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Abstract 

SharePoint WSS is an information portal from Microsoft. It helps employees communicate 

and collaborate within the company. SharePoint lets people share documents and files by 

storing them in a central site making cooperation within the company trouble-free. 

 

Silverlight is a technology for building Rich Internet Applications. It uses a browser plug-in 

that downloads and executes Silverlight code within the browser. It is designed to offer the 

user a richer experience than the traditional mixture of HTML and scripting languages. 

 

The Process Designer tool brings these two technologies together. Completely developed in 

Silverlight the Process Designer tool takes advantage of out-of-the-box functionality of 

SharePoint WSS. In conjunction the Silverlight tool brings a visual user experience to 

SharePoint that the technology itself cannot accomplish. 

 

Following a couple of integration steps Silverlight can be used within SharePoint. By using 

Web Service technology communication between the two frameworks is established making 

them benefit from each other. 

 

The focus of the thesis is the integration of Silverlight in SharePoint WSS, evaluating the 

process and the Silverlight technology. Integration and implementation issues will be outlined 

that helps development of future Silverlight applications. 



Sammanfattning 

SharePoint WSS är en informationsportal från Microsoft som hjälper anställda att 

kollaborera och kommunicera inom företaget. SharePoint låter människor dela dokument och 

filer genom att spara dem på en central hemsida. Detta underlättar kommunikation inom 

företaget. 

 

Silverlight är en teknologi för att bygga Rika Internet Applikationer. Det använder sig av ett 

plugin i webläsaren som laddar ner Silverlight kod och exekverar den. Det är designat för att 

erbjuda användaren en rikare användarerfarenhet än den traditionella blandningen av 

HTML och skriptspråk. 

 

Process Design verktyget sammanför dessa teknologier. Verktyget är helt utvecklat i 

Silverlight och använder out-of-the-box funktionalitet från SharePoint, samtidigt som 

verktyget ger en rikare användarkänsla till SharePoint som inte kan skapas med SharePoint 

teknologi självt. 

 

Genom att följa ett par integrationssteg så kan Silverlight användas i SharePoint. Med hjälp 

av Web Service teknologi så kan de båda ramverken kommunicera och dra fördelar av 

varandra. 

 

Fokus på rapporten är integreringen mellan Silverlight och SharePoint WSS. Rapporten 

evaluerar integrationsprocessen samt Silverlight som teknologi. Integrationen och 

implementationen kommer att beskrivas, detta för att underlätta utvecklingen av framtida 

Silverlight applikationer inom SharePoint. 
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1 Introduction 

Web users today have an increasing demand of using web applications with a richer 

experience and with a greater amount of functionality. RIAs (Rich Internet Applications) are 

being used everywhere and is gradually replacing HTML applications. Dynamic design in 

HTML is accomplished by integrating CSS (Cascading Style Sheets) and scripting languages. 

However, HTML does not offer any interactivity and compels multiple page refreshes making 

browsing time consuming. RIA’s on the other hand are more robust, visually compelling and 

responsive. 

 

Silverlight is a framework released by Microsoft for building RIAs. Silverlight can run on a 

variety of devices and desktop operating systems within a browser. When surfing to a page 

which contains Silverlight content, the browser will download the Silverlight code and render 

the content to the designated place on the page. Silverlight is supposed to offer the user a 

richer user experience than the traditional mixture of HTML and JavaScript. The technique is 

not new; the most successful browser plug-in is Adobe Flash. The benefits of Silverlight is the 

underlying maturity of the .NET programming environment which Flash does not have, 

having evolved from being a multimedia player to a programming tool. 

 

SharePoint WSS (Windows SharePoint Services) is another technology released by Microsoft. 

It is an information portal that lets people and teams connect, communicate and collaborate. 

As companies grow it gets harder to manage the increasing amount of documents and files 

that are produced. SharePoint overcomes this issue by allowing the company to store all 

documents and files in a central site. Working today often means working on many different 

office locations even in other countries. SharePoint lets employees connect and collaborate no 

matter where the individual is located. 

 

Being able to develop interactive, user rich and robust applications within a strict business 

environment which SharePoint offers has lead to the subject of this thesis. The thesis will 

evaluate the benefits of Silverlight when integrated in SharePoint WSS. Any surplus values 

will be evaluated in conjunction to what companies and customers gain from the technology. 

The thesis will also describe in detail how the integration of Silverlight in SharePoint is 

accomplished and describing any problems and difficulties. In conjunction to this report a 

Process Designer tool has been implemented and integrated in a SharePoint environment. The 

tool has been integrated to get a practical approach to the integration and to be able to 

evaluate the technology of Silverlight. 

1.1 Background 

The thesis has been written at Consignit. Consignit is a consultant company with main office 

in Gothenburg. Consignit customers include Volvo, Sweco and AstraZeneca. Their main 

business is delivering solutions for Enterprise Content Management, where SharePoint is their 

main area of expertise. 

 

SharePoint is often used as the company’s intranet portal where information is gathered in a 

central location. Moreover companies often have standardized processes where a collection of 

connected activities for describing how to produce a service or product are depicted. To these 

processes documents are connected holding detailed information how to accomplish the 

activities to the processes. This information is often stored and managed within SharePoint 

making SharePoint a good location for central administration of the company’s processes.  
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The process-documents are often not stored in a single location but are rather spread around 

the portal making it hard for employees to get a visual picture of the processes as well as 

accessing the documents from a central place within the portal. Consignit has thus seen the 

need for a tool integrated within SharePoint for designing process hierarchies that the process-

documents can be connected to.  

 

In conjunction to this need Consignit is interested in evaluating any surplus values that 

Silverlight brings to SharePoint WSS and to analyze any difficulties and challenges occurring 

when doing the integration and the implementation of the Process Designer tool. 

1.2 Purpose 

The purpose of the thesis is to model, visualize and implement a process-navigation and 

designing tool in Silverlight and integrate it on a SharePoint site. By this practical approach 

the Silverlight technology can be evaluated when it comes to any surplus values that it brings 

to user experience and also how well it cooperates with the SharePoint object model. By a 

practical integration any difficulties can be evaluated for future development of other tools.  

1.3 Delimitation 

The thesis deals with two major areas; Silverlight and SharePoint WSS. Therefore an 

introduction of both technologies is given. 

  

The tool that has been integrated is concerning the processes within a company and how these 

are structured; a brief overview of different business process terminologies will hence be 

outlined.  

 

WCF (Windows Communication Foundation) will be explained in combination with 

Silverlight for server client communication. Other server client communication patterns will 

be briefly described as a supplement to using WCF. 

 

The tool developed in conjunction to the report will be presented, and how the integration of 

the tool is done within a SharePoint site. 

 

Future improvements of the Process Designer tool will be discussed. Implementation oriented 

improvements but also potential additions to the tools functionality and graphical user 

interface. 

 

An introduction to the Model-View-ViewModel pattern is given that is often used 

implementing Silverlight. It is used for decoupling responsibilities between application layers 

and for making unit testing easier. 

 

The Silverlight testing framework is discussed with a couple of implementation examples 

from the Process Designer tool.   

 

 The report will briefly explain Microsoft Office SharePoint Server (MOSS) but will not 

dwell into any details concerning the extensions that MOSS is to WSS. WSS is built on top of 

ASP.NET; the technology of ASP.NET is beyond the scope of the thesis and is not included. 
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2 The Process Designer Tool an Introduction 

Many companies have standardized processes for meeting customer needs. The set of 

connected activities that belongs to these processes are often described in a number of 

documents. In SharePoint WSS these documents are spread around the intranet portal in 

document libraries. Keeping track of which document that belong to what process gets more 

and more complicated as companies grow and additional documents are added.  

 

The Process Designer tool is meant to aid employees within the company to get a visual 

overview of the processes and which documents that are connected to them. New processes 

and links to documents can be added as processes evolve. The user is able to navigate through 

a hierarchy of sub processes to get a more detailed view of the building stones of a major 

process. 

 

This chapter will give an introduction to the graphical user interface of the application. A 

brief functionality overview is also presented. A later chapter will dwell into deeper details 

concerning server communication with WCF, working with the SharePoint object model for 

interacting with SharePoint document libraries and user groups, and Silverlight specific 

implementation techniques. 

2.1 The Graphical User Interface 

The Silverlight Process Designer tool has been divided into four major presentation areas; a 

top toolbar, a tab control to the left, a properties tab control on the bottom and a main 

presentation area in the middle where the processes can be dragged and dropped. 

 

 
Figure 2.1-1 The Process Designer tool 
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The top toolbar consists of four buttons for interacting with the process model; a delete button 

for deleting a process, a check in and checkout button for checking in and checking out the 

process level in view and a back button to navigate backwards in the process hierarchy.  

 

The left tab control consists of a Designer tab and a Viewer tab. In the Designer tab a list box 

is used to show the available process figures that can be added to the process model. The 

Viewer tab is for navigation purposes. Here a tree control has been implemented that shows 

the hierarchy of processes and their activities. 

 

 
Figure 2.1-2 The Tree View tab 

The bottom tab control shows properties to the process level in view. Here there are three 

tabs, the first tab is for handling document links connected to the model, the second tab is for 

handling metadata values and the last tab shows earlier versions of the process level. Within 

all tabs list box controls are being used for presenting the information.   

 

 
Figure 2.1-3 The Version History tab 

On the main presentation area the processes are dragged and dropped. On each corner process 

level relevant data is displayed. In the top left corner the SharePoint user group is shown that 

is responsible for the process level. On the top right the current version of the process level is 

shown. On the bottom left corner the user is informed of which process that has been clicked 

and is currently in focus and on the last corner the process levels name is displayed. 
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2.2 Functional Overview 

2.2.1 User Group and Process Owners 

The Silverlight application makes use of the SharePoint user groups for dividing users in two 

main categories. When a user belongs to the owner user group of a process level the user has 

designer rights otherwise navigation rights. The users having designer rights can add, delete 

and edit processes. Users with navigation rights can only navigate through the part of the 

processes hierarchy tree where he does not belong to the owners group of the process level. 

 

By making use of the SharePoint user groups, the management of these groups can be kept 

within SharePoint. If a user needs to have designer rights to a certain process he can easily be 

added from the SharePoint user interface by a user with the right permission. 

2.2.2  Checking in and out of Processes 

The Silverlight tool makes use of a SharePoint document library for saving the process levels 

within the process hierarchy. It therefore also inherits the SharePoint functionality of being 

able to check in and out process levels. Before any changes can be made to the level, it has to 

be checked out to make sure that no other user within the owner group is working with the 

processes. When the user has finished editing, the process level he can check in his work. If 

not checked in it will be locked for all others for editing.    

2.2.3 Versioning 

In SharePoint an additional versioning feature can be added to any document library. This is 

to keep a history of documents as they evolve over time. The versioning is also used for 

triggering workflows. 

 

The Process Designer tool makes use of the versioning by giving the designers the possibility 

to check in their work as a minor or major version. With the separation of minor and major a 

workflow can be designed within SharePoint that is triggered when the designer of a process 

level decides to make his changes public by checking them in as a major version. The 

workflow can be to send an email message to all users within the same user group that a 

major version has been created or to all other users within the portal that new processes can be 

viewed.  

2.2.4 Process Visibility 

The visibility of the processes and their activities are linked to both the versioning and the 

user groups.  

 

Firstly a process is visible for any user that is part of the owner user group for that process. 

The sub process level of the process can be made public and therefore visible for others by 

checking it in as a major version. As long as it is a minor version it will only be seen by its 

owners.  

 

An additional feature lets the designer select one or more groups that will see the processes 

when the level is checked in as a major version keeping it hidden for others. As default all 

user groups will see the major version. 
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3 Windows SharePoint Services 

Windows SharePoint Services (WSS) provides capabilities to meet business needs such as 

managing content and business processes. This simplifies how people find and share 

information within a company. [1] 

3.1 WSS and Microsoft Office SharePoint Server 2007 

Microsoft Office SharePoint Server (MOSS) 2007 is built on top of WSS 3.0 which is further 

built on top on services provided by Microsoft Windows Server 2003. The main platform use 

the Microsoft .NET 2.0 Framework. MOSS is provided by several technologies; Internet 

Information Service for hosting Web applications, ASP.NET 2.x which support master pages, 

content pages, Web Parts and personalization. [9] 

  

MOSS 2007 relies on WSS technology to provide a consistent, familiar framework for lists 

and libraries, site administration, and site customization. Any feature that is available in WSS 

is also available in MOSS. 

 

MOSS offers additional features that are unavailable in WSS. For example, both MOSS and 

WSS include site templates for collaborating with colleagues and setting up meetings. 

However, MOSS includes a number of additional site templates related to enterprise and 

publishing scenarios. [1] 

3.2 WSS Site Provisioning 

WSS was designed to create Web sites in a fast manner. The architecture was designed to 

work in a Web farm environment. Creating a site can be done by any person within the IT 

Department by filling out the required information needed in a web-browser form and 

clicking OK. There is no need for a system developer to create a website and no need for an 

administrator to copy any files to an application server. The WSS provisioning engine 

cooperates with an integrated storage model that uses several SQL Servers to store content 

and configuration data. [2] 

 

In this way users can easily design web sites with shared elements such as contact lists and 

document libraries. Because of the site provisioning engine it is easier to manage thousands of 

Web sites making them accessible to tens of thousands of users. This is achieved with the 

Web-farm architecture in mind making WSS very scalable. The architecture is based on 

stateless front-end Web server that relies on back-end SQL-Servers for storing content and 

configuration data. [3] 

3.3 WSS Farm 

A farm is a set of one or more servers that provides WSS functionality to its clients. In its 

simplest form it consists of a single computer that acts as both a front end Web server and an 

SQL Server managing WSS content. A more complicated farm consists of dedicated SQL 

Servers and several front-end servers. Each farm has a configuration database that keeps track 

of important information concerning the farm environment. E.g. what front-end servers are 

associated with the farm and what users have administrative permissions on farm level. [2] 

3.4 Databases 

WSS relies on two different kinds of databases, one configuration database and content 

databases. The configuration database holds deployment-specific information for each Web 

server, IIS server and WWS Web site. The content database holds data associated with WSS 

Web sites. 
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Each content database stores information of one or more WSS Web sites. The data is stored 

on a site-by-site basis with information concerning lists, documents, site customization and 

personalization. The fact that the information concerning one site is stored on one SQL Server 

makes it easier for back-up and restoring WSS sites when necessary. [4] 

3.5 Internet Information Service 

WSS is built on Internet Information Service (IIS) and relies on IIS Web sites to handle 

incoming HTTP requests. An IIS Web site is an entry point to the IIS Web server 

infrastructure. The default web site that IIS creates listen to port 80, additional Web sites can 

be created that listen to other ports. 

  

One important feature with IIS Web sites is that the security settings can be configured 

differently for different Web sites. One Web site might use Basic Authentication and allowing 

anonymous access. Another site may be used as an intranet site and can therefore be 

configured to require integrated Windows authentication and to disallow anonymous access. 

[2] 

 

In WSS terms an IIS Web site is called a virtual server. A virtual server has to be extended 

with WSS to be able to run WSS Web sites. When installing WSS it automatically extends the 

default Web site listening to port 80. With SharePoint Central Administration other Web sites 

can be extended to support WSS. 

 

Unlike ASP.NET, WSS does not configure each Web site using a Virtual directory. WSS 

instead looks for all the configuration information in the configuration database and content 

database. This means that when starting creating WSS sites they will not appear in the IIS 

metabase. Therefore IIS will not know how many WSS Web sites it is hosting. Because WSS 

does not need a new virtual directory for each Web site the scalability and maintenance is 

improved. When WSS extends the virtual server it installs an ISAPI filter which intercepts 

each request and determines if it should be handled by IIS or WSS. [4] 

3.6 Site and Site Collections 

A WSS site stores lists, document libraries and child sites. The site has securable entities 

which content is only visible for a set of defined users. These set of users can be defined 

either on the site itself or be inherited from the parent site. A set of groups and permissions 

can also be configured for the site which defines the level of accessibility on lists and 

documents libraries. 

 

WSS relies on IIS and the ASP.NET authentication provider infrastructure for user 

authentication.  When it comes to user authorization WSS provides user interface components 

that allow privileged users to configure authorization to different elements within a site. 

 

A WSS site provides a fully customizable and extendable user interface. The site 

administrator can create pages and customize them. The administrator can even change the 

navigation structure using the browser. 

 

A WSS site also uses Microsoft Web Part technology. A site administrator can customize 

Web Part pages by configuring and adding Web Parts. A user can then personalize the Web 

Parts by modifying them. The data needed for showing the Web Parts in a customized manner 

is saved automatically in the content database. 
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A site has to be provisioned within an existing Web application. The site cannot exist on its 

own within the Web application. Instead, each site has to be inside the scope of a site 

collection. A site collection works as a container for WSS sites. Each site collection must 

have a top-level site. The collection can then further contain a hierarchy of child sites. [2] 

 

 
Figure 3.6-1 Site Hierarchy [9] 

3.7 Web Parts 

As mentioned earlier a Web Part makes it possible for a site owner to customize site pages 

with changes that is made visible for users. A user can then personalize these Web Parts; the 

changes made by the user will then only be seen by the individual user himself. [2] 

 

The difference between an ordinary ASP.NET page and a Web Part page is that ASP.NET 

pages are stored as a text file in the file system of the Web server. The parts needed for a Web 

Part are stored in multiple tables in the WSS content database. This makes it possible to 

personalize and customize Web Parts for different sites and users. 

 

A Web Part page has several Web Part Zones. A Web Part is added to the page by placing it 

in a zone. [8] 



9 

 

4 Silverlight 2.0 

Silverlight is a framework for building browser hosted applications that can run on several 

operating systems. Silverlight runs as a browser plug-in, which means that when surfing to a 

page containing Silverlight content the browser will download, execute the code and render 

the content to the designated place on the page. Silverlight provides a richer user experience 

when used properly than the traditional mixture of HTML and JavaScript.  

 

The technique is not unique, similar technologies exist that use the same browser plug-in 

concept. Most successful of them all has been Adobe Flash. Because Flash has just recently 

gone from being a multimedia player to a set of programming tools, it lacks the mature 

programming environment like .NET. 

 

This is where Microsoft has seen the advantage in Silverlight offering cross-platform support 

like Flash but also offering development in the mature environment of .NET. Silverlight has 

also architectural benefits to Flash the most significant one is that its base is a thinner version 

of .NET’s common language runtime. This makes it possible for a developer to write 

Silverlight code using C# or Visual Basic. [10] 

4.1 Silverlight and Windows Presentation Foundation 

Silverlight uses the model WPF has for building client-side user interfaces. WPF is the 

successor of Windows Forms and is the next generation of creating Windows applications. 

WPF was first introduced with .NET 3.0. WPF not only makes development of Windows 

applications easier but also boosts performance by rendering everything through a DirectX 

pipeline. 

 

Silverlight can’t use all of the features available in WPF. Many of WPF’s features rely on 

Windows-specific display drivers which makes them impossible to use within Silverlight, 

because of the fact that Silverlight is operating system independent. But rather to invent a 

whole new model for Silverlight it uses a subset of the WPF features. This makes them very 

similar to each other. Here is a listing of some of the similarities: 

 

• Defining a user interface is done in the markup language XAML. 

• The same syntax can be used when binding data to controls. 

• Silverlight uses the same basic controls as WPF. 

• Style and template syntax are similar. 

• Drawing 2D graphics. 

In future releases even more of the features available in WPF will be found in Silverlight. [11] 
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4.2 Silverlight and HTML DOM 

The Silverlight plug-in can be integrated with any new or existing web property. The web 

property can be anything from a web page, blog or intranet portal. The Silverlight plug-in can 

fill up the whole page or just parts of it. It can be placed anywhere it is wanted within the web 

property. This is possible because of its relationship with HTML DOM. 

 

The Silverlight plug-in is integrated with the DOM. Once it is embedded the DOM 

application tree will expand as can be seen in Figure 4.2-1. 

 

 
Figure 4.2 1 Silverlight DOM model extension [12] 

Most of the available web browsers support the DOM variants supported by Silverlight. It is 

therefore possible for Silverlight to be a platform independent plug-in. 
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4.3 The Silverlight Object Model 

The Silverlight Object Model is much like the tree structure of the HTML DOM model. The 

tree is represented in a Silverlight XAML file. Each file has child elements that represent the 

UI. The rendering is done recursively in order from left to right. The rendering is shown in 

Figure 4.3-1. 

 

 
Figure 4.3-1 Silverlight Rendering order [12] 

The ordering of the rendering is important for in what order the elements are displayed. 

Elements that are rendered later are shown on top of earlier rendered elements. The Silverlight 

Object Model extends the HTML Document Object Model. But it is not possible to access 

Silverlight elements from the DOM model. This has to be done from within the Silverlight 

plug-in. 

4.4 XAML 

Extensible Application Markup Language or short XAML is a markup language to instantiate 

.NET objects in XML format. Similar to the role of HTML, XAML lets one easily visualize 

elements in a hierarchal fashion and at the same time separating the content from code. 

Separating the code is possible because each XAML element corresponds to a .NET type. 

And each attribute to the element corresponds to a .NET property. The short example below 

illustrates this. 

 

XAML 
<TextBlock Text="Hi there!" FontFamily="Times New Roman" /> 

 

C#    Visual Basic 
TextBlock tb = new TextBlock();  Dim tb as New TextBlock 

tb.Text = "Hi there!";  tb.Text = "Hi there!" 

tb.FontFamily = "Times New Roman"; tb.FontFamily = "Verdana" 
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The TextBlock element in the XAML code corresponds to an initialization statement in C# or 

in Visual Basic. Each time an element is created in XAML the default constructor is called 

behind the scenes. [12] 

 

Every element in XAML maps to an instance of a Silverlight class. The name of the element 

maps exactly to the name of the class. For example the <TextBlock> element from the code 

above instructs Silverlight to create a TextBlock object. 

 

As in XML, XAML supports nesting of elements. Having a Grid inside a Button is perfectly 

legal. Nesting is though often used as containment where usually the case is having a Grid 

that has Buttons within it. 

 

Attributes can be set to each element, from the code example above Text and FontFamily are 

attributes to the TextBlock element. [11] 

4.5 Code behind 

To each XAML page there is a belonging code-behind page much like ASP.NET pages. 

Having code-behind pages is a good way to separate code from UI related code. XAML code 

is stored in files with file suffix .xaml and the code-behind files with the suffix .xaml.cs. The 

reference to the code-behind file in the XAML file is through the x:Class attribute. The class 

definition is compiled and stored in an assembly and placed in a directory relative to the 

application called ClientBin. The class definition is used for handling events that are triggered 

from the user interface which are defined in the XAML file. As shown below the Loaded 

attribute has an event-handler method specified for it. The compiler will expect that there is a 

method with the same name in the code-behind code. [12] 

 

Page.xaml 
<UserControl x:Class="XAML01.Page" 
    xmlns="http://schemes.microsoft.com/winfx/2006/xaml/presentation" 

    xmlns:x="http://schemes.microsoft.com/winfx/2006/xaml" 

    Loaded="UserControl_Loaded" Width="400" Height="300"> 

    <Grid x:Name="LayoutRoot" Background="White"> 

    </Grid> 

</UserControl> 

 

Page.xaml.cs 
using System.Windows.Controls; 
namespace XAML01 

{ 

    public partial class Page : UserControl 

    { 

        public Page() 

        { 

            InitializeComponent(); 

        } 

 

        private void UserControl_Loaded(object sender,  

            RoutedEventArgs e)  {  } 

    } 

} 
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4.6 UI Class Hierarchy 

Silverlight has a set of standard controls e.g. list boxes, check boxes, text blocks and others. 

These controls are for building user interfaces. But how these are placed on the user interface 

is handled by the layout controls (Panels). There is a set of base functionality that every 

control in Silverlight offers. Figure 4.6-1 shows a shortened class diagram with a subset of 

controls. To be noticed is that not all elements are user interface controls.  

 

 
Figure 4.6-1 Silverlight control class hierarchy [21] 

4.6.1 DependencyObject 

The root of all visual elements is the DependencyObject class. This gives the ability to 

interact with dependency properties. The dependency properties are special types of 

properties that back the .NET property. The value of a dependency property depends on 

multiple sources and therefore the .NET property is not enough. Its value can come from data 

binding, animation, templates, styles or local values.  

4.6.2 UIElement 

The UIElement represents a visual component, and gives all elements that inherit from it the 

ability to draw themselves on a user interface. The UIElement supports a number of methods, 

properties and events. 

4.6.3 FrameworkElement 

The FrameworkElement adds additional features to the UIElement class like object lifetime 

events and data binding support. It is the direct base of the Panel and the Control class which 

are the base classes for most controls and for object positioning. 
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4.6.4 Layout Controls 

Silverlight provides three layout controls for positioning visual objects and other controls on 

the user interface; the Canvas the Grid and the StackPanel. These controls all inherit from the 

Panel class. The Canvas has the ability to place a child element to an absolute position. The 

Grid uses a tabular configuration with rows and columns for placing the elements and the 

StackPanel places its child controls next to each other either horizontally or vertically. Layout 

controls can be nested for example having a Grid within a Grid. [21] 

4.7 Silverlight Application Architecture 

Two XAML files are by default part of a Silverlight project. 

  

• App.xaml, which is used to define styles and resources. The corresponding code-

behind file is used for initialization and cleanup code. 

• Page.xaml is the startup control that is shown when the plug-in is loaded. Here the 

user interface of the application is defined either by self created controls or Silverlight 

controls. 

4.7.1 The Silverlight XAP File 

The result of building a Silverlight project is a compressed file with the extension .xap. It 

contains compiled XAML and code-behind, an application manifest file and one or more 

assemblies containing Silverlight controls that are used by the application. 

4.7.2 Testing a Silverlight Application 

When creating a Silverlight project a dynamically created HTML page can be included for 

testing purposes. A TestPage.html is created when the application is built. The object tag 

communicates with the plug-in and asks it to download and execute the XAP file defined with 

the source parameter. [16] 

 
<div id="silverlightControlHost"> 

  <object data="data:application/x-silverlight," type="application/x- 

  silverlight-2" width="100%" height="100%"> 

    <param name="source" value="HelloWorld.xap"/> 

    <param name="onerror" value="onSilverlightError" /> 

    <param name="background" value="white" /> 

    <a href="http://go.microsoft.com/fwlink/?LinkID=115261" style="text- 

        decoration: none;"> 

      <img src="http://go.microsoft.com/fwlink/?LinkId=108181"  

         alt="Get Microsoft Silverlight" style="border-style: none"/> 

    </a> 

  </object> 

  <iframe style='visibility:hidden;height:0;width:0;border:0px'></iframe> 

</div> 
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5 Windows Communication Foundation 

Windows Communication Foundation (WCF) is a set of APIs for creating distributed 

applications that can communicate with each other. The same set of APIs is used when two 

different applications communicate on the same computer or over the Internet.  

5.1 Messaging and Endpoints 

WCF is based on communication with messages. Therefore anything that can be formed as a 

message can be represented in the programming model. 

 

The communication model separates clients which initiate the communication and services 

which are waiting and responding to the client’s request. 

 

The client and service communicate using endpoints. The service defines a set of endpoints 

which is all information that is necessary for exchanging messages. The client will then 

generate an endpoint that is compatible with the service endpoint. 

 

An endpoint is a standard description of how a message should be sent and how the message 

looks like. This is done by letting the service expose metadata to the client. [13] 

5.2 Services and Clients 

A service can be both local and remote, and the client consuming the service can be literally 

anything – a Windows Forms class, an ASP.NET page or another service. All messages in 

WCF are SOAP messages. The messages are independent of transport protocol, unlike Web 

services WCF can communicate over a set of protocols not only HTTP. 

  

 
Figure 5.2-1 WCF proxy model [14] 

The client will never communicate with the service directly not even when run on the local 

machine instead a proxy is used to forward the call to the service. The proxy exposes the same 

methods as of the service. This programming model approach is good for making the location 

of the service transparent. It enables the possibility to switch service location without 

affecting the client but also simplifies the application programming model. [14] 

5.3 Setting up a Service 

When setting up WCF for communication an address, a binding and a contract is needed. 

With this information either a service-side endpoint can be created which the client will 

access or a client-side channel which the client will use to communicate with the service. 
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WCF services are setup in three steps. First, create a service contract with one or more service 

contracts. Second, create the service contract implementation. Third, configure the host with 

an endpoint to the service. 

 

An example service contract with one operation contract is specified below. The service 

contract is a .NET interface with the System.ServiceModel.ServiceContractAttribute attribute 

applied to it. The operation contracts are simple method signatures. 

 
using System; 

using System.ServiceModel; 

//+ 

namespace Contact.Service 

{ 

    [ServiceContract(Namespace = Information.Namespace.Contact)] 

    public interface IPersonService 

    { 

        //- GetPersonData -// 

        [OperationContract] 

        Person GetPersonData(String personGuid); 

    } 

} 

 

A good practice is to keep the WCF service interfaces short, between 3 to 7 methods per 

contract. The namespace property is for logically organizing services much like how the .NET 

namespace works for separating classes and interfaces. 

  

The GetPersonData operation contract has a Person as return value. Person is a data contract. 

Data contracts are classes which have the 

System.Runtime.Serialization.DataContractAttribute attribute applied to them with one or 

more private or public data members. 

 
[DataContract(Namespace = Information.Namespace.Contact)] 

public class Person 

{ 

    //- @Guid -// 

    [DataMember] 

    public String Guid { get; set; } 

 

    //- @FirstName -// 

    [DataMember] 

    public String FirstName { get; set; } 

 

    //- @LastName -// 

    [DataMember] 

    public String LastName { get; set; } 

} 

 

Above is an example of a Person data contract. It is important to keep in mind only to specify 

as many members as is needed. Because all information is sent over a wire the amount of data 

can affect performance. When it comes to Silverlight this is even more important. Firstly, the 

information that is sent has to be delegated through a browser before the plug-in can process 

it. And secondly, the more information that has to be sent over the wire the more 

unresponsive the Silverlight application gets. 
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The second step is to create an implementation to the contract. The implementation is put in 

an ordinary class as shown below. 

 

using System; 

 
namespace Contact.Service 

{ 

    public class PersonService : Contact.Service.IPersonService 

    { 

        //- @GetPersonData -// 

        public Person GetPersonData(String personGuid) 

        { 

            return new Person 

            { 

                Guid = personGuid, 

                FirstName = "John", 

                LastName = "Doe" 

            }; 

        } 

    } 

} 

 

Step three is to configure the host of the service with the corresponding endpoints. This is 

done by creating a Person.svc file. The below line of code is added in the file which specifies 

the service implementation. 

 
<%@ ServiceHost Service="Contact.Service.PersonService" %> 

 

In addition the service host in itself has to be configured.  It is done by declaring a service and 

adding it to the endpoint. The declaration is done in the service web site’s web.config file. 

The entire file looks as shown below.  

 
<?xml version="1.0" encoding="UTF-8"?> 

<configuration> 

  <system.serviceModel> 

    <services> 

      <service name="Contact.Service.PersonService"> 

        <endpoint address="" binding="basicHttpBinding" 

                  contract="Contact.Service.IPersonService" /> 

      </service> 

    </services> 

  </system.serviceModel> 

</configuration> 

 

The configuration says that there can be “basicHttpBinding” communication through the 

Contact.Service.IPersonService at address Person.svc to Contact.Service.PersonService. [15] 
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6 Integrating Silverlight in SharePoint 

6.1 Visual Studio Configuration 

A couple of extensions have to be downloaded for Silverlight 2.0 to work properly in the 

development environment.  

 

• Download and install the Silverlight 2.0 browser plug-in. 

• Download and install Visual Studio 2008 Service Pack 1 and .NET Framework 3.5 

Service Pack if not already installed on the system. 

• Download and install Microsoft Silverlight 2 Tools for Visual Studio 2008. 

6.2 SharePoint Runtime Configuration 

For SharePoint to be able to host Silverlight applications a couple of steps have to be taken. 

 

• The .NET 3.5 Framework has to be installed on the SharePoint Web front-end. 

• When hosting Silverlight in WSS, Windows SharePoint Services 3.0 with service 

Pack 1 has to be installed. If hosting the Silverlight application in MOSS, MOSS 2007 

Service Pack 1 has to be installed. 

• The System.Web.Silverlight.dll assembly has to be deployed in the GAC. This dll is 

part of the Silverlight 2 SDK. 

• The IIS hosting the SharePoint sites has to be extended. This is done by registering the 

XAP MIME type in the IIS Manager. 

• The web.config file of the targeted Web application has to be extended with a number 

of configuration elements. Please see Appendix A for the extensions that have to be 

made to the web.config file. [16] 
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6.3 Integrating Silverlight in a SharePoint Web Part 

One way of creating a Web Part project for SharePoint is to use the Visual Studio Extension 

for Windows SharePoint Services 3.0. The extension contains a project template which has 

the initial infrastructure and a list of referenced assemblies. It also contains a WSS 3.0 Feature 

for advertising the Web Part in a SharePoint site collection. In addition a Web Part class is 

created and the possibility to edit the SharePoint solution (WSP file) which is generated when 

the project is built. Figure 6.3-1 shows how the project template is structured in Visual Studio. 

The WSP View is depicted on the right and the Solution is shown to the left. 

 

 
Figure 6.3-1 Visual Studio WSP and Solution View 

6.3.1 The Web Part Class 

Below is a sample web part class. The web part has to inherit from the base WebPart class. 

Here the code is located that is executed when the Web Part is activated and loaded in 

SharePoint. 

  
namespace HelloWorld 

{ 

    [Guid("d359c723-89b0-4224-8d30-ee4f72898c4f")] 

    public class HelloWorld : System.Web.UI.WebControls.WebParts.WebPart 

    { 

        public HelloWorld() 

        { 

        }         

    } 

} 

6.3.2 The Web Part Feature 

To advertise a Web Part a WSS Feature is used, the Feature adds the Web Part to the 

SharePoint site collection. The Feature is an xml file with the extension .webpart that contains 

information regarding the class and the assembly that is needed to load the Web Part. Below 

is a sample XML file of a Feature. 



20 

 

<?xml version="1.0" encoding="utf-8"?> 

<webParts> 

  <webPart xmlns="http://schemas.microsoft.com/WebPart/v3"> 

    <metaData> 

      <type name="d359c723-89b0-4224-8d30-ee4f72898c4f" /> 

      <importErrorMessage>Cannot import HelloWorld Web 

       Part.</importErrorMessage> 

    </metaData> 

    <data> 

      <properties> 

        <property name="Title" type="string">Silverlight Web 

         Part</property> 

        <property name="Description" type="string">A sample</property> 

      </properties> 

    </data> 

  </webPart> 

</webParts> 

6.3.3 The Element Manifest File 

The WSP also contains an element manifest file for the Feature. This XML file is executed 

when the Feature is activated. It is constructed by two elements; the module element which 

has information about where the destination library is located and the file element which has 

information about the actual file that is put in the Web Part gallery. 

 
<Elements Id="d359c723-89b0-4224-8d30-ee4f72898c4f" 

xmlns="http://schemas.microsoft.com/sharepoint/" > 

  <Module Name="WebParts" List="113" Url="_catalogs/wp"> 

   <File Path="HelloWorld.webpart" Url="HelloWorld.webpart" 

               Type="GhostableInLibrary" > 

    <Property Name="Group" Value="Silverlight in 

                         SharePoint"></Property> 

   </File> 

  </Module> 

</Elements> 

6.3.4 The Feature File 

The solution also contains a feature.xml file which holds metadata regarding the Feature that 

is advertising the Web Part. 

 
<Feature Id="d3432223-787e-461f-82df-2bca9882e3f4"  

   Title="Silverlight 2 Hello World Web Part Feature" 

   Description="Sample Silverlight Web Part 

                        for SharePoint" 

   Scope="Site" Version="1.0.0.0" Hidden="FALSE"  

   DefaultResourceFile="core"  

   xmlns="http://schemas.microsoft.com/sharepoint/"> 

  <ElementManifests> 

    <ElementManifest Location="HelloWorld\HelloWorld.xml" /> 

    <ElementFile Location="HelloWorld\HelloWorld.webpart" /> 

  </ElementManifests> 

</Feature> 

6.3.5 The SharePoint Solution File 

The actual deployment of the Web Part assembly and the Feature files is done by the 

SharePoint Solution file. The file with the extension .WSP is a CAB file which contains the 

folder structure with all the solution components that is needed to deploy the solution to the 

front-end Web servers.  
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<Solution SolutionId="15c907cc-651b-4c52-86ac-db5ec04097e3"  

    xmlns="http://schemas.microsoft.com/sharepoint/"> 

  <FeatureManifests> 

    <FeatureManifest Location="HelloWorld\feature.xml" /> 

  </FeatureManifests> 

  <Assemblies> 

    <Assembly Location="HelloWorld.dll"  

     DeploymentTarget="GlobalAssemblyCache" /> 

  </Assemblies> 

</Solution> 

6.3.6  Hosting Silverlight in the Web Part 

To be able to host the Silverlight plug-in in the Web Part a couple of steps have to be taken. 

 

Two assemblies need to be referenced in the Web Part project. Firstly the 

System.Web.Extensions.dll contains ASP.NET AJAX 1.0 extension layer. And secondly 

System.Web.Silverlight.dll which contains the Silverlight server-side ASP.NET control. 

 

A ScriptManager is required by the Silverlight ASP.NET control to be able to access the 

ASP.NET AJAX 1.0 script library. There can only be one instance of the ScriptManager on 

the page, therefore a check is done before creating it. By overriding the OnLoad method of 

the base class the below piece of code adds the ScriptManager to the page. 

 
protected override void OnLoad(EventArgs e) 

{ 

    base.OnLoad(e); 

    ScriptManager sm = ScriptManager.GetCurrent(this.Page); 

    if (sm == null) 

    { 

        sm = new ScriptManager(); 

        Controls.AddAt(0, sm); 

    } 

} 

 

The XAP file created when building a Silverlight project containing the files and assemblies 

that are needed to execute the Silverlight application within SharePoint can be downloaded 

from a number of different locations. The example here uses a SharePoint document library 

named XAPS to store it. By adding a Module element to the Element Manifest file SharePoint 

is told to place the XAP file in the XAPS library when the Feature is activated. When any 

changes are being done to the Silverlight application the only thing that has to be exchanged 

is the XAP file, which can be done in SharePoint itself. The Feature doesn’t have to be 

activated again. Below is the module element that has to be added to accomplish this.  
 

<Module Url="XAPS" RootWebOnly="TRUE"> 

 <File Path="HelloWorld.xap" Url="HelloWorld.xap" 

     Type="GhostableInLibrary"></File> 

</Module> 

 

The last step is to create a child control for the Web Part which will create an object tag that 

tells the Silverlight plug-in to download and execute the XAP file. By overriding the base 

class method CreateChildControls the Silverlight ASP.NET control can be created. The 

Source property specifies where the XAP file is located for download. [17] 
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protected override void CreateChildControls() 

{ 

    base.CreateChildControls(); 

 

    System.Web.UI.SilverlightControls.Silverlight ctrl = new 

      System.Web.UI.SilverlightControls.Silverlight(); 

    ctrl.ID = "HelloWorld"; 

    ctrl.Source = SPContext.Current.Site.Url + "/XAPS/HelloWorld.xap"; 

    ctrl.Width = new Unit(400); 

    ctrl.Width = new Unit(300); 

    Controls.Add(ctrl); 

} 

6.4 Passing data from SharePoint to Silverlight 

When there is a need of passing data to the Silverlight application there is a possibility to do 

this by using the InitParameters property of the Silverlight ASP.NET control. Parameters are 

sent in comma-delimited string of key/value pairs. The example below specifies two 

parameters.  
 

System.Web.UI.SilverlightControls.Silverlight ctrl = new 

  System.Web.UI.SilverlightControls.Silverlight(); 

ctrl.InitParameters = "webURL=" + SPContext.Current.Web.Url + 

",siteURL=" + SPContext.Current.Site.Url; 

 

The parameters that are passed to Silverlight are processed in the start of the application. The 

code for parsing the key/value string is placed in the Application_Startup event handler in the 

code-behind file App.xaml.cs. The data is then passed further to an instance of the Page class. 

The parsing and passing code can be seen below. [18] 

 
private void Application_Startup(object sender, StartupEventArgs e) 

{ 

  string siteurl = null; 

  string weburl = null; 

 

  if (e.InitParams != null && e.InitParams.Count > 0) 

  { 

    if (e.InitParams["webURL"] != null) 

      weburl = e.InitParams["webURL"]; 

    if (e.InitParams["siteURL"] != null) 

      siteURL = e.InitParams["siteURL"]; 

  } 

  this.RootVisual = new Page(siteURL, webURL); 

}  

6.5 A SharePoint Custom Field Type interacting with Silverlight 

A SharePoint field type is used to define columns in lists and document libraries. But can also 

be used when developing rich survey animations.  

 

By using a hidden HTML input field Silverlight can communicate with the SharePoint field 

type. The ID of the input field is passed to the Silverlight application using the InitParams 

property of the Silverlight control. The HtmlPage class is used to access the hidden field. 

Silverlight gets a reference to the HTML element by calling the GetElementById passing it 

the ID of the element. The sample code below shows how this is accomplished. 
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private void SetValueInHiddenControl() 
{ 
  string valuestring = this.SelectedValue.ToString(CultureInfo.InvariantCulture); 
 
  HtmlElement element = HtmlPage.Document.GetElementById(valueControlId); 
  if (element != null) 
  { 
    element.SetAttribute("value", valuestring); 
  } 
} 

 

Similar to developing the SharePoint Web Part a custom field type can be developed using the 

Visual Studio Extensions for Windows SharePoint Services 3.0. 

 

The SharePoint custom field type architecture consists of three files; a core class for the 

custom field type, an ASP.NET server control class that is acting as a host container for the 

Silverlight application and an XML file which is the field type definition file that 

communicates to SharePoint that an extra field type exists. 

6.5.1 The Field Type Class 

The custom field type has to inherit from one of the built in field type classes or the SPField 

class which is the base class of them all. In the sample below a number is stored it therefore 

inherits from the SPFieldNumber class. 

 
public class SliderControlField : SPFieldNumber 

{ 

  public SliderControlField(SPFieldCollection fields, string fieldName) 

    : base(fields, fieldName) { } 

 

  public SliderControlField(SPFieldCollection fields, string typeName,   

    string displayName) : base(fields, typeName, displayName) { } 

 

  public override BaseFieldControl FieldRenderingControl 

  { 

    [SharePointPermission(SecurityAction.LinkDemand, ObjectModel = true)] 

    get 

    { 

      BaseFieldControl fieldControl = new SliderFieldControl(); 

      fieldControl.FieldName = this.InternalName; 

 

      return fieldControl; 

    } 

  } 

} 

By overriding the FieldRenderingControl property of the base class an instance of the 

ASP.NET server control is created. This will tell SharePoint to display the Silverlight 

application using the custom field type. 

6.5.2 The Field Control 

The field control class is for rendering the ASP.NET control when the user creates the 

column. The user interface is created in the CreateChildControls method that is overridden 

form the base class.   
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public class SliderFieldControl : NumberField 

{ 

  protected override void CreateChildControls() { } 

} 

 

Within the CreateChildControls method the Silverlight control is created in exactly the same 

manner as when overriding the same method in the Web Part class shown earlier. Passing any 

needed parameters is done with the InitParams property of the control.  

6.5.3 Deploying a Custom Field Type 

The SharePoint field types are compiled in an assembly and deployed in the global assembly 

cache. Using an XML file SharePoint is informed of the new type. By using the generation 

functionality of Visual Studio Extensions for WSS 3.0 this file can be dynamically created. 

The file is deployed under the 12\Template\XML folder with the file prefix .fldtypes. [20] 
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7 Business Process Terminology 

7.1 Business Process 

A business process is a collection of connected activities that produce a service or product that 

meet the needs of a customer. A business process is vital to any organization and generates 

revenue and represents a significant part of the cost for the company.  There are three kinds of 

business processes.  

• Management processes. These processes oversee the operation of the system. Typical 

management processes include Corporate Governance which is the set of processes, 

policies, laws and institutions affecting the way a corporation is directed and 

administered. Another management process is Strategic Management which is the 

ability to formulate, implement and evaluate cross-functional decisions that will 

enable an organization to achieve its long-term goals. 

• Operational processes are processes that represent the core business. Typical 

operational processes are Purchasing, Manufacturing, Sales and Marketing. 

• Supporting processes. These processes support the core processes. I.e. Accounting, 

Recruitment and Technical support. 

A typical process starts with a customer need and ends with the fulfillment of this need. A 

business process is often divided into sub-processes which have their own attributes. 

Analyzing business processes includes mapping sub-processes belonging to a business 

process down to an activity level, focusing only on the activities that are needed to 

accomplish the process. [7] 

7.2 Business Process Management 

BPM was from the beginning mostly focusing on the automation of mechanistic business 

processes; it has evolved and extended to integrate human-driven processes in which humans 

interact with the mechanistic processes. Normally steps in a business process that are 

performed by humans are assigned to the appropriate people of an organization (similar to 

workflow systems).  

7.3 BPM Life-Cycle 

The BPM life-cycle splits the activities in BPM in five categories: design, modeling, 

execution, monitoring and optimization. 

• Design. Identification of existing and future processes is an essential part in this life-

cycle category. Here focus lies on representing the flow of the workflow and 

determining which actors are participating. A good design is important for reducing 

the problems over the lifetime of the process. 

• Modeling. The modeling stage in the cycle takes the design into account and 

introduces a set of variables, I.e. when there are changes in the cost of materials that 

can change how the process operates under different scenarios. 
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• Execution. Automating the process can be done by having a software system that 

executes all the steps in the process. Human interaction can also be used though often 

resulting in more complicated system. Software systems are available that lets the 

process be defined in a computer language. The system will communicate via services 

to remote applications that perform business operations or when to complex ask for 

human interaction.  

• Monitoring. Here tracking of the running processes are done. This to collect 

information of the processes state and statistics of the performance can be evaluated.  

• Optimization. Here information is collected from the monitoring step to identify the 

potential or actual bottlenecks, which is then used to optimize processes in respect to 

saving time or saving costs. [6] 

7.4 Business Process Modeling 

The purpose of this activity is to represent the processes of an organization. These models can 

then be changed to improve the efficiency and quality of the process. A graphical 

representation of business process information is an effective way for presenting the processes 

to business stakeholders. The stakeholders are represented by; the business analyst who 

creates and optimizes the processes, the developer that implements the processes, and the 

business manager who monitor and manage the processes. For these visual languages such as 

the Business Process Modeling Notation and the Unified Modeling Language are used. [5] 
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8 The Process Designer Tool 

The Process Designer tool that has been developed and integrated in SharePoint uses the same 

basic integration steps that are described in a previous chapter with some minor 

modifications. It is integrated as a Web Part that communicates with SharePoint WSS via a 

WCF service. This chapter will describe the WCF communication pattern that has been used 

but also other approaches that can be used for the interaction between the client plug-in of 

Silverlight and the server side of SharePoint. 

 

The direct communication with SharePoint WSS is done through the WSS object model. The 

object model is accessed in the implementation of the WCF service as well as in the Web Part 

class that initializes the Silverlight control. Some basic issues when programming against the 

object model for accessing lists, document libraries and user group information will be taken 

into consideration. 

 

Silverlight make use of some powerful implementation patterns for data binding and when 

using styles and templates. By using styles the work of the GUI designer and the web logic 

programmer can be separated. A number of out-of-the box controls are shipped with 

Silverlight, the controls that have been used will be described. 

8.1 The SharePoint Object Model 

WSS consists of a server-side object model that makes it easier for the developer to access 

objects that represent different items of a SharePoint Web site. A hierarchy of objects is 

available which makes it easy to access objects on lower levels.  

 

Depending on the application that is created different entry points to the object model can be 

used to start from. For example, when customizing administration and configuration for 

deployment the static ContentService property can be used to get the current Web service 

object and its collection of Web applications. Or when modifying settings in the 

administrative Web application the AdministrationService property is used.  

 

When developing a Web Part or Web application and within them working with site 

collections, individual sites or lists the SPContext class can obtain this information. When a 

Web application is created and put in the /_layouts virtual directory the functionality is 

available to all sites on the Web server. Outside an HTTP context a constructor of the SPSite 

class has to be used to get specific site collections and objects within it. 

 

Figure 8.1-1 shows the WSS server architecture in relation to the available objects of the 

Microsoft.SharePoint.Administration namespace. 
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Figure 8.1-1 WSS Server Architecture [22] 

1. The SPFarm object is located on the highest level of the WSS object model. The Servers 

property gets a collection of all deployed servers and the Services property gets a 

collection of all the services. 

2. Each SPServer object represents each server computer within the server farm. The 

ServiceInstances property gets each service instance on the computer. 

3. Each SPService object represents a service or application that is installed on the server 

farm.  

4. SPWebService object provides access to configuration settings for a service or an 

application. 

5. The SPDatabaseServiceInstance object represents a single instance of a database service 

running on the server or application. 

6. The SPWebApplication is representing each of the Web applications in the IIS; it 

provides credentials and other server farm wide application settings.  

7.  The SPContentDatabase represents a database that contains data for the SharePoint Web 

Application. 

8. The SPSiteCollection represents the site collection within the Web application. 



29 

 

The WSS site architecture is shown in Figure 8.1-2 in relation to the objects of the 

Microsoft.SharePoint namespace. 

 

 
Figure 8.1-2 Site Architecture and Object Model Overview [22] 

1. Each SPSite object represents a set of SPWeb objects. Such a set is called a site collection 

but the SPSite object can do more than the SPWebCollection object having the ability to 

manage the site collection. 

2. Each site has a number of SPWeb objects these are for managing a site. For example, by 

accessing files and folders on the site. The Webs property returns the all the sub-sites of a 

certain site. 

3. The SPList object is for managing lists and accessing items within them. The Fields 

property returns a SPFieldCollection object which represents all fields or columns in the 

list. The Items property returns an object the represents all the items or rows in the list. 

4. SPField has members that contain settings for the field. 

5. SPListItem represents a single row in the list [22] 
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8.2 The Web Part Implementation 

The Process Designer has been integrated in SharePoint as a Web Part according to the Web 

Part integration chapter seen earlier. In this chapter a couple of different approaches are 

shown how to use the InitParams and thereby showing the approach that is used by the 

Process Designer. 

8.2.1 Passing data to Silverlight 

In the chapter Integrating Silverlight in SharePoint the InitParams are described as a method 

to communicate with the Silverlight plug-in at startup from the SharePoint Web Part. Below is 

a piece of code from the Process Designer tool. Instead of passing a string with comma 

separated key/value pairs it uses XLinq to create an XML string.  

 
Collection<XElement> siteUserGroupElements = new Collection<XElement>(); 

 

foreach (SPGroup group in SPContext.Current.Web.Groups) 

{ 

  XElement item = new XElement("SiteUserGroup", 

     new XElement("Name", group.Name)); 

  siteUserGroupElements.Add(item); 

} 

 

Collection<XElement> elements = new Collection<XElement>(); 

 

XElement siteUserGroups = new XElement("SiteUserGroups",    

  siteUserGroupElements); 

elements.Add(siteUserGroups); 

 

XDocument document = new XDocument(new XElement("Root", elements)); 

 

XLinq is a lightweight XML programming API and is a member of the LINQ Project family. 

XLinq is an in-memory API designed to take advantage of the latest .NET Framework 

language innovations. 

 

The XDocument object that is created on the last line of code above is then converted to a 

string and passed the InitParams. Converting the object to a string is done with the code 

shown below. 

 
StringBuilder stringBuilder = new StringBuilder(); 

XmlWriterSettings xmlWriteSettings = new XmlWriterSettings(); 

 

using (XmlWriter xmlWriter = XmlWriter.Create(stringBuilder,    

  xmlWriteSettings)) 

{ 

  document.Save(xmlWriter); 

} 

 
string xmlString = stringBuilder.ToString(); 
 

8.2.2 Passing data with an XML Data Island 

Instead of passing an XML string directly with the InitParams method of the Silverlight 

control a LiteralControl can be used, within this control an XML Data Island is created. The 

id of the Data Island is then passed as a parameter to the Silverlight plug-in via the InitParams 
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property. The LiteralControl is added the same way as the Silverlight control is added to the 

HTML page.  

 
Controls.Add(silverlightControl); 

 

string xmlDataIsland = "<XML id='INIT_DATA'>{0}</XML>"; 

LiteralControl literalXMLIsland = new LiteralControl 

  (string.Format(xmlDataIsland, xmlString)); 

 

Controls.Add(literalXMLIsland); 

 

The XML Data Island can be picked up by the Silverlight application by using the id that is 

passed with the control. By working with the HtmlPage class Silverlight can access the 

HTML DOM. Once the HtmlElement of the XML Data Island is found the XML can be 

extracted, this is done by using the GetProperty method asking for the value of the 

innerHTML as shown in the code sample below. [19] 

 
public Page(string controlid) 

{ 

  InitializeComponent(); 

  string xmlstring = string.Empty; 

  if (controlid != null) 

  { 

    HtmlElement ctl = HtmlPage.Document.GetElementById(controlid); 

    if (ctl != null) 

    xmlstring = (string)ctl.GetProperty("innerHTML"); 

  } 

} 

8.2.3 The Silverlight Control 

The Silverlight control is created in the overridden CreateChildControls method of the Web 

Part base class. Here information is set concerning where the Silverlight application can find 

the XAP file which is loaded and executed by the Silverlight plug-in in the browser. The size 

of the control is set using the Width and Height property and the appropriate parameters are 

passed to the InitParameters property. 

 
protected override void CreateChildControls() 

{ 

  ctrl = new Silverlight(); 

  ctrl.ID = "SilverlightNavigation"; 

  ctrl.Source = "/_layouts/NavigationWebPart/SilverlightNavigation.xap"; 

  ctrl.Width = new System.Web.UI.WebControls.Unit(876); 

  ctrl.Height = new System.Web.UI.WebControls.Unit(631); 

  ctrl.InitParameters = "initXml=" + CreateXMLString(); 

  Controls.Add(ctrl); 

} 

 

The XAP file is placed in the _layouts folder and not in a SharePoint document library. This 

is to make Silverlight application available in any site collection that is hosted on the 

SharePoint server. Having it in the _layouts folder is a good location for making it globally 

accessible.   

8.3 Drag-and-Drop 

Silverlight support a number of mouse related events. All these events can be handled by any 

element inheriting from the UIElement class. Click-handling events for the mouse are very 
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similar to key-board events. Click related mouse events associated with the mouse are; 

MouseLeftButtonDown and MouseLeftButtonUp which are self explanatory. When the left 

mouse button is selected its corresponding event handlers receive a MouseButtonEventArgs 

object. It inherits from the MouseEventArgs class which gives information concerning the 

mouse when the event was triggered. By calling the GetPosition method the location of the 

cursor in relation to a specific UIElement is received. In addition Silverlight supports mouse 

movement related event handlers. These are the MouseEnter, the MouseMove and 

MouseLeave events, which are triggered when the mouse enters, moves within and leaves a 

UIElement. These events are also passed a MouseEventArgs parameter so that the position of 

the element can be captured. 

 

When implementing the drag-and-drop feature the first step to be taken is to listen to the 

MouseLeftButtonDown event.  

 
processCanvas.MouseLeftButtonDown += new 

MouseButtonEventHandler(processCanvas_MouseLeftButtonDown); 

 

By doing this the original position of the mouse can be captured as well as the fact that the 

mouse is depressed. To correctly respond to mouse events, ownership over the mouse has to 

be claimed. By calling the CaptureMouse method of the UIElement this is accomplished.  
 

private void processCanvas_MouseLeftButtonDown(object sender, 

  MouseButtonEventArgs e) 

{ 

  ProcessCanvas processCanvas = sender as ProcessCanvas; 

  this.processCanvas = processCanvas; 

 

  startingDragPointImage = e.GetPosition(processCanvas); 

 

  processCanvas.CaptureMouse(); 

  processCanvas.MouseMove += new 

    MouseEventHandler(processCanvas_MouseMove); 

 

  processCanvas.MouseLeftButtonUp += new  

    MouseButtonEventHandler(processCanvas_MouseLeftButtonUp); 

} 

 

With this information the objects position can be programmatically changed using the 

MouseMove event which updates the position using the GetPosition method.  
 

private void processCanvas_MouseMove(object sender, MouseEventArgs e) 

{ 

  ProcessCanvas processCanvas = sender as ProcessCanvas; 

  MainCanvas mainCanvas = processCanvas.Parent as MainCanvas; 

 

  Point CanvasPoint = e.GetPosition(mainCanvas); 

  Double xPoint = CanvasPoint.X - startingDragPointImage.X; 

  Double yPoint = CanvasPoint.Y - startingDragPointImage.Y; 

 

  if (xPoint >= 0 && (xPoint <= (mainCanvas.ActualWidth –  

        processCanvas.Width))) 

    Canvas.SetLeft(processCanvas, xPoint); 

 

  if (yPoint >= 0 && (yPoint <= (mainCanvas.ActualHeight -     

        processCanvas.Height))) 

    Canvas.SetTop(processCanvas, yPoint); 

} 
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Dropping the object is done with the MouseLeftButtonUp event which restores the mouse-

related events. [12] 

 
private void processCanvas_MouseLeftButtonUp(object sender,  

     MouseButtonEventArgs e) 

{ 

  ProcessCanvas processCanvas = sender as ProcessCanvas; 

  processCanvas.ReleaseMouseCapture(); 

 

  processCanvas.MouseMove -= new    

    MouseEventHandler(processCanvas_MouseMove); 

  processCanvas.MouseLeftButtonUp -= new  

    MouseButtonEventHandler(processCanvas_MouseLeftButtonUp); 

} 

8.4 Data Binding 

Connecting a data source to a user interface element such as a text block can be done in a one-

way or a two way fashion. One way is simply to display data in the UI and two way is to 

reflect the user interaction in the underlying data source. In general the data sources in 

Silverlight are objects or collections of objects with belonging properties that can be accessed. 

 

The Binding markup extension can be accessed both from the code-behind and the XAML 

markup. The extension cannot be set directly a binding class has to be used. The 

VersionHistoryListBoxItem class below is used for this purpose when binding data to the 

version history list box. 

 
public class VersionHistoryListBoxItem 

{ 

   public string Description { get; set; } 

   public string Name { get; set; } 

} 

 

The list box items consist of two text blocks, for binding each of the properties of the class. 

When wanting to bind the Description property in one of the TextBlocks the first step is to use 

the Binding extension in the XAML markup to the Text property.  

 
<TextBlock x:Name="Description" Text="{Binding Description}"/> 

 

The second step is to set the DataContext property to the VersionHistoryListBoxItem object. 

The Binding markup provides three modes OneTime, OneWay and TwoWay. These modes 

control how the data is bound and how the data flow between the user interface and the data 

source. 

• OneTime: The binding is done once. Any changes will not be seen in the UI. 

• OneWay: The data flows from the data source to the user interface. When the data 

source changes the UI is updated. 

• TwoWay: The data flows in both directions. Any changes in the UI are reflected in the 

data source and the other way around. 

 

Below is a listing of valid syntax for the Binding Markup Extension. [12] 

 

• {Binding} Most commonly used with item templates. The mode of operation 

   is one way. 
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• {Binding path} Specifies what property that supplies the data. Separating the  

  properties with a dot for going deeper in the class hierarchy. 

• {Binding properties} Provides the ability to set data binding configuration properties  

  using name=value syntax. 

• {Binding path, properties}  A combination of the previous two allowing specifying which  

         object property supplies the data and configuring it. 

 

8.5 Using Styles 

Styling in Silverlight is similar to how CSS properties work. User interface elements can 

reuse fonts, colors and sizes specified as styles to a FrameworkElement. When developing 

larger applications styles are good for grouping properties and specific values that can be 

reused. Properties that are grouped into styles are from different Silverlight controls. For 

example are the FontSize, Foreground, Margin and TextWrapping good properties to put into 

a style for TextBlocks. 

 

When specifying a style it must be given a name as well as the target type where it will be 

applied. The target type is the name of the class that will use the style. The name has to match 

directly, it will not automatically apply to descendents of a specified class, making UI styling 

predictable. Because styling can be applied to all the relevant controls they are placed in the 

application resource dictionary in the App.xaml file. 

 
<Application xmlns="http://schemas.microsoft.com/winfx/2006 

/xaml/presentation" 

             xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"  

             x:Class="SilverlightNavigation.App" 

             xmlns:vsm="clr-namespace:System.Windows;assembly= 

System.Windows" 

xmlns:d="http://schemas.microsoft.com/expression/blend/2008" 

xmlns:mc="http://schemas.openxmlformats.org/ 

markup-compatibility/2006"  

  mc:Ignorable="d" 

             xmlns:controls="clr-namespace:Microsoft.Windows.Controls; 

assembly=Microsoft.Windows.Controls" 

             > 

    <Application.Resources> 

        <Style x:Key="ContentDescription" TargetType="TextBlock"> 

            <Setter Property="FontSize" Value="12"/> 

            <Setter Property="TextWrapping" Value="Wrap"/> 

        </Style> 

    </Application.Resources> 

</Application> 

 

Each style has an x: Key that is the key of the resource which is applied to the user interface 

element. When applying the style the StaticResource markup extension is used for the Style 

attribute.   

 
<TextBlock Style="{StaticResource ContentDescription}"/> 

 

A drawback with the styles in Silverlight is the lack of conditional styling and style 

inheritance which is supported in WPF. Conditional styles are useful for applying styles to 

framework elements depending on certain conditions, for example hovering over an element. 

The second drawback is style inheritance. A new style can be defined with a combination of 

new setters and inheriting setters from its parent.  
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8.6 Using Control Templates 

Templates are for Control-based classes and are used for changing how the controls are 

rendered visually. This is possible because there is a separation in how they look and what 

they do. 

 

Each control can have different states, such as disabled. A control template lets the developer 

define what the control looks like in each of its states. It is a kind of changing the look and 

feel of the control because the visual appearance changes when the user interacts with it. 

 

Every Control in Silverlight has a property Template which is located in the Control class. By 

setting this property the developer is resetting the controls appearance. From this reset state 

the look and feel can be adapted as wished. The new appearance that is defined in the below 

code sample is a round close button.  

 
<Style x:Key="CloseButton" TargetType="Button"> 

  <Setter Property="HorizontalAlignment" Value="Right"/> 

  <Setter Property="Width" Value="15"/> 

  <Setter Property="Height" Value="15"/> 

  <Setter Property="Template"> 

    <Setter.Value> 

      <ControlTemplate> 

        <Border x:Name="brd1" Width="14" Height="14" CornerRadius="15"> 

          <Border.Background> 

            <RadialGradientBrush GradientOrigin=".3, .3"> 

              <GradientStop Color="#FFF" Offset=".15"/> 

              <GradientStop Color="#777" Offset="1"/> 

            </RadialGradientBrush> 

          </Border.Background> 

          <TextBlock x:Name="txt1" Foreground="#222" TextAlignment="center" 

             Text="r" FontSize="9" VerticalAlignment="center" 

             FontFamily="Webdings"/> 

        </Border> 

      </ControlTemplate> 

    </Setter.Value> 

  </Setter> 

</Style> 

 

The button above is forced to display the letter r as a Webdings font, which is a 

� representing close. If the button was to be used as a general purpose button control 

template it wouldn’t be a very useful, because a new control template would have to be 

defined for each text that the button presents. This issue is solved by using the 

TemplateBinding markup extension. When using the TemplateBinding markup extension for 

a button a special class called the ContentPresenter has to be used. This class makes it 

possible to display all kind of content that is possible for a button but also other controls 

Content property. By changing the TextBlock tag above by the one below this is 

accomplished. 

 
<ContentPresenter HorizontalAlignment="Center" VerticalAlignment="Center" 

Content="{TemplateBinding Content}" /> 

  

The button control template above does not give the user any visual feedback reflecting the 

different visual states a Button control can have. By using something called the Visual State 

Manager defining the different states is possible. Each control has a set of visual state groups 

and visual states defined to them. The states within the group are mutually exclusive but the 
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control can be in several states at the same time from the visual groups that is defined for it. 

The Figure 8.6-1 shows two state groups and the visual states that are valid within them. 

 

 
Figure 8.6-1 Visual State Groups and Visual States [21] 

When creating a control that supports the visual states and groups that are shown above these 

have to be defined on the Button class using attributes. The control can then specify how it 

should act in each state; this can be very troublesome when doing it in code. By using 

Microsoft Expression Blend defining control templates and their states makes the life of the 

developer much easier. [21] 
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9 WCF and Silverlight 

The most effective way to communicate with server-side code is using a web service. The 

basic concept is to include a web service with an ASP.NET web site and let the Silverlight 

application call its methods. The web service will then perform any server-side tasks that are 

necessary.  

9.1 Creating a Silverlight enabled Service 

Creating a WCF service in Visual Studio is pretty straight forward. This is accomplished by 

right clicking on the ASP.NET web site and under the Add New Item options choose 

”Silverlight-enabled WCF Service”. This will create a service endpoint file with the extension 

.svc. This file only contains one line of code that tells ASP.NET where to find the web service 

code. This will also create a corresponding .cs file where the implementation of the service 

interface is placed. 

9.2 Consuming the Web Service 

Consuming a web service in Silverlight is much like consuming the service in any other .NET 

application. The first thing that has to be done is to create a proxy class by adding a Visual 

Studio web reference. By choosing Add Service Reference on the Silverlight project and 

adding the URL to the .svc file of the web service and clicking OK this will be accomplished. 

This generates a proxy class that the Silverlight application uses to call the web service 

methods.  

9.3 Calling the Web Service 

All web service calls in Silverlight are asynchronous; this means that a service call will not 

wait for an immediate response from the server. Instead the call is done and other code can 

run in the mean time. When the server is finished executing its part of the code it sends a 

response which the proxy class takes care of by triggering the corresponding proxy event, 

which has the form MethodNameCompleted, this is where the result has to be processed. 

 

The sample code below is taken from the Process Designer tool for loading the process model 

at the startup of the application. This is a typical way for calling the web service. First an 

instance of the proxy class is created. An event handler is attached to handle the completed 

event. The web service call is then done with the form MethodNameAsync. And finally the 

service is closed with the CloseAsync method. 

 
ProcessNavigationClient proxy = new ProcessNavigationClient(); 

 

proxy.GetMainCanvasesCompleted += new EventHandler 

  <GetMainCanvasesCompletedEventArgs>(proxy_GetMainCanvasesCompleted); 

proxy.GetMainCanvasesAsync(); 

proxy.CloseAsync(); 

 

To handle the result of the call the completed event and the corresponding EventArgs object 

has to be handled. The proxy class will generate different EventArgs objects for each method. 

The Result property is then typed to match the response data type. [11] 

9.4 WCF and the SharePoint Object Model 

To use the SharePoint object model within the web service the Microsoft.SharePoint 

namespace has to be added as a reference. By default WCF works outside ASP.NET and 
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because of that also outside SharePoint. The scope of WCF is much larger than just ASP.NET 

therefore this is reasonable. To get the current site collection the static SPContext object is 

used. To enable the web service to get a reference to SPContext the service has to be told to 

run within the ASP.NET context. This is done by adding the following line to the web.config 

file of the web service. 

 
<system.serviceModel> 

    <serviceHostingEnvironment aspNetCompatibilityEnabled="true" /> 

     ... 

</system.serviceModel> 

 

The sample code below is taken from the Process Designer tool. The call is made at the 

application startup to load the process model that has been saved in a Document Library. The 

using statements are used when the developer wants to have supervision of when the resource 

allocated within it should be released. This is good when handling with limited resources such 

as file handles and network connections. The release of memory is otherwise done by the 

common language runtime, which does this in a non-deterministic manner. Using the 

approach below it is possible to drill down in SharePoint object model, and in this case ending 

up with the SPDocumentLibrary object where the files for loading the process model is 

located. 

 
[OperationContract] 

public Collection<MainCanvasProp> GetMainCanvases() 

{ 

  Collection<MainCanvasProp> props = new Collection<MainCanvasProp>(); 

  using (SPSite site = new SPSite(SPContext.Current.Site.ID)) 

  { 

    using (SPWeb web = site.OpenWeb()) 

    { 

      SPDocumentLibrary library =  

              (SPDocumentLibrary)web.Lists["Process Hierarchy"]; 

      if (library != null) 

      { 

        ...   

      } 

      return props; 

    } 

  } 

} 

9.4.1 The XmlSerializer 

The XmlSerializer lets the developer serialize and deserialize objects which provides a 

higher-level alternative to just reading and writing individual pieces of data. The 

XmlSerializer converts objects into a stream of bytes which can be pushed to any stream. It 

can also do the reverse by reading a stream of bytes and convert into an object. To be able to 

use this feature the System.Xml.Serialization.dll has to be referenced within the project. The 

XmlSerializer works with every class but have a couple of requirements: 

 

• The class that wants to be serialized has to have a constructor with no arguments. This 

class is used when the XmlSerializer is deserializing the byte stream. 

• The class has to be built up by public settable properties. By using reflection the 

XmlSerializer will read them for serializing an object and set them also using 

reflection when deserializing. Private data is ignored as well as any validation.[23] 
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The code sample below is taken from the CheckIn WCF service method which is called when 

checking in a process level of the Process Designer tool. It demonstrates how to serialize an 

object into a stream which can be saved to SharePoint document library. The prop object is of 

type MainCanvasProp class which holds the information concerning a process level. 

 
Stream documentStream = new MemoryStream(); 

StreamWriter writer = new StreamWriter(documentStream); 

 

XmlSerializer s = new XmlSerializer(prop.GetType()); 

s.Serialize(writer, prop); 

writer.Flush(); 

 

The code sample below is taken from the WCF service method which is called when loading 

the process model. The file instance which is a SharePoint SPFile object is read into a Stream 

object as binary stream. An instance of the XmlSerializer is then created which is customized 

to use the MainCanvasProp class. By applying the Deserialize method the stream is converted 

into a MainCanvasProp object.   

  
Stream stream = file.OpenBinaryStream(); 

StreamReader reader = new StreamReader(stream); 

XmlSerializer s = new XmlSerializer(typeof(MainCanvasProp)); 

MainCanvasProp prop; 

prop = (MainCanvasProp)s.Deserialize(reader); 

reader.Close(); 

9.5 Error Handling 

WCF has the ability to throw exceptions on a service call. The unfortunate thing is that 

Silverlight does not support it. Any exception that is thrown will be translated by the browser 

into a 404 File Not Found error. There are a couple of workarounds that can be used to 

overcome this issue. One workaround is using an extra Error property to the data that is 

returned to the Silverlight application. This solution is not optimal though. It makes the 

simple return value more complicated and it mixes good and bad data in the same object and 

will therefore break the single responsibility rule. A better solution is to use the ability to 

define a WCF service signature using the OUT parameter which can be accessed through the 

EventArgs on the event handler for completing the call. [12] 

 

WCF 
[OperationContract] 

SomeObject GetSomeData(String someId, out MyErrorObject myError); 

  

Silverlight 
private void proxy_GetSomeDataCompleted(object sender, 

GetSomeDataCompletedEventArgs e) 

{ 

  if (e.Error != null) 

  {...} 

  if (e.myError != null) 

  {...} 

  else 

  {...} 

} 

9.6 Other Communication Patterns 

The difference between a Silverlight Web Part and a normal SharePoint Web Part is that the 

Silverlight Web Part is executed in the browser and not on the Server. Therefore the 
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Silverlight application will not have access to the SharePoint object model. The goal is 

therefore to be able establish some kind of communication between the UI of Silverlight and 

the SharePoint server-side to access objects and data. 

 

The Process Designer tool uses one approach defining a server-side web service which 

accesses the SharePoint object model. This web service is then consumed and called from the 

Silverlight application. There are other patterns that can be taken into account. Here is a list of 

thinkable patterns. 

 

• Using the Silverlight WebClient object to communicate with the SharePoint built-in 

Web service. 

• Create a client-side adapter that is embedded in the Web Part. The Silverlight 

application can then communicate with the adapter through the browser. The adapter 

will then make AJAX-style calls to a built in SharePoint Web service. 

• The last thinkable solution is to use the above approach. But instead of communicating 

with the built in SharePoint Web services it talks to a self implemented service. Figure 

9.6-1 shows this approach. [23] 

 

 
Figure 9.6-1 Communication pattern [23] 
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10 The Model-View-ViewModel Pattern 

The Model-View-Control pattern is well known and commonly used when developing 

ASP.NET applications with a request/response style. The M-V-VM (Model-View-

ViewModel) pattern has not been discussed as much as a formal pattern. However, it works 

well for client applications that use interactive or dynamic user interfaces that are data-bound. 

This is the case when coming to Silverlight. 

 

The pattern consists of three parts the Model/DataModel, View and the ViewModel. 

 

• Model/DataModel. This part represents the data that the application is operating over 

as well as the data access mechanism. Analogous to the Model in the MVC pattern. 

• View. The View is the user interface that displays the data and enables user 

interaction. It is typically in a declarative language like XAML or HTML. 

• ViewModel. Also read as “The View’s Model” this part is responsible to represent the 

data in a more suitable way for the view. It also has operations that are performing 

work and that often change the data that the view is bound to.  

 

The code-behind pattern that is the natural approach to use when programming Silverlight 

applications uses a similar approach. Having UI components that are associated with code-

behind that loads data and implementing logic for user input and interaction with event-

handlers. Figure 10-1 represents this pattern. A problem with the pattern is that it mixes 

application logic with the visual presentation. This leads to an application that is harder to 

test. It also effects the separation of the designers work and the work of the developer.  

 

 
Figure 10-1 The code-behind pattern [25] 

The M-V-VM pattern tries to separate the logic from the presentation. The data that is 

displayed are implemented as properties of the ViewModel that the View gets via data-

binding. Further on, the ViewModel also have methods that have logic that is consumed by 

the View using commanding. The key is that the ViewModel is independent from what 

controls that build up the View. Figure 10-2 illustrates this pattern. [25] 
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Figure 10-2 The Model-View-ViewModel pattern [25] 

11 Silverlight Testing and Debugging 

Before integrating the Silverlight application in the SharePoint Web Part it is recommended 

that it works as much as possible. This is most easily done in the Web Application project that 

is created in Visual Studio when developing the Silverlight application. When the application 

is working within this environment it should be wrapped in a Web Part. Once it is wrapped in 

the Web Part no breaking points can be set for debugging in the Silverlight application. 

 

When troubleshooting problems with the Silverlight application it is good to use a HTTP 

debugger. Especially when the application uses Web Service calls. When developing the 

Process Designer tool the web debugging program fiddler2 was used. It gives a clear view of 

what data is sent to and from the web browser and the server where the Web Service is 

located and what calls fails. It also tells if a cross domain file is being requested. 

 

When the XAP file is downloaded from the server it is cached in the browser. When new 

versions of the XAP file is available for download from the server the browser will still use 

the cached file. It is therefore necessary to clear the browser cache before testing newer 

versions. [24] 

11.1 Unit testing 

Testing is an important part of the development life-cycle of software. Software patterns like 

dependency injection and M-V-VM makes it easier to design code that is easier to test. There 

is no Silverlight testing framework that is integrated with Silverlight itself. The Silverlight 

testing framework is available with the release of the Silverlight control source. [26] 

 

A rather common misperception is that every test written using a test framework is a unit test, 

but there are a number of different tests that can be written to test code. A test can be seen as 

not being unit test if: 

 

• It communicates with the database 

• It communicates across the network 

• It interacts with the file system 

• It can run at the same time as other unit tests 

• The environment has to be re-configured to run them 
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Tests that do the things listed above can easily be written using a testing framework. But it is 

important to separate them from the real unit tests that can be run whenever and in a fast 

manner. [27] 

 

It is of essence to be able to write unit test code that is easily decoupled from code that makes 

cross boundary calls. Instead of making a test that interacts with a database the data has to be 

collected in some other mean by for instance using dependency injection or mocks. 

 

A good practice when writing tests to a Silverlight application is to separate them into three 

separate categories. 

 

• Unit Test. Tests a single unit, normally a method in a single class. It should not do 

any cross boundary calls, should run fast without any side effects. 

• Integration Test. This is testing how multiple classes integrate with each-other or 

how the class integrates with the environment. I.e. accessing data over a web service 

or accessing the data base. 

• Smoke Test. This is for testing how the user is interacting with the application. This 

leads to cross boundary calls, file system access etc. These tests are usually automated 

by the user interface. 

 

There are other kind of tests that can be done as well, like performance- , acceptance-, and 

stress- tests. These are often written in other testing frameworks.  

 

It is good to keep the unit tests, integration tests and the smoking tests separate. Having the 

unit tests running as fast as possible which is easier to accomplish when they do not make 

cross boundary calls. If tests become slow developers tend to not be running them. A good 

way of keeping them separate is to create different projects for each test. In the Silverlight 

testing framework the separation can be done using tags to test classes and test methods. [26] 

11.2  The Silverlight testing framework 

The unit test framework for Silverlight was first released in conjunction with the release of the 

source code to the Silverlight controls. It runs in the web-browser both on PCs and Macs. The 

Microsoft.Silverlight.Testing framework is easy to use and lets the developer create cross-

platform, cross-browser tests. 

 

Using unit tests are useful, the more tests the more confident the developer can be that the 

code is running correct. The test projects are packaged like any other Silverlight application 

so no additional installation is needed to be able to run the tests.  

11.2.1 Creating a simple test 

The easiest way to start using the unit test framework for Silverlight is to use the two Visual 

Studio templates that have been created for the Silverlight testing framework. The first 

template is for adding a Silverlight test application to a Visual Studio solution and the second 

template is an item template that adds a test class to the test project.  

 

In addition two assemblies are needed which comes with the source code of the Silverlight 

controls. These are the Microsoft.VisualStudio.TestTools.UnitTesting.Silverlight.dll and the 

Microsoft.Silverlight.Testing.dll.  
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The metadata and assertion types are found in the 

Microsoft.VisualStudio.TestTools.UnitTesting namespace. And the tests are made up of test 

classes and test methods. The code for a simple test class containing one test method can be 

seen below. 
 

using System; 

using Microsoft.VisualStudio.TestTools.UnitTesting; 
 

namespace CIT.UnitTest.ProcessDesigner 

{ 

    [TestClass] 

    public class Test 

    { 

        [TestMethod] 

        public void PassTest() 

        { 

            Assert.IsTrue(true); 

        } 

    } 

} 

 

When the test is run a web-browser is shown. This test is without any Silverlight control or 

interface therefore nothing will be shown on the plug-in surface to the left. The only thing that 

is shown is the log which is seen in Figure 11.2.1-1. The log consists of the test classes and 

the test methods that run. Showing any classes or methods that fail and how many tests that 

ran. 

 

 
Figure 11.2.1-1 Running unit tests 

11.2.2 Creating UI tests 

Using the Silverlight testing framework makes it is possible to simulate user activity by 

calling methods that triggers application logic. There is a large set of functionality that can be 

tested within the Process Designer project. 

 

To be able to test the Process Designer Tool which is located in a separate Silverlight project 

a reference has to be added to Process Designer project in the test project. In addition any 

resources that are defined in the App.xaml file have to be placed in the individual .xaml files 
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where they are used. This is because the resources will not be available to the test project 

being in a separate app file. Moving the resources is easily done with Expression Blend by 

using the Resource tab in the upper right corner. 

 

Since the Silverlight test framework is just another Silverlight application there is no 

possibility to do any UI automation tests, like user initiated mouse clicks and key presses. 

What can be tested is the code that is connected to for instance button events, that the visual 

tree is updated, and that the data source is correctly updated on invocation. 

 

To be able to create more advanced Silverlight specific tests the SilverlightTest base class can 

be inherited which is located in the Microsoft.Silverlight.Testing namespace. This class has 

support for interacting with the root visual and the HTML DOM bridge. In addition the class 

has a number of helper methods that can be used with the [Asynchronous] attribute, which 

enables writing tests beyond the scope of the test method until the TestComplete method is 

called. 

 

To be able to do UI tests on the Process Designer tool, the InternalsVisibleTo attribute has to 

be used which allows the test assembly to view internal types and methods. This is done by 

adding the line below to the AssemblyInfo.cs file in the Process Designer project. 

 
[assembly: InternalsVisibleTo("CIT.UnitTest.ProcessDesigner")] 

 

This lets the test project assembly call methods within the Process Designer project having the 

keyword internal. 

 

To make the testing scenarios easier a TestInitialize method will be called before the 

TestMethod.  In this method a new instance of the Page is created and added to the TestPanel. 

If the TestPanel is accessed in a test the content will be cleared before the next test is run. 

This saves time when writing tests, not having to do any manual cleanup of temporary visuals 

that are used within the test. Below a sample code is shown which instantiates a Page with the 

parameter null. By doing this a “mock” process model is loaded for testing purposes. 

 
[TestClass] 

public class Test : SilverlightTest 

{ 

  private Page page; 

 

  [TestInitialize] 

  public void PreparePage() 

  { 

    page = new Page(null);             

    TestPanel.Children.Add(page); 

  } 

} 

 

The test example below will use the instance of the Page to test the logic when a user clicks a 

process image which triggers displaying the name of the process in the bottom left corner of 

the process design surface. 
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[TestMethod] 

public void ClickedProcessTextTest() 

{ 

  MainCanvas mainCanvas; ProcessCanvas processCanvas = null; 

  page.mainCanvasDictionary.TryGetValue(0, out mainCanvas); 

  foreach (UIElement element in mainCanvas.Children) 

  { 

    processCanvas = element as ProcessCanvas; break; 

  } 

  mainCanvas.Prop.IsCheckedOut = false; 

  ClickOnProcessImage(processCanvas); 

  Assert.AreEqual(page.ClickedProcessTextBoxMain.Text, "Selected: TEST");  

} 

 

private void ClickOnProcessImage(ProcessCanvas process) 

{ 

  page.processCanvas_MouseLeftButtonDown(process, null); 

} 

 

The mainCanvasDictionary holds all information concerning the process model. The 

mainCanvas with id 0 is the first level of the process model. By iterating over its children 

(foreach (UIElement element in mainCanvas.Children)) each process image can be 

reached which is within a ProcessCanvas object. The helper method ClickOnProcessImage 

invokes the method which is triggered when a user clicks on a process image. The last row 

performs the actual test. The first process is “mocked” to have the value “TEST”. By 

comparing the value of the object which displays the text and the expected string the test is 

completed. The application interface is added to the TestPanel before each test is run and 

removed when the test is finished. Because the tests run very fast, it is possible to run 

thousand of tests with this browser experience. Below is what the test would look like if the 

screen froze in the middle of the test. The “Selected: TEST” text is seen on the process design 

area which is triggered by the test. [28] 

 

 
Figure 11.2.2-1 The ClickedProcessTextTest test 
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12 Result 

The Silverlight tool developed in conjunction to this thesis report meets the purpose of thesis 

well. Using Silverlight to develop more user friendly and interactive applications within 

SharePoint is a good way to meet customers ever increasing demands of having intuitive and 

user rich applications.  

 

The Process Designer tool has an appealing graphical user interface where processes can be 

dragged around a designer surface where they can be edited. Metadata and links to documents 

within SharePoint can be added to each process level. The tool interacts closely with 

SharePoint functionality by using a document library where the built in feature for checking 

in and out of processes is used as well as being able to keep a history of the evolution of 

processes as they are developed over time.    

 

To create a similar tool in an HTML environment of a browser is possible. This would include 

using scripting languages integrated with the HTML for creating interactivity with the 

SharePoint object model on the server. Using this approach would make development both 

time consuming and more complicated. Silverlight makes it easier by using a subset version 

of the .NET Common Language Runtime, allowing the programmer to use C# when 

developing client side applications in exactly the same fashion as developing desktop 

applications. Being able to work within one environment using object oriented code makes it 

not only easier but also more robust and reliable. 

 

The Process Designer tool uses a number of built in controls for presenting information 

attached to processes and process levels. The controls are delivered with the Silverlight SDK, 

having a standard Windows like set of animations and styles. The tool uses its own control 

templates to the controls resulting in a similar look and feel over the entire application. This 

increases the familiarity to the application from a user perspective.  

 

A major point of the thesis has been the actual integration of the tool and how well it works 

within the SharePoint site. The integration is accomplished by a set of predefined steps. By 

following these steps the integration does not cause any major trouble. The Process Designer 

tool has been integrated as a Web Part, which is added from the Web Part gallery within 

SharePoint. This makes it possible to add the application at any location within the SharePoint 

site collection. The Visual Studio Extension template for WSS 3.0 makes development of the 

Web Part which hosts the ASP.NET server-side Silverlight control much easier. The solution 

can be deployed to the server from Visual Studio instead of creating installation scripts 

manually. Another integration issue is the placement of the Silverlight XAP file. The Process 

Designer tool uses the layouts folder, this makes the XAP file available over the entire web 

farm, making it possible to use the application on several site collections. When newer 

versions are available of the program-code the XAP file can easily be replaced. 

 

Client-server interaction has been accomplished using Windows Communication Foundation. 

The service implementation uses the SharePoint object model for interacting with SharePoint 

specific objects like document libraries and user group information. Here most of the 

integration problems have occurred. 

 

To be able to use the SharePoint SPContext object to get hold of the current site collection 

where the service is placed the aspNetCompatibilityEnabled flag has to be set to true in the 

configuration of the service. Otherwise the object will return null. 
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A proxy has to be generated by the application when the WCF services are used within the 

Silverlight application. This is accomplished by the “Add Service Reference” feature in 

Visual Studio. This will generate proxy code for doing asynchronous calls from Silverlight. 

This feature has caused trouble in combination with deploying the service in IIS, giving 

cryptic error messages. To overcome it a clean development environment has been used 

where the solution has been added. Reference 15 in the reference list gives an interesting 

approach using WCF in Silverlight without the proxy generation feature. 

 

A general problem with the integration has been the possibility to debug code. Once the 

Silverlight application is compressed in a XAP file and uploaded to the server it cannot be 

debugged when executed in the browser within the SharePoint site. This is especially 

troublesome if the WCF service call fails. By using a web debugging tool like fiddler the 

service calls and their responses can be monitored. This helps locating the problem but if the 

problem is within the Silverlight code it can still not be debugged. 
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13 Discussion 

Silverlight being a rather new technology on the market has a number of limitations, but more 

features are added as new versions are released. When being forced to use workarounds to 

accomplish features that are not yet supported is never good. The Process Designer tool uses a 

WCF service. At this point exceptions are not supported within Silverlight that are thrown 

from the service. As a result an extra operation contract has to be specified where the error 

can be saved which can then be read in the Silverlight application. 

 

All communication from within Silverlight is done asynchronously. This includes making 

WCF service calls. An event handler is created to handle the response when the call returns. 

Because the Process Designer needs the response of the service calls to keep on working 

within the application a blocking element in the form of a process bar is used. It is important 

to keep in mind when developing applications that run in a browser environment to keep the 

communication to the server side as limited as possible making server calls only when they 

are absolutely necessary. Otherwise the application will become unresponsive and slow. 

Keeping the amount of data that is sent between the client and the server at a minimum also 

helps making the calls quicker and therefore also more responsive. 

 

The current version of the Process Designer tool has got some limitations. Currently it is only 

possible to use one instance of the application within a SharePoint site collection. This is due 

to the fact that it only uses one static document library for storing the process model. 

Specifying process names is limited to one line and there are a predefined set of colors and 

fonts that can be applied to the text of the process name. These colors and fonts are available 

within the Silverlight framework. There is also no possibility to skew the text within the 

process for making it fit better all kind of process image designs. 
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14 Conclusion 

There are some important aspects when developing Silverlight applications and additionally 

some very useful things to keep in mind when the integration is made within SharePoint.  

 

All web service calls in Silverlight are done asynchronously. This architectural decision 

increases complexity but prevents the application from hanging. Silverlight supports both old 

ASMX Web Services and the newer WCF standard. Many of the out-of-the-box ASMX Web 

Services offered by SharePoint cannot be used by Silverlight. This is because these service 

methods return XMLNode sets which is not supported by Silverlight. By using a wrapper 

Web Service the returning type of the Web Service calls can be transformed into something 

that is readable within the Silverlight application.  

 

The Silverlight project within Visual Studio creates a test.html page that enables the 

programmer to test the application during development. If the application consumes a Web 

Service there is no possibility to test the application within Visual Studio. This is because the 

Silverlight application is running as a local web application and this is a different domain as 

the web service. The Process Designer tool overcomes this by using a debugging flag that 

tells the application to load static test data that is defined within the program instead of 

making the Web Service method. 

 

The most important thing to keep in mind when developing Silverlight applications is to 

create code that is easy to maintain, refactor and test. The Model-View-ViewModel pattern 

presented in the thesis helps the developer to accomplish this. The Silverlight programming 

model implies a tight integration between the user interface and the data that it works with. 

This makes maintenance, refactoring and testing more difficult. The pattern separates the 

application in separate layers, preventing one layer to have intimate knowledge of another 

layer. 

 

During development of the Process Designer tool the Model-View-ViewModel pattern has 

not been applied this is because the tool has been used for evaluating and learning the 

technology of Silverlight. It is recommended when any further development of the Process 

Designer is done that the pattern is applied. A few unit tests have been written mainly for 

evaluating the Silverlight testing framework. After applying the Model-View-ViewModel 

pattern more tests can be written adding assurance that the system works in a correct manner. 

 

A future functionality recommendation to the Process Designer tool is to make it possible to 

add more instances of it within a SharePoint site collection. This could be done by being able 

to configure the name of the image library and the document library it uses when the 

application is added for the first time on the site. These configuration settings could be stored 

in a document library on the top level site. Further on a skewing functionality could be added 

to the Process image title. Skewing is supported by Silverlight and the extra parameter it 

causes can be saved in the document library together with the other properties that are saved. 

The last issue that is good to be taken into consideration is the ability to be linked directly 

using an URL to the process level of interest. 
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Appendix A. User Manual 

Introduction 

The Process Designer is developed as a Web Part that can easily be added from the Web Part 

gallery in SharePoint. The application makes it possible users with the appropriate user rights 

to design and navigate through a hierarchy of processes. This is accomplished be using a list 

of process pictures that are loaded from a picture library in SharePoint.  

The User Manual is separated in three parts. The first part gives a conceptual overview 

concerning user groups and versioning.  The second part describes the user experience of the 

application from the perspective of using the tool as a process designer. The third and last part 

will guide the user when using the tool for navigating the process hierarchy. 

The Process Designing tool is separated into four areas as can be seen below. Each of the 

areas will be described separately for each of the two user categories. 

 

 
Figure 1 The Processes Designing tool and its areas 

Conceptual Overview 

User Group and Owner logic 

The Process Designing tool uses SharePoint user groups to divide users into two categories; 

designers and viewers. The viewer will only be able to navigate through the process hierarchy 

and the designer will have full editing rights. 

To each process that is added to the process hierarchy a process owner is defined. The process 

owner is a SharePoint user group. All users within the specified group have the right to add, 
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delete or edit processes on the sub-process level of the process. Figure 1 is an example of how 

the tool is seen by a designer; he is a member of the “Company Portal Members” group which 

is the owner of the “Root” process level.  

Versioning and Visibility 

The Process Designing tool is built upon a versioning feature that can be added to SharePoint 

document libraries. Each document in a library can be checked in either as a minor or a major 

version. In conjunction to this functionality each process level of the Process Designer tool 

has a version attached to it making it possible to decide when a process level is to be made 

public to Viewers. If a process level is a minor version it is not seen by Viewers, only major 

versions are. In addition it is possible to blend out    

The Designer 

Area 1 

This area is the toolbar area for interacting with individual processes and the whole process 

level. 

Check in Button 

When finished designing new or editing existing processes, the process level has to be 

checked in to save the changes. Pressing the check in button the user is prompted with a 

popup window within the application. The process level can be checked in as a major or a 

minor version. An optional check in comment can moreover be submitted.  

 

 
Figure 2 Check in 

Check out Button 

Before any alterations can be done to a process level it has to be checked out. This is to make 

sure that no other user is doing design work on the level and therefore risking overwriting 

each other’s work.   

Delete Button 

By pressing the delete button individual processes on the process level can be deleted. The 

user is prompted with a popup window within the application. The new window will list all 

sub-processes that will consequently be deleted. If any of the sub-process levels are checked-

out the process cannot be deleted, not until the sub-process level has been checked in by the 

user having it checked out. 
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Figure 3 Delete  

Back Button 

The back button is for navigation purposes. Pressing the back button will lead the user back to 

the parent process level. Pressing the back button that is integrated by the browser will not 

have any effect when navigating within the application. This button will only lead the user to 

the previous html page. By doing this any changes that have been made to the process 

hierarchy will be lost. 

Area 2 

This area is the interaction menu for adding new processes and navigating the process 

hierarchy. 

Designer Tab 

This tab will list all the available process figures in a list box that can be added to a process 

level. By clicking on a figure the user is prompted with a popup. The popup lets the designer 

specify a heading to the process. The user can choose the size, font, style and color of the text. 

Two expanders are available; the “Process Owner” expander for specifying the process owner 

and the “Visible for Groups” expander for specifying what groups should be able to view the 

process.  In the list of the “Visible for Groups” expander multiple lines can be selected each 

line representing a toggle button. In the list of the “Process Owner” only one item can be 

selected.  Figure 4 below shows how this is accomplished. 

  

 
Figure 4 Process Owner and Visible for Groups expanders 
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The user can navigate through the different figures by pressing the up and down arrows of the 

list box.  

Viewer Tab 

In this tab a Tree view is to be seen. The nodes in the tree represent each process that is 

available. By selecting a node within the tree its sub-process level is to be seen in Area 4. A 

node in the tree can be expanded or collapsed by pressing the arrow in front of the process 

name. 

Area 3 

This area is the properties area where properties to the current process level are to be seen. 

Document Links Tab 

The document links tab is formed as a list box where all the documents connected to the 

current process level in view are listed. Within the properties area three buttons are available 

for adding, editing and deleting items within the list. Pressing a link within the list will open a 

new browser window where the links content is displayed. When pressing buttons add or edit 

a popup window is displayed. Here a description can be filled in for the link and the link 

itself. Important to notice is that the link has to have the syntax: http://www.google.com to 

work.  Not only www.google.com. 

 

 
Figure 5 Document link 

Metadata Tab 

The metadata tab is for adding textual information about a process level. The metadata values 

are listed in a list box. New items can be added, edited or deleted using the buttons available 

in the properties area. When pressing buttons add or edit a popup is prompted where the user 

can add a name and a description of the metadata.  

 

 
Figure 6 MetaData 

Version History Tab 

The version history tab is for viewing earlier versions of the process level that is currently 

displayed. The earliest version is listed on top and the newest version is the last item of the list 

box. By selecting an earlier version it is displayed in Area 4. Important to notice is that it is 

not possible to navigate to sub-process levels when an earlier version is displayed. Therefore 
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the Viewer tab of the interaction menu will be blended out. When wanting to navigate the 

process hierarchy the last version of the version history list box has to be re-selected. 

 

 
Figure 7 Version History 

Area 4 

This is the main design area where the figures of the process system are displayed and are 

added.   

Drag and Drop 

Within the design area the process figures can be placed. The figures can be dragged around 

this area and placed where is best suited. The text within the process figure representing the 

name of the process can also be dragged and placed within the process figure. 

Double Click 

When double clicking the text of a process it can be edited. The same popup is then shown as 

when adding a new process to the design area. See Area 2 –> Designer Tab for popup specific 

information. 

Double clicking the process figure will show the sub-process level of the process.  

Information Text blocks 

 On each corner of the design area status texts are visible, 

• Top right corner:  The current version of the process level is displayed. Major versions 

are displayed with syntax X.0 and minor versions as X.X where X is representing a 

number. 

• Top left corner: The SharePoint user group is displayed that is the owner of the 

process level in view. 

• Bottom left corner: The process that has been clicked and therefore is in focus is 

displayed. 

• Bottom right corner: The name of the process level is displayed. 

The Bottom left text block is also used to display status messages when interacting with the 

server. These are displayed in a red color after a server call has been made. The following 

status messages are currently available: 

"Could not find process in the document library" 

"Could not locate the process document library" 

"Process was successfully checked out" 

"Process was successfully checked in" 

“The process has already been checked out by: #userName#" 
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"The process is checked out by: #userName#" 

"Process and sub-processes were successfully deleted" 

The Viewer 
On a process-level where the user does not belong to the owner user group he will be limited 

to only being able to view the levels properties and navigate to other levels.  

Area 1 

This area is the toolbar area for interacting with individual processes and the whole process 

level. 

Check in Button 

Not applicable. 

Check out Button 

Not applicable. 

Delete Button 

Not applicable. 

Back Button 

The back button is for navigation purposes. Pressing the back button will lead the user back to 

the parent process level. Pressing the back button that is integrated by the browser will not 

have any effect when navigating within the application. This button will only lead the user to 

the previous html page. By doing this any changes that have been made to the process 

hierarchy will be lost. 

Area 2 

This area is the interaction menu for adding new processes and navigating the process 

hierarchy. 

Designer Tab 

Not applicable. 

Viewer Tab 

In this tab a Tree view is to be seen. The nodes in the tree represent each process that is 

available. By selecting a node within the tree its sub-process level is to be seen in Area 4. A 

node in the tree can be expanded or collapsed by pressing the arrow in front of the process 

name. 

Area 3 

This area is the properties area where properties to the current process level are to be seen. 

Document Links Tab 

The document links tab is formed as a list box where all the documents connected to the 

current process level in view are listed. Pressing a link within the list will open a new browser 

window where the links content is displayed.  

Metadata Tab 

The metadata tab is for viewing textual information about a process level. The metadata 

values are listed in a list box.  

Version History Tab 

Not applicable. 
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Area 4 

This is the main design area where the figures of the process system are displayed. 

Drag and Drop 

Not applicable. 

Double Click 

Double clicking the process figure will show the sub-process level of the process.  

Information Text blocks 

 On each corner of the design area status texts are visible, 

• Top right corner:  The current version of the process level is displayed. Major versions 

are displayed with syntax X.0 and minor versions as X.X where X is representing a 

number. 

• Top left corner: The SharePoint user group is displayed that is the owner of the 

process level in view. 

• Bottom left corner: The process that has been clicked and therefore is in focus is 

displayed. 

• Bottom right corner: The name of the process level is displayed. 

Appendix B. Web Config 

The extensions that are needed to support Silverlight content on a site is listed below. 

 
<?xml version="1.0" encoding="UTF-8" standalone="yes"?> 
<configuration> 
  <configSections> 
   <sectionGroup name="system.web.extensions" 
type="System.Web.Configuration.SystemWebExtensionsSectionGroup, System.Web.Extensions, 
Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35"> 
     <sectionGroup name="scripting" type="System.Web.Configuration.ScriptingSectionGroup, 
System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35"> 
       <section name="scriptResourceHandler" 
type="System.Web.Configuration.ScriptingScriptResourceHandlerSection, System.Web.Extensions, 
Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35" requirePermission="false" 
allowDefinition="MachineToApplication" /> 
     <sectionGroup name="webServices" 
type="System.Web.Configuration.ScriptingWebServicesSectionGroup, System.Web.Extensions, 
Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35"> 
       <section name="jsonSerialization" 
type="System.Web.Configuration.ScriptingJsonSerializationSection, System.Web.Extensions, 
Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35" requirePermission="false" 
allowDefinition="Everywhere" /> 
       <section name="profileService" 
type="System.Web.Configuration.ScriptingProfileServiceSection, System.Web.Extensions, 
Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35" requirePermission="false" 
allowDefinition="MachineToApplication" /> 
       <section name="authenticationService" 
type="System.Web.Configuration.ScriptingAuthenticationServiceSection, System.Web.Extensions, 
Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35" requirePermission="false" 
allowDefinition="MachineToApplication" /> 
       <section name="roleService" type="System.Web.Configuration.ScriptingRoleServiceSection, 
System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35" 
requirePermission="false" allowDefinition="MachineToApplication" /> 
     </sectionGroup> 
    </sectionGroup> 
   </sectionGroup> 
  </configSections>     
  <system.web> 
    <httpHandlers> 
      <remove verb="*" path="*.asmx" /> 
      <add verb="*" path="*.asmx" validate="false" 
type="System.Web.Script.Services.ScriptHandlerFactory, System.Web.Extensions, Version=3.5.0.0, 
Culture=neutral, PublicKeyToken=31BF3856AD364E35" /> 
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      <add verb="*" path="*_AppService.axd" validate="false" 
type="System.Web.Script.Services.ScriptHandlerFactory, System.Web.Extensions, Version=3.5.0.0, 
Culture=neutral, PublicKeyToken=31BF3856AD364E35" /> 
      <add verb="GET,HEAD" path="ScriptResource.axd" 
type="System.Web.Handlers.ScriptResourceHandler, System.Web.Extensions, Version=3.5.0.0, 
Culture=neutral, PublicKeyToken=31BF3856AD364E35" validate="false" /> 
    </httpHandlers> 
    <httpModules> 
      <add name="ScriptModule" type="System.Web.Handlers.ScriptModule, System.Web.Extensions, 
Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35" /> 
    </httpModules> 
    <globalization fileEncoding="utf-8" /> 
    <compilation batch="false" debug="false"> 
      <assemblies> 
        <add assembly="System.Core, Version=3.5.0.0, Culture=neutral, 
PublicKeyToken=B77A5C561934E089" /> 
        <add assembly="System.Web.Extensions, Version=3.5.0.0, Culture=neutral, 
PublicKeyToken=31BF3856AD364E35" /> 
        <add assembly="System.Data.DataSetExtensions, Version=3.5.0.0, Culture=neutral, 
PublicKeyToken=B77A5C561934E089" /> 
        <add assembly="System.Xml.Linq, Version=3.5.0.0, Culture=neutral, 
PublicKeyToken=B77A5C561934E089" /> 
        <add assembly="System.Web.Silverlight, Version=2.0.5.0, Culture=neutral, 
PublicKeyToken=31BF3856AD364E35" /> 
      </assemblies> 
     </compilation> 
    <pages enableSessionState="false" enableViewState="true" enableViewStateMac="true" 
validateRequest="false" 
pageParserFilterType="Microsoft.SharePoint.ApplicationRuntime.SPPageParserFilter, 
Microsoft.SharePoint, Version=12.0.0.0, Culture=neutral, PublicKeyToken=71e9bce111e9429c" 
asyncTimeout="7">    
      <controls> 
        <add tagPrefix="asp" namespace="System.Web.UI" assembly="System.Web.Extensions, 
Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35" /> 
        <add tagPrefix="asp" namespace="System.Web.UI.WebControls" 
assembly="System.Web.Extensions, Version=3.5.0.0, Culture=neutral, 
PublicKeyToken=31BF3856AD364E35" /> 
      </controls> 
    </pages> 
  </system.web> 
  <runtime> 
    <assemblyBinding xmlns="urn:schemas-microsoft-com:asm.v1"> 
      <dependentAssembly> 
        <assemblyIdentity name="System.Web.Extensions" publicKeyToken="31bf3856ad364e35" /> 
        <bindingRedirect oldVersion="1.0.0.0-1.1.0.0" newVersion="3.5.0.0" /> 
      </dependentAssembly> 
      <dependentAssembly> 
        <assemblyIdentity name="System.Web.Extensions.Design" 
publicKeyToken="31bf3856ad364e35" /> 
        <bindingRedirect oldVersion="1.0.0.0-1.1.0.0" newVersion="3.5.0.0" /> 
      </dependentAssembly> 
    </assemblyBinding> 
  </runtime> 
  <system.webServer> 
    <validation validateIntegratedModeConfiguration="false" /> 
    <modules> 
      <remove name="ScriptModule" /> 
      <add name="ScriptModule" preCondition="managedHandler" 
type="System.Web.Handlers.ScriptModule, System.Web.Extensions, Version=3.5.0.0, 
Culture=neutral, PublicKeyToken=31BF3856AD364E35" /> 
    </modules> 
    <handlers> 
      <remove name="WebServiceHandlerFactory-Integrated" /> 
      <remove name="ScriptHandlerFactory" /> 
      <remove name="ScriptHandlerFactoryAppServices" /> 
      <remove name="ScriptResource" /> 
      <add name="ScriptHandlerFactory" verb="*" path="*.asmx" preCondition="integratedMode" 
type="System.Web.Script.Services.ScriptHandlerFactory, System.Web.Extensions, Version=3.5.0.0, 
Culture=neutral, PublicKeyToken=31BF3856AD364E35" /> 
      <add name="ScriptHandlerFactoryAppServices" verb="*" path="*_AppService.axd" 
preCondition="integratedMode" type="System.Web.Script.Services.ScriptHandlerFactory, 
System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35" /> 
      <add name="ScriptResource" preCondition="integratedMode" verb="GET,HEAD" 
path="ScriptResource.axd" type="System.Web.Handlers.ScriptResourceHandler, 
System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35" /> 
    </handlers> 
  </system.webServer> 
</configuration> 

 


