

University of Gothenburg

Department of Computer Science and Engineering

Göteborg, Sweden, June 2009

Silverlight Process Designer in SharePoint WSS
Development of a Silverlight 2.0 Process Designer tool with

integration in SharePoint WSS

Master of Science Thesis in the Programme Software Engineering and

Technology

Wincent Papousek

The Author grants to Chalmers University of Technology and University of Gothenburg

the non-exclusive right to publish the Work electronically and in a non-commercial

purpose make it accessible on the Internet.

The Author warrants that he/she is the author to the Work, and warrants that the Work

does not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a

publisher or a company), acknowledge the third party about this agreement. If the Author

has signed a copyright agreement with a third party regarding the Work, the Author

warrants hereby that he/she has obtained any necessary permission from this third party to

let Chalmers University of Technology and University of Gothenburg store the Work

electronically and make it accessible on the Internet.

Silverlight Process Designer in SharePoint WSS

Development of a Silverlight 2.0 Process Designer tool with integration in SharePoint

WSS

Wincent Papousek

© Wincent Papousek, June 2009.

Examiner: Jan Skansholm

Department of Computer Science and Engineering

Chalmers University of Technology

SE-412 96 Göteborg

Sweden

Telephone + 46 (0)31-772 1000

Department of Computer Science and Engineering

Göteborg, Sweden June 2009

Abstract

SharePoint WSS is an information portal from Microsoft. It helps employees communicate

and collaborate within the company. SharePoint lets people share documents and files by

storing them in a central site making cooperation within the company trouble-free.

Silverlight is a technology for building Rich Internet Applications. It uses a browser plug-in

that downloads and executes Silverlight code within the browser. It is designed to offer the

user a richer experience than the traditional mixture of HTML and scripting languages.

The Process Designer tool brings these two technologies together. Completely developed in

Silverlight the Process Designer tool takes advantage of out-of-the-box functionality of

SharePoint WSS. In conjunction the Silverlight tool brings a visual user experience to

SharePoint that the technology itself cannot accomplish.

Following a couple of integration steps Silverlight can be used within SharePoint. By using

Web Service technology communication between the two frameworks is established making

them benefit from each other.

The focus of the thesis is the integration of Silverlight in SharePoint WSS, evaluating the

process and the Silverlight technology. Integration and implementation issues will be outlined

that helps development of future Silverlight applications.

Sammanfattning

SharePoint WSS är en informationsportal från Microsoft som hjälper anställda att

kollaborera och kommunicera inom företaget. SharePoint låter människor dela dokument och

filer genom att spara dem på en central hemsida. Detta underlättar kommunikation inom

företaget.

Silverlight är en teknologi för att bygga Rika Internet Applikationer. Det använder sig av ett

plugin i webläsaren som laddar ner Silverlight kod och exekverar den. Det är designat för att

erbjuda användaren en rikare användarerfarenhet än den traditionella blandningen av

HTML och skriptspråk.

Process Design verktyget sammanför dessa teknologier. Verktyget är helt utvecklat i

Silverlight och använder out-of-the-box funktionalitet från SharePoint, samtidigt som

verktyget ger en rikare användarkänsla till SharePoint som inte kan skapas med SharePoint

teknologi självt.

Genom att följa ett par integrationssteg så kan Silverlight användas i SharePoint. Med hjälp

av Web Service teknologi så kan de båda ramverken kommunicera och dra fördelar av

varandra.

Fokus på rapporten är integreringen mellan Silverlight och SharePoint WSS. Rapporten

evaluerar integrationsprocessen samt Silverlight som teknologi. Integrationen och

implementationen kommer att beskrivas, detta för att underlätta utvecklingen av framtida

Silverlight applikationer inom SharePoint.

Table of Contents

1 Introduction ... 1

1.1 Background ... 1

1.2 Purpose ... 2

1.3 Delimitation .. 2

2 The Process Designer Tool an Introduction .. 3

2.1 The Graphical User Interface ... 3

2.2 Functional Overview .. 5

2.2.1 User Group and Process Owners ... 5

2.2.2 Checking in and out of Processes .. 5

2.2.3 Versioning .. 5

2.2.4 Process Visibility ... 5

3 Windows SharePoint Services .. 6

3.1 WSS and Microsoft Office SharePoint Server 2007 .. 6

3.2 WSS Site Provisioning ... 6

3.3 WSS Farm ... 6

3.4 Databases .. 6

3.5 Internet Information Service ... 7

3.6 Site and Site Collections ... 7

3.7 Web Parts .. 8

4 Silverlight 2.0 .. 9

4.1 Silverlight and Windows Presentation Foundation .. 9

4.2 Silverlight and HTML DOM .. 10

4.3 The Silverlight Object Model ... 11

4.4 XAML .. 11

4.5 Code behind .. 12

4.6 UI Class Hierarchy ... 13

4.6.1 DependencyObject ... 13

4.6.2 UIElement .. 13

4.6.3 FrameworkElement .. 13

4.6.4 Layout Controls ... 14

4.7 Silverlight Application Architecture .. 14

4.7.1 The Silverlight XAP File ... 14

4.7.2 Testing a Silverlight Application ... 14

5 Windows Communication Foundation .. 15

5.1 Messaging and Endpoints ... 15

5.2 Services and Clients .. 15

5.3 Setting up a Service .. 15

6 Integrating Silverlight in SharePoint ... 18

6.1 Visual Studio Configuration ... 18

6.2 SharePoint Runtime Configuration .. 18

6.3 Integrating Silverlight in a SharePoint Web Part ... 19

6.3.1 The Web Part Class .. 19

6.3.2 The Web Part Feature .. 19

6.3.3 The Element Manifest File ... 20

6.3.4 The Feature File ... 20

6.3.5 The SharePoint Solution File ... 20

6.3.6 Hosting Silverlight in the Web Part ... 21

6.4 Passing data from SharePoint to Silverlight ... 22

6.5 A SharePoint Custom Field Type interacting with Silverlight 22

6.5.1 The Field Type Class ... 23

6.5.2 The Field Control ... 23

6.5.3 Deploying a Custom Field Type .. 24

7 Business Process Terminology .. 25

7.1 Business Process ... 25

7.2 Business Process Management ... 25

7.3 BPM Life-Cycle ... 25

7.4 Business Process Modeling .. 26

8 The Process Designer Tool ... 27

8.1 The SharePoint Object Model .. 27

8.2 The Web Part Implementation .. 30

8.2.1 Passing data to Silverlight .. 30

8.2.2 Passing data with an XML Data Island .. 30

8.2.3 The Silverlight Control .. 31

8.3 Drag-and-Drop .. 31

8.4 Data Binding ... 33

8.5 Using Styles .. 34

8.6 Using Control Templates .. 35

9 WCF and Silverlight .. 37

9.1 Creating a Silverlight enabled Service ... 37

9.2 Consuming the Web Service .. 37

9.3 Calling the Web Service ... 37

9.4 WCF and the SharePoint Object Model ... 37

9.4.1 The XmlSerializer .. 38

9.5 Error Handling .. 39

9.6 Other Communication Patterns .. 39

10 The Model-View-ViewModel Pattern .. 41

11 Silverlight Testing and Debugging ... 42

11.1 Unit testing ... 42

11.2 The Silverlight testing framework .. 43

11.2.1 Creating a simple test ... 43

11.2.2 Creating UI tests .. 44

12 Result ... 47

13 Discussion ... 49

14 Conclusion ... 50

15 References ... 51

Appendix A. User Manual ... 53

Appendix B. Web Config ... 59

1

1 Introduction

Web users today have an increasing demand of using web applications with a richer

experience and with a greater amount of functionality. RIAs (Rich Internet Applications) are

being used everywhere and is gradually replacing HTML applications. Dynamic design in

HTML is accomplished by integrating CSS (Cascading Style Sheets) and scripting languages.

However, HTML does not offer any interactivity and compels multiple page refreshes making

browsing time consuming. RIA’s on the other hand are more robust, visually compelling and

responsive.

Silverlight is a framework released by Microsoft for building RIAs. Silverlight can run on a

variety of devices and desktop operating systems within a browser. When surfing to a page

which contains Silverlight content, the browser will download the Silverlight code and render

the content to the designated place on the page. Silverlight is supposed to offer the user a

richer user experience than the traditional mixture of HTML and JavaScript. The technique is

not new; the most successful browser plug-in is Adobe Flash. The benefits of Silverlight is the

underlying maturity of the .NET programming environment which Flash does not have,

having evolved from being a multimedia player to a programming tool.

SharePoint WSS (Windows SharePoint Services) is another technology released by Microsoft.

It is an information portal that lets people and teams connect, communicate and collaborate.

As companies grow it gets harder to manage the increasing amount of documents and files

that are produced. SharePoint overcomes this issue by allowing the company to store all

documents and files in a central site. Working today often means working on many different

office locations even in other countries. SharePoint lets employees connect and collaborate no

matter where the individual is located.

Being able to develop interactive, user rich and robust applications within a strict business

environment which SharePoint offers has lead to the subject of this thesis. The thesis will

evaluate the benefits of Silverlight when integrated in SharePoint WSS. Any surplus values

will be evaluated in conjunction to what companies and customers gain from the technology.

The thesis will also describe in detail how the integration of Silverlight in SharePoint is

accomplished and describing any problems and difficulties. In conjunction to this report a

Process Designer tool has been implemented and integrated in a SharePoint environment. The

tool has been integrated to get a practical approach to the integration and to be able to

evaluate the technology of Silverlight.

1.1 Background

The thesis has been written at Consignit. Consignit is a consultant company with main office

in Gothenburg. Consignit customers include Volvo, Sweco and AstraZeneca. Their main

business is delivering solutions for Enterprise Content Management, where SharePoint is their

main area of expertise.

SharePoint is often used as the company’s intranet portal where information is gathered in a

central location. Moreover companies often have standardized processes where a collection of

connected activities for describing how to produce a service or product are depicted. To these

processes documents are connected holding detailed information how to accomplish the

activities to the processes. This information is often stored and managed within SharePoint

making SharePoint a good location for central administration of the company’s processes.

2

The process-documents are often not stored in a single location but are rather spread around

the portal making it hard for employees to get a visual picture of the processes as well as

accessing the documents from a central place within the portal. Consignit has thus seen the

need for a tool integrated within SharePoint for designing process hierarchies that the process-

documents can be connected to.

In conjunction to this need Consignit is interested in evaluating any surplus values that

Silverlight brings to SharePoint WSS and to analyze any difficulties and challenges occurring

when doing the integration and the implementation of the Process Designer tool.

1.2 Purpose

The purpose of the thesis is to model, visualize and implement a process-navigation and

designing tool in Silverlight and integrate it on a SharePoint site. By this practical approach

the Silverlight technology can be evaluated when it comes to any surplus values that it brings

to user experience and also how well it cooperates with the SharePoint object model. By a

practical integration any difficulties can be evaluated for future development of other tools.

1.3 Delimitation

The thesis deals with two major areas; Silverlight and SharePoint WSS. Therefore an

introduction of both technologies is given.

The tool that has been integrated is concerning the processes within a company and how these

are structured; a brief overview of different business process terminologies will hence be

outlined.

WCF (Windows Communication Foundation) will be explained in combination with

Silverlight for server client communication. Other server client communication patterns will

be briefly described as a supplement to using WCF.

The tool developed in conjunction to the report will be presented, and how the integration of

the tool is done within a SharePoint site.

Future improvements of the Process Designer tool will be discussed. Implementation oriented

improvements but also potential additions to the tools functionality and graphical user

interface.

An introduction to the Model-View-ViewModel pattern is given that is often used

implementing Silverlight. It is used for decoupling responsibilities between application layers

and for making unit testing easier.

The Silverlight testing framework is discussed with a couple of implementation examples

from the Process Designer tool.

 The report will briefly explain Microsoft Office SharePoint Server (MOSS) but will not

dwell into any details concerning the extensions that MOSS is to WSS. WSS is built on top of

ASP.NET; the technology of ASP.NET is beyond the scope of the thesis and is not included.

3

2 The Process Designer Tool an Introduction

Many companies have standardized processes for meeting customer needs. The set of

connected activities that belongs to these processes are often described in a number of

documents. In SharePoint WSS these documents are spread around the intranet portal in

document libraries. Keeping track of which document that belong to what process gets more

and more complicated as companies grow and additional documents are added.

The Process Designer tool is meant to aid employees within the company to get a visual

overview of the processes and which documents that are connected to them. New processes

and links to documents can be added as processes evolve. The user is able to navigate through

a hierarchy of sub processes to get a more detailed view of the building stones of a major

process.

This chapter will give an introduction to the graphical user interface of the application. A

brief functionality overview is also presented. A later chapter will dwell into deeper details

concerning server communication with WCF, working with the SharePoint object model for

interacting with SharePoint document libraries and user groups, and Silverlight specific

implementation techniques.

2.1 The Graphical User Interface

The Silverlight Process Designer tool has been divided into four major presentation areas; a

top toolbar, a tab control to the left, a properties tab control on the bottom and a main

presentation area in the middle where the processes can be dragged and dropped.

Figure 2.1-1 The Process Designer tool

4

The top toolbar consists of four buttons for interacting with the process model; a delete button

for deleting a process, a check in and checkout button for checking in and checking out the

process level in view and a back button to navigate backwards in the process hierarchy.

The left tab control consists of a Designer tab and a Viewer tab. In the Designer tab a list box

is used to show the available process figures that can be added to the process model. The

Viewer tab is for navigation purposes. Here a tree control has been implemented that shows

the hierarchy of processes and their activities.

Figure 2.1-2 The Tree View tab

The bottom tab control shows properties to the process level in view. Here there are three

tabs, the first tab is for handling document links connected to the model, the second tab is for

handling metadata values and the last tab shows earlier versions of the process level. Within

all tabs list box controls are being used for presenting the information.

Figure 2.1-3 The Version History tab

On the main presentation area the processes are dragged and dropped. On each corner process

level relevant data is displayed. In the top left corner the SharePoint user group is shown that

is responsible for the process level. On the top right the current version of the process level is

shown. On the bottom left corner the user is informed of which process that has been clicked

and is currently in focus and on the last corner the process levels name is displayed.

5

2.2 Functional Overview

2.2.1 User Group and Process Owners

The Silverlight application makes use of the SharePoint user groups for dividing users in two

main categories. When a user belongs to the owner user group of a process level the user has

designer rights otherwise navigation rights. The users having designer rights can add, delete

and edit processes. Users with navigation rights can only navigate through the part of the

processes hierarchy tree where he does not belong to the owners group of the process level.

By making use of the SharePoint user groups, the management of these groups can be kept

within SharePoint. If a user needs to have designer rights to a certain process he can easily be

added from the SharePoint user interface by a user with the right permission.

2.2.2 Checking in and out of Processes

The Silverlight tool makes use of a SharePoint document library for saving the process levels

within the process hierarchy. It therefore also inherits the SharePoint functionality of being

able to check in and out process levels. Before any changes can be made to the level, it has to

be checked out to make sure that no other user within the owner group is working with the

processes. When the user has finished editing, the process level he can check in his work. If

not checked in it will be locked for all others for editing.

2.2.3 Versioning

In SharePoint an additional versioning feature can be added to any document library. This is

to keep a history of documents as they evolve over time. The versioning is also used for

triggering workflows.

The Process Designer tool makes use of the versioning by giving the designers the possibility

to check in their work as a minor or major version. With the separation of minor and major a

workflow can be designed within SharePoint that is triggered when the designer of a process

level decides to make his changes public by checking them in as a major version. The

workflow can be to send an email message to all users within the same user group that a

major version has been created or to all other users within the portal that new processes can be

viewed.

2.2.4 Process Visibility

The visibility of the processes and their activities are linked to both the versioning and the

user groups.

Firstly a process is visible for any user that is part of the owner user group for that process.

The sub process level of the process can be made public and therefore visible for others by

checking it in as a major version. As long as it is a minor version it will only be seen by its

owners.

An additional feature lets the designer select one or more groups that will see the processes

when the level is checked in as a major version keeping it hidden for others. As default all

user groups will see the major version.

6

3 Windows SharePoint Services

Windows SharePoint Services (WSS) provides capabilities to meet business needs such as

managing content and business processes. This simplifies how people find and share

information within a company. [1]

3.1 WSS and Microsoft Office SharePoint Server 2007

Microsoft Office SharePoint Server (MOSS) 2007 is built on top of WSS 3.0 which is further

built on top on services provided by Microsoft Windows Server 2003. The main platform use

the Microsoft .NET 2.0 Framework. MOSS is provided by several technologies; Internet

Information Service for hosting Web applications, ASP.NET 2.x which support master pages,

content pages, Web Parts and personalization. [9]

MOSS 2007 relies on WSS technology to provide a consistent, familiar framework for lists

and libraries, site administration, and site customization. Any feature that is available in WSS

is also available in MOSS.

MOSS offers additional features that are unavailable in WSS. For example, both MOSS and

WSS include site templates for collaborating with colleagues and setting up meetings.

However, MOSS includes a number of additional site templates related to enterprise and

publishing scenarios. [1]

3.2 WSS Site Provisioning

WSS was designed to create Web sites in a fast manner. The architecture was designed to

work in a Web farm environment. Creating a site can be done by any person within the IT

Department by filling out the required information needed in a web-browser form and

clicking OK. There is no need for a system developer to create a website and no need for an

administrator to copy any files to an application server. The WSS provisioning engine

cooperates with an integrated storage model that uses several SQL Servers to store content

and configuration data. [2]

In this way users can easily design web sites with shared elements such as contact lists and

document libraries. Because of the site provisioning engine it is easier to manage thousands of

Web sites making them accessible to tens of thousands of users. This is achieved with the

Web-farm architecture in mind making WSS very scalable. The architecture is based on

stateless front-end Web server that relies on back-end SQL-Servers for storing content and

configuration data. [3]

3.3 WSS Farm

A farm is a set of one or more servers that provides WSS functionality to its clients. In its

simplest form it consists of a single computer that acts as both a front end Web server and an

SQL Server managing WSS content. A more complicated farm consists of dedicated SQL

Servers and several front-end servers. Each farm has a configuration database that keeps track

of important information concerning the farm environment. E.g. what front-end servers are

associated with the farm and what users have administrative permissions on farm level. [2]

3.4 Databases

WSS relies on two different kinds of databases, one configuration database and content

databases. The configuration database holds deployment-specific information for each Web

server, IIS server and WWS Web site. The content database holds data associated with WSS

Web sites.

7

Each content database stores information of one or more WSS Web sites. The data is stored

on a site-by-site basis with information concerning lists, documents, site customization and

personalization. The fact that the information concerning one site is stored on one SQL Server

makes it easier for back-up and restoring WSS sites when necessary. [4]

3.5 Internet Information Service

WSS is built on Internet Information Service (IIS) and relies on IIS Web sites to handle

incoming HTTP requests. An IIS Web site is an entry point to the IIS Web server

infrastructure. The default web site that IIS creates listen to port 80, additional Web sites can

be created that listen to other ports.

One important feature with IIS Web sites is that the security settings can be configured

differently for different Web sites. One Web site might use Basic Authentication and allowing

anonymous access. Another site may be used as an intranet site and can therefore be

configured to require integrated Windows authentication and to disallow anonymous access.

[2]

In WSS terms an IIS Web site is called a virtual server. A virtual server has to be extended

with WSS to be able to run WSS Web sites. When installing WSS it automatically extends the

default Web site listening to port 80. With SharePoint Central Administration other Web sites

can be extended to support WSS.

Unlike ASP.NET, WSS does not configure each Web site using a Virtual directory. WSS

instead looks for all the configuration information in the configuration database and content

database. This means that when starting creating WSS sites they will not appear in the IIS

metabase. Therefore IIS will not know how many WSS Web sites it is hosting. Because WSS

does not need a new virtual directory for each Web site the scalability and maintenance is

improved. When WSS extends the virtual server it installs an ISAPI filter which intercepts

each request and determines if it should be handled by IIS or WSS. [4]

3.6 Site and Site Collections

A WSS site stores lists, document libraries and child sites. The site has securable entities

which content is only visible for a set of defined users. These set of users can be defined

either on the site itself or be inherited from the parent site. A set of groups and permissions

can also be configured for the site which defines the level of accessibility on lists and

documents libraries.

WSS relies on IIS and the ASP.NET authentication provider infrastructure for user

authentication. When it comes to user authorization WSS provides user interface components

that allow privileged users to configure authorization to different elements within a site.

A WSS site provides a fully customizable and extendable user interface. The site

administrator can create pages and customize them. The administrator can even change the

navigation structure using the browser.

A WSS site also uses Microsoft Web Part technology. A site administrator can customize

Web Part pages by configuring and adding Web Parts. A user can then personalize the Web

Parts by modifying them. The data needed for showing the Web Parts in a customized manner

is saved automatically in the content database.

8

A site has to be provisioned within an existing Web application. The site cannot exist on its

own within the Web application. Instead, each site has to be inside the scope of a site

collection. A site collection works as a container for WSS sites. Each site collection must

have a top-level site. The collection can then further contain a hierarchy of child sites. [2]

Figure 3.6-1 Site Hierarchy [9]

3.7 Web Parts

As mentioned earlier a Web Part makes it possible for a site owner to customize site pages

with changes that is made visible for users. A user can then personalize these Web Parts; the

changes made by the user will then only be seen by the individual user himself. [2]

The difference between an ordinary ASP.NET page and a Web Part page is that ASP.NET

pages are stored as a text file in the file system of the Web server. The parts needed for a Web

Part are stored in multiple tables in the WSS content database. This makes it possible to

personalize and customize Web Parts for different sites and users.

A Web Part page has several Web Part Zones. A Web Part is added to the page by placing it

in a zone. [8]

9

4 Silverlight 2.0

Silverlight is a framework for building browser hosted applications that can run on several

operating systems. Silverlight runs as a browser plug-in, which means that when surfing to a

page containing Silverlight content the browser will download, execute the code and render

the content to the designated place on the page. Silverlight provides a richer user experience

when used properly than the traditional mixture of HTML and JavaScript.

The technique is not unique, similar technologies exist that use the same browser plug-in

concept. Most successful of them all has been Adobe Flash. Because Flash has just recently

gone from being a multimedia player to a set of programming tools, it lacks the mature

programming environment like .NET.

This is where Microsoft has seen the advantage in Silverlight offering cross-platform support

like Flash but also offering development in the mature environment of .NET. Silverlight has

also architectural benefits to Flash the most significant one is that its base is a thinner version

of .NET’s common language runtime. This makes it possible for a developer to write

Silverlight code using C# or Visual Basic. [10]

4.1 Silverlight and Windows Presentation Foundation

Silverlight uses the model WPF has for building client-side user interfaces. WPF is the

successor of Windows Forms and is the next generation of creating Windows applications.

WPF was first introduced with .NET 3.0. WPF not only makes development of Windows

applications easier but also boosts performance by rendering everything through a DirectX

pipeline.

Silverlight can’t use all of the features available in WPF. Many of WPF’s features rely on

Windows-specific display drivers which makes them impossible to use within Silverlight,

because of the fact that Silverlight is operating system independent. But rather to invent a

whole new model for Silverlight it uses a subset of the WPF features. This makes them very

similar to each other. Here is a listing of some of the similarities:

• Defining a user interface is done in the markup language XAML.

• The same syntax can be used when binding data to controls.

• Silverlight uses the same basic controls as WPF.

• Style and template syntax are similar.

• Drawing 2D graphics.

In future releases even more of the features available in WPF will be found in Silverlight. [11]

10

4.2 Silverlight and HTML DOM

The Silverlight plug-in can be integrated with any new or existing web property. The web

property can be anything from a web page, blog or intranet portal. The Silverlight plug-in can

fill up the whole page or just parts of it. It can be placed anywhere it is wanted within the web

property. This is possible because of its relationship with HTML DOM.

The Silverlight plug-in is integrated with the DOM. Once it is embedded the DOM

application tree will expand as can be seen in Figure 4.2-1.

Figure 4.2 1 Silverlight DOM model extension [12]

Most of the available web browsers support the DOM variants supported by Silverlight. It is

therefore possible for Silverlight to be a platform independent plug-in.

11

4.3 The Silverlight Object Model

The Silverlight Object Model is much like the tree structure of the HTML DOM model. The

tree is represented in a Silverlight XAML file. Each file has child elements that represent the

UI. The rendering is done recursively in order from left to right. The rendering is shown in

Figure 4.3-1.

Figure 4.3-1 Silverlight Rendering order [12]

The ordering of the rendering is important for in what order the elements are displayed.

Elements that are rendered later are shown on top of earlier rendered elements. The Silverlight

Object Model extends the HTML Document Object Model. But it is not possible to access

Silverlight elements from the DOM model. This has to be done from within the Silverlight

plug-in.

4.4 XAML

Extensible Application Markup Language or short XAML is a markup language to instantiate

.NET objects in XML format. Similar to the role of HTML, XAML lets one easily visualize

elements in a hierarchal fashion and at the same time separating the content from code.

Separating the code is possible because each XAML element corresponds to a .NET type.

And each attribute to the element corresponds to a .NET property. The short example below

illustrates this.

XAML
<TextBlock Text="Hi there!" FontFamily="Times New Roman" />

C# Visual Basic
TextBlock tb = new TextBlock(); Dim tb as New TextBlock

tb.Text = "Hi there!"; tb.Text = "Hi there!"

tb.FontFamily = "Times New Roman"; tb.FontFamily = "Verdana"

12

The TextBlock element in the XAML code corresponds to an initialization statement in C# or

in Visual Basic. Each time an element is created in XAML the default constructor is called

behind the scenes. [12]

Every element in XAML maps to an instance of a Silverlight class. The name of the element

maps exactly to the name of the class. For example the <TextBlock> element from the code

above instructs Silverlight to create a TextBlock object.

As in XML, XAML supports nesting of elements. Having a Grid inside a Button is perfectly

legal. Nesting is though often used as containment where usually the case is having a Grid

that has Buttons within it.

Attributes can be set to each element, from the code example above Text and FontFamily are

attributes to the TextBlock element. [11]

4.5 Code behind

To each XAML page there is a belonging code-behind page much like ASP.NET pages.

Having code-behind pages is a good way to separate code from UI related code. XAML code

is stored in files with file suffix .xaml and the code-behind files with the suffix .xaml.cs. The

reference to the code-behind file in the XAML file is through the x:Class attribute. The class

definition is compiled and stored in an assembly and placed in a directory relative to the

application called ClientBin. The class definition is used for handling events that are triggered

from the user interface which are defined in the XAML file. As shown below the Loaded

attribute has an event-handler method specified for it. The compiler will expect that there is a

method with the same name in the code-behind code. [12]

Page.xaml
<UserControl x:Class="XAML01.Page"
 xmlns="http://schemes.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemes.microsoft.com/winfx/2006/xaml"

 Loaded="UserControl_Loaded" Width="400" Height="300">

 <Grid x:Name="LayoutRoot" Background="White">

 </Grid>

</UserControl>

Page.xaml.cs
using System.Windows.Controls;
namespace XAML01

{

 public partial class Page : UserControl

 {

 public Page()

 {

 InitializeComponent();

 }

 private void UserControl_Loaded(object sender,

 RoutedEventArgs e) { }

 }

}

13

4.6 UI Class Hierarchy

Silverlight has a set of standard controls e.g. list boxes, check boxes, text blocks and others.

These controls are for building user interfaces. But how these are placed on the user interface

is handled by the layout controls (Panels). There is a set of base functionality that every

control in Silverlight offers. Figure 4.6-1 shows a shortened class diagram with a subset of

controls. To be noticed is that not all elements are user interface controls.

Figure 4.6-1 Silverlight control class hierarchy [21]

4.6.1 DependencyObject

The root of all visual elements is the DependencyObject class. This gives the ability to

interact with dependency properties. The dependency properties are special types of

properties that back the .NET property. The value of a dependency property depends on

multiple sources and therefore the .NET property is not enough. Its value can come from data

binding, animation, templates, styles or local values.

4.6.2 UIElement

The UIElement represents a visual component, and gives all elements that inherit from it the

ability to draw themselves on a user interface. The UIElement supports a number of methods,

properties and events.

4.6.3 FrameworkElement

The FrameworkElement adds additional features to the UIElement class like object lifetime

events and data binding support. It is the direct base of the Panel and the Control class which

are the base classes for most controls and for object positioning.

14

4.6.4 Layout Controls

Silverlight provides three layout controls for positioning visual objects and other controls on

the user interface; the Canvas the Grid and the StackPanel. These controls all inherit from the

Panel class. The Canvas has the ability to place a child element to an absolute position. The

Grid uses a tabular configuration with rows and columns for placing the elements and the

StackPanel places its child controls next to each other either horizontally or vertically. Layout

controls can be nested for example having a Grid within a Grid. [21]

4.7 Silverlight Application Architecture

Two XAML files are by default part of a Silverlight project.

• App.xaml, which is used to define styles and resources. The corresponding code-

behind file is used for initialization and cleanup code.

• Page.xaml is the startup control that is shown when the plug-in is loaded. Here the

user interface of the application is defined either by self created controls or Silverlight

controls.

4.7.1 The Silverlight XAP File

The result of building a Silverlight project is a compressed file with the extension .xap. It

contains compiled XAML and code-behind, an application manifest file and one or more

assemblies containing Silverlight controls that are used by the application.

4.7.2 Testing a Silverlight Application

When creating a Silverlight project a dynamically created HTML page can be included for

testing purposes. A TestPage.html is created when the application is built. The object tag

communicates with the plug-in and asks it to download and execute the XAP file defined with

the source parameter. [16]

<div id="silverlightControlHost">

 <object data="data:application/x-silverlight," type="application/x-

 silverlight-2" width="100%" height="100%">

 <param name="source" value="HelloWorld.xap"/>

 <param name="onerror" value="onSilverlightError" />

 <param name="background" value="white" />

 <a href="http://go.microsoft.com/fwlink/?LinkID=115261" style="text-

 decoration: none;">

 <img src="http://go.microsoft.com/fwlink/?LinkId=108181"

 alt="Get Microsoft Silverlight" style="border-style: none"/>

 </object>

 <iframe style='visibility:hidden;height:0;width:0;border:0px'></iframe>

</div>

15

5 Windows Communication Foundation

Windows Communication Foundation (WCF) is a set of APIs for creating distributed

applications that can communicate with each other. The same set of APIs is used when two

different applications communicate on the same computer or over the Internet.

5.1 Messaging and Endpoints

WCF is based on communication with messages. Therefore anything that can be formed as a

message can be represented in the programming model.

The communication model separates clients which initiate the communication and services

which are waiting and responding to the client’s request.

The client and service communicate using endpoints. The service defines a set of endpoints

which is all information that is necessary for exchanging messages. The client will then

generate an endpoint that is compatible with the service endpoint.

An endpoint is a standard description of how a message should be sent and how the message

looks like. This is done by letting the service expose metadata to the client. [13]

5.2 Services and Clients

A service can be both local and remote, and the client consuming the service can be literally

anything – a Windows Forms class, an ASP.NET page or another service. All messages in

WCF are SOAP messages. The messages are independent of transport protocol, unlike Web

services WCF can communicate over a set of protocols not only HTTP.

Figure 5.2-1 WCF proxy model [14]

The client will never communicate with the service directly not even when run on the local

machine instead a proxy is used to forward the call to the service. The proxy exposes the same

methods as of the service. This programming model approach is good for making the location

of the service transparent. It enables the possibility to switch service location without

affecting the client but also simplifies the application programming model. [14]

5.3 Setting up a Service

When setting up WCF for communication an address, a binding and a contract is needed.

With this information either a service-side endpoint can be created which the client will

access or a client-side channel which the client will use to communicate with the service.

16

WCF services are setup in three steps. First, create a service contract with one or more service

contracts. Second, create the service contract implementation. Third, configure the host with

an endpoint to the service.

An example service contract with one operation contract is specified below. The service

contract is a .NET interface with the System.ServiceModel.ServiceContractAttribute attribute

applied to it. The operation contracts are simple method signatures.

using System;

using System.ServiceModel;

//+

namespace Contact.Service

{

 [ServiceContract(Namespace = Information.Namespace.Contact)]

 public interface IPersonService

 {

 //- GetPersonData -//

 [OperationContract]

 Person GetPersonData(String personGuid);

 }

}

A good practice is to keep the WCF service interfaces short, between 3 to 7 methods per

contract. The namespace property is for logically organizing services much like how the .NET

namespace works for separating classes and interfaces.

The GetPersonData operation contract has a Person as return value. Person is a data contract.

Data contracts are classes which have the

System.Runtime.Serialization.DataContractAttribute attribute applied to them with one or

more private or public data members.

[DataContract(Namespace = Information.Namespace.Contact)]

public class Person

{

 //- @Guid -//

 [DataMember]

 public String Guid { get; set; }

 //- @FirstName -//

 [DataMember]

 public String FirstName { get; set; }

 //- @LastName -//

 [DataMember]

 public String LastName { get; set; }

}

Above is an example of a Person data contract. It is important to keep in mind only to specify

as many members as is needed. Because all information is sent over a wire the amount of data

can affect performance. When it comes to Silverlight this is even more important. Firstly, the

information that is sent has to be delegated through a browser before the plug-in can process

it. And secondly, the more information that has to be sent over the wire the more

unresponsive the Silverlight application gets.

17

The second step is to create an implementation to the contract. The implementation is put in

an ordinary class as shown below.

using System;

namespace Contact.Service

{

 public class PersonService : Contact.Service.IPersonService

 {

 //- @GetPersonData -//

 public Person GetPersonData(String personGuid)

 {

 return new Person

 {

 Guid = personGuid,

 FirstName = "John",

 LastName = "Doe"

 };

 }

 }

}

Step three is to configure the host of the service with the corresponding endpoints. This is

done by creating a Person.svc file. The below line of code is added in the file which specifies

the service implementation.

<%@ ServiceHost Service="Contact.Service.PersonService" %>

In addition the service host in itself has to be configured. It is done by declaring a service and

adding it to the endpoint. The declaration is done in the service web site’s web.config file.

The entire file looks as shown below.

<?xml version="1.0" encoding="UTF-8"?>

<configuration>

 <system.serviceModel>

 <services>

 <service name="Contact.Service.PersonService">

 <endpoint address="" binding="basicHttpBinding"

 contract="Contact.Service.IPersonService" />

 </service>

 </services>

 </system.serviceModel>

</configuration>

The configuration says that there can be “basicHttpBinding” communication through the

Contact.Service.IPersonService at address Person.svc to Contact.Service.PersonService. [15]

18

6 Integrating Silverlight in SharePoint

6.1 Visual Studio Configuration

A couple of extensions have to be downloaded for Silverlight 2.0 to work properly in the

development environment.

• Download and install the Silverlight 2.0 browser plug-in.

• Download and install Visual Studio 2008 Service Pack 1 and .NET Framework 3.5

Service Pack if not already installed on the system.

• Download and install Microsoft Silverlight 2 Tools for Visual Studio 2008.

6.2 SharePoint Runtime Configuration

For SharePoint to be able to host Silverlight applications a couple of steps have to be taken.

• The .NET 3.5 Framework has to be installed on the SharePoint Web front-end.

• When hosting Silverlight in WSS, Windows SharePoint Services 3.0 with service

Pack 1 has to be installed. If hosting the Silverlight application in MOSS, MOSS 2007

Service Pack 1 has to be installed.

• The System.Web.Silverlight.dll assembly has to be deployed in the GAC. This dll is

part of the Silverlight 2 SDK.

• The IIS hosting the SharePoint sites has to be extended. This is done by registering the

XAP MIME type in the IIS Manager.

• The web.config file of the targeted Web application has to be extended with a number

of configuration elements. Please see Appendix A for the extensions that have to be

made to the web.config file. [16]

19

6.3 Integrating Silverlight in a SharePoint Web Part

One way of creating a Web Part project for SharePoint is to use the Visual Studio Extension

for Windows SharePoint Services 3.0. The extension contains a project template which has

the initial infrastructure and a list of referenced assemblies. It also contains a WSS 3.0 Feature

for advertising the Web Part in a SharePoint site collection. In addition a Web Part class is

created and the possibility to edit the SharePoint solution (WSP file) which is generated when

the project is built. Figure 6.3-1 shows how the project template is structured in Visual Studio.

The WSP View is depicted on the right and the Solution is shown to the left.

Figure 6.3-1 Visual Studio WSP and Solution View

6.3.1 The Web Part Class

Below is a sample web part class. The web part has to inherit from the base WebPart class.

Here the code is located that is executed when the Web Part is activated and loaded in

SharePoint.

namespace HelloWorld

{

 [Guid("d359c723-89b0-4224-8d30-ee4f72898c4f")]

 public class HelloWorld : System.Web.UI.WebControls.WebParts.WebPart

 {

 public HelloWorld()

 {

 }

 }

}

6.3.2 The Web Part Feature

To advertise a Web Part a WSS Feature is used, the Feature adds the Web Part to the

SharePoint site collection. The Feature is an xml file with the extension .webpart that contains

information regarding the class and the assembly that is needed to load the Web Part. Below

is a sample XML file of a Feature.

20

<?xml version="1.0" encoding="utf-8"?>

<webParts>

 <webPart xmlns="http://schemas.microsoft.com/WebPart/v3">

 <metaData>

 <type name="d359c723-89b0-4224-8d30-ee4f72898c4f" />

 <importErrorMessage>Cannot import HelloWorld Web

 Part.</importErrorMessage>

 </metaData>

 <data>

 <properties>

 <property name="Title" type="string">Silverlight Web

 Part</property>

 <property name="Description" type="string">A sample</property>

 </properties>

 </data>

 </webPart>

</webParts>

6.3.3 The Element Manifest File

The WSP also contains an element manifest file for the Feature. This XML file is executed

when the Feature is activated. It is constructed by two elements; the module element which

has information about where the destination library is located and the file element which has

information about the actual file that is put in the Web Part gallery.

<Elements Id="d359c723-89b0-4224-8d30-ee4f72898c4f"

xmlns="http://schemas.microsoft.com/sharepoint/" >

 <Module Name="WebParts" List="113" Url="_catalogs/wp">

 <File Path="HelloWorld.webpart" Url="HelloWorld.webpart"

 Type="GhostableInLibrary" >

 <Property Name="Group" Value="Silverlight in

 SharePoint"></Property>

 </File>

 </Module>

</Elements>

6.3.4 The Feature File

The solution also contains a feature.xml file which holds metadata regarding the Feature that

is advertising the Web Part.

<Feature Id="d3432223-787e-461f-82df-2bca9882e3f4"

 Title="Silverlight 2 Hello World Web Part Feature"

 Description="Sample Silverlight Web Part

 for SharePoint"

 Scope="Site" Version="1.0.0.0" Hidden="FALSE"

 DefaultResourceFile="core"

 xmlns="http://schemas.microsoft.com/sharepoint/">

 <ElementManifests>

 <ElementManifest Location="HelloWorld\HelloWorld.xml" />

 <ElementFile Location="HelloWorld\HelloWorld.webpart" />

 </ElementManifests>

</Feature>

6.3.5 The SharePoint Solution File

The actual deployment of the Web Part assembly and the Feature files is done by the

SharePoint Solution file. The file with the extension .WSP is a CAB file which contains the

folder structure with all the solution components that is needed to deploy the solution to the

front-end Web servers.

21

<Solution SolutionId="15c907cc-651b-4c52-86ac-db5ec04097e3"

 xmlns="http://schemas.microsoft.com/sharepoint/">

 <FeatureManifests>

 <FeatureManifest Location="HelloWorld\feature.xml" />

 </FeatureManifests>

 <Assemblies>

 <Assembly Location="HelloWorld.dll"

 DeploymentTarget="GlobalAssemblyCache" />

 </Assemblies>

</Solution>

6.3.6 Hosting Silverlight in the Web Part

To be able to host the Silverlight plug-in in the Web Part a couple of steps have to be taken.

Two assemblies need to be referenced in the Web Part project. Firstly the

System.Web.Extensions.dll contains ASP.NET AJAX 1.0 extension layer. And secondly

System.Web.Silverlight.dll which contains the Silverlight server-side ASP.NET control.

A ScriptManager is required by the Silverlight ASP.NET control to be able to access the

ASP.NET AJAX 1.0 script library. There can only be one instance of the ScriptManager on

the page, therefore a check is done before creating it. By overriding the OnLoad method of

the base class the below piece of code adds the ScriptManager to the page.

protected override void OnLoad(EventArgs e)

{

 base.OnLoad(e);

 ScriptManager sm = ScriptManager.GetCurrent(this.Page);

 if (sm == null)

 {

 sm = new ScriptManager();

 Controls.AddAt(0, sm);

 }

}

The XAP file created when building a Silverlight project containing the files and assemblies

that are needed to execute the Silverlight application within SharePoint can be downloaded

from a number of different locations. The example here uses a SharePoint document library

named XAPS to store it. By adding a Module element to the Element Manifest file SharePoint

is told to place the XAP file in the XAPS library when the Feature is activated. When any

changes are being done to the Silverlight application the only thing that has to be exchanged

is the XAP file, which can be done in SharePoint itself. The Feature doesn’t have to be

activated again. Below is the module element that has to be added to accomplish this.

<Module Url="XAPS" RootWebOnly="TRUE">

 <File Path="HelloWorld.xap" Url="HelloWorld.xap"

 Type="GhostableInLibrary"></File>

</Module>

The last step is to create a child control for the Web Part which will create an object tag that

tells the Silverlight plug-in to download and execute the XAP file. By overriding the base

class method CreateChildControls the Silverlight ASP.NET control can be created. The

Source property specifies where the XAP file is located for download. [17]

22

protected override void CreateChildControls()

{

 base.CreateChildControls();

 System.Web.UI.SilverlightControls.Silverlight ctrl = new

 System.Web.UI.SilverlightControls.Silverlight();

 ctrl.ID = "HelloWorld";

 ctrl.Source = SPContext.Current.Site.Url + "/XAPS/HelloWorld.xap";

 ctrl.Width = new Unit(400);

 ctrl.Width = new Unit(300);

 Controls.Add(ctrl);

}

6.4 Passing data from SharePoint to Silverlight

When there is a need of passing data to the Silverlight application there is a possibility to do

this by using the InitParameters property of the Silverlight ASP.NET control. Parameters are

sent in comma-delimited string of key/value pairs. The example below specifies two

parameters.

System.Web.UI.SilverlightControls.Silverlight ctrl = new

 System.Web.UI.SilverlightControls.Silverlight();

ctrl.InitParameters = "webURL=" + SPContext.Current.Web.Url +

",siteURL=" + SPContext.Current.Site.Url;

The parameters that are passed to Silverlight are processed in the start of the application. The

code for parsing the key/value string is placed in the Application_Startup event handler in the

code-behind file App.xaml.cs. The data is then passed further to an instance of the Page class.

The parsing and passing code can be seen below. [18]

private void Application_Startup(object sender, StartupEventArgs e)

{

 string siteurl = null;

 string weburl = null;

 if (e.InitParams != null && e.InitParams.Count > 0)

 {

 if (e.InitParams["webURL"] != null)

 weburl = e.InitParams["webURL"];

 if (e.InitParams["siteURL"] != null)

 siteURL = e.InitParams["siteURL"];

 }

 this.RootVisual = new Page(siteURL, webURL);

}

6.5 A SharePoint Custom Field Type interacting with Silverlight

A SharePoint field type is used to define columns in lists and document libraries. But can also

be used when developing rich survey animations.

By using a hidden HTML input field Silverlight can communicate with the SharePoint field

type. The ID of the input field is passed to the Silverlight application using the InitParams

property of the Silverlight control. The HtmlPage class is used to access the hidden field.

Silverlight gets a reference to the HTML element by calling the GetElementById passing it

the ID of the element. The sample code below shows how this is accomplished.

23

private void SetValueInHiddenControl()
{
 string valuestring = this.SelectedValue.ToString(CultureInfo.InvariantCulture);

 HtmlElement element = HtmlPage.Document.GetElementById(valueControlId);
 if (element != null)
 {
 element.SetAttribute("value", valuestring);
 }
}

Similar to developing the SharePoint Web Part a custom field type can be developed using the

Visual Studio Extensions for Windows SharePoint Services 3.0.

The SharePoint custom field type architecture consists of three files; a core class for the

custom field type, an ASP.NET server control class that is acting as a host container for the

Silverlight application and an XML file which is the field type definition file that

communicates to SharePoint that an extra field type exists.

6.5.1 The Field Type Class

The custom field type has to inherit from one of the built in field type classes or the SPField

class which is the base class of them all. In the sample below a number is stored it therefore

inherits from the SPFieldNumber class.

public class SliderControlField : SPFieldNumber

{

 public SliderControlField(SPFieldCollection fields, string fieldName)

 : base(fields, fieldName) { }

 public SliderControlField(SPFieldCollection fields, string typeName,

 string displayName) : base(fields, typeName, displayName) { }

 public override BaseFieldControl FieldRenderingControl

 {

 [SharePointPermission(SecurityAction.LinkDemand, ObjectModel = true)]

 get

 {

 BaseFieldControl fieldControl = new SliderFieldControl();

 fieldControl.FieldName = this.InternalName;

 return fieldControl;

 }

 }

}

By overriding the FieldRenderingControl property of the base class an instance of the

ASP.NET server control is created. This will tell SharePoint to display the Silverlight

application using the custom field type.

6.5.2 The Field Control

The field control class is for rendering the ASP.NET control when the user creates the

column. The user interface is created in the CreateChildControls method that is overridden

form the base class.

24

public class SliderFieldControl : NumberField

{

 protected override void CreateChildControls() { }

}

Within the CreateChildControls method the Silverlight control is created in exactly the same

manner as when overriding the same method in the Web Part class shown earlier. Passing any

needed parameters is done with the InitParams property of the control.

6.5.3 Deploying a Custom Field Type

The SharePoint field types are compiled in an assembly and deployed in the global assembly

cache. Using an XML file SharePoint is informed of the new type. By using the generation

functionality of Visual Studio Extensions for WSS 3.0 this file can be dynamically created.

The file is deployed under the 12\Template\XML folder with the file prefix .fldtypes. [20]

25

7 Business Process Terminology

7.1 Business Process

A business process is a collection of connected activities that produce a service or product that

meet the needs of a customer. A business process is vital to any organization and generates

revenue and represents a significant part of the cost for the company. There are three kinds of

business processes.

• Management processes. These processes oversee the operation of the system. Typical

management processes include Corporate Governance which is the set of processes,

policies, laws and institutions affecting the way a corporation is directed and

administered. Another management process is Strategic Management which is the

ability to formulate, implement and evaluate cross-functional decisions that will

enable an organization to achieve its long-term goals.

• Operational processes are processes that represent the core business. Typical

operational processes are Purchasing, Manufacturing, Sales and Marketing.

• Supporting processes. These processes support the core processes. I.e. Accounting,

Recruitment and Technical support.

A typical process starts with a customer need and ends with the fulfillment of this need. A

business process is often divided into sub-processes which have their own attributes.

Analyzing business processes includes mapping sub-processes belonging to a business

process down to an activity level, focusing only on the activities that are needed to

accomplish the process. [7]

7.2 Business Process Management

BPM was from the beginning mostly focusing on the automation of mechanistic business

processes; it has evolved and extended to integrate human-driven processes in which humans

interact with the mechanistic processes. Normally steps in a business process that are

performed by humans are assigned to the appropriate people of an organization (similar to

workflow systems).

7.3 BPM Life-Cycle

The BPM life-cycle splits the activities in BPM in five categories: design, modeling,

execution, monitoring and optimization.

• Design. Identification of existing and future processes is an essential part in this life-

cycle category. Here focus lies on representing the flow of the workflow and

determining which actors are participating. A good design is important for reducing

the problems over the lifetime of the process.

• Modeling. The modeling stage in the cycle takes the design into account and

introduces a set of variables, I.e. when there are changes in the cost of materials that

can change how the process operates under different scenarios.

26

• Execution. Automating the process can be done by having a software system that

executes all the steps in the process. Human interaction can also be used though often

resulting in more complicated system. Software systems are available that lets the

process be defined in a computer language. The system will communicate via services

to remote applications that perform business operations or when to complex ask for

human interaction.

• Monitoring. Here tracking of the running processes are done. This to collect

information of the processes state and statistics of the performance can be evaluated.

• Optimization. Here information is collected from the monitoring step to identify the

potential or actual bottlenecks, which is then used to optimize processes in respect to

saving time or saving costs. [6]

7.4 Business Process Modeling

The purpose of this activity is to represent the processes of an organization. These models can

then be changed to improve the efficiency and quality of the process. A graphical

representation of business process information is an effective way for presenting the processes

to business stakeholders. The stakeholders are represented by; the business analyst who

creates and optimizes the processes, the developer that implements the processes, and the

business manager who monitor and manage the processes. For these visual languages such as

the Business Process Modeling Notation and the Unified Modeling Language are used. [5]

27

8 The Process Designer Tool

The Process Designer tool that has been developed and integrated in SharePoint uses the same

basic integration steps that are described in a previous chapter with some minor

modifications. It is integrated as a Web Part that communicates with SharePoint WSS via a

WCF service. This chapter will describe the WCF communication pattern that has been used

but also other approaches that can be used for the interaction between the client plug-in of

Silverlight and the server side of SharePoint.

The direct communication with SharePoint WSS is done through the WSS object model. The

object model is accessed in the implementation of the WCF service as well as in the Web Part

class that initializes the Silverlight control. Some basic issues when programming against the

object model for accessing lists, document libraries and user group information will be taken

into consideration.

Silverlight make use of some powerful implementation patterns for data binding and when

using styles and templates. By using styles the work of the GUI designer and the web logic

programmer can be separated. A number of out-of-the box controls are shipped with

Silverlight, the controls that have been used will be described.

8.1 The SharePoint Object Model

WSS consists of a server-side object model that makes it easier for the developer to access

objects that represent different items of a SharePoint Web site. A hierarchy of objects is

available which makes it easy to access objects on lower levels.

Depending on the application that is created different entry points to the object model can be

used to start from. For example, when customizing administration and configuration for

deployment the static ContentService property can be used to get the current Web service

object and its collection of Web applications. Or when modifying settings in the

administrative Web application the AdministrationService property is used.

When developing a Web Part or Web application and within them working with site

collections, individual sites or lists the SPContext class can obtain this information. When a

Web application is created and put in the /_layouts virtual directory the functionality is

available to all sites on the Web server. Outside an HTTP context a constructor of the SPSite

class has to be used to get specific site collections and objects within it.

Figure 8.1-1 shows the WSS server architecture in relation to the available objects of the

Microsoft.SharePoint.Administration namespace.

28

Figure 8.1-1 WSS Server Architecture [22]

1. The SPFarm object is located on the highest level of the WSS object model. The Servers

property gets a collection of all deployed servers and the Services property gets a

collection of all the services.

2. Each SPServer object represents each server computer within the server farm. The

ServiceInstances property gets each service instance on the computer.

3. Each SPService object represents a service or application that is installed on the server

farm.

4. SPWebService object provides access to configuration settings for a service or an

application.

5. The SPDatabaseServiceInstance object represents a single instance of a database service

running on the server or application.

6. The SPWebApplication is representing each of the Web applications in the IIS; it

provides credentials and other server farm wide application settings.

7. The SPContentDatabase represents a database that contains data for the SharePoint Web

Application.

8. The SPSiteCollection represents the site collection within the Web application.

29

The WSS site architecture is shown in Figure 8.1-2 in relation to the objects of the

Microsoft.SharePoint namespace.

Figure 8.1-2 Site Architecture and Object Model Overview [22]

1. Each SPSite object represents a set of SPWeb objects. Such a set is called a site collection

but the SPSite object can do more than the SPWebCollection object having the ability to

manage the site collection.

2. Each site has a number of SPWeb objects these are for managing a site. For example, by

accessing files and folders on the site. The Webs property returns the all the sub-sites of a

certain site.

3. The SPList object is for managing lists and accessing items within them. The Fields

property returns a SPFieldCollection object which represents all fields or columns in the

list. The Items property returns an object the represents all the items or rows in the list.

4. SPField has members that contain settings for the field.

5. SPListItem represents a single row in the list [22]

30

8.2 The Web Part Implementation

The Process Designer has been integrated in SharePoint as a Web Part according to the Web

Part integration chapter seen earlier. In this chapter a couple of different approaches are

shown how to use the InitParams and thereby showing the approach that is used by the

Process Designer.

8.2.1 Passing data to Silverlight

In the chapter Integrating Silverlight in SharePoint the InitParams are described as a method

to communicate with the Silverlight plug-in at startup from the SharePoint Web Part. Below is

a piece of code from the Process Designer tool. Instead of passing a string with comma

separated key/value pairs it uses XLinq to create an XML string.

Collection<XElement> siteUserGroupElements = new Collection<XElement>();

foreach (SPGroup group in SPContext.Current.Web.Groups)

{

 XElement item = new XElement("SiteUserGroup",

 new XElement("Name", group.Name));

 siteUserGroupElements.Add(item);

}

Collection<XElement> elements = new Collection<XElement>();

XElement siteUserGroups = new XElement("SiteUserGroups",

 siteUserGroupElements);

elements.Add(siteUserGroups);

XDocument document = new XDocument(new XElement("Root", elements));

XLinq is a lightweight XML programming API and is a member of the LINQ Project family.

XLinq is an in-memory API designed to take advantage of the latest .NET Framework

language innovations.

The XDocument object that is created on the last line of code above is then converted to a

string and passed the InitParams. Converting the object to a string is done with the code

shown below.

StringBuilder stringBuilder = new StringBuilder();

XmlWriterSettings xmlWriteSettings = new XmlWriterSettings();

using (XmlWriter xmlWriter = XmlWriter.Create(stringBuilder,

 xmlWriteSettings))

{

 document.Save(xmlWriter);

}

string xmlString = stringBuilder.ToString();

8.2.2 Passing data with an XML Data Island

Instead of passing an XML string directly with the InitParams method of the Silverlight

control a LiteralControl can be used, within this control an XML Data Island is created. The

id of the Data Island is then passed as a parameter to the Silverlight plug-in via the InitParams

31

property. The LiteralControl is added the same way as the Silverlight control is added to the

HTML page.

Controls.Add(silverlightControl);

string xmlDataIsland = "<XML id='INIT_DATA'>{0}</XML>";

LiteralControl literalXMLIsland = new LiteralControl

 (string.Format(xmlDataIsland, xmlString));

Controls.Add(literalXMLIsland);

The XML Data Island can be picked up by the Silverlight application by using the id that is

passed with the control. By working with the HtmlPage class Silverlight can access the

HTML DOM. Once the HtmlElement of the XML Data Island is found the XML can be

extracted, this is done by using the GetProperty method asking for the value of the

innerHTML as shown in the code sample below. [19]

public Page(string controlid)

{

 InitializeComponent();

 string xmlstring = string.Empty;

 if (controlid != null)

 {

 HtmlElement ctl = HtmlPage.Document.GetElementById(controlid);

 if (ctl != null)

 xmlstring = (string)ctl.GetProperty("innerHTML");

 }

}

8.2.3 The Silverlight Control

The Silverlight control is created in the overridden CreateChildControls method of the Web

Part base class. Here information is set concerning where the Silverlight application can find

the XAP file which is loaded and executed by the Silverlight plug-in in the browser. The size

of the control is set using the Width and Height property and the appropriate parameters are

passed to the InitParameters property.

protected override void CreateChildControls()

{

 ctrl = new Silverlight();

 ctrl.ID = "SilverlightNavigation";

 ctrl.Source = "/_layouts/NavigationWebPart/SilverlightNavigation.xap";

 ctrl.Width = new System.Web.UI.WebControls.Unit(876);

 ctrl.Height = new System.Web.UI.WebControls.Unit(631);

 ctrl.InitParameters = "initXml=" + CreateXMLString();

 Controls.Add(ctrl);

}

The XAP file is placed in the _layouts folder and not in a SharePoint document library. This

is to make Silverlight application available in any site collection that is hosted on the

SharePoint server. Having it in the _layouts folder is a good location for making it globally

accessible.

8.3 Drag-and-Drop

Silverlight support a number of mouse related events. All these events can be handled by any

element inheriting from the UIElement class. Click-handling events for the mouse are very

32

similar to key-board events. Click related mouse events associated with the mouse are;

MouseLeftButtonDown and MouseLeftButtonUp which are self explanatory. When the left

mouse button is selected its corresponding event handlers receive a MouseButtonEventArgs

object. It inherits from the MouseEventArgs class which gives information concerning the

mouse when the event was triggered. By calling the GetPosition method the location of the

cursor in relation to a specific UIElement is received. In addition Silverlight supports mouse

movement related event handlers. These are the MouseEnter, the MouseMove and

MouseLeave events, which are triggered when the mouse enters, moves within and leaves a

UIElement. These events are also passed a MouseEventArgs parameter so that the position of

the element can be captured.

When implementing the drag-and-drop feature the first step to be taken is to listen to the

MouseLeftButtonDown event.

processCanvas.MouseLeftButtonDown += new

MouseButtonEventHandler(processCanvas_MouseLeftButtonDown);

By doing this the original position of the mouse can be captured as well as the fact that the

mouse is depressed. To correctly respond to mouse events, ownership over the mouse has to

be claimed. By calling the CaptureMouse method of the UIElement this is accomplished.

private void processCanvas_MouseLeftButtonDown(object sender,

 MouseButtonEventArgs e)

{

 ProcessCanvas processCanvas = sender as ProcessCanvas;

 this.processCanvas = processCanvas;

 startingDragPointImage = e.GetPosition(processCanvas);

 processCanvas.CaptureMouse();

 processCanvas.MouseMove += new

 MouseEventHandler(processCanvas_MouseMove);

 processCanvas.MouseLeftButtonUp += new

 MouseButtonEventHandler(processCanvas_MouseLeftButtonUp);

}

With this information the objects position can be programmatically changed using the

MouseMove event which updates the position using the GetPosition method.

private void processCanvas_MouseMove(object sender, MouseEventArgs e)

{

 ProcessCanvas processCanvas = sender as ProcessCanvas;

 MainCanvas mainCanvas = processCanvas.Parent as MainCanvas;

 Point CanvasPoint = e.GetPosition(mainCanvas);

 Double xPoint = CanvasPoint.X - startingDragPointImage.X;

 Double yPoint = CanvasPoint.Y - startingDragPointImage.Y;

 if (xPoint >= 0 && (xPoint <= (mainCanvas.ActualWidth –

 processCanvas.Width)))

 Canvas.SetLeft(processCanvas, xPoint);

 if (yPoint >= 0 && (yPoint <= (mainCanvas.ActualHeight -

 processCanvas.Height)))

 Canvas.SetTop(processCanvas, yPoint);

}

33

Dropping the object is done with the MouseLeftButtonUp event which restores the mouse-

related events. [12]

private void processCanvas_MouseLeftButtonUp(object sender,

 MouseButtonEventArgs e)

{

 ProcessCanvas processCanvas = sender as ProcessCanvas;

 processCanvas.ReleaseMouseCapture();

 processCanvas.MouseMove -= new

 MouseEventHandler(processCanvas_MouseMove);

 processCanvas.MouseLeftButtonUp -= new

 MouseButtonEventHandler(processCanvas_MouseLeftButtonUp);

}

8.4 Data Binding

Connecting a data source to a user interface element such as a text block can be done in a one-

way or a two way fashion. One way is simply to display data in the UI and two way is to

reflect the user interaction in the underlying data source. In general the data sources in

Silverlight are objects or collections of objects with belonging properties that can be accessed.

The Binding markup extension can be accessed both from the code-behind and the XAML

markup. The extension cannot be set directly a binding class has to be used. The

VersionHistoryListBoxItem class below is used for this purpose when binding data to the

version history list box.

public class VersionHistoryListBoxItem

{

 public string Description { get; set; }

 public string Name { get; set; }

}

The list box items consist of two text blocks, for binding each of the properties of the class.

When wanting to bind the Description property in one of the TextBlocks the first step is to use

the Binding extension in the XAML markup to the Text property.

<TextBlock x:Name="Description" Text="{Binding Description}"/>

The second step is to set the DataContext property to the VersionHistoryListBoxItem object.

The Binding markup provides three modes OneTime, OneWay and TwoWay. These modes

control how the data is bound and how the data flow between the user interface and the data

source.

• OneTime: The binding is done once. Any changes will not be seen in the UI.

• OneWay: The data flows from the data source to the user interface. When the data

source changes the UI is updated.

• TwoWay: The data flows in both directions. Any changes in the UI are reflected in the

data source and the other way around.

Below is a listing of valid syntax for the Binding Markup Extension. [12]

• {Binding} Most commonly used with item templates. The mode of operation

 is one way.

34

• {Binding path} Specifies what property that supplies the data. Separating the

 properties with a dot for going deeper in the class hierarchy.

• {Binding properties} Provides the ability to set data binding configuration properties

 using name=value syntax.

• {Binding path, properties} A combination of the previous two allowing specifying which

 object property supplies the data and configuring it.

8.5 Using Styles

Styling in Silverlight is similar to how CSS properties work. User interface elements can

reuse fonts, colors and sizes specified as styles to a FrameworkElement. When developing

larger applications styles are good for grouping properties and specific values that can be

reused. Properties that are grouped into styles are from different Silverlight controls. For

example are the FontSize, Foreground, Margin and TextWrapping good properties to put into

a style for TextBlocks.

When specifying a style it must be given a name as well as the target type where it will be

applied. The target type is the name of the class that will use the style. The name has to match

directly, it will not automatically apply to descendents of a specified class, making UI styling

predictable. Because styling can be applied to all the relevant controls they are placed in the

application resource dictionary in the App.xaml file.

<Application xmlns="http://schemas.microsoft.com/winfx/2006

/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 x:Class="SilverlightNavigation.App"

 xmlns:vsm="clr-namespace:System.Windows;assembly=

System.Windows"

xmlns:d="http://schemas.microsoft.com/expression/blend/2008"

xmlns:mc="http://schemas.openxmlformats.org/

markup-compatibility/2006"

 mc:Ignorable="d"

 xmlns:controls="clr-namespace:Microsoft.Windows.Controls;

assembly=Microsoft.Windows.Controls"

 >

 <Application.Resources>

 <Style x:Key="ContentDescription" TargetType="TextBlock">

 <Setter Property="FontSize" Value="12"/>

 <Setter Property="TextWrapping" Value="Wrap"/>

 </Style>

 </Application.Resources>

</Application>

Each style has an x: Key that is the key of the resource which is applied to the user interface

element. When applying the style the StaticResource markup extension is used for the Style

attribute.

<TextBlock Style="{StaticResource ContentDescription}"/>

A drawback with the styles in Silverlight is the lack of conditional styling and style

inheritance which is supported in WPF. Conditional styles are useful for applying styles to

framework elements depending on certain conditions, for example hovering over an element.

The second drawback is style inheritance. A new style can be defined with a combination of

new setters and inheriting setters from its parent.

35

8.6 Using Control Templates

Templates are for Control-based classes and are used for changing how the controls are

rendered visually. This is possible because there is a separation in how they look and what

they do.

Each control can have different states, such as disabled. A control template lets the developer

define what the control looks like in each of its states. It is a kind of changing the look and

feel of the control because the visual appearance changes when the user interacts with it.

Every Control in Silverlight has a property Template which is located in the Control class. By

setting this property the developer is resetting the controls appearance. From this reset state

the look and feel can be adapted as wished. The new appearance that is defined in the below

code sample is a round close button.

<Style x:Key="CloseButton" TargetType="Button">

 <Setter Property="HorizontalAlignment" Value="Right"/>

 <Setter Property="Width" Value="15"/>

 <Setter Property="Height" Value="15"/>

 <Setter Property="Template">

 <Setter.Value>

 <ControlTemplate>

 <Border x:Name="brd1" Width="14" Height="14" CornerRadius="15">

 <Border.Background>

 <RadialGradientBrush GradientOrigin=".3, .3">

 <GradientStop Color="#FFF" Offset=".15"/>

 <GradientStop Color="#777" Offset="1"/>

 </RadialGradientBrush>

 </Border.Background>

 <TextBlock x:Name="txt1" Foreground="#222" TextAlignment="center"

 Text="r" FontSize="9" VerticalAlignment="center"

 FontFamily="Webdings"/>

 </Border>

 </ControlTemplate>

 </Setter.Value>

 </Setter>

</Style>

The button above is forced to display the letter r as a Webdings font, which is a

� representing close. If the button was to be used as a general purpose button control

template it wouldn’t be a very useful, because a new control template would have to be

defined for each text that the button presents. This issue is solved by using the

TemplateBinding markup extension. When using the TemplateBinding markup extension for

a button a special class called the ContentPresenter has to be used. This class makes it

possible to display all kind of content that is possible for a button but also other controls

Content property. By changing the TextBlock tag above by the one below this is

accomplished.

<ContentPresenter HorizontalAlignment="Center" VerticalAlignment="Center"

Content="{TemplateBinding Content}" />

The button control template above does not give the user any visual feedback reflecting the

different visual states a Button control can have. By using something called the Visual State

Manager defining the different states is possible. Each control has a set of visual state groups

and visual states defined to them. The states within the group are mutually exclusive but the

36

control can be in several states at the same time from the visual groups that is defined for it.

The Figure 8.6-1 shows two state groups and the visual states that are valid within them.

Figure 8.6-1 Visual State Groups and Visual States [21]

When creating a control that supports the visual states and groups that are shown above these

have to be defined on the Button class using attributes. The control can then specify how it

should act in each state; this can be very troublesome when doing it in code. By using

Microsoft Expression Blend defining control templates and their states makes the life of the

developer much easier. [21]

37

9 WCF and Silverlight

The most effective way to communicate with server-side code is using a web service. The

basic concept is to include a web service with an ASP.NET web site and let the Silverlight

application call its methods. The web service will then perform any server-side tasks that are

necessary.

9.1 Creating a Silverlight enabled Service

Creating a WCF service in Visual Studio is pretty straight forward. This is accomplished by

right clicking on the ASP.NET web site and under the Add New Item options choose

”Silverlight-enabled WCF Service”. This will create a service endpoint file with the extension

.svc. This file only contains one line of code that tells ASP.NET where to find the web service

code. This will also create a corresponding .cs file where the implementation of the service

interface is placed.

9.2 Consuming the Web Service

Consuming a web service in Silverlight is much like consuming the service in any other .NET

application. The first thing that has to be done is to create a proxy class by adding a Visual

Studio web reference. By choosing Add Service Reference on the Silverlight project and

adding the URL to the .svc file of the web service and clicking OK this will be accomplished.

This generates a proxy class that the Silverlight application uses to call the web service

methods.

9.3 Calling the Web Service

All web service calls in Silverlight are asynchronous; this means that a service call will not

wait for an immediate response from the server. Instead the call is done and other code can

run in the mean time. When the server is finished executing its part of the code it sends a

response which the proxy class takes care of by triggering the corresponding proxy event,

which has the form MethodNameCompleted, this is where the result has to be processed.

The sample code below is taken from the Process Designer tool for loading the process model

at the startup of the application. This is a typical way for calling the web service. First an

instance of the proxy class is created. An event handler is attached to handle the completed

event. The web service call is then done with the form MethodNameAsync. And finally the

service is closed with the CloseAsync method.

ProcessNavigationClient proxy = new ProcessNavigationClient();

proxy.GetMainCanvasesCompleted += new EventHandler

 <GetMainCanvasesCompletedEventArgs>(proxy_GetMainCanvasesCompleted);

proxy.GetMainCanvasesAsync();

proxy.CloseAsync();

To handle the result of the call the completed event and the corresponding EventArgs object

has to be handled. The proxy class will generate different EventArgs objects for each method.

The Result property is then typed to match the response data type. [11]

9.4 WCF and the SharePoint Object Model

To use the SharePoint object model within the web service the Microsoft.SharePoint

namespace has to be added as a reference. By default WCF works outside ASP.NET and

38

because of that also outside SharePoint. The scope of WCF is much larger than just ASP.NET

therefore this is reasonable. To get the current site collection the static SPContext object is

used. To enable the web service to get a reference to SPContext the service has to be told to

run within the ASP.NET context. This is done by adding the following line to the web.config

file of the web service.

<system.serviceModel>

 <serviceHostingEnvironment aspNetCompatibilityEnabled="true" />

 ...

</system.serviceModel>

The sample code below is taken from the Process Designer tool. The call is made at the

application startup to load the process model that has been saved in a Document Library. The

using statements are used when the developer wants to have supervision of when the resource

allocated within it should be released. This is good when handling with limited resources such

as file handles and network connections. The release of memory is otherwise done by the

common language runtime, which does this in a non-deterministic manner. Using the

approach below it is possible to drill down in SharePoint object model, and in this case ending

up with the SPDocumentLibrary object where the files for loading the process model is

located.

[OperationContract]

public Collection<MainCanvasProp> GetMainCanvases()

{

 Collection<MainCanvasProp> props = new Collection<MainCanvasProp>();

 using (SPSite site = new SPSite(SPContext.Current.Site.ID))

 {

 using (SPWeb web = site.OpenWeb())

 {

 SPDocumentLibrary library =

 (SPDocumentLibrary)web.Lists["Process Hierarchy"];

 if (library != null)

 {

 ...

 }

 return props;

 }

 }

}

9.4.1 The XmlSerializer

The XmlSerializer lets the developer serialize and deserialize objects which provides a

higher-level alternative to just reading and writing individual pieces of data. The

XmlSerializer converts objects into a stream of bytes which can be pushed to any stream. It

can also do the reverse by reading a stream of bytes and convert into an object. To be able to

use this feature the System.Xml.Serialization.dll has to be referenced within the project. The

XmlSerializer works with every class but have a couple of requirements:

• The class that wants to be serialized has to have a constructor with no arguments. This

class is used when the XmlSerializer is deserializing the byte stream.

• The class has to be built up by public settable properties. By using reflection the

XmlSerializer will read them for serializing an object and set them also using

reflection when deserializing. Private data is ignored as well as any validation.[23]

39

The code sample below is taken from the CheckIn WCF service method which is called when

checking in a process level of the Process Designer tool. It demonstrates how to serialize an

object into a stream which can be saved to SharePoint document library. The prop object is of

type MainCanvasProp class which holds the information concerning a process level.

Stream documentStream = new MemoryStream();

StreamWriter writer = new StreamWriter(documentStream);

XmlSerializer s = new XmlSerializer(prop.GetType());

s.Serialize(writer, prop);

writer.Flush();

The code sample below is taken from the WCF service method which is called when loading

the process model. The file instance which is a SharePoint SPFile object is read into a Stream

object as binary stream. An instance of the XmlSerializer is then created which is customized

to use the MainCanvasProp class. By applying the Deserialize method the stream is converted

into a MainCanvasProp object.

Stream stream = file.OpenBinaryStream();

StreamReader reader = new StreamReader(stream);

XmlSerializer s = new XmlSerializer(typeof(MainCanvasProp));

MainCanvasProp prop;

prop = (MainCanvasProp)s.Deserialize(reader);

reader.Close();

9.5 Error Handling

WCF has the ability to throw exceptions on a service call. The unfortunate thing is that

Silverlight does not support it. Any exception that is thrown will be translated by the browser

into a 404 File Not Found error. There are a couple of workarounds that can be used to

overcome this issue. One workaround is using an extra Error property to the data that is

returned to the Silverlight application. This solution is not optimal though. It makes the

simple return value more complicated and it mixes good and bad data in the same object and

will therefore break the single responsibility rule. A better solution is to use the ability to

define a WCF service signature using the OUT parameter which can be accessed through the

EventArgs on the event handler for completing the call. [12]

WCF
[OperationContract]

SomeObject GetSomeData(String someId, out MyErrorObject myError);

Silverlight
private void proxy_GetSomeDataCompleted(object sender,

GetSomeDataCompletedEventArgs e)

{

 if (e.Error != null)

 {...}

 if (e.myError != null)

 {...}

 else

 {...}

}

9.6 Other Communication Patterns

The difference between a Silverlight Web Part and a normal SharePoint Web Part is that the

Silverlight Web Part is executed in the browser and not on the Server. Therefore the

40

Silverlight application will not have access to the SharePoint object model. The goal is

therefore to be able establish some kind of communication between the UI of Silverlight and

the SharePoint server-side to access objects and data.

The Process Designer tool uses one approach defining a server-side web service which

accesses the SharePoint object model. This web service is then consumed and called from the

Silverlight application. There are other patterns that can be taken into account. Here is a list of

thinkable patterns.

• Using the Silverlight WebClient object to communicate with the SharePoint built-in

Web service.

• Create a client-side adapter that is embedded in the Web Part. The Silverlight

application can then communicate with the adapter through the browser. The adapter

will then make AJAX-style calls to a built in SharePoint Web service.

• The last thinkable solution is to use the above approach. But instead of communicating

with the built in SharePoint Web services it talks to a self implemented service. Figure

9.6-1 shows this approach. [23]

Figure 9.6-1 Communication pattern [23]

41

10 The Model-View-ViewModel Pattern

The Model-View-Control pattern is well known and commonly used when developing

ASP.NET applications with a request/response style. The M-V-VM (Model-View-

ViewModel) pattern has not been discussed as much as a formal pattern. However, it works

well for client applications that use interactive or dynamic user interfaces that are data-bound.

This is the case when coming to Silverlight.

The pattern consists of three parts the Model/DataModel, View and the ViewModel.

• Model/DataModel. This part represents the data that the application is operating over

as well as the data access mechanism. Analogous to the Model in the MVC pattern.

• View. The View is the user interface that displays the data and enables user

interaction. It is typically in a declarative language like XAML or HTML.

• ViewModel. Also read as “The View’s Model” this part is responsible to represent the

data in a more suitable way for the view. It also has operations that are performing

work and that often change the data that the view is bound to.

The code-behind pattern that is the natural approach to use when programming Silverlight

applications uses a similar approach. Having UI components that are associated with code-

behind that loads data and implementing logic for user input and interaction with event-

handlers. Figure 10-1 represents this pattern. A problem with the pattern is that it mixes

application logic with the visual presentation. This leads to an application that is harder to

test. It also effects the separation of the designers work and the work of the developer.

Figure 10-1 The code-behind pattern [25]

The M-V-VM pattern tries to separate the logic from the presentation. The data that is

displayed are implemented as properties of the ViewModel that the View gets via data-

binding. Further on, the ViewModel also have methods that have logic that is consumed by

the View using commanding. The key is that the ViewModel is independent from what

controls that build up the View. Figure 10-2 illustrates this pattern. [25]

42

Figure 10-2 The Model-View-ViewModel pattern [25]

11 Silverlight Testing and Debugging

Before integrating the Silverlight application in the SharePoint Web Part it is recommended

that it works as much as possible. This is most easily done in the Web Application project that

is created in Visual Studio when developing the Silverlight application. When the application

is working within this environment it should be wrapped in a Web Part. Once it is wrapped in

the Web Part no breaking points can be set for debugging in the Silverlight application.

When troubleshooting problems with the Silverlight application it is good to use a HTTP

debugger. Especially when the application uses Web Service calls. When developing the

Process Designer tool the web debugging program fiddler2 was used. It gives a clear view of

what data is sent to and from the web browser and the server where the Web Service is

located and what calls fails. It also tells if a cross domain file is being requested.

When the XAP file is downloaded from the server it is cached in the browser. When new

versions of the XAP file is available for download from the server the browser will still use

the cached file. It is therefore necessary to clear the browser cache before testing newer

versions. [24]

11.1 Unit testing

Testing is an important part of the development life-cycle of software. Software patterns like

dependency injection and M-V-VM makes it easier to design code that is easier to test. There

is no Silverlight testing framework that is integrated with Silverlight itself. The Silverlight

testing framework is available with the release of the Silverlight control source. [26]

A rather common misperception is that every test written using a test framework is a unit test,

but there are a number of different tests that can be written to test code. A test can be seen as

not being unit test if:

• It communicates with the database

• It communicates across the network

• It interacts with the file system

• It can run at the same time as other unit tests

• The environment has to be re-configured to run them

43

Tests that do the things listed above can easily be written using a testing framework. But it is

important to separate them from the real unit tests that can be run whenever and in a fast

manner. [27]

It is of essence to be able to write unit test code that is easily decoupled from code that makes

cross boundary calls. Instead of making a test that interacts with a database the data has to be

collected in some other mean by for instance using dependency injection or mocks.

A good practice when writing tests to a Silverlight application is to separate them into three

separate categories.

• Unit Test. Tests a single unit, normally a method in a single class. It should not do

any cross boundary calls, should run fast without any side effects.

• Integration Test. This is testing how multiple classes integrate with each-other or

how the class integrates with the environment. I.e. accessing data over a web service

or accessing the data base.

• Smoke Test. This is for testing how the user is interacting with the application. This

leads to cross boundary calls, file system access etc. These tests are usually automated

by the user interface.

There are other kind of tests that can be done as well, like performance- , acceptance-, and

stress- tests. These are often written in other testing frameworks.

It is good to keep the unit tests, integration tests and the smoking tests separate. Having the

unit tests running as fast as possible which is easier to accomplish when they do not make

cross boundary calls. If tests become slow developers tend to not be running them. A good

way of keeping them separate is to create different projects for each test. In the Silverlight

testing framework the separation can be done using tags to test classes and test methods. [26]

11.2 The Silverlight testing framework

The unit test framework for Silverlight was first released in conjunction with the release of the

source code to the Silverlight controls. It runs in the web-browser both on PCs and Macs. The

Microsoft.Silverlight.Testing framework is easy to use and lets the developer create cross-

platform, cross-browser tests.

Using unit tests are useful, the more tests the more confident the developer can be that the

code is running correct. The test projects are packaged like any other Silverlight application

so no additional installation is needed to be able to run the tests.

11.2.1 Creating a simple test

The easiest way to start using the unit test framework for Silverlight is to use the two Visual

Studio templates that have been created for the Silverlight testing framework. The first

template is for adding a Silverlight test application to a Visual Studio solution and the second

template is an item template that adds a test class to the test project.

In addition two assemblies are needed which comes with the source code of the Silverlight

controls. These are the Microsoft.VisualStudio.TestTools.UnitTesting.Silverlight.dll and the

Microsoft.Silverlight.Testing.dll.

44

The metadata and assertion types are found in the

Microsoft.VisualStudio.TestTools.UnitTesting namespace. And the tests are made up of test

classes and test methods. The code for a simple test class containing one test method can be

seen below.

using System;

using Microsoft.VisualStudio.TestTools.UnitTesting;

namespace CIT.UnitTest.ProcessDesigner

{

 [TestClass]

 public class Test

 {

 [TestMethod]

 public void PassTest()

 {

 Assert.IsTrue(true);

 }

 }

}

When the test is run a web-browser is shown. This test is without any Silverlight control or

interface therefore nothing will be shown on the plug-in surface to the left. The only thing that

is shown is the log which is seen in Figure 11.2.1-1. The log consists of the test classes and

the test methods that run. Showing any classes or methods that fail and how many tests that

ran.

Figure 11.2.1-1 Running unit tests

11.2.2 Creating UI tests

Using the Silverlight testing framework makes it is possible to simulate user activity by

calling methods that triggers application logic. There is a large set of functionality that can be

tested within the Process Designer project.

To be able to test the Process Designer Tool which is located in a separate Silverlight project

a reference has to be added to Process Designer project in the test project. In addition any

resources that are defined in the App.xaml file have to be placed in the individual .xaml files

45

where they are used. This is because the resources will not be available to the test project

being in a separate app file. Moving the resources is easily done with Expression Blend by

using the Resource tab in the upper right corner.

Since the Silverlight test framework is just another Silverlight application there is no

possibility to do any UI automation tests, like user initiated mouse clicks and key presses.

What can be tested is the code that is connected to for instance button events, that the visual

tree is updated, and that the data source is correctly updated on invocation.

To be able to create more advanced Silverlight specific tests the SilverlightTest base class can

be inherited which is located in the Microsoft.Silverlight.Testing namespace. This class has

support for interacting with the root visual and the HTML DOM bridge. In addition the class

has a number of helper methods that can be used with the [Asynchronous] attribute, which

enables writing tests beyond the scope of the test method until the TestComplete method is

called.

To be able to do UI tests on the Process Designer tool, the InternalsVisibleTo attribute has to

be used which allows the test assembly to view internal types and methods. This is done by

adding the line below to the AssemblyInfo.cs file in the Process Designer project.

[assembly: InternalsVisibleTo("CIT.UnitTest.ProcessDesigner")]

This lets the test project assembly call methods within the Process Designer project having the

keyword internal.

To make the testing scenarios easier a TestInitialize method will be called before the

TestMethod. In this method a new instance of the Page is created and added to the TestPanel.

If the TestPanel is accessed in a test the content will be cleared before the next test is run.

This saves time when writing tests, not having to do any manual cleanup of temporary visuals

that are used within the test. Below a sample code is shown which instantiates a Page with the

parameter null. By doing this a “mock” process model is loaded for testing purposes.

[TestClass]

public class Test : SilverlightTest

{

 private Page page;

 [TestInitialize]

 public void PreparePage()

 {

 page = new Page(null);

 TestPanel.Children.Add(page);

 }

}

The test example below will use the instance of the Page to test the logic when a user clicks a

process image which triggers displaying the name of the process in the bottom left corner of

the process design surface.

46

[TestMethod]

public void ClickedProcessTextTest()

{

 MainCanvas mainCanvas; ProcessCanvas processCanvas = null;

 page.mainCanvasDictionary.TryGetValue(0, out mainCanvas);

 foreach (UIElement element in mainCanvas.Children)

 {

 processCanvas = element as ProcessCanvas; break;

 }

 mainCanvas.Prop.IsCheckedOut = false;

 ClickOnProcessImage(processCanvas);

 Assert.AreEqual(page.ClickedProcessTextBoxMain.Text, "Selected: TEST");

}

private void ClickOnProcessImage(ProcessCanvas process)

{

 page.processCanvas_MouseLeftButtonDown(process, null);

}

The mainCanvasDictionary holds all information concerning the process model. The

mainCanvas with id 0 is the first level of the process model. By iterating over its children

(foreach (UIElement element in mainCanvas.Children)) each process image can be

reached which is within a ProcessCanvas object. The helper method ClickOnProcessImage

invokes the method which is triggered when a user clicks on a process image. The last row

performs the actual test. The first process is “mocked” to have the value “TEST”. By

comparing the value of the object which displays the text and the expected string the test is

completed. The application interface is added to the TestPanel before each test is run and

removed when the test is finished. Because the tests run very fast, it is possible to run

thousand of tests with this browser experience. Below is what the test would look like if the

screen froze in the middle of the test. The “Selected: TEST” text is seen on the process design

area which is triggered by the test. [28]

Figure 11.2.2-1 The ClickedProcessTextTest test

47

12 Result

The Silverlight tool developed in conjunction to this thesis report meets the purpose of thesis

well. Using Silverlight to develop more user friendly and interactive applications within

SharePoint is a good way to meet customers ever increasing demands of having intuitive and

user rich applications.

The Process Designer tool has an appealing graphical user interface where processes can be

dragged around a designer surface where they can be edited. Metadata and links to documents

within SharePoint can be added to each process level. The tool interacts closely with

SharePoint functionality by using a document library where the built in feature for checking

in and out of processes is used as well as being able to keep a history of the evolution of

processes as they are developed over time.

To create a similar tool in an HTML environment of a browser is possible. This would include

using scripting languages integrated with the HTML for creating interactivity with the

SharePoint object model on the server. Using this approach would make development both

time consuming and more complicated. Silverlight makes it easier by using a subset version

of the .NET Common Language Runtime, allowing the programmer to use C# when

developing client side applications in exactly the same fashion as developing desktop

applications. Being able to work within one environment using object oriented code makes it

not only easier but also more robust and reliable.

The Process Designer tool uses a number of built in controls for presenting information

attached to processes and process levels. The controls are delivered with the Silverlight SDK,

having a standard Windows like set of animations and styles. The tool uses its own control

templates to the controls resulting in a similar look and feel over the entire application. This

increases the familiarity to the application from a user perspective.

A major point of the thesis has been the actual integration of the tool and how well it works

within the SharePoint site. The integration is accomplished by a set of predefined steps. By

following these steps the integration does not cause any major trouble. The Process Designer

tool has been integrated as a Web Part, which is added from the Web Part gallery within

SharePoint. This makes it possible to add the application at any location within the SharePoint

site collection. The Visual Studio Extension template for WSS 3.0 makes development of the

Web Part which hosts the ASP.NET server-side Silverlight control much easier. The solution

can be deployed to the server from Visual Studio instead of creating installation scripts

manually. Another integration issue is the placement of the Silverlight XAP file. The Process

Designer tool uses the layouts folder, this makes the XAP file available over the entire web

farm, making it possible to use the application on several site collections. When newer

versions are available of the program-code the XAP file can easily be replaced.

Client-server interaction has been accomplished using Windows Communication Foundation.

The service implementation uses the SharePoint object model for interacting with SharePoint

specific objects like document libraries and user group information. Here most of the

integration problems have occurred.

To be able to use the SharePoint SPContext object to get hold of the current site collection

where the service is placed the aspNetCompatibilityEnabled flag has to be set to true in the

configuration of the service. Otherwise the object will return null.

48

A proxy has to be generated by the application when the WCF services are used within the

Silverlight application. This is accomplished by the “Add Service Reference” feature in

Visual Studio. This will generate proxy code for doing asynchronous calls from Silverlight.

This feature has caused trouble in combination with deploying the service in IIS, giving

cryptic error messages. To overcome it a clean development environment has been used

where the solution has been added. Reference 15 in the reference list gives an interesting

approach using WCF in Silverlight without the proxy generation feature.

A general problem with the integration has been the possibility to debug code. Once the

Silverlight application is compressed in a XAP file and uploaded to the server it cannot be

debugged when executed in the browser within the SharePoint site. This is especially

troublesome if the WCF service call fails. By using a web debugging tool like fiddler the

service calls and their responses can be monitored. This helps locating the problem but if the

problem is within the Silverlight code it can still not be debugged.

49

13 Discussion

Silverlight being a rather new technology on the market has a number of limitations, but more

features are added as new versions are released. When being forced to use workarounds to

accomplish features that are not yet supported is never good. The Process Designer tool uses a

WCF service. At this point exceptions are not supported within Silverlight that are thrown

from the service. As a result an extra operation contract has to be specified where the error

can be saved which can then be read in the Silverlight application.

All communication from within Silverlight is done asynchronously. This includes making

WCF service calls. An event handler is created to handle the response when the call returns.

Because the Process Designer needs the response of the service calls to keep on working

within the application a blocking element in the form of a process bar is used. It is important

to keep in mind when developing applications that run in a browser environment to keep the

communication to the server side as limited as possible making server calls only when they

are absolutely necessary. Otherwise the application will become unresponsive and slow.

Keeping the amount of data that is sent between the client and the server at a minimum also

helps making the calls quicker and therefore also more responsive.

The current version of the Process Designer tool has got some limitations. Currently it is only

possible to use one instance of the application within a SharePoint site collection. This is due

to the fact that it only uses one static document library for storing the process model.

Specifying process names is limited to one line and there are a predefined set of colors and

fonts that can be applied to the text of the process name. These colors and fonts are available

within the Silverlight framework. There is also no possibility to skew the text within the

process for making it fit better all kind of process image designs.

50

14 Conclusion

There are some important aspects when developing Silverlight applications and additionally

some very useful things to keep in mind when the integration is made within SharePoint.

All web service calls in Silverlight are done asynchronously. This architectural decision

increases complexity but prevents the application from hanging. Silverlight supports both old

ASMX Web Services and the newer WCF standard. Many of the out-of-the-box ASMX Web

Services offered by SharePoint cannot be used by Silverlight. This is because these service

methods return XMLNode sets which is not supported by Silverlight. By using a wrapper

Web Service the returning type of the Web Service calls can be transformed into something

that is readable within the Silverlight application.

The Silverlight project within Visual Studio creates a test.html page that enables the

programmer to test the application during development. If the application consumes a Web

Service there is no possibility to test the application within Visual Studio. This is because the

Silverlight application is running as a local web application and this is a different domain as

the web service. The Process Designer tool overcomes this by using a debugging flag that

tells the application to load static test data that is defined within the program instead of

making the Web Service method.

The most important thing to keep in mind when developing Silverlight applications is to

create code that is easy to maintain, refactor and test. The Model-View-ViewModel pattern

presented in the thesis helps the developer to accomplish this. The Silverlight programming

model implies a tight integration between the user interface and the data that it works with.

This makes maintenance, refactoring and testing more difficult. The pattern separates the

application in separate layers, preventing one layer to have intimate knowledge of another

layer.

During development of the Process Designer tool the Model-View-ViewModel pattern has

not been applied this is because the tool has been used for evaluating and learning the

technology of Silverlight. It is recommended when any further development of the Process

Designer is done that the pattern is applied. A few unit tests have been written mainly for

evaluating the Silverlight testing framework. After applying the Model-View-ViewModel

pattern more tests can be written adding assurance that the system works in a correct manner.

A future functionality recommendation to the Process Designer tool is to make it possible to

add more instances of it within a SharePoint site collection. This could be done by being able

to configure the name of the image library and the document library it uses when the

application is added for the first time on the site. These configuration settings could be stored

in a document library on the top level site. Further on a skewing functionality could be added

to the Process image title. Skewing is supported by Silverlight and the extra parameter it

causes can be saved in the document library together with the other properties that are saved.

The last issue that is good to be taken into consideration is the ability to be linked directly

using an URL to the process level of interest.

51

15 References

[1] Microsoft MSDN, Windows SharePoint Services 3.0, http://msdn.microsoft.com/sv-

se/library/bb931737(en-us).aspx, 2009

[2] Pattison, Larson, Inside Microsoft Windows SharePoint Services 3.0, Microsoft Press,

Redmond, 2007

[3] Pattison, Discover Significant Developer Improvements in SharePoint Services,

http://msdn.microsoft.com/sv-se/magazine/cc163578(en-us).aspx, July 2006

[4] Pattison, Masterman, Use Windows SharePoint Services as a Platform for Building

Collaborative Applications, http://msdn.microsoft.com/sv-se/magazine/cc163948(en-us).aspx,

July 2004

[5] Dufresne, Martin, Process Modeling for E-Business,

http://mason.gmu.edu/~tdufresn/paper.doc, March 2003

[6] Burlton, Business Process Management: Profiting Process, Sams Publishing, United

States, 2001

[7] Smith, Fingar, Business Process Management: The Third Wave, MK Press, United States,

2003

[8] Masterman, Pattison, Use Windows SharePoint Services as a Platform for Building

Collaborative Apps, Part 2, http://msdn.microsoft.com/sv-se/magazine/cc188713(en-us).aspx,

August 2004

[9] Jamison, Cardarelli, Hanley, Essential SharePoint 2007, Addison-Wesley, New York,

June 2007

[10] MacDonald, Silverlight 2 Visual Essentials, Appress L. P, United States, 2008

[11] MacDonald, Pro Silverlight 2 in C# 2008, Apress L. P, United States, 2008

[12] Campell, Stockton, Silverlight 2 in Action, Manning Publications Co. United States, 2008

[13] Microsoft MSDN, Fundamental Windows Communication Foundation Concepts,

http://msdn.microsoft.com/en-us/library/ms731079.aspx, 2009

[14] Löwy, WCF Essentials, http://en.csharp-online.net/WCF_Essentials, 2007

[15] Betz, Understanding WCF Services in Silverlight 2,

http://www.netfxharmonics.com/2008/11/Understanding-WCF-Services-in-Silverlight-

2#WCFSilverlightServiceSetup, November 2008

[16] Tisseghem. Silverlight BluePrint Guidence,

http://www.u2u.info/Blogs/Patrick/Download/Silverlight_BluePrint_SharePoint_Guidance.zi

p, August 2008

[17] codeplex, Hello World Source Code Project,

http://sl4sp.codeplex.com/Release/ProjectReleases.aspx?ReleaseId=19961#DownloadId=505

18, November 2008

[18] codeplex, Sample 2 – Media Viewer,

http://sl4sp.codeplex.com/Release/ProjectReleases.aspx?ReleaseId=16420#DownloadId=416

10, August 2008

[19] codeplex, Sample 4 - Custom Navigation,

http://sl4sp.codeplex.com/Release/ProjectReleases.aspx?ReleaseId=16420#DownloadId=416

12, August 2008

[20] codeplex, Slider Control Source Code Project,

http://sl4sp.codeplex.com/Release/ProjectReleases.aspx?ReleaseId=19961#DownloadId=506

76, November 2008

[21] Scanlon, Accelerated Silverlight 2, Appress L. P, United States, 2008

[22] Microsoft MSDN, Server and Site Architecture: Object Model Overview,

http://msdn.microsoft.com/en-us/library/ms473633.aspx, 2009

52

[23] Pae, How We Did It: LearingPoint for SharePoint,

http://blogs.msdn.com/sharepoint/archive/2009/04/01/how-we-did-it-learningpoint-for-

sharepoint.aspx, April 2009

[24] Williams, Tips for Writing Silverlight Web Parts in SharePoint: Part 1,

http://www.synergyonline.com/blog/blog-moss/Lists/Posts/Post.aspx?ID=32, October 2008

[25] Kothari, ViewModel Pattern in Silverlight using Behaviors,

http://www.nikhilk.net/Silverlight-ViewModel-Pattern.aspx, June 2008

[26] Follesoe, Efficient testing in Silverlight 2 using tags,

http://jonas.follesoe.no/EfficientTestingInSilverlight2UsingTags.aspx, October 2008

[27] Haack, Unit Test Boundaries, http://haacked.com/archive/2008/07/22/unit-test-

boundaries.aspx, July 2008

[28] Wilcox, Unit Testing with Silverlight 2,

http://www.jeff.wilcox.name/2008/03/silverlight2-unit-testing, March 2008

53

Appendix A. User Manual

Introduction

The Process Designer is developed as a Web Part that can easily be added from the Web Part

gallery in SharePoint. The application makes it possible users with the appropriate user rights

to design and navigate through a hierarchy of processes. This is accomplished be using a list

of process pictures that are loaded from a picture library in SharePoint.

The User Manual is separated in three parts. The first part gives a conceptual overview

concerning user groups and versioning. The second part describes the user experience of the

application from the perspective of using the tool as a process designer. The third and last part

will guide the user when using the tool for navigating the process hierarchy.

The Process Designing tool is separated into four areas as can be seen below. Each of the

areas will be described separately for each of the two user categories.

Figure 1 The Processes Designing tool and its areas

Conceptual Overview

User Group and Owner logic

The Process Designing tool uses SharePoint user groups to divide users into two categories;

designers and viewers. The viewer will only be able to navigate through the process hierarchy

and the designer will have full editing rights.

To each process that is added to the process hierarchy a process owner is defined. The process

owner is a SharePoint user group. All users within the specified group have the right to add,

54

delete or edit processes on the sub-process level of the process. Figure 1 is an example of how

the tool is seen by a designer; he is a member of the “Company Portal Members” group which

is the owner of the “Root” process level.

Versioning and Visibility

The Process Designing tool is built upon a versioning feature that can be added to SharePoint

document libraries. Each document in a library can be checked in either as a minor or a major

version. In conjunction to this functionality each process level of the Process Designer tool

has a version attached to it making it possible to decide when a process level is to be made

public to Viewers. If a process level is a minor version it is not seen by Viewers, only major

versions are. In addition it is possible to blend out

The Designer

Area 1

This area is the toolbar area for interacting with individual processes and the whole process

level.

Check in Button

When finished designing new or editing existing processes, the process level has to be

checked in to save the changes. Pressing the check in button the user is prompted with a

popup window within the application. The process level can be checked in as a major or a

minor version. An optional check in comment can moreover be submitted.

Figure 2 Check in

Check out Button

Before any alterations can be done to a process level it has to be checked out. This is to make

sure that no other user is doing design work on the level and therefore risking overwriting

each other’s work.

Delete Button

By pressing the delete button individual processes on the process level can be deleted. The

user is prompted with a popup window within the application. The new window will list all

sub-processes that will consequently be deleted. If any of the sub-process levels are checked-

out the process cannot be deleted, not until the sub-process level has been checked in by the

user having it checked out.

55

Figure 3 Delete

Back Button

The back button is for navigation purposes. Pressing the back button will lead the user back to

the parent process level. Pressing the back button that is integrated by the browser will not

have any effect when navigating within the application. This button will only lead the user to

the previous html page. By doing this any changes that have been made to the process

hierarchy will be lost.

Area 2

This area is the interaction menu for adding new processes and navigating the process

hierarchy.

Designer Tab

This tab will list all the available process figures in a list box that can be added to a process

level. By clicking on a figure the user is prompted with a popup. The popup lets the designer

specify a heading to the process. The user can choose the size, font, style and color of the text.

Two expanders are available; the “Process Owner” expander for specifying the process owner

and the “Visible for Groups” expander for specifying what groups should be able to view the

process. In the list of the “Visible for Groups” expander multiple lines can be selected each

line representing a toggle button. In the list of the “Process Owner” only one item can be

selected. Figure 4 below shows how this is accomplished.

Figure 4 Process Owner and Visible for Groups expanders

56

The user can navigate through the different figures by pressing the up and down arrows of the

list box.

Viewer Tab

In this tab a Tree view is to be seen. The nodes in the tree represent each process that is

available. By selecting a node within the tree its sub-process level is to be seen in Area 4. A

node in the tree can be expanded or collapsed by pressing the arrow in front of the process

name.

Area 3

This area is the properties area where properties to the current process level are to be seen.

Document Links Tab

The document links tab is formed as a list box where all the documents connected to the

current process level in view are listed. Within the properties area three buttons are available

for adding, editing and deleting items within the list. Pressing a link within the list will open a

new browser window where the links content is displayed. When pressing buttons add or edit

a popup window is displayed. Here a description can be filled in for the link and the link

itself. Important to notice is that the link has to have the syntax: http://www.google.com to

work. Not only www.google.com.

Figure 5 Document link

Metadata Tab

The metadata tab is for adding textual information about a process level. The metadata values

are listed in a list box. New items can be added, edited or deleted using the buttons available

in the properties area. When pressing buttons add or edit a popup is prompted where the user

can add a name and a description of the metadata.

Figure 6 MetaData

Version History Tab

The version history tab is for viewing earlier versions of the process level that is currently

displayed. The earliest version is listed on top and the newest version is the last item of the list

box. By selecting an earlier version it is displayed in Area 4. Important to notice is that it is

not possible to navigate to sub-process levels when an earlier version is displayed. Therefore

57

the Viewer tab of the interaction menu will be blended out. When wanting to navigate the

process hierarchy the last version of the version history list box has to be re-selected.

Figure 7 Version History

Area 4

This is the main design area where the figures of the process system are displayed and are

added.

Drag and Drop

Within the design area the process figures can be placed. The figures can be dragged around

this area and placed where is best suited. The text within the process figure representing the

name of the process can also be dragged and placed within the process figure.

Double Click

When double clicking the text of a process it can be edited. The same popup is then shown as

when adding a new process to the design area. See Area 2 –> Designer Tab for popup specific

information.

Double clicking the process figure will show the sub-process level of the process.

Information Text blocks

 On each corner of the design area status texts are visible,

• Top right corner: The current version of the process level is displayed. Major versions

are displayed with syntax X.0 and minor versions as X.X where X is representing a

number.

• Top left corner: The SharePoint user group is displayed that is the owner of the

process level in view.

• Bottom left corner: The process that has been clicked and therefore is in focus is

displayed.

• Bottom right corner: The name of the process level is displayed.

The Bottom left text block is also used to display status messages when interacting with the

server. These are displayed in a red color after a server call has been made. The following

status messages are currently available:

"Could not find process in the document library"

"Could not locate the process document library"

"Process was successfully checked out"

"Process was successfully checked in"

“The process has already been checked out by: #userName#"

58

"The process is checked out by: #userName#"

"Process and sub-processes were successfully deleted"

The Viewer
On a process-level where the user does not belong to the owner user group he will be limited

to only being able to view the levels properties and navigate to other levels.

Area 1

This area is the toolbar area for interacting with individual processes and the whole process

level.

Check in Button

Not applicable.

Check out Button

Not applicable.

Delete Button

Not applicable.

Back Button

The back button is for navigation purposes. Pressing the back button will lead the user back to

the parent process level. Pressing the back button that is integrated by the browser will not

have any effect when navigating within the application. This button will only lead the user to

the previous html page. By doing this any changes that have been made to the process

hierarchy will be lost.

Area 2

This area is the interaction menu for adding new processes and navigating the process

hierarchy.

Designer Tab

Not applicable.

Viewer Tab

In this tab a Tree view is to be seen. The nodes in the tree represent each process that is

available. By selecting a node within the tree its sub-process level is to be seen in Area 4. A

node in the tree can be expanded or collapsed by pressing the arrow in front of the process

name.

Area 3

This area is the properties area where properties to the current process level are to be seen.

Document Links Tab

The document links tab is formed as a list box where all the documents connected to the

current process level in view are listed. Pressing a link within the list will open a new browser

window where the links content is displayed.

Metadata Tab

The metadata tab is for viewing textual information about a process level. The metadata

values are listed in a list box.

Version History Tab

Not applicable.

59

Area 4

This is the main design area where the figures of the process system are displayed.

Drag and Drop

Not applicable.

Double Click

Double clicking the process figure will show the sub-process level of the process.

Information Text blocks

 On each corner of the design area status texts are visible,

• Top right corner: The current version of the process level is displayed. Major versions

are displayed with syntax X.0 and minor versions as X.X where X is representing a

number.

• Top left corner: The SharePoint user group is displayed that is the owner of the

process level in view.

• Bottom left corner: The process that has been clicked and therefore is in focus is

displayed.

• Bottom right corner: The name of the process level is displayed.

Appendix B. Web Config

The extensions that are needed to support Silverlight content on a site is listed below.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<configuration>
 <configSections>
 <sectionGroup name="system.web.extensions"
type="System.Web.Configuration.SystemWebExtensionsSectionGroup, System.Web.Extensions,
Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35">
 <sectionGroup name="scripting" type="System.Web.Configuration.ScriptingSectionGroup,
System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35">
 <section name="scriptResourceHandler"
type="System.Web.Configuration.ScriptingScriptResourceHandlerSection, System.Web.Extensions,
Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35" requirePermission="false"
allowDefinition="MachineToApplication" />
 <sectionGroup name="webServices"
type="System.Web.Configuration.ScriptingWebServicesSectionGroup, System.Web.Extensions,
Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35">
 <section name="jsonSerialization"
type="System.Web.Configuration.ScriptingJsonSerializationSection, System.Web.Extensions,
Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35" requirePermission="false"
allowDefinition="Everywhere" />
 <section name="profileService"
type="System.Web.Configuration.ScriptingProfileServiceSection, System.Web.Extensions,
Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35" requirePermission="false"
allowDefinition="MachineToApplication" />
 <section name="authenticationService"
type="System.Web.Configuration.ScriptingAuthenticationServiceSection, System.Web.Extensions,
Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35" requirePermission="false"
allowDefinition="MachineToApplication" />
 <section name="roleService" type="System.Web.Configuration.ScriptingRoleServiceSection,
System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35"
requirePermission="false" allowDefinition="MachineToApplication" />
 </sectionGroup>
 </sectionGroup>
 </sectionGroup>
 </configSections>
 <system.web>
 <httpHandlers>
 <remove verb="*" path="*.asmx" />
 <add verb="*" path="*.asmx" validate="false"
type="System.Web.Script.Services.ScriptHandlerFactory, System.Web.Extensions, Version=3.5.0.0,
Culture=neutral, PublicKeyToken=31BF3856AD364E35" />

60

 <add verb="*" path="*_AppService.axd" validate="false"
type="System.Web.Script.Services.ScriptHandlerFactory, System.Web.Extensions, Version=3.5.0.0,
Culture=neutral, PublicKeyToken=31BF3856AD364E35" />
 <add verb="GET,HEAD" path="ScriptResource.axd"
type="System.Web.Handlers.ScriptResourceHandler, System.Web.Extensions, Version=3.5.0.0,
Culture=neutral, PublicKeyToken=31BF3856AD364E35" validate="false" />
 </httpHandlers>
 <httpModules>
 <add name="ScriptModule" type="System.Web.Handlers.ScriptModule, System.Web.Extensions,
Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35" />
 </httpModules>
 <globalization fileEncoding="utf-8" />
 <compilation batch="false" debug="false">
 <assemblies>
 <add assembly="System.Core, Version=3.5.0.0, Culture=neutral,
PublicKeyToken=B77A5C561934E089" />
 <add assembly="System.Web.Extensions, Version=3.5.0.0, Culture=neutral,
PublicKeyToken=31BF3856AD364E35" />
 <add assembly="System.Data.DataSetExtensions, Version=3.5.0.0, Culture=neutral,
PublicKeyToken=B77A5C561934E089" />
 <add assembly="System.Xml.Linq, Version=3.5.0.0, Culture=neutral,
PublicKeyToken=B77A5C561934E089" />
 <add assembly="System.Web.Silverlight, Version=2.0.5.0, Culture=neutral,
PublicKeyToken=31BF3856AD364E35" />
 </assemblies>
 </compilation>
 <pages enableSessionState="false" enableViewState="true" enableViewStateMac="true"
validateRequest="false"
pageParserFilterType="Microsoft.SharePoint.ApplicationRuntime.SPPageParserFilter,
Microsoft.SharePoint, Version=12.0.0.0, Culture=neutral, PublicKeyToken=71e9bce111e9429c"
asyncTimeout="7">
 <controls>
 <add tagPrefix="asp" namespace="System.Web.UI" assembly="System.Web.Extensions,
Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35" />
 <add tagPrefix="asp" namespace="System.Web.UI.WebControls"
assembly="System.Web.Extensions, Version=3.5.0.0, Culture=neutral,
PublicKeyToken=31BF3856AD364E35" />
 </controls>
 </pages>
 </system.web>
 <runtime>
 <assemblyBinding xmlns="urn:schemas-microsoft-com:asm.v1">
 <dependentAssembly>
 <assemblyIdentity name="System.Web.Extensions" publicKeyToken="31bf3856ad364e35" />
 <bindingRedirect oldVersion="1.0.0.0-1.1.0.0" newVersion="3.5.0.0" />
 </dependentAssembly>
 <dependentAssembly>
 <assemblyIdentity name="System.Web.Extensions.Design"
publicKeyToken="31bf3856ad364e35" />
 <bindingRedirect oldVersion="1.0.0.0-1.1.0.0" newVersion="3.5.0.0" />
 </dependentAssembly>
 </assemblyBinding>
 </runtime>
 <system.webServer>
 <validation validateIntegratedModeConfiguration="false" />
 <modules>
 <remove name="ScriptModule" />
 <add name="ScriptModule" preCondition="managedHandler"
type="System.Web.Handlers.ScriptModule, System.Web.Extensions, Version=3.5.0.0,
Culture=neutral, PublicKeyToken=31BF3856AD364E35" />
 </modules>
 <handlers>
 <remove name="WebServiceHandlerFactory-Integrated" />
 <remove name="ScriptHandlerFactory" />
 <remove name="ScriptHandlerFactoryAppServices" />
 <remove name="ScriptResource" />
 <add name="ScriptHandlerFactory" verb="*" path="*.asmx" preCondition="integratedMode"
type="System.Web.Script.Services.ScriptHandlerFactory, System.Web.Extensions, Version=3.5.0.0,
Culture=neutral, PublicKeyToken=31BF3856AD364E35" />
 <add name="ScriptHandlerFactoryAppServices" verb="*" path="*_AppService.axd"
preCondition="integratedMode" type="System.Web.Script.Services.ScriptHandlerFactory,
System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35" />
 <add name="ScriptResource" preCondition="integratedMode" verb="GET,HEAD"
path="ScriptResource.axd" type="System.Web.Handlers.ScriptResourceHandler,
System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35" />
 </handlers>
 </system.webServer>
</configuration>

