Cytokine IL-17 IL-17 IL-17 IL-17 IL-17 IL-17 IL-17 IL-17
products IL-17F IL-17F IL-17F IL-21 IL-22

IL-21 IL-21 IL-21 IL-22

IL-22 IL-22 IL-22

ILE26
CcCL20

Table 1. Cells shown to produce IL-17. The macrophage and dendritic cell are adapted from
Nature Reviews Immunology.

OTHER MEDIATORS PRODUCED BY THI7 CELLS

In addition to I1L-17, Th17 cells produce IL-17F, IL-21, and IL-22. It is not yet
clear whether all these TH17-cell-associated cytokines can be secreted from a
single cell. IL-17F will be described in more detail below. As mentioned eatlier,
IL-21 induces Th17 cell proliferation in an autocrine manner (29, 40, 57). 1L-21
is a member of the common y-chain family of cytokines, which includes 1I.-2,
IL-4, IL-7, IL-9, and IL-15. The receptor for IL-21 is expressed by NK, T and B
cells, DCs, macrophages, and keratinocytes, and IL-21 appears to increase the
proliferation and survival of most of these cell types (58-60).

IL-22, which is a member of the IL-10 family, is important for the maintenance
of tissue integrity during inflammation. The receptors for IL-22 have only been
found on structural cells, and they mediate tissue production of pro-
inflammatory mediators, mucins, and antimicrobial peptides (61-63).
Interestingly, IL-22 production by Th17 cells appears to be dependent
exclusively upon the transcription factor AHR, rather than RORyt (33).
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Other IL-17-producing T cells

vOT cELLs

¥OT cells ate positioned at the bordet between the innate and adaptive immune
systems. Although these cells are present in low numbers in the bloodstream,
they comprise up to 50% of all the cells in the skin, gut, and reproductive tract
(64). To date, only a few antigens have been shown to bind to the y8 TCR. The
y8 TCR is usually not required for antigen recognition by ydT cells (65-68).
Owing to the absence of TCR restriction, y3T cells recognize a wide atray of
antigens in a direct manner. These antigens include protein and non-protein
antigens that ate expressed endogenously by host cells or microbes. Most Y6T
cells have the CD4-CD8- phenotype, with the exception of the intestinal
intraepithelial y8T lymphocytes, which have the CD8axa™ phenotype.

vO6T-17 CELLS

The IL-17-producing y8T cells, termed y8T-17 cells, are the main producers of
IL-17 during infections with Listeria monocytogenes, Mycobacterinm bovis Bacille
Calmette-Guérin, and Salmonella enterica (69-71). y8T-17 cells have been shown
to produce IL-17 in mice stimulated with IL.-23 and II.-1 and in mice in which
there is direct microbial triggering of the TLR2 and dectin-1 receptors (16, 67-
68, 72). The same factors needed for the differentiation of Th17 cells have been
shown to be important for the development of y8T-17 cells, i.e., RORyt, AhR,
IL-23 receptor, and CCRG (67). y8T-17 cells have also been shown to produce
many of the cytokines that are produced by Th17 cells, including IT.-17, IL-17F,
IL-21, and IL-22 (67-68).

NKT cEeLLs

Similar to the y8 T cells, NKT cells express a restricted array of TCRs. The
TCRs of NKT cells are o TCRs that have specificities for the different
glycolipid antigens presented by CD1d (73-76). The antigen-presenting molecule
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CD1d is related to major histocompatibility complex (MHC) I and MHC II, and
is expressed on antigen-presenting cells. The first discovered antigen presented
by CD1d was the glycosphingolipid a-galactosylceramide (x-GalCer), which was
originally isolated from the marine sponge Agelas mauritianns (76). Subsequently,
other glycolipid antigens, including bacterial glycolipids, have been found to be
recognized by the TCRs of NKT cells (73-74). NKT cells are categorised into
subsets based on the CD4* or CD4-CD8- phenotype and the expression of
CD161. TGF-8 has been implicated as a differentiation factor for NKT cells
(77-78).

NKT-17 ceLLS

The population of NKT cells that produce IL-17, NKT-17 cells, have the
CD4-CD161~ phenotype (79-80). NKT-17 cells have been shown to express
the integrin a-chain ar (CD103) and IL-1R type I (CD121a) in the skin and
peripheral lymph nodes of mice (80). In similarity to Th17 cells and y5 T-17
cells, NKT-17 cells express RORyt, CCR0, and the I1.-23 receptor (80-83). In
similarity to y8 T-17 cells, NKT-17 cells can be stimulated directly by LPS to
produce 1L-17 within a few hours (80). In addition to IL-17, NKT-17 cells
produce 11.-21 and IL-22 (84-86).

CD8 T ceLLs

Culturing of CD8" T cells under Th17-polarising conditions results in II.-17
production and the release of 1L-17 from these cells. 1L-17-secreting CD8* T
cells (Tcl7) are observed in mice that are deficient for the THI-polarising
transcription factor T-bet (87-88). It appears that these cells lose their cytotoxic
capabilities upon acquisition of IL-17 production capacity. Tc17 cells have also
been detected in a population of CD8" T cells in the blood of healthy human
subjects, and these cells express CCRG6 (89). The IL.-17 produced by Tc17 cells
has been demonstrated to be important for mouse survival after primary

challenge with influenza A virus into the lungs (90).
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IL-17-producing cells other than T cells

Neutrophils, macrophages, and Paneth cells have been reported as being able to
produce IL-17 (91-97). Although one of the first studies to demonstrate that
cells other than T cells could produce I1.-17 was published in 2003 (91),
relatively little information on this topic has been reported since then. This area

clearly warrants further investigation.

Lymphoid tissue inducer cells

Several different subtypes of lymphoid tissue inducer (LTi) cells have been
identified. As these cells were discovered only relatively recently, novel subtypes
are emerging continuously. As a result, the nomenclature and phenotypes that
define the different subtypes of LTi cells are currently rather confusing. Human
and murine LTi cells share the characteristics that they both have the CD3-
phenotype and use RORyt together with AHR or Id2 (98). To date, LTi cells
have been detected in the thymus, developing lymph nodes, Peyet’s patches, and
nasopharynx-associated lymphoid tissue (NALT) (98-99). The development of
these lymphoid organs is dependent upon interactions between LTi cells and

stroma lymphoid tissue organiser cells (100-101).

Previously, it has been shown that IL.-23 stimulation of cells isolated from the
spleens of Rag 2-/- mice, which lack lymphocytes, resulted in about 30% of the
amount of 11.-17 produced by the wild-type mice. The cells that produced this
IL-17 were not macrophages, DCs or neutrophils, but turned out to be LTi cells
(102). Seemingly, all LTi cells produce IL-22 in the absence of stimulation, and
produce IL-17 after stimulation with IL-23 (103-104).

IL-17 family members

The IL-17 family comprises 1L-17A, 1L-17B, 1L.-17C, 1L-17D, 11.-25 (formerly
IL-17E), and IL-17F. Many studies have focused on IL-17A and IL-17F, and

these two family members are the most closely related (28). As described in the
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previous section, IL.-17 is produced by many different types of haematopoietic
cells. Whereas IL-17F can be produced by most of these cells, it has also been
shown to be produced by non-haematopoietic cells, such as lung epithelial cells

(105).

Downstream actions of IL-17

IL-17R

The mRNA for IL-17 receptor A (IL-17RA) is expressed in most cell types
(106). The corresponding I1.-17RA protein is produced by structural cells and
haematopoietic cells, such as neutrophils, macrophages, dendritic cells, and T
cells (107-110). IL-17RA is a type I transmembrane protein that lacks sequence
similarity to any other known cytokine receptor (108). However, certain
similarities with the IL-1f3 receptor (IL-18R) and TLR regarding the signalling
cascade have been noted. One of these similarities is that IL-17RA contains a
conserved motif in the cytoplasmic domain, SEF/IL-17R (SEFIR), which is
homologous to the Toll/IL-18R (TIR) domain (111). It has trecently been
demonstrated that IL-17 binds and signals through a heterodimeric receptor
complex that consists of IL-17RA and IL-17RC (112). Both homodimers
(composed of 11.-17 or IL.-17F) and heterodimers (composed of 11.-17 and II.-
17F) can bind to this receptor complex, albeit with somewhat different affinities

(107, 113-114).

IL-17A anD IL-17F RECEPTOR AFFINITIES DIFFER BETWEEN MICE AND HUMANS

In humans, IL-17 binds to IL-17RA with high affinity, whereas IL-17F binds to
IL-17RA with an almost 1000-fold lower affinity, which implies that IL-17RA
cannot bind IL-17F under physiological conditions (115). It has also been
shown that an anti-IL-17RA antibody blocks the responses to IL-17 and IL-
17F, suggesting that both of these cytokines are dependent upon a functional
IL-17RA for signalling (116). In contrast, in mice, while only IL-17F can bind
IL-17C, both IL-17 and IL-17F can bind IL-17RA (115).
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IL-17RA aAND IL-17RC HAVE DIFFERENT DISTRIBUTION PATTERNS

The distribution patterns of IL-17RA and IL-17RC are divergent in different
tissues. The expression of IL-17RA is higher in haematopoietic tissues, while
IL-17RC is expressed at higher levels in structural cells of the prostate, liver,
kidney, thyroid, and joints (115, 117). In addition, CD4* cells express IL-17RA,
but not IL-17RC (107). IL-17 alone has been shown to induce signals in these
cells, suggesting that a heterodimeric receptor complex consisting of IL-17RA

together with IL-17RC is not essential for signalling (107).

IL-17R FAMILY RECEPTOR-LIGAND INTERACTIONS

It has been demonstrated that the IL.-17-related cytokine IL-25 (formerly IL-
17E) binds to 11-17RA when it is present in a heterodimeric receptor complex
with IL-17RB (114, 118-119). IL-17RD is also able to form a heteromeric
receptor complex with IL-17RA, although the ligand for this receptor complex
is currently unknown (120). Since IL-17RA is used by several I1.-17-related
cytokines and can form different heterodimeric receptor complexes, it appears
to be analogous to gp130, which is a shared cytokine receptor subunit and a

common signal transducer for molecules of the I1.-6 family (121-122).

SIGNALLING DOWNSTREAM OF [L-17R

As described earlier, IL-17RA engages the SEFIR domain-containing adaptor
ACT1 to mediate various downstream events (123). ACT1 recruits TNFR-
associated factor 6 (TRAFG), which is a key adaptor protein and an upstream
activator of the canonical nuclear factor-xB (NF-xB) pathway. The transcription
factor CCAAT/enhancer-binding protein-6 (C/EBPS) seems to be downstream
of NF-xB (124-125). A distinct arm of the signalling network is linked to
another functional domain on IL-17RA, termed the C/EBP-activation domain
(CBAD), which instead of activating the NF-xB pathway induces expression of
the transcription factor C/EBP (126-127).
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NEGATIVE REGULATION OF IL-17RA SIGNALLING

Two inhibitory pathways are initiated by binding to IL-17RA, both of which
lead to the phosphorylation of the C/EBPB domain, resulting in down-
regulation of the transcriptional capacity of C/EBPB. The first inhibitory
pathway includes extracellular signal-regulated kinase (ERK)-mediated
phosphorylation of C/EBPB at threonine 188 (125), and in the second
inhibitory pathway, CBAD induces the phosphorylation of C/EBPB at
threonine 179 (125).

Effects of IL-17

IL-17 acts as an important player in the host defence against both extracellular
and intracellular bacteria, fungi, and viruses by promoting the mobilisation of
neutrophils to the site of inflammation and inducing the release of microbicidal
substances (49, 128-132). IL.-17 induces neutrophil accumulation by increasing
the proliferation of neutrophils through the stimulation of structural cells to
produce the neutrophilic growth factors granulocyte colony-stimulating factor
(G-CSF) and granulocyte macrophage colony-stimulating factor (GM-CSF)
(133-136). IL-17 also contributes to the recruitment of neutrophils by
stimulating structural cells to release CXC-chemokines, such as KC (also called
CXCL1), macrophage inflammatory protein 2o (MIP2x; also called CXCL2), as
well as the human-specific CXC-chemokine IL-8 (91, 137-140). IL-17 induces
microbial killing by enhancing the production and secretion of microbicidal
peptides, such as cathelicidin (also called LL-37), 8-defensin, and S100A8, by
structural cells and neutrophils (61, 141-143). In addition, I1.-17 up-regulates the
constitutive release of other angiogenic factors from synovial fibroblasts, all of
which are involved in the proliferation of endothelial cells (144). IL-17 mediates
the induction of 1L.-6, and also stimulates the production of the pro-enzymatic
inactive forms of MMP-2, MMP-3, MMP-9, and MMP-13 (145-148). IL-17 has

also been shown to enhance osteoclast differentiation and activity through the
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promotion of receptor activator of NF-x«B ligand (RANKL) and other

osteoclastogenic factors, such as prostaglandin E2 (149-152).

Inflammation
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Figure 2. Resolution of inflammation. When the infectious stimuli are removed, the
inflammatory triggers are diminished, which reduces the recruitment of inflammatory cells. Pro-
resolution mediators induce the phagocytosis of apoptotic neutrophils and block neutrophil
recruitment from the blood to the tissues. Phagocytosis of bacterial remnants and apoptotic cells
further promotes the resolution of inflammation through the generation of anti-inflammatory
cytokines. The macrophages and some of the epithelial cells are adapted from Nazure Reviews
Immunnology.

Resolution of inflammation

When microbes are eradicated from the body, the inflammatory triggers are
diminished, and the levels of residual effectors, which include both PAMPs,
such as LPS, zymosan, and peptidoglycan (PAMPs), as well as DAMPS, are
gradually reduced. With fewer microbial stimuli, the recruitment of cells to the
site of inflammation declines. With fewer inflammatory cells, there are fewer

apoptotic and necrotic cells. Thus, the production of pro-inflammatory
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mediators is reduced, and those mediators that are already produced are

eventually degraded (153-154).

Clearance of inflammatory cells

Apoprosis of neutrophils

Neutrophils are recruited to the site of infection or injury so as to kill microbes
and to phagocytose cells and debris. Neutrophils are short-lived, and after they
exert their activities at the inflammatory site, they undergo apoptosis.
Neutrophils retain membrane integrity during the different stages of apoptosis,
which include shrinking, chromatin condensation, cell-membrane blebbing, and
DNA fragmentation. Thereafter, the neutrophil disintegrates into numerous
membrane-bound apoptotic bodies, without releasing their intracellular contents
to the surrounding tissues (155). The apoptotic bodies are subsequently
phagocytosed, mainly by macrophages, but also by other cells in the vicinity.
Apoptosis followed by clearance by macrophages is important for proper
resolution of acute inflaimmation (155-156). Macrophages that phagocytose
apoptotic neutrophils release anti-inflammatory mediators, such as TGFf and

IL-10, which further dampen the inflammation (157-158).

Phagocytosis of apoptotic neutrophils

The phagocytosis of apoptotic cells involves the following steps: 1) sensing of
the presence of apoptotic cells that display ‘find-me’ signals, such as lipid
lysophosphatidylcholine (LPC); 2) recognition of apoptotic cells that have ‘eat-
me’ signals, such as phosphatidylserine (PtdSer). The phagocytic receptors that
recognize ‘eat-me’ signals as well as other apoptotic cell characteristics include
scavenger receptors, phosphatidylserine receptors, the thrombospondin
receptor, integrins, and complement receptors (159); and 3) reorganisation of

the cytoskeleton to form the phagocytic cup, which gradually surrounds the
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apoptotic cell and internalises it, thereby forming an endosome. The ingested
apoptotic cell is processed and degraded following fusion of the phagocytic
endosome with the lysosome. Various anti-inflammatory signals participate in

the different stages of apoptotic cell phagocytosis (160)

Figure 3. Photographs of an apoptotic murine neutrophil (left) and a
bronchoalveolar macrophage phagocytosing an apoptotic neutrophil (right)
from the bronchoalveolar space. The cells are stained with the anti-neutrophil
antibody NIMP-R14 and Liquid Permanent Red.

Chronic inflammatory diseases

When an acute inflammation that has been initiated by infection with a microbe
or an injury does not resolve, the result may be a chronic inflammation. The
reason why an inflammation sometimes turns into a chronic inflammation is not
clear. It is known that chronic inflammation often results from a combination of
several factors that act concomitantly. These factors include genes, microbes,
and environmental parameters, such as stress, pollutants, and lifestyle. On the
cellular level, the mechanisms that contribute to chronic inflammation include
necrosis and immunogenic responses to self antigens. Whichever factors are

responsible, the outcome is more or less the same, i.e., tissue infiltration of cells
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and inflaimmatory mediators, granuloma formation, and fibrosis (161). Chronic
inflammatory diseases of the respiratory tract are characterised by infiltration of
the tissues and airways by lymphocytes, neutrophils, and monocytes, which
release proteases, such as matrix metalloproteinases, leading to elastin
degradation and emphysema. Neutrophil-produced elastase causes mucous
hypersecretion by goblet cells. Epithelial cells and macrophages release TGES,
which induce the proliferation of fibroblasts, resulting in fibrosis of the small

airways (162-163).

Anti-inflammatory pharmacology

Anti-inflammatory drugs constitute a large group of drugs with multiple
mechanisms of action. Many of these drugs, such as dexamethasone, originate
from endogenous mediators that are proven to exert anti-inflammatory actions,
whereas others originate from microbes, e.g., cyclosporine and rapamycin.
Currently, many new anti-inflammatory drugs in the form of antibodies directed
against endogenous pro-inflammatory mediators, such as TNFa and the p40

subunit shared by IL.-12 and II.-23, are employed.

Dexamethasone and cyclosporine A

Dexamethasone and cyclosporine A are two of the most commonly used anti-
inflammatory drugs for acute and chronic inflammation (164-165).
Dexamethasone is a glucocorticoid derived from the endogenous anti-
inflammatory mediator cortisol, which is synthesised in the cortex of the adrenal
gland (166). Glucocorticoids are pleiotropic and mediate their multiple anti-
inflammatory effects through many effector molecules. In addition to their anti-
inflammatory  properties, glucocorticoids promote the resolution of
inflaimmation by stimulating the production of annexin I and promoting
macrophage phagocytosis of apoptotic neutrophils (167). Glucocorticoid
receptors are ubiquitously expressed on cells. Binding to its receptor leads to

cither activation or repression of gene transcription. There are also
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glucocorticoid receptors that are independent of gene transcription, and they
mediate a faster response (160).

Cyclosporine A is primarily used for the prevention of transplant rejection and
to treat severe forms of autoimmune disease (168). Cyclosporine A exerts its
immunosuppressive activities by forming a complex with the cytosolic protein
cyclophilin.  This complex inhibits calcineurin, which is required for
dephosphorylation of the cytosol-phosphorylated transcription factor NF-AT.
(169) This failure to dephosphorylate NF-AT results in decreased transcription
of the genes for cytokines, such as IL-2, IL-3, IL-4, and IFN-y (169). This
blocks T-cell activation, and also has other effects, such as the prevention of

mitochondrial permeability and cytochrome c-induced apoptosis (170-171).

Paradigms of IL-17 over the years

IL-17 was first discovered about 15 years ago, at a time when I1.-17 was mainly
associated with host defence and some pro-inflaimmatory effects. Ten years
later, the IL-17-producing memory CD4+ T cell was found to be a specific T-
helper cell that was distinct from Th1 and Th2 cells. This Th17 cell has been
strongly associated with autoimmune diseases, such as multiple sclerosis,
rheumatoid arthritis, and psoriasis. More recently, it was shown that Th17 could
induce the production of cytokines other than II.-17, and that cells other than
Th17 cells could produce IL-17. The biology of IL-17 became more complex
when it emerged that IL.-17 and IL-17F in many cases have redundant roles, and
that their binding affinities to the corresponding heterodimeric receptor
complex differ, which also appear to differ between humans and mice.

Thus, over the years, research on IL-17 has undergone major reviews, and
undoubtedly additional changes to the paradigm are yet to come. One example
of this type of development is the new concept that IL-17 might act as a
mediator of inflaimmation resolution. Cleatly, the various roles of IL-17 in

different disease settings need to be studied further.
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AIMS

General aims

The overall aims of this thesis are to investigate endogenous and exogenous

methods to regulate the production of II.-17 and to elucidate the role that I11.-17

plays in resolving ongoing inflammation.

Specific aims

The specific aims of the thesis are:

I.

II.

II1.

To determine whether cells in the lung produce IL-17 after exposure to
LPS isolated from the Gram-negative E. c/i bacteria and whether anti-
inflammatory pharmacotherapy can be used to regulate the production

of IL-17 in these cells;
To ascertain the contributions of IL-17 to neutrophil apoptosis, as well
as to neutrophil turnover through the regulation of macrophage

phagocytosis of apoptotic neutrophils;

To determine whether I1.-17 down-regulates the release of the upstream

regulator 11.-23 both 7z vive and zn vitro.
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METHODS

In vivo experiments

Mice

Male BALB/c, C57BL/6, and C57BL/6 1L-17-knockout mice were maintained
under standard conditions with access to food and water ad /fibitum (172).
Permission for all experiments was obtained from the Ethics Committee for
Animal Studies, Gothenburg, Sweden, in accordance with national animal

welfare legislation.

Intranasal instillation

To perform intranasal (i.n.) instillation, mice were anaesthetised transiently using
isofluorane, and instilled i.n. with lipopolysaccharide (LPS) or recombinant IT.-
17 in 50 pl of phosphate-buffered saline (PBS). This volume was chosen
because a study on the distribution of i.n. instillations in mice showed that i.n.
administration of a 50-pl volume achieved maximal efficacy, with approximately
60% of the test substance being deposited in the bronchoalveolar space (173).
Increasing the volume to 75 ul did not increase the yield (173). An LPS dosage
of 10 pug was chosen in our experiments because this has been described as the
sub-maximal effective dosage for in. instillation (174-175). Three pg of the
recombinant mouse 11.-17 protein were used, as eatlier studies have shown that
dosages in the range of 1.5 to 10.0 pg of recombinant mouse I1I.-17 protein are

relevant i.n. dosages (176-177).

Intravenous injections

Some mice were inoculated intravenously (i.v.) in the tail vein with 0.22 X 108
Staphylococcus anreus. The S. aureus bacteria used were derived from the toxic

shock syndrome toxin 1—producing LS-1 strain (178-179).
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Intraperitoneal injections

Some mice were injected intraperitoneally (i.p.) with a neutralising monoclonal
anti-mouse IL-17 antibody (all.-17 Ab) or the isotype control, IgG2a Ab. Other
mice were injected i.p. with the glucocorticoid receptor agonist dexamethasone
(180) ot the inhibitor of the endogenous calcium/calmodulin-dependent

phosphatase calcineurin, cyclosporine A, or vehicle (PBS) (181).

Euthanasia and blood sampling

Mice were anesthetised i.p. using ketamine (Ketalar) and xylazine (Rompun).
The mice were euthanised by puncture of the left heart ventricle, and blood was
drawn. The red blood cells were lysed in lysis buffer, and the remaining white

blood cells were washed three times.

Bronchoalveolar lavage

After tracheotomy, mouse airways were washed with PBS to obtain
bronchoalveolar lavage (BAL) samples. Although the technique used for BAL
was always performed in the same way, the volume of lavage fluid obtained
varied between different experiments. Low volumes (0.2-0.25 mL) and 4 X 0.25
mL sampling were utilised to sample cells and proteins from the upper airways,
while larger volumes (4 X 0.5-1.0 mL) were collected when cells from the whole
bronchoalveolar space were needed or when it was desirable to collect as many
cells and proteins from the airways as possible. All the BAL samples recovered
from a single mouse were pooled, the recovery volume was recorded, and the
BAL samples were kept on ice until centrifugation. After centrifugation, the cell-
free BAL fluid was frozen for subsequent IL-17 protein assays. The BAL cells
were resuspended in PBS that contained bovine serum albumin (BSA), and the
total cell numbers were determined using a Birker chamber. When BAL
samples are taken, the recovered volume of lavage differs somewhat for
different mice due to unintentional methodological variations. Since the cells are
centrifuged and pelleted, these variations in recovery volume affect the number

of cells present in each BAL sample. To compensate for these variations, the
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quantity of cells is presented as the number of cells per recovery volume. As the
concentration of proteins in the cell-free BAL fluid used for ELISA is
considered to be independent of the recovery volume, the ELISA data are not

corrected for BAL recovery.

Lung tissues and spleens

Lungs used for mRNA analysis were perfused with PBS 2 the right ventricle of
the heart. The lungs were removed, snap frozen in liquid nitrogen, and stored at
-80 °C until further processing. The lungs used for flow cytometry were
perfused with PBS, removed, and placed in a buffered solution (Hanks balanced
salt solution with Golgi Stop protein secretion blockage). The lungs from S.
anrens-infected mice were aseptically dissected, placed on ice, homogenised,
serially diluted in PBS, and spread on blood agar plates. The colony forming
units (CFU) per lung were assessed after 24 h of incubation at 37°C. The
spleens were surgically removed from mice, and splenocytes were isolated as

described below.

In vitro experiments

Bronchoalveolar lavage in humans

The study protocol was approved by the Ethics Committee in Gothenburg, and
the full protocol has recently been published by Glader et al. (182). Briefly,
during a first bronchoscopy, a balloon-tipped catheter was inserted through the
bronchoscope, placed in a segmental bronchus, and inflated with air to occlude
the segments chosen for challenge. Ten millilitres of PBS followed by 10 mL of
air were then instilled into the bronchial segment. The bronchoscope was then
retracted and the head end of the operating table was elevated with the subject
in place for 1 hour, to minimise spread of the instilled PBS. During a second
bronchoscopy, the same protocol was followed but with the inclusion of a BAL

procedure (3 X 50 mL of PBS) instead of PBS instillation. Endobronchial
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photographs were taken bilaterally on both occasions, to ensure that the BAL

sampling was performed in the PBS-exposed segment.

Isolation of cells

The total cell numbers in the BAL samples and blood samples were determined
using a Birker chamber, and cytospin slides were prepared. Differential cell
counts was carried out by counting 400 cells per cytospin slide stained with

May-Griinewald-Giemsa reagent, as described elsewhere (138).

Isolation, labelling, and ageing of neutrophils

Neutrophils from the blood of naive BALB/c mice were isolated using the
Anti-Ly-6G MicroBead Kit, as described in the product manual. Positively
selected mouse neutrophils were labelled with a fluorescent marker,
carboxyfluorescein diacetate succinimidyl ester (CFDA SE), and cultured (1 X

10¢ neutrophils/mL) for 48 hours.

Isolation of human monocytes and differentiation of monocyte-

derived macrophages

Monocytes were harvested from the blood samples of healthy human
volunteers. Peripheral blood mononuclear cells were collected by density
centrifugation over a Ficoll gradient. Monocytes were then isolated from the
fraction of mononuclear cells by negative selection using Monocyte Isolation
Kit II as described in the product manual. To derive monocyte-derived
macrophages, monocytes were cultured at 37°C in 5% COz for 5 days in
supplemented medium (RPMI 1640 with 10% foetal bovine serum (FBS), 1%
penicillin-streptomycin, 1 mM sodium pyruvate, and 2 mM L-glutamine,
together with 10 ng/mlL of recombinant GM-CSF.

Isolation of BAL macrophages

Human BAL macrophages and BAL macrophages from naive mice were

isolated from the total cell population in the BAL fluid by adherence for 2 hours
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or 3 hours in non-supplemented RPMI 1640 medium at 37°C in 5% COz. After
the incubation period, the cells were washed two or three times to remove non-

adherent, non-macrophage cells.

Isolation of murine CD3+ splenocytes

For the enrichment of CD3* cells, mouse spleens were minced, the red blood
cells were lysed using a hypotonic solution, and the remaining cells were filtered
through a 40-um pore size cell strainer, to obtain a single-cell solution. The cells
were washed in PBS with 0.5% BSA and the CD3- cells were depleted using a
magnetically labelled biotin-conjugated antibody cocktail (Pan T-cell isolation

kit, as described in the product manual.

Stimulation of cells

Neutrophils and cells of the monocytic lineage

Murine bronchoalveolar and human monocyte-derived macrophages for
phagocytosis experiments were cultured in 16-well chamber slides and primed in
supplemented medium that contained LPS (1 ng/mL) for 48 hours. All human
cells of the monocytic lineage and the murine BAL macrophages were
subsequently stimulated with 100 ng/mL LPS, together with 0.1, 1, 10 or 100
ng/ml. recombinant I11.-17 or its vehicle (supplemented medium alone) for 24
hours. There are few data on the local physiological levels of IL-17 in humans
and mice. However, one published study on patients with rheumatoid arthritis
gives the mean concentration of IL.-17 in the synovial fluids as approximately 1

ng/ml (170).

Some of the human monocyte-derived macrophages were also stimulated with
the Ras-related C3 botulinum toxin substrate 1 (Racl) inhibitor NSC23766 at
concentrations of 0 (vehicle for the Racl inhibitor), 50, 100, 200 or 300 WM.

After 24 hours of stimulation, some of the human cells of the monocytic lineage

and the murine BAL macrophages were harvested. The conditioned medium
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was aspirated and centrifuged. The cell-free centrifugation supernatant was then
collected and frozen at -80°C for later analysis. This supernatant is hereinafter

referred to as ‘cell-free medium’.

Co-culturing of macrophages with aged neutrophils or latex beads

After 24 hours of stimulation, the conditioned media from the murine
bronchoalveolar and human monocyte-derived macrophages were aspirated.
The cell-free supernatants were frozen at -80°C for later analyses of soluble
lectin-like  oxidised low-density lipoprotein receptor-1  (sLOX-1) and
macrophage inflammatory protein-2 (MIP-2). Fresh supplemented medium that
contained recombinant I1.-17, LPS or vehicle alone was then added to the
macrophages, thereby maintaining the previous stimuli (see above). The
macrophages were subsequently exposed to either the fluorescently-labelled
aged neutrophils or to fluorescent yellow-green carboxylate-modified latex
beads (diameter of 1 um). After 2 hours of exposure (see above), the culture
medium was aspirated, and neutrophils or beads that had not been
phagocytosed by the macrophages were removed by washing three times with
with PBS. The remaining cells were then fixed in 4% formaldehyde. The walls
of the chamber slide were removed, and a cover glass was mounted on the slide.
The nuclei of the macrophages were fluorescently labelled by adding 7AAD to

the mounting medium.

CD3+ cells and adherent BAL cells

Negatively selected CD3-positive cells from spleens and adherent mononuclear
BAL cells were isolated as described above. CD3-positive cells were seeded
insupplemented medium together with the adherent mononuclear BAL cells.
This mixed culture was pre-treated with the calcineurin phosphatase inhibitor
cyclosporine A (106 M) (181),  the glucocorticoid receptor agonist
hydrocortisone (10-¢ M) (180, 183) or vehicle alone. Ethanol was used as the
solvent for these chemicals; the final concentration of ethanol did not exceed

0.1% and it was added at the same concentration to the negative and positive
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controls. Hydrocortisone was chosen as the glucocorticoid receptor agonist
because it is more water soluble than dexamethasone. Thirty minutes after the
pre-treatment, the cells were stimulated with 100 ng/mL LPS, with a positive
control (calcium ionophore A 23487 [CI] at 1 pg/mL plus phorbol 12-myristate
13-acetate [PMA] at 2 ng/ml) and a negative control (RPMI 1640 only) and
incubated for 20 hours, after which the conditioned cell media were harvested.
The culture media were then centrifuged to remove cells, and subsequently

frozen at -80°C for subsequent assays of 1L-17.

Neutrophil apoptosis assay

Positively selected neutrophils (see above) were cultured at 37°C in 5% COz in
supplemented medium and stimulated with 1, 10, or 100 ng/mL recombinant
mouse I1.-17 protein or medium alone (vehicle; a negative control). After 48
hours of incubation, the cell-free supernatants were frozen at -80°C for later
analysis of myeloperoxidase (MPO), and neutrophil survival was assessed using
the Annexin V-PE apoptosis detection kit. Cells were sorted using a FACScan
flow cytometer, and the data were analysed using the CellQuest software. The
results are presented as percentages of viable (Annexin V-, 7TAAD"), apoptotic

(Annexin V*, 7TAAD"), and necrotic (Annexin V*, 7AAD™) neutrophils.
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Figure 4. Fluorescence images of IL-17-stimulated mutine bronchoalveolar
macrophages that have phagocytosed. Macrophages were primed with LPS for 48
hours and incubated with rmIL-17 for 24 hours in vitro before 2 hours of co-
incubation with aged neutrophils or latex beads. (a) Phagocytosis of CFDA SE-labeled
neutrophils (green). (b) Phagocytosis of latex beads (green; indicated by arrows)
(original magnification X100).

Assessment of phagocytosis

The chamber slides with adhered macrophages were photographed using a
fluorescence microscope, and at least 500 randomly selected macrophages from
each of the wells of the chamber slides were counted (Figure 4). The percentage
phagocytosis was calculated by dividing the number of macrophages (red
fluorescent nuclei) that had phagocytosed aged neutrophils (green fluorescence)
or latex beads (green fluorescence) by the number of counted macrophages. A
phagocytic index was calculated as the total number of phagocytosed latex beads
found in the macrophages divided by the total number of macrophages that
were counted.

The phagocytic index, which provides more information than the percentage
phagocytosis, could not be used when quantifying the phagocytosis of apoptotic
neutrophils, since the phagocytosed neutrophils occasionally were fragmented

into smaller pieces (Figure 4a), which meant that the exact number of
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neutrophils phagocytosed by each macrophage could not be determined.
Therefore, the percentage of neutrophil-containing macrophages was used when

quantifying the phagocytosis of apoptotic neutrophils.

Enzyme-linked immunosorbent assay

The cell-free BAL fluids from mice and the cell-free media from 7z vitro-cultured
cells were assayed for 11.-23 (p19/p40), IL-12 (p70), IL-17, MPO, sLOX-1, and
MIP-2 using enzyme-linked immunosorbent assays (ELISAs). The instructions

in the product manuals for the respective ELISA kits were followed

mRNA measurements

Total RNA was isolated from 15 mg of frozen lung tissue, which was ground to
a fine powder under liquid nitrogen, using the RNeasy kit according to the
manufacturer's instructions. The purified total RNA preparation was used as a
template to generate first-strand c¢DNA, as described previously (184).
Quantitative Real-Time PCR was performed as described previously using the
ABI PRISM 7900 HT Sequence Detection System (185) and validated Assays-
on-Demand TaqMan primers for IL-17. Briefly, IL-17 gene expression was
quantified using multiplexing single reactions, whereby the gene of interest was
standardised to the control (18S rRNA). An individual sample from the control
group was then arbitrarily assigned as a calibrator, against which all the other

values are expressed as fold-differences.

Flow cytometry

To study in greater detail the IL-17-containing T lymphocytes, flow cytometric
analysis of the intracellular expression of IL.-17 in CD3-positive cells from lung
tissues and BAL suspensions was conducted. Flow cytometry was performed as

described previously (186). Briefly, BAL was performed using PBS with Golgi
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Stop, and the lungs were mechanically disrupted in a 100-pm nylon mesh cell
strainer, followed by filtration (40-pm pore size) to remove tissue fragments.
Then, both the BAL and lung cells were incubated with a blocking solution,
incubated with a PerCP-conjugated anti-CD3 antibody, and fixed in
paraformaldehyde (4%) at room temperature. After re-suspension in saponin
buffer, the cells were incubated with a PE-conjugated rat anti-mouse IL-17
monoclonal antibody, followed by two washes with saponin buffer. Finally, the
cells were washed, re-suspended, and analysed using the FACScan flow

cytometer. Data were analysed using the CellQuest software.

Statistical analysis

Data are expressed as mean with standard error of the mean (SEM) [mean
(SEM)]. Differences were considered to be statistically significant for p-values <
0.05 and not statistically significant (ns) for p-values > 0.05. Unless otherwise
stated, all # values refer to the numbers of independent experiments for each

treatment group.

Paper 1

Correlation analyses were conducted utilising the Spearman rank correlation
test. The Mann-Whitney U-test (preceded by the Kruskal-Wallis test for

multiple comparisons) was utilised for comparison of groups.

Paper II

The results of the neutrophil survival assay and ELISA assays for MIP-2 and
sLOX-1 (7 = 6), were analysed using a non-parametric paired test, i.e., the
Wilcoxon signed rank test. The results of the phagocytosis and MPO ELISA
assay were analysed as maximum induced increase (i.e., change). The maximum
induced change was calculated by subtracting the maximum response caused by

the most effective concentration of recombinant IL.-17 with the response
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caused by the vehicle in that particular experiment. The Mann-Whitney U-test
was used for statistical analysis of the difference between the maximum induced

change response and the vehicle response.

Paper 111

One- or two-tailed Student’s #tests were used for statistical analysis of the data
for mouse BAL fluids and human monocytes 7 vitro, as appropriate. One-way
analysis of variance (ANOVA), followed by Bonferroni's multiple compatison
test, was used for statistical analysis of the data for the BAL samples when more
than two groups were compared. The concentration-response data from human
monocyte-derived macrophages iz vifro were analysed using repeated measures
ANOVA. The term 7 refers to the number of mice or to the number of

different blood donors used in each treatment group.
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RESULTS

Paper I

LPS treatment increases IL-17 release and neutrophil
numbers in the murine bronchoalveolar space

Intranasal stimulation with LPS increased the concentration of free, soluble I1.-
17 protein in BAL fluid from the bronchoalveolar space (Figure 5) and it also
increased the number of neutrophils and other inflammatory cells in the BAL
sample. The IL-17 concentration was highest on Day 1 post-treatment, and
gradually decreased in a time-dependent manner. Two days after LPS
stimulation, there was a correlation between the concentration of I1.-17 and the

number of neutrophils in the BAL samples.
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Figure 5. Concentrations of IL-17 in BAL fluid. The IL-17 levels on Days 1, 2 and
3 after exposure to LPS (blue columns) are compared to those of the negative control
(PBS, white columns) (*p<0.05, n=3-9). Data are presented as mean £ SEM.
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Pharmacotherapy decreases IL-17 release and BAL cell
numbers in the bronchoalveolar space

Pre-treatment with a high dose of dexamethasone attenuated the LPS-induced
increase in free, soluble IL-17 protein in BAL fluid. Pre-treatment with
cyclosporine A and low dosage of dexamethasone reduced the LPS-induced
increase in IL-17 in the BAL samples, albeit to a lesser extent. Considering the
LPS-induced increase in the number of BAL cells, the high dosage of
dexamethasone exerted a general inhibitory effect on the numbers of all cell
types, whereas cyclosporine A exclusively decreased on the numbers of BAL

neutrophils.

Pharmacotherapy decreases numbers of CD3+ IL-17+ cells in
lung tissues and in the bronchoalveolar space

Intranasal LPS exposure increased the total number of cells in the lung tissues
of the mice, as compared with the negative control. This increase was fully
attenuated by the high, but not by the low dose of dexamethasone or
cyclosporine A. However, for the CD3" cells in the lung tissue samples, there
was no substantial effect of either treatment (Figure 6A). Interestingly, LPS
treatment also increased the number of IL-17-containing CD3* cells in this
compartment, from a reproducibly low level to a substantially higher level, and
only the high dose of dexamethasone attenuated this increase (Figure 6B).

Similar to the results observed for the lung tissues, intranasal LPS exposure
increased the total number of BAL cells compared to control treatment. The
high dosage of dexamethasone and the dosage of cyclosporine A partially
inhibited this increase in BAL cell numbers. It is noteworthy that in contrast to
the situation in the lung tissues, intranasal LPS exposure increased both the total
number of CD3* cells and the number of I1.-17-expressing CD3* cells in the
BAL samples (Figure 6C and D). Only the high dosage of dexamethasone

totally attenuated these responses to LPS (Figure 6C and D).
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Figure 6. Cells in lung tissues and in the bronchoalveolar space after treatment with LPS
and pharmacotherapy. Effects of pre-treatment (i.p.) with dexamethasone (Dex, 20 or 200 mg)
and cyclosporine A (CsA, 500 mg) on the total number of CD3+ cells and 1L-17-containing
CD3+ cells in mouse lung tissue (A, B) and BAL samples (C, D) harvested two days after
exposure to LPS compared to negative and positive control. Data presented as mean £ SEM (*=
p=<0.05; n=3).

High proportion of CD3-IL-17+ cells in lung tissues and in
the bronchoalveolar space

In the lung tissues of mice, the percentage of CD3™" cells was similar to that of
CD3- cells among all the IL-17-containing cells after LPS exposure (Figure 7).
However, in BAL samples, the percentage of CD3* cells was lower than that of

CD3- cells among all the I1.-17-containing cells after LPS exposure (Figure 7).
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Figure 7. Percentages of CD3+ and CD3- cells in the population of IL-17-
containing cells in lung tissues and in the bronchoalveolar space. A. In the lung
tissues, the percentage of CD3+ cells is similar to that of CD3- cells among all the IL-
17-containing cells after LPS exposure (p=0.66, n=3). B. In the BAL samples, the
percentage of CD3+ cells is lower than that of CD3- cells among all the IT.-17-
containing cells after LPS exposure (*p<0.05, n=3). Data presented as mean £ SEM.

Pharmacotherapy decreases IL-17 mRNA expression in lung
tissues and reduces IL-17 release in vitro

Both doses of dexamethasone attenuated the LPS-induced increase in IL-17
gene transcripts in lung tissue samples. LPS stimulation caused an increase in
the concentration of IL-17 protein released into the conditioned medium of co-
cultures of CD3" spleen cells and adherent mononuclear BAL cells. Both
hydrocortisone and cyclosporine A attenuated the LPS-induced increase of

released 11.-17.
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Paper II

IL-17 enhances neutrophil apoptosis and MPO release

Stimulation of murine blood-derived neutrophils with 100 ng / mL of IL-17
increased the percentage of apoptotic neutrophils in the 7z witro cultures. In
contrast, the percentage of viable murine neutrophils was decreased compared
with the negative control (Figure 8A). However, stimulation with I.-17 caused
no clear change in the percentage of necrotic neutrophils, as compared with the
negative control. IL-17 increased the release of MPO from the murine
neutrophils, corresponding to a relative increase (% of control) in MPO

concentration of 75% over the level in the negative control.
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Figure 8. Impact of IL-17 on neutrophil apoptosis and viability as well as macrophage
phagocytosis of aged neutrophils in vitro. A. Apoptotic neutrophils (Annexin V+, 7AAD-
cells) and viable neutrophils (Annexin V-, TAAD- cells) were quantified using flow cytometry
after 48 hours of ageing in vitro with rmIL-17 (n=6; p=0.03 [for both apoptotic and viable
neutrophils] 100 ng/mL vs. negative control). Macrophages were primed incubated 24 hours in
vitro together with rmIIL-17 or LPS before 2 hours of co-incubation with aged neutrophils. B.
Phagocytosis of aged neutrophils by mouse bronchoalveolar macrophages (n=4; p=0.01 for
maximum IL-17-induced change in the concentration range up to 100 ng/ml vs. negative
control).
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IL-17 increases the phagocytosis of murine neutrophils and
latex beads

Stimulation with II.-17 increased the phagocytosis of aged murine neutrophils
by murine bronchoalveolar macrophages by 95% above the negative control
(Figure 8B). IL-17 increased the phagocytic index for murine bronchoalveolar
macrophage phagocytosis of fluorescent latex beads by 103% above the
negative control. In experiments using human monocyte-derived macrophages,

IL-17 increased the phagocytic index by 52% above the negative control.

IL-17 stimulates the release of sSLOX-1 but not MIP-2

Stimulation with II1.-17 resulted in a clear increase in the concentration of
sLLOX-1 in the conditioned medium from cultures of murine bronchoalveolar
macrophages. However, the release of MIP-2 from murine bronchoalveolar
macrophages was not changed by IL-17 treatment, as compared with the
conditioned medium from cultures of non-IL.-17-treated murine

bronchoalveolar macrophages.

Paper III

Following S. aureus infection, IL-17-knockout mice release
more IL-23 than wild-type mice

To test the hypothesis that I1.-17 inhibits the release of I11.-23 in airways during
inflammation, we administered S. awreus i.v. to wild-type and IL-17-knockout
C57BL/6 mice and subsequently measured the local concentrations of 11.-23.
We found that the concentrations of II.-23 and the concentration of alveolar

macrophages in the cell-free BAL fluids were significantly lower in the wild-type

50



mice than in the IL.-17-knockout mice 24 h after, but not before, i.v. inoculation

of S. aureus.

Following LPS stimulation, anti-IL-17 antibody-treated mice
release more IL-23 than isotype control-treated mice

To test further our hypothesis without the influences of bacterial growth and
systemic inflammation, we stimulated mice i.n. with LPS for 24 h, to create a
model of local airway inflammation (184, 187). As an intervention, some mice
were pre-treated with an anti-IL-17 antibody (all.-17 Ab). Using this model, we
observed a significant decrease in the concentration of IL-23 protein in the cell-
free BAL fluids from mice stimulated locally with LPS, as compared with
vehicle-treated control mice. The IL-23 concentrations in the corresponding
samples from LPS-stimulated mice pre-treated with the all.-17 Ab were
significantly increased compared with mice stimulated with LPS only. The
numbers of macrophages were also decreased in the BAL samples from mice
stimulated locally with LPS, as compared with vehicle-treated control mice,
although there was no difference in the concentrations of macrophages when
comparison was made with LPS-stimulated mice that were pre-treated with the
all-17 Ab. There were measurable levels of IL-17 protein in the cell-free BAL
fluids from all mice stimulated locally with LPS but not in the vehicle-treated

control mice.

IL-17 treatment decreases IL-23 in mice

We also performed local stimulation with IL-17 using in. instillation in the
absence of LPS. Two hours after instillation, the mice stimulated with IL-17
displayed a significantly decreased concentration of 11.-23 protein in the cell-free
BAL fluid, as compared with the vehicle-treated control mice. There was no
detectable difference in the concentrations of macrophages between the BAL
samples from mice stimulated with IL-17 and the BAL samples from the

vehicle-treated control mice.
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IL-17 treatment decreases IL-23 release from human cells of
the monocytic lineage in vitro

To investigate the underlying cellular mechanisms and to test whether I11.-17
affects the release of IL-23 from a fixed number of human cells of the
monocyte-lineage, we isolated and cultured human monocytes, monocyte-
derived macrophages, and BAL macrophages ## witro. These cells were
stimulated with LPS together with increasing concentrations of IL-17. For the
human monocytes, only the lowest concentration of 11.-17 (0.1 ng/mL) clearly
decreased the concentration of IL-23 protein in the cell-free medium, while for
the human monocyte-derived macrophages, there was a concentration-
dependent decreasing effect of I1.-17 on the IL.-23 concentration. For both cell
types, when IL.-17 was administered without LPS, no IL-23 was detected after
stimulation with any of IL-17 concentrations.

We also tested whether IL-17 could influence the release of the I1.-23-related
cytokine IL-12 from the ## witro-cultured human monocytes and monocyte-
derived macrophages. Negligible amounts of I1.-12 were detected; with all levels
were below the lowest value in the ELISA standard curve. In addition, in
experiments on monocyte-derived macrophages, we utilized NSC23766, a
specific inhibitor of the GTPase Racl, with or without concomitant stimulation
with IL-17. We found that the concentration of IL-23 in the conditioned
medium was decreased by the Racl inhibitor in a concentration-dependent
manner. This decrease reached statistical significance in the IL-17-stimulated cell
cultures. Notably, in one confirmatory experiment using human BAL
macrophages, we observed a lower concentration of IL-23 in the cell-free
medium from a culture of BAL macrophages stimulated with IL-17, as
compared to the cell-free medium from a culture of control BAL macrophages

treated with vehicle only.
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DISCUSSION

This discussion complements the respective discussions in the three papers
upon which this thesis is based. This section therefore focuses on placing our
results in a larger and updated context and expanding upon plausible

explanations for the mechanisms underlying the results.

Paper I

IL-17-containing cells

The aim of this study was to characterise the level of induced I1.-17 production
in T cells in 2 mouse model of lung infection caused by Gram negative bacteria.
At the time that we started this study, it was believed that only CD4* memory T
cells could produce IL-17. Therefore, the study was not designed to characterise
further the different types of IL-17-containing T cells and non-T cells. As
studies with new data of different types of IL.-17-containing cells have emerged
after this study was conducted, our results will be discussed in the light of recent

discoveries regarding I1.-17-producing cells.

T cells

In this study, we show that stimulation with LPS increases the number of IL-17-
containing T cells in both lung tissues and the bronchoalveolar space. According
to the literature, the T cells (CD3" cells) that produce I11.-17 are Th17 cells, y8
T-17 cells, NKT-17 cells, and Tc17 cells. Since y8 T-17 and NKT-17 cells have
TCRs that allow direct stimulation by LPS, it is very likely that these cells
contributed to the release of IL-17 in our experiments (16, 67-68, 80). Th17 and
Tc17 cells have TCRs that exclusively recognise peptide antigens. Therefore, it

is unlikely that these cells were directly stimulated by LPS. However, one study
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has shown that I1.-23 can augment the production of IL-17 by memory T cells
in the absence of TCR engagement (47). Th17 cells are prone to self-antigen
specificity and one possibility for the observed LPS activation of memory Th17
cells is that these cells recognise phagocytosed endogenous peptide antigens
from necrotic cells (188-189). When these endogenous peptide antigens are
presented on the MHC II molecule together with LPS-induced co-stimulatory
molecules on macrophages and DCs, Th17 cells are activated and start to
produce IL-17 (188). Likewise, we cannot exclude that memory Tcl17 cells are
activated in a similar manner to Th17 cells, although in this case, by cross-
presentation through the MHC II (190-191).

Thus, all the IL-17-containing T cells described in the literature are potential

contributors to the 11.-17 levels observed in the present study.

Non-T cells

We found that a large proportion of the IL-17-containing cells in the lung
tissues and bronchoalveolar spaces were not T' cells, ie., they had the CD3
phenotype. From the literature, non-T cells that can produce I1-17 and that
may be present in the lungs include: lymphoid tissue inducer cells (LTi),
macrophages, and neutrophils (91-96, 102-103). From our data, we it is no
possible to conclude how many LTi cells were present, and as even though the
IL-17 levels were increased by LPS stimulation, there was no associated increase
in the number of macrophages. Given that the number of neutrophils correlated
positively with the IL-17 levels after LPS stimulation, the focus hereinafter will
be on the neutrophils. Since IL-17 is a neutrophil-recruiting cytokine, the
correlation between neutrophil numbers and I1.-17 levels probably reflects 11.-
17-induced accumulation of neutrophils, although we cannot exclude the
possibility that IL-17-containing neutrophils contributed to 1L.-17 production
(133-136, 138-140, 192).

Even though it does not seem very likely, there is a possibility that the non-T

cells that were intracellularly stained positive for I1.-17, and which constitute a
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substantial proportion of the total number of IL-17-containing cells, are in fact

cells that have phagocytosed I1.-17-containing T cells.

Anti-inflammatory drugs

Dexamethasone

We found that the high dose of the glucocorticoid dexamethasone attenuated
the LPS-induced increases in; 1) the numbers of macrophages, neutrophils, T
cells, and IL-17-containing T' cells, as well as the levels of IL-17 protein in the
bronchoalveolar space; and 2) the numbers of IL-17-containing T cells and
levels of IL.-17 mRNA in the lung tissues.

The finding that the number of IL-17-containing T cells but not the total
number of T cells in the lung tissues were decreased by dexamethasone
treatment suggests that dexamethasone has a specific effect on IL-17-producing
cell numbers. In the bronchoalveolar space, the high dose of dexamethasone
reduced both the LPS-induced increase in total number of T cells and the
number of IL-17-containing T cells. Since there were no T cells in the
bronchoalveolar space in the negative control group, we do not know whether
dexamethasone reduces the IL-17 level simply by decreasing the recruitment of
T cells to the bronchoalveolar space or decreases the number of IL-17-
containing T cells in a specific manner. Interestingly, the low dosage of
dexamethasone, which did not show much efficacy in cell number in our study,
was able to reduce the level of IL-17 released in the bronchoalveolar space,
whereas it did not reduce the number of IL-17-containing T cells. These
findings suggest that while low-dose dexamethasone does not affect the number
of IL-17-containing T cells, it negatively influences the amount of I11.-17 that is
released by each cell. These results also suggest that the dexamethasone-induced
reduction in IL-17 release is due to an effect on the IL-17-containing non-T
cells. If this population of IL-17-containing non-T cells consists mainly of

neutrophils, this observation seems somewhat contradictory, since neutrophils
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are known to be resistant to glucocorticoid treatment, and glucocorticoid
treatment may even increase the survival of neutrophils (193). A possible
explanation for this is that dexamethasone can decrease the production of IL-17
by neutrophils, while at the same time increasing their survival. This hypothesis
is supported by the results of our second study (Paper II), in which we show
that I1.-17 decreases the viability and increases the apoptosis rate of neutrophils.
Therefore, we speculate that in this study, dexamethasone increases neutrophil

survival indirectly through a reduction in the level of I1.-17.

Cyclosporine A

We found that cyclosporine A attenuated the LPS-induced increases in the
number of neutrophils and IL-17 protein levels in the bronchoalveolar space
and the increase in IL-17 protein levels 7z vitro, whereas it did not attenuate the
LPS-induced increases in the numbers of T cells or IL.-17-containing T cells in
the bronchoalveolar space or lung tissues.

Cyclosporine A is a calcineurin inhibitor that acts by inhibiting the production
of IL-2, IL-4, IFN-y, and TNF-o (194-195). IL-2 and IL-4 are members of the
common y-chain family of cytokines, which are important for the activation,
proliferation, and apoptosis of Th1, Th2, Treg, and CD8* cells (196). However,
both I1.-2 and I1.-4 have been shown to be negative regulators of Th17 cells,
which mean that cyclosporine A could theoretically increase the number of
Th17 cells (105, 197). The fact that Th17 cells are not as dependent upon IL.-2
and IL-4 as other T cells may partially explain the observed limited effect of
cyclosporine A on IL-17-producing T cells. Whether IL-2 and IL-4 affect y5 T-
17 cells and NKT-17 cells remains unknown. The only cell type that was
reduced in number by cyclosporine A was the neutrophil. This could be due to
the fact that cyclosporine A reduces the level of IFN-y, which is an important

factor for neutrophil activation and survival (194-195, 198-201).

In the present study, we show that both the IL.-17 level and the number of

neutrophils in the bronchoalveolar space are decreased by dexamethasone or
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cyclosporine A treatment. The relevance of our results was confirmed in a
clinical study that was published shortly after the publication of our study,
which showed that three months of cyclosporine A and dexamethasone
treatment of patients with uveitis lowered the concentration of IL-17 in the

bloodstream and improved the uveitis (202).

Paper II

Apoptosis

In this study, we demonstrate that IL-17 stimulates neutrophil apoptosis. A
hypothetical mechanism for IL.-17 induction of neutrophil apoptosis relies on
the fact that IL-17 increases the production and release of the microbicidal
peptides S1008A and S1009A (61). These peptides are released from
neutrophils, and in addition to their microbicidal actions, they form a complex,
called calprotectin, which induces apoptosis (203-206). The identity of the
receptor for this peptide complex is not yet known, although RAGE has been
excluded as a candidate. Nevertheless, the apoptosis-inducing properties of this
complex are manifested as rapid decreases in the mitochondrial membrane
potential (A¥) and the anti-apoptotic proteins Bcl2, bak, and Bcl-X1, as well as
increases in the activities of the pro-apoptotic mediators caspase-3 and caspase-
9 (205-200).

As mentioned in Paper II, studies other than ours have verified that I1.-17
increases neutrophil apoptosis (207-208). One of these studies (208) has shown
that IL-17, in similarity to the microbicidal peptides S1008A and S1009A,
decreases the mitochondrial membrane potential and increases caspase-3
activity. Therefore, it can be speculate that II.-17 augmentation of neutrophil

apoptosis involves the microbicidal peptides ST008A and ST009A.
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Myeloperoxidase

In parallel with the stimulation of apoptosis of mouse neutrophils, IL-17
induces the release of the microbicidal compound MPO. Hypothetically, the
increased MPO could, #a its inherent capacity to induce the production of ROS,
allow the neutrophils to remain tolerogenic while undergoing apoptosis (209-
210). Both apoptotic and necrotic cells release the potential danger signal high
mobility group protein B1 (HMGB1). In apoptotic cells, ROS oxidise cysteine
106 of HMGB1, which neutralises HMGB1 and thereby promotes tolerance
when recognised by antigen-presenting cells (210-212). In necrotic cells,
HMGB1 is not oxidised, and the lack of oxidation contributes to the
immunogenic reaction upon recognition by antigen-presenting cells. From our
experiments, we could not deduce whether the MPO was released from viable,
apoptotic or necrotic neutrophils. As mentioned in Paper II, MPO has been
shown to be released from viable neutrophils, and we did not see any
correlation between the concentration of MPO and the percentage of necrotic
neutrophils (213-215). In addition, to be sure that we had not missed a
population of neutrophils that might have been necrotic in the first place but
then had exploded and turned to cell debris, we re-checked our flow cytometry
data to see if there was an increase in cell debris in the samples that had higher
levels of MPO; we found that this was not the case. Based on the above, it
seems plausible that IL-17 exerts tolerogenic properties through the oxidation
of HMGB1 in apoptotic neutrophils, which is attributed to the MPO-induced
production of ROS.

MIP-2 and soluble LOX-1

Bronchoalveolar macrophages stimulated with I1.-17 showed increased release
of the soluble portion of the scavenger receptor LOX-1, sLOX-1, but did not
show increased release of the neutrophil recruitment chemokine MIP-2. IL-17
has been shown to increase the production and release of MIP-2 in mesangial

cells, fibroblastoid 1.929 cells, astrocytes, microglia, as well as in the
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bronchoalveolar space (175, 216-218). However, 11.-17 did not increase the
release of MIP-2 in a co-culture of lymphocytes and airway macrophages (175).
This confirms our result and suggests that I1.-17 increases the release of MIP-2
from structural and supporting cells but not from macrophages.

LOX-1 is a scavenger receptor that aids phagocytosis by binding to apoptotic
cells, as well as to bacteria and oxidised low-density lipoproteins. It has been
proposed that the amount of sLOX-1 represents the amount of LOX-1
expressed on the membrane of the phagocytic cell, and thereby reflects the level
of phagocytosis (219-221). Soluble LOX-1 has been shown to correlate with the
severity of atherosclerosis, a disease in which one of the hallmarks is the
phagocytosis of oxidised low-density lipoproteins (219-221). Other studies have
proposed a role for soluble scavenger receptors in chemotaxis (222-223).
Applying this hypothesis to our study, for macrophages to recruit their prey by
shedding sLOX-1 receptors, the apoptotic cells that bind sLOX-1 must have
the capability to migrate up a chemotactic gradient. Even though one study has
shown that apoptotic neutrophils have an impaired propensity to migrate
towards formyl-methionyl-leucyl-phenylalanine (FMLP), cells in the first stages
of apoptosis may still be able to migrate towards phagocytic cells (215, 224-
225).

We have shown that IL-17 increases macrophage phagocytosis of apoptotic
neutrophils and increases macrophage release of sLOX-1. It is theoretically
possible that these macrophages, when stimulated by IL-17, release more
sLOX-1, which then functions as a chemotactic factor for apoptotic neutrophils

(226).

Phagocytosis

We found that incubation of macrophages with IL-17 increased the
phagocytosis of both aged neutrophils and latex beads. The literature contains
two potential explanations for how IL-17 increases phagocytosis. First, as
mentioned in Paper II, the small GTPase Racl constitutes a theoretical link for

the intracellular signalling underlying IL-17-induced phagocytosis. Racl is
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induced by I1.-17 and facilitates phagocytosis by rearrangement of the actin
cytoskeleton (227-229).

Second, IL-17 has been shown to increase complement factor 3 (C3) gene and
protein expression in fibroblasts, as well as in mucosal samples from patients
with inflammatory bowel disease (230-231). Since C3 can be enzymatically
cleaved to the opsonin C3b, it can enhance phagocytosis by binding to CR3
(CD11b/CD18) and CR4 (CD11¢/CD18) on apoptotic neutrophils (232).

Paper III

Negative regulation downstream of IL-17RA

We found that the release of I1.-23 from cells of the monocyte lineage was
decreased after stimulation with IL-17 and LPS. Our results and those of others
imply that the level of IL-23 is decreased by IL.-17RA signalling. As described in
Paper III, the cytokine IL-25 (formerly IL-17E) decreases macrophage
production of IL.-23 (233-235). Both IL-17 and IL-25 bind to the receptor
subunit IL-17RA, although the complementing receptor subunit in the
respective heterodimeric receptor complexes differs (114, 118-119). Since
studies of IL-25 (233-235), in similarity to our study, have demonstrated
decreased levels of 11.-23, it appears that the shared receptor subunit I1.-17RA is
responsible for the reduction in I1.-23 expression.

It has also been shown that IL-17 downstream signalling za IL-17RA
phosphorylates the CCAAT/enhancer-binding protein 3 (C/EBP), which in
turn leads to downregulation of the transcriptional capacity of C/EBP (127).
Synthesis of the p40 protein, which is shared by IL-12 and I1.-23, is dependent
upon the activation of C/EBP, which may explain how the 1L-17-induced
decrease of IL-23 is executed (236-239). Howevet, regulation of C/EBP is
complex, and the role of C/EBPB phosphorylation is suggested to be
dependent on both the upstream signals as well as the specific downstream

promoter system (127).
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IL-17 dose dependency

The IL-17-induced decrease in the level of I1.-23 was most prominent when
lower concentrations of IL.-17 were used. A similar phenomenon was described
in another study, in which a low dosage (0.1 pg/rat/day) or a high dosage (0.9
pg/rat/day) of 1L-17 was administered intranasally to rats with expetimental
autoimmune neuritis (EAN). During the initial acute phase, both dosages of IL-
17 enhanced the severity of EAN, as compared with EAN rats that received
PBS only (240). The rats that received the low dosage of IL-17 recovered
completely after Day 80 post-infection, the rats that received the high dosage of
IL-17 recovered completely after Day 98 post-infection; and the control rats
that received PBS only still had neuritis on Day 120 post-infection. These results
suggest that IL-17 can have a pro-resolving effect, and that this effect is most
pronounced at low concentrations of IL-17.

A similar observation regarding 1L.-17 and dose-dependency was made in the 7z
vitro studies (referred to in Paper III) of human synovial fibroblasts and mouse
lung fibroblasts, revealing an inhibitory role for I1.-17 at low concentrations and

a stimulatory role for IL-17 at higher concentrations (241).

What happens when IL-17 decreases IL-232

By decreasing I1.-23, IL-17 limits its own production. Concomitantly, the
production levels of other I1.-23-dependent cytokines, such as the I1.-17-related
cytokines IL-17F, IL-21, and IL-22, are reduced. These cytokines have been
shown to mediate disease in the absence of IL-17 (113, 242). Cytokines
produced by subsets of macrophages and dendritic cells that express IL-23R
exhibit decreased production of mediators, such as I1L-6, TNF-u, and I1.-1 (44,
243-244). Thus, when IL-17 decreases IL.-23 it has an impact that is larger than
the negative feedback of IL.-17 alone.
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GENERAL DISCUSSION

Effect of IL-17 on macrophage phenotype

As described in the Infroduction, macrophages can be divided into subtypes
depending on the stimuli that activate them. Regulatory macrophages, which
suppress immune responses, are suggested to be induced by LPS, immune
complexes, prostaglandins, apoptotic cells, and IL-10 (13, 19, 245). Although
many subtypes of regulatory macrophages exist, most of these regulatory cells
require two different types of stimuli to induce their anti-inflammatory activities.
The first stimulus has no or moderate effect by itself but when it is combined
with the second stimulus, usually a TLR ligand, the macrophage becomes a
regulatory-type cell. The fundamental characteristics of regulatory macrophages
are that they produce IL-10 and are down-regulated for IL-12 production.
Although we did not assess the IL-10 levels in our experiments, we measured
the levels of IL-12. We found no measurable release of IL-12 from the human
monocyte-derived macrophages that were stimulated with IL-17 together with
LPS. The macrophages that were stimulated with I1.-17 together with LPS in
Studies II and III displayed a regulatory and anti-inflammatory phenotype. We
found that these cells did not produce measurable levels of IL-12, and the
addition of IL-17 decreased IL-23 production, without increasing MIP-2
production (216-217). Last but not least, these macrophages showed an
increased capacity to phagocytose both apoptotic cells and particles. Based on

these findings, we propose a new regulatory macrophage subtype: the Mreg-17.

Dose dependency

One of the conclusions from Paper III is that when the concentration of IL-17
is low IL-23 production is held back, which in turn means that the production

of IL-17 is decreased. This is exemplified in Figure 10, which shows that in the
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presence of a weak infectious stimulus, the antigen-presenting cells weakly
stimulate II.-17-producing cells, which results in negligible release of I1.-17. This
low concentration of IL.-17 reduces the production of I11.-23 and promotes the
resolution of inflaimmation. However, if the infectious stimulus is strong, the
antigen-presenting cells are highly activated and produce high levels of 1L-17-
inducing factors, such as IL-1B, IL-6, and TGFB, which increase the I1.-17
concentration. This in turn releases the IL.-17-induced blockade so that I1.-23
production is increased once again, and the major inflammation is initiated.
During inflammation, when the IL.-17 concentration is high, II.-17 induces both
neutrophil apoptosis and the phagocytosis of apoptotic neutrophils and other
particles. At the end of the inflammatory reactions, when the infectious stimuli
have been cleared, the reduced infectious stimuli lead to decrease in the 1L-17
concentration. This process of resolution is supported by the phagocytosis of
apoptotic neutrophils by macrophages, thereby decreasing the release of IL-23,
which also lead to decrease in the IL-17 concentration (246). When the IL-17
concentration is low, again I1.-17 can start the restriction of 11.-23 expression
and thereby down-regulates not only itself, but also other cytokines that are
dependent upon IL-23 signalling. Furthermore, the use of an anti-inflammatory
drug, such as dexamethasone or cyclosporine A, helps to decrease the
concentration of 11.-17, so that IL.-17 limits its own production and that of the

other cytokines that are dependent upon 11.-23 signalling.
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Figure 9. Dose—dependency of IL-17 activity. A weak infectious stimulus (A) produces weak
activation of the antigen-presenting cell, which in turn generates low levels of IL.-17 released
from IL-17-producing cells. The low concentration of II.-17 reduces the production of IL.-23
and promotes resolution of the inflammation. When the infectious stimulus is strong (B), the
antigen-presenting cell is highly activated and produces high levels of 11.-17-inducing factors, in
addition to IL.-23, thereby increasing the II.-17 concentration. This in turn releases the IT.-17-
induced blockade, so that II.-23 production is once again increased and the inflammation is
initiated. The macrophages and some of the epithelial cells are adapted from Nazure Reviews
Tmmnnology.

Why IL-17 is considered to be a pro-inflammatory
cytokine

In two of our studies, we show that I1.-17 exerts actions that can be viewed as
pro-resolving. This observation is supported by other studies, based on animal
models, which show that the inhibition of endogenous IL.-17 actually worsens
airway allergy, inflammatory bowel disease, and atherosclerosis (247-252). In line
with these findings, treatment with recombinant IL-17 protein exerts anti-
inflammatory effects in gastritis, experimental autoimmune neuritis and in

chronic relapsing uveitis in animal models (240, 253-254).

64



An important question then arises: if IL-17 can exert all these anti-inflammatory
activities, why then is II.-17 considered to be a pro-inflammatory cytokine? In
my view, IL-17 exerts both pro-inflaimmatory and pro-resolving activities,
depending on the situation. The predominant perception of IL-17 as a pro-
inflammatory cytokine may be in part a reflection of the methods that have

been used to assay this cytokine.

The usual suspect

In the literature, the actions of Th17 and “the 11.-23/I1.-17 axis” are often
alluded to as being equivalent to those of IL.-17. The effects of I1.-17 have been
studied using various methods, ranging from direct blocking using anti-IL-17
antibodies, to very indirect methods, such as blocking the IL-12 and IL.-23
shared p40 subunit. Many of the biological functions attributed to II.-17 have

been based on studies of Th17 cells or the I1.-17 receptor.

Do not mistake IL-17 for Th17

The activities attributed to Th17 cells differ from those of 11.-17, in that Th17
cells also produce cytokines, such as IL-17F, I1.-21, and 11.-22, all of which have
been shown to mediate disease independently of IL.-17 (113, 242). In addition,
Th17 cells have an inherently high specificity for self-antigens, and therefore
have increased potential to cause autoimmune disease (188). Cells other than
Th17 cells can produce IL-17. Thus, even if Th17 cells are associated with
autoimmune diseases, this does not necessarily mean that other IL-17-producing
cells acts in the same way or that IL.-17 produced by, for example, LTi cells
mediates responses similar to those induced by the IL-17 produced from Th17
cells.

Much information on the IL.-23/I1.-17-axis and Th17 cells has been derived
using experimental animal models, even though the results have varied
depending on the particular model chosen. For example, the numerous

experimental models of multiple sclerosis, inflammatory bowel disease, and
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rheumatoid arthritis have produced divergent outcomes regarding the actions
and properties of the 11.-23/1L-17-axis and TH17 cells (255-259). Obviously,
there is also a risk that some experimental models become more widely used
because they generate unambiguous results for 11.-23/I1.-17-axis or Th17 cells

but may not necessarily reflect the real disease.

SUMMARY

IL-17 has the capacity to decrease I1.-23 release in several ways. I1.-17 induces
the accumulation of neutrophils at the site of inflammation by increasing the
proliferation and recruitment of neutrophils through stimulation of G-CSF and
GM-CSF, and CXC chemokines, respectively. After the neutrophils have killed
the invading bacteria, IL-17 drives them to apoptosis and accelerates their
phagocytosis by macrophages. Phagocytosis decreases the release of IL-23, so
once the infectious stimuli are cleared there will be no more IL-17.
Furthermore, when the IL-17 levels are low (at the beginning and end of the
cycle), the pro-inflammatory cascade is retarded by IL-17 through its inhibition

of 11.-23 release.
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CONCLUSIONS

General conclusion

The results of the work described in this thesis reveal that the production of IL-
17 is regulated by both anti-inflammatory drugs and an IL-17-induced feedback
loop, which in turn may protect against excessive, 11.-23-induced I1.-17
signalling. Moreover, we demonstrate that IL.-17 has both pro-inflammatory and
inflammation-resolving actions; 1L.-17 induces the accumulation of neutrophils
after stimulation with LPS, while it also induces the phagocytosis of apoptotic
neutrophils, thereby controlling the overall turnover of neutrophils. The studies
presented in this thesis demonstrate that IL-17 exerts different actions
depending on the inducing stimulus, the cell that produces it, the concentration
of the cytokine itself, the cell that expresses its receptors, and of course, the
prevailing milieu. Therefore, I1.-17 can no longer be regarded simply as a pro-
inflammatory or anti-inflammatory cytokine.

That II.-17 induces the apoptosis of neutrophils and increases their
phagocytosis may represent a valuable strategy for modulating conditions in
which necrotic neutrophils are an important contributor to severe and
sometimes life-threatening conditions, such as chronic lung allograft rejection

and acute respiratory distress syndrome.

Specific conclusions

Paper I

The results of this study using a mouse model of acute inflammation indicate
that LPS induces sustained I1.-17 production and release from T cells that reside

in lung tissues and that are recruited to the bronchoalveolar space 7 vivo. In
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addition, we identify a population of cells other than T cells that contributes to
IL-17 production in lung tissues and in the bronchoalveolar space. Finally, we
show that LPS-induced IL-17 production by T cells in lung tissues and in the
bronchoalveolar space can be inhibited by treatment with the anti-inflammatory

drug dexamethasone.

Paper II

This 7n vitro study on isolated cells from mice and humans demonstrates that IT.-
17 not only induces neutrophil apoptosis, but also stimulates macrophage
phagocytosis of apoptotic neutrophils and particles. These findings suggest that
IL-17 is involved in controlling the overall turnover of neutrophils, in addition
to its previously described activities in the recruitment and accumulation of

neutrophils.

Paper III

In this study, we provide 7z vivo and 7n vitro evidence that IL-17 inhibits the
release of the upstream regulator I1.-23. These findings indicate that IL-17 per se
participates in a negative feed-back loop that protects against excessive, 1L.-23-

induced IL-17 signalling.
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POPULARVETENSKAPLIG SAMMANFATTNING

Modulerande roll for IL-17 vid inflammation i

luftvigarna

IL-17 4r en signalmolekyl som produceras av celler som tillhér immunférsvaret.
Nir I1-17 frisitts fran en cell kan den binda till en I1.-17-specifik receptor (IL-
17-receptor) pd en mottagarcell. Denna receptorbindning ger en signal till
mottagarcellen att borja tillverka olika dmnen. I1.-17 produceras oftast under
olika inflammatoriska tillstind som innefattar akut inflammation si som
bakteriell infektion och kroniska inflaimmatoriska sjukdomar si som astma,
reumatoid artrit och multipel skleros.

Tidigare har man trott att IL-17s frimsta uppgift dr att bidra till 6kad
inflammation, men under den senaste tiden har flera nya studier visat att IL-17
ocksa kan ha en anti-inflammatorisk effekt. Syftet med denna avhandling var att
studera metoder for att reglera produktionen av IL-17 samt att underséka en

eventuell roll f6r IL-17 som begrinsande faktor fér inflaimmationer.

Avhandlingen bestar av tre separata studier dir vi frimst har fokuserat pa
effekter av I1-17 vid den typ av akut inflammation som uppstar vid en bakteriell
infektion. Vi har genomfort f6rsok i lungan hos méss samt odlat celler 7 vitro.
For att efterlikna en bakteriell infektion har vi anvint oss av komponenter fran

E. coli bakterier (LPS).

Delarbete I

I den férsta av avhandlingens studier kom vi fram till att IL-17 kan oka
inflammation. I denna studie anvinde vi moss och genom att lita dem andas in
LPS kunde vi studera akut inflammation i lungan. Vi sig att celler i

immunfSrsvaret producerade och frisatte mer IL-17 i lungorna, och att 11.-17
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bidrog till att rekrytera inflammatoriska celler, neutrofiler, frin blodbanan till
lungorna. I samma studie behandlades nigra av moéssen med de anti-
inflammatoriska likemedlen dexametason och cyklosporin A, och hos de
méssen minskade bade produktionen av IL-17 och rekryteringen av neutrofiler

till lungan.

Stutsats

LPS stimulerar produktion av IL-17 som i sin tur bidrar till rekrytering av
neutrofiler till lunga. Detta gir att minska med hjilp av antiinflammatoriska

likemedel.

Delarbete 11

I avhandlingens andra studie kunde vi visa att IL.-17 kan hjilpa till att avsluta en
inflammation. I denna studie odlade vi celler frin immunférsvaret, mamrofager
och neutrofiler iz witro. Dessa celler stimulerades med IL-17 och LPS.
Overlevnaden hos inflammatoriska neutrofiler minskade av IL-17, och
makrofagers formiéga att dta upp (fagocytera) dessa déende neutrofiler 6kade av

1L-17.

Slutsats
Genom att 11.-17 bide minskar Overlevnaden av inflaimmatoriska neutrofiler
samt Okar makrofagers fagocytos av dessa déende neutrofiler, kan I1.-17 bidra

till att begrinsa en pagiende inflammation.

Delarbete I11

I avhandlingens tredje studie kom vi fram tll att IL-17 kan verka anti-
inflammatoriskt genom en negativ feedback mekanism. IL-23 dr en
signalmolekyl som dr nédvindig for att celler ska kunna producera IL-17. 1

denna studie undersokte vi om IL-17 kan paverka cellers produktion av IL-23.
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Efter att ha undersokt detta, bade i lungor hos méss och hos makrofager odlade
in vitro, kunde vi visa att I1.-17 kan minska produktionen och frisittningen av

11.-23.

Stutsats

IL-17 kan minska produktionen av 11.-23 i lunga och eftersom IL-23 ir
noédvindig for att celler ska kunna producera I1.-17, si minskar I1.-17 indirekt

sin egen produktion.

Sammanfattningsvis har vi visat att det gar att stoppa I1.-17s inflammatoriska
effekter med hjidlp av antiinflammatoriska likemedel, samt att IL-17 kan
begrinsa inflammation och dessutom under vissa omstindigheter dven dimpa
sin egen produktion genom en negativ feedback mekanism.

Genom att visa att IL.-17 bade kan medfora okad inflammation, men dven kan
begrinsa den, bidrar denna avhandling till att nyansera bilden av IL-17 i
inflammation. Férmodligen 4r effekten av I1.-17 beroende av det férhéllande
som foreligger nir 11.-17 ska utféra sin verkan. Detta férhallande kan bero pa
vad som startat inflammationen, mingden I1.-17, samt vilka celler som finns i
nitheten. Att IL-17 kan minska neutrofilers 6verlevnad samt 6ka fagocytosen av
dessa, skulle kunna innebidra en virdefull strategi for att modulera tillstind dar
neutrofilerna i sig, kombinerat med en otillricklig fagocytos av dessa neutrofiler,
utgdr en visentlig del i allvarliga inflammatoriska tillstind si som kronisk
avstotning av transplanterade lungor och akut respiratorisk distress-syndrom

(ARDS).
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