(®)) UNIVERSITY OF GOTHENBURG

A Quality-based Framework for
Leveraging the Process of
Mashup Component Selection

SAEED AGHAEE

Master Thesis in Software Engineering and Management

Report No. 2009:075
ISSN: 1651-4769

University of Gothenburg
Department of Applied Information Technology
Gothenburg, Sweden, May 2009

Abstract

Mashups are a new and interesting brand of Web 2.0 applications. They are simply built from available
mashup components on the Web providing functionality, and content. The ever-increasing number and
diversity of mashup components makes the process of selecting proper components a challenging task.
Hence, the present thesis work is directed towards presenting a quality-based framework providing a
recommendation-based mechanism to enhance this process.

Keywords: Mashups, Mashup component, Service-Oriented Architecture, Quality evaluation.

Supervisor: Dr. Gerardo Schneider

Acknowledgment

In the first place, I would like to show my gratitude to Dr. Gerardo Schneider for his supervision,
advice, and guidance from the very early stage of this work as well as giving me extraordinary
experiences which will surely continue to inspire me in my future science career. Above all, he gave me
the self-confidence to continue working on the present thesis.

Many thanks go in particular to Dr. Urban Nuldén and Dr. Jonas Landgren, who helped me determine
the correct path towards the current thesis. Furthermore, 1 truly appreciate their trust and confidence in
allowing me to perform research under their supervision during my master study. I am truly grateful for
all that I learned from them so far.

In addition, I thank Dr. Miroslaw Staron, who helped me find a supervisor, and Niklas Mellegird, who
provided me with valuable guidance to resolve some issues raised in the beginning of this work.

Finally, words fail me to express my appreciation to my family who supported me emotionally,
spiritually, and financially throughout these six years of studying abroad.

Contents 6 CASE STUDY 12

6.1 Design.................. 12

1 INTRODUCTION 2 6.2 Applying Framework 13
1.1 Motivation. 2 62.1 Mapping Requirements | 13

1.2 Thesis Qutlineo 3 6.2.2 Selecting Candidate Components 13

2 BACKGROUND 3 6.2.3 Evaluating Quality 13
21 Mashup . . o oo 3 6.2.4 Component Selection 15

2.1.1 Consumer and Enterprise Mashups 3 7 DISCUSSION AND RELATED WORK 15
2.1.2 Mashup from SOA Perspective . 4

22 Review of ISONEC 9126 4 8 CONCLUSION 16
2.3 A Quality Model for Mashup Compo-
nents 5
3 METHOD 5

4 COMPONENT-BASED DESIGN OF EN-

TERPRISE MASHUPS 5

4.1 Requirements Engineering 6

42 MashupDesign 6

4.2.1 Mashup Component Pool 7

4.2.2 Domain Knowledge 7

4.2.3 Component Model 7

4.2.4 Composition Model 7

425 UlDesign............ 8

5 FRAMEWORK 8
5.1 Mapping Requirements to Mashup Com-

ponents, 8

5.1.1 Functional Requirements 9

5.1.2 Non-Functional Requirements . 9

5.2 Selecting Candidate Components 9

5.3 Quality Evaluation of Candidate Com-
ponents, 10

5.3.1 Component Non-Functional Re-
quirements 10

5.3.2 Metrics Suite 10

1. INTRODUCTION

Web 2.0 has interestingly turned the Web into a more
interactive, collaborative and enjoyable environment by
letting user access and share a website content or even
contribute to it [29]. The introduction of Asynchronous
JAvascript over XML (AJAX) in 2005 [14] is consid-
ered as a profound contribution to Web applications
as it enables a smooth interface for web applications
(similar to desktop applications) by allowing data to
be retrieved asynchronously in the background. As a
result, user interaction with the Web application does
not experience interference caused by client-server data
transmission, and consequently it simulates the experi-
ence of using desktop applications.

Google has recently caused some buzz by revealing
Chrome OS', which is a completely browsers-based
Operating System (OS). The underlying concept be-
hind the development of chrome OS is as simple as us-
ing software as electricity (plug and play), or in other
words cloud computing. Regardless of whether or not
Chrome OS will grab the market, it is suggestive of the
important future of Web 2.0 applications in new gen-
eration of operating systems, at least from one of the
world-leading IT company point of view, as being a
potential replacement for current desktop applications.
Therefore, Web 2.0 applications are undoubtedly get-
ting more highlighted, and mashups, as a new brand of
Web 2.0 applications, are no exception.

Web mashups owe their recent popularity to the ef-
fective balance between the overall development cost
(time, resource, and money), and the versatility, effi-
ciency, and quality of the final solutions they can pro-
vide. Web mashup simply aggregates data, content, and
functionality from numerous heterogeneous sources on
the Web into a new solution or service. Data sources
are usually provided in the form of RSS/atom/XML
feeds. There are also a vast number of companies (or
individual developers) on the Web such as Google?
and Twitter® offering functionality in the form of Web
services. Mashup composers select and combine these
composite Web services and disparate data sources
from the Web to create a new composition provid-
ing programmable APIs, data, or applications [38].

"http://googleblog.blogspot.com/2009/07/introducing-google-
chrome-os.html - Accessed 20 November 2009

% http://code.google.com/ - Accessed 10 October 2009
? http://apiwiki.twitter.com/- Accessed 10 October 2009

In this work, such composite Web services are ac-
counted for mashup components, which are accessi-
ble over Web via standard Web protocols (e.g. SOAP*
and REST?), and expose an Application Programming
Interface (API) allowing access to functionality or con-
tent.

It is self-evidence that the quality of a given mashup
is highly dependent on some external quality charac-
teristics of its building components [6], which can also
distinguish a “proper” component from an “improper”
component. The current thesis is intended to present a
quality-based framework that can be applied for com-
parative evaluation of mashup components. The evalua-
tion results will help the composer select a set of proper
components, which can potentially result in composing
a successful mashup.

1.1 Motivation

Despite the fact that mashups mostly target ordinary
Web 2.0 users, by a rapid increase in the number and di-
versity of mashup components, we have been witness-
ing the capability of mashups to be deployed in a wide
range of specialized domains such as emergency re-
sponse [36], public health [7], and tourism [35]. At the
same time, the growing number of mashup components
imposes challenges on searching and selecting suit-
able components. Web APIs directory Websites such
as ProgrammableWeb® are actively enhancing access
to mashup resources by maintaining an up-to-date list
of mshup components classified into several categories
based on their functional similarities. So it can poten-
tially reduce the effort required to search for a candi-
date group of components possessing the functionali-
ties of interest. However, selecting a suitable compo-
nent among a group of candidates, which all provide
the same functionalities, remains as a challenging task.

In the present work, the main contribution is made to-
wards addressing the last mentioned challenge. Addi-
tionally, the attempt is also made to provide a suitable
platform to address this challenge by presenting a con-
ceptual model for enterprise mashup design (Section
4).

4 Simple Object Access Protocol
5 Representational State Transfer
8 http://www.programmableweb.com/ - Accessed 1 December 2009

1.2 Thesis Outline

Section 2 is dedicated to review the relevant litera-
ture as a background study. In section 3, we foster the
framework by proposing a tailored model for enterprise
mashup design. In section 4, we present the framework
in detail. To put the framework into practical experi-
ence, we apply it on a case-study, which is a mashup
proposal for emergency response (section 5). Eventu-
ally, we discuss relevant work in this regard in section
6, and draw conclusions highlighting some potential fu-
ture work in section 7.

2. BACKGROUND

In order to fully understand the rest of the thesis, this
section provides a concise introduction on the under-
lying concepts of this work which were based on a
review of relevant literature. These concepts include
mashups and key actors involved in mashup develop-
ment, ISO/IES standard, and the quality model pre-
sented in [6].

2.1 Mashup

In spite of the fact that the idea behind the term
mashups is not new, yet it is not amenable to pre-
cise definition and may vary over time. The reason
might be due to the dramatic progress in web-related
technologies, as a consequence of which the lens,
through which we look at mashups, gradually gets
wider. However, the basic definition of mashup, as de-
scribed in [27], can be conceptualized by the interac-
tion among three disjoint participants: mashup compo-
nent provider, mashup hosting site, and end-user’s web
browser (figure 1).

Respectively, API/content providers, ranging from in-
dividual developers to industry player companies, in-
tegrate content and functionality into a single mashup
component, which exposes an Application Program-
ming Interface (API), and is accessible via web pro-
tocols such as REST and SOAP. The mashup site is
where the mashup is hosted. Mashups can be executed
on both server-side (using server-side languages) and
client-side (using scripting languages). Eventually, the
last participant is user’s Web browser, in which mashup
is graphically rendered and presented to end-user.

APl/content providers

S

REST/SOAP

Mashup Website

User's Web browser B

Figure 1. Mashup architecture comprises three dis-
joint participants: API/content providers, mashup’s
Website, and user’s Web browser.

2.1.1 Consumer and Enterprise Mashups

On the other hand, mashups fall into two types: con-
sumer and enterprise. The most popular mashups are
those built for ordinary users and are classified as con-
sumer mashups. This type of mashup provides inter-
esting solutions for general purposes such as weather
forecast by aggregating heterogeneous mashup compo-
nents into a single representation. Figure 2 illustrates a
snapshot of Woozor’ which is a successful mashup rec-
ognized by MashupAwards® as “mashup of the day”.
Woozor provides users with 10 days global weather
forecasts. It uses functionality from Google Maps® and
retrieves data from The Weather Channel'.

There is a widespread interest and acceptance of mashups
in today Service-Oriented Architecture (SOA) indus-
try [37]. This type of mashups is specially composed
for the enterprise. Such mashups are characterized by
a massive collaboration between the end-user, as the
main stakeholder, and the mashup composer, so as to
meet the stakeholder requirements [18]. However, there
is no specific boundaries between consumer and enter-

"http://woozor.com/ - Accessed 20 October 2009
8 http://mashupawards.com/winners/ - Accessed 20 October 2009
? http://code.google.com/apis/maps/ - Accessed 20 October 2009

1 http://www.weather.com/weather/rss/subscription - Accessed 20
October 2009

e o

© woozor 2007.2009 | RS | KL CT T

Figure 2. Woozor is a “mapping mashup” based on
Google Map. It retrieves data from The Weather Chan-
nel and presents it to the users in an effective way.

prise mashup in a sense that both of which relies on
the same concept: “resource composition style” [17].
From development perspective, enterprise mashup can
not be supported by traditional software development
paradigm, but instead has to be underpinned by Agile
software development model [18].

2.1.2 Mashup from SOA Perspective

A SOA is essentially a collection of services, which
can be discovered, invoked through standard protocol
(e.g. SOAP), and published in a public registry (e.g.
UDDI). SOA places the emphasis on loose-coupling of
services. It refers to the ability of services to function
independently from machine.

From SOA perspective, mashup is a service compo-
sition style [24], as it aggregates functionality/content
from the Web into a single representation. However, as
described in [24], mashup can be interpreted as a tai-
lored version of SOA which is characterized by four
properties:

® More Reusable: Mashup is a composition of black
box components handling their own context and
business logic. It makes mashup more reusable,
comparing to current SOA technologies such as
BPEL (Business Process Execution Language) and
WSCI (Web Service Choreography).

e Web-Based: Mashup is a web-based application as
it uses scripting languages (PHP, JavaScript), and
popular data formats on Web (XML).

e Light Weight: Mashup uses external functionality
and content, which is why it is light weight to im-
plement.

¢ End Consumer Centric: Mashup can be composed
by use of available tools on the Web. Consumers
without programing skills, therefore, can compose
their own mashup.

2.2 Review of ISO/IEC 9126

ISO/IEC 9126 is an international standard which com-
prises four parts: quality model [19] , internal metrics
[20], external metrics [21], and quality in use metrics
[22]. It introduces a framework to assess three aspects
of software quality: internal quality, external quality,
and quality in use. Internal and external quality are
concerned with software product quality and are distin-
guished with the fact that external quality is assessable
when the software is executable, whereas in early de-
velopment stage, when the software is not executable,
the evaluation merely stresses the internal quality as-
pect of the software. Finally, evaluation of quality in
use deals with the final software running in the target
environment and under real conditions.

According to ISO/IEC 9126-1 [19], quality of soft-
ware products (internal and external quality) can be
evaluated by arriving at a quality model as a hier-
archy, derived from a combination of main quality
characteristics, which in turn are branched into sub-
characteristics, which are further divided into attributes.
ISO/IEC 9126-1 specifies a fixed set of main charac-
teristics for the top level: Functionality, Reliability,
Usability, Efficiency, Portability and Maintainability.
Moreover, the sub-characteristics level is also explic-
itly outlined in the standard. However, it does not re-
strict determination of attributes, as a result of which
the model becomes more flexible, and versatile to be
extended to cover various application domains.

The lowest level of quality model in the hierarchy (at-
tributes) is associated with software metrics to quan-
tify the quality characteristics, which further facilitates
the quality assessment. Generally, software metrics en-
able concerned-people to achieve meaningful measure-
ments on quality of software product and the develop-
ment process which it utilizes [28].

2.3 A Quality Model for Mashup Components

Considering mashup components as building blocks
exposing an Application Programming Interface (APIs),
developer information (supported data types, security
issues, and information about usage), and occasion-
ally a User Interface (UI) to mashup composers, [6]
follow a black-box approach to select proper qual-
ity characteristics for external quality assessment of
mashup components. The quality characteristics and
sub-characteristics are derived from ISO/IEC 9126-1
[19], and are organized into a quality model covering
the three logical constituents of mashup components:
API layer, data layer, and presentation layer. We con-
sider it as a reference quality model by which to assess
the quality of mashup components while aggregating
them into a single representation.

Additionally, [6] presents a set of metrics mapped to the
end-point characteristics of the quality model. In this
work, we are also intended to reuse a part of these met-
rics (see appendix A), as well as to to propose a number
of new metrics (see section 5.3.2). The main motiva-
tion behind the metrics generation mostly comes from
the analysis of ProgrammableWeb, according to which
every mashup component possess a technical specifi-
cation page describing: a) protocols and/or languages
through which APIs are accessible, b) data formats sup-
ported by APIs, ¢) a brief outlook into the component
security (use of SSL, authentication model, and anony-
mous access privileges) and usage (service endpoint,
and client-side usage), d) and provider specifications
and licensing.

3. METHOD

In this work, we follow one of the most frequent re-
search strategies in software engineering, which is
proposing a method to analyze a piece of software and
validating the results through analysis of an example
[33].

In Software engineering research, as any other research
disciplines, one of the initial steps in finding a proper
research method is to assure the research question is
crystal clear [12]. To this end, a deep literature review
on the subject area is a necessary pre-step to take.
Having the research questions in one hand, and the
classification of research questions by [26] in the other

Quality
model

A
API Data
quality quality
A

Presentation
quality

[| |
S e API Presentation
Functionality Reliability | | usability | ——I Accuracy | il
Interoperability | Maturity Learnability |
Comp i
Compliance Operability | ‘I s | Rl

AP|
operability Availability
Data
operability
Security
operability

Figure 3. A quality model presented in [6] for external
quality assessment of mashup component.

hand, we could categorize the current research question
as “description and classification question” [12].

As a matter of fact research produces knowledge in
the form of a specific result [33]. The second step
is thus to clarify the type of the result we wish to
achieve. In the current thesis, the result is a quality-
based framework providing sequential steps to select
and evaluate candidate mashup components.

Finally, the last step is to clearly convince that the
result is valid [33]. In software engineering research,
this step can be done through a variety of techniques
namely, as it was stated by [33], analysis, experience,
evaluation, persuasion, and example. In this work, we
provide evidences that the framework is applicable. For
this purpose, we validated the result by applying it
(result) on an example (case-study), which is a mashup
tool for emergency response.

4. COMPONENT-BASED DESIGN OF
ENTERPRISE MASHUPS

The framework, which will be presented in section 5,
seeks to leverage the process of mashup component se-
lection. Accordingly, it is worth providing a concep-
tual model taking a broader view on this process by
describing its interaction with other activities under-
taken during mashup development. Since the focus of
this work is specially on the selection of suitable com-
ponents, we keep the model simple by disregarding the
activities that might be performed after it. We rather

expand the model upward in order to identify comple-
mentary activities, which together provide a platform
for a proper component selection process. As it is illus-
trated in figure 4, these sequential activities are respec-
tively requirements engineering, mashup design, and
mashup component selection. We postone the descrip-
tion of mashup component slection process to section
4, in which the framework will be explained in detail.

Our tailored model is inspired by Component-Based
Software Development (CBSD). Though mashup is not
naturally a component-based system, we believe that its
design process shares similarities with CBSD in terms
of general characteristics, which the main one could be
the fact that mashups, like component-based systems,
are build from components that maintain their own
business model and logic. Therefore, concepts driven
from CBSD can provide a skeleton around which to
design mashup. Afterward, as seen later in this section,
the detailed design, i.e the sub activities, are supported
through research in Web Services and SOA.

The widespread of mashup tools on the Web en-
ables even end-users with less programming knowl-
edge to compose simple mashups. Examples are Ya-
hoo Pipes'!, Intel Mash Maker'?, and IBM QEDWiki'?
which provide end-users with a Web-based tool to col-
lect and combine different services (or mashup com-
ponents) on the Web for the purposes of composing
mashups. As a consequence of that, the effort of im-
plementation, i.e. component integration and mashup
development, is reduced to simple drag-and-drop of
mashup components. In such a case, the provided
model expresses all the required activities undertaken
as a matter of routine for development of mashup.

To our best knowledge, enterprise mashup design lacks
such a top-down structured model, though the activities
presented in this model have been scatteredly addressed
in a number of papers. Our goal is, therefore, not only
to provide a top-level view on the framework, but also
to propose a structured approach for enterprise mashup
design, inspired by CBSD, by aggregating and incor-
porating relevant works into a tailored model. Thus,
we overview the model by pointing out several works,

" http://pipes.yahoo.com/pipes/ - Accessed 20 November 2009
12 http://mashmaker.intel.com/web/ - Accessed 20 November 2009

13 http://services.alphaworks.ibm.com/graduated/qedwikihtml -
Accessed 20 November 2009

Requirements

engineering Domain
knowledge

Mashup design

Component
model
Composition
model

Mashup
component
selection

Mashup component
pool

Figure 4. Conceptual model

which are essentially correlated with each activity and
sub-activity included in it.

4.1 Requirements Engineering

The starting point is based on a set of requirements,
which are derived from end-user needs. Mashup re-
quirements can be captured in many ways; [13] lists
and compares traditional techniques for software re-
quirement engineering to be tailored to Web applica-
tions. [4] also describes a goal-oriented approach to
capture requirements for Web applications. A well-
captured set of requirements is the basis for establish-
ing both the design phase and the component selection
process.

4.2 Mashup Design

Today, mashups go well beyond a simple UI; instead,
mashups may utilize several logical layers that together
make up the intended mashup solution. Hence, devel-
opment of mashups is in need of an architectural view
depicting the top level design of the mashup. In this
context, the architectural aspect provides an abstracted
view on different aspects of a mashup such as com-
ponent integration, structure, and Ul composition. This
kind of view has been addressed in several specialized
domains, [23] describes a reference architecture for
thematic mashups. [34] tailors mashup to Geographical
Information System (GIS) tool for emergency response
and describes a proposal architecture of such a system.

[1] presents a lightweight enterprise mashup for data
integration and outlines its architectural aspects.

As it is illustrated in figure 4, mashup design is un-
dertaken in the light of domain knowledge, by being
able to access a mashup component pool. Likewise,
component selection process is influenced by the sub-
activities performed in design phase including three im-
portant aspects of a mashup design: component model,
composition model, and UI (User Interface) design.

4.2.1 Mashup Component Pool

It is worth mentioning that having access to a mashup
component pool, by which we can assure existence and
availability of a particular mashup component, is criti-
cal to the mashup design as well the selecting compo-
nent process. There are few Websites on the Web ad-
dressing this need by collecting and cataloging mashup
components into a unified representation, examples are
ProgrammableWeb and WebMashup'#.

4.2.2 Domain Knowledge

Achieving a successful mashup design requires a gen-
eral knowledge about the target domain, to which the
mashup is intended to be deployed. This is specially
demanded when mashup deals with a specialized do-
main like Bioinformatics [15]. We can look at the term
domain knowledge in the light of traditional software
engineering, which conceptualizes it as a valid knowl-
edge that should be learned from end-users within the
domain.

4.2.3 Component Model

With a set of requirements we can proceed to design the
intended composition, which specifically relies on two
complementary blocks: components model, and com-
position model [38]. A component model describes dif-
ferent aspects of mashup components. There have been
several papers describing a specific model for mashup
components. [38] characterizes a component model by
three properties: type, Interface, and extensibility. [8]
uses UISDL (UI Service Description Language) to de-
scribe component model.

Nevertheless, a big challenge is being able to retrieve
component specifications, as well as to assure the

" http://www.webmashup.com/ - Accessed 1 December 2009

Component | Number of Examples
category registered
components
Internet 99 Amazon EC2
Mapping 97 Google Maps
Social 88 Twitter
Financial 77 Kiva
Reference 69 Wikipedia
Videos 59 YouTube
Shopping 58 Amazon eCommerce
Music 57 Last.fm
Messaging 55 411Sync
Search 54 Google Search
Telephony 49 Skype
Photos 47 Flickr
Enterprise 44 Salesforce.com

Table 1. The above table outlines some of the
most popular component categories and the num-
ber of registered components in each category. Data
from this table have been collected from Pro-
grammableweb (http://www.programmableweb.com/)
in December 2009. Because of the space limitations we
could not include each component homepage. Alterna-
tively, there are accessible from either the mentioned
website (ProgrammableWeb) or through Google search
engine (http://www.google.com/).

validity of those specifications. In this regard, Pro-
grammableWeb is considered as a valuable resource for
mashup composers as it contains daily updated list of
Web Mashups and APIs, which are accessible through
a unified search interface. Beside, some of the work
regarding mashup widely base on statistical analysis of
data obtained from ProgrammableWeb [6, 41]. Regard-
less of the variety and excess of mashup components,
ProgrammableWeb collects and categorizes them ac-
cording to their context of use (table 1). Another im-
portant feature afforded by this website is providing
evidence on what (and how many) mashups use a spec-
ified component and vice versa.

4.2.4 Composition Model

A composition model can be described through WS-
BPEL (Web Service Business Process Execution lan-
guage) [5, 30], or simplified composition languages
[25, 32] . Basically, it designates how available mashup

RSS
reader

Timeline

Figure 5. User interface design of a mashup for emer-
gency response. As it can be seen, the timeline is lo-
cated beneath the map, which makes it easier for users
to interact simultaneously with both map and timeline
(spatio-temporal analysis). The RSS feed reader, which
contains the items that are presented on the map, is lo-
cated in the left-side.

components are merged together to create the intended
mashup. [38] argues that a composition model can be
characterized based on three factors. First, the compo-
sition output type, which can be classified into Data,
API, and application with a user interface. Second, the
orchestration style determining how mashup compo-
nents are supposed to interact with each other at run
time. For instance, [8] presents an event-driven ap-
proach for creating context aware adaptive composi-
tion models. Third, the data-passing style facilitated
through two approaches: data-flow, and blackboard.
Data-flow approach places the emphasis on data-flow
from one component to another. In contrast, blackboard
approach writes data to variables, much like program-
ming languages, which are treated as the source and
destination of component function invocations.

4.2.5 UI Design

The lower level design of a mashup is the phase in
which the final Ul is designed. Mashup is a composi-
tion of components that generally implement their own
UI (UI components), whereby mashup Ul becomes an
aggregation of non-overlapping Ul components. As a
result, design of a mashup UI confronts a number of
challenges that the most important one could be ef-
fective placement of the UI components. One example
could be the importance of UI design in time-critical
work such as emergency response. In this regard, the Ul

should be kept as simple as possible and the UI com-
ponent should be placed in a position where they are
able to predict (Figure 6). Though these design prin-
ciples seems easy to address, they play an important
role in the applicability of mashups. Such issues have
been comprehensively addressed in a number of previ-
ous studies [9, 39, 40].

5. FRAMEWORK

In the present work, the process of evaluating com-
ponents and selecting one of them is called mashup
component selection. This step, which is done dur-
ing mashup development, is undoubtedly an important
influence on the mashup success in terms of fulfill-
ing mashup goals and attracting end-users. Moreover,
it can considerably reduce the overhead maintenance
time and efforts which might be caused by conflicts and
defects occurred after the final mashup is deployed. To
leverage this process, we present a framework consist-
ing of the following steps:

e Mapping mashup requirements to components
¢ Selecting candidate components

¢ Evaluating the quality of candidate components

The underlying part of the framework is based on cas-

cading mashup-level requirements to (mashup) component-

level requirements, enabling us to select a set of can-
didate components, fulfilling the functional require-
ments. The next part contains a metrics suite to evalu-
ate the quality of candidate components from the non-
functional view. The metrics suite is mapped to the
end-point characteristics of the the reference quality
model [6] (see section 2.3), and measures the degree to
which a component has been selected properly.

5.1 Mapping Requirements to Mashup
Components

Mashup is essentially characterized by a resource com-
position style, meaning that it is merely created by drag
and drop existing resources that can be functionality,
content, or data. Therefore, except the required code or
logic implementing the interaction of the components,
mashup rarely implements its own services. This natu-
ral property suggests that no mashup requirements exist
without having a connection to its components. There-
fore, mashup requirements are established through the

joint collaboration of a group of components or explic-
itly rely on a single component.

As it was described earlier, a composition model clar-
ifies the way in which components are integrated with
each other. To be specific, it suggests what type of com-
ponent (e.g. map component), should be used in the fi-
nal composition and describes how they interact with
each other. In this stage, the requirements have been
broken down to function level, which in turn can be
easily mapped to defined components in the composi-
tion model.

To simplify the requirement mapping process, we sep-
arately consider functional and non-functional require-
ments and amplify our point by giving some examples.

5.1.1 Functional Requirements

Functional requirements describes what a given mashup
is supposed to accomplish. To be specific, they outline
the essential functions of a given mashup. Consider a
mashup for weather forecast, whose composite model
defines four types of component: geocoder, map, RSS
reader, and timeline. Let r be a functional requirements
requiring that mashup shall present weather forecast on
the map separately for each 10 day”. Given the com-
position model, this requirements is particularly con-
nected to timeline and map components. It first clearly
requires that map component shall be able to manage
(show, delete, move) icons. For the timeline, it shall
provide a feature enabling scrolling through at least 10
days. Besides, it should provide a functionality to no-
tify the map upon any change in the timeline status (i.e.
selecting a different day).

In this stage, the orchestration model suggests the re-
quired functions that each component should be ca-
pable of performing. We can divide functional re-
quirements of mashup, with respect to the way they
are mapped to components, into two groups. The first
group can be explicitly mapped to a particular compo-
nent. For instance, a requirement might be that mashup
shall present forecasts using different icons on the map.
In this case, it is directly connected to the map compo-
nent.

To meet the second group of requirements, two or more
components should interact with each other. This im-
poses a set of requirements that each involved compo-
nent should meet. In order to map such requirements,

one can use a check-list approach, in which a given
mashup requirement is described in a scenario high-
lighting the requirements from each involved compo-
nent. The first mentioned example is fitted into this

group.
5.1.2 Non-Functional Requirements

A given mashup requires some criteria, based on which
the quality of its functions can be evaluated. Such crite-
ria are considered as non-functional requirements and
can describe mashup properties related to e.g. security,
performance, usability, functionality, and so forth. Sim-
ilar to functional requirements, they are affected by one
or a group of components.

In the previous example, if the mashup requires the
highest-possible level of usability, the Ul components
(geocoder is excluded) must have the required level of
usability. As another example, availability of a mashup
is influenced by all of its components in terms of data
and services.

5.2 Selecting Candidate Components

By having mapped requirements to components, we
can proceed to collect a range of candidate compo-
nents meeting the specified functional requirements. In
this regard, ProgrammableWeb could be a good start-
ing point as it categorizes mashup components based
on functional similarities (table 1). A challenge is how
we can judge if a component, within the category of in-
terest, can be fit into the candidate group. In fact, the
component meets the required functional requirements
by providing two categories of functions: internal func-
tions, and API functions.

e Internal functions: are not accessible through its
APIs, and are usually identified in the component
descriptions. A component may provides API func-
tions to disable or enable internal functions.

¢ API functions: are invoked through the component
APIs. Almost all components have their APIs docu-
mented, and ideally the APIs have been categorized
into the functionalities the component can provide.
based on that, we can realize if a component pos-
sesses the desired API functions to meet the neces-
sary functional requirements.

Empirically, when it comes to select candidate com-
ponents, popular components are better choices to

begin with. ProgrammableWeb makes it feasible by
categorizing and sorting components based on the
level of popularity. It is a vantage point of using Pro-
grammableWeb to access mashup component pool.

5.3 Quality Evaluation of Candidate Components

Having targeted a group of candidates for each com-
ponent type, the next step is determination of the
level to which each candidate component satisfies its
non-functional requirements. This step is based on
measurement-based evaluation of non-functional re-
quirements of one candidate component against an-
other. For this purpose, We first conceptualize compo-
nent non-functional requirements based on its stake-
holders view, from whose point of view the quality
model is reviewed again. Secondly, we associate a met-
rics suite to the end-point characteristics of the quality
model.

5.3.1 Component Non-Functional Requirements

In addition to the non-functional requirements that
must be met at run-time and are driven from mashup
non-functional requirements, mashup composers may
also impose a number of non-functional requirements,
which designate the level of component adaptation
within a given composition model. An adapted com-
ponent must cause as minimal conflicts as possible in
terms of data types, programming languages, and pro-
tocols. It should also be able to provide efficient ac-
cess to its functionalities, which are required within the
composition.

Basically, mashup non-functional requirements stress
those aspects of a component which are essentially tan-
gible by its end-users such as data and presentation
quality. In contrast, mashup composer might consider
those quality characteristics concerned with the qual-
ity of component API, and are merely important dur-
ing development. From another angle, component non-
functional requirements are directly and indirectly ex-
pressed by two main stakeholders: mashup composers,
and mashup end-users. The quality model mentioned
earlier (see section 2) relies on both the stakeholders
[6], which is why it can be used as a reference qual-
ity model in this work. Based on the stakeholders view,
we divide the quality model (figure 7), so as to provide
better understanding for quality measurement and eval-

10

Quality
model

Functionality

Figure 6. Requirements imposed by mashup com-
posers are shown as green colored characteristics,
which reasonably belong to API quality. Red colored

characteristics are mapped from mashup requirements
gathered from end-users.

uation, though both groups of characteristics are influ-
ential on mashup success.

As it can be seen in figure 6, non-functional require-
ments that might be imposed by composer are a subset
of some characteristics belonging to API quality. It in-
cludes interoperability, compliance, and API usability.

The remaining characteristics, therefore, include all
possible non-functional requirements that can be in-
directly driven from mashup end-users. A translation
of non-functional requirements to quality characteris-
tics and sub-characteristics is sometimes required. For
this purpose we first relate the non-functional require-
ments to one of the logical parts of mashup components
(API, data, presentation), we can then correspond it to
one or more characteristics or sub-characteristics. For
instance trustability is concerned with API quality, and
can be corresponded to reliability and maturity.

5.3.2 Maetrics Suite

Metrics presented in [6] were basically supposed to be
used to assess the component quality from its devel-
oper’s point of view, so as to contribute to development
of high quality mashup components. However, in the
present work, the attempt is made to measure the qual-
ity characteristics from the mashup composer’s view-
point. From the goal-oriented measurement perspec-
tive, metrics determination is potentially subject to in-

fluence from the choice of viewpoint, from which the
measurement is performed [2, 10]. Such a change in
viewpoint (from component developer to mashup com-
poser) thus results in a change of some metrics, which
will be discussed subsequently.

A component developer should take account of two
main stakeholders: mashup end-user and mashup com-
poser [6]. Since both mashup composer and component
developer’s viewpoint are in consistent with respect to
potential mashup end-users, the metrics associated to
the end-point characteristics, which are mapped from
the non-functional requirements driven from end-users
(red colored characteristics in figure 6), are not subject
to change, but instead we reuse them in this work (see
appendix A).

However, the two viewpoints expressed above are
not based upon a certain position regarding the non-
functional requirements (quality characteristics) im-
posed by mashup composers. To be specific, mashup
component developers look at these quality character-
istics in a general and abstract way, whereas mashup
composers assess them with special regard to their
intended mashups. For instance, interoperability and
compliance should be essentially considered in accor-
dance with other components and their interactions in
the final composition. From this viewpoint, we will re-
define the metrics mapped to the following end-point
characteristics:

¢ Interoperability: will be complemented by adding a
new aspect and a metric mapped to it.

¢ Compliance: will be replaced with a new metric.

¢ | earnability: will be mapped to a new metrics.

Interoperability

Interoperability is defined as the ability of a mashup
component to work with various components in a given
mashup composition. Interoperability of a component
can be investigated by inspecting the following aspects
of its APIs: the number of APIs provided to support re-
quired functions, available technologies to access APIs,
and supported data types.

The last two aspects of an interoperable component
were addressed in previous work [6]. There are dif-
ferent technologies through which components expose

11

their APIs. It can be via either Web protocols or script-
ing languages. The most well-known Web protocols
are REST and SOAP. The scripting language is most
commonly JavaScript. The data types used within the
APIs are also of importance when interoperability is-
sues arise. Generally, the more technologies, including
protocols and scripting languages, and data types sup-
ported by a component, the more interoperability capa-
bilities it has with other components.

However, the first aspect also arises when assessing in-
teroperability from a mashup composer’s viewpoint. It
is thus influenced by the number of offered APIs for the
required API functions. The more provided APIs, the
more alternative ways to accomplish a task, and conse-
quently, the more interoperability level within the com-
position. Therefore, interoperability of provided APIs
can be obtained by the following metric model:

i NAPI,
=1

In the above formula, n is the number of required func-
tions, and N API; is the number of provided APIs for
the 7" function (1 < i < n). Therefore, interoperabil-
ity can be obtained as the sum of the metrics mapped
to the three aspects (e.g. data, protocol, and API).

Compliance

In order for a mashup component to be compliant, it
must provide a standard mechanism for accessing and
using its APIs. From a mashup composer’s viewpoint,
compliance means the ability of a given component to
be compliant with the demanded technologies within
the intended mashup. These technologies, with respect
to component APIs, can be categorized to Web proto-
cols, programming languages, and data types. Thereby,
a mashup component is compliant if and only if it can
support the required Web protocols, programming lan-
guages, and data types. We replace the metric model
presented in [6] as follows:

RDT NRWPNRPL

In the above formula, RDT, RW P, and RPL return
true if the component supports, respectively, the re-
quired data types, Web protocols, and programming
languages.

Learnability

Learnability is an important aspect of API usability.
It suggests the capability of a component to enable
mashup composers to learn how to work with its APIs.
Due to the fact that mashup components are usually
published under non-commercial license (i.e. commer-
cial support is not available), adequate learning re-
sources is of special importance. We classify the API
learning resources and associate a learnability point to
each type:

Resource type Learnability point
API documentation 1
API tutorial 2
Sample usage 3
Active technical forum 4

Table 2. Learnability resource types

Empirically, most of component providers publish
up-to-date documentations of its APIs. Well-known
providers commonly provide comprehensive tutorials
in some form of HOW-TO documents. Additionally,
while programming APIs, sample source codes will
serve as a great help. A more valuable resource is an
active technical forum, where you can access previ-
ously solved problems or request a solution regarding
an ongoing technical issue. We propose the following
metric model to determine learnability:

sumO f Points
10

sumQO f Points is the sum of the points obtained from
table 2 by considering the available learning resources
a component provides. It is then divided by 10, which
is the total number of points (1 + 2 + 3 + 4). The result
Will be a number between 0 and 1 (0 < and < 1).

6. CASE STUDY

In this work we apply the framework on a mashup
implemented as a part of an ongoing project in Crisis
Response Lab at the IT University of Gothenburg!>. We
chose emergency response as an interesting potential
area for mashup development. Mashups inherit Web
2.0 characteristics like collaborative environment with

IS http://crisisresponselab.blogspot.com/2009/05/mashups-for-
formal-response.html

12

a high number of users involved. Such characteristics
are very important in the area of emergency response,
due to the fact that appropriate information sharing,
and collaborative work during emergency response are
considered as the key success factors in this domain.
For these reasons, we believe that mashups are good
candidate tools for emergency response work and are
capable of proposing interesting solutions to address
the current challenges in this domain.

6.1 Design

Before applying the framework on our intended mashup,
we briefly outline its design aspects. Incident comman-
ders at the command and control center should play
a central managerial role by employing corresponding
agencies and assuring that all involved agencies and au-
thorities are aligned and coordinated toward the same
target. This demands an interactive tool to dynamically
monitor the involved agencies at the incident side. Cor-
responding agencies can be monitored by means of un-
regulated dynamic feedback from them. Such dynamic
feedback are called event log entries produced in the
midst of a crisis and contain taken actions, decision
made, or reports from the incident side.

The system thus was implemented as a distributed sys-
tem, whose architecture is decomposed to a monitor-
ing tool at the command and control center and mo-
bile devices at the incident side equipped with position-
ing capabilities, e.g. GPS (Global Positioning System).
Incident-side commanders use mobile devices to gen-
erate event log entries. The monitoring tool is a mashup
used at command and control center, and receives event
log entries in the form GeoRSS feeds. The goal of the
mashup, which is the focus of this case study, is to offer
a set of highly interactive features for management and
monitoring of event log entries such as storing, explor-
ing, and filtering. These features have profound impacts
on analytical reasoning processes by boosting the abil-
ity of users to detect spatial patterns and conduct ex-
ploratory spatio-temporal analysis. In this case study,
we focus on the mentioned mashup.

Accordingly, the main non-functional requirements for
the mashup include availability, usability, security, and
trustability. As key functional requirements it shall: a)
show geographical and temporal status of event-log
entries; b) filter event log entries based on time and
organization; c¢) enable geographically and temporally

exploration of event log entries; d) notify users upon
new event log entries.

To determine service orchestration model we use the
approach proposed in [5]. We started by a high level
process model expressed using BPMN (Business Pro-
cess Modeling Notation), and then transferred it to a
more detailed WebML (Web Modeling Language) or-
chestration model. Figure 7 illustrates the mashup de-
sign.

Figure 7. a) BPMN model b) WebML orchestration
model transferred from the BPMN model

6.2 Applying Framework

The orchestration model reveals functional decomposi-
tion of the mashup into components. According to the
orchestration model, the mashup should use three types
of component: timeline, map, and RSS reader. In this
case study, we merely apply the framework presented
in section 5 on the map component.

6.2.1 Mapping Requirements

The first step is mapping the requirements to mashup
components. It can be facilitated by investigating the
orchestration model clarifying the interactions among
the components of the mashup. The main functionali-
ties that the map component should provide are, there-
fore, outlined and classified as follows:

1. Zoom and navigation (internal function).

2. Manage markers with custom icons (API function).

13

3. Manage balloons with custom text, image, video
(API function).

4. Manage polygons and polylines (API function).

According to the key non-functional requirements of
the mashup, a candidate map component should fulfill
user’s non-functional requirements of availability, us-
ability, and security.

6.2.2 Selecting Candidate Components

As a second step, a group of candidates for map com-
ponent should be selected in accordance with the key
functions specified earlier. Using ProgrammableWeb,
we considered the components in mapping category,
and then collected a number of component possessing
the required API and internal functions. To ease this
process we started with the most popular components.
The candidates group includes Bing Maps!'®, Google
Maps, and Yahoo Maps'”.

6.2.3 Evaluating Quality

Finally, we proceed to evaluate candidate components
quality from the point of view of both the mashup
composer and end user. Based on the reference quality
model, The main quality sub-characteristics imposed
by mashup composer include interoperability, compli-
ance, learnability, and operability.

According to the component non-functional require-
ments (mapped from end-user needs), we are inter-
ested in measuring the following sub-characteristics:
data availability, presentation usability, and security
(functionality).

¢ Interoperability

As mentioned, interoperability of each component can
be measured by counting the number of the protocols,
and data formats it supports, as well as the number
of APIs it provides for the required API functions.
Investigating the components website as well as their
specification pages in ProgrammeableWeb allows us to
assess interoperability of each component as outline in
table 3.

16 http://www.microsoft.com/maps/isdk/ajax/
17 http://developer.yahoo.com/maps/ajax/

It is worth mentioning that the number of provided
APIs for each API function was acquired by inves-
tigating the APl documentation of each component.
The counted API units include both the event types re-
quired to perform a specific API function (e.g. manag-
ing markers).

>
=
o v—
E
<
5 ~ N —
8) Ne) <
)
=
|5)
—
RS
G
08 o =) Yo
o o
2 I I e S G s Il ss)
§%<LLU"U"LLU-4LLLLLLLL
Z
[Z Z
U = o~ - ~| =
c8 gIlde |4 .2d0 ~
0 = EU) E.JU)EV),J
Q [a4 (a7 -
Ra)) = s
g =X o |X S
,':)Q"Nvo _/MQV.JM
Z 7 2|0 o Ol =
© >
5 ~
N N
So a2 |B k=)
- 823l &~5 g
O = O 8"“—‘:(/)&' 2
2 8 2l R &% < Z
E BB sT|=20O =
5 5 Sllen 2 =S @A <
ZmQ 2 ~ -
(@l —
= 4 ©n a
s | & | & | &
= = S >
5] = 5
Q“ O p—
g o] = &0
=]
5 = g S

Table 3. Interoperability

e Compliance

According to the composition model, in order to ensure
compliance, the candidate components should be able
to support GeoRSS feeds (table 4).

Component \ Compliance ‘
Yahoo Maps | Yes (supports GeoRSS)
Bing Maps | Yes (supports GeoRSS)
Google Maps | No (does not naturally
support GeoRSS)

Table 4. Compliance

14

e Security

Security of a component can be assessed by consider-
ing its authentication type and whether or not it is done
over Secure Sockets Layer (SSL). According to the se-
curity metric (see appendix A), table 5 suggests the se-
curity assessment of the candidate components.

Component \ Security

Yahoo Maps 1 API key

Bing Maps | 2 API key+SSL support
Google Maps 3 APl key

Table 5. Security

¢ [earnability

Learnability is also assessed by searching the compo-
nents Website for the purpose of looking for the avail-
able learning resources they offer. Table 6 contains the
measurement results for learnability.

Component ‘ Learnability ‘
Yahoo Maps | 1 (offers all learning resources)

Bing Maps | 1 (offers all learning resources)
Google Maps | 1 (offers all learning resources)

Table 6. Learnability

¢ Operability

Operability, as another aspect of API usability, refers
to the ease-of-use of the APIs offered by a component.
It can be assessed by measuring three attributes: API
operability, data operability, and security operability
[6]. Operability assessment of the components is shown
in table 7.

¢ Availability

Emergency response is naturally a time-critical work,
in which all activities are to be accomplished in a very
condensed time. For this reason, availability necessar-
ily arises as an important issue for evaluation of can-
didate components. Service availability of candidate
components can be assessed by considering any API
call volume limitations imposed by each one. In this
case study, all the candidate components impose a lim-
itation in terms of the number of API call for geocode

Component | Operability Attributes | Operability

API: 3 (JavaScript)
Data: 3 (Parameter)
Security: 4

Yahoo Maps 10

API: 3 (JavaScript)
Data: 3 (Parameter)
Security: 4

Bing Maps 10

API: 3 (JavaScript)
Data:3 (Parameter) 9
Security: 3

Google Maps

Table 7. Operabililty

requests per day. This number is 50000 for Yahoo Map
and Bing Map, and 15000 for Google Map.

¢ Presentation Usability

All the candidate components provide the same fea-
tures for navigation and interaction with object (mark-
ers) on the map. Thereby, presentation usability can
be assessed by considering the quality of the satellite
images the candidate map components provide within
Gothenburg city (since the mashup is intended to be
used within Sweden). As it can be seen in figure 9,
Yahoo Map presents old satellite images, in a way
that some buildings are missing. Additionally, it of-
fers a lower zooming level compared to Bing Map
and Google Map. In contrast, both Google Map and
Bing Map present good quality images with the same
zooming level. However, Google Map, compared to
Bing Map, provides sensibly blurry satellite images,
and with lower quality.

6.2.4 Component Selection

According to the quality evaluation (table 8), Bing Map
is compliant, more secure, available, and with bet-
ter presentation quality. The second choice is, there-
fore, Google Map fulfilling the most important non-
functional requirements (usability, availability, secu-
rity), though it is not naturally compliant with GeoRSS.
Yahoo Map is considered as the last choice, since it
presents low quality satellite images, even though it
properly fulfills other non-functional requirements.

7. DISCUSSION AND RELATED WORK

Related works in connection with recommendation-
based mashup component selection can be differenti-

15

Figure 8. Snapshots from Bing map (1), Google map
(2), and Yahoo map (3) zoomed into the same place
(Lindholmen science park, Gothenburg, Sweden) with
the zooming level set to maximum.

ated based on whether the focus is on replacing com-
ponents of an executing mashup, or selecting suitable
components when composing mashups. The first men-
tioned focus is to be understood in the light of adap-
tivity and context awareness suggesting the ability of
mashup to react based on requirement changes in the

] Quality (sub)characteristics Comparison

Interoperability YM<BM<GM

Compliance YM=Yes, GM=No,
BM-=Yes

Security YM=GM<BM

Learnability YM=BM=GM

Operability GM<YM=BM

Availability GM<YM=BM

Presentation Usability YM<GM<BM

Table 8. Comparison table. YM=Yahoo Maps,
BM=Bing Maps, GM=Google Maps

run-time environment. Mashups are generally com-
posed for temporary needs[38], as a consequence of
which mashup requirements may change dramatically
at run-time that is also reasonable due to the high dy-
namic nature of the Web. Therefore, providing support
for adaptivity and context-awareness is the major fac-
tor ensuring the widespread procreation of mashups
[8]. In this regard, [11] proposes a service adaptation
approach by combining service capability model and
requirement rules, in a sense that changes in run-time
environment properties invoke corresponding require-
ment rules, which is further used to define new service
capabilities. After wards, candidate services (mashup
components) are clustered, and further ranked in each
cluster.

To our best knowledge, less research efforts were con-
ducted with regard to finding and suggesting most
relevant mashup components during the development
phase, which is also the focus of this work. [3] presents
an efficient syntactical approach for searching and
ranking relevant candidates for mashup components. It
basically relies on clustering component by identifying
similar parts in the messages each component provides
(input or output). [31] proposes a faceted-based ap-
proach for classifying, searching, and ranking mashup
components based on utilization and popularity. Their
approach is considered superior over traditional Web
APIs directories such as ProgrammableWeb specially
with respect to tagging system. However, both the men-
tioned works show a substantial lack of consideration
towards other quality characteristics such as security,
usability, and data quality which might be of impor-
tance when to search for a suitable component. Typ-
ically, their works revolve around efficient clustering

16

and ranking of mashup components based on the func-
tionalities they provide.

Our framework takes a further step by relying on a
reference quality model entailing a respect towards
viewpoints of both the composer and mashup user.
The main motivation behind it is the fact that mashup
component selection should be goal-oriented and con-
ducted based on evaluation and assessment of the non-
functional requirements of one candidate component
against another. Accordingly, the frameworks assures
that a selected component can fulfill both the require-
ments of mashup composer and user. Mapping mashup
requirements to components respectively allows us to:
a) maintain a candidates group of components fulfilling
the functional requirements. b) make a subset of the
reference quality model containing important quality
characteristics based on which the candidate compo-
nents can be evaluated. It is also of importance that the
framework does not explicitly rank candidate compo-
nents, but rather provides objective measurement-based
results on the aspects of importance (quality character-
istics of interest), which in turn provides a rationale for
objective evaluation. As witnessed in the case-study,
despite the fact that Google Maps is so popular and is
almost the first choice in most of mapping mashups (ac-
cording to ProgrammableWeb), following the frame-
work convinced us that Bing Map is a better choice for
our specific context of use.

8. CONCLUSION

As the usage of mashups in enterprise environments
continuously increases, the expectations from mashups
rapidly grow, particularly with respect to properly
meeting the user’s needs. From the development per-
spective, the key to building a successful mashup
is a proper selection of its building blocks, or in
other words mashup components. In the present work,
we enhanced the process of mashup component se-
lection by proposing a quality-based framework for
measurement-based objective evaluation of candidate
components, while aggregating them into an intended
mashup solution. The objective evaluation is conducted
by utilizing the metrics suite to measure a set of qual-
ity characteristics which are deduced from the end-user
and composer needs, and are a subset of the reference
quality model. Finally, we applied the framework on
a case study which is a mashup used as a monitor-

ing tool in emergency response. The result could bias
our decision-making regarding selecting a proper map
component.

Though the presented framework can be considered
as a new approach in recommendation-based mashup
component selection, we believe that it remains some
potential areas for future work. First, mapping require-
ments to components can be formalized with the use
of existing technologies such as Aspect-Oriented Re-
quirements Engineering [16]. Second, the current met-
rics do not cover cost of mashup components. In other
words, we assumed mashup components are published
under a non-commercial license. Finally, the frame-
work shows the potential to support context-awareness
and adaptivity that can be taken into account in future
work.

References

[1] ALTINEL, M., BROWN, P., CLINE, S., KARTHA, R.,
LoOUIE, E., MARKL, V., MAU, L., NG, Y.-H., SIM-
MEN, D., AND SINGH, A. Damia: a data mashup fabric
for intranet applications. 1370-1373.

[2] BASILI, V. R., AND WEISS, D. M. A methodology for
collecting valid software engineering data. IEEE Trans.
Software Eng. 10, 6 (1984), 728-738.

[3] BLAKE, M. B., AND NOWLAN, M. F. Predicting
service mashup candidates using enhanced syntactical
message management. In SCC '08: Proceedings of the
2008 IEEE International Conference on Services Com-
puting (Washington, DC, USA, 2008), IEEE Computer
Society, pp. 229-236.

[4] BOLCHINI, D., AND MYLOPOULOS, J. From task-
oriented to goal-oriented web requirements analysis.
Web Information Systems Engineering, International
Conference on 0 (2003), 166.

[5] BozzoN, A., BRAMBILLA, M., FACcA, F. M., AND
CARUGHU, G. T. A conceptual modeling approach to
business service mashup development. In ICWS ’09:
Proceedings of the 2009 IEEE International Confer-
ence on Web Services (Washington, DC, USA, 2009),
IEEE Computer Society, pp. 751-758.

[6] CAPPIELLO, C., DANIEL, F., AND MATERA, M. A
quality model for mashup components. In ICWE ’9:
Proceedings of the 9th International Conference on
Web Engineering (Berlin, Heidelberg, 2009), Springer-
Verlag, pp. 236-250.

[7] CHEUNG, K., YIP, K., TOWNSEND, J., AND SCOTCH,
M. Hcls 2.0/3.0: Health care and life sciences data

mashup using web 2.0/3.0. Journal of Biomedical In-
formatics 41, 5 (October 2008), 694-705.

17

[8] DANIEL, F., AND MATERA, M. Mashing up context-
aware web applications: A component-based develop-
ment approach. In WISE ’08: Proceedings of the
9th international conference on Web Information Sys-
tems Engineering (Berlin, Heidelberg, 2008), Springer-
Verlag, pp. 250-263.

[9] DANIEL, F., YU, J., BENATALLAH, B., CASATI, F.,
MATERA, M., AND SAINT-PAUL, R. Understanding
ui integration: A survey of problems, technologies, and
opportunities. IEEE Internet Computing 11, 3 (2007),
59-66.

[10] DIFFERDING, C., HOISL, B., AND LOTT, C. M. Tech-
nology package for the goal question metric paradigm,
1996.

[11] DORN, C., SCHALL, D., AND DUSTDAR, S. Context-
aware adaptive service mashups. In IEEE Asia-Pacific
Services Computing Conference (2009).

[12] EASTERBROOK, S., SINGER, J., STOREY, M.-A.,
AND DAMIAN, D. Selecting empirical methods for
software engineering research. 2008, pp. 285-311.

[13] ESCALONA, M., AND KOCH, N. Requirements en-

gineering for web applications - a comparative study.
Journal of Web Engineering 2, 3 (2004), 193-212.

[14] GARRETT, J. J. Ajax: A new approach to web applica-
tions.

[15] GOBLE, C., AND STEVENS, R. State of the nation in
data integration for bioinformatics. J. of Biomedical
Informatics 41, 5 (2008), 687-693.

[16] GRUNDY, J. C. Aspect-oriented requirements engi-
neering for component-based software systems. 84-91.

[17] HOYER, V., AND FISCHER, M. Market overview of
enterprise mashup tools. 708-721.

[18] HOYER, V., STANOESVKA-SLABEVA, K., JANNER,
T., AND SCHROTH, C. Enterprise mashups: Design
principles towards the long tail of user needs. In
SCC ’08: Proceedings of the 2008 IEEE International
Conference on Services Computing (Washington, DC,
USA, 2008), IEEE Computer Society, pp. 601-602.

[19] ISO/IEC. Isofiec 9126-1 software engineering. prod-
uct quality - part 1: Quality model. Tech. rep., 2001.

[20] ISO/IEC. Isofiec 9126-2 software engineering. prod-
uct quality - part 1: Internal metrics. Tech. rep., ISO,
2001.

[21] ISO/IEC. Isofiec 9126-3 software engineering. prod-
uct quality - part 1: External metrics. Tech. rep., ISO,
2001.

[22] ISO/IEC. Isof/iec 9126-4 software engineering. prod-
uct quality - part 1: Quality in use. Tech. rep., ISO,
2001.

[23] L1aNG, XIN; Liu, Y. Z. L. A component-based
approach to developing thematic mashups. In 20th

Australian Software Engineering Conference: ASWEC
2009 (2009), A. Long, Brad ; MacDonald, Ed., pp. 40—
49.

[24] L1u, X., Hul, Y., SUN, W., AND LIANG, H. Towards
service composition based on mashup. Services, IEEE
Congress on 0 (2007), 332-339.

[25] MAXIMILIEN, M. E., RANABAHU, A., AND GO-
MADAM, K. An online platform for web apis and ser-
vice mashups. IEEE Internet Computing 12, 5 (2008),
32-43.

[26] MELTZOFF, J. Critical Thinking About Research: Psy-
chology and Related Fields. American Psychological
Association, 1998.

[27] MERRILL, D. Mashups: The new
breed of web app. an introduction to
mashups. Tech. rep., IBM developerWorks,

http://www.ibm.com/developerworks/xml/library/x-
mashups.html, 2006.

[28] MILLS, E. E., MILLS, E. E., AND SHINGLER, K. H.
Software metrics - sei curriculum module sei-cm-12-
1.1, 1988.

[29] MURUGESAN, S. Understanding web 2.0. IT Profes-
sional 9, 4 (2007), 34-41.

[30] PAUTASSO, C. Bpel for rest. 2008, pp. 278-293.

[31] RANABAHU, A., NAGARAJAN, M., SHETH, A. P,
AND VERMA, K. A faceted classification based ap-
proach to search and rank web apis. In ICWS ’08: Pro-
ceedings of the 2008 IEEE International Conference
on Web Services (Washington, DC, USA, 2008), IEEE
Computer Society, pp. 177-184.

[32] ROSENBERG, F., CURBERA, F., DUFTLER, M. J.,
AND KHALAF, R. Composing restful services and col-
laborative workflows: A lightweight approach. Internet
Computing, IEEE 12,5 (2008), 24-31.

[33] SHAW, M. Writing good software engineering research
papers. In 25th International Conference on Software
Engineering, 2003. (2003), IEEE, pp. 726-736.

[34] TANASESCU, V., GUGLIOTTA, A., DOMINGUE, J.,
VILLARIAS, L. G., DAVIES, R., ROWLATT, M., AND
RICHARDSON, M. A semantic web gis based emer-
gency management system *.

[35] WANG, W., ZENG, G., ZHANG, D., HUANG, Y.,
QIU, Y., AND WANG, X. An intelligent ontology and
bayesian network based semantic mashup for tourism.
In SERVICES ’08: Proceedings of the 2008 IEEE
Congress on Services - Part I (Washington, DC, USA,
2008), IEEE Computer Society, pp. 128—135.

[36] WANG, Z., H, M., AND LIN, Z. An open community
approach to emergency information services during a
disaster. Information Science and Engieering, Interna-
tional Symposium on 1 (2008), 649-654.

18

[37] YANG, F. Enterprise mashup composite service in soa
user profile use case realization. In SERVICES ’'08:
Proceedings of the 2008 IEEE Congress on Services -
Part I (Washington, DC, USA, 2008), IEEE Computer
Society, pp. 97-98.

[38] YU, J., BENATALLAH, B., CASATI, F., AND DANIEL,
F. Understanding mashup development. /IEEE Internet
Computing 12, 5 (2008), 44-52.

[39] Yu, J., BENATALLAH, B., CASATI, F., DANIEL, F.,
MATERA, M., AND SAINT-PAUL, R. Mixup: A devel-
opment and runtime environment for integration at the
presentation layer. 2007, pp. 479-484.

[40] YU, J., BENATALLAH, B., SAINT-PAUL, R., CASATI,
F., DANIEL, F., AND MATERA, M. A framework
for rapid integration of presentation components. In
WWW °07: Proceedings of the 16th international con-
ference on World Wide Web (New York, NY, USA,
2007), ACM, pp. 923-932.

[41] YU, S., AND WOODARD, C. J. Innovation in the
programmable web: Characterizing the mashup ecosys-
tem. 136-147.

APPENDIX-A

This appendix contains the metrics which are collected from [6], and are intended to be reused in this work. The
metrics are mapped to the end-point characteristics of the quality model (see section 2.3). Before presenting the

metrics, a number of concepts should be defined:

Protocol: is suggestive of the standard Web protocols, such as REST, and SOAPT, via which the APIs are

accessible.

Language: refers to scripting languages through which offered APIs can be used. For instance JavaScript is a

well-known scripting language.

Data Format: is the standard data type which is supported by mashup component operations. Examples are

XML, and JASON.

e Interoperability

Interoperability of component “comp” can be calculated using the following metric

Interoperabilityeomp =| Peomp | +| Leomp | +1 DFpomy |

Where Peomp, Leomp » DFcomp are respectively the protocols, languages, and data formats supported by the

component.

e Security

Security of a component can be assessed by considering its authentication type and if it is done over Secure
Sockets Layers (SSL). Accordingly, the following table can be used to assess the security for a specific

component.

Authentication type Security (no SSL) Security (over SSL)
No authentication 1 2

API key 2 3

Developer key 3 4

User account 4)

o Maturity

Since mashup components do not provide evidences on their internal performance, maturity can be evaluated by

considering the frequency of component updates.

CurrentDate comp —LastUserDate comp

CurrentDate comp —CreationDate comp

|Vcomp |

Veomp Is the set containing available versions for a specific mashup component.

e Operability

Operability of a component consists of three attributes: API operability, data operability, and security operability.
The tables below can be used to assess operability.

Protocol Protocol operability
SOAP/WSDL 1

REST, PHP, Perl, JSP, ASP 2

JavaScript 3

Data format Data operability
XML 1

JSON, ATOM, RSS, GData 2

Parameters-value pairs 3

Authentication type Security operability (no SSL) Security operability (over SSL)
No authentication 5 4
API key 4 3
Developer key 3 2
User account 2 1

e Completeness

The ratio between the amount of data retrieved and the amount of data excepted can be used for
Completeness assessment.

Number of Missing values

C let =1-
OMPLELEnesScomp Total Number of values

