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Abstract

This thesis project studies a simulation of decentralised bilateral ex-

change economics, in which prices are private information and trading

decisions are left to individual agents. We set to re-engineer the model

devised by Herbert Gintis and take his Delphi version as the basis for

providing a new, portable barter economics simulation tool in Java. By

introducing some extension points for new agent and market behaviours,

we provide simple means to implement variations on the original model.

In particular, our system could be used to study the emergent properties

of heterogeneous agent behaviours.

Through the addition of some default visualisation models we pro-

vide means for an improved intuitive understanding of the interaction

between individual agents.

The multi-agent simulation library MASON is used as the underlying

simulation platform. The results of running the software with various

parameters are compared to the results from the original version to

confirm the convergence of the two programs.
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Chapter 1

Introduction

Simulation is a young and rapidly growing field, useful in many different disciplines

of social sciences. Economics is one of those for which simulation is very well suited—

the models tend to be complex, non-linear systems that are intractable using other

approaches such as mathematical modelling. In this thesis, we study the simulation

of a particular economic model—barter economy. It is a simple economic model

where agents exchange goods without money or other real-life factors such as firms,

taxes, capital or material. Despite the simplicity, the dynamics of barter economies

is not completely understood.

The particular model we study in this project was formulated by Herbert Gintis

in [Gin06]. A proof of concept implementation in the Delphi programming language

is provided from his home page.

The interesting result of Gintis’ work is that in a decentralised economy, where

trading agents have neither money nor prices as public information and with little

central control, a system of approximately equilibrium prices emerges in the long

run.

We aim to reproduce the original results and functionality by reimplementing the

model in Java. We also provide means to study related models by way of extending

the program by changing agent as well as market behaviour.
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Chapter 2

Background

2.1 Simulation as a way of making science

One of the first uses of computers in a large-scale simulation was during World War

II to model the process of nuclear detonation [Met87]. Ever since, the number of

applications for computer simulation has been growing—it is now used to gain in-

sight into the operation of natural systems in physics, chemistry, biology, economics,

psychology, social sciences and possibly in various other disciplines. All of this has

been made possible due to the rapid growth of computing power.

The increasing use of simulations raises an important question: what is the value

of simulation as a way of making science? Robert Axelrod [Axe03] tries to answer

this question by comparing simulation to the two standard methods of doing science:

induction and deduction. Induction is a form of reasoning that makes generalisations

based on individual instances. In social sciences, the examples of using induction

could be the analysis of opinion surveys and macro-economic data. Deduction, on

the other hand, is reasoning which uses deductive arguments to move from given

statements (premises) to conclusions, which must be true if the premises are true.

Amy Greenwald [Gre97] brings an example of deductive reasoning in classical game

theory—if all the players are rational, and if they all know that they all are rational,

and so on, then they all know that all the others play best responses, and as a

result, they all play best responses to those best responses, which brings us to an

equilibrium where no player has anything to gain by changing his or her own strategy.

This is called Nash equilibrium and the discovery of this was reached by deduction

[Nas50]. So, where does simulation belong? Axelrod thinks that simulation is a third

way of doing science, as it combines elements from both standard methods. Like

deduction, it starts with a set of explicit assumptions and then generates data that

can be analysed inductively. Simulation does not prove any theorems like deduction

and the simulated data does not come from direct measurement of the real world as

is the case for typical induction. Rather, the data comes from a rigorously specified
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set of rules. Axelrod concludes that while induction can be used to find patterns

in data, and deduction can be used to find consequences of assumptions, simulation

modelling can be used to aid intuition.

In 1969, Thomas Schelling used simulation to show how racial segregation hap-

pens even if individuals have a small preference for the skin colour of their neighbours

[Sch69]. Schelling did not use any computers for this simulation. In his later book

[Sch78], he even pointed out what is needed to replicate the results:

“Some vivid dynamics can be generated by any reader with a half-hour

to spare, a roll of pennies and a roll of dimes, a tabletop, a large sheet

of paper, a spirit of scientific inquiry, or, lacking that spirit, a fondness

for games.”

Placing the pennies and dimes in different patterns on the “board” and then mov-

ing them one by one if they had too many neighbours of different colour were all

there was to it. Despite the simplicity of the simulation, it nevertheless fulfilled

the main purpose of aiding intuition—anyone could easily understand the theory by

replicating the simulation. Of course, computers can simulate this much faster and

we can carry out the same process hundreds of times per second, but this adds little

value once we have understood the theory by doing it on paper. The paper method

is possible because the model is so simple and no heavy calculations are necessary.

However, if we have an economic model with several parameters and significantly

more individuals acting, the only option is computer simulation. No matter whether

we use a computer or not, the main value of simulation is to better understand the

operation or the behaviour of a system.

2.1.1 Importance of replication

Just as important as it is to understand some phenomenon of a complex system, is

sharing the insights with others. Axelrod [Axe03] brings out several difficulties that

arise when sharing the results of a computer simulation. One of the main things

he is concerned with is whether the shared results of a simulation are reproducible.

Schelling did an excellent job in this regard, his work is easy to replicate. Unfortu-

nately, this is often not the case for computer simulations. The models are usually

sensitive to many, small details and describing them all would not fit in an article,

making it hard for others to replicate or even understand the results. So, it is very

important to find other means of providing the documentation and source code of

the computer simulation together with the interpretation of the results.

Once all the details of a simulation are made available, it is also very important

that someone tries to replicate it. According to Axelrod, this is virtually never done:

“New simulations are produced all the time, but rarely does any one stop

to replicate the results of any one else’s simulation model.” [Axe03]
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He even calls replication one of the hallmarks of cumulative science and emphasises

that it is needed to confirm whether the claimed results of a given simulation are

reliable in the sense that they can be reproduced by someone starting from scratch.

The basis for this suggestion is that it is easy to make programming errors, especially

for those with little programming experience. This, in turn, could lead to mistaken

results or misrepresentation of what was actually simulated. Or, there could be

errors in analysing or reporting the results.

2.2 Agent-Based Computational Economics

At the intersection of economics and computation, lies a fairly new field called agent-

based computational economics (ACE)—the computational study of economies mod-

elled as evolving systems of autonomous interacting agents [Tes03]. The reason why

economists are discovering the possibilities of agent-based modelling is that a cer-

tain class of economic problems is not solvable with mathematical models [Axt00].

The reason why these ideas have not been put into practice for centuries is that

agent-based modelling was not feasible until computer hardware became powerful

enough to carry out those computation-intensive simulations. But now, for these

mathematically intractable problems, agents come in very handy. Tesfatsion [Tes03]

gives a precise definition of an “agent” in that context—it is a bundle of data and

behavioural methods, representing an entity constituting part of a computationally

constructed world. For example, an agent can represent individuals (e.g., consumers,

producers), social groupings (e.g., families, firms), institutions (e.g., markets, regu-

latory systems), biological entities (e.g., crops, livestock) or physical entities (e.g.,

infrastructure, weather). By creating a bunch of these simple agents and making

them interact with each other, we can model a complex system. A defining property

for complex systems formulated by Vicsek [Vic02] is that the laws describing the

behaviour of a complex system are qualitatively different from those that govern

its units. The “father” of agent-based modelling, Thomas Schelling, referred to the

existence of such systems in economics in his classic paper “Models of Segregation”

[Sch69]:

“Economists are familiar with systems that lead to aggregate results that

the individual neither intends nor needs to be aware of, the results some-

times having no recognisable counterpart at the level of the individual.”

For example, he names the creation of money by a commercial banking system or

the way that saving decisions cause depressions or inflation. Vicsek summarises the

benefits of agent-based approach to complex systems:

“By directly modelling a system made of many units, one can observe,

manipulate and understand the behaviour of the whole system much
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better than before. In this sense, a computer is a tool that improves not

our sight (as does the microscope or telescope), but rather our insight

into mechanisms within complex systems.” [Vic02]

ACE research has four objectives [Tes06]. Firstly, to empirically understand

why particular global regularities have evolved and persisted, despite the absence of

centralised planning and control. Those global regularities are the large-scale effects

of complex systems, indirect results of interacting individuals. Thus, the aim is to

generate those global regularities within agent-based worlds. Epstein [Eps06] calls

this a “generative” approach to science, the main question being how decentralised

local interactions of heterogeneous autonomous agents generate the given regularity.

The second objective is normative understanding. Here the ultimate question

is how agent-based models can be used as laboratories for the discovery of good

economic designs. Again, an agent-based world is constructed, but this time the

aim is to assess how efficient, fair and orderly the outcomes of a specific economic

design are.

The third objective is qualitative insight and theory generation, with the main

question of how economic systems can be more fully understood through a sys-

tematic examination of their potential dynamical behaviours under different initial

conditions. Tesfatsion [Tes06] reasons that such understanding would help to clarify

not only why certain outcomes have regularly been observed but also why others

have not.

Finally, the objective also pursued by this thesis project, is methodological ad-

vancement. Researchers with this objective in mind try to find the best methods

and tools to undertake the rigorous study of economic systems. Tesfatsion lists the

needs of ACE researchers that the methodology should meet:

• Model structural, institutional, and behavioural characteristics of economic

systems.

• Formulate interesting theoretical propositions about their models.

• Evaluate the logical validity of these propositions by means of carefully crafted

experimental designs.

• Condense and report information from their experiments in a clear and com-

pelling manner.

• Test their experimentally-generated theories against real-world data.

In this thesis, we are more interested in the advancement of practical tools of pro-

gramming, visualisation and validation than in the advancement of methodological

principles.
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2.2.1 Advantages of agent-based approach

To further see the benefits of ACE, Robert Axtell brings out the advantages of agent-

based computational modelling over conventional mathematical theorising [Axt00].

Firstly, in agent-based computational models it is easy to limit rationality of

the agents. The agents do not need to act rationally, one can experiment with

different kinds of agents and just see what happens. In contrast, mathematical

models assume rational agents, just like physicists have the ideal gas and the perfect

fluid. Secondly, it is easy to make agents heterogeneous in agent-based models.

It is a matter of instantiating the agent population with different initial states or

behaviour strategies. Thirdly, Axtell points out that by “solving” the model merely

by executing it, we are left with an entire dynamical history of the process under

study. Therefore, it is possible to not only concentrate on the possible equilibria of

the model, but one can also study the dynamics of the process. As a final advantage,

he argues that in most social processes either physical space or social networks

matter, which are difficult to account for mathematically. In agent-based models

however, it is quite easy to have the agent interactions mediated by space or networks

or both.

Together with all these advantages, Axtell points out a significant disadvantage

that agent-based modelling methodology has when compared to mathematical mod-

elling. Namely, a single run of an agent model does not give us any information

about the robustness of the results. He raises a more formal question:

“Given that agent model A yields result R, how much change in A is

necessary in order for R to no longer obtain?” [Axt00]

The truth is that we can only answer this by running the model with systematically

varied initial conditions or parameters and then assess the robustness of results. This

of course limits the size of the parameter space that we can check for robustness in a

reasonable time. In mathematical economics, the question of parameter robustness

is often formally resolvable.

2.2.2 Construction of agent-based models

Tesfatsion [Tes06] compares the ACE methodology to a culture-dish approach in

biology—an ACE modeller first computationally constructs an economic world, pop-

ulates it with multiple interacting agents and then steps back and just observes the

development of that small world over time. The most important part of constructing

such a world is specifying the agent. An agent typically has data attributes (e.g.,

type of agent, info about other agents, utility function) and behavioural methods

(e.g., market protocol, private pricing strategy or learning algorithm). That is the

groundwork of agent-based models, what is left is the glue code to make the agents
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interact in some regular manner and at the same time advance the model in time.

The effort in this part can be greatly reduced by using some existing multi-agent

system framework. There are many choices for this, and in the next section we will

take a closer look at one of them. Eventually, every ACE model should have the

property of being dynamically complete, meaning that it must be able to develop

over time solely on the basis of agent interactions, without further interventions from

the modeller [Tes06].

2.3 MASON multi-agent simulation toolkit

Most of the agent-based models need some boilerplate code that is common among

all of them. Examples include a good random number generator, synchronisation

of agent interactions, visualisation and a graphical user interface for controlling the

simulation. This is a fair amount of work if starting from scratch, but in most

cases unnecessary because a large variety of frameworks (or toolkits or platforms)

exist for multi-agent systems, offering the described basic functionality and often

more. One of those frameworks, used in this project, is MASON1—Multi-Agent

Simulator Of Neighbourhoods (or Networks). This free and open-source general

purpose simulation toolkit is a joint effort of George Mason University’s Computer

Science Department and the George Mason University Center for Social Complexity.

Analysing the pros and cons of every existing framework would be enough work for

another thesis project, but the important criteria talking in favour of MASON are

the Java programming language (making it multi-platform), high performance and

thorough documentation.

A not so recent review [RLJ05] of agent-based simulation platforms found MA-

SON to be the fastest among four other popular platforms—Swarm and Java Swarm2,

Repast3 and NetLogo4. To date, over 50 platforms5 with similar goals exist, which

means that most of them remain undiscovered for this project.

2.3.1 The architecture of MASON

The motivation behind starting the MASON project in the first place was the need

for a general purpose simulation toolkit that would not be tied to any specific domain

[LCRPS04]. Other critical needs were speed, the ability to migrate a simulation run

from platform to platform and therefore also platform independence. The authors

of MASON argue that at the time when MASON development started, the existing

systems did not meet these needs well. They either tied the model to the GUI too

1http://cs.gmu.edu/~eclab/projects/mason/
2http://www.swarm.org
3http://repast.sourceforge.net
4http://ccl.northwestern.edu/netlogo/
5http://en.wikipedia.org/wiki/ABM_Software_Comparison
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closely, or could not guarantee platform-independent results, or were slow because

they were written in an interpreted language. The architectural choices of MASON

are to fix these problems.

MASON is written in Java in order to take advantage of its portability and

strict semantics for libraries and math operations to guarantee duplicable results.

Another useful feature is object serialisation, which enables saving a simulation

state to disk and restoring it later. From the architectural viewpoint, the toolkit

is modular and layered. The bottom layer consists of utility data structures, such

as custom implementations of Bag and Heap. Next comes the model layer. This is

the core of MASON and has all the functionality to create simulations with com-

mand line interfaces. This layer includes a single base class for the simulated model

(sim.engine.SimState), backed by functionality for scheduling agents and also a

high-quality pseudo-random number generator (see 6.2). MASON employs a specific

usage of the term agent—it is a computational entity which may be scheduled to

perform some action and possibly manipulate the environment [LCRPS04]. So, the

agents are scheduled to take action, or “step forward” in MASON’s terms, and the

only requirement for an agent is to implement a Steppable interface with a single

method that is called by MASON according to the schedule.

The model layer is completely independent of the visualisation layer. Neverthe-

less, attaching visualisations and a GUI for simulation control is straightforward.

For these purposes, another base class called GUIState is provided and very little

knowledge of the Java Swing GUI framework is required. The serialisation of the

model (SimState) to or from disk also happens through this class. For the visu-

alisation purposes, there are several classes to support drawing various 2D and 3D

representations of the model.

From a programmer’s perspective, MASON is low level and requires Java pro-

gramming skills to be able to construct one’s own agent-based model. The only

design concept enforced by MASON is its view of an agent as something that steps

forward in a series of discrete events. But there is a positive side of its generality—

the domains for which MASON is suitable ranges from robotics, machine learning

and artificial intelligence to multi-agent models of social systems [LCRPS04].

2.4 Gintis’ Barter Economy

One of the important questions in economics has for a long time been how to match

the demand and supply of all goods in a market of perfect competition, so that there

is neither excess demand nor supply. Or from another point of view, how to find the

market-clearing prices that would result in this match. The study of this problem

has its own branch in theoretical economics called General Equilibrium Theory, but

the first man to address these issues was the French economist Leon Walras (1834–
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1910). He proposed a dynamic process called tâtonnement (or groping) by which

general equilibria might be reached.

The central part of this process is an (Walrasian) auctioneer who calls out prices

of goods after which agents register how much of each good they would like to offer

(supply) or purchase (demand) at the given price. No transactions or production

take place at disequilibrium prices. Instead, prices are lowered for goods with excess

supply and raised for goods with excess demand. Eventually, this process will give

rise to general equilibria.

Herbert Gintis demonstrates a different, agent-based approach [Gin06]. He con-

structs a simple economic model called barter economy, where agents just produce,

exchange, and consume a number of goods in many consecutive periods. No other

realistic factors such as money, firms, capital, or material are included. The major

difference from Walras’ model is that the described barter economy is completely

decentralised—no top-down control exists such as the Walrasian auctioneer with the

perfect information. Gintis sums up his approach:

“Rather than using analytically tractable but empirically implausible ad-

justment mechanisms and informational assumptions (such as Walrasian

tâtonnement and prices as public information), we treat the economy

as complex system in which agents have extremely limited information,

there is no aggregate price-adjustment mechanism institution, and out

of equilibrium exchange occurs in every period.” [Gin06]

So, Gintis sets to extend the empirical understanding of the dynamics of barter

economy that would lead to an equilibrium.

2.4.1 Overview of the process

The following process devised by Gintis is carried out in each period to evolve the

economy over time. It begins with a synchronised production phase—each agent

starts with an empty inventory of goods and then produces a fixed amount of a

single good. The production phase is followed by an unsynchronised exchange-

consumption-production phase. Here the agents first seek exchange partners and

then try to agree on the amounts of exchanged goods according to their strategies. A

strategy for an agent is a price vector for the various goods it produces or consumes.

Agents only give away a quantity of their own production good and only if the

value of what they receive in exchange is at least as great as the value of what they

give away, according to their private price vector. After a successful trade, an agent

consumes an optimal consumption bundle and produces more of his production good

if his inventory becomes empty after the consumption.

The final phase is reproduction-mutation, which only happens after a certain

number of periods (for example every 10th period). In this phase, a fraction of
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low-scoring agents imitate the strategies (the private prices) of high-scoring agents

and with a small probability, each strategy undergoes a small mutation. This phase

can also be seen as the learning phase.

Repeating this process for a long enough time (on the order of 150 000 periods),

Gintis showed that the prices converge approximately to the market-clearing values

and thus an equilibrium is reached.
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Chapter 3

Analysis of the implementations

In this chapter, we look at two different implementations of the barter economy

model. First, we give an overview of Gintis’ original implementation constructed

from scratch in the Delphi programming language. Then, we study an alterna-

tive implementation of the same model built in Java, which we have implemented

ourselves using MASON.

3.1 Original implementation

The original implementation can be viewed as a proof of concept. It is written in

Delphi, a further development of Object Pascal, which enables rapid construction

of GUI applications on Windows platform. Although Delphi has object-oriented

language features such as encapsulation, polymorphism and inheritance, this imple-

mentation does not take advantage of those.

The core of the program is fitted into a single source file with nearly 1000 lines

of code. Most importantly, a clear distinction of what constitutes an agent has

been made. Fig. 3.1 shows the definition of the Agent class devised by Gintis.

Everything in this class has public access, even the private price vector. Thus, the

idea of missing public information is not directly projected to the code, as any agent

has access to the prices of any other agent. But this is a design issue and good

care has been taken to ensure that no agent reads the prices of another agent unless

they really need to—that is when they are scoring low and need to imitate someone

else’s strategy. One could argue that avoiding encapsulation like this would ease

the programming effort as everything is at hand when needed. But, at the same

time, the lack of encapsulation increases the coupling between different parts of the

program and results in hard to follow “spaghetti” code.

Another thing to notice is the four similar methods of Trade vs. CommonPrice-

Trade, Eat vs. CommonPriceEat, Lambda vs. CommonPriceLambda and SetDemand-

AndSupply vs. SetCommonPriceDemandAndSupply. In fact, there is very little dif-
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Agent = class(TObject)
Index, Produces : Integer;
Price, Inventory, Buy, ExchangeFor : Array of Double;
ProduceAmount, Score : Double;
Constructor Init(Produces, Index : Integer);
Procedure Copy(AgentIdx : Integer);
Procedure CopyAndMutate(AgentIdx : Integer);
Procedure Eat;
Procedure CommonPriceEat(EPrices : Array of Double);
Function Trade(B : Agent) : Boolean;
Function CommonPriceTrade(B : Agent; EPrices : Array of Double) : Boolean;
Function Lambda : Real;
Function CommonPriceLambda(EPrices : Array of Double) : Real;
Procedure SetDemandAndSupply;
Procedure SetCommonPriceDemandAndSupply(EPrices : Array of Double);

end;

Figure 3.1: Class definition for Agent in the original implementation of the barter
economy

ference between the two variants and CCFinder1, a token based clone detector,

suggests that they are all duplicates. In the worst case, when it comes to comparing

Trade to CommonPriceTrade, the size of an exact clone is over 50 lines long. The

only difference between a standard method and a CommonPrice* variant is that the

latter operates on a price vector passed as a parameter rather than on agent’s own

private prices.

To sum up, the code has not been written with replication in mind. Lack of

comments makes it even more difficult to extract the important details about the

model. Nevertheless, the implementation serves its purpose and confirms the results

presented in [Gin06].

3.1.1 Deviations from the paper

This section illustrates the need for reproducing simulation models—to detect pro-

gramming errors that might have affected the drawn conclusions. The original imple-

mentation has several deviations from what was described in the paper, or features

that obviously have not been intentional. Most of them have no effect on the price

convergence property of the model, but we will nevertheless look at them to provide

fixes in the re-implementation.

Firstly, a rather significant bug is introduced when calculating the demand vector

for an agent. Every agent wants to consume n goods in fixed proportions (o1, . . . , on).

If (x1, . . . , xn) is the inventory of an agent, then the utility function is defined as in

Eq. 3.1.

u(x1, . . . , xn) = min
0<j≤n

xj

oj
(3.1)

1http://www.ccfinder.net/
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It is not wise for agents to consume the whole amount of one particular good and

only a small fraction of some other good. To maximise the score, agents should try

to acquire equal proportions of all n goods. Gintis calculates the optimum inventory

(or demand) according to Eq. 3.2, where x∗
ij denotes the optimum inventory for

good j of agent i and λ∗ is the proportion that would result in the highest utility.

x∗
ij = λ∗oj (3.2)

λ∗ =

∑

j

pijxij

∑

j

pijoj

(3.3)

The calculation of λ∗ is shown in Eq. 3.3. The numerator of this fraction is the

income constraint for an agent—the value of all goods in the inventory according

to an agent’s private prices. The denominator is the value that an agent ultimately

wants to consume, according to the private prices again. This is how the λ∗ calcula-

tion is presented in the paper and what seems reasonable. In Gintis’ implementation

however, λ∗ is calculated as in Eq. 3.4.

λ∗ =

∑

j

pijxij

∑

j

pijxij

= 1 (3.4)

So the question is what are the consequences to the results. Could this discrep-

ancy lead to different convergence behaviour? All agents will on average score lower

because they waste everything they produce to buy a single or a few other goods

instead of getting a little bit of everything and thus a better score. The global ef-

fect on the economy is shown in plots (e) and (f) of Fig. 3.2. Jl denotes our Java

implementation with the λ∗ calculation bug fixed and Gk is the original implemen-

tation. The plot (e) compares the means of the average relative prices2 in a 3-good3

economy. We can see how different the means are between Jl and Gk versions by

comparing them to the means in plot (a), where the Java version J has all the same

bugs as in Gk.

The same goes for the plots (f) and (b), except that they show the variance of

the average relative prices between different runs of the simulation.

2An average relative price for a good shows how much the price of the good differs from the
equilibrium price on the average (among all the agents). So, a value of −0.3 at some point means
that the average price is 30% lower from the equilibrium price at that point. The mean of those
prices just indicates that we have several runs of the same simulation.

3The price of one particular good is taken as the price unit for all the other goods. Thus, one
good always has a constant equilibrium price in the charts and is not shown.
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Figure 3.2: Our implementations J , Jl & Jn with different bugs fixed compared to
the original implementation Gk.
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Another discrepancy from the paper is how agents calculate the amount of their

produce-good that they are willing to exchange for other goods. Gintis calls the

trade initiating agent an “offerer” and defines the following procedure to determine

trade amounts:

“When Offerer i producing good g encounters agent j producing h 6= g,

he uses Eq. 3.2 and Eq. 3.3 to determine an amount xih > 0 of good h he

will accept in exchange for an amount xig ≡ pigxig/pih of his production

good g.”

Obviously the indices of xig ≡ pigxig/pih have gone wrong here—from agent i’s

point of view, the amount of good g it gives for good h is determined by finding the

value of what it would receive, i.e., pihxih, divided by the price of its production

good pig. So, the correct equation would be xig ≡ pihxih/pig and this is also how

the implementation looks like. But even though, this invariant is not preserved

throughout the simulation. At the start of every period, xig is calculated correctly

as described above for every possible good h 6= g. After successful trading however,

Gintis makes a shortcut and adjusts the amounts for both agents (i and j) as shown

in Eq. 3.5.

xg ← xg − givenAmount (3.5)

It proves to be correct for the offerer (agent i), because it gets to choose the trade

conditions and the amount it gives away will always reflect its prices. But for the

responder (agent j), this method gives wrong amounts because it accepts a trade if

pjgxig ≥ pjhxih; that is, when it values what it receives in trade at least as much

as what it gives up. In case the received value is strictly greater, the adjustment

of xjg by Eq. 3.5 will go wrong—agent j gives up less than it is willing to give up

and thus, next time it buys the same good, it gives up more than its private prices

would allow. The correct way would be to recalculate xig, every time xih changes,

from xig ≡ pihxih/pig.

The third bug that affects the simulation flow is from the reversed order of two

important events. After each trading period, Gintis first resets the demand (xh)

and supply (xg) for all agents. Then, if it happens to be a reproduce period, lower

scoring agents get a chance to copy, or “imitate”, the prices of better scoring agents.

After each such period, a bunch of agents who just got new price vectors, will

perform trades according to the old price vector, because the demand and supply

will not be recalculated until the next period. This also means trades with negative

profit, as did the previously described bug. The global effects of those two are not as

significant as with the bad λ∗ calculation. The plots (c) and (d) of Fig. 3.2 illustrate

the differences. Jn denotes our Java implementation with the the two bugs fixed

and Gk is the original implementation. We can see that the means in (c) are not
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very different from the means in (a), where the J version has all the bugs. The

same goes for the variances in plots (d) and (b).

Then there are a couple of minor bugs that have little or no effect on simulation

process. First, if agents are allowed to shift from producing one good to another,

giving the parameter producerShiftRate a value 0.01 does not mean that 1% of

all agents are going to shift their production good, but rather 0.01× totalAgents×

numGoods agents will shift4. It is hard to tell whether this behaviour was inten-

tional. Other bugs include a slight miscalculation of the standard deviation for

consumer and producer prices5 of a particular good; and crashing the program at

runtime when dividing the agents unequally between different production goods6.

The latter sometimes causes a call for a negative random number which in turn

raises an exception in the Delphi Random function.

We discuss one more conceptual difference between the paper and the implemen-

tation in 4.3.3, where it is more natural to explain.

3.2 Generalisation of the barter economy

The goal of agent-based modelling is not to provide as accurate representation of

some real world system as possible, but rather to enrich our understanding of them.

Creating an all-in-one general model does not take us closer to that goal, as it

becomes harder to grasp “what is causing what” if the parameter space grows too

large. Axelrod [Axe03] calls for adhering to the KISS principle, which stands for the

army slogan “keep it simple, stupid.” He explains:

“The KISS principle is vital because of the character of the research

community. Both the researcher and the audience have limited cognitive

ability. When a surprising result occurs, it is very helpful to be confident

that one can understand everything that went into the model.”

Does generalising the barter economy model mean abandoning the KISS principle?

If we think of generalisation as of adding other realistic factors to the same model,

then this definitely is a trade-off for simplicity. Such realistic factors could be the

agents consuming and producing an unlimited number of goods, or employing a

money good which is not consumed but only used in transactions, or introducing

other types of agents like firms that hire regular agents to produce goods. But as

Axelrod puts it, the complexity of agent-based modelling should be in the simulated

results, not in the assumptions of the model.

Another approach to generalisation is from the methodological point of view—

could we provide a general enough toolkit that allows modelling the barter economy

4In the ProducerShift procedure.
5The CalculateConsumerPriceStdDev and CalculateProducerPriceStdDev functions.
6At the start of the main function Button1Click.
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as it is, plus other roughly similar models from the same domain? Building such

a domain specific layer on top of MASON would require input from people with

economic background and still there would be a question of what is the common

part of all such economic models, if anything at all. It is not unlikely that the best

abstraction is close to what MASON provides. To illustrate the point, we study

another model devised by Gintis, called GenEqui.

3.2.1 The GenEqui project

The GenEqui project is a follow-up of the work on the barter economy. In the

corresponding paper [Gin07], Gintis studies the same kind of issues as in [Gin06].

The aim is to once again extend the empirical understanding of the dynamical

properties of the Walrasian general equilibrium model and to find an alternative

to the tâtonnement process.

Although the goals of the two models are the same, the underlying agent-based

models differ substantially. GenEqui introduces firms and a Monetary Authority

who creates money by giving out loans to firms and by paying unemployment in-

surance. The simple agents are called workers and they look for jobs in firms to

get paid, for the earned money they will buy goods produced by those firms. The

core properties of the model are just like in the barter model—the private prices of

agents and also the private demand and supply conditions for the firms.

In a sense, the GenEqui model is as close to the barter model as possible. They

both evolve towards market clearing prices by minimising the public information

and using imitation as the learning mechanism. One would expect that they have

much in common and a good abstraction can be made for both of them. But when it

comes to the implementation, there is not much sharing between them. The agents

in the barter economy have almost nothing in common with the workers in GenEqui,

or even less with the firms. We used CCFinder again to see if there is any copy-paste

code between the two projects, but no; Gintis found that it is better to start from

scratch than to build on top of the barter economy.

The barter economy model was not easy to reproduce, but the complexity of

the GenEqui model is bigger by an order of magnitude, as is the number of details

hidden in uncommented code. All that leaves the GenEqui project out of scope for

this thesis project.

3.3 New implementation

At this point, we have developed some rough guidelines for the new implementation.

Firstly, it should not be much more general than the original barter economy but

rather more flexible—the user should be able to extend it without having to study

the whole source code. Secondly, to give some guarantees on how the program
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works, it is important to take encapsulation at its highest and make it difficult

for the user to accidentally change the behaviour of the model in undesired ways

and thus misinterpret the results. Thirdly, MASON will be used as the underlying

simulation platform; and last but not least, we set to fix the mismatches between

the code and the description of the model and take Gintis’ paper as the reference

rather than the implementation.

3.3.1 Adapting to MASON’s architecture

The architecture of the new implementation is, to a large extent, driven by MASON’s

architecture—a schedule of agents and a clear distinction between the simulated

model and the GUI. The central part of every model is the simulation state, a

class inherited from MASON’s SimState (see Fig. 3.3). This is where the model is

initially set up by creating and scheduling the agents. To be precise, anything that

implements the Steppable interface can be scheduled. The GUI layer that attaches

itself to the simulation state is optional, SimState and also our BarterEconomy are

unaware of it.

MASON classes

Console

simulation: GUIState

Schedule

time: double

step(state: SimState)
schedule(time: double; event: Steppable)

Steppable

step(state: SimState)

SimState

schedule: Schedule
random: MersenneTwisterFast

GUIState

state: SimState

BarterEconomy

traders: TradeAgent[]

BarterEconomyGUI

TradeAgent

Figure 3.3: The class structure for the new implementation using MASON
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Once the model is set up, it is advanced by calling the step method in Schedule.

This method increases an internal time ticker of the schedule and invokes the indi-

vidual Steppable’s that were scheduled for this particular timestamp. If a GUI is

used to start the simulation, then it is GUIState that takes care of these top level

calls to Schedule, otherwise it is up to the user to write a loop for this purpose.

The described architecture matches well the Model-View-Controller (MVC) pat-

tern. SimState and its supporting classes represent the model part, whereas GUI-

State together with various charting and visualisation functionality constitutes the

view part. MASON’s Console class defines the way the user interface reacts to

user input and thus acts as a controller. It contains all the functionality for simula-

tion control (starting, stopping, pausing) and also an interface to modify the model

parameters.

3.3.2 Ensuring local correctness

Before comparing the global behaviour of our implementation to that of the reference

implementation, it is helpful to be sure that our program really does what we think

it does. If we can confirm our assumptions about the low-level behaviour of the

program and still get a different global behaviour, then the assumptions themselves

need to be revised.

The focus is on the TradeAgent class, as it defines and mutates the state of the

simulation model. To ensure its correctness, we establish some class invariants as

well as pre- and postconditions for the key methods. We implement these checks by

using the assert statement in Java. Another consideration was The Java Modelling

Language7, which uses Java annotation comments for specifying various checks, but

unfortunately the supporting tools do not handle Java versions above 1.4 yet.

TradeAgent

produceGood: int
produceAmount: double
barterStrategy: BarterStrategy
improStrategy: ImprovementStrategy
price: double[]
consume: double[]
demand: double[]
exchangeFor: double[]
inventory: double[]
score: double

Figure 3.4: Instance variables in the TradeAgent class

The state of an agent is defined by the instance variables shown in Fig. 3.4. The

produceGood field defines the good that a particular agent produces and produce-

7http://www.eecs.ucf.edu/~leavens/JML/
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Amount is the amount it can produce at a time. The type of produceGood is int,

which means that a good is represented just by an integer. Thus, the private prices

of an agent can be expressed as an array of doubles, where the array index also

denotes the good number. The same mapping between goods and array indices is

used for all the fields with double[] as the type. From this we know that the length

of every such array always equals to the number of goods in the model. We can

define it as a class invariant for the TradeAgent class.

However, breaking the described invariant would be a major bug and most likely

would crash the program. It is more desirable to detect errors that silently affect

the behaviour of the model. One such invariant that is broken in the original im-

plementation was described in 3.1.1. The amounts that an agent is willing to give

in exchange for any other good are pre-calculated and stored in the exchangeFor

array. As these amounts always reflect the price vector of the agent, the following

assertion should always hold for every good g:

assert Math.abs(exchangeFor[g] − price[g] * demand[g] / price[produceGood]) < 0.01;

Figure 3.5: Checking a class invariant with the assert statement

Another invariant is that the score of an agent can not be negative. The same

also holds for the values in consume[] (how much of each good an agent consumes),

price[], demand[], exchangeFor[] and inventory[].

All these invariants are established in the constructor of the TradeAgent class

and if any of the assertions on these invariants fails later on, there must be a pro-

gramming error.

Additionally, we use assertions to ensure that no resources are lost or created

during a trade as shown in Fig. 3.6; or to check that the trade conditions have not

been changed after both sides have adjusted the exchanged amounts to be compatible

with their inventory (the ratio of the amounts has to be the same).

Double before = null, after = null;
assert (before = responder.getInventory(produceGood) + inventory[produceGood]) != null;
. . . // trading between this and responder
assert (after = responder.getInventory(produceGood) + inventory[produceGood]) != null;
assert Math.abs(before − after) < 0.02;

Figure 3.6: Comparing the total amount of a traded good before and after the trade

By default, the assertions in Java are not enabled and thus have no performance

penalty at run-time.
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3.3.3 Serialisation

MASON supports checkpointing, that is, saving the simulation state to disk and

restoring it later on. This is particularly useful when the simulation runs take a

long time—one might want to fork the simulation at some point and continue with

different parameters for different branches from there on.

The checkpointing is built on the Java object serialisation API and concerns only

the model layer. Writing the simulation state to disk starts from the BarterEconomy

class, and every object referenced from there on must be made serialisable by im-

plementing the java.io.Serializable interface somewhere in its class hierarchy.

In fact, there is more to serialisation than just implementing the named inter-

face. One issue that Bloch [Blo08] points out, is that when a class implements

Serializable, its byte-stream encoding (or serialised form) becomes part of its

exported API. To make the serialised form of the simulation concise and com-

patible with the newer versions of the classes, we want to serialise the minimum

number of fields that lets us restore the global state of the simulation. For ex-

ample in the TradeAgent class, we can avoid serialising the myProxy field of type

TradeAgentProxy (by using the transient keyword). It is a restricted view on the

TradeAgent class (see 4.2), which is easy to reconstruct after reading the rest of the

object from a byte stream as shown in Fig. 3.7.

private transient TradeAgentProxy myProxy; // No need to serialise this

private void readObject(ObjectInputStream s) throws IOException, ClassNotFoundException {
s.defaultReadObject();
myProxy = new TradeAgentProxy(this);

if (!checkInvariants()) {
throw new InvalidObjectException("TradeAgent invariants broken!");

}
}

Figure 3.7: Restoring an instance of TradeAgent class from its serialised form

We must also permit that the readObject method, which constructs the object

from a byte stream, becomes another public constructor for the class. Thus, we need

to ensure that the invariants of the class still hold after reading an object from a

byte stream (Fig. 3.7).

When it comes to serialising the user provided classes (the strategy classes, see

4.3), we decided to extend our interfaces with the Serializable interface rather

than letting the individual classes decide on implementing it. This guarantees the

default serialisation protocol for all the user-provided classes and the user does not

need to know about the serialisation framework.
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3.3.4 Thread safety

Not much effort has been put into making the classes thread-safe as the simulation

process is sequential. The only exception is the BarterParams class, which has to

handle concurrent reads and writes from the main thread and the Swing GUI thread.

The class is a container for all the model parameters and provides just the accessor

methods.

An easy way to synchronise the class is to make all the methods synchronized

and thus use the intrinsic lock of the BarterParams class. We can avoid acquiring

the lock when reading/writing int and boolean parameters as those operations are

atomic.

A more fine-grained (non)solution would have been to introduce a separate lock

for every parameter field, so that different parameters could be read and written

concurrently. But at some point we need to clone the whole object and thus also

need all the locks. Acquiring the locks one by one is a possible source for deadlocks.
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Chapter 4

Extensibility

4.1 Possible uses for the application

We are speculating that this application could be used by people who are studying or

are conducting research in economics rather than in computer science. As such, we

want to provide for easy and safe ways to extend the application by way of simple,

yet flexible interfaces.

Generalising over different market models could not be done in a way that would

allow for orthogonal extensions—at least not for those extensions we had in mind.

The more general the market model, the less behaviour is pre-defined and the more

is left to custom extensions. Those extensions then become dependent on each other.

For example, it is hard to describe the agent behaviour for accepting trades if we

do not even know what constitutes an agent and a trade. Depending on the other

extensions, it could be a work contract between a worker and a firm, but also the

bartering of two goods as in the barter economy.

This leads us to thinking of the “market rules” and “trader behaviour” just

within the barter economy. A user should be able to change the behaviour of the

agents, either for all or for some fraction so that agents with different behaviours

could cooperate in the same simulation. Gintis’ original formulation thus becomes

a special case that is implemented as the default behaviour.

4.2 Safety/correctness aspects of extensions

If we regard the whole simulation as a game and look at each user of the system

as a player, how can we ensure that no player can cheat? Cheating in this context

would mean that a player (for its agents) can gain information it is not supposed to

have or that it can affect any agents by other means than passing data back to the

class that called the strategy.

The market itself may need access to the agents that any strategy used in the
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agents should not have. We solve this problem by introducing a protective proxy

[GHJV95] for the TradeAgent. The purpose of the proxy is to provide a more

restrictive interface to the TradeAgent class. In particular, no mutators are acces-

sible and no references to the fields in the agent can be accessed. In this case, the

proxy is not expected to ever revoke the permissions of the accessing class. If the

TradeAgent class is extended, the proxy does not change automatically; thus the

strategies can not, accidentally or intentionally, break any rules that were in place

before the change. This could maybe be regarded as a special case of the Facet

pattern, where we have a fixed facet accessible for the agent strategies and one for

the market.

4.3 Extending agents on the individual level

The task of controlling that new behaviours are orthogonal to each other is simpli-

fied by not letting the TradeAgent class be sub-classed. By explicitly prohibiting

inheritance we can tightly control what extensions are allowed.

There could be two different goals when inheriting from some class;

“One can view inheritance as a private decision of the designer to “reuse”

code because it is useful to do so; it should be possible to easily change

such a decision. Alternatively, one can view inheritance as making a

public declaration that objects of the child class obey the semantics of

the parent class, so that the child class is merely specialising or refining

the parent class.” [Sny86]

The first goal is clearly not appropriate here; we do not expect the agent class

to be useful outside this project. The second goal could be relevant but if the class

is extended by inheritance we run into the “fragile base class problem” [MS97]. In

our application the problem would manifest itself as follows;

• If methods are overridden, there can be no guarantee that the child still acts

according to the market rules. To be able to guarantee that the agent plays

by the rules, it should no longer have [write] access to its own data. Another

solution to ensure that the agent abide by the market rules would be that

all transactions would have to be verified by some signature or checksum that

easily can be verified but not “forged” by the agent. This would be outside the

scope of this project and also slow down the simulation. Even if the child is

originally well behaved, later additions to the base class can render it unsafe.

4.3.1 Barter strategies

Axelrod discusses some aspects of adaptive vs. rational/optimising strategies in

[Axe03]. The trading behaviour in Gintis’ original model could be described as
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purely adaptive; the agents do not take history into account, nor do they try to

maximise their score by actively adjusting their price levels. By providing an inter-

face that lets the agent have access to slightly more information compared to the

original program, a new set of adaptive and rational behaviours could be created.

In particular, agents having different behaviours could co-exist in the same market.

The barter strategy interface and an implementation of Gintis’ original barter rule

can be found in Fig. 4.1.

public interface BarterStrategy {
public boolean acceptOffer(TradeAgentProxy me, int offersGood,

double offersAmount, double requestsAmount);
}

public class OriginalBarterStrategy implements BarterStrategy {
@Override
public boolean acceptOffer(TradeAgentProxy myself, int offersGood,

double offersAmount, double requestsAmount) {
return !(myself.getDemand(offeredGood) == 0 | |

myself.getExchangeFor(offeredGood) == 0 | |
myself.getInventory(myself.getProduceGood()) == 0 | |
myself.getPrice(offeredGood) * offeredAmount <

myself.getPrice(myself.getProduceGood()) * requestedAmount);
}

}

Figure 4.1: Barter strategy interface and our implementation of a function equivalent
to Gintis’ implementation.

4.3.2 Improvement strategies

In the original model, agents improve by being chosen as the worst performing in a

pair. The worse agent then copies the prices from the better performing agent and

possibly adjusts the prices up or down by a fixed factor. We have not generalised

this to let the user implement new ways for the market to handle selection.

The improvement strategy is implemented on the agent side, letting the agent

have full control over what to do when it is being selected for improvement. Fig. 4.2

shows the improvement strategy interface and our implementation of Gintis’ original

improvement rule (agent side).

The barter- and improvement strategies can be implemented in the same class

if the need for a strongly optimising agent should arise.

4.3.3 Replacement/mutation strategies

The reproduction-mutation phase as described in section 3.3 in [Gin06] (from here

on calledR3.3) is very dissimilar to the one used in the original Delphi program (from

here on called RD). There was an implementation (called GetNextGeneration in
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public interface ImprovementStrategy extends Observer {
public double[ ] improve(TradeAgentProxy betterAgent, TradeAgentProxy myself);

}

public class CopyAndMutateImprovementStrategy implements ImprovementStrategy {
private int numGoods;
private double mutationRate;
private double mutationDelta;

. . .

@Override
public double[ ] improve(TradeAgentProxy betterAgent, TradeAgentProxy myself) {

double[ ] newPrices = new double[numGoods];
double[ ] priceMutation = getMutationVector();

for (int good = 0; good < numGoods; good++) {
newPrices[good] = betterAgent.getPrice(good) * priceMutation[good];

}

return newPrices;
}

. . .
}

Figure 4.2: Improvement strategy interface and our implementation of a function
equivalent to Gintis’ CopyAndMutate.

barterp.pas, from here on called R3D) in the Delphi source of something that

looked somewhat congruent to R3.3, but it was not used.

When we enabled R3D in the original program, it failed to converge and got

stuck at some particular average price instead of oscillating around some (possibly

equilibrium) price. We do not know what the rationale for replacing the R3D algo-

rithm was, except that the implementation is broken. It sounds like a reasonable

algorithm that could have some real-life correspondence; since it takes the entire

population into account, weaker agents are more likely to copy the prices from the

strongest agents in a global sense. On the other hand, RD is conceptually simple

and also as asymptotically fast as could be possible. Copying will be linear time in

the number of goods, g. If k is the number of agents to replace, we can not expect

a better asymptotic complexity than O(gk).

The default behaviour of our Java program (J ) is to use the same algorithm as

is in Gintis’ program (G) by default. Fig. 4.3 shows the strategy interface and our

implementation (from here on called RDJ) of Gintis’ Delphi version of the repro-

duction/mutation phase.

We also provide an implementation that we feel is a reasonable interpretation

of R3.3 called OriginalReplacementStrategy (from here on R3J). R3J should be
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expected to be much slower than RDJ/RD, especially as replacement rates approach

0.5.

Not knowing how interestingR3.3 is1 we have not provided a fast implementation

of it in R3J . It should be possible to make an implementation of R3.3 having

complexity in either O(gn) or O(gk log k), g being the number of goods, n being

the number of agents per good and k being the number of agents to replace. In

comparison, RDJ has complexity O(gk) and we guess that R3J has average time

complexity on the order of O(gn log n). In the interest of time, we have not made a

proper analysis of the complexity of our implementation of R3J . It should at least

almost surely2 terminate assuming a perfect stream of random numbers.

public interface ReplacementStrategy {
public void getNextGeneration(List<TradeAgent> producers, BarterParams params,

MersenneTwisterFast random);
}

public class DelphiReplacementStrategy implements ReplacementStrategy {
@Override
public void getNextGeneration(List<TradeAgent> producers, BarterParams params,

MersenneTwisterFast random) {
long replacements = Math.max(1, Math.round(producers.size() *

params.getReplacementRate()));

for (int i = 0; i < replacements; i++) {
int j = random.nextInt(producers.size());
int k = random.nextInt(producers.size());

if (producers.get(j).getScore() > producers.get(k).getScore()) {
producers.get(k).improve(producers.get(j));

} else {
producers.get(j).improve(producers.get(k));

}
}

}
}

Figure 4.3: Replacement/mutation strategy interface and our implementation of a
strategy (RDJ) equivalent to RD.

1After all, it was not used in Gintis’ original program
2http://en.wikipedia.org/wiki/Almost_surely
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Chapter 5

Scalability

In this chapter, we study the scalability of our program with regard to model pa-

rameters. In particular, it is interesting to see how increasing the number of goods

or agents influences the simulation performance. To support the results of time

measurements, we first analyse the asymptotic time complexity of our program.

5.1 Asymptotic time complexity

When we started the work on this project we were quite surprised by how slow the

simulation was even for relatively few agents and goods, such as the parameters

Gintis originally used.

By analysing the time complexity of the model as described in [Gin06] we can

see that we should not expect the simulation to ever be very fast due to cubic time

complexity in the number of goods used.

We do not try to analyse the complexity with regards to memory use, cache

behaviour, I/O, etc., but restrict ourselves to analysing the asymptotic worst time

complexity of each function used in the original model.

Note that the pseudo-code given is a slight simplification; we have for most

functions only included the parts that we need to facilitate time complexity analysis.

5.1.1 Definitions

Notation for execution time

T (function()) is the time function() takes to execute. O(T (function())) is the

asymptotic time complexity for the execution of function(). O(T (a.b−a.c)) is the

time complexity for executing lines a.b to a.c, inclusive.
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Assumptions about complexity of individual operations

We assume that all functions for generating random numbers take constant time.

Although this is not quite correct for randomInt(), we deem it sufficiently close

to constant to let us simplify the analysis (see C.2). Assignments, array element

read/writes, application of binary/unary arithmetic and logical operators, memory

allocation/calling an empty constructor, etc., are also assumed to be in O(1).

5.2 Analysis of the barter-algorithm

The complete algorithm is shown in Alg. 5. To make the analysis as simple as

possible, we show the complexity for the innermost functions and loops first, letting

us eventually calculate the complexity for the full program as the last step.

Algorithm 1 Barter initialization pseudo-code

Parameters: g : number of goods, n : number of agents per good
1: function init(g, n)
2: for each i ∈ {1, . . . , g} do

3: for each j ∈ {1, . . . , n} do

4: a← new agent.
5: ⊲ Set a’s type/production good to i. ⊳
6: aproduces ← i
7: for each k ∈ {1, . . . , g} do

8: ⊲ random() returns a random uniform value on [0, 1). ⊳
9: apricek

← random()
10: end for

11: Ai ← Ai ∪ {a} ⊲ Add a to Ai ⊳
12: end for

13: end for

14: return A
15: end function

5.2.1 Complexity of init

We start with the initialisation function, init(), as shown in Alg. 1. Init() is called

from main(), Alg. 5.

Lines 1.1 to 1.1 execute a constant time function and an assignment g times for

a complexity of O(g).

Lines 1.1 to 1.1 execute n times. The creation and initialisation of a new agent

(line 1.1) takes some constant plus O(g) time for initialising the prices. Thus the loop

1.1 to 1.1 takes time O(n)(O(g)+O(T (1.1−1.1))) = O(n)((O(g)+O(g))) ⊆ O(ng).

The outermost loop, lines 1.1 to 1.1, is executed g times giving final complexity
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O(T (1.1− 1.1))O(ng) ⊆ O(g)O(ng) ⊆ O(ng2) (5.1)

Algorithm 2 Barter improvement pseudo-code

Parameters: h : “well-performing” agent
1: function improve(h)
2: ⊲ Create new agent a having h’s attributes. ⊳
3: a← h
4: for each i ∈ {1, . . . , g} do

5: if random() < mutationRate then

6: if randomBoolean() then

7: apricei
← apricei

∆m

8: else

9: apricei
← apricei

∆−1
m

10: end if

11: end if

12: end for

13: return a
14: end function

5.2.2 Complexity of improve

Improve(), Alg. 2, is called from reproduceAndMutate(), Alg. 3.

The assignment in 2.3 is in O(g), copying all prices from h to a. Each step in

the loop 2.4 to 2.12 is in O(1), loop g times, for a complexity of O(g). The total

complexity of improve() is thus

O(g) + O(g) ⊆ O(g) (5.2)

5.2.3 Complexity of reproduceAndMutate

ReproduceAndMutate(), Alg. 3, is called from main(), Alg. 5.

Lines 3.8 to 3.12 are all constant time operations with the exception of the call

to improve(), being in O(g).

Assuming replacementRate ≤ 1, k on line 3.2 can be at most n. The first inner

loop body, 3.6–3.13, is executed k times, k ≤ n. All statements in the loop are

constant time except the call to improve(), giving the first inner loop a complexity

of O(k)O(g) ⊆ O(kg) ⊆ O(ng).

The second inner loop body, 3.14–3.16, is executed n times and in each step

calling a function in O(1) for a complexity of O(n).
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Algorithm 3 Barter reproduction & mutation pseudo-code. Note that this is not

equivalent to the Reproduction-Mutation phase described in section 3.3 of [Gin06].
This algorithm was taken from Gintis’ Delphi version.

Parameters: A : list of lists of agents, g : number of goods, n : number of agents
per good

1: function reproduceAndMutate(A, g, n)
2: k ← max(1, ⌊n× replacementRate⌋)
3: for each i ∈ {1, . . . , g} do

4: for each j ∈ {1, . . . , k} do

5: ⊲ randomInt(k) returns a random integer on {0, . . . , k − 1}. ⊳
6: a← randomInt(n) + 1
7: b← randomInt(n) + 1
8: if score(Ag,a) < score(Ag,b) then

9: Ag,a ← improve(Ag,b) ⊲ Copy/mutate from Ag,b’s prices. ⊳
10: else

11: Ag,b ← improve(Ag,a) ⊲ Copy/mutate from Ag,a’s prices. ⊳
12: end if

13: end for

14: for each i ∈ {1, . . . , n} do

15: Reset score for Ag,i

16: end for

17: end for

18: end function

The outer loop body, 3.3–3.17, executes g times. The loop body has complexity

O(ng) + O(n) for a total of

O(g)(O(ng) + O(ng)) ⊆ O(ng2) (5.3)

5.2.4 Complexity of runPeriod

RunPeriod(), Alg. 4, is called from main().

The loop body for 4.2–4.5 sets the inventory for each good, O(g), and then sets

the inventory of the production good, O(1). This is repeated ng times (the total

number of agents in the system) for a complexity of O(g)O(ng) ⊆ O(ng2).

Lines 4.19–4.23 are in O(1) except the two calls to consume(), each being in

O(g) for complexity 2O(g) ⊆ O(g). O(T (4.19 − 4.23)) is O(g) or O(1) depending

on whether bartering was successful or not. It could also be claimed that it is O(g)

but we need to put it this way for analysing the complexity of the enclosing loop.

The enclosing loop, 4.15–4.25, is executed at most m times. The loop could

terminate in two ways:
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Algorithm 4 Barter pseudo-code for running one period

Parameters: A : list of lists of agents, g : number of goods, n : number of agents
per good, m : maximum number of barter attempts

1: function runPeriod(A, g, n, m)
2: for each a ∈ A{1,...,g} do ⊲ For each producer of each good ⊳
3: Set the inventory of a to zero for each good.
4: Set the inventory of a’s production good to g.
5: end for

6: p← random permutation of {1, . . . , g}.
7: for each i ∈ {1, . . . , g} do

8: o← random permutation of {1, . . . , n}.
9: for each j ∈ {1, . . . , n} do

10: for each k ∈ {1, . . . , g} do

11: if k 6= i then ⊲ Barter if the current agent is not of type pk ⊳
12: barterSucceeded← false, t← 0
13: ⊲ The current agent is Api,oj

. ⊳
14: repeat

15: ⊲ Choose a random agent to trade with. ⊳
16: r ← randomInt(n) + 1
17: ⊲ Let agent oj of type pi barter with agent r of type pk ⊳
18: barterSucceeded← tryBarter(Api,oj

, Apk,r)
19: if barterSucceeded then

20: Exchange goods between Api,oj
and Apk,r.

21: consume(Api,oj
)

22: consume(Apk,r)
23: end if

24: t← t + 1
25: until t ≥ m ∨ barterSucceeded
26: end if

27: end for

28: end for

29: end for

30: end function
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• The loop terminates with m failed attempts, having complexity O(m).

• The loop terminates since bartering succeeded. Calling consume() is in O(g).

Thus the worst case would be that the agent succeeds with bartering after m−1

attempts for complexity O(m− 1) + O(g) ⊆ O(m + g).

The inner good-loop body, 4.12–4.25, executes g − 1 times due to the fact that

the agent does not trade with agents of the same type (line 4.11). Thus the loop

4.10–4.27 has complexity O(g)(O(m + g)) ⊆ O(g(m + g)).

The agent-loop body, 4.10–4.27, executes n times for a complexity of O(n)O(g(m+

g)) ⊆ O(ng(m + g)).

Creating a random permutation on {1, . . . , n} is in O(n). Thus the loop body

4.8–4.28 is in O(n) + O(ng(m + g)) ⊆ O(ng(m + g)).

The outer good-loop body, 4.8–4.28, is executed g times and the body has com-

plexity O(ng(m+ g)) for a total complexity of O(g)O(ng(m+ g)) ⊆ O(ng2(m+ g)).

Final complexity of runPeriod() is

O(T (4.2− 4.5) + O(T (4.6)) + O(T (4.7− 4.29)) ⊆

O(ng2) + O(g) + O(ng2(m + g)) ⊆ O(ng2(m + g)) (5.4)

Algorithm 5 Barter main program pseudo-code

Parameters: g : number of goods, n : number of agents per good, m : maximum
number of barter attempts, r : periods between reproduction/mutation, p :
number of periods to run

1: function main(g, n,m, r)
2: A← init(g, n)
3: for each i ∈ {1, . . . , p} do

4: runPeriod(A, g, n, m)
5: if i ≡ 0 (mod r) then

6: reproduceAndMutate(A, g, n)
7: end if

8: end for

9: end function

5.2.5 Complexity of main

Main() is the outermost level of the algorithm, shown in Alg. 5.

Initialisation is in O(ng2), running the program for one period is in O(ng2(m +

g)). Reproduction/mutation is in O(ng2), executing every rth period. Assuming

the worst case for r, r = 1, reproduceAndMutate() will be called every period

making O(r) ⊆ O(1). The complexity for main() is
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Parameter Value Parameter Value

agents 100 reproduce period 10
replacement rate 0.05 mutation rate 0.1
∆mutation 0.95 max tries 5
goods 6 consume 1, 2, 3, 4, 5, 6

Table 5.1: Default parameters for timing tests of J and G

O(T (init())) + O(p)O(T (runPeriod())) +

O(p)O(T (reproduceAndMutate()) ⊆

O(ng2) + O(png2(m + g)) + O(png2) ⊆

O(ng2(1 + p(m + g + 1))) ⊆

O(png2(m + g)) (5.5)

5.3 Testing the performance of different parameter sets

The asymptotic worst case behaviour may not be a good description of the actual

running time. In Fig. 5.1 we show time measurements for Gintis’ original parameter

set, Table 5.1, varied over number of goods. As we can see by fitting the polynomial

y = ax3 + bx2 + cx + d, x being the number of goods and y being time taken in

seconds, a is typically much smaller than b. This observation implies that the actual

running time is closer to cng2. With n being the number of agents per good and

g being the number of goods, for g ≥ 13, the polynomial f(n, g) = 100n(0.005g3 +

0.077g2−0.17x+2.4) gave us the correct time within {−13,+6} percent. The cubic

coefficient (0.005) shows to be more than an order of magnitude smaller than the

square coefficient (0.077) in practise.

5.3.1 Test environment

The timing tests were run on a dual dual core 2 GHz AMD Opteron 270 machine

with 4 GB of RAM. We used the Java 1.6.0 07 JVM/JRE with the “-server”

option for all tests. For some of the tests the program used slightly more than 100%

CPU, implying that it for some duration was running on more than one core. The

measured times are CPU-seconds, not real time.
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5.4 Possible gains from concurrency

The loop 4.9–4.28 of runPeriod() should be possible to parallelise completely.

The dependencies are strictly one way, i.e. exactly one type of producer is acting as

offerers and exactly one type is acting as responder. The responders should simply

block if they are already within the barter code block. This is easily facilitated by

Java’s synchronized mechanism.
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Figure 5.1: Time taken in seconds for running our program for 1000 periods, using
the default parameters and varying the number of goods.
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Chapter 6

Convergence

Here we examine how “close” we can say that our program is compared to Gintis’

original implementation. One of the bigger problems is to decide on a notion of

similarity for pseudo-random processes.

6.1 Global testing

“. . . program testing can be a very effective way to show the presence of

bugs, but is hopelessly inadequate for showing their absence.” [Dij72]

We need to gather evidence that Gintis’ Delphi program, G, and our Java ver-

sion, J , behave the same on a global scale. For any re-implementation where the

architecture or structure has been changed, there will be other mechanisms than

unit tests only needed.

One problem with writing a program for simulation is that one typically does

not know what the results are expected to be. In our case, the expected output

should be similar to what G is producing.

In [Axe03] Axelrod gives three levels of replication:

1. “Numerical identity” in which the results are reproduced precisely.

2. “Distributional equivalence” in which the results can not be distinguished sta-

tistically.

3. “Relational equivalence” in which the qualitative relationships among the vari-

ables are reproduced.

Since we could not (with a reasonable amount of work) completely control each

and every mechanism used in the platforms for the two implementations, such as how

floating point arithmetic is performed, we did not strive for “numerical identity” but

only for “distributional equivalence”. Hence we say that the programs are similar

when they are distributionally equivalent.
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This in turn begs the question what statistics to use to distinguish data sets;

what statistics capture the essential features of the model? Not knowing what the

essential features are, we will have to construct tests that make as few assumptions

about relevant features as possible.

6.2 Random number generation

Since many of the decisions taken in Gintis’ model are randomised, we wanted

to make sure that any particular structure1 of the Delphi pseudo-random number

generator (PRNG) did not affect the convergence properties of the simulations in

ways that should not be expected from a proper random sequence. We call the

original Delphi program, using Delphi’s built-in PRNG “Go”.

See Appendix C for some analysis and tests of the Delphi PRNG as well as a

description of the generator we replaced it with in Delphi. We call the Delphi version

with the original PRNG replaced by the KISS99 PRNG “Gk”.

With the number of runs and tests we have done with Go and Gk, we can not

conclusively say that the output of Go differs from Gk in any significant way. We will

still use the altered program, Gk, as our reference.

MASON uses the Mersenne Twister MT19937 [MN98], a well known good gen-

erator with few known flaws [LS07] and a very long period (> 106001).

6.3 Our definition of similarity for price convergence

Defining a necessary condition for passing the test is easy; when partitioning the

data from different runs from the reference process, each partition element should be

regarded as a “pass” with regards to the other element. Output data from another

process which we want to compare should (for some statistic) behave to the reference

data as the reference data does to itself. This is our definition of “distributional

equivalence”.

Since we can not define what is considered sufficient, we will regard a process

as a “pass” if it just satisfies the necessary condition of producing data that is no

more different to the reference than the reference is to itself.

6.3.1 Similarity statistics

What data should be similar?

For some process, we sample average good prices relative to a reference good at

uniformly distributed times t. We denote one such list of prices as PX,s,S,g, X being

1For some types of random number generators, in particular linear congruential generators, some
tuples of short lengths such as 2, 3 or 4 occur with much too non-uniform frequencies. See [Mar68]
and [MZ93].
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Figure 6.1: Time series and averages for 3 time slices of a good in a test run.

the name of the program, s being the random number generator seed, S being the

starting conditions (parameter set excluding the seed) for the run and g being the

index for the good. For our evaluation/description, we only use every 200th sample

and run each process for at least as many periods as to expect convergence for at

least one good.

Assuming we have some reference data PR,s...,S,g for fixed S but for a number of

distinct s, we can compare sets of runs, PR,sI ,S,g to PR,sJ ,S,g, I ∩J ≡ ∅, |I| ≈ |J | and

see how similar we should expect them to be.

Unfortunately, comparing the reference to itself is not feasible since we typically

have a limited set of reference data. We have from testing seen that the way we

partition the reference greatly influences the test results. Furthermore, to ensure

that the samples really are independent, we have to make sure that we only take

one sample from each run r, PR,r,S,g; in practice, we will not be able to compare the

entire time series for one good but will have to set for a few reference points. We

create these reference points by segmenting a time series into a few slices of equal

length and then compute the averages, see Fig. 6.1.

Testing for distribution equality

For the subsequent statistical tests we have used MATLAB2. We need to test the

hypothesis that the distribution of prices at some period and for some good are the

same. We start by testing if the populations are normal by way of the Lilliefors

test3, implemented in MATLAB as lillietest. For the samples we have taken,

the Lilliefors test rejects the null-hypothesis, that the population is normal, at the

99.9% level.

2See http://www.mathworks.com/
3http://en.wikipedia.org/wiki/Lilliefors_test
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Since we do not think the populations are normal, we need to use a non-

parametric test; a test for similarity that does not have any a priori knowledge

with regards to the distribution.

One such test that can be used for continuous populations is the Kolmogorov-

Smirnov test (KS-test). The one-sample KS-test gives a probability that a sample

comes from a statistical distribution with known parameters (given as a CDF). Since

we do not know what distribution to expect (and thus even less so, the parameters),

we will use the two-sample KS-test.

The two-sample KS-test takes two samples, computes their empirical [cumula-

tive] distribution functions (ECDFs) and based on the maximum distance between

the two “functions”, gives a probability that they are sampled from the same distri-

bution. A practical description of the two-sample KS-test can be found in [She00].

See Fig. 6.2 for some examples of ECDFs and corresponding KS-test probabilities.

The two-sample KS-test is implemented as kstest2 in MATLAB.

For each time-slice st we should expect two samples from the population of runs

for a fixed good to have the same distribution for the two programs. For each

parameter set, we apply Algorithm 6. If all goods fail the KS-test at the 10−5 level,

we reject the null-hypothesis (same CDF) and regard the programs as different.

Choice of H0

It is not clear that there is one uniquely perceived (dis)similarity between two pro-

grams and thus not clear that one particular null-hypothesis is superior to another.

The choice of distributional equivalence (in the KS-test sense) may be the most

stringent but a weaker hypothesis might also do.

Two weaker null-hypotheses that could be of interest is “same median” and

“same mean”:

• H0 ⇐⇒ populations have same median. The Wilcoxon rank-sum test is

a robust test (insensitive to outliers) giving a probability estimate that two

populations have the same median.

• H0 ⇐⇒ populations have same mean. An interval estimate of the difference

of means, µ1 − µ2, indicates that the means are the same when the interval

contains zero.

To illustrate the difference in sensitivity to differences in distributions, we have

created Fig. 6.3 and Table 6.1. Each table entry describes the probability that

the null-hypothesis holds for the KS-test (same distribution) and the rank-sum test

(same median).

As can be seen in Table 6.1, rows 2a, 2b, columns 1a, 1b, the rank-sum test

is more sensitive than the KS-test to differences in medians. The KS-test is more
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Figure 6.2: Empirical CDFs and KS-test probabilities.

sensitive to differences of variance and distribution shape as can be seen when com-

paring 1b to 3b or, more spectacularly, 3b to 4b. The slight difference between the

tests when comparing 4a to 4b stems from the fact that even though the means and

variances are the same for these populations, the medians are not; median for 4a is

-0.116 and median for 4b is -0.076.
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Algorithm 6 Similarity test for time series

Parameters: xref : reference time series, xcmp : time series to compare, s : time
slices, t : test repetitions

Require: rows(xref ) = rows(xcmp)
Require: s ≤ min(cols(x1), cols(x2)).

⊲ The time series data are three-dimensional arrays indexed as si,j,k where i is
the good index, j is the time index and k is the test run index. ⊳

1: function multiTimeSeriesTest(xref , xcmp, s, t)
2: for each i ∈ {1, . . . , t} do

⊲ Partition each set of test data into s partition elements of ≈ equal size. Each
partition is over the test runs meaning that each partition element will contain
all good prices over time from some subset of test runs. ⊳

3: rref,i ← a random partition of runs from xref .
4: rcmp,i ← a random partition of runs from xcmp.

⊲ Now rref,i,j,k will be the price of good i at time j for test run k (out of
testruns(rref )/s). ⊳

5: end for

6: for each j ∈ {1, . . . , goods} do

7: for each k ∈ {1, . . . , s} do

8: for each i ∈ {1, . . . , t} do

9: for each l ∈ {1, . . . , testruns(rref,i)} do

⊲ Use disjoint subsets of p (partition elements) for each time slice to ensure that
the test of time slice sx will not influence the test of slice sx+1. ⊳

10: mref,i,l ← mean of good j for time slice k for element l of rref,i.
11: end for

12: for each l ∈ {1, . . . , testruns(rcmp,i)} do

13: mcmp,i,l ← mean of good j for slice k for element l of rcmp,i.
14: end for

⊲ Compute the KS-probability that the samples mref and mcmp come from the
same distribution. ⊳

15: pi ← KSTest2(mref , mcmp)
16: end for

⊲ Let score for good j at slice k be the median KS-probability of the t tests. ⊳
17: Pj,k ← median(p)
18: end for

19: end for

20: return P
21: end function
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Figure 6.3: Empirical CDFs for different sized samples and parameters.

Test 1a 1b 2a 2b 3a 3b 4a

1b
KS 1.00000 — — — — — —

rank-sum 1.00000 — — — — — —

2a
KS 0.98517 0.54975 — — — — —

rank-sum 0.32464 0.13000 — — — — —

2b
KS 0.54975 0.00081 1.00000 — — — —

rank-sum 0.13000 < 10−6 1.00000 — — — —

3a
KS 0.98517 0.64977 0.73584 0.25911 — — —

rank-sum 1.00000 1.00000 0.59936 0.35197 — — —

3b
KS 0.69378 0.00748 0.29082 < 10−6 1.00000 — —

rank-sum 1.00000 1.00000 0.32634 0.00246 1.00000 — —

4a
KS 1.00000 0.99998 0.73584 0.34630 0.73584 0.49799 —

rank-sum 0.94764 0.89708 0.26429 0.10187 1.00000 0.97370 —

4b
KS 1.00000 0.99961 0.41489 0.00006 0.56488 0.00259 1.00000

rank-sum 0.92927 0.73164 0.10619 < 10−7 0.98988 0.93210 0.97370

Table 6.1: Comparing populations with the KS-test and the rank-sum test.

6.3.2 Actual testing procedure

Any statistical testing of a system as complex as the barter model will at best be

superficial; the complete parameter space is immensely large. By choosing a default

parameter set (Table 6.2) and vary one parameter at a time we yet hope to get a

representative image of the programs’ behaviours.

For each parameter set we have chosen, Gk and J has been run at least 60 times

each for a number of periods at which we think they have converged for most goods.
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Parameter Value Parameter Value

agents 100 reproduce period 10
replacement rate 0.5 mutation rate 0.4
∆mutation 0.995 max tries 5
goods 3 consume 1, 2, 3

Table 6.2: Default parameters for convergence tests of J and Gk. If more than
three goods are used, the consumption rate of good g equals the good index. E.g.
consume for 5 goods would be 1, 2, 3, 4, 5.

Test results

In Table 6.3 we show the results of our tests. The “Parameter” column lists what

parameters, if any, were changed compared to the default parameters in Table 6.2.

KSA is the mean KS-probability for the time slices we sample, KSt is the median

KS-probability for slice t of 3 over 50 attempts.

We say that J passes the test for a parameter set if KSA ≥ 0.05 (marked

with a 3) and does not have “catastrophic failures” for both goods. We call a

KS-probability less than 0.001 a catastrophic failure and mark it with a 7. If any

time-segment has a catastrophic failure, the convergence for that good is marked as

a fail. If the test fails for all goods, either by having at least one catastrophic failure

for all goods or all KSA being less than 0.05, we mark the result as a A.

The u1 − u2 column gives a 99% confidence interval for the mean difference

between the mean of the last 10% of the periods for a good. If the means of the

populations really are the same, the interval should contain zero.

|Gk| and |J | denote how many runs of Gk and J were used for the test. With 3

time slices, the number of samples for each KS-test is 1
3{|Gk|, |J |}.

A brief interpretation of Table 6.3

For most parameter sets we have chosen, J passes the KS-test as well as either

having a mean difference interval that contains zero or being very close (±0.2) to

containing zero.

Unfortunately, there are four parameter sets that do fail the KS-test.

For one of the sets, the “Default”, the difference in means is very small ([+0.08,

+0.34], [+0.53, +0.82]). We think that the convergence points for Gk and J might

be the same. A few symmetric outliers will make the KS-test fail (higher variance)

and a few assymmetric outliers will make the rank-sum test fail (see Figure D.5.l),

even if the means really are the same.

For the three other bad cases, ∆mutation = 0.975, repr.Period = 400 and

repl.Rate = 0.75, we can not tell where the discrepancies come from. In the in-
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terest of time, we at some point had to give up looking for the reason(s) to be able

to finish the report.

One of the points in the programs we have given extra attention to is the permu-

tation generation (see C.1.2) but we are confident that the permutation generattion

code in both programs behave identically in a statistical sense.

One possibility that we have not examined thoroughly is round-off errors. Even

though we have made sure that the same precision floating point arithmetic is used

in Gk and J , exceptional events such as division by zero or handling of NaN may

be handled differently. Making a deeper study of the differences (or similarities)

between Java 6 and Delphi 7 with regards to floating of arithmetic seems like a

daunting task.

6.4 Level of replication

By observing Table 6.3 we can see that we for some parameter sets fall short of

our goal to reach “distributional equivalence”. Based on Table 6.3 and the plots

in Appendix D, we can however say that we do reach “relational equivalence”; if

the parameter changes did not have the same general effects in both programs, we

would see µ1 − µ2 interval estimates that were off by 10% or more.
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Parameter G KSµ KS1 KS2 KS3 µ1 − µ2 Figures |Gk| |J | Result

10 agents
1 0.433 0.610 0.457 0.233 [−1.14, +0.33]

D.2 a–d 60 119 3
2 0.480 0.610 0.457 0.372 [+0.27, +0.51] 3

1000 agents
1 0.267 0.128 0.129 0.544 [−0.33, +0.58]

D.2 e–h 96 130 3
2 0.233 0.513 0.183 0.004 [−0.00, +0.41] 3

Default
1 0.347 0.502 0.540 7 [+0.08, +0.34]

D.5 l 100 130 A2 0.203 0.505 0.103 7 [+0.53, +0.82]

maxTries = 300
1 0.599 0.529 0.719 0.547 [−3.92, +3.20]

D.5 k 60 129 3
2 0.595 0.548 0.704 0.533 [−0.73,−0.05] 3

maxTries = 300
1 0.467 0.278 0.654 0.468 [−0.31, +3.51]

D.5 j 60 114
3

2 0.592 0.620 0.687 0.468 [−0.07, +0.80] 3
3 0.466 0.679 0.389 0.331 [+0.11, +0.80] 3

maxTries = 300

1 0.588 0.689 0.466 0.608 [−4.52, +5.47]

D.1 e–h 60 128

3
2 0.378 0.350 0.584 0.201 [−2.72,−1.69] 3
3 0.543 0.644 0.544 0.441 [−0.96, +1.08] 3
4 0.229 0.523 0.129 0.035 [−2.48,−0.37] 3

maxTries = 300

1 0.440 0.457 0.327 0.535 [−7.69, +11.5]

D.1 a–d 60 119

3
2 0.523 0.457 0.457 0.656 [+0.33, +3.20] 3
3 0.480 0.457 0.457 0.527 [−0.22, +1.44] 3
4 0.370 0.148 0.392 0.570 [−2.15, +0.92] 3
5 0.491 0.457 0.457 0.558 [−2.30, +1.65] 3
6 0.273 0.327 0.121 0.370 [−0.17, +5.38] 3

∆mut. = 0.75
1 0.348 0.362 0.369 0.313 [−1.77, +5.15]

D.3 a–d 60 114 3
2 0.637 0.604 0.654 0.654 [−3.01, +4.25] 3

∆mut. = 0.975
1 0.114 0.342 7 7 [+1.67, +2.36]

D.5 g 100 129 A2 0.088 0.264 7 7 [+1.86, +2.69]

∆mut. = 0.9975
1 0.437 0.584 0.648 0.080 [−4.55,−1.19]

D.3 e–h 60 129 3
2 0.367 0.547 0.551 0.002 [+0.38, +0.79] 3

mut.Rate = 0.01
1 0.508 0.610 0.457 0.457 [−6.01, +7.20]

D.5 a 60 120 3
2 0.559 0.610 0.457 0.610 [−1.76,−1.16] 3

mut.Rate = 0.1
1 0.598 0.654 0.563 0.579 [−5.71, +9.65]

D.5 b 60 114 3
2 0.511 0.470 0.375 0.687 [−0.04, +0.22] 3

mut.Rate = 1
1 0.448 0.537 0.622 0.185 [+0.43, +0.78]

D.5 c 60 130 3
2 0.290 0.487 0.380 0.004 [+0.80, +1.21] 3

maxTries = 3
1 0.678 0.704 0.777 0.554 [−8.32, +2.69]

D.4 a–d 60 115 3
2 0.339 0.483 0.403 0.132 [+0.25, +0.38] 3

maxTries = 30
1 0.290 0.250 0.332 0.289 [+0.04, +0.23]

D.4 e–h 60 117 3
2 0.192 0.511 0.062 0.001 [+0.27, +0.50] 3

repr.Period = 100
1 0.578 0.671 0.663 0.401 [−2.00, +1.69]

D.5 h 60 130 3
2 0.517 0.626 0.487 0.440 [+0.24, +0.55] 3

repr.Period = 400
1 0.318 0.511 0.442 7 [−0.78,−0.15]

D.5 i 95 130 A2 0.123 0.296 0.074 7 [+0.41, +1.37]

repl.Rate = 0.01
1 0.434 0.295 0.506 0.502 [−12.8, +7.48]

D.5 d 60 123 3
2 0.658 0.644 0.675 0.656 [−0.32,−0.01] 3

repl.Rate = 0.1
1 0.488 0.399 0.527 0.539 [−4.06, +7.35]

D.5 e 60 118 3
2 0.459 0.635 0.515 0.227 [+0.36, +1.07] 3

repl.Rate = 0.75
1 0.161 0.403 0.079 7 [+0.39, +0.61]

D.5 f 100 130 A2 0.182 0.532 0.014 7 [+0.57, +0.87]

Table 6.3: KS-tests and mean difference intervals comparing Gk to J . The “Param-
eter” column lists what parameters, if any, were changed compared to the default
parameters in Table 6.2.
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Chapter 7

Further work

Throughout the thesis work, we have been prioritising various features of the pro-

gram to fit in the time limit. In this chapter, we point out the features that were

left out, but might be useful further developments.

7.1 Parallelisation

The asymptotic time complexity of the model proved to be quite bad. To speed up

the simulation, it could help to perform certain simulation steps concurrently. We

identified the parts of the program that could benefit from parallelisation in 5.4.

7.2 Different ways of outputting data

To analyse the dynamics of a simulation run in other ways than just looking at

different charts, it is desirable to have the data outputting as an extension point.

The user can then direct and format the output in a custom way.

7.3 Dynamically loadable extensions

The way users can experiment with their own strategies is to write a new Java main

class and inject custom strategies programmatically as described in Appendix B. It

would be more convenient to load the strategy classes through the GUI.

7.4 Visualisation of different strategies

The visualisation of the agents should reflect the differences in used strategies. For

example, if a group of agents uses a different bartering strategy, one should be able

to identify these agents without clicking and inspecting each agent individually.
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Chapter 8

Conclusions

We have developed an extensible and portable simulation tool for barter economics,

with the focus on replicating Gintis’ original barter economy model. We have shown

the convergence between his proof of concept implementation and our program,

although the task proved to be much more challenging than we anticipated. There

are two sides to convergence—making the models match in the first place, but at the

same time, convincing ourselves that they really do match, or the opposite if they

do not. Neither of these problems is trivial for the agent-based models involving

randomness.

It is easy to overlook seemingly insignificant implementation details. Examples

include the random number generation method, rounding of the floating-point values

or the order of simulated events. These details are hard to notice, but they are

important contributors to the global model behaviour.

Once we have a model to compare to the original, it becomes necessary to for-

mulate what it means for the two programs to converge. The difficulty here lies in

defining a strong enough non-parametric statistic to say that we can not tell the

original apart from the remake. At the same time, the statistic should match the

essence of what is relevant in the program.

The discrepancies between the description and the original implementation of

the barter economy confirm the importance of replication. Although we were able

to reproduce the main property of the model, the emergence of equilibrium prices,

we also found programming errors that affect the way this property is reached.

Besides the efforts in replicating Gintis’ work, we have taken the model one step

further by providing means for visualising individual agents and extending the model

with different agent or market behaviours. Those additions improve the intuitive

understanding of the model and make it possible to study the emergent properties

of heterogeneous agent behaviours. MASON proved to be a suitable platform for

these purposes—it does not place restrictions on the types of models that can be

simulated, and provides easy means for creating a GUI and visualising agents.
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If we were to do a similar project over, we would first try to achieve the numer-

ical identity to the reference program. Then change the design step by step while

observing that the numerical identity is preserved. This approach could save us from

statistically testing for convergence.
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Appendix A

User documentation

A.1 Installation instructions

Requirements: Java Runtime Environment version 6.

The program can be obtained from http://www.evensen.org/barter. To unpack

(assuming a UNIX-like system):

tar xvf barterEconomy.tar.gz

This will create a barterEconomy directory with all the required libraries in it.

Now the program can be run by:

java -jar barterEconomy/barterEconomy.jar

A.2 Using the program

A.2.1 The About tab

When the program is first started, the About tab is displayed in the MASON

console. It contains the description of the simulation model (Fig. A.1).

A.2.2 The Model and Displays tabs

Before starting a simulation run, it is possible to change the model parameters in

the Model tab or activate/deactivate various displays in the Displays tab (Fig.

A.2). To change the number of goods, the consume array has to be changed in the

Model tab.
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Figure A.1: The About tab with the model description in the MASON console

Figure A.2: The Model and Displays tab

A.2.3 The Average Score chart

Under the Displays tab, it is possible to activate four different charts. The Av-

erage Score chart displays time series for the average scores of agents grouped

by their production good, but also the total average score among all agents. In a

6-good economy, there will be 7 series as shown in Fig. A.3.

A.2.4 The Average Price chart

The Average Price chart displays time series for the average prices of the goods

relative to the equilibrium prices. As one good is taken as the price unit, its price

will always be constant (y = 0) in the chart. Thus, in a 6-good economy, we get 5
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Figure A.3: The Average Score chart

prices that vary over time (Fig. A.4).

Figure A.4: The Average Price chart

A.2.5 The Producer Shares chart

The Producer Shares chart is interesting if the varySupply option is turned

on under the Model tab. It shows the share that the producers of a particular

good have. If there is an equal number of producers for each good it just displays
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a number of constant series equal to the number of goods in the model. Fig. A.5

shows what happens when varySupply is turned on mid-run.

Figure A.5: The Producer Shares chart

A.2.6 The Standard Deviation chart

The Standard Deviation chart displays three different standard deviation series:

consumer price, producer price, and mean price (Fig. A.6). All these are calculated

for one good only, which can be specified in the Model tab with the stdDevGood

parameter. The standard deviation of consumer price considers the prices from all

the agents except the producers of the good. The standard deviation of producer

price takes into account only the prices from the producers themselves. Finally, the

standard deviation of mean price considers the mean prices of the good for last 100

periods.

A.2.7 Visualising the agents

To get a better understanding of the economy at the agent level, the Agent Vi-

sualisation can be activated under the Displays tab. This brings up a display

similar to the one in Fig. A.7. Any active display will slow down the simulation

significantly, but this one is the worst (with respect to performance) and should not

be enabled if simulation speed is important. Since there typically is no need to see

what happens in each round, setting the Skip field in the Agent Visualisation

to a value of about 100, lessens the impact the display has on the overall speed.

In this visualisation, each agent is portrayed as a circle. This circle in turn is

split up to provide various kinds of information about the agent. The innermost
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Figure A.6: The Standard Deviation chart

Figure A.7: Visualised agents

circle reflects the production good of the agent. The next layer shows the score—

the darker it is, the higher the score for the agent (see Fig. A.8). The outermost pie

chart shows the price ideas of the agent (larger share means higher price for that

good).

A.2.8 Inspecting an agent

To get even more detailed information about an individual agent, one has to first

select it by double-clicking it. This marks the agent and opens up the Inspectors

tab in the MASON console as shown in Fig. A.9.

Various fields from the agent class are shown in the Inspectors tab, and by
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Figure A.8: A low scoring agent (on the left) vs. a high scoring agent

Figure A.9: Selecting an agent for inspection

clicking on the magnifying class it is possible to see even further details about com-

posite types—for example the price array (see Fig. A.10), updated in real time.

Figure A.10: Inspecting the prices of an individual agent
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Appendix B

Developer documentation

The goal of this Appendix is to instruct the user in extending the model.

B.1 The strategy interfaces

The first step in extending the model is to write an implementation of one of the three

strategy interfaces. All three of those interfaces (BarterStrategy, Improvement-

Strategy and ReplacementStrategy) are in the barter package and contain one

method each as shown in Fig. B.1.

public interface BarterStrategy {
public boolean acceptOffer(TradeAgentProxy me, int offersGood,

double offersAmount, double requestsAmount);
}

public interface ImprovementStrategy {
public double[ ] improve(TradeAgentProxy betterAgent, TradeAgentProxy myself);

}

public interface ReplacementStrategy {
public void getNextGeneration(List<TradeAgent> producers, BarterParams params,

MersenneTwisterFast random);
}

Figure B.1: Interface methods of the strategies.

A correct implementation of the acceptOffer method in BarterStrategy just

returns a boolean value, indicating whether the agent accepts the offer specified by

input parameters.

The improve method in ImprovementStrategy is expected to return an im-

proved price vector based on the information about two agents: itself and a better

scoring agent. The length of the improved price vector should be the same as it is

for the two agents.
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The getNextGeneration method in ReplacementStrategy is a bit different as it

expects the user to pick pairs of agents from the producers list and call the improve

method on them as follows:

producers.get(i).improve(producers.get(j), params, random);

Figure B.2: Telling the i-th agent to improve its prices based on j-th agent.

B.2 Running the model with custom strategies

Once the strategy implementations are complete, they can be put in use by creating

a new main class as shown in Fig. B.3.

1 import barter.BarterEconomy;
2 import barter.BarterParams;
3 import barter.CopyAndMutateImprovementStrategy;
4 import barter.DelphiReplacementStrategy;
5 import barter.GenerousBarterStrategy;
6 import barter.OriginalBarterStrategy;
7 import barter.display.BarterEconomyGUI;
8

9 public class Main {
10 public static void main(String[ ] args) {
11 BarterEconomy eco = new BarterEconomy();
12 eco.setParams(new BarterParams());
13

14 eco.addBarterStrategy(OriginalBarterStrategy.class, 0.5);
15 eco.addBarterStrategy(GenerousBarterStrategy.class, 0.5);
16

17 eco.setImprovementStrategy(CopyAndMutateImprovementStrategy.class);
18 eco.setReplacementStrategy(DelphiReplacementStrategy.class);
19

20 BarterEconomyGUI gui = new BarterEconomyGUI(eco);
21 gui.create();
22 }
23 }

Figure B.3: Initialising the model with custom strategies.

The code between lines 12-18 is optional, default values exist for these fields

in the BarterEconomy class. Using a custom ImprovementStrategy or Replace-

mentStrategy is as easy as specifying the new class for the economy (lines 17 and

18).

Initialising the model with custom barter strategies is a bit trickier. To be able to

initialise agents with different barter strategies, there is an additional parameter for

the addBarterStrategy method which determines the shares of different strategies.

When the simulation is started, those shares are summed up and the number of
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agents using a particular strategy is determined based on its share. In the above

example, half of the agents use OriginalBarterStrategy and the other half uses

GenerousBarterStrategy.

Finally, the GUI is brought up with the last two lines (20 and 21).
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Appendix C

Delphi pseudo-random number

generation

C.1 Flaws in the original Delphi V7 generator

Delphi V7 uses the most significant bits from the linear congruential generator

(LCG)1 xi = axi−1 + 1 mod 232, a = 134775813. When clocking the generator

for a number [0, q), the state is updated and the output is ⌊ qxi

232 ⌋.

Our biggest concern with the Delphi PRNG is that the period is very short;

232. Within one single simulation run it would be possible to exhaust the period.

A run of the barter model uses at least periods× agentsPerGood× goods2 random

numbers, assuming every agent is successful in its first barter attempt. Another

problem is that different runs, using different seeds, would use substreams that are

not disjoint [LSCK02] with high probability.

C.1.1 Testing the generator

One comprehensive test suite for testing (pseudo) random number generators is

L’Ecuyer and Simard’s “TestU01”, [LS07]. In the terminology of Marsaglia (and

later L’Ecuyer), such a test suite is named a “battery”.

To assess how closely the Delphi PRNG models a random stream of numbers,

we run the batteries “SmallCrush” and “Crush” on various output combinations of

the Delphi PRNG.

Since many tests in the TestU01 batteries use 32 bit numbers, we run the tests

not only with the complete 32 bit outputs from the Delphi PRNG but also with

outputs that are concatenations of several smaller words. In the original application,

most calls to the PRNG are with small multipliers; the largest multiplier used is the

number of agents per group. Table C.1 shows the concatenations we used.

1See [Knu97] for a comprehensive treatment of linear congruential generators.
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By running the “TestU01” [LS07] test suite, we have found that the Delphi gen-

erator fails on most tests as can be seen in Tables C.3, C.4 and C.5. A failure consists

of a goodness-of-fit that is either too far or too close to the expected distribution.

Table C.2 contains a legend for the symbols used in the tests. The most spectacular

failures are the ones containing an ε; the chance of a stream generating these by

chance should be less than 10−300.

For all tests conducted with TestU01, version 1.2.1 was used.

C.1.2 Practical significance of poor properties of the Delphi PRNG

Whether the poor test scores from TestU01 is a practical rather than theoretical

issue for the original simulation we do not know. One of the algorithms that relies

heavily on randomization is the permutation generation for good order and agent

order. We have constructed two simple tests that are necessary (but not sufficient)

to pass to determine whether permutations are at least identically distributed (i.d.),

if not independently identically distributed (i.i.d).

Permutation index test

Any permutation of n unique elements can be indexed by an integer on [0, n!). We

call this a permutation index. We generate a sequence of k permutations, take their

permutation indices and construct a histogram from them. Assuming they are i.i.d.,

the histogram counts should be Poisson-distributed with λ = k
n! . We then compute

a goodness-of-fit score (by way of the one-sample KS-test) to get the probability p

that the histogram really is Poisson-distributed.

When conducting tests for n = {3, 4, 5, 6, 7, 8, 9}, we did not find any indication

that the histograms are not Poisson-distributed.

Element position test

For any permutation of {1, . . . , n} we measure the frequency of element m ending up

in position m′. We generate k permutations and build a histogram (n × n matrix)

from every 〈m, m′〉 pair. Any column and any row of the matrix should now be

Poisson-distributed with λ = k
n
. We then compute a goodness-of-fit for all rows and

columns, obtaining 2n probabilities. Had these probabilities been independent, we

could have done a KS-test for uniformity over [0, 1]. Since they are not, we can just

say that the permutation generator passes the test unless we get values p < ε or

p > 1− ε for some sufficiently small epsilon, say ε = 10−15.

From this test, we have not been able to conclude that the element positions are

anomalous. The tests were conducted for n = {50, 100, 200}.

A stronger test (that we have not conducted) would be to generate many matri-

ces, testing that any particular row/column probability is uniform over test runs.
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“Generator” Structure

D32 All bits, 1× 32
D16 Concatenation of two 16 bit outputs, 2× 16
D8 Concatenation of four 8 bit outputs, 4× 8
D7 Concatenation of four 7 bit outputs and one 4 bit output, 4× 7||4
D6 Concatenation of five 6 bit outputs and one 2 bit output, 5× 6||2

Table C.1: To generate 32-bit words to test, a concatenation of several outputs from
the PRNG may be needed.

Symbol p-value

↓ p < 10−15

⇓ p < 10−50

ε⇓ p < 10−300

↑ p > 1− 10−15

⇑ p > 1− 10−50

ε⇑ p > 1− 10−300

Table C.2: A p-value close to 0 implies that the test gives rise to a (empirical)
distribution too far from what should be expected from a random stream. A value
close to 1 implies the test gives a distribution too close to the expected distribution.
An empty slot means that the generator passed the test.

C.2 KISS generator in Delphi

Even though we have not been able to show that the Delphi PRNG leads to any

anomalous results in the original application, in the light of the test results from

TestU01 it seems prudent to replace it with a better generator. One generator that

passes “Crush” as well as “BigCrush” ([LS07]) of TestU01 is “KISS99” [Mar99].

KISS99 is easy to implement and has a fairly long period, in our implementation

> 6.5× 1036.

We also introduced a rejection sampling algorithm (borrowed from nextInt(int)

in java.util.Random). Thus the average number of calls to the PRNG is 2 in the

worst case (for an interval of [0, 231 + 1)) and exactly one call in the best case (for

an interval of [0, 2n)).

For our implementation of KISS99 in Delphi, see [EM08].

75



Test p-value

name D32 D16 D8 D7 D6

1 BirthdaySpacings ε⇓ ε⇓ ε⇓ ε⇓ ε⇓

2 Collision ↑ ↑ ↑ ε⇓ ε⇓

3 Gap ε⇓ ε⇓

4 SimpPoker ε⇓ ε⇓

5 CouponCollector ε⇓ ε⇓

7 WeightDistrib ε⇓ ε⇓

8 MatrixRank ε⇓

9 HammingIndep ε⇓

10 RandomWalk1 H ε⇓

10 RandomWalk1 M ε⇓

10 RandomWalk1 R ε⇓

10 RandomWalk1 C ε⇓

Table C.3: Test results from running TestU01’s “SmallCrush” on the Delphi system
generator.

76



Test p-value

name D32 D16 D8 D7 D6

1 SerialOver, t = 2 ↑ ↑ ↑ ↑ ↑
2 SerialOver, t = 4 ↑ ↑ ↑ ↑ ↑
3 CollisionOver, t = 2 ↑ ↑ ↑ ↑ ↑
4 CollisionOver, t = 2 ε⇓ ↑ ↑ ↑ ↑
5 CollisionOver, t = 4 ↑ ↑ ↑ ↑
6 CollisionOver, t = 4 ε⇓ ↑ ↑ ↑ ↑
7 CollisionOver, t = 8 ↑ ↑ ↑ ↑ ↑
8 CollisionOver, t = 8 ε⇓ ε⇓ ↑ ↑ ↑
9 CollisionOver, t = 20 ↑ ⇓ ↑ ε⇑ ↑

10 CollisionOver, t = 20 ε⇓ ε⇓ ↑ ↓
11 BirthdaySpacings, t = 2 ε⇓ ε⇓ ε⇓ ε⇓ ε⇓

12 BirthdaySpacings, t = 3 ε⇓ ε⇓ ε⇓ ε⇓ ε⇓

13 BirthdaySpacings, t = 4 ε⇓ ε⇓ ε⇓ ε⇓ ε⇓

14+15 BirthdaySpacings, t = 7 ε⇓ ε⇓ ε⇓ ε⇓ ε⇓

16+17 BirthdaySpacings, t = 8 ε⇓ ε⇓ ε⇓ ε⇓ ε⇓

18 ClosePairs NP, t = 2 ⇓ ⇓ ⇓ ↓ ⇓
18 ClosePairs mNP, t = 2 ⇓ ⇓ ⇓ ⇓ ⇓
18 ClosePairs mNP1, t = 2 ε⇓ ε⇓ ε⇓ ε⇓ ε⇓

18 ClosePairs mNP2, t = 2 ε⇓ ε⇓ ε⇓ ⇓ ⇓
18 ClosePairs NJumps, t = 2 ↑ ↑ ↑ ⇓ ↑
19 ClosePairs NP, t = 3 ⇓ ⇓ ⇓ ⇓ ↓
19 ClosePairs mNP, t = 3 ⇓ ⇓ ⇓ ⇓ ⇓
19 ClosePairs mNP1, t = 3 ε⇓ ε⇓ ε⇓ ε⇓ ε⇓

19 ClosePairs mNP2, t = 3 ↓
19 ClosePairs NJumps, t = 3 ↑ ↑ ↑ ↑ ↑
19 ClosePairs mNP2S, t = 3 ε⇓

20 ClosePairs NP, t = 7 ⇓ ⇓ ⇓
20 ClosePairs mNP, t = 7 ⇓ ⇓ ⇓ ⇓ ⇓
20 ClosePairs mNP1, t = 7 ε⇓ ε⇓ ε⇓ ε⇓ ⇓
20 ClosePairs mNP2, t = 7 ⇓ ⇓
20 ClosePairs NJumps, t = 7 ↑ ↑ ↑ ⇓
20 ClosePairs mNP2S, t = 7 ε⇓ ε⇓

21 ClosePairsBitMatch, t = 2 ↑ ↑ ↑ ↑
22 ClosePairsBitMatch, t = 4 ↑ ↑ ↑ ↑ ↑
23 SimpPoker, d = 16 ε⇓

24 SimpPoker, d = 16 ε⇓ ε⇓ ε⇓

25 SimpPoker, d = 64 ε⇓

26 SimpPoker, d = 64 ε⇓ ε⇓ ε⇓

28 CouponCollector, d = 4 ε⇓ ε⇓ ε⇓ ε⇓

29 CouponCollector, d = 16 ε⇓

Table C.4: Test results 1–29 from running TestU01’s “Crush” on the Delphi system
generator.
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Test p-value

name D32 D16 D8 D7 D6

30 CouponCollector, d = 16 ε⇓ ε⇓ ε⇓ ε⇓

32 Gap, r = 27 ε⇓ ε⇓ ε⇓

34 Gap, r = 22 ε⇓ ε⇓

36 Run of U01, r = 15 ε⇓ ε⇓

37 Permutation, r = 0 ↑ ↑ ε⇓ ε⇑ ↑
38 Permutation, r = 15 ε⇓ ε⇓ ↑ ↑
39 CollisionPermut, r = 0 ↓ ↑
40 CollisionPermut, r = 15 ε⇓ ↑
41 MaxOft, t = 5 ↑ ↑ ↑
42 MaxOft, t = 10 ↑ ↑ ↑ ↑
43 MaxOft, t = 20 ↑ ↑ ↑
44 MaxOft, t = 30 ↑ ↑ ↑ ↑
49 AppearanceSpacings, r = 0 ε⇓

50 AppearanceSpacings, r = 20 ↑
52 WeightDistrib, r = 8 ε⇓ ε⇓

53 WeightDistrib, r = 16 ε⇓

54 WeightDistrib, r = 24 ε⇓ ε⇓

57 MatrixRank, 60× 60 ε⇓

58+59 MatrixRank, 300× 300 ε⇓

60+61 MatrixRank, 1200× 1200 ε⇓

63 GCD, r = 0 ε⇓

64 GCD, r = 10 ε⇓

65+66 RandomWalk1 H, M, J, R, C (L = 90) ε⇓

67+68 RandomWalk1 H, M, J, R, C (L = 1000) ε⇓

69+70 RandomWalk1 H, M, J, R, C (L = 10000) ε⇓

72 LinearComp, r = 29 ↑
74 Fourier3, r = 0 ε⇓

75 Fourier3, r = 20 ε⇓ ↓
77 LongestHeadRun, r = 20 ε⇓

79 PeriodsInStrings, r = 15 ↑
80 HammingWeight2, r = 0 ↑
81 HammingWeight2, r = 20 ↑
82 HammingCorr, L = 30 ε⇓

83 HammingCorr, L = 300 ↑
84 HammingCorr, L = 1200 ↑
85 HammingIndep, L = 30 ε⇓

86 HammingIndep, L = 30 ε⇓ ε⇓

87+88 HammingIndep, L = 300 ε⇓

89+90 HammingIndep, L = 1200 ε⇓

92 Run of bits, r = 20 ε⇓

95 AutoCor, d = 30 ↑
96 AutoCor, d = 10 ↑

Table C.5: Test results 30–96 from running TestU01’s “Crush” on the Delphi system
generator.
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Appendix D

Comparisons of Gk and J for

some parameter sets

Each of the figures from D.1 to D.4 compare the results of running Gk and J with

two different parameter sets. Thus a total of eight (4 times 2) distinct parameter

sets are compared in these figures.

Fig. D.1 starts by comparing the behaviour of the two programs with the goods =

7 and maxTries = 300. The results are captured in plots D.1.a, D.1.b, D.1.c and

D.1.d. Plots D.1.a and D.1.b show the mean relative prices of the goods over 300000

periods for both versions. The mean relative price of a good at some point shows

how much the price of the good differs from the equilibrium price on average (among

all the agents). So, a value of −30 at some point indicates that the mean price is

30% lower than the equilibrium price at that point. The third plot, D.1.c, is to show

the price difference of means between the first two plots (J -Gk) and the last plot,

D.1.d, shows the result of the rank-sum test over time.

The same structure repeats for the plots D.1.e, D.1.f, D.1.g and D.1.h, but for

these subplots, goods = 5. Figures D.2, D.3 and D.4 follow the same pattern.

One thing to note about the rank-sum test is that sometimes it seems to con-

tradict the price difference plot. One example is in plots D.2.g and D.2.h, where

the price difference is close to zero towards the end for both goods. Nevertheless,

the rank-sum test suggests that the prices of good 2 are different between the two

programs. This can be explained by the low variance towards the end—although

the prices seem to be close enough to the naked eye, they are not the same and

together with a low variance the rank-sum test gives a very small probability that

they have the exact same median.

For the rest of the 12 tested parameter sets, we only include the results of the

rank-sum tests (Fig. D.5). The plots D.5.f, D.5.g, D.5.i and D.5.l more or less

indicate a failure at least in the later periods. This is also in correspondence with

the KS-tests presented in Table 6.3.
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Figure D.1: Our implementation J compared to the original implementation Gk;
the number of goods set to 5 and 7.
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Figure D.2: Our implementation J compared to the original implementation Gk;
the number of agents per good set to 10 and 1000.
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(e) Prices for Gk,
3 goods, ∆mutation = 0.9975

−50

−40

−30

−20

−10

0

10

0 50000 100000

m
ea

n
re

la
ti

v
e

p
ri

ce

(f) Prices for J ,
3 goods, ∆mutation = 0.9975

−10

−5

0

5

10

0 50000 100000a
b
so

lu
te

p
ri

ce
d
iff

er
en

ce

(g) Price difference J –Gk,
3 goods, ∆mutation = 0.9975
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(h) Rank-sum test for J & Gk,
3 goods, ∆mutation = 0.9975

Legend
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Figure D.3: Our implementation J compared to the original implementation Gk;
∆mutation set to 0.75 and 0.9975.
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(a) Prices for Gk,

3 goods, maxTries = 3
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(b) Prices for J ,
3 goods, maxTries = 3
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(c) Price difference J –Gk,
3 goods, maxTries = 3
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(d) Rank-sum test for J & Gk,
3 goods, maxTries = 3
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(e) Prices for Gk,
3 goods, maxTries = 30
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(f) Prices for J ,
3 goods, maxTries = 30
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(g) Price difference J –Gk,
3 goods, maxTries = 30
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(h) Rank-sum test for J & Gk,
3 goods, maxTries = 30

Legend
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Figure D.4: Our implementation J compared to the original implementation Gk;
the maximum number of trade attempts set to 3 and 30.
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(a) Rank-sum test for J & Gk,
3 goods, mutationRate = 0.01
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(b) Rank-sum test for J & Gk,
3 goods, mutationRate = 0.1
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(c) Rank-sum test for J & Gk,
3 goods, mutationRate = 1
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(d) Rank-sum test for J & Gk,
3 goods, repl.Rate = 0.01
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(e) Rank-sum test for J & Gk,

3 goods, repl.Rate = 0.1
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(f) Rank-sum test for J & Gk,
3 goods, repl.Rate = 0.75
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(g) Rank-sum test for J & Gk,
3 goods, ∆mutation = 0.975
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(h) Rank-sum test for J & Gk,
3 goods, repr.Period = 100
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(i) Rank-sum test for J & Gk,
3 goods, repr.Period = 400
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(j) Rank-sum test for J & Gk,
4 goods, maxTries = 300
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(k) Rank-sum test for J & Gk,
3 goods, maxTries = 300
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(l) Rank-sum test for J & Gk,
3 goods

Legend
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Figure D.5: Our implementation J compared to the original implementation Gk

showing just the results of rank-sum test; various parameters. All periods in multi-
ples of 1000.

84


