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Abstract

The experimental results for simple atomic systems have become more

and more accurate and in order to keep up with the experimental achieve-

ments the theoretical procedures have to be refined. Recent accurate ex-

perimental results obtained for helium-like ions in the low- and moderate-

Z regions proclaim the importance of theoretical calculations that com-

bines relativistic, QED and electron correlation effects. On the basis

of these premises the relativistically covariant many-body perturbation

procedure is developed and it is this development that is introduced in

this thesis. The new theoretical procedure treats relativistic, QED and

electron correlation effects on the same footing.

The numerical implementation leads to a systematic procedure sim-

ilar to the atomic coupled-cluster approach, where the energy contri-

bution of QED effects are evaluated with correlated relativistic wave

functions. The effects of QED are also included in the resulting numer-

ical wave functions of the procedure, which can be reintroduced with an

approach of iteration for calculations of new higher-order effects.

The first numerical implementation of the procedure to the ground-

state for a number of helium-like ions in the range Z = 6 − 50 of the

nuclear charge, indicates the importance of combined effects of QED

and correlation in the low- and moderate-Z regions. The results show

also that the effect of electron correlation on first-order QED-effects for

He-like ions in the low and moderate-Z regions dominates over second-

order QED-effects.

Keywords: many-body perturbation theory, bound state QED, helium-

like ions, Green’s operator, covariant evolution operator, combined ef-

fects of QED and correlation, atomic structure calculations
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CHAPTER 1

Introduction

About 60 years have past since Schwinger, Tomonaga, Feynman and

Dyson [1–8] presented their progresses on what today is the fundamen-

tal theory of the interaction between light and matter. This theory is

known as quantum electrodynamics, or more commonly QED, and it

has to be considered as one of the greatest successes within the modern

theoretical physics. Throughout the years QED has given the scientific

world incredible results which have verified both predictions and exper-

imental results with extremely high accuracy. An impressive example is

the determination of the electrons anomalous magnetic moment, which

has been determined to an incredible accuracy with both experimental

measurements [9, 10] and theoretical calculations [11]. Out of these re-

sults the most accurate value of the fine-structure constant α has been

obtained [12, 13], which is the accepted value of α determined by the

CODATA work group [14]. The results of the anomalous magnetic mo-

ment of the electron is achieved by studying the interactions between a

single ”free” electron and a magnetic field.

Fundamental studies of simple atomic systems are also of interest,

where an atom can be seen as a small laboratory where the theory of

QED can be tested in the electric field of the nucleus. The strength of

this field depends heavily on the nuclear charge Z, where the average

field strength experienced by an electron occupying the groundstate in a

hydrogen-like ion differs approximately with a factor of 106 between the

nuclear charges Z = 1 and Z = 92. This means that the theory of QED

can be investigated over a broad range in the strength of the electric

field and one can get a view of how different components of the theory

depends on the electric field strength. These tests can in the end, with

1
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high precision measurement and calculations, lead to improved values

of fundamental constants. An example is the value of the electron mass

[15] that has been determined by comparing experimental and theoreti-

cal results of the gj factor for a bound electron in a hydrogen-like system

[16]. The hydrogen-like system, which has been mentioned above, is the

simplest atomic system and it consists of a nucleus with the charge Z
and a single orbiting electron.

In the last 15 years there have been progresses in the experimental

determination of the energy levels in helium-like ions, the atomic sys-

tem with an additional electron compared to a hydrogen-like system.

Large efforts have here been focused on the 1s2p fine-structure split-

ting in neutral helium [17–22], since a comparison between accurate

measurements and calculations of these intervals can lead to an inde-

pendent determination of the fine-structure constant α. The theoretical

calculations have, over the years, not been able to match the experi-

mental progress, see [17]. This situation changed very recently when

Pashucki et al.[23, 24] reported recalculated values of the 1s2p fine-

structure splitting which agree with the experimental results. Still, the

experimental results are far more accurate than the theoretical ones,

but the progress is in the right direction.

There do also exist experimental and theoretical interests for other

helium-like ions, for example the He-like ions in the moderate-Z region,

Z = 7 − 14. In this region there exist accurate experimental data [25–

28], but again the theoretical calculations have difficulties to achieve

the same accuracy that is presented in the experimental reports. To-

gether with new accurate experimental result for helium-like silicon

[28], the authors call out for the need of a new theoretical method in

order to close the gap between experimental and theoretical results in

the moderate-Z region. The requirement of such a method is that it can

treat the combined effect of correlation and QED. This requirement has

also been stated by Fritzsche et al.[29] as one of the great challenges

within the field of accurate theoretical calculations in the regions with

higher values of the nuclear charge. Heavy progress can be expected,

both experimentally and theoretically, in the higher Z regions in the

future due to the construction of the new FAIR-facilities at GSI. Inter-

esting results were delivered already last year from GSI when a col-

laboration achieved new experimental results for helium-like uranium

[30].

The electron correlation enters an atomic system with the introduc-

tion of a second electron and is the effect of the interactions taking

place between the existing electrons. In a perturbation formulation,

where the solution is written as an expansion with increasing num-

ber of interactions between the electrons, the electron correlation be-

comes a measurement of the number of interactions taking place. The
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electron correlation is a part of the theory of QED which also includes

other effects, retarded interactions, virtual anti-particles, electron self-

interactions and vacuum interactions. These effects one usually refer to

as the QED-effects or the effects that lies beyond the relativistic effects,

which includes relativistic motion of the included particles and the first

relativistic correction to the interaction between the charged particles.

What approaches do then exist within the field of calculations and

how do these manage to combine correlation with QED? First of all, it

is possible to separate them into two categories. The first is based upon

a power expansion in α,Zα of the Bethe-Salpeter equation, where non-

relativistic wave functions of Hylleraas type [31] with build-in electron

correlation are used to calculate the contributions from relativistic and

QED effects. This method, that follows the Brillouin-Wigner pertur-

bations formalism [32, 33], has been successfully used by Pachucki et

al.[23, 24, 34] and by Drake et al.[35–38]. This method is best suited for

calculations of the energy-levels in light helium-like ions, Z = 1 − 6,

where the correlation between the electrons is more important com-

pared to the relativistic motion of the electrons. The result achieved

with this method has an impressive numerical accuracy and today there

exist no possibilities to achieve the same numerical accuracy with the

approaches in the second category.

In the second category, the calculations are based upon a numerical

basis set of relativistic single-electron wave functions. This set is gener-

ated by solving the bound Dirac equation [39–42] in a discretised space.

In this way the motion of the electrons is handled relativistically, which

is important when the value of Z increases. This is a benefit compared

to the α,Zα-method where non-relativistic wave functions are used. On

the other hand, the single-electron functions can, in general, only in-

clude parts of the correlation between the electrons. The contribution of

the full correlation and the QED-effects must instead to be calculated

by using the numerical basis set.

The relativistic many-body perturbation theory, RMBPT, is one of

the approaches within the second category and is the relativistic ex-

tension of the standard many-body perturbation theory, MBPT. In this

time-independent theory the electron correlation can be treated to ar-

bitrary order with exchanges of instantaneous interaction between the

electrons. The time-independent formulation of RMBPT results in an

approach that is not relativistically covariant, no equal treatment of

space and time, which is required in order to perform calculations of

QED-effects.

The appropriate approach for calculations of the QED-effects can ei-

ther be the S-matrix formalism [43] or one of the two newly developed

techniques, the two-times Green’s function by Shabaev et al.[44] or the

covariant evolution-operator method, CEO, developed by the Gothen-
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burg group [45]. The latter two methods have the advantage, contrary

to the S-matrix formalism, to be applicable to quasi-degenerate systems,

such as the 1s2p fine structure separations in light helium-like ions.

The approaches are relativistically covariant and the calculations usu-

ally performed in the so-called Feynman gauge, where the interactions

are mediated by retarded virtual photons. The front line of the nu-

merical QED calculations is presently located at the two-photon effects,

which has been solved with the two-times Green’s function approach,

Artemyev et al.[46], and partly solved with the covariant evolution-

operator method, Åsén et al.[47, 48]. This means that the electron corre-

lation is only treated to second order, two interactions between the elec-

trons, and the combination of the correlation and QED-effects is only

handled to first order. To go towards three photons which would be the

next step in the progress, can at present time not be considered due to

practical reasons.

There do also exist a third alternative, the multi-configuration Dirac-

Fock or shortly MCDF, where the correlation between the electrons are

partly included in the single-electron states of the numerical basis set.

The states can then be used to calculate the first-order QED-effects. In

this way the QED-effects are combined with an approximative treat-

ment of the electron correlation.

In this thesis a brand new approach, the relativistically covariant

many-body perturbation theory, is going to be presented, which will

have the potential to manage the combination of QED and correlation.

This new approach is based upon the covariant evolution-operator method

[45] and in this way it naturally includes both the relativistic motion of

the electrons and the possibility to handle QED-effects. An advantage

with the CEO compared to the other QED techniques is that the CEO

has a structure that is similar to the one of the RMBPT. This similarity

opens up for the possibility to merge the effects of QED into the system-

atic procedures of handling the correlation that exist in the RMBPT.

An important feature in the development is that the Coulomb gauge is

chosen ahead of the more commonly used Feynman gauge. In this way

the electron correlation can be treated completely by using the instan-

taneous Coulomb interactions and the result becomes correlated wave

functions, which are used in the calculations of the QED-effects. A simi-

lar approach was actually proposed already in the late 1980’s by Rosen-

berg [49], but his ideas were never put into action.



Introduction · 5

1.1 Thesis overview

Chapter 2 begins with a brief introduction to the general formalism for

treating an atomic system within the framework of time-independent

perturbation theory. The main part of the chapter will after that be

dedicated to introduce the readers to the formalism of many-body per-

turbation theory and relativistic many-body perturbation theory. The

concepts within this formalism will then be used throughout the thesis.

The main focus in Chapter 3 is the presentation of the Green’s opera-

tor and the theoretical development of the new relativistically covariant

many-body perturbation theory. This new merged theory of RMBPT and

QED renders the possibility to calculate the combined effect of QED and

correlation. The QED-effects are, as said above, referred to be the effects

that lie beyond the time-independent treatment and how these are gen-

erated by using a time-dependent perturbation formalism is considered

before the introduction of the Green’s operator in Chapter 3.

In the Chapters 4 and 5 the result of the theoretical development of

the new approach is applied to two types of effects. In the first of the

two chapters the combined effect of retardation and correlation is con-

sidered, with the limitation that all included electron states have pos-

itive energies. In Chapter 5 the procedure is expanded to also include

electron states with negative energies.

The numerical implementation of the equations presented in the

Chapters 4 and 5 is presented in Chapter 6, which is followed by a chap-

ter that includes the results of the numerical implementation. Chapter

7 ends with a discussion about the future calculation with of the new

theory.

Finally, in Chapter 8 the thesis is summarised.

1.2 Units and notations

In relativistic quantum field theory, expressions and calculations are

simplified, if a relativistic , or a ”natural”, unit system is implemented.

In this unit system the action (energy×time) is measured in the Plank’s

constant, ~, and the velocity of light, c, is the unit of velocity. It is

also convenient to put ǫ0 (the permittivity of vacuum) to be equal to

unity and the consequently also µ0 (the permeability of vacuum) will

have same value, according to the relation ǫ0µ0 = 1/c2. The transfor-

mation from the SI units into these new ones is performed by putting

~ = c = µ0 = ǫ0 = 1. An investigation of the dimensionless fine-

structure constant α in SI units

α =
e2

4πǫ0c~
(1.1)
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indicates that also the electric charge will be dimensionless in the nat-

ural units

α =
e2

4π
. (1.2)

In this thesis me will be used as the notation for the electron mass.

Another convenient unit system is the atomic units and in this thesis

the atomic units will be applied in the presentation of the numerical

results in Chapter 7. Within this unit system the following constants

are set to unity, e = me = ~ = 4πǫ0 = 1. Energies are then measured in

the Hartree unit, which is equal to ≈ 27.2eV.

For the relativistic notation we will use the metric tensor

gµν = gµν =




1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


 (1.3)

as the bridge between the covariant four-vector xµ = (x0,−x) = (t,−x)
and the contravariant xµ = (t,x)

xµ =

3∑

0

gµνx
ν = gµνx

ν . (1.4)

Here, the convention of repeated indices is introduced for the summa-

tion. In this thesis Greek indices (µ = 0, 1, 2, 3) are used to label the

components of the four-vectors and Latin indices (i=1,2,3) will be used

to label the three-vectors. The scalar product between four-vectors can

be becomes

aµb
µ = a0b0 − a · b (1.5)

where a · b is the three-dimensional scalar product

a · b = axbx + ayby + azbz. (1.6)

The covariant and contravariant gradient operators are further defined

by

∂µ =
∂

∂xµ
=
( ∂
∂t
,∇
)

∂µ =
∂

∂xµ
=
( ∂
∂t
,−∇

)
(1.7)

and from these definitions we introduce the four-divergence

∂µA
µ =

∂A0

∂t
+ ∇ · A (1.8)
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and finally the d’Alembertian operator

2 = ∂µ∂µ =
∂2

∂t2
− ∇

2. (1.9)

The standard 4 × 4 Dirac matrices αµ and β

αµ = (α0,α) = (1,α), α =

(
0 σ

σ 0

)
, β =

(
1 0
0 −1

)
, (1.10)

will appear frequently in this thesis, for example in the Dirac equation

and in the interaction part of the QED-Lagrangian. The components of

the σ’s in the array of α are the Pauli spin matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (1.11)

The Dirac bra-ket notations are used throughout this thesis and they

are coupled to the second quantisation. The vacuum state is with these

notations represented by |0〉 and a single particle state |j〉 is defined as

|j〉 = a†j |0〉, (1.12)

where a†j is the electron creation operator. In the coordinate representa-

tion this state corresponds to a single-electron wave function

φj(x) = 〈x|j〉 (1.13)

satisfying the single-electron Schrödinger or Dirac equation. An opera-

tion with the electron annihilation operator aj upon the vacuum state

is by definition equal to zero,

aj|0〉 = 0. (1.14)

With a complete basis set represented by the states |j〉, the identity

operator I is defined as the summation over all the single-particle states

in this set

I =
∑

j

|j〉〈j| = |j〉〈j|, (1.15)

where the convention of repeated indices is introduced for the summa-

tion.





CHAPTER 2

Time-independent perturbation theory

This chapter starts with a brief introduction to the general theory for

an atomic system before moving into the main focus of the chapter,

the formalism of the many-body perturbation theory (MBPT). This for-

malism is used throughout this thesis and the concepts of model space,

wave operator and effective operator that are introduced in this chapter

will return later when the formalism of MBPT is merged with the time-

dependent theory of bound state QED in Chapter 3. In the end of this

chapter the pair equation and it’s solution, the pair function, are intro-

duced and these are important concepts for the numerical calculations

presented in this thesis. The introduction to MBPT in this chapter is

brief and for a more detailed description the textbook of Lindgren and

Morrison [50] is recommended.

2.1 General theory for an atomic system

For a general atomic system the Hamiltonian H is written as the sum

of H0 and V ,

H = H0 + V, (2.1)

where H0 includes the motion of the electrons in a central field, and

V contains the parts of the interactions lying beyond the central field

description. For an atom with N electrons H0 consists of a sum of N
single-electron Hamiltonians h0,

H0|Φ0〉 =

N∑

i=1

h0(i)|Φ0〉 = E0|Φ0〉. (2.2)

9
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The eigenstates |Φ0〉 are expressed in terms of Slater determinants, an-

tisymmetric combinations of eigenstates of the single-electron Hamilto-

nian

Φ0(ϑ1, . . . , ϑn) =
1√
n!

∣∣∣∣∣∣∣∣∣

φ1(ϑ1) φ1(ϑ2) · · · φ1(ϑn)
φ2(ϑ1) φ2(ϑ2) · · · φ2(ϑn)

...

φn(ϑ1) φn(ϑ2) · · · φn(ϑn)

∣∣∣∣∣∣∣∣∣

, (2.3)

here represented within a space and spin coordinate ϑ representation.

The eigenstates |φi〉 of h0 and their corresponding eigenvalues εi are

generated by solving the eigenvalue equation

h0|φi〉 = εi|φi〉, (2.4)

and from the resulting spectrum of single-electron solutions, the Slater

determinants and their corresponding eigenvalues can be constructed

E0 =

N∑

i=1

εi. (2.5)

For a helium-like system, a nucleus with an arbitrary positive charge

and two orbiting electrons, the eigenstates of H0 is given by the an-

tisymmetric combination of two direct products of two single-electron

states

|Φ0〉 =
1√
2

[
|φiφj〉 − |φjφi〉

]
(2.6)

where the direct product |φiφj〉 is defined as

|φiφj〉 = |φi〉|φj〉 = |i〉|j〉 = |ij〉. (2.7)

The energy of the antisymmetric state in Eq. (2.6) is the summation

over the corresponding single-electron energies,

E0 = εi + εj . (2.8)

An eigenstate |Ψ〉 of the full Hamiltonian and its corresponding eigen-

valueE are, in general, determined by using perturbation theory, where

both |Ψ〉 and E are expressed as the sum of a zero-order part and a shift

|Ψ〉 = |Ψ0〉 + |∆Ψ〉 = |Ψ0〉 + |Ψ(1)〉 + |Ψ(2)〉 + · · · (2.9)

E = E0 + ∆E = E0 + E(1) +E(2) + · · · . (2.10)

Here, the shifts, |∆Ψ〉 and ∆E, are expanded into series of terms with

increasing number of perturbations V . The zero-order state |Ψ0〉 is, in

general, a linear combination of a number of eigenstates of H0.
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The motion of the individual electrons around the nucleus is de-

scribed by the single-electron Hamiltonians and in the non-relativistic

case it is represented by the following hydrogen-like Hamiltonian

h0(i) = − 1

2me
∇2

i −
Ze2

4πri
. (2.11)

The electron-electron interaction, the perturbation, can be approximated

by the instantaneous Coulomb repulsion

V =

N∑

i=1

N∑

j>i

e2

4πrij
(2.12)

where rij is the interelectronic distance rij = |xj − xi|. A relativistic

treatment can also be formulated and we will consider that later in this

chapter.

2.2 Many-body perturbation theory

In general, we are interested in a set of target states, eigenstates of the

full Hamiltonian, H,

H|Ψα〉 = (H0 + V )|Ψα〉 = Eα|Ψα〉, (α = 1, 2, . . . , d), (2.13)

where for each target state there exists a corresponding model state

|Ψα
0 〉. The model states are, in general, linear combinations of a set of

eigenstates of the unperturbed Hamiltonian H0 and this set is consid-

ered to span the so-called model space, a subspace of the full functional

space.

If the model space consist of degenerate states it is important that

all states of H0 with this energy are entirely inside or entirely outside

the model space, otherwise there will appear singularities in the pertur-

bation expansions. The model space can be extended to include eigen-

states of H0 that are close in energy, so-called quasi-degenerate [50, 51].

The occurrence of quasi-degenerate states located both inside and out-

side the model space can cause problems in the numerical calculations

with the convergence of the perturbation expansions.

An example of a quasi-degenerate case is the 1s2p fine-structure in-

terval in helium-like ions. In a relativistic treatment the model space

is spanned by eigenstates formed by the configurations of 1s2p1/2 and

1s2p3/2. These configurations are very close in energy, especially for

light helium-like ions, and in the jj-coupling scheme they are coupled

into the four states, 1s2p1/2(J=0), 1s2p1/2(J=1), 1s2p3/2(J=1) and 1s2p3/2

(J=2). In the non-relativistic LS-scheme we instead have the configu-

rations 1s2p 1P1, 1s2p 3P0, 1s2p 3P1, 1s2p 3P2. Between the LS- and
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the jj-coupling there exist direct correspondences for the J=0 and J=2

states, while the 1P1 and 3P1 states are composed of a mixing of the

1s2p1/2(J=1) and the 1s2p3/2(J=1).

2.2.1 The wave operator

The formalism of the MBPT below is based upon the intermediate nor-

malisation, implying that the model state is the projection of the target

state onto the model space

P |Ψα〉 = |Ψα
0 〉〈Ψα

0 |Ψα〉 = |Ψα
0 〉. (2.14)

Here, P is the projection operator for the model space. There do also

exist a projection operator Q for the remaining part of the functional

space, the complementary space. For these two operators we have the

following relations

P +Q = 1, PP = P, QQ = Q, PQ = QP = 0 (2.15)

and

[P,H0] = [Q,H0] = 0. (2.16)

For the transformation of the model states back to their correspond-

ing target states a wave operator Ω is introduced

|Ψα〉 = Ω|Ψα
0 〉. (2.17)

In order to perform numerical calculations a relation for generating this

operator is needed. The starting point of the derivation of such a rela-

tion is the time-independent Schrödinger equation

H|Ψα〉 = Eα|Ψα〉, (2.18)

where the full Hamiltonian is separated into H0 and V ,

(Eα −H0)|Ψα〉 = V |Ψα〉. (2.19)

Both sides of the equation are projected upon the model space

(Eα −H0)|Ψα
0 〉 = PV |Ψα〉. (2.20)

where the commutation relation between P and H0 in (2.16) is used on

the left-hand side. The equation is projected back by operating with the

wave operator from the left

(EαΩ − ΩH0)|Ψα
0 〉 = ΩPV Ω|Ψα

0 〉. (2.21)
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where the definition of the wave operator (2.17) is used in order to have

model states at the rightmost position at both sides of the equal sign.

The Schrödinger equation is then used to eliminate the unknown energy

Eα

((H0 + V )Ω − ΩH0)|Ψα
0 〉 = ΩPV Ω|Ψα

0 〉. (2.22)

and the final expression

[Ω,H0]P = V ΩP − ΩPVΩP, (2.23)

is achieved by letting all terms with perturbations be on the right side

and by identifying the commutator on the left. This is one of the most

basic equations in this thesis and is known as the generalised Bloch

equation [51].

The effective Hamiltonian

As we mentioned above the model states |Ψα
0 〉 are, in general, linear

combinations of the states spanning the model space. In the case of the

1s2p fine-structure interval in helium-like ions the model states of the

two J = 1 states are given by the following two combinations

|Ψ0〉 = a|1s2p1/2(J = 1)〉 + b|1s2p3/2(J = 1)〉 (2.24)

|Ψ′
0〉 = a′|1s2p1/2(J = 1)〉 + b′|1s2p3/2(J = 1)〉, (2.25)

which are mixed under the influence of the perturbation into their cor-

responding target states

|Ψ〉 = |1s2p 1P1〉 = a|1s2p1/2(J = 1)〉 + b|1s2p3/2(J = 1)〉 + · · · (2.26)

|Ψ′〉 = |1s2p 3P1〉 = a′|1s2p1/2(J = 1)〉 + b′|1s2p3/2(J = 1)〉 + · · · (2.27)

The coefficients a, b, a′ and b′ are, in general, only known in certain

limits, for example in the non-relativistic limit. A new operator, the ef-

fective Hamiltonian Heff , is introduced in order to obtain both the exact

energies and the corresponding model states

Heff |Ψα
0 〉 = Eα|Ψα

0 〉, (2.28)

where

Heff = PHΩP = P (H0 + V )ΩP = PH0P + PV ΩP. (2.29)

This operator is operating entirely within the model space and the ex-

pression for Heff is derived by using the definition of the wave operator
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on the left-hand side of the Schrödinger equation (2.18) and projecting

both sides upon the model space

PHΩ|Ψα
0 〉 = Eα|Ψα

0 〉. (2.30)

The energies and model states of the J = 1 case for the above considered

1s2p fine-structure interval is achieved by diagonalising the following

matrix [
〈A|Heff |A〉 〈A|Heff |B〉
〈B|Heff |A〉 〈B|Heff |B〉

]
. (2.31)

where the basis states |A〉 and |B〉 are

|A〉 = |1s2p1/2(J = 1)〉 and |B〉 = |1s2p3/2(J = 1)〉. (2.32)

Another operator that is frequently used in this thesis is the effective

perturbation which is defined as the rightmost term in the expression

of Heff in Eq. (2.29)

Veff = PV ΩP. (2.33)

This term can also be recovered in the generalised Bloch equation, (2.23),

[Ω,H0]P = V ΩP − ΩPV ΩP = V ΩP − ΩPVeffP. (2.34)

2.2.2 The perturbation expansion of Ω

In general, the model space is spanned by several eigenstates of H0 and

the generalised Bloch equation is then a system of equations

ΩP = ΓQ(E)
(
V Ω − ΩPVeff

)
P, (2.35)

where each equation evolves from one of the states that are spanning

the model space P . These equations are coupled by the second term on

the right hand side of (2.35). In this term the wave operator operates

upon the intermediate model space and not upon the rightmost P in

the expression. The reduced resolvent ΓQ is the regular part of the full

resolvent Γ,

Γ(E) =
1

E −H0
=

|ij〉〈ij|
E − εi − εj

(2.36)

ΓQ(E) =
1 − P

E −H0
=

Q

E −H0
=

|rs〉〈rs|
E − εr − εs

, (2.37)

where the energy variable E depends on the energy of the initial state

of each equation. For the case with a degenerate model space all ini-

tial states in the equations have the same energy, E0, and the energy

variable E will, for this case, be equal to the degenerate energy, E = E0.
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Valence
state

Core
state

Virtual &
Valence state

? 66 6

Figure 2.1: The graphical visualisation of the three different orbitals, or

single-particle states, that appear in an open-shell system. Note

that a line with a single arrow pointing upwards represents both

virtual and valence states, while a line with a double arrow di-

rected upwards do only correspond to valence states.

Above we have introduced a convention for the designation of the

two-electron states within the Dirac bra-ket notation, which will be used

throughout this thesis. For the states located in the complimentary

space, the model space and the full space, respectively, the following

three notations are used

Q = |rs〉〈rs| = |tu〉〈tu| (2.38)

P = |ab〉〈ab| = |cd〉〈cd| (2.39)

1 = |ij〉〈ij|. (2.40)

The rightmost notations for bothQ and P is used for intermediate states

and the first notations are representing final and initial states for Q and

P , respectively.

An efficient tool in order visualise the perturbation expansion in the

MBPT is to use Goldstone diagrams. The difference between the Gold-

stone diagrams and the more commonly known Feynman diagrams is

that the former are time-ordered while the latter ones are not. In these

diagrams solid lines are representing electron orbitals. In Fig. 2.1 the

three different kinds of orbitals, or single-particle states, in an open-

shell system are visualised. These are the core, valence and virtual

orbitals. The core orbitals are the occupied orbitals in a closed shell,

a shell where all orbitals are filled. The occupied orbitals in an open

shell are defined as the valence states and the unoccupied orbitals in

the system are the virtual states.

In this thesis a helium-like system will always be treated as an open-

shell system. The two-electron states in the set that spans the model

space P are then constructed by direct products of two valence orbitals.

The complementary space Q consists then of all other combinations of

valence and virtual states. This implies that there exist no core states in

our treatment, since there are no filled shells below the valence shell. It
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Figure 2.2: Diagram representation of the first- and second-order wave oper-

ator for a helium-like system, (2.41) and (2.42). Solid lines rep-

resent electron orbitals and dashed lines correspond to Coulomb

interactions. Electron lines with double arrows represent valence

electrons and those with a single arrow correspond to both vir-

tual and valence states, see Fig. 2.1. The rightmost diagram on

the second row is called the folded diagram and it represents the

finite contribution of having intermediate model space states.

should also be stated that the groundstate in a helium-like system can

be treated as a closet-shell system and the model space states would

then consist of two core orbitals.

The first two orders of the perturbation expansion of the Bloch equa-

tion

Ω(1)P = ΓQV P (2.41)

Ω(2)P = ΓQ

(
V Ω(1) − Ω(1)PV

(1)
eff

)
P (2.42)

are obtained by inserting the expansion

Ω = 1 + Ω(1) + Ω(2) + · · · (2.43)

into the Bloch equation in Eq. (2.35) and identifying terms of the same

order in V . In Eq. (2.42) V
(1)
eff = PV P is the first-order effective in-

teraction. For a helium-like system these two orders are visualised

graphically in Fig. 2.2, where a dashed horizontal line corresponds to

the exchange of an instantaneous Coulomb interaction between the two

electrons. The second term on the right-hand side of (2.42) is called

the folded term, because its diagram traditionally is drawn in a folded
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way, see the rightmost diagram on the second row in Fig. 2.2. This

folded term corresponds to the finite contribution of having intermedi-

ate model space states.

The linked-diagram theorem

The introduction of Goldstone diagrams is enclosed with the implemen-

tation of second quantisation into the perturbation expansions, where

the operators and the states are expressed in terms of electron creation

and annihilation operators. For the readers interested in the develop-

ment of this method within MBPT the author recommends the chapters

11-13 in the book of Lindgren and Morrison [50].

When second quantisation is applied to the perturbation expansion

there will literally be an explosion in possibilities how to connect all the

creation and annihilation operators. Several of these give an infinite

contribution to the expansion and do not have any physical interpreta-

tion. These terms are known as unlinked terms and are represented by

so-called unlinked diagrams.

According to the definitions stated in [51], section 3.3.1, the unlinked

diagrams are defined as disconnected diagrams with closed parts, where

a part of a diagram that is not connected to the rest of the diagram by

any orbital or interaction lines is said to be disconnected. If a discon-

nected part has no other free lines than valence lines, or no free lines

at all, it is said to be closed, and the entire diagram is then defined as

unlinked. All other diagrams are linked. Note that linked diagrams

may consist of disconnected parts as long as no part is closed. A con-

nected diagram can be be closed and will then correspond to an energy

contribution to the perturbation expansion, see Fig. 2.3.

In our implementation where helium-like systems are treated as

open-shell systems, these unlinked diagrams do not exist and it is first

when systems with core orbitals are treated that these infinite contri-

butions will arise. Nevertheless it is important to have a procedure in

which these unwanted terms are cancelled.

In MBPT it was first shown by Brueckner [52] and Goldstone [53]

that the unlinked terms are cancelled in the Rayleigh-Schrödinger ex-

pansion of the wave operator for non-degenerate closed-shell systems.

This is known as the linked-diagram theorem, where the contribution

from the remaining diagrams, the linked diagrams, are finite. This the-

orem was later extended to open-shell systems and quasi-degenerate

model spaces by Brandow [54] and Lindgren [51].

The Bloch-equation follows the Rayleigh-Schrödinger expansion and

it can be shown that all unwanted terms are cancelled in the subtraction

between the two terms on righthand side of the Bloch equation. It is



18

therefore common to add the subscript linked to the Bloch equation,

[Ω,H0]P =
(
V ΩP − ΩPVeffP

)
linked

. (2.44)

The coupled cluster equations

The perturbation expansion within MBPT can be further developed by

expressing the wave operator in a normal ordered exponential form,

[55, 56],

Ω = {eS} = 1 + S +
1

2
{S2} +

1

3!
{S3} + . . . (2.45)

where S is the cluster operator. The generalised Bloch equation (2.23)

can from here be transformed into a set of coupled equations,

[Sn,H0]P =
(
V ΩP − ΩVeffP

)
n,conn

. (2.46)

by expanding the S into one-, two-,...,-body parts

S = S1 + S2 + · · · + Sn + · · · (2.47)

The significance of the subscript ”conn” in (2.46) is that the graphical

representation of the equation only consists of open and connected dia-

grams, which is a stronger condition than the linked diagrams.

The most important term in the expansion of the coupled cluster op-

erator (2.47) is the two-body part, S2, followed by the one-body part, S1.

In the ”coupled-cluster-singles and doubles approximation”, CCSD, the

expansion (2.47) is truncated after the S2-term and according to Lind-

gren et al.[45] 95-98% of the electron correlation is, for most systems,

treated within this approximation. Within CCSD the coupled cluster

equation is reduced into

[S1,H0]P = (V ΩP − ΩVeffP )1,conn (2.48)

[S2,H0]P = (V ΩP − ΩVeffP )2,conn. (2.49)

For a helium-like system, treated as a open-shell system and where

the perturbation V is a two-body potential, the wave operator becomes

the sum of the zero- and two-body part of the coupled cluster operator,

Ω = 1 + S2 (2.50)

and the number of coupled cluster equations is reduced into a single

one, the equation in (2.49). In the numerical implementation of solving

this equation, the concept of pair functions |ρab〉 is introduced

Ω|ab〉 = |ab〉 + S2|ab〉 = |ab〉 + |ρab〉. (2.51)
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This function is the solution of the pair equation, the coupled cluster

equation for the helium-like system,

(E −H0)|ρab〉 = |rs〉〈rs|V |ab〉 + |rs〉〈rs|V |ρab〉 − |ρcd〉〈cd|Veff |ab〉, (2.52)

that is solved with a procedure of iterations and for each iteration a

higher order of perturbation is added to the solution. The pair equation

and its solution are essential concepts in this thesis, since the solution

of solving the pair equation to self-consistency can be considered to be

a correlated state vector, or in coordinate representation a correlated

two-electron wavefunction. We will in chapter 4 and 5 show how these

functions can be used to calculate combined effects of correlation and

QED.

2.3 Relativistic MBPT

The first step of introducing relativistic effects in MBPT is to treat the

electrons relativistically. A relativistic electron is described with the

Dirac equation and the unperturbed Hamiltonian H0 is the sum over

single-electron Dirac Hamiltonians

HD
0 =

N∑

i=1

hD(i) =
N∑

i=1

(
− i α · ∇ + βme −

Ze2

4πr

)

i

(2.53)

where α and β are the 4 × 4 Dirac matrices. The spectra generated by

solving the single-electron equation

(−i α · ∇ + βme −
Ze2

4πr
)ψ(x) = εψ(x), (2.54)

contains both positive and negative energy states.

The second step is to add relativistic corrections to the interaction,

which to this point only has been mediated by instantaneous Coulomb

interactions. The lowest-order relativistic correction is therefore added

to the perturbation

VC → VCB =

N∑

i=1

N∑

j>i

e2

4πrij

(
1 − 1

2
αi · αj −

(αi · rij)(αi · rij)

2r2ij

)
(2.55)

where the last two terms on the righthand side correspond to this cor-

rection, which is known as the instantaneous Breit interaction.

From this point a relativistic many-body perturbation theory, RMBPT,

can be formulated with the formalism presented in this chapter under

the condition that only the positive energy part of the single-electron
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Figure 2.3: The diagram representation of the energy contributions from

some of the low-order QED effects in a helium-like system, non-

radiative on the upper line and radiative on the lower. The in-

termediate electron lines, the closed lines between two vertexes,

represent both particle and anti-particle states. The wavy lines

represent the exchange of a retarded interaction, a so-called vir-

tual photon.

spectra is used. In a relativistic treatment the summation over the in-

termediate states in the resolvent

Γ±
Q(E) =

|tu〉〈tu|
E − εt − εu

. (2.56)

is performed over all possible combinations, where the single-electron

states |t〉 and |u〉 can both have positive and negative energies. Singu-

larities appear in this summation when εt and εu have opposite sign

and their sum is equal to E . This is known as the ”Brown-Ravenhall

disease” [57] or ”continuum dissolution” [58]. For two continuous spec-

tra, one with positive energies and the other with negative, there are

infinite number of combinations leading to vanishing denominators. To

circumvent this problem Sucher [58] introduced projection operators for

the positive part of the single-electron spectra Λ+. This is known as the

no-virtual-pair approximation, NVPA, and within this approximation

the total Dirac-Coulomb-Breit Hamiltonian HDCB is rewritten as

HDCB = HD
0 + VCB → HNVPA

DCB = Λ+HDCBΛ+ (2.57)

The introduction of the projection operators ruins the relativistically

covariance condition of handling particles and anti-particles on equal

footing. Further the time-independent RMBPT can only handle instan-

taneous interactions. These shortcomings result in a theory only correct

to order (αZ)2 in atomic units, where α is the fine-structure constant.



Time-independent perturbation theory · 21

The effects of virtual pairs, retardation and radiative effects, like the

electron self-energy and the vacuum polarisation, are all lying beyond

the standard RMBPT presented here. These effects are considered to be

QED-effects, graphically represented by the diagrams in Fig. 2.3.





CHAPTER 3

Energy-dependent MBPT

In this chapter the formalism presented in previous chapter is merged

with the formalism used in the time-dependent theory of bound state

QED. The time-dependence within bound state QED lies in the retar-

dation of the interactions, which leads to effects that is only present

in quantum field theory, e.g. the electron self-energy. The title of the

chapter, energy-dependent MBPT, is based on the fact that the retarda-

tion results in energy-dependent potentials for the effects that appear

in bound state QED.

It is here important to elucidate that in this chapter we will only

consider particle states, electron states with positive energy. In order

to have a merged procedure that includes relativistically covariant cal-

culations, where the particle and the hole states, the negative energy

states, are treated on equal footing, an alternative procedure must be

used. This alternative is presented in chapter 5.

This chapter starts with a brief introduction to the standard evo-

lution operator before introducing the perturbation used in bound state

QED. For those readers who are not familiar with the formalism of QED

an introduction is presented in Appendix A. In the presentation of the

new merged procedure the exchange of a single virtual photon, or more

correctly a sequence of single-photon exchange ladders, see Fig. 3.2,

will be considered. A short presentation of this sequence is therefore

performed before the new merged procedure is presented.

23
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3.1 The standard time-evolution operator

Within the standard time-dependent perturbation theory

H(t) = H0 +H ′(t) (3.1)

the time-evolution operator U(t′, t0) is responsible for the transforma-

tion of states in time under the influence of a time-dependent perturba-

tion H ′(t),

|χ(t′)〉 = U(t′, t0)|χ(t0)〉. (3.2)

Here, both states and operators are transforming in time according to

the relations within the interaction picture, see Eq. (A.58) and (A.59).

Using the development presented in section A.3.1 we have the following

expression for the evolution operator

Uγ(t, t0) = U (0)
γ + U (1)

γ + U (2)
γ + U (3)

γ + · · ·

= 1 +

∞∑

n=1

(−i)n

n!

∫ t

t0

dtn · · ·

· · ·
∫ t

t0

dt1 T{H ′(tn) · · ·H ′(t1)}e−γ(|tn |+···+|t1|), (3.3)

where T is the time-ordering operator

T{H ′(t1)H
′(t2)} =

{
H ′(t1)H

′(t2), t1 > t2
H ′(t2)H

′(t1), t2 > t1
(3.4)

The adiabatic damping factor γ is a small positive number introduced

in the perturbation

H ′(t) → H ′(t, γ) = H ′(t)e−γ|t| (3.5)

with the benefit that in the limit t→ ±∞ the perturbation is not present

and the states |χ(t)〉 is tending to unperturbed states, the eigenstates of

H0. After all calculations this approximation is ”switched off” by apply-

ing the limit γ → 0.

3.1.1 The perturbation within QED

Within QED the perturbation corresponds to an interaction between the

electron field and the electromagnetic field

H ′(t) =

∫
d3x ψ̂†(x) eαµÂµ(x)ψ̂(x), (3.6)
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Figure 3.1: The Feynman diagram for the one-photon exchange, which is

equal to the sum of two time-ordered diagrams.

where ψ̂(x) and Âµ(x) are the field operators for the electron field and

electromagnetic field, respectively. These field operators are managing

the excitation of their respective field through their annihilation and

creation operators, where the field excitations correspond to positive-

and negative-energy electrons and photons.

When the QED perturbation is inserted into the expansion of the

evolution operator, Wick’s theorem (see section A.2.3) can be applied to

achieve all combinations of interactions between the two fields. For a

helium-like system these combinations, or effects, do include for exam-

ple the exchange of virtual photons between the electrons, the screened

electron self-interaction, the inter-electronic vacuum polarisation and

the vertex correction. These examples are visualised in Fig. 2.3 with

the exchange of virtual photons on the top row and the other, radiative

effects, on the bottom row. The radiative effects contain divergent inte-

grals and in order to get finite values a proper renormalisation scheme

has to be applied. The propagation of the electrons between two interac-

tions is mediated by electron propagators and these include summations

over both positive and negative energy states.

The effects can also be separated to be reducible or irreducible, where

the second diagram on the top row in Fig. 2.3 is an example of a re-

ducible effect. This exchange of two virtual photons can namely be writ-

ten as a product of two single-photon exchanges, see [45] section 3.4.3,

but only if the intermediate electrons have positive energies. The reason

is that the single photon exchange extracted from the standard evolu-

tion operator in Eq. (3.3) can only have electron states with positive en-

ergies coming in and going out from the interaction when t > t0, where

t0 is the initial time and t is the final time. Instead the irreducible part

of the two-photon exchange will include the above neglected virtual-

pair effects and also the effects where the two photons are overlapping

in time, the third and fourth diagrams on the top row in Fig. 2.3. This

separation into reducible and irreducible effects can of course be applied

to effects with higher number of virtual photons.
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Figure 3.2: The graphical representation of the sequence of single-photon ex-

change ladders in (3.7). In our approach we consider these dia-

grams to be constructed by products of single-photon exchanges.

They will then not include all possible time-orders, for example

there exist no photons that overlap in time in the considered se-

quence, which they can do in the general case. All electron lines

do only represent bound single-electron states with positive ener-

gies. This is also a deviation from the general case where the in-

termediate electron lines represent states with both positive and

negative energies.

Ladder sequence of single-photon exchanges

The simplest interaction taking place in a helium-like system is the ex-

change of a single virtual photon, graphically represented by the Feyn-

man diagram in Fig. 3.1. This is the irreducible interaction of lowest

order for the exchange of photons between the electrons and by follow-

ing the recent discussion above, it is possible to construct a sequence

of single-photon exchange ladders by expressing the higher-order re-

ducible effects as products of single-photon exchanges,

〈rs|U spl
γ (t,−∞)|ab〉 = 〈rs|U1ph

γ + URed
2ph + · · · |ab〉

= 〈rs|U1ph
γ + U1ph

γ U1ph
γ + U1ph

γ U1ph
γ U1ph

γ + · · · |ab〉.
(3.7)

The constraint in this construction is that all single-electron states have

positive energies and the photons do not overlap in time. This sequence

is presented here since it will be considered in the derivation of the

merged procedure. With a result for this sequence, it will be possible

to extend the new procedure to be valid for any sequence of irreducible

effects. The sequence of single-photon exchange ladders is visualised in

Fig. 3.2.

First the single-photon exchange is going to be presented. This effect

is generated by the evolution operator of second order by contracting

the two electromagnetic field operators and leaving the operators of the
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electron field unchanged,

U1ph
γ (t, t0) =

(−i)2

2

∫∫ t

t0

d4x1 d4x2 ψ̂
†(x1)ψ̂

†(x2)×

iI(x2, x1)ψ̂(x1)ψ̂(x2)e
γ(|t1|+|t1|). (3.8)

The contraction of the electromagnetic field in the two space-time coor-

dinates is represented by a virtual photon. In Eq. (3.8) the propagation

of the photon, Dµν(x2, x1), is included in the interaction term

I(x2, x1) = e2αµανDµν(x2, x1) =

∫
dz

2π
e−iz(t2−t1)I(z,x2,x1). (3.9)

In the Feynman gauge the Fourier transform of the interaction term is

expressed as

I(z,x2,x1) =

∫ ∞

0
dk

2kfF(k, r12)

z2 − k2 + iη
(3.10)

where r12 is the interelectronic distance, r12 = |x2 − x1|, k is the radial

component of the linear momentum of the interaction, η is an infinites-

imal positive number and the function fF(k, r12) in the numerator is

fF(k, r12) = − e2

4π2
(1 − α1 · α2)

sin(kr12)

r12
(3.11)

The matrix element to calculate is here, in the limit γ → 0,

〈rs|U1ph(t,−∞)|ab〉 = − i

∫∫ t

−∞
dt1 dt2

∫
dz

2π
〈rs|I(z,x2,x1)|ab〉×

e−it1(εa−εr−z)e−it2(εb−εs+z) (3.12)

where the electron field operators have vanished in the operations with

the state vectors, leaving a residue in form of a time dependence of the

state. After performing the integration over the time variables the re-

sult can compactly be written as

〈rs|U1ph(t,−∞)|ab〉 =
e−it(εa+εb−εr−εs)

εa + εb − εr − εs
〈rs|V1ph(E)|ab〉

= e−it(E−εr−εs)〈rs|Γ(E)V1ph(E)|ab〉 (3.13)

where E is the initial energy of the sequence, E = εa + εb, and Γ(E) is

the resolvent presented in Eq. (2.36). The matrix element of the gauge
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dependent potential V1ph is given by the general expression

〈rs|V1ph(E)|tu〉 = i

∫
dz

2π

∫ ∞

0
dk

〈rs|2kfF(k, r12)|tu〉
z2 − k2 + iη

×
[

1

E − εr − εu − z
+

1

E − εs − εt + z

]

=

∫ ∞

0
dk 〈rs|fF(k, r12)|tu〉×

[
1

E − εr − εu − k
+

1

E − εs − εt − k

]
(3.14)

where the z-integration is performed in detail in section C in the Ap-

pendix. The result in Eq. (3.13) is inserted into the expression in (3.7)

and the sequence of single-photon exchange ladders can be written as

〈rs|Uspl(t,−∞)|ab〉 = e−it(εa+εb−εr−εs)〈rs|Γ(E)V1ph(E)+

Γ(E)V1ph(E)Γ(E)V1ph(E) + · · · |ab〉. (3.15)

3.2 The Green’s operator ∗

When Wick’s theorem is applied to the perturbation expansion of the

time-evolution operator, the situation becomes similar to the one when

the second quantisation is applied to the perturbation expansion within

the MBPT, see section 2.2.2. In the explosion of combinations where the

two fields are interacting with each other, there exist combinations that

are similar to the unlinked terms in the MBPT and these give raise to

infinite contributions. Other singularities appear when the intermedi-

ate states in the resolvents Γ(E) in Eq. (3.15) have the same energy E
as the initial state of the sequence. Along with these singularities there

may also exist quasi-singularities, which appear when the intermediate

states are quasi-degenerate with the initial state.

We will now introduce the formalism presented in the previous chap-

ter and direct all troublemaking states into an extended model space P .

Again, we will consider a set of solutions to the eigenvalue equation at

the time t = 0

H(0)|Ψα〉 = Eα|Ψα〉, (3.16)

where in the Schrödinger picture the adiabatic damping, e−γ|t|, is the

only time-dependent part in the total Hamiltonian, H(t). Above, |Ψα〉
∗The initial states will from now on be located in the model space P , if nothing else

is stated. All initial times are therefore set to t0 = −∞ and only the final time will be

expressed for evolution operators. The notation of the adiabatic damping term γ is also

excluded.



Energy-dependent MBPT · 29

are the target states and to each target state there exists a correspond-

ing model state |Ψα
0 〉.

In order to eliminate these singularities in the perturbation expan-

sion the reduced evolution operator Ũ(t) [45, 59] can be used

U(t)P = P + Ũ(t)P · PU(0)P, (3.17)

or the newly introduced Green’s operator G(t)

U(t)P = G(t)P · PU(0)P. (3.18)

where the Green’s operator has got its name due to the similarity with

the Green’s function. In the included articles the reduced evolution op-

erator is acting as the connection between the MBPT and time-dependent

theory and in order to complement this we will here only consider the

Green’s operator.

The dot product in (3.17) and (3.18) is an important concept in order

for the reduced evolution operator and the Green’s operator to be reg-

ular. The definition of this product is that the perturbation sequences

separated by the dot evolve independently of each other and generally

from different states in the model space. These states may be quasi-

degenerate and the independent sequences do not need to have the same

energy dependence. The definition of the dot product can be visualised

by the two cases where the two operators A and B, both depending on

the energies of the model states, are separated by an ordinary product

and a dot product

{
APE ′BPE = A(E)PE ′B(E)PE

APE ′ · PE ′BPE = A(E ′)PE ′B(E)PE
(3.19)

Here, the notations PE and PE ′ are introduced in order to give a better

illustration that the states in the model space do not have to be degen-

erate and these notation will be used again when we want to show that

the Green’s operator is regular.

3.2.1 The bridge between MBPT and field theory

The Greens operator can be referred to as the regular part of the time

evolution operator and the bridge between time-dependent and time-

independent perturbation theories. First, the connection between the

two theories is demonstrated and in the next section it will be shown

that the introduced Green’s operator is regular.

From the relations in (3.2) and (3.18) the time transformation of an

unperturbed state can, in the limit γ → 0, be written as

|χα(t)〉 = NαU(t)|Φα〉 = NαG(t)P · PU(0)|Φα〉. (3.20)
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Here, |Φα〉 are the so-called parent states, eigenstates of H0, defined as

|Φα〉 ∝ lim
γ→0

lim
t→−∞

|χα(t)〉 (3.21)

and Nα is a normalisation factor

Nα =
1

〈Ψα
0 |U(0)|Φα〉 (3.22)

that preserves the intermediate normalisation at t = 0. According to

the generalised Gell-Mann and Low theorem [45]

|Ψα〉 = |χα(0)〉 = lim
γ→0

U(0)|Φα〉
〈Ψα

0 |U(0)|Φα〉 . (3.23)

the Green’s operator does, at t = 0, transform the model states into their

corresponding target states

|Ψα〉 = G(0)P · P |Ψα〉 = G(0)|Ψα
0 〉. (3.24)

This is equal to the definition of the wave operator within MBPT and

the energy dependent wave operator, or the extended wave operator,

can now be defined as

ΩP = G(0)P = (P +Q)G(0)P = [1 +QG(0)]P (3.25)

where in the last step the following relation has been used

PU(0)P = PG(0)P · PU(0)P ⇒ PG(0)P = P. (3.26)

Effective perturbation

The time-evolution operator U(t) contains infinite parts for all times

t and the result of a propagation with this operator does not have to

represent a physical state. In the Green’s operator these infinities are

eliminated and the result of

|χα(t)〉 = G(t)|Ψα
0 〉 (3.27)

will have a physical interpretation. According to (A.60) the time vari-

ation of a state represented in a general time t is expressed within the

interaction picture as

i
∂

∂t
|χα(t)〉 = H ′(t)|χα((t)〉. (3.28)

With the relations in Eq. (3.27) and Eq. (3.23) time variation will at

t = 0 become

i

(
∂

∂t
|χ(t)〉

)

t=0

= i

(
∂

∂t
G(t)

)

t=0

|Ψα
0 〉 = H ′(0)|Ψα〉 = V |Ψα〉. (3.29)
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The righthand side can here be further developed

V |Ψα〉 = V Ω|Ψα
0 〉 (3.30)

and the result

R = i

(
∂

∂t
G(t)

)

t=0

P = V ΩP (3.31)

is defined to be the reaction operator. The part of the reaction operator

that lies within in the model space is defined to be the effective pertur-

bation

Veff = PV ΩP = PRP = P

(
i
∂

∂t
G(t)

)

t=0

P, (3.32)

in analogy with the corresponding operator (2.33) within standard MBPT.

3.2.2 Reduction of singularities

In order to show that the Green’s operator is the regular part of the

time-evolution operator we need to consider the definition of the Green’s

operator in Eq. (3.18). For a helium-like system with no emissions or

absorptions of external photons the evolution operator can be expanded

into a series with increasing number of virtual photons

U(t) = U (0)(t) + U (1)(t) + U (2)(t) + · · · (3.33)

With this expansion inserted into the definition in Eq. (3.18) one can

identify the relations between U(t) and G(t) order by order

U (0)(t)P = P ⇒ G(0)(t)P = P (3.34)

U (1)(t)P = G(1)(t)P · PU (0)(0)P + G(0)(t)P · PU (1)(0)P (3.35)

U (2)(t)P = G(2)(t)P · PU (0)(0)P + G(1)(t)P · PU (1)(0)P

+ G(0)(t)P · PU (2)(0)P (3.36)

U (3)(t)P = G(3)(t)P · PU (0)(0)P + G(2)(t)P · PU (1)(0)P

+ G(1)(t)P · PU (2)(0)P + G(0)(t)P · PU (3)(0)P (3.37)

and get explicit expressions for each order of the Green’s operator

G(1)(t)P = U (1)(t)P − PU (1)(0)P (3.38)

G(2)(t)P = U (2)(t)P − G(1)(t)P · PU (1)(0)P − PU (2)(0)P (3.39)

G(3)(t)P = U (3)(t)P − G(2)(t)P · PU (1)(0)P − G(1)(t)P · PU (2)(0)P

− PU (3)(0)P (3.40)
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which can be collected in a general expression

G(n)(t)P = U (n)(t)P −
n∑

m=1

G(n−m)(t)P · PU (m)(0)P. (3.41)

In this thesis we will restrict the development to the time t = 0 and

the process to show that the Green’s operator is regular will only be

applied to this time. It is also possible to similarly show that G(t) is

regular for all times. For t = 0 the explicit expressions of the Green’s

operator become

G(1)(0)P = QU (1)(0)P (3.42)

G(2)(0)P = QU (2)(0)P − G(1)(0)P · PU (1)(0)P (3.43)

G(3)(0)P = QU (3)(0)P − G(2)(0)P · PU (1)(0)P − G(1)(0)P · PU (2)(0)P.
(3.44)

The terms with the dot products are referred to as the counterterms and

we will now show that the singularities located in the evolution operator

and in the counterterms are cancelling each other and a finite residual

called the model space contribution will remain.

There are two origins for the above mentioned (quasi)-singularities,

unlinked terms/diagrams and intermediate model states, where the un-

linked diagrams were defined as disconnected diagrams with closed

parts, see Sec. 2.2.2 for more details. It follows directly from the defi-

nition of the dot product that the unlinked terms/diagrams are located

in both terms on the right-hand side and they are thereby cancelling

each other. Therefore, we will, in detail, only consider the connected

(ladder) diagrams and the cancellation of (quasi)-singularities caused

by intermediate model states.

We will now consider the sequence of single-photon exchange lad-

ders presented above in section 3.1.1. This is the simplest sequence of

irreducible effects and with the result for this sequence, it is possible

move on and implement the procedure to sequences containing other

irreducible effects. From Eq. (3.7) and Eq. (3.15) we have that the

sequence of single-photon exchange ladders is, for t = 0, expressed as

QUspl(E)PE = Q
[
U1ph(E) + U1phU1ph + U1phU1phU1ph + · · ·

]
PE

=
[
ΓQ(E)V1ph(E) + ΓQ(E)V1ph(E)Γ(E)V1ph(E) + · · ·

]
PE

(3.45)

where

QU
(1)
splPE = QU1ph(E)PE = ΓQ(E)V1ph(E)PE = QG(1)

splP = Ω(1)PE (3.46)
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Figure 3.3: The graphical representation of the extended wave operator of sec-

ond order in Eq. (3.52). In comparison with the figure of standard

wave operator in Fig. 2.2 the diagrams are equal with exception

that the interactions are mediated by fully covariant virtual pho-

tons in the extended wave operator.

according to the equations in (3.13), (3.25) and (3.43). In the resolvent

ΓQ(E) the summation does only run over the states located in the com-

plementary space Q. The (quasi)-singularities do first appear in the

second term in this sequence when the intermediate state is a model

state,

U1ph(E)PE ′U1ph(E)PE = U1ph(E)
PE ′

E −H0
V1ph(E)PE

= U1ph(E)
PE ′

E − E ′
V1ph(E)PE . (3.47)

According to Eq.(3.36) the corresponding Green’s operator G(2)
spl is given

by

G(2)
splP = Q

(
U

(2)
spl (E) − G(1)

splP · PU1ph(E)
)
P

= Q
(
U1ph(E)QU1ph(E)+

U1ph(E)
PE ′

E − E ′
V1ph(E) − U1ph(E ′)

PE ′

E − E ′
V1ph(E)

)
PE (3.48)

where the definition of the dot product in Eq. (3.19) is applied upon the

counterterm. The singularities in Eq. (3.48) are located in the last two

terms and when the subtraction is performed between these two terms,

the singularities are cancelled and left is a finite remainder in form of a
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energy-difference of U1ph(E)

U1ph(E) − U1ph(E ′)

E − E ′
PE ′V1ph(E)PE =

δU1ph(E)

δE PE ′V1ph(E)PE . (3.49)

For a completely degenerate model space, E = E ′, the difference ratio is

turning into a derivative,

δU
(1)
spl (E)

δE →
∂U

(1)
spl (E)

∂E . (3.50)

The final result of G(2)
spl is

G(2)
splP = Q

(
U1ph(E)QU1ph(E) +

δU1ph(E)

δE PE ′V1ph(E)
)
PE (3.51)

and the extended wave operator of second order can be identified by

using relations in (3.25) and (3.46)

Ω(2)(E)PE =

(
ΓQ(E)V1ph(E)Ω(1)(E) +

δΩ(1)(E)

δE PE ′V
(1)
eff

)
PE

= ΓQ(E)

(
V1ph(E)Ω(1)(E) − Ω(1)(E ′)PE ′V

(1)
eff +

δV1ph

δE PE ′V
(1)
eff

)
PE

(3.52)

which graphically is illustrated in Fig. 3.3. Above, we have used

δΩ(1)(E)

δE PE ′ =
δU1ph(E)

δE PE ′ =
δ
(
ΓQ(E)V1ph(E)

)

δE PE ′

= ΓQ(E)
(
− ΓQ(E ′)V1ph(E ′) +

δV1ph(E)

δE
)
PE ′

= ΓQ(E)
(
− Ω(1)(E ′) +

δV1ph(E)

δE
)
PE ′ . (3.53)

together with

PE ′V
(1)
eff PE = PE ′

[
i
∂

∂t
G(1)(t)

]

t=0

PE = PE ′V1ph(E)PE (3.54)

in order to achieve the result in (3.52). The definition of the special kind

of difference ratio used above is presented in Appendix B in appended

Paper II, [60], together with examples when the differentiation is ap-

plied to a product of energy-dependent operators.

If we compare the result in Eq. (3.52) with the expression of the

second-order wave operator within MBPT, Eq. (2.42), one notices that

the two equations are equal with the exception for the term including



Energy-dependent MBPT · 35

the energy-difference of the potential V1ph. We do now extend the con-

cept of folded terms to also include the terms with energy-differences

and the sum of all folded terms is called the model space contribution,

M . The Green’s operator of second order can with the new concept of M
be expressed as the sum of two terms

G(2)
splPE = G(2)

0 PE +M (2)PE , (3.55)

where the term G(2)
0 do not include any folded terms, since they are all

located in the second-order model space contribution M (2). Here, we

want to clarify that the subscript of G(2)
0 indicates that there exists no

folds while the superscript indicates the number of exchanged virtual

photons. The expression of G(2)
0 is given by the first term on the right-

hand side of Eq. (3.51) and the model space contribution to this order,

M (2), are then given by the other term in the same expression.

In the terms of Gspl that include three or more virtual photons the

(quasi)-singularities are eliminated with the same procedure as we in-

troduce above for G(2)
spl . These, higher-order terms, can in this way also be

separated into no fold parts and model space contributions. The Green’s

operator for the full sequence of ladder diagrams can be written

GsplPE =
[
G(1)

spl + G(2)
spl + G(3)

spl + · · ·
]
PE

=
[
G(1)

0 + G(2)
0 + G(3)

0 + · · · +M (2) +M (3) + · · ·
]
PE

= U0(E)PE +MPE , (3.56)

where U0(E) = G0 = G(1)
0 + G(2)

0 + G(3)
0 + · · · is the the evolution operator

with no folds.

Now we want to find an explicit expression for the model space con-

tribution and in this progress it is more convenient to consider the num-

ber of folds in a term rather than the number of exchanged virtual pho-

tons. In this way the model space contribution, the sum of all folded

terms, is expressed as

MPE =
(
G1 + G2 + G3 + · · ·

)
PE (3.57)

where the supscripts of the Green’s operators still indicate the number

of folds in respective term. Each of these Green’s operators, Gn, con-

sist of a sequence of ladder diagrams, where the smallest number of

exchanged virtual photons in the sequences is n+ 1.

In G1 the eliminated singularity can only arise from the product of

two U0(E) with a model space in between

U0(E)PE ′U0(E)PE (3.58)
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and we can therefore express G1 as

G1PE = U0(E)PE ′U0(E)PE − U0(E ′)PE ′ · PE ′U0(E)PE

=
δU0(E)

δE PE ′V0PE =
δG0(E)

δE PE ′V0PE . (3.59)

Here, V0 is the effective interaction without any folds

PE ′U0PE =
PE ′V0PE

E − E ′
=

V0

E − E ′
. (3.60)

In the last step the projection operators for the model space is left out,

since the effective perturbation is defined to only operate within the

model space.

This procedure can be repeated and by replacing G0 above with G1

we can express the Green’s operator with two folds as

G2PE =
δG1(E)

δE PE ′V0PE . (3.61)

The general expression becomes

GnPE =
δGn−1(E)

δE PE ′V0PE (3.62)

and the Green’s operator can compactly be formulated as

GsplPE =
(
G0 + G1 + G2 + G3 · · ·

)
PE

= G0PE +
(δG0

δE +
δG1

δE +
δG2

δE + · · ·
)
PE ′V0PE

= G0PE +
δGspl

δE PE ′V0PE . (3.63)

This can directly be transform to an equation for the wave operator

ΩsplPE = Ω0PE +
δΩspl

δE PE ′V0PE . (3.64)

3.2.3 The extended Bloch equation

In the continued discussion the sequence of single-photon exchange lad-

ders will be regarded, if nothing else is stated, and the subscript spl will

be neglected. The goal in this section is to formulate an equation simi-

lar to the generalised Bloch equation within standard MBPT, Eq. (2.23).

To achieve this Bloch equation for the extended wave operator one has

to further develop the energy-difference of the Green’s operator in Eq.
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(3.63). First the focus is on G2

G2PE =
δG1

δE PE ′V0PE =
δ

δE
(δG0

δE PE ′′V0

)
PE ′V0PE

=
δ2G0

δE2
PE ′′V 2

0 PE +
δG0

δE PE ′′

δV0

δE PE ′V0PE

=
δ2G0

δE2
PE ′′V 2

0 PE +
δG0

δE PE ′′V1PE (3.65)

where we define the effective interaction with n folds as

PE ′′VnPE = PE ′′

δVn−1

δE PE ′V0PE . (3.66)

In Eq. (3.65) the following compact notation is introduced

PE ′′V 2
0 PE = PE ′′V0(E ′)PE ′V0(E)PE (3.67)

and according to this will the energy-difference of V 2
0 become

PE ′′

δV 2
0

δE PE = PE ′′V0(E ′)PE ′

δV0(E)

δE PE = PE ′′V0PE ′

δV0

δE PE . (3.68)

The last relation is useful when concerning the next term, G3, in the

expansion in number folds of the Green’s operator

G3PE =
δG2

δE V0 =
δ3G0

δE3
V 3

0 +
δ2G0

δE2

δV0

δE V
2
0 +

δ2G0

δE2
V1V0 +

δG0

δE
δV1

δE V0

=
δ3G0

δE3
V 3

0 +
δ2G0

δE2
2V1V0 +

δG0

δE V2 (3.69)

In same way an expression of G4 can be determined, but already here

a pattern can be discerned and a new expression of the full Green’s

operator can be identified

G = G0 + G1 + G2 + · · · = G0 +
δG0

δE (V0 + V1 + V2 + · · · )

+
δ2G0

δE2
(V 2

0 + 2V0V1 + · · · ) +
δ3G0

δE3
(V 3

0 + · · · ) + · · ·

= G0 +
∞∑

n=1

δnG0

δEn
(Veff)n (3.70)

where

Veff = V0 + V1 + V2 + · · · (3.71)

is the full effective interaction for the considered ladder sequence

Veff = PV1ph ΩP. (3.72)
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Again the relation for the Green’s operator can be transformed into an

equation for the extended wave operator

Ω = Ω0 +
∞∑

n=1

δnΩ0

δEn
(Veff)n (3.73)

which now only has the wave operator with no folds on the righthand

side. This simplifies the derivation of an extended Bloch equation, since

it is easy now to write down the perturbation expansion of Ω0, a sum-

mation over terms with increasing number of the product ΓQ(E)V1ph(E)

Ω0PE =
∞∑

n=0

[
ΓQ(E)V1ph(E)

]n
PE

= (1 + ΓQ(E)V1ph(E) + ΓQV1phΓQV1ph + · · · )PE (3.74)

This can also be expressed as an iterative equation

Ω0PE = [1 + ΓQ(E)V1ph(E)Ω0]PE = [1 + ΓQ(E)R0(E)]PE (3.75)

where

R0(E) = V1ph(E)Ω0 (3.76)

is the part of the reaction operator with no folds.

The final result is achieved by inserting the expression of the wave

operator in (3.75) into equation (3.73)

ΩP = P + ΓQR0(E)P +

∞∑

n=1

δn(ΓQR0(E))

δEn
(Veff)n

= P + ΓQR0(E)P − ΓQΩVeff + ΓQ

∞∑

n=1

δnR0(E)

δEn
(Veff)n, (3.77)

then operate with Q, the complementary space, from the left and insert

the definition of R0

[Ω,H0]P = Q

(
V1phΩ − ΩVeff +

∞∑

n=1

δnV1ph

δEn
Ω(Veff)n

)
P. (3.78)

Above in (3.77) and (3.78) the following relations are used

δn(ΓQR0(E))

δEn
= ΓQ

δnR0(E)

δEn
− ΓQ

δ(n−1)(ΓQR0(E))

δE(n−1)
(3.79)

ΓQ

∞∑

n=1

δ(n−1)(ΓQR0(E))

δE(n−1)
(Veff)n = ΓQΩVeff . (3.80)

∞∑

n=1

δn(V1phΩ0)

δEn
(Veff )n =

∞∑

n=1

(
δnV1ph

δEn
Ω + V1ph

δnΩ0

δEn

)
(Veff )n (3.81)
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Figure 3.4: The Feynman diagrams of the terms in the potential V(E) pre-

sented in Eq. (3.83). Each term is represented by at least one

irreducible diagram. The exchange potentials V1ph and V Irr
2ph are

represented on the upper row while the screened self-energy, the

vertex correction and the inter-electronic vacuum-polarisation are

located on the bottom row.

together with the relation in Eq. (3.73). The relations in Eq. (3.79)-

(3.81) are presented or can be derived from relations presented in the

appended Paper II. The Ω in (3.78) is now the self-consistent wave op-

erator for the full ladder sequence with single photon exchanges in Fig.

3.2. From Eq. (3.78) one can obtain the equations that are solved in the

numerical implementation and this procedure we will consider in the

next two chapters.

The contribution of having two photons overlapping in time or the

effect of having intermediate virtual pairs in between two photons is

obtained by replacing V1ph with the irreducible potential with two vir-

tual photons, V Irr
2ph. The wave operator with no folds is then expressed

as

Ω2ph
0 PE =

∞∑

n=0

[
ΓQ(E)V Irr

2ph(E)
]n
PE (3.82)

and from here it easy to achieve a Bloch equation for ΩIrr
2ph by using

the same procedure as above. In general, the procedure presented in

this chapter can be applied to any irreducible effect and by defining a

potential that consists of a summation over all irreducible interactions

V(E) = V1ph(E) + V Irr
2ph(E) + Vsse(E) + Vvc(E) + Vvp(E) + · · · (3.83)
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a Bloch equation for the total wave operator can be achieved

[ΩTot,H0]P = Q

(
V(E)ΩTot − ΩTotVeff +

∞∑

n=1

δnV(E)

δEn
ΩTot(Veff)n

)
P.

(3.84)

In Eq. (3.83) Vsse, Vvc and Vvp are the potentials of the screened elec-

tron self-energy, the vertex correction and the vacuum polarisation, re-

spectively, and in order to get a finite contribution from these proper

renormalisation scheme has to be applied. All the potentials in (3.83)

are graphically illustrated in Fig. 3.4.

Parts of the irreducible potentials with more than one exchanged

photon can under specific conditions be manipulated in a way that it is

possible to express them as products of potentials of lower order. This

will be implemented in the next two chapters, where we start with the

condition that all intermediate states are particle states. After that we

are going to handle the existence of intermediate virtual pairs, or hole

states.



CHAPTER 4

Pair functions with a virtual photon

The final result of the previous chapter, the extended Bloch equation in

Eq. (3.84), is an operator equation and can not be numerically imple-

mented. Instead this equation is the basis for further development and

the result becomes a set of equations which can implemented into nu-

merical calculations. In this chapter pair equations and their solutions,

the pair functions, are going to be presented and it is these equations

that in the numerical implementation are expressed in computer code.

It is also important to state that in this chapter all intermediate states

are particle states.

The virtual photons have until now only been considered to be re-

tarded, where the Feynman gauge, the most common gauge for QED

calculations, has been considered. For calculations of the energy lev-

els in helium-like systems, particularly for systems with low nuclear

charge, the Feynman gauge is not the best option. For these systems

the correlation between the electrons must be treated to high order and

this is not feasible to do with the computationally time-demanding re-

tarded interactions. The gauge invariance of the electromagnetic field

makes it possible to choose a gauge that suits the system of interest and

for a helium-like system the Coulomb gauge is a better option.

4.1 The interaction within the Coulomb Gauge

In the Coulomb gauge the photon propagator is divided into a scalar

and a transverse component, see Appendix A.2.2 for details,

Dµν
C (x2, x1) = Dµν

S (x2, x1) +Dµν
T (x2, x1). (4.1)

41
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The scalar component of the propagator has the form

Dµν
S

(x2, x1) = nµnν

∫
d3k

(2π)3
eik·(x2−x1)

k2 + iε

∫
dz

2π
eiz(t2−t1) (4.2)

in the frame where εµ0 (k) = nµ = (1,0) and the transverse part is written

as

Dµν
T (x2, x1) =

∫
dz

2π
e−iz(t2−t1)Dµν

T (x2,x1, z) (4.3)

where the Fourier transform includes the summation over the trans-

verse components of the polarisation vector εµr (k)

Dµν
T (x2,x1, z) =

∫
d3k

(2π)3
eik(x2−x1)

z2 − k2 + iε

2∑

r=1

εµr (k)ενr (k). (4.4)

The expression of the interaction term in the Coulomb gauge

IC(x2, x1) = e2αµανDµν,C(x2, x1) (4.5)

will consist of two parts, where scalar part becomes the instantaneous

Coulomb interaction

IS(x2, x1) = e2αµανDµν,S(x2, x1) =
e2

4πr12
δ(t2 − t1), (4.6)

where r12 = |x2 − x1| is the interelectronic distance. The transverse

part of the interaction, the Breit interaction, will correspond to the ex-

change of a retarded transverse photon

IT(x2, x1) = e2αµανDµν,T(x2, x1)

=

∫
dz

2π
e−iz(t2−t1)

∫
dk

2kfB(k, r12)

z2 − k2 + iη
, (4.7)

where the function fB is given by the following expression

fB(k, r12) =
e2

4π2

[
α1 · α2 −

(α · ∇)1(α · ∇)2
k2

] sin(kr12)

r12
. (4.8)

The two components are known as the Gaunt interaction and the scalar

retardation, respectively, and they correspond to the magnetic interac-

tion and the retarded correction of the instantaneous Coulomb interac-

tion. It is also important to point out that the two ∇-operators in (4.8)

are only operating within this function.
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4.1.1 Single-photon potentials

The expression of the exchange of a single photon is achieved by using

the same method presented in section 3.1.1. The general expression is

again given by relation (3.13)

〈rs|U1ph(t,−∞)|tu〉 =
e−it(E−εr−εs)

E − εr − εs
〈rs|V C

1ph|tu〉 (4.9)

with the matrix element of the potential for the single-photon exchange

within Feynman gauge in (3.14) replaced by

〈rs|V C
1ph|tu〉 = 〈rs|VC|tu〉 + 〈rs|VB|tu〉, (4.10)

where VC is the instantaneous Coulomb interaction

VC =
e2

4πr12
(4.11)

and VB is the Breit interaction

〈rs|VB(E)|tu〉 =

∫
dk 〈rs|fB(k, r12)|tu〉×

[
1

E − εr − εu − k
+

1

E − εs − εt − k

]
. (4.12)

4.2 Energy-dependent MBPT in the Coulomb gauge

The potential of the single-photon exchange in the Coulomb gauge is

implemented into the extended Bloch equation, Eq. (3.78),

[ΩC
spl,H0]P = Q

(
V C

1phΩC
spl − ΩC

splV
spl
eff +

∞∑

n=1

δnV C
1ph

δEn
ΩC

spl(V
spl
eff )n

)
P

= Q
(
VCΩC

spl + VBΩC
spl − ΩC

splV
spl
eff +

∞∑

n=1

δnVB

δEn
ΩC

spl(V
spl
eff )n

)
P,

(4.13)

where ΩC
spl is the wave operator for the sequence of single-photon ex-

change ladders in the Coulomb gauge and it contains all combinations

of instantaneous and transverse interactions that are not crossing each

other. The wave operator and the corresponding effective interaction

V spl
eff are both expanded into series of increasing number of transverse

interactions

ΩC
spl = ΩI + Ω1ph + Ω2ph + Ω3ph + · · · (4.14)

V spl
eff = V I

eff + V 1ph
eff + V 2ph

eff + V 3ph
eff + · · · . (4.15)
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Figure 4.1: The graphical representation of ΩC
spl, the wave operator for the se-

quence of single-photon exchange ladders in the Coulomb gauge.

The wavy horizontal lines correspond to retarded Breit interac-

tions and the thick horizontal lines correspond to the sequence of

Coulomb exchange ladders that is introduced in Fig. 4.2.

Here, ΩI includes terms that consist only of instantaneous Coulomb

interactions and also the zeroth-order term, two non-interacting elec-

trons. All combinations of instantaneous interactions together with a

single transverse photon are instead deployed in Ω1ph and in this way it

continues up through the orders. Graphically, this expansion of ΩC
spl is

represented by the series of diagrams in Fig. 4.1.

4.2.1 Correlated wavefunctions

The two expansions in Eq. (4.14) and Eq. (4.15) are inserted into the

result of (4.13) and equations for each order of ΩC
spl can be identified. The

lowest-order equation will be equal to the generalised Bloch equation,

first introduced in section 2.2.1,

[ΩI,H0]P = Q
(
VCΩIP − ΩIV

I
eff

)
P. (4.16)

As mentioned in section 2.2.2, the wave operator ΩI can for a helium-like

system be expressed as

ΩI = 1 + SI
2, (4.17)

where SI
2 is the two-body part of the couple cluster operator with only

Coulomb interactions, SI. This expansion is inserted into the Bloch

equation and the result becomes the couple cluster equation for the

two-electron system, which we will refer to as the pair equation with

instantaneous interactions

|ρab〉 = ΓQ(E)VC|ab〉 + ΓQ(E)VC|ρab〉 − ΓQ(E)|ρcd〉〈cd|V I
eff |ab〉 (4.18)

where the pair function is defined as

|ρab〉 = SI
2|ab〉. (4.19)
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Figure 4.2: The graphical representation of the pair equation with instanta-

neous Coulomb interactions in Eq. (4.18). The graphical represen-

tation of the result from solving this equation, the pair function

|ρab〉, is the leftmost diagram on the upper row.

Graphically, equation (4.18) is represented by the diagrams in Fig. 4.2.

The pair equation is solved with an iterative procedure where for each

iteration a term of higher order is added to the pair function. This iter-

ative procedure can computationally be treated to arbitrary order and

since the Coulomb interaction contains the major part of the interaction

between the electrons the resulting pair function is considered to be a

correlated two electron state vector.

4.2.2 Pair functions with a transverse photon

With the correlated wavefunctions, or pair functions, we can proceed to

the next order in the expansion of ΩC
spl. As the third diagram in Fig. 4.1

indicates do this order consist of a Breit interaction sandwiched between

two pair functions. The procedure to generate the pair equation of this

order is to first identify the corresponding Bloch equation

[Ω1ph,H0]P = Q
(
VBΩI + VCΩ1ph − Ω1phV

I
eff

− ΩIV
1ph
eff +

∞∑

n=1

δnVB

δEn
ΩI(V

I
eff )n

)
P. (4.20)

For a helium-like system the wave operator with a single transverse

photon Ω1ph do only consist of the 2-body part of the corresponding clus-
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ter operator S1ph
2

Ω1ph|ab〉 = S1ph
2 |ab〉 = |ρ1ph

ab 〉 (4.21)

and by combining this definition with the relations in (4.17) and (4.19)

one can identify a new pair equation

|ρ1ph
ab 〉 = ΓQ(E)VB|ab〉 + ΓQ(E)VB|ρab〉 + ΓQ(E)VC|ρ1ph

ab 〉
− ΓQ(E)|ρ1ph

cd 〉〈cd|V I
eff |ab〉 − ΓQ(E)|ρcd〉〈cd|V 1ph

eff |ab〉

+ ΓQ(E)
∞∑

n=1

δnVB

δEn
|cd〉〈cd|(V I

eff )n|ab〉

+ ΓQ(E)

∞∑

n=1

δnVB

δEn
|ρcd〉〈cd|(V I

eff )n|ab〉. (4.22)

This pair equation is separated into two parts for practical reason. One

that takes care of the exchange of the transverse photon and the another

that generates Coulomb interactions after the exchange of the trans-

verse photon. The equation for the exchange of the transverse photon

becomes

|ρB
ab〉 = ΓQ(E)VB|ab〉 + ΓQ(E)VB|ρab〉

+ ΓQ(E)

∞∑

n=1

δnVB

δEn
|cd〉〈cd|(V I

eff )n|ab〉

+ ΓQ(E)
∞∑

n=1

δnVB

δEn
|ρcd〉〈cd|(V I

eff )n|ab〉. (4.23)

When solving this equation the expression of the matrix element

of the Breit interaction is modified by expanding the interaction into

spherical waves, where the rightmost ratio in the expression of fB(k, r12)
in Eq. (4.8) is expanded according to the following relation

sin(kr12)

r12
= k

∞∑

l=0

(2l + 1)jl(kr1)jl(kr2)C
l(1) · Cl(2). (4.24)

Here, jl(kri) is the spherical Bessel function and Cl(i) is the angular

tensor proportional to the spherical harmonic tensor. The result of this

expansion becomes the following matrix element of VB

〈rs|VB(E)|tu〉 =

∫
dk 〈rs|fB(k, r12)|tu〉×

[
1

E − εr − εu − k
+

1

E − εs − εt − k

]
, (4.25)
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where the matrix element of fB(k, r12) is given by

〈rs|fB(k, r12)|tu〉 =

∞∑

l=0

[
〈s|V l

G(kr2)|u〉〈r|V l
G(kr1)|t〉

− 〈s|V l
SR(kr2)|u〉〈r|V l

SR(kr1)|t〉
]
. (4.26)

Here, V l
G(kr) and V l

SR(kr) are the single-electron potentials for Gaunt

interaction and scalar retardation, respectively,

V l
G(kr) =

e

2π

√
k(2l + 1) αjl(kr)C

l (4.27)

V l
SR(kr) =

e

2π

√
k

2l + 1

[
√

(l + 1)(2l + 3)jl+1(kr)
{
αC l+1

}l

+
√
l(2l − 1)jl−1(kr)

{
αCl−1

}l

]
. (4.28)

A detailed description of the development of these potentials can be

found in section A.4.1 in the Appendix.

After the exchange of the transverse photon further correlation can

be applied by having more Coulomb interactions exchanged between the

two electrons. The equation corresponding to this action is consisting of

the remaining parts of the full equation for |ρ1ph
ab 〉 in Eq. (4.22)

|ρ1ph
ab 〉 = |ρB

ab〉 + ΓQ(E)VC|ρ1ph
ab 〉 − ΓQ(E)|ρ1ph

cd 〉〈cd|V I
eff |ab〉

− ΓQ(E)|ρcd〉〈cd|V 1ph
eff |ab〉. (4.29)

Pair functions with instantaneous Breit interactions

The Breit interaction can be approximated into an instantaneous in-

teraction, see section A.4.2 in appendix, where the result is the lowest

order relativistic correction to the interaction between the two electrons

V I
B = − e2

4π

(α1 · α2

2r12
+

(α1 · r12)(α2 · r12)

2r312

)
. (4.30)

The replacement of the ”full” Breit interaction with the instantaneous

one becomes the set of equations used within the RMBPT, Sec. 2.3,

|ρBI

ab 〉 = ΓQ(E)V I
B|ab〉 + ΓQ(E)V I

B|ρab〉 (4.31)

|ρ1ph
ab 〉 = |ρBI

ab 〉 + ΓQ(E)VC|ρ1ph
ab 〉 − ΓQ(E)|ρ1ph

cd 〉〈cd|V I
eff |ab〉

− ΓQ(E)|ρcd〉〈cd|V 1ph
eff |ab〉. (4.32)

These equations are also of interest to the work presented in this thesis.

The difference between the results obtained by numerically solving the
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Figure 4.3: The graphical representation of the pair equation with an instan-

taneous Breit interactions in Eq. (4.32). The graphical represen-

tation of the result from solving this equation, the pair function

|ρ1ph
ab

〉, is the leftmost diagram. Here, the horizontal dotted line is

introduced and it represents an instantaneous Breit interaction.

two set of equations, one with the full Breit interaction and the other

instantaneous interaction, becomes the combined effect of correlation

and retardation. An effect that until now has laid beyond what has

been possible to calculate by using an approach based on a numerical

basis set. The graphical representation of Eq. (4.32) is presented in

Fig. 4.3, where the horizontal dotted line represents the exchange of an

instantaneous Breit interaction.

4.3 Open virtual photons

In the expansion of the Breit interaction into spherical waves the two

spatial coordinates of the interaction are separated, which also can be

interpreted as the emission and the absorption of the virtual photon are

being decoupled. The virtual photon can in this way be considered to

be in state where it is open. The potential of the exchange of a virtual

photon is now expressed as a product of two potentials of lower order

and is therefore not considered to be an irreducible potential anymore.

Instead we can, in the no-virtual-pair approximation, consider the po-

tentials responsible for the emission and the absorption of the virtual

photon to be the irreducible potential of lowest order.

The following transformation can now be applied to V C
1ph

V C
1ph(E) = VC + VB(E) → V C

op = VC + V l
k (4.33)
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where V C
op is the new irreducible potential of lowest order in the Coulomb

gauge, which includes the potential of an open virtual photon. The new

potential V l
k is a collective formulation of the single-electron potentials

of Breit interaction and will be presented below. With this transforma-

tion we also move from the complementary space Q, were the number

of photon is conserved, into a general Fock space Q expressed as an

expansion in the number of free transverse photons

Q = Q+Qk +Qkk′ + · · ·
= |rs〉〈rs| + |ij, k〉〈ij, k| + |ij, k, k′〉〈ij, k, k′ | + · · · (4.34)

where the photons are here represented by their linear momentum k, k′, . . .
This leads to a change of the expression for the resolvent ΓQ(E)

ΓQ(E) → ΓQ(E) =
Q

E − H0
= ΓQ(E) + Γk(E) + · · · (4.35)

where the resolvent with one photon Γk(E) is

Γk(E) =
Qk

E − H0
=

|ij, k〉〈ij, k|
E − εi − εj − k

. (4.36)

The unperturbed Hamiltonian is extended, H0 → H0, to include both

the Hamiltonian of the bound electron and the Hamiltonian of the free

electromagnetic field. Notice that when there exist an open photon the

summation over the two-electron combinations in the nominator of Γk

runs over all combinations, not only over the states in the complemen-

tary space.

Before the new irreducible potential will be inserted into the energy-

dependent Bloch equation (3.78) a new formulation of VB(E) is intro-

duced, which is based on the collective notation V l
k of the single-electron

potentials,

VB(E) =
∞∑

l=0

∫ ∞

0
dk V l

k · ΓΛ
k (E)V l

k, (4.37)

where the single-electrons functions are gathered in

V l
k =




V l
G(kr1)
V l

G(kr2)
V l

SR(kr1)
V l

SR(kr2)


 (4.38)

with ΓΛ
k (E) being the following the matrix

ΓΛ
k (E) =




0 Γk(E) 0 0
Γk(E) 0 0 0

0 0 0 −Γk(E)
0 0 −Γk(E) 0


 . (4.39)
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A matrix element of VB(E) can be interpreted as the transition from

the state |tu〉 to 〈rs|, where rightmost V l
k generates all possible combi-

nations of photon emission from the two electrons represented by the

state vector |tu〉. The corresponding energy denominator ΓΛ
k is applied

to each combination and in the scalar product with the leftmost collec-

tion of potentials the photon is considered to be absorbed by electrons

represented by the final state 〈rs|.

4.3.1 Pair functions with an open virtual photon

With the new irreducible potential with an open photon inserted into

the Bloch equation in (3.78) the solution is not longer a wave operator

representing a ladder sequence with non-crossing interactions. Instead

the solution is, in the NVP-approximation, the full wave operator for

the correlation between the electrons. The general solution does, in the

Coulomb gauge, include open transverse photons which also can be in-

terpreted as external electrons that are either absorbed or emitted by

the atomic system.

The new wave operator that includes open photons Ωop is expressed

as an expansion in the number of both opened and closed transverse

photons

Ωop = ΩI + Ωl
k + Ω1ph + Ωll′

kk′ + Ω2ph + · · · , (4.40)

where Ωl
k and Ωll′

kk′ are the wave operators with one and two open pho-

tons, respectively. In this expansion Ω2ph is represented by diagrams

with both crossing and non-crossing photons. The implementation in

this thesis is restricted to helium-like systems with no external pho-

tons. For that reason the model space do not include any free photons

and the effective operators will therefore only include closed photons

Heff = HI
eff +H1ph

eff +H2ph
eff + · · · (4.41)

Veff = V I
eff + V 1ph

eff + V 2ph
eff + · · · . (4.42)

The wave operators with open photons do not either have any physi-

cal representation for a helium-like system, instead they are used as

stepstones in the process of generating all combinations with contracted

photons.

In a similar way as above Bloch equations can be constructed for

each of the wave operators in the expansion in (4.40). The Bloch equa-

tion of lowest order regarding the number of transverse photons be-

comes again the generalised Bloch equation from standard MBPT. In

the next order of the expansion there is an open virtual photon involved

and the Bloch equation is identified as

[Ωl
k,H0]P = Q

(
VCΩl

k + V l
kΩI + V l′

k′Ωll′

kk′P − Ωl
kPV

I
eff

)
P. (4.43)
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Figure 4.4: The graphical representation of the pair equation with an open

photon in Eq. (4.48). The solution of this equation, the pair func-

tion with an open photon |ρl

ab
(k)〉, is represented graphically by

the leftmost diagram on the upper row.

where the second and third term on the righthand side correspond to

the emission and the absorption of a photon, respectively. Here, the

absorption takes place when one goes from having two open photons

down to a single open photon. At present time it is not feasible to do

computations where two or more overlapping transverse photons are

combined with correlation and for that reason we will neglect all terms

with two or more open virtual photons. The theory is there, but not the

computation possibilities.

A pair equation with an open virtual photon is obtained by using the

same method as above. First, the wave operator Ωl
k is first expanded

into terms of the cluster operator and since the potentials in V l
k are

single-electron potentials there will exist an additional 1-body part in

the expansion,

Ωl
k = Sl

1,k + Sl
2,k. (4.44)

This expansion and the expansion of ΩI in Eq. (4.17) are inserted into

the Bloch equation in (4.43) and two coupled equations can be identified

[Sl
1,k,H0]P = V l

kP (4.45)

[Sl
2,k,H0]P = V l

kS
I
2P + VC(Sl

1,k + Sl
2,k)P − (Sl

1,k + Sl
2,k)PV

I
eff . (4.46)

Here, the term with the reduction of two photons down to one photon

has been omitted. The state representations of these equations in form
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of a single-particle equation and a pair equation

|ζ l
ab(k)〉 = ΓΛ

k (E)V l
k|ab〉 (4.47)

|ρl
ab(k)〉 = ΓΛ

k (E)V l
k|ρab〉 + ΓΛ

k (E)VC|ζ l
ab(k)〉 + ΓΛ

k (E)VC|ρl
ab(k)〉

− ΓΛ
k (E)|ζ l

cd(k)〉〈cd|V I
eff |ab〉 − ΓΛ

k (E)|ρl
cd(k)〉〈cd|V I

eff |ab〉 (4.48)

are formulated by using the definition in (4.19) together with the follow-

ing new definitions

|ζ l
ab(k)〉 = Sl

1,k|ab〉 (4.49)

|ρl
ab(k)〉 = Sl

2,k|ab〉. (4.50)

The solution of the single-electron equation in (4.47) is achieved by a

single-step calculation, while the pair equation in (4.48) is solved with

an iterative procedure. This procedure is similar to the one used for

generating correlated state vectors. The difference is that here a contri-

bution with an additional Coulomb interaction crossing the transverse

photon is added to the solution for each iteration. In comparison with

the pair equation with a full transverse photon, Eq. (4.23), it can be

noticed that the model state contribution becomes a part of the itera-

tive process instead of a separated summation over energy-differences.

With this iterative procedure the pair function with an open photon can

be solved to self-consistency. The graphical representation of the new

pair equation with an open photon, Eq. (4.48), is presented in Fig. 4.4.

4.3.2 Pair functions with a contracted photon

When the wave operator, or more correctly the pair function, with an

open virtual photon is generated one can solve the Bloch equation for

the wave operator with a closed transverse photon Ω1ph,

[Ω1ph,H0]P = Q
(
V l

kΩ
l
kP + VCΩ1phP − ΩIPV

1ph
eff − Ω1phPV

I
eff

)
P. (4.51)

The absorption of the open virtual photon is taking place in the first

term on the righthand side of this equation. The corresponding pair

equation is achieved by using the above introduced definitions of ΩI,

Ω1ph and Ωl
k

(E −H0)|ρ1ph
ab 〉 = |rs〉〈rs|V l

k|ζ l
ab(k)〉 + |rs〉〈rs|V l

k|ρl
ab(k)〉 + |rs〉〈rs|VC|ρph

ab 〉
− |ρ1ph

cd 〉〈cd|V I
eff |ab〉 − |ρcd〉〈cd|V 1ph

eff |ab〉. (4.52)

Here, we introduce the convention that repeated notations of linear and

angular momentum automatically include the integration and summa-

tion over k and l,

〈rs|V l
k|ρl

ab(k)〉 ≡
∞∑

l=0

∫ ∞

0
dk 〈rs|V l

k|ρl
ab(k)〉. (4.53)



Pair functions with a virtual photon · 53

=

6r 6s

66a 66b

+

6r 6s

66a 66b

-r r +

6r 6s

66a 66b

6r 6s

66a 66b

r r

− −

6r 6s

66a 66b

66c/d 66d/c

V I
eff

6r 6s

66a 66b

66c/d 66d/c

V 1ph
eff

Figure 4.5: The graphical representation of the pair equation in Eq. (4.52),

where the open photon is absorbed and further Coulomb interac-

tions are added after the contracted photon. The pair function,

|ρ1ph
ab

〉, is represented graphically by the leftmost diagram on the

upper row.

The pair equation in (4.52) is graphically represented in Fig. 4.5.





CHAPTER 5

Relativistically covariant MBPT

In this chapter we will consider the implementation of virtual pairs,

VP, into the formalism presented in Chapter 3, where the virtual pairs

are the intermediate combinations of particles and anti-particles that

exist in the perturbation expansion of relativistic quantum field theo-

ries. In section 3.1.1 the existence of the virtual pairs is mentioned and

that they, in general, are included in the irreducible potentials of higher

order. In this chapter the covariant evolution operator developed by

Lindgren et al.[45] is going to be introduced and we will show that, with

the help of this covariant evolution operator, it is possible to express

some of these irreducible potentials with virtual pairs as the product of

two potentials of lower order. In this way it is possible to derive a set

of pair equations with a similar structure as the set of equations that is

presented in Chapter 4 for the no-virtual-pairs, NVP, approximation.

5.1 Covariant evolution operator

The number of possible combinations of particles and holes in the in-

coming and the outgoing states are for the standard evolution operator

(3.3) subpressed by its non-relativistically covariant treatment of time.

The covariance condition of treating time and spatial variables on equal

footing is violated in the standard evolution operator, when the time of

the interaction points are bound within the interval tn ∈ [t0, t], while

the integration over the spatial variables is performed over the whole

position space. The result is that the incoming and the outgoing states

can either be all particle states, t0 < t, or all hole states, t0 > t, see Fig.

5.1.

55
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Figure 5.1: The graphical visualisation of the two possibilities one has with

the standard time evolution operator. The incoming and outgoing

states are all particle states, t > t0, or all hole states, t0 > t.

In a relativistically covariant formulation the time interactions are

performed over all time, tn ∈ [−∞,∞]. The most common technique

taking this into action is the S-matrix formalism, where states are prop-

agated through time under the influence of the perturbation from t0 =
−∞ to t = ∞

〈cd|S|ab〉 = 〈cd|U(∞,−∞)|ab〉. (5.1)

To implement the S-matrix into the energy-dependent MBPT is not an

option. First of all, the QED-effects are with the S-matrix formalism

gathered in energy contributions to the total energy. This does not cor-

respond to the procedure we presented in the previous chapter where

the effects instead were included in the state vectors, which makes it

possible to further apply interactions to these state vectors to generate

higher-order effects with a scheme of iterations. Secondly, the existence

of an extended model space within the energy-dependent MBPT proce-

dure implies that there exists matrix elements of the effective operators

where the initial and the final states do not have the same energy. Since

the S-matrix requires energy conservation between the initial and final

states, this becomes a second argument that another procedure has to

be considered in order to have a relativistically covariant MBPT proce-

dure.

The alternative to the S-matrix is to consider the time transforma-

tion of charge distributions ρ(x), instead of states, under the influence

of the perturbation. The charge distribution is defined as [61]

ρ(x) ≡ ψ̂†(x)ψ̂(x) (5.2)

and the time transformation of a single charge distribution represented

in the space-time coordinate x0 to another distribution in x is defined to
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Figure 5.2: The graphical visualisation of two of the possible combinations

included in the covariant evolution operator of first order for a

hydrogen-like system in Eq. (5.4).

be the covariant evolution operator for a hydrogen-like system

UCov
H (t; t0) =

∫
d3x ρ(x)

∫
d3x0 U(∞,−∞) ρ(x0). (5.3)

This definition includes the constraint that one of the electron field op-

erators in each distribution is contracted with a field operator in the

perturbation. This is illustrated for the covariant evolution operator of

first order in equation (5.4).

In the covariant evolution operator it is possible to have all combi-

nations of incoming and outgoing states, since the charge distributions

include summations over both positive and negative energy states. Two

possible combinations are illustrated in Fig. 5.2 and by using Feyn-

man’s statement, that the negative energy states can be considered to

move backwards in time, the two examples can be interpreted in the

following way. In the leftmost diagram a negative energy state at t0 is

propagating down towards t = −∞ where it interacts with the electro-

magnetic field and becomes a positive energy state which propagates to

the final time. The other example starts with a positive energy state

propagating beyond the final time, where it absorbs or emits a photon

which results in a negative energy state that travels backwards to the

final time t. Both these examples are generated by the first-order of the
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covariant evolution operator in relation (5.3)

U
Cov,(1)
H (t; t0) =

∫
d3x ρ(x)

∫
d3x0 U

(1)(∞,−∞) ρ(x0)

=

∫∫
d3x d3x0 ×

ψ̂†(x)ψ̂(x)

[
− i

∫
d4x1 ψ̂

†(x1)eα
µAµ(x1)ψ̂(x1)

]
ψ̂†(x0)ψ̂(x0)

=

∫∫
d3x d3x0 ×

ψ̂†(x)

[
− i

∫
d4x1 iSF(x, x1)eα

µAµ(x1)iSF(x1, x0)

]
ψ̂(x0),

(5.4)

where the electron propagators SF(x′, x) are the results of the contrac-

tions.

5.1.1 Physical interpretation

It is here important to comment that the outgoing state of the transfor-

mation

|χ(t)〉 = UCov(t, t0)|χ(t0)〉 (5.5)

does not have to represent a physical state. The reason for this is that

the charge is not necessary conserved in the transformation with UCov.

This problem is indicated in both the examples illustrated in Fig. 5.2

where the initial charge is not equal to the final charge. How should this

be interpreted and is it still feasible to use this evolution operator for

doing calculations? The solution lies in the way negative energy states,

in general, are interpreted and also treated. It is commonly known that

a negative energy state can be interpreted as a positron with positive

energy propagating in time in the positive direction and this positron

will instead vanish in the interaction where we consider the negative

electron state to be created. The positron is produced together with an

electron in a charge conserving virtual pair creation, where the electron-

positron pair is created by a virtual photon. This implies that the neg-

ative energy state is representing a virtual particle, a particle which

will only exist between two interactions and do not have any physical

representation. Usually, the effects with virtual pairs are treated as

irreducible effects with two or more virtual photons but with the covari-

ant evolution operator we will show that it is possible to reduce some of

these irreducible effects into products of lower-order effects. This can be
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compared to the open virtual photons presented in the previous chap-

ter. Here, an outgoing negative electron state is considered as an open

virtual hole. In order to have any physical representation of the final re-

sult the open virtual electron state has to be perturbed into a final state

for which the charge conservation between the initial and final state is

not violated.

5.2 Helium-like systems

To proceed into a helium-like system two additional charge distributions

are included, one incoming and one outgoing,

UCov
He (t, t′; t0, t

′
0) =

∫∫
d3x d3x′ρ(x)ρ(x′)×

∫∫
d3x0 d3x′0 Uγ(∞,−∞)ρ(x0)ρ(x

′
0) (5.6)

where all four time variables are handled separately, in order to pre-

serve the relativistically covariance of the operator.

The idea is to use the covariant evolution operator to formulate a

relativistically covariant MBPT procedure and this can be performed

by replacing the standard time evolution operator with the covariant

one. The procedure of deriving an energy-dependent Bloch equation for

relativistically covariant interactions is analogous to the one presented

in the end of chapter 3 with the final result, relation (3.84), unchanged

[ΩCov,H0]P = Q

(
VCov(E)ΩCov − ΩCovVeff +

∞∑

n=1

δnVCov(E)

δEn
ΩCov(Veff)n

)
P.

(5.7)

Instead modifications appear in the expressions of the irreducible po-

tentials in VCov(E)

VCov(E) = V Cov
1ph (E) + V Cov

2ph (E) + V Cov
se (E) + V Cov

vc (E) + · · · (5.8)

In order to implement the Bloch equation in (5.7) into real calculations

and introduce solvable pair equations, the expressions of the irreducible

potentials have to be derived.

In this thesis the computations are limited to the exchange of a sin-

gle transverse photon together with correlation and the existence of vir-

tual pairs. For that reason only the expression of V Cov
1ph (E) will be con-

sidered. The incoming and outgoing correlated wave functions are not

going to include any intermediate negative energy states. These will

only appear directly before and after the transverse photon.
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5.2.1 One photon exchange

The covariant evolution operator for the exchange of a single photon is

obtained by inserting the standard evolution operator of the considered

effect, Eq. (3.8), into the definition of the covariant evolution operator

for a helium-like system, Eq. (5.6)

UCov
1ph (t, t′; t0, t

′
0) =

∫∫
d3x d3x′ ρ(x)ρ(x′)×

∫∫
d3x0 d3x′0 U1ph(∞,−∞) ρ(x0)ρ(x

′
0)

=

∫∫
d3x d3x′ ψ̂†(x)ψ̂†(x′)

∫∫
d3x0 d3x′0×

[
1

2

∫∫
d4x1 d4x2 iSF(x, x1) iSF(x′, x2)×

(−i)IC(x1, x2)iSF(x1, x0) iSF(x2, x
′
0) e−γ(|t1|+|t2|)

]
×

ψ̂(x′0)ψ̂(x0), (5.9)

where the electron propagators

SF(x′, x) =

∫
dω

2π
e−iω(t′−t)SF(ω,x′,x)

=

∫
dω

2π
e−iω(t′−t) 〈x′|j〉〈j|x〉

ω − εj + iηj
(5.10)

are again the result of electron field operators in the charge distribu-

tions contracting with field operators in the perturbations. The nota-

tion ηj in the expression of the electron propagator is defined as ηj =
η sign(εj), where η is an infinitesimal positive number introduced to

displace the pole in the denominator away from the real axis. The ex-

pression of the interaction term within the Coulomb gauge IC(x′, x), in-

troduced in section 4.1, can be expressed as

IC(x′, x) =

∫
dz

2π
e−iz(t′−t)IC(z,x′,x), (5.11)

where the Fourier transform IC(z,x′,x) is

IC(z,x′,x) =
e2

4πr12
+

∫ ∞

0
dk

2kfB(k, r12)

z2 − k2 + iη
. (5.12)

The general expression of 〈rs|V Cov
1ph |tu〉 is derived by calculating the

corresponding matrix element of UCov
1ph , where |tu〉 and |rs〉 are free to

represent all combinations of particle and hole states. For simplicity all
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calculations will be performed in the equal time approximation where

we will have a single final time t and a single initial time t0,

UCov
1ph (t, t′; t0, t

′
0) → UCov

1ph (t; t0). (5.13)

This approximation will not affect the result of 〈rs|V1ph|tu〉 which is

time-independent.

The state |tu〉 is considered to be a perturbed state, a state in the

middle of a ladder of perturbations, and it has the time-dependence

e−it0(E−εt−εu)e−γ|t0|, (5.14)

where E is the energy of the initial state of the ladder. The initial time

of the transformation with UCov
1ph (t; t0) can be any time in the interval

t0 ∈ [−∞,∞] and to cover all possibilities of the transformation an inte-

gration over t0 is introduced. The matrix element to calculate is then

〈rs|UCov
1ph (t; t0)|tu〉 = −i

∫∫∫∫
dω1

2π

dω2

2π

dω3

2π

dω4

2π

∫
dz

2π
×

Sr
F(ω3)S

s
F(ω4)〈rs|IC(z)|tu〉 St

F(ω1)S
u
F(ω2)×

e−it(ω4+ω3−εr−εs)

∫
dt0 e−it0(E−ω1−ω2)e−γ|t0|×

∫∫
dt1 dt2 e−it1(ω1−z−ω3) e−γ|t1| e−it2(ω2+z−ω4) e−γ|t2|,

(5.15)

where the electron field operators have vanished in the interactions

with the electron states in the initial and final states. The superscripts

of the electron propagators indicate that the energies in the denomina-

tor of propagators are coupled to the single electron states in the initial

and final states.

The first step in the calculations is to perform the integrations over

the times t1, t2 and t0 with the result

2π∆γ(ω1 − z − ω3) 2π∆γ(ω2 + z − ω4) 2π∆γ(E − ω1 − ω2), (5.16)

where the ∆γ-function is defined as

2π∆γ(ω) =

∫ ∞

−∞
dt e−iωte−γ|t| =

2γ

ω2 + γ2
. (5.17)

In the limit γ → 0 the gamma-function is equal to the Dirac delta func-

tion, δ(k),

lim
γ→0

∆γ(k) = δ(k), (5.18)
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which implies that the results of the time-integrations are constraints

of energy conservation between incoming and outgoing energy parame-

ters,

〈rs|UCov
1ph (t; t0)|tu〉 = −i

∫∫∫∫
dω1

2π

dω2

2π

dω3

2π

dω4

2π

∫
dz

2π
×

Sr
F(ω3)S

s
F(ω4) 〈rs|IC(z)|tu〉 St

F(ω1)S
u
F(ω2)×

e−it(ω4+ω3−εr−εs) 2π∆γ(E − ω1 − ω2)×
2π∆γ(ω1 − z − ω3) 2π∆γ(ω2 + z − ω4). (5.19)

The time term is handled separately to simplify the calculations of

the remaining integrations. According to relation (5.18) and the results

in (5.16) the following relation can be implied in the adiabatic limit,

E = ω1 + ω2 = ω3 + ω4, (5.20)

and the time-dependence of the outgoing state at the time t becomes

e−it(E−εr−εs). (5.21)

This approximation will not influence the structure of the matrix ele-

ment of V Cov
1ph which will depend on the locations of the poles in the elec-

tron propagators SF(ω), the interaction term IC(z) and ∆γ-functions.

The integrations of the energy parameters are performed in the fol-

lowing order ω4, ω3, ω2, z and in the end ω1. The structures of the in-

tegrations over ω4 and ω3 are the same and one can use the following

relation
∫

dω

2π

1

ω − a+ iηj
2π∆γ(b− ω) =

1

b− a+ iγj
(5.22)

to obtain the following results for the ω3-integration

∫
dω3

2π
Sr

F(ω3) 2π∆γ(ω1 − z − ω3) =
∫

dω3

2π

1

ω3 − εr + iηr
2π∆γ(ω1 − z − ω3) =

1

ω1 − z − εr + iγr
(5.23)

and for the ω4-integration

∫
dω4

2π
Ss

F(ω4) 2π∆γ(ω2 + z − ω4) =
1

ω2 + z − εs + iγs
. (5.24)

All integrations over energy parameters in this chapter are performed

in detail in Appendix C.
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The third integral over ω2 will include the result of the ω4 integral

above, the electron propagator Su
F(ω2) and ∆γ(E −ω1−ω2). The result is

∫
dω2

2π

1

ω2 − εu + iηu

1

ω2 + z − εs + iγs
2π∆γ(E − ω1 − ω2)

≈ 1

E − ω1 − εu + iγu

1

E − ω1 + z − εs + 2iγs
, (5.25)

where the procedure of the performed integration and the applied ap-

proximation are considered in Appendix C.

The Breit path

At this point when we have reached the z-integration, the calculation

is separated into a Coulomb path and a Breit path according to the re-

lation in Eq. (5.12). The interaction term of the Breit interaction is

depending on the energy parameter z of the photon and the integral

over z becomes

∫
dz

2π

1

a− z + iγr

1

b+ z + 2iγs

1

z2 − k2 + iη

=
1

a+ b+ 2iγs + iγr

∫
dz

2π

[ 1

a− z + iγr
+

1

b+ z + 2iγs

] 1

z2 − k2 + iη
,

(5.26)

where a = ω1 − εr and b = E − ω1 − εs. The result of the integration

becomes

−i

2k(a+ b+ 2iγs + iγr)

[ 1

a− (k − iγ)r
+

1

b− (k − iγ)s

]
. (5.27)

The last integration is performed over ω1

∫
dω1

2π

1

E − εu − ω1 + iγu

1

ω1 − εt + iηt
×

[ 1

ω1 − εr − (k − iγ)r
+

1

ω1 − εt − (k − iγ)s

]

=
1

E − εu − εt + iγu

∫
dω1

2π

[ 1

E − εu − ω1 + iγu
+

1

ω1 − εt + iηt

]
×

[ 1

ω1 − εr − (k − iγ)r
+

1

E − εs − ω1 − (k − 2iγ)s

]
(5.28)

and in the γ → 0 limit the result becomes

−i

E − εt − εu

[
± t±r∓

A±
± r±u±

B∓
± s±t±

C∓
± u±s∓

D±

]
, (5.29)
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Figure 5.3: The 16 diagrams that visualise the 32 combinations one can ex-

tract from the potential of the single-photon exchange in Eq.

(5.32). Horizontal photon lines in the diagrams include both time-

orders while the sloped ones include only the visualised time-

order.

where t± etc. are projection operators and the sign besides them indi-

cates whether the operator projects out single-electron states with pos-

itive or the negative energies. The expressions of A±,B∓,C∓ and D± in

the denominators are

A± = εt − εr ± k

B∓ = E − εu − εr ∓ k

C∓ = E − εt − εs ∓ k

D± = εu − εs ± k. (5.30)

The results of the integrations over the energy parameters are col-

lected and the final result of the matrix element of UCov
1B (t; t0), in the

adiabatic limit, γ → 0, is

〈rs|UCov
1B (t)|tu〉 =

i e−it(E−εr−εs)

E − εr − εs
〈rs|V Cov

B |tu〉 1

E − εt − εu
, (5.31)
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where for the single photon potential we obtain the following result

〈rs|V Cov
B |tu〉 =

〈
rs

∣∣∣∣
∫ ∞

0
dk fB(k, r12) ×

[
± t±r∓

A±
± r±u±

B∓
± s±t±

C∓
± u±s∓

D±

]∣∣∣∣tu
〉
. (5.32)

The upper and lower sign in each term, with the sign in the front in-

cluded, must be used consistently for each term. The states not bound

by any projection operator are free to be particle or hole states without

any constraints from the other states. In total there exist 32 combina-

tions within the square-bracket and these are grouped and visualised by

the 16 diagrams in Fig. 5.3. Horizontal photon lines in the diagrams in-

clude both time-orders while the sloped ones include only the visualised

time-order.

Above the exchange of the Breit interaction is taking place between

the electrons in a perturbed state. An expression of the matrix element

of V Cov
B when the initial state is an unperturbed state, t0 = −∞, is also

of interest. The incoming electron propagators in the expression of the

covariant evolution operator in (5.9) will now vanish according to

lim
t0→−∞

∫
d3x iSF(x, x0)ψ̂(x0) = ψ̂(x), (5.33)

which can be derived by using the explicit expression of electron propa-

gator, Eq. (A.15). The matrix element to calculate is then

〈rs|UCov
1B (t)|ab〉 = − i

∫∫
dω1

2π

dω2

2π

∫
dz

2π
Sr

F(ω1)S
s
F(ω2)〈rs|IB(z)|ab〉×

e−it(ω1+ω2−εr−εs)

∫
dt1 e−it1(εa−z−ω1) e−γ|t1|×

∫
dt2 e−it2(εb+z−ω2) e−γ|t2| (5.34)

and if the integrations are performed in the following order t1, t2, ω1, ω2

and z the calculations are more or less the same as in the case above,

where the structure of the integrals over ω1 and ω2 are equal to the

integrals presented in (5.23) and (5.24). In the limit γ → 0 the final

result becomes

〈rs|UCov
1B (t;−∞)|ab〉 =

e−it(εa+εb−εr−εs)

εa + εb − εr − εs
〈rs|V Cov

B |ab〉

=
e−it(E−εr−εs)

E − εr − εs
〈rs|V Cov

B |ab〉, (5.35)
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where

〈rs|V Cov
B |ab〉 =

〈
rs

∣∣∣∣
∫

dk fB(k; r12)
[ r±
εa − εr ∓ k

+
s±

εb − εs ∓ k

]∣∣∣∣ab
〉

=

〈
rs

∣∣∣∣
∫

dk fB(k; r12)
[ r±
E − εr − εb ∓ k

+
s±

E − εs − εa ∓ k

]∣∣∣∣ab
〉
.

(5.36)

The Coulomb part

Along the Coulomb path the two remaining integrations over z and ω1

have the same structure
∫

dω

2π

1

a− ω + iγi

1

ω + b+ iγj
, (5.37)

where γi and γj are connected to the energies εi and εj located in the

constants a and b, respectively. For the integration over z the constants

are given by

a = ω1 − εr & b = E − ω1 − εs (5.38)

and for the ω1-integration a and b are

a = E − εu & b = −εt. (5.39)

The result of the integration in (5.37) is

∓ i
i±j±

a+ b± iγ
(5.40)

and with this result applied to the z and ω1 integrations the final result

becomes

〈rs|UCov
1C (t; t0)|tu〉 =

i e−it(E−εr−εs)

E − εr − εs
〈rs|V ±

C |tu〉 1

E − εt − εu
, (5.41)

where the matrix element of V ±
C is

〈rs|V ±
C |tu〉 = 〈rs|(∓r±s±)VC(∓t±u±)|tu〉 (5.42)

and VC is the standard Coulomb interaction

VC =
e2

4πr12
. (5.43)

The final expression in (5.42) is not the expected one, since the pos-

sible combinations will only include double-hole states before or/and af-

ter the interaction and there are no single-hole states present. With a
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double-hole state we refer to a two electron state representing two holes

while a single-hole state is representing a particle and a hole.

Is it then possible to have an intermediate single-hole state before

or/and after a Coulomb interaction? The answer is yes, but we can not

consider a single Coulomb interaction to verify this, instead combina-

tions including two or more interactions have to be considered. Some of

these combinations are included in the irreducible potentials of higher

order that are not numerically implemented in this thesis, for example

the effect of having a single-hole state between two Coulomb interac-

tions.

Reducible combinations of Coulomb and Breit interactions

Focus now on the reducible effect with two interactions

〈rs|UCov
2phLad|ab〉 = −

∫∫∫∫
dω1

2π

dω2

2π

dω3

2π

dω4

2π

∫∫
dz1
2π

dz2
2π

e−it(ω3+ω4−εr−εs)

Sr
F(ω3)S

s
F(ω4)〈rs|IC(z2)|tu〉St

F(ω1)S
u
F(ω2)〈tu|IC(z1)|ab〉∫

dt1 e−it1(εa−z1−ω1) e−γ|t1|

∫
dt2 e−it2(εb+z1−ω2) e−γ|t2|

∫
dt3 e−it3(ω1−z2−ω3) e−γ|t3|

∫
dt4 e−it4(ω2+z2−ω4) e−γ|t4|.

(5.44)

The time-propagation takes place from t0 = −∞ to t and |ab〉 is an un-

perturbed state.

Here, a Coulomb interaction is chosen to be the first interaction

IC(z1) = VC and it is followed by an arbitrary interaction IC(z2) rep-

resented by the full interaction term in (5.12). First, the integrations

over t1, t2, t3 and t4 are performed with the result of four ∆γ-functions

according to the relation in (5.17). Next the integration over z1 is per-

formed and it will only include two ∆γ-functions since I(z1) = VC is

independent of z1. The result of the z1-integration becomes

2π∆2γ(εa + εb − ω1 − ω2) = 2π∆2γ(E − ω1 − ω2), (5.45)

where the following relation for the ∆γ-functions is used when perform-

ing the integration

∫
dx∆γ(x− a)∆κ(x− b) = ∆γ+κ(a− b). (5.46)

With the results inserted into the considered matrix element of UCov
2phLad
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with an initial Coulomb interaction,

〈rs|UCov
2phC∗|ab〉 = −

∫∫∫∫
dω1

2π

dω2

2π

dω3

2π

dω4

2π

∫
dz2
2π

Sr
F(ω3) S

s
F(ω4)×

〈rs|IC(z2)|tu〉 St
F(ω1)S

u
F(ω2)〈tu|VC|ab〉×

e−it(ω4+ω3−εr−εs) 2π∆2γ(E − ω1 − ω2)×
2π∆γ(ω1 − z − ω3) 2π∆γ(ω2 + z − ω4), (5.47)

one can identify the expression of 〈rs|UCov
1ph |tu〉 from Eq. (5.19) and rewrite

the matrix element of UCov
2phC∗ as

〈rs|UCov
2phC∗|ab〉 = −i 〈rs|UCov

1ph |tu〉〈tu|VC|ab〉. (5.48)

The matrix element of UCov
1ph includes, as shown above, the exchange of

both a Coulomb interaction and a Breit interaction and by replacing

it with the matrix elements in Eq. (5.31) and Eq. (5.41), the result

becomes

〈rs|UCov
2phC∗|ab〉 = 〈rs|UCov

CB |ab〉 + 〈rs|UCov
CC |ab〉, (5.49)

where the Coulomb-Breit exchange is

〈rs|UCov
CB |ab〉 = eit(E−εr−εs) 〈rs|V Cov

B (E)|tu〉〈tu|VC|ab〉
(E − εr − εs)(E − εt − εu)

= eit(E−εr−εs)〈rs|Γ±(E)V Cov
B (E)Γ±(E)VC|ab〉 (5.50)

and the Coulomb-Coulomb exchange becomes

〈rs|UCov
CC |ab〉 = eit(E−εr−εs)

〈rs|V ±
C |tu〉〈tu|VC|ab〉

(E − εr − εs)(E − εt − εu)

= eit(E−εr−εs)〈rs|Γ±(E)V ±
C Γ±(E)VC|ab〉. (5.51)

Here, the resolvent Γ±(E) includes the summation over all combinations

of positive and negative energy states. Notice here that the effect of

having all combinations of the intermediate states between the two po-

tentials in (5.50) and (5.51) is located in the second of the two potentials

and where the first Coulomb potential is treated as usual. The reason

for this is that parts of the propagation of the electrons between the in-

teractions is merged into V Cov
B and V ±

C by the definition of the covariant

evolution operator for the single photon exchange in Eq. (5.9).

In equation (5.50) it is confirmed that a single-hole state can be

present after the exchange of a Coulomb interaction if it is followed by a

Breit interaction. The existence of a single-hole state before a Coulomb

interaction can be stated by changing the positions of the Coulomb and
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Figure 5.4: The graphical representations of three examples where there ex-

ist single-hole states before (a), after (b) and both before and after,

(c) & (d), the exchange of a transverse photon. In all these exam-

ples there exist resolvents with vanishing denominators. It can be

shown that in combination with the expression of the potential of

the single-photon exchange, Eq. (5.32), these vanishing denomi-

nators are eliminated.

Breit interaction in the calculation of the matrix element in (5.44). The

result

〈rs|UCov
BC |ab〉 = eit(E−εr−εs) 〈rs|VC(E)|tu〉〈tu|V Cov

B |ab〉
(E − εr − εs)(E − εt − εu)

= eit(E−εr−εs)〈rs|Γ+(E)VC(E)Γ±(E)V Cov
B |ab〉 (5.52)

is achieved by identifying the expression of the matrix element in (5.34)

and the matrix element 〈tu|V Cov
B |ab〉 is given in Eq. (5.36). In the last

resolvent, Γ+(E) = Γ(E), the summation runs only over the positive

energy states, since the negative energy states are only considered to

present directly before and after the exchange of the transverse photon.

Vanishing denominators

The expressions for the two-photon exchanges in (5.50) and (5.52) in-

clude resolvents that have vanishing denominators, this also known

as the Brown-Ravenhall disease and is discussed in section 2.3. Alone

these resolvents will include singularities, but in combination with V Cov
B

they will be regular.

We consider first the combination of the two-photon effect in (5.50)

where the intermediate state |tu〉 is a single-hole state, εt < 0 and εu >
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0 and both single-electron states in the final state |rs〉 have positive

energies. This effect is graphically visualised by diagram (a) in Fig. 5.4.

The matrix element of the Breit potential is for this example

〈rs|V Cov
B (E)|tu〉 =

〈
rs
∣∣∣
∫

dk fB(k)
[ −1

εt − εr − k
+

1

E − εr − εu − k

]∣∣∣tu
〉
,

(5.53)

which also can be expressed

〈rs|V Cov
B (E)|tu〉 =

〈
rs
∣∣∣
∫

dk fB(k)
[ −(E − εt − εu)

(εt − εr − k)(E − εr − εu − k)

]∣∣∣tu
〉
.

(5.54)

The factor (E−εt−εu) in the numerator will eliminate the ”diseased” de-

nominator and the remaining denominators in the considered example

are finite

−1

E − εr − εs

1

εt − εr − k

1

E − εr − εu − k
. (5.55)

The similar situation occur when the single-hole state instead is lo-

cated after the Breit interaction, see diagram (b) in Fig. 5.4. The de-

nominators in the potential are here

1

εt − εr + k
+

1

E − εt − εs − k
(5.56)

which with simple algebra can be rewritten as

(E − εr − εs)
1

εt − εr + k

1

E − εt − εs − k
(5.57)

and the troublesome denominator is again removed by the factor from

the factorisation.

In the last example there are single-hole states located both before

and after the retarded interaction, see diagram (c) and (d) in Fig. 5.4.

The procedure is analogous to the ones presented above with the excep-

tion that the algebra is a bit more messier. The denominators in the

potential for this case are

−1

εt − εr − k
+

−1

E − εt − εs + k
+

1

E − εu − εr − k
+

1

εu − εs + k
(5.58)

and with some algebra they can be factorised into

(E − εr − εs)(E − εt − εu)

(E − εu − εr − k)(E − εt − εs + k)

[ 1

εu − εs + k
− 1

εt − εr − k

]
. (5.59)
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This factorisation scheme can be applied to every combination of

V Cov
B that include incoming and outgoing singel hole state with the re-

sult that the ”diseased” denominator vanishes. This can be summarised

as that the effect of the Brown-Ravenhall disease will never appear as

long as the combinations Γ±V Cov
B Γ± and Γ±V Cov

B are treated as a single

units.

5.2.2 Bloch equations within the covariant procedure

The idea now is to implement the expression of the covariant single-

photon exchange potential,

V Cov
1ph = V ±

C + V Cov
B (5.60)

into the Bloch equation in Eq. (5.7) and derive a set of pair equations

that have the same structure as the set of equations presented in the

previous chapter for the NVP approximation. An advantage with the

expression of V Cov
1ph is that all combinations of incoming and outgoing

particle and hole states are included in a single expression, but there is

a drawback. It is that the numerical computations will be unstable if the

combination Γ±V Cov
B Γ± and Γ±V Cov

B are not treated as single units. The

implementation of V Cov
1ph into the Bloch equation, Eq. (5.7), will therefore

require a more lengthy procedure compared to the one introduced in the

previous chapter.

The treatment of virtual pairs in this thesis is restricted to the com-

putations of the exchange of a single transverse photon together with

correlation and the existence of virtual pairs. According to this is the

expansion of the full covariant wave operator

ΩCov
Tot = ΩCov

spl + ΩCov
dpl + ΩCov

sse + · · · (5.61)

already truncated after the first term, where the subscrips of the differ-

ent terms in the expansion corresponds to the ”single-photon ladder”,

the ”double-photon ladder” and the ”screened self energy”, respectively.

This sequence of single-photon ladders is generated by using the above

considered single-photon exchange potential V Cov
1ph . We are also restrict-

ing the virtual pairs to only be present directly before and after the ex-

change of the virtual photon and according to the discussion following

Eq. (5.50) and (5.51) we can apply the following transformation upon

V Cov
1ph

V Cov
1ph → V Cov

1ph = VC + V Cov
B , (5.62)

where V ±
C is replaced with the ordinary Coulomb interaction. The pres-

ence of the virtual pairs are now only located in the expression of V Cov
B

and in the intermediate resolvents Γ±.
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The extended Bloch equation for ΩCov
spl can after insertion of the trans-

formed potential be identified as

[ΩCov
spl ,H0]P = Q

(
V Cov

1ph ΩCov
spl − ΩCov

spl Veff +

∞∑

n=1

δnV Cov
1ph

δEn
ΩCov

spl (Veff)n
)
P

= Q
(
VCΩCov

spl + V Cov
B ΩCov

spl − ΩCov
spl Veff

+
∞∑

n=1

δnV Cov
B

δEn
ΩCov

spl (Veff )n
)
P. (5.63)

This equation can be separated into the two following Bloch equations

[Ω±
I ,H0]P = Q

(
VCΩ±

I − Ω±
I V

I
eff

)
P (5.64)

[Ω±
1ph,H0]P = Q

(
VCΩ±

1ph + V Cov
B Ω±

I − Ω±
1phV

I
eff

− Ω±
I V

1ph
eff +

∞∑

n=1

δnV Cov
B

δEn
Ω±

I (V I
eff )n

)
P (5.65)

by inserting the truncated expansion of ΩCov
spl

ΩCov
spl = Ω±

I + Ω±
1ph, (5.66)

where we restrict the wave operator to only include a single transverse

photon. In the wave operator Ω±
I , the hole state are restricted to only

exist in the last resolvent and not be present within the sequence of

Coulomb ladders. The Bloch equation for Ω±
I , located in the complimen-

tary space, can then be simplified into

QΩ±
I P = Γ±

QVCΩIP − Γ±
QΩ±

I V
I
eff , (5.67)

where ΩI is the wave operator with only Coulomb interactions and no

virtual pairs, introduced in Sec. 4.2.1. The expansion of Ω±
I

Ω±
I (E)PE = PE + Γ±

Q(E)RIPE − Γ±
Q(E)Γ±

Q(E ′)RI(E ′)PE ′V I
effPE

+ Γ±
Q(E)Γ±

Q(E ′)Γ±
Q(E ′′)RI(E ′′)PE ′′V I

effPE ′V I
effPE

− Γ±
Q(E)Γ±

Q(E ′)Γ±
Q(E ′′)Γ±

Q(E ′′′)RI(E ′′′)PE ′′′V I
effPE ′′V I

effPE ′V I
effPE

+ · · · (5.68)

can be compactly be expressed as

Ω±
I (E)PE = PE + Γ±

Q(E)RIPE +

∞∑

n=1

δnΓ±
Q(E)

δEn
RI(V

I
eff)n (5.69)
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by identifying the following relation for the resolvent Γ±
Q

δnΓ±
Q(E)

δEn
= (−1)nΓ±

Q(E)Γ±
Q(E1) · · ·Γ±

Q(En) = −Γ±
Q(E)

δ(n−1)Γ±
Q(E1)

δE(n−1)
1

. (5.70)

Above in Eq. (5.68) and (5.69), RI is the reaction operator with only

Coulomb interactions and no virtual pairs

RIP = VCΩIP. (5.71)

Next, we isolate the terms on the rightside of Eq. (5.65) that include

a Breit potential and define them to be the reaction operator with a

transverse photon

R±
BPE = V Cov

B Ω±
I PE +

∞∑

n=1

δnV Cov
B

δEn
Ω±

I (V I
eff )n (5.72)

and into this expression the result in Eq. (5.69) is inserted

R±
BPE = V Cov

B PE +

∞∑

n=1

δnV Cov
B

δEn
(V I

eff)n +
(
V Cov

B Γ±
Q

)
RIPE

+
∞∑

n=1

δnV Cov
B

δEn
Γ±

QRI(V
I
eff)n + V Cov

B

∞∑

m=1

δmΓ±
Q

δEm
RI(V

I
eff)m

+

∞∑

n=1

δnV Cov
B

δEn

∞∑

m=1

δmΓ±
Q

δEm
RI(V

I
eff)m(V I

eff )n. (5.73)

Here, the last three terms on the righthand side can be combined into

an energy-difference of VBΓ±
Q and the whole expression for the reaction

operator with a transverse photon becomes

R±
BPE = V Cov

B PE +

∞∑

n=1

δnV Cov
B

δEn
(V I

eff)n

+
(
V Cov

B Γ±
Q

)
RIPE +

∞∑

n=1

δn
(
V Cov

B Γ±
Q

)

δEn
RI(V

I
eff)n. (5.74)

The Bloch equation in Eq. (5.65) can now be expressed as

Ω±
1phPE = Γ±

QR±
BPE + Γ+

QVCΩ±
1phPE − Γ±

QΩ±
1phV

I
eff − Γ+

QΩIV
1ph
eff , (5.75)

where the resolvent Γ+
Q = ΓQ is applied to terms where the last in-

teraction is a Coulomb interaction. The summation over the states in

Γ+
Q = ΓQ do only run over the particle states. Now, the wave operator

Ω±
1ph is divided into two parts

Ω±
1ph = ΩB + Ωh.o.

1ph, (5.76)
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where the first wave operator on the righthand side, ΩB, is the lower-

order ladder sequence of Ω±
1ph where the latest interaction is the ex-

change of a transverse photon. The other term on the righthand side

represents the sequence of higher-order terms where Coulomb interac-

tions have been exchanged after the transverse photon. The lowest-

order term ΩB will consists of two terms,

ΩBPE = Γ±
QR±

BPE + Γ±
QΩBV

I
eff , (5.77)

which are both collected from Eq. (5.75), where second term is a part of

one of folded terms,

Γ±
QΩ±

1phV
I
eff = Γ±

Q(ΩB + Ωh.o.
1ph)V I

eff . (5.78)

The expansion of ΩB can be written as

ΩBPE = Γ±
QR±

BPE + Γ±
QΩBPE ′V I

effPE

= Γ±
QR±

BPE − Γ±
Q(E)Γ±

Q(E ′)R±
BPE ′V I

effPE

+ Γ±
Q(E)Γ±

Q(E ′)Γ±
Q(E ′′)R±

BPE ′′V I
effPE ′V I

effPE + · · ·

= Γ±
QR±

BPE +
∞∑

n=1

δnΓ±
Q

δEn
R±

B(V I
eff )n, (5.79)

where the compact formulation of the expansion is obtained by again

using the relation in Eq. (5.70). After the insertion of the expression of

RB, Eq. (5.74), into Eq. (5.79), the final expression of ΩB is obtained

ΩBPE = Γ±
QV

Cov
B PE +

∞∑

n=1

δn(Γ±
QV

Cov
B )

δEn
(Veff)n

+
(
Γ±

QV
Cov
B Γ±

Q

)
RIPE +

∞∑

n=1

δn(Γ±
QV

Cov
B Γ±

Q)

δEn
RI(Veff )n. (5.80)

The combinations Γ±
QV

Cov
B Γ±

Q and Γ±
QV

Cov
B are in this expression of the

wave operator, ΩB, treated as single units. This means that the effects

of the Brown-Ravenhall disease is then suppressed according the dis-

cussions in the previous section. The final Bloch equation for Ω±
1ph is

now expressed as

Ω±
1phPE = ΩBPE + Γ+

QVCΩ±
1phPE − Γ+

QΩh.o.
1phV

I
eff − Γ+

QΩIV
1ph
eff . (5.81)

5.2.3 Pair functions with an open virtual hole

With the set of wave operators with virtual pairs in Eq. (5.71), (5.80)

and (5.81) it possible to proceed and define a set of pair equations with
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virtual pairs together with corresponding pair functions. A problem is

that a pair equation based upon the Bloch equation in (5.80) becomes

hard to implement numerically. First of all, one has to have a finite

upper limit in the summations of the folded terms and practically it be-

comes difficult to numerically implement more than the first term in

this summation. Secondly, the structure of the pair equation for the

exchange of the transverse photon will differ from the one presented

in the previous chapter and where a numerical implementation will re-

quire large reconstructions, compared to the NVP-procedure, in order to

obtain a time efficient computational procedure.

Without going to deep into the numerical procedure, which will be

considered in the next chapter, we will here introduce two modifications

in order to get a set of pair equations which has a similar structure as

the set of NVP equations. First of all, the summation over folded terms

in Eq. (5.80) is truncated and this is done already after the first term,

ΩBPE = Γ±
QV

Cov
B PE +

δ(Γ±
QV

Cov
B )

δE Veff

+
(
Γ±

QV
Cov
B Γ±

Q

)
RIPE +

δ(Γ±
QV

Cov
B Γ±

Q)

δE RIVeff . (5.82)

The second modification is based upon how the spectrum of single-particle

states and energies is generated, since these are used as building blocks

in the construction of the resolvents. As we will go into in the next chap-

ter, we are using a finite discrete spectrum of single-particle states and

their corresponding energies. This is generated by solving the radial

single-electron Dirac equation in a discretised space, where the result-

ing states becomes discrete functions in the radial coordinate and where

the energies of the states becomes discretely distributed in the energy

spectrum. This implies that the propability to tune in a vanishing de-

nominator in a relsolvent has to be considered to be very low. The bene-

fit of this becomes that we can break up the combination Γ±
QV

Cov
B Γ±

Q and

reorganise the equations in order to have a procedure for the virtual

pair calculations that is similar to the NVP procedure.

With these modifications the equations in (5.71), (5.80) and (5.81)

can be rearranged into the following equations

[Ω±
I ,H0]P = Q

(
VCΩI − Γ±

QRIV
I
eff

)
P (5.83)

[Ω±
B ,H0]P = Q

(
V Cov

B Ω±
I +

δV Cov
B

δE Ω̄±
I V

I
eff − Ω̄±

BV
I
eff

)
P (5.84)

Ω±
1phP = Ω±

BP + Γ+
QVCΩ±

1phP − Γ+
QΩh.o.

1phV
I
eff − Γ+

QΩIV
1ph
eff . (5.85)

Here, two new wave operators are introduced, Ω̄±
I and Ω̄±

B , and these are
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defined to be the components of Ω±
I and Ω±

B with no folded term

[Ω̄±
I ,H0] = QVCΩIP (5.86)

[Ω̄±
B ,H0] = QV Cov

B Ω̄±
I P. (5.87)

These wave operators are of importance, since they restrict that only

the first-order energy difference of Γ±
QV

Cov
B Γ±

Q

δ(Γ±
QV

Cov
B Γ±

Q)

δE , (5.88)

and no parts of higher-order energy-difference of Γ±
QV

Cov
B Γ±

Q, is included

in the equations. With the discrete spectrum of single-electron energies

it is considered to be hard to tune in a resonance in a resolvent perfectly,

but one can get close enough to obtain numerical instabilities if not each

order of

∞∑

n=1

δn(Γ±
QV

Cov
B Γ±

Q)

δEn
(5.89)

is fully treated. This is important to remember if one wants to include

higher-order terms from the summations in Eq. (5.80).

It is possible to separate the emission and the absorption of the vir-

tual photon also in the calculations that include virtual pairs, since the

difference between the VP and NVP treatment of the full Breit inter-

action is located in the energy denominators. This can be noticed by

comparing the expressions in Eq. (5.32) and Eq. (4.12). The expression

of the exchange of a full Breit interaction can be written as

V Cov
B =

∞∑

l=0

∫ ∞

0
dk V l

k · ΓΛ±
k (E)V l

k, (5.90)

where V l
k is given in Eq. (4.38) and ΓΛ±

k (E) has the same structure as

ΓΛ
k (E) in Eq. (4.39), with the exception that Γk(E) is replaced by

Γ±
k (E) =

[
± |i∓, k〉〈i∓, k|

ε± − εi ± k
± |i±j±, k〉〈i±j±, k|

E − εi − εj ∓ k

]
. (5.91)

Here, i and j are the indexes for the outgoing states after the emission of

the photon. In the first ratio ε± is the energy of the single-particle state

from which the photon is emitted from and this energy will always have

the opposite sign compared to the energy of the outgoing state |i∓〉.
It is now possible to introduce a wave operator with an open trans-

verse photon Ωl±
k by expressing Ω±

B as

[Ω±
B ,H0]P = V l

kΩ
l±
k P − Ω̄±

BV
I
eff , (5.92)
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Figure 5.5: The graphical visualisation of the effects included in the final pair

function |ρ1ph±
ab

〉, Eq. (5.97), where all combinations of particle and

hole states are present directly before and after the exchange of

the transverse photon.

where Ωl±
k is given by the following equation

Ωl±
k P = ΓΛ±

k V l
kΩ

±
I P +

δΓΛ±
k

δE V l
kΩ̄

±
I V

I
eff . (5.93)

It is not possible, in this process, to have a Coulomb interaction that

crosses the photon, since this effect combined with virtual pairs is lo-

cated in the irreducible potential of next order, V Cov
2ph . An implementa-

tion of this potential into Bloch equations has to be handled separately

and is not treated within this thesis.

From this point it is possible to implement the same procedure used

in the previous chapter to obtain pair equations out of the Bloch equa-

tions in Eq. (5.83), (5.85), (5.92) and (5.93). The final result of solv-

ing these equation, in the stated order, becomes a pair function with a

transverse photon, where directly before and after the photon there can

exist virtual pairs. Graphically this pair function is visualised by the

diagrams in Fig. 5.5.

For the incoming correlated pair the following pair equation is ob-

tained from Eq. (5.83)

(E −H0)|ρ±ab〉 = |rs〉〈rs|RI|ab〉 − Γ±
QRI|cd〉〈cd|V I

eff |ab〉
= |rs〉〈rs|VC|ρab〉 − Γ±

QVC|ρcd〉〈cd|V I
eff |ab〉 (5.94)

where an ordinary pair function |ρab〉 is perturbed into all possible com-

binations of particle and hole states. The ordinary pair function is gen-

erated by solving the pair equation in Eq. (4.18). The emission of the

transverse photon from the correlated pair is generated by solving the

following equation

|ρl±
ab (k)〉 = ΓΛ±

k V l
k

[
|ab〉 + |ρ±ab〉

]
+
δΓΛ±

k

δE V l
k

[
|cd〉 + |ρ̄±cd〉

]
〈cd|V I

eff |ab〉
(5.95)



78

which is absorbed again in next equation

(E −H0)|ρB±
ab 〉 = |rs〉〈rs|V l

k|ρl±
ab (k)〉 − |ρ̄B±

cd 〉〈cd|V I
eff |ab〉. (5.96)

The last step is to generate Coulomb interactions after the exchanged

photon and the pair equation to solve becomes

|ρ1ph±
ab 〉 = |ρB±

ab 〉 + Γ+
QVC|ρ1ph±

ab 〉
− Γ+

Q|ρh.o.
cd 〉〈cd|V I

eff |ab〉 − Γ+
Q|ρcd〉〈cd|V 1ph

eff |ab〉, (5.97)

where the higher-order term is given by

|ρh.o.
ab 〉 = |ρ1ph±

ab 〉 − |ρB±
ab 〉. (5.98)

The pair functions |ρ̄±cd〉 and |ρ̄B±
cd 〉 in Eq. (5.95) and (5.96), respec-

tively, are the results of letting the wave operators in (5.86) and (5.87)

operate upon the state |cd〉 that is located in the model space.



CHAPTER 6

Numerical procedure

This chapter is devoted for the numerical implementation of the newly

developed procedure. Numerical and analytical methods used for per-

forming integrals are presented together with the basic structure of the

iterative procedure of solving pair equations. The analytical procedure

of angular integration is only briefly discussed in this chapter, a more

detailed derivation of the expressions used in the numerical procedure

are presented separately in the Appendix B.

6.1 Numerical production line

The numerical production line has more or less already been presented

together with the sets of pair equations in chapter 4 and in the end of

Chapter 5. Anyway, the basic idea, both in the NVP and the VP pro-

cedures, is to first create correlated numerical state vectors and from

one of the electrons in these correlated two-electron pairs a transverse

virtual photon is emitted. In the NVP case it is possible to have in-

stantaneous Coulomb interactions crossing the open transverse photon

before it is absorbed by the other electron, this is currently not possi-

ble for the VP calculations. After the photon is absorbed more Coulomb

interactions are exchanged between the electrons in order to generate

outgoing correlated state vectors. The whole scheme for NVP calcula-

tion is presented graphically in Fig. 6.1. The same scheme can also

represent the VP calculations with the exception of diagram (c), where

Coulomb interactions are crossing the open photon.

The different parts of the production line are represented by a pair

equation and as we have mentioned earlier these pair equations are

79
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Figure 6.1: The graphical representation of the production line for generat-

ing pair functions with the exchange of a retarded photon for no

virtual pairs. In the first step, (a), pair functions are created by

solving equation (4.18) with a scheme of iterations. A virtual pho-

ton is emitted from the pair function, (b), and iterations of equa-

tion (4.48) generates crossing Coulomb interaction, (c). Finally,

(d), the virtual photon is absorbed and Coulomb interactions are

generated after the closed photon by iterating Eq. (4.52).

solved with a procedure of iterations. The iterative procedure used

in this thesis is based upon using a finite discrete spectrum of single-

electron wavefunctions, Salomonson and Öster [62, 63], where the two-

electron states and energies in the pair equations are constructed by the

states and energies from this spectrum.

6.1.1 Finite discrete spectrum of single-electron states

A spectrum of relativistic single-electron states is achieved by solving

the time-independent single-electron Dirac equation for a nuclear po-

tential Vnuc,

hD|i〉 = εi|i〉 (6.1)

where the Dirac Hamiltonian is expressed as

hD = −i α · ∇ + βme + Vnuc(x) =

(
Vnuc(x) +me −iσ · ∇

−iσ · ∇ Vnuc(x) −me

)
.(6.2)

The eigenfunctions of this Hamiltoniain, the Dirac-spinors, ψi(x) =
〈x|i〉 consist of radial and angular parts

ψi(x) =
1

r

(
Fn,κ(r)χκ,m(θ, ϕ)

i Gn,κ(r)χ−κ,m(θ, ϕ)

)
, (6.3)

where Fn,κ and Gn,κ are known as the large and the small radial com-

ponent, respectively, κ is the relativistic quantum number of the total

angular momentum and χκ,m is the ls-coupled spin-angular function.
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The radial and the angular components of the Dirac equation can be

separated and the radial part of the Dirac equation becomes the follow-

ing set of coupled equations

(
Vnuc(r) +me − d

dr + κ
r

d
dr + κ

r Vnuc(r) −me

)(
Fn,κ(r)
Gn,κ(r)

)
= εn,κ

(
Fn,κ(r)
Gn,κ(r)

)
. (6.4)

The equation in (6.4) is solved within a large cavity, rmin < r < rmax,

where the radial space is discretised into N grid points. Here, the grid

points are distributed exponentially in the radial grid, in order to cover

the important region near the nucleus. The solution of solving the equa-

tion in Eq. (6.4) becomes a number of complete sets of 2N orthogonal

radial eigenfunctions and their real eigenvalues, one set for each value

of κ. Here, half of these functions in each set are representing electrons

with positive energies, where the eigenfunctions with lowest energy are

accurately reproducing the atomic orbitals. The other half are corre-

sponding to negative energy electrons.

Into the 2N × 2N matrix in (6.4) the boundary conditions for the

inner and the outer limits of the cavity are inserted. Outside the cav-

ity the constraint is that the radial eigenfunctions will be zero while

in the inner limit the boundary condition is determined by the model

of nuclear potential. The models considered in this thesis are mainly

the point charge model and the Fermi model. The latter one has been

chosen for nuclear charges over Z = 18, where the finite size of the nu-

cleus can not be neglected. Below this limit the point charge model is

applied. The Fermi model that is implemented into the spectrum gener-

ating program, Gustavsson [64], is based upon a two-parameter Fermi

model

ρ(r) =
ρ0

1 + e(r−c)/a
. (6.5)

Here, c is the radius at which the charge density drops to ρ0/2, a is re-

lated to the nuclear ”skin thickness” and ρ0 is the maximum value of the

charge distribution determined from the requirement that the space in-

tegral over the nuclear-charge distribution must give the nuclear charge

Z. From this distribution one can obtained the expression for the nu-

clear potential Vnuc(r) that is used in equation (6.4), see [65]. For the

numerical computations the values of the two parameters c and a are

collected from [66].

When solving the discretised Dirac equation there may arise prob-

lems of spurious states, high-energy states which appear in the low-

energy part of the spectrum. These states appear due to numerical prob-

lems of representing highly-oscillating functions. To avoid the problem

with spurious states the large and small component of the radial wave
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function are defined in alternating sites in the grid.

. . . , Fn,κ(ri−1), Gn,κ(ri), Fn,κ(ri+1), Gn,κ(ri+2), . . .

6.1.2 Correlated numerical wavefunctions

The procedure of iteration used to solve the pair equation follows di-

rectly from the structure of the equation, where the results of the previ-

ous iteration is inserted on the righthand side of the equation

(E −H0)|ρab〉(i) = |rs〉〈rs|VC|ab〉 + |rs〉〈rs|VC|ρab〉(i−1)

− |ρcd〉(i−1)〈cd|V (i−1)
eff |ab〉. (6.6)

Here, |ρab〉(0) is defined to be zero and the matrix element of the effective

perturbation is given by

〈cd|V (i)
eff |ab〉 = 〈cd|VC|ab〉 + 〈cd|VC|ρab〉(i−1), (6.7)

according the definitions of Veff and |ρab〉 in (2.33) and (2.51), respec-

tively. The pair function and effective perturbation of first order become

according to (6.6) and (6.7)

|ρab〉(1) =
|rs〉〈rs|VC|ab〉
E − εr − εs

(6.8)

〈cd|V (1)
eff |ab〉 = 〈cd|VC|ab〉. (6.9)

Matrix element of the Coulomb interaction

Both the pair function and the effective perturbation include a matrix

element of the Coulomb potential VC and it is calculated by performing

a spatial integration of the coordinates x1 and x2 of the two electrons.

In this integration spherical coordinates is used, for which the radial

and angular parts of the interaction can be separated by expanding VC

into partial waves [67]

VC =
e2

4πr12
=
e2

4π

∞∑

K=0

rK
<

rK+1
>

CK(1) · CK(2), (6.10)

where r< is the lesser and r> the greater of the two radial distances r1
and r2. The angular tensor CK(i) is expressed, with its components q,
as

CK
q (i) =

√
4π

2K + 1
Y K

q (θi, φi) (6.11)
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Figure 6.2: The graphical representation of the angular matrix element of the

Coulomb potential VC in form of an angular momentum graph.

and K is the orbital angular momentum of the interaction. The general

matrix elements of VC can now be written as

〈rs|VC|tu〉 = δ(mr
s,m

t
s)δ(m

s
s,m

u
s )

∞∑

K=0

X(K, jrjsjtju) R(K, rs, tu) × A1

(6.12)

where X(K, jrjsjtju) and R(K, rs, tu) includes the angular and the ra-

dial components, respectively, and the δ-functions are the results of the

spin-independence of the the Coulomb interaction.

The notation A1 introduced in (6.12) is the angular momentum graph

presented in Fig. 6.2 and it has its origin of applying the graph formu-

lation of the Wigner-Eckart theorem∗ upon the matrix elements of the

angular tensors,

〈(lrsr)jr|CK |(ltst)jt〉 · 〈(lsss)js|CK |(lusu)ju〉 = X(K, jrjsjtju) × A1
(6.13)

where

X(K, jrjsjtju) = (−1)K〈jr||CK ||jt〉〈js||CK ||ju〉. (6.14)

The phase factor (−1)K is the result of the scalar product between the

angular tensors and the reduced matrix element of the angular tensor

in jm scheme is expressed in term of a 3-j symbol

〈jr||CK ||jt〉 = (−1)jr−1/2
[
jr, jt

] 1

2

(
jr K jt
−1

2 0 1
2

)
(6.15)

∗p. 55 in the textbook of Lindgren and Morrison [50]
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where the square bracket notation
[
jr, jt

]1

2 is equal to
√

(2jr + 1)(2jt + 1).
The reduced matrix element is non-zero only if the combination jr, K
and jt satisfies the triangular condition

|jr − jt| ≤ K ≤ jr + jt. (6.16)

There is also an underlying condition in the momentum graph A1 that

the combination of lr, K and lt satisfies both a triangular condition and

a parity condition. The latter condition requires that the sum of the

three angular momenta is even.

The radial integral

R(K, rs, tu) =
e2

4π

∫∫
dr1dr2 ψ

†
r(r1)ψ

†
s(r2)

rK
<

rK+1
>

ψt(r1)ψu(r2) (6.17)

is calculated by summing over analytical integrations performed over

the intervals between the radial grid points

R(K, rs, tu) =
∑

i,j

∫ ri+1

ri

dr1

∫ rj+1

rj

dr2
rK
<

rK+1
>

×
[
Fr(r1)Ft(r1) +Gr(r1)Gt(r1)

][
Fs(r2)Fu(r2) +Gs(r2)Gu(r2)

]
.

(6.18)

The single-electron wave functions within these intervals are obtained

by interpolating the discrete numerical wave functions into continuous

space by using Lagrange polynomials in the radial coordinate. The an-

alytical integrations of the polynomials times the r<
r> -ratio result in a

matrix of weights. These weights wij are used for calculating the total

integral, which is reduced to the sum over the discrete values of the

numerical wavefunctions times the corresponding weight

R(K, rs, tu) =
∑

i,j

wij

[
Fr(ri)Ft(ri) +Gr(ri)Gt(ri)

]
×

[
Fs(rj)Fu(rj) +Gs(rj)Gu(rj)

]
. (6.19)

Scheme of iterations

The result of the first iteration, in form of a numerical wavefunction, is

expressed as

ρ
(1)
ab (r1, r2, lr, jr, ls, js,K) = 〈x1,x2|ρ(1)

ab 〉

=
∑

nr ,ns

ψr(r1)ψs(r2)
X(K, jrjsjajb) R(K, rs, ab)

E − εr − εs

× A2, (6.20)
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Figure 6.3: The graphical visualisation of the pair equation in Eq. (6.6) in

form of angular momentum graphs. Each term in the equation is

here represented by its corresponding angular momentum graph.

according to the formulations presented above. The angular depen-

dence, or angular symmetry, of the pair function is given in the angular

momentum graph A2, which is defined as

A2 = |jr(lrsr), js(lsss)〉 × A1. (6.21)

The pair function of first order is represented by the first diagram to

the right of the equal sign in Fig. 6.3, where in this figure the pair

equation is visualised by the angular momentum graphs of each term. It

can be noticed that A2 is the defined angular symmetry of the outgoing

pair function. The difference between the graphs A1 and A2 is that

the latter depends also on the orbital angular momenta lr and ls of the

outgoing single-electron states in |rs〉. We have in A2 also specified all

the quantum numbers of the incoming single-electron states in |ab〉.
In the next iteration the other two angular momentum graphs on

the righthand side of graphical equation in Fig. 6.3 are introduced into

the procedure. The angular symmetries of these two terms differs from

the defined symmetry of the pair function and it becomes necessary to

reduce these two symmetries, A3a and A3b, into the symmetry of A2.

The reduction of the symmetry A3a into A2 is expressed as

A3 =
∑

K

[K] (−1)jr+js+ja+jb×
{

ja K jr
Ku jt Kl

}{
jb K js
Ku ju Kl

}
×A2, (6.22)

where a detailed description of this reduction is performed in the Ap-

pendix B. In the iteration procedure K is a variable of the outgoing pair

function and summation over K in (6.22) is therefore postponed to the

next iteration. Instead the reduction of A3a into A2 is combined with

the summation over the intermediate angular momenta lt, jt, lu, ju, Kl
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and Ku. This summation is also combined with the calculations of the

matrix element 〈rs|VC|tu〉. The intermediate angular momenta are rep-

resented by the outgoing angular symmetries of the pair function from

previous iteration.

In the folded term, the A3b graph, there is no new Coulomb inter-

action present. Instead the pair functions and the matrix elements of

the effective perturbation from the previous iteration are coupled. The

reduction of A3b into A2 follows the relation in (6.22) with the excep-

tion that the indices t and u are replaced by c and d. The reduction is

performed together with the summation over Kl, Ku and the angular

momenta, l and j, of the states |cd〉 that span the model space.

6.1.3 Numerical wavefunctions with a virtual photon

Next, we will consider the exchange of a full Breit interaction between

the two electrons that are represented by the newly produced correlated

numerical wave functions. The general expression for the Breit poten-

tial, introduced in Sec. 5.2.3, is

V Cov
B (E) =

∞∑

L=0

∫ ∞

0
dk V L

k · ΓΛ±
k (E)V L

k (6.23)

and it includes all combinations of incoming and outgoing particle and

hole states. In Eq. (6.23) L is the angular momentum of the photon

and k represents the photon’s linear momentum. The expression of the

vector of single-particle potentials V L
k is given in Eq. (4.38), where the

expressions of the single-particle potentials are

V L
G (kr) =

e

2π

√
k(2L+ 1) αjL(kr)CL

V L
SR(kr) =

e

2π

√
k

2L+ 1

[
√

(L+ 1)(2L + 3)jL+1(kr)
{
αCL+1

}L

+
√
L(2L− 1)jL−1(kr)

{
αCL−1

}L

]
.

The resolvent with an open photon are located in ΓΛ±
k (E) that has the

same structure as ΓΛ
k (E) in Eq. (4.39) with the exception that Γk(E) is

replaced by

Γ±
k (E) =

[
± |i∓, k〉〈i∓, k|

ε± − εi ± k
± |i±j±, k〉〈i±j±, k|

E − εi − εj ∓ k

]
. (6.24)

A detailed description of the notations in Eq. (6.24) can be found directly

after the Eq. (5.91). If only particle states are considered the resolvent
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Γ±
k (E) is transformed into Γk(E), which only consists of the upper signs

of the rightmost ratio of Γ±
k (E)

Γ±
k (E) → Γk(E) =

|ij, k〉〈ij, k|
E − εi − εj − k

. (6.25)

A difference in the numerical implementation of the Breit potential

between the two procedures, NVP and VP, is located in the expressions

of the resolvents, Γ±
k (E) and Γk(E). This difference do not affect the

numerical procedures that are used for the integration over the linear

momentum of the photon k and the spatial integrations in the matrix

element of single-electron potentials. The another difference is that it is

only possible to have Coulomb interactions crossing the virtual photon

in the NVP calculations.

Integration over linear momentum of the photon

The integration over k is performed along the positive real axis, where

for calculations of the groundstate of helium-like ions there appear no

numerical difficulties. The integration is then computed using the method

of Gauss-Legendre and Gauss-Laguerre quadrature, where the contin-

uous integration turns into a summation over discrete values of the in-

tegrand times a weighting factor, wk
i ,

∫ ∞

0
dk g(k) =

∑

i

wk
i g(ki). (6.26)

Along certain regions of the positive axis there are larger variations

in g(k) and by dividing the axis into regions one can concentrate the

number of grid points were they are needed most. For example, it is

important to have more points in the lowest region for low values of

angular momentum L of the photon. As the value of L increases these

extra points are instead distributed among the other k-regions.

Radial integration

The radial matrix elements of V L
G (kr) and V L

SR(kr) are both including a

spherical Bessel function, jL(kr). For high values of the linear momen-

tum k, the Bessel functions will, as a function of r, oscillate rapidly. It is

therefore more preferable to perform the integration over r analytically

rather than to do a summation over discrete points. The method used

above to calculate the radial matrix element of the Coulomb interaction
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Figure 6.4: The graphical visualisation of the emission of a virtual photon.

To the left in form of a Feynman diagram and to the right the

emission is represented by an angular momentum graph.

is also applied here and the radial integration becomes

〈r|jL(kr)|t〉 =
∑

i

∫ ri+1

ri

dr jL(kr)[Fr(r)Gt(r) +Gr(r)Ft(r)]

=
∑

i

wr
i [Fr(ri)Gt(ri) +Gr(ri)Ft(ri)]. (6.27)

The discrete numerical wavefunctions are again interpolated into con-

tinuous space by using Lagrange polynomials. The weights wr
i are ob-

tained by an, to a large extent, analytical integration of the Bessel func-

tion times the polynomials over the intervals closest the radial point i,
two intervals before and three after.

The presence of the α-matrix in the single-particle potentials, do

also affect the radial integration since the structure of the matrix mixes

the two components of the radial wave function. The two components

are defined in alternating sites in the grid and to be able to perform the

summation in (6.27) an interpolation is performed of the components of

the incoming functions.

Angular integration

Angular momentum graphs are again used to calculate the angular ma-

trix element of the single-electrons potentials. The readers are referred

to Appendix B for the explicit calculations of the result presented in the

following text. For the Gaunt interaction we have the following result

of the angular matrix element

〈(lrsr)jr|αCL|(ltst)jt〉 =
√

6
∑

jκ

(−1)
1

2
+lt+jκ [jt, jκ,Kp]

1

2 〈jr||CL||jκ〉×

{
jκ 1 jt
st lt sr

}{
jt Kp jr
L jκ 1

}
× B1. (6.28)
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Here, jκ is a virtual angular momentum introduced in the reduction and

Kp is the value of the total angular momentum of the photon,

|L− S| ≤ Kp ≤ L+ S (6.29)

where S = 1 is the spin of the photon.

The angular matrix element of the scalar retardation consists of two

terms, but final expressions for these two angular matrix elements are

identical with the exception for the rank of the angular tensor C

〈(lrsr)jr|{αCL+1}L|(ltst)jt〉 =
√

6
∑

jκ

(−1)
1

2
+lt+jκ [jt, jκ, L]

1

2 〈jr||CL+1||jκ〉×

{
jκ 1 jt
st lt sr

}{
jt L jr

L+ 1 jκ 1

}
× B1

(6.30)

〈(lrsr)jr|{αCL−1}L|(ltst)jt〉 =
√

6
∑

jκ

(−1)
1

2
+lt+jκ [jt, jκ, L]

1

2 〈jr||CL−1||jκ〉×

{
jκ 1 jt
st lt sr

}{
jt L jr

L− 1 jκ 1

}
× B1

(6.31)

The right diagram in Fig. 6.4 is the angular momentum graph B1 con-

nected to the angular matrix elements in (6.28), (6.30) and (6.31), with

the exception that for the scalar retardation terms Kp is replaced by L.

No virtual pairs

The focus in this subsection is on the procedure of solving the the cou-

pled equations with an open photon, derived in section 4.3.1,

|ζL
ab(k)〉 = ΓΛ

k (E)V L
k |ab〉 (6.32)

|ρL
ab(k)〉 = ΓΛ

k V L
k |ρab〉 + ΓΛ

k VC|ζL
ab(k)〉 + ΓΛ

k VC|ρL
ab(k)〉

− ΓΛ
k |ζL

cd(k)〉〈cd|V I
eff |ab〉 − ΓΛ

k |ρL
cd(k)〉〈cd|V I

eff |ab〉. (6.33)

We will also consider the equation, introduced in section 4.3.2, in which

the open photon is absorbed and further Coulomb interactions can be

applied after the closed photon

(E −H0)|ρ1ph
ab 〉 = |rs〉〈rs|V l

k|ζ l
ab(k)〉 + |rs〉〈rs|V l

k|ρl
ab(k)〉 + |rs〉〈rs|VC|ρph

ab 〉
− |ρ1ph

cd 〉〈cd|V I
eff |ab〉 − |ρcd〉〈cd|V 1ph

eff |ab〉. (6.34)

The procedure of solving the coupled equations starts by first consid-

ering Eq. (6.32). The states with uncoupled electrons |ζL
ab(k)〉 are gen-

erated by calculating the matrix element of V L
k numerically with the
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Figure 6.5: The graphical visualisation of the pair equation with an open pho-

ton in Eq. (6.33) in form of angular momentum graphs. Each term

in the equation is here represented by its corresponding angular

momentum graph.

procedures presented above and in the end apply the energy denomi-

nator in the resolvent. These solutions are then used in the iterative

procedure of solving the pair equation in Eq. (6.33).

The scheme of solving the pair equation with an open photon, Eq.

(6.33), is similar to the one presented above for the production of the

correlated pairs. The first step in the procedure is to define an an-

gular symmetry of the pair functions with an open photon and in our

implementation this symmetry is represented by the angular diagram

marked with C1 in Fig. 6.5. The possible combinations of the variables

lr, jr, ls, js, jm, Kp in C1 are determined by triangular conditions in

each vertex and by the parity conditions of the involved interactions.

The input into this determination is the values of angular momenta of

the ingoing states, la, ja, lb, jb, and the values of L and K. Additional

to the angular symmetry C1 the numerical pair functions do also de-

pend on the linear and the angular momentum of the photon, k and L
respectively, and the two radial coordinates, r1 and r2,

ρL
ab(r1, r2, k, L, lr , jr, ls, js, jm,K,Kp) = 〈x1,x2|ρL

ab(k)〉. (6.35)

The first iteration in the procedure includes the emission of a virtual
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photon from one of the electrons in the correlated pair |ρab〉

|ρL
ab(k)〉(1) = ΓΛ

k V L
k |ρab〉 − ΓΛ

k |ζL
cd(k)〉〈cd|V I

eff
|ab〉 (6.36)

and also the folded term that includes the state |ζ l
cd(k)〉. In angular

momentum graphs these two terms are represented by C2 and C5 in

Fig. 6.5, respectively. It can be noticed that these two graphs have the

same structure as the defined angular symmetry of the pair function

with an open photon and it is therefore only necessary to set up the

following constraints

C2 → C1 : jt = jm, lu = ls, ju = js, Kl = K

C5 → C1 : jc = jm, ld = ls, jd = js, Kl = K

in order for the graphs C2 and C5 to be identical to C1. This process

of emitting the virtual photon from the correlated pair do also include

the numerical calculations of the matrix elements of the single-electron

potentials in V L
k .

The remaining angular momentum graphs in Fig. 6.5 are introduced

in the next step in the scheme of iteration. Two of these graphs corre-

spond to the exchange of a Coulomb interaction that crosses the open

photon, C3 and C4, and the third is the last folded term, C6. These

graphs do not have the same structure as C1 and has to be reduced

according to the following relation,

C3 =
∑

jm

[jm](−1)ji+K+Kp+jm ×
{
ja K jm
jr Kp ji

}
× C1 (6.37)

C4 =
∑

K,jm

[K, jm](−1)Kp+Ku+jt+ja+jb+js+2jm×

{
ja K jm
Ku ji Kl

}{
jm jr Kp

jt ji ku

}{
jb js K
Ku Kl ju

}
× C1 (6.38)

C6 =
∑

K

[K] (−1)jm+js+ja+jb

{
ja K jm
Ku jc Kl

}{
jb K js
Ku jd Kl

}
× C1.

(6.39)

The detailed procedure of these reductions can be found in the Appendix

B. The reductions are combined with a summation over the intermedi-

ate angular momenta, that exist for each graph, and with the calcula-

tions of the matrix elements of VC. In the iterative procedure the sum-

mations over jm and K in (6.37)-(6.39) are not performed together with

the reduction of the graphs. These variables are namely a part of the

outgoing angular symmetry. The summation over these angular mo-

menta is instead performed in the next step of the iterative procedure.
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The numerical production line ends with the absorption of the vir-

tual photon and further iterations where additional Coulomb interac-

tions are exchanged after the closed photon, diagram (d) in Fig. 6.1.

This step in the procedure is generated by solving the pair equation in

Eq. (6.34). The iterative procedure of solving this equation is almost

identical to the one used to generate the correlated pair and we will

therefore not go into any details. Instead we will consider the existing

differences, where the major difference is the terms for which the vir-

tual photon is absorbed, the first two term on the righthand side of Eq.

(6.34). These terms include the summation over the angular momentum

L and the numerical integration over the linear momentum k according

to

〈rs|V L
k |ρL

ab(k)〉 ≡
∞∑

L=0

∫ ∞

0
dk 〈rs|V L

k |ρL
ab(k)〉,

which are time-demanding procedures that one do not want to calculate

in every step in the iterative procedure. The terms of the absorption are

therefore only calculated once and the result, which is saved in mem-

ory, is instead entering the iterative procedure as the pair function with

a closed photon of lowest order. Except that, the iterative procedure

has the same approach as the procedure introduced above for the cor-

related pair. The graphical representation of Eq. (6.34) with angular

momentum graphs would also include the same type of graphs that are

visualised in Fig. 6.3, but now with twice as many A3a and A3b graphs.

Virtual pairs

The set of pair equations with virtual pairs that is formulated in the

end of Sec. 5.2.3 has a structure that is similar to the set of equations

for the NVP procedure. There exist differences, but all basic numerical

tools and procedures that are presented above can be applied to the VP

calculations.

The obvious difference is the summation over both particle and hole

states directly before and after the exchange of the transverse photon.

This summation is performed according to the combinations that ex-

ist in numerator of the resolvent Γ±
k (E) in Eq. (6.24). Here, there will

appear a modification of the procedure compared to the NVP procedure

presented above. It is namely not convenient to represent the numerical

pair functions in a coordinate representation and sum over the princi-

pal quantum numbers of the outgoing states, nr and ns, when both the

particle and the hole states are included in the summations. The infor-

mation of the different combinations will then be lost in the summations

and the solution would be a separate pair function for each combination
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that exist in the resolvents. The result of handling each combination

separately becomes longer computation times.

Instead of having a coordinate representation of the pair functions

we have solved this problem by splitting up the summation over nr and

ns in resolvents and letting the numerical pair functions with outgoing

virtual pairs be represented in a state representation,

ρ±ab(nr, lr, jr, ns, ls, js,K) = 〈r±, s± |ρ±ab〉
ρL±

ab (nr, lr, jr, ns, ls, js,K,Kp, L, k) = 〈r±, s± |ρL±
ab (k)〉

ρB±
ab (nr, lr, jr, ns, ls, js,K) = 〈r±, s± |ρB±

ab 〉.

Here, ρ±ab is the numerical correlated pair, ρL±
ab is the numerical pair with

an open photon and ρB±
ab is the numerical pair where the photon is ab-

sorbed, all three includes all combinations of outgoing particle and hole

states. The result of this change of representation becomes a fast com-

puter code where all combinations in the resolvent Γ±
k (E) are included

in a single computation. The equations for |ρ±ab〉, |ρL±
ab (k)〉 and |ρB±

ab 〉 are

given in equation (5.94), (5.95) and (5.96), respectively.

The numerical implementation of solving the pair equations with

VP has a second difference compared to the NVP procedure, that is of

importance and it is the treatment of the folded terms. This leads to

additional administrative differences in the VP program compared to

the code used for the NVP calculations, since there are two additional

pair functions, |ρ̄±cd〉 and |ρ̄B±
cd 〉, to generate and store in memory. These

new pair functions are required in order to only treat the first order of

the folded terms with virtual pairs and not include parts of the folded

terms of higher order. A detailed discussion about this is presented in

Sec. 5.2.3 and is of importance, since an insufficient treatment of the

folded terms can result in effects of the Brown-Ravenhall decease.

6.1.4 Extrapolations

With the numerical integrations and infinite summations that exist in

our numerical procedure, there is a need of extrapolation procedures in

order to achieve the exact results. The numerical integrations over the

linear momentum k and the radial spatial coordinates are performed

with help of summations over discrete grid points and in order get the

exact value out of these integrations an extrapolation is performed down

to infinitesimal distance between the grid points in each grid. In order

to reduce the number of variables, we have chosen to couple the extrapo-

lation of the linear momentum k and the radial coordinates. Practically,

this means that the value of grid points in the two grids are chosen to

be equal in each computation and, over all, the number of grid points is

varied between 70-150.
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The infinite summations are located in the partial wave expansions

of both the Coulomb interactions, Eq. (6.10), and the full Breit interac-

tions, Eq.(4.24). In the computations the value of upper limits in these

summations are varied between Lmax = 5 − 14 and the results are then

used to extrapolate the values for the infinite summations. In the a com-

putation the values of the upper limits are equal for all summations and

in this way there is only a single parameter in the Lmax-extrapolation.

The total extrapolation becomes, in this way two-dimensional, where

the extrapolation is first performed over the two grids and then over the

upper limit of the partial waves. With the variation of the number of

grid points and of the upper limits in the computations, the extrapola-

tion can be performed for various combinations of these two parameters.

In the end the extrapolated values are obtained by taking the average

over all combinations of extrapolation. In this way the effect of the poor

numerical accuracy of computations with the high Lmax values is re-

duced.



CHAPTER 7

Numerical results and discussion

In this chapter we present the first numerical results of the combined

effects of correlation and QED for the groundstate, 1s2 1S0, for a number

of helium-like ions. These effects have never been calculated before with

the method of using a numerical basis set and they are obtained by the

numerical implementation of the new relativistically covariant many-

body perturbation procedure.

The chapter concludes with a discussion of the effects that have cur-

rently not been treated.

7.1 Numerical results

7.1.1 No virtual pairs
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Figure 7.1: The graphical representation of the solution from solving the set

of pair equations with NVP, the equations (4.18), (4.47), (4.48) and

(4.52). The solution consists of the one-photon exchange, the two-

photon exchange and a higher-order term. The interesting com-

bined effect of correlation and retardation is included in the last

term.
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Figure 7.2: The full solution of solving the set of pair equations for the instan-

taneous Breit interaction for NVP. The solution contains the ex-

change of a single instantaneous Breit, the two-photon Coulomb-

Briet exchange and the higher-order effects.

The final solution of solving the set of pair equations with no virtual

pairs, Eq. (4.18), (4.47), (4.48) and (4.52), becomes a sum containing

the one-photon exchange, the two-photon Coulomb-Breit exchange and

exchanges of higher order, see Fig. 7.1. In order to obtain the value

for the higher-order term, the contributions of the one- and two-photon

exchange are calculated separately with the same properties for the ra-

dial and the linear momentum grids and for the same values of angular

momentum of the photon. The pure higher-order effects are then sepa-

rated from the lower-order effects before the extrapolation is performed

and in this way better accuracy is achieved for the higher-order terms.

The effect of interest within the NVP calculations is the combination

of correlation and retardation, which has never been calculated before

with the method of using a numerical basis set. This effect is located

in the higher-order term, which also can be referred to as the combined

effect of correlation and the exchange of a full Breit interaction. This

Breit interaction can be divided into two parts, where one is the instan-

taneous Breit interaction and the other corresponds to the retardation

of the full Breit interaction. In order to achieve the wanted effect the

contribution from the instantaneous Breit interaction has to be sub-

tracted from the solution of the higher order term. This instantaneous

contribution is obtained by replacing the full Breit interaction with the

instantaneous one in the computations, see end of Sec. 4.2.2. The so-

lution after this replacement do also include the lower order terms, see

Fig. 7.2, and these are calculated separately in order to extract the

high-order term with an instantaneous Breit interaction. The calcula-

tions that include an instantaneous Breit interaction are perform with

the same properties of the radial grid and the angular momentum as for

the computations with the full Breit interaction. In this way the effect

of interest can be isolated before any extrapolation is performed and in

this way higher accuracy can be obtained.

In Fig. 7.3 the results of the NVP calculations for the groundstate

in He-like silicon are presented. The results achieved with the new rel-
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Figure 7.3: The NVP contributions to the non-radiative effects with more

than one interactions for the groundstate, 1s2 1S0, in helium-like

silicon, Z = 14. The graphical representation of the two-photon

exchanges are presented together with numerical values on the

upper row of diagrams, where they are group as the Coulomb-

Coulomb, the Coulomb-Breit and the Breit-Breit exchanges. In

the lower row the combined effect of correlation with a single Breit

and with two Breit interactions are presented, both graphically

and numerically. The effects that include Breit interactions are

divided into two parts, one with and the another without any re-

tarded interactions. The bold figures are obtained from calcula-

tions with the relativistic covariant MBPT procedure, except the

combined effects of two Breit interactions and correlation which

are estimated. The S-matrix values, thin numbers, are collected

from [68]. All numerical values are given in µHartree.

ativistically covariant MBPT procedure are presented with bold num-

bers. From Lindgren et al.[68] results of S-matrix calculations are col-

lected and these are presented with thin numbers. On the upper row

in Fig 7.3 the two-photon exchange diagrams are presented with their

corresponding values and here it is possible to compare the numerical

results obtained with the two different procedures. In this comparison

it can be noticed that there is good agreement between the two proce-

dures.

The estimations of the combined effect of two Breit interactions and

correlation in Fig. 7.3 are based upon comparisons between the effects of

the two-photon Coulomb-Breit exchange and the combined effects of cor-

relation and the exchange of a transverse photon. A ratio is calculated
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Table 7.1: The NVP contribution to the effect of the exchange of a single transverse

photon for the 1s2 1S0 state in a number of helium-like ions (in µHartree).

In the rightmost column the values are achieved by having a maximum of

two Coulomb interactions crossing the transverse photon.

Nucleus 1Ph. Exch. 2Ph. Exch. Higher-order

charge, Z UnRet. Ret. UnRet. Ret. Crossed

6 2877.2 -1055 32 136.6 -16.7 7.8

9 9717.5 -2337 92 202.1 -33.5 15.7

10 13333.9 -2871 122 222.9 -39.9 18.7

14 36644.0 -5517 293 301.1 -68.2 32.4

18 78041.0 -8949 553 372.3 -100.2 48.5

22 142850.1 -13132 909 437.4 -134.8 66.5

24 185734.9 -15494 1122 467.9 -152.9 76.2

30 364680.8 -23632 1909 552.5 -209.8 107.9

32 443490.6 -26688 2221 578.7 -229.4 119.2

41 943116.1 -42521 3904 688.0 -322.1 175.2

50 1734983.8 -61793 6039 788.7 -421.6 239.0

between the numerical values of these effects and this ratio becomes

an impact factor of the correlation. This factor is used to estimate the

combined effect of the two Breit interactions and correlation.

In Table 7.1 the NVP contributions to the exchange of a single trans-

verse photon for the groundstate, 1s2 1S0, are presented for a number of

helium-like ions. The results are grouped according to the three cate-

gories that is presented on the right-hand side of the diagram equation

in Fig. 7.1. All values in this table are calculated with the new proce-

dure of relativistically covariant MBPT and are given in µHartree. The

rightmost column in higher-order category named ”Crossed” includes

the results of having a maximum of two Coulomb interactions crossing

the transverse photon.

7.1.2 Virtual pairs

In the virtual pairs calculations the full solution includes both the wanted

combined effect and the two-photon Coulomb-Breit exchange with vir-

tual pairs. The two-photon contribution is therefore computed sepa-

rately and the combined effect is extracted by subtracting the two-photon

effect from the full solution, where the subtraction is performed before

any extrapolation is performed.

In Fig. 7.4 the VP effects with non-crossing interactions for the

groundstate in He-like silicon are presented with a figure similar to Fig.

7.3. With the expression of non-crossing interactions we refer to the ap-
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Figure 7.4: The virtual pair contributions with no crossing interactions for the

groundstate, 1s2 1S0, in helium-like silicon, Z = 14. The graphi-

cal representation of the two-photon exchanges are presented to-

gether with numerical values on the upper row of diagrams, where

they are group as the Coulomb-Coulomb, the Coulomb-Breit and

the Breit-Breit exchanges. In the lower row the combined ef-

fect of correlation and virtual pairs for the Coulomb-Coulomb,

the Coulomb-Breit and the Breit-Breit interactions are presented,

both graphically and numerically. We do not separate the full

Breit interaction into an instantaneous and a retarded part, since

the existence of virtual pairs classifies all effects as QED-effects.

The bold figures are obtained from calculations with the relativis-

tic covariant MBPT procedure, except the combined effects of two

Breit interactions and correlation which are estimated. The S-

matrix values, thin numbers, are collected from [68]. All numeri-

cal values are given in µHartree.

pearance of the corresponding Feynman diagrams, where the interac-

tion vertexes are not time-ordered and all electron lines are vertical. In

Fig. 7.4 the vertexes in the diagrams are time-ordered and therefore it

is possible to have the interactions crossing each other. The estimated

values in Fig. 7.4 are obtained in the same way as the estimated NVP

values.

In Table 7.2 the numerical results of the virtual pair calculations

with non-crossing interactions are presented for a number of helium-

like ions. All values in this table are obtained by computations with the

relativistically covariant MBPT procedure and are given in µHartree
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Table 7.2: The VP contribution to the effect of the exchange of a single transverse

photon for the 11S0 state in a number of helium-like ions (in µHartree).

There are no Coulomb interactions crossing the transverse photon in these

calculations.

Z 2-Ph. Exch. With Corr. Z 2-Ph. Exch. With Corr.

6 -10.0 2.7 24 -552 33.2

9 -33.6 6.0 30 -1011 46.4

10 -46.0 7.3 32 -1200 50.8

14 -122 13.5 41 -2292 70.9

18 -248 20.9 50 -3781 90

22 -434 28.9

7.2 Analysis

An effective method to analyse the results is to examine how the lead-

ing order in the fine-structure constant, α, for different effects vary with

the nuclear charge Z. In this way it is possible to get an understand-

ing which effects are of importance in a certain region of the nuclear

charge. All numerical results are given in atomic units (a.u.) and we

will therefore apply these units in this section.

The non-relativistic energy of a helium-like system can be written

as an expansion of 1/Z

E ∼ Z2 + Z + 1 +
1

Z
+ · · · = Z2

∞∑

n=0

Z−n, (7.1)

where each term of 1/Z corresponds to the exchange of a Coulomb in-

teraction between the two electrons. The zeroth-order non-relativistic

energy, Z2, corresponds then to two non-interacting electrons. Rela-

tivistic corrections can be applied to this expansion as an expansion of

(Zα)2. For the zeroth-order energy this correction becomes

E0 ∼ Z2 + Z2(Zα)2 + Z2(Zα)4 + · · · (7.2)

where the rest mass has been neglected. Additional terms with odd

orders of (Zα) enter the total expansion with the introduction of QED

effects. The total energy of the helium-like system can according these
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statements be expressed with the following expansion

E ∼ Z2 + Z + 1 +
1

Z
+ · · ·

+ Z2(Zα)2 + Z(Zα)2 + (Zα)2 +
1

Z
(Zα)2 + · · ·

+ Z2(Zα)3 + Z(Zα)3 + (Zα)3 +
1

Z
(Zα)3 + · · ·

+ Z2(Zα)4 + Z(Zα)4 + (Zα)4 +
1

Z
(Zα)4 + · · ·

... (7.3)

where we have neglected the rest mass energy and for simplicity also

terms proportional to ln(Zα)(Zα)n. The first row in this expansion cor-

responds to the non-relativistic energy, while the second row is the rel-

ativistic correction of first order. It is important to have in mind that an

increase with an order in α decreases the contribution approximately

with a factor of 137, α ≈ 1/137.

7.2.1 The two-photon effects

Before the results of the combined effects of QED and correlation are

considered there should be some comments about the comparisons be-

tween the results of the two-photon effects calculated with the new pro-

cedure and the S-matrix formalism. As one notice in Fig. 7.3 and 7.4 the

agreement is good, but the results obtained with the new procedure can

not reach the accuracy of the S-matrix result. The reason for this is due

to the differences in the summations over partial waves, where in the S-

matrix computations of partial waves up to L = 20 have been evaluated.

In the computations with the new relativistically covariant MBPT pro-

cedure the upper limit is restricted to L = 14 which is not sufficient in

order to achieve the same accuracy. The upper limit in the summation

is restricted by computer hardware, in this case the work memory. The

primary purpose of the developed code is the calculations of the com-

bined effects, where the two-photon effects are secondary products used

to extract the effects of interest. The code is therefore optimised for the

primary purpose and will include memory consuming intermediate pair

functions with open photons.

In Fig. 7.5 the two-photon effects in Table 7.1 and 7.2 are compared

with the results from S-matrix calculations [68]. In this figure we have

plotted the leading order in α for the unretarded, the retarded and the

virtual pairs contributions to the two-photon Coulomb-Breit exchange,

divided by the non-relativistic single-electron energy. The virtual pairs

contributions do only contain the part with non-crossing interactions.

The vertical scale is logarithmic, so that -1 corresponds to α, -2 to α2,
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Figure 7.5: Comparison between computations of the unretarded, retarded

and virtual pair contributions to the two-photon Coulomb-Breit

exchange performed with the new relativistically covariant MBPT

procedure (diamonds) and with the S-matrix [68] (lines). All con-

tributions are divided by the one-electron energy and the virtual

pair contribution does only contain the part with no crossing in-

teractions. The vertical scale is logarithmic, so that -1 corresponds

to α, -2 to α2, etc.

etc. In this low resolution comparison we find good agreement between

the computations with the two procedures for all considered values of

the nuclear charge Z.

7.2.2 The combination of QED-effects and correlation

In Fig. 7.6 the effects of the exchange of a transverse photon with corre-

lation are compared with the two-photon Coulomb-Breit exchanges. In

this figure the leading orders in α for the contribution from the differ-

ent effects, divided with the non-relativistic single-electron energy, are

plotted as functions of the nuclear charge Z. The effects are divided up

into three categories, an unretarded Breit interaction, a retarded Breit

interaction and the existence of virtual pairs. It should be stated that

in the first two categories all states are particle states. In the figure

there do also exist a dashed curve where the leading order in α for the
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Figure 7.6: Same kind of plot as in Fig. 7.5, but here the effects of the ex-

change of a transverse photon with correlation is compared to the

corresponding two-photon Coulomb-Breit effects.

total contribution from the combined effect of correlation and QED, (re-

tardation + virtual pairs), is plotted as a function of Z. The effects of

virtual pairs considered in this section do only include the part where

the interactions do not cross each other, if nothing else is stated.

In Fig. 7.6 it can be noticed that the combined effects and the two-

photon effects in each category tend to the same leading order in α for

low Z. This result is expected, since the difference between the effects

within the categories is an additional factor in terms of an expansion

in 1/Z and as the value of Z becomes smaller the influence from this

factor will decrease. With results for the combined effects for nuclear

charges below Z = 6, the two curves in each category would probably

have tended to the same point in the limit Z → 1. The conclusion is that

the combined effects becomes of significance as the value of Z drops

towards unity. This means that in the low-Z and moderate-Z regions,

Z = 1−15, it is crucial to include the combined effects in order to match

the theoretical calculations with accurate experimental results.

This additional factor do also explain that the distance between the

two curves in each category increases as the nuclear charge increases.

It is also interesting to notice that the higher order in (Zα) of the combi-

nations of correlation and QED-effects results in fairly static behaviour
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Figure 7.7: Same kind of plot as in Fig. 7.5, but here the retardation con-

tribution of the exchange of a transverse photon with correlation

is compared with the retardation effects of the two-photon Breit-

Breit exchange.

of leading order in α as Z increases. Especially if one do a comparison

with the combined effect that includes an instantaneous Breit interac-

tion, which starts at α2 for low Z and tends towards α3 in high-Z region.

It is important to have in mind that the contributions from the ef-

fects of retardation and virtual pairs have opposite signs and cancel

each other. This can not be read out of Fig. 7.6, instead one have to turn

to the numerical values in Table 7.1 and 7.2 to notice this. The result of

this cancellation is in Fig. 7.6 visualised by a dashed curve.

In Fig. 7.7 the combined effect with retardation and correlation is

compared with the retardation effect of the two-photon Breit-Breit ex-

change, where at least one of the Breit interactions is retarded. It can be

noticed that the major contribution to the Breit-Breit exchange comes

from the combination where one of the interactions is instantaneous.

This can be concluded since an estimation of the double retarded con-

tribution of the Breit-Breit exchange is also plotted in Fig. 7.7. There

is also another estimation in the figure and it corresponds to the com-

bined effect of correlation and a double Breit exchange, where one of the

interactions is instantaneous.

A conclusion of studying Fig. 7.7 is that the combined effect of a re-



Numerical results and discussion · 105

Virtual Pairs, Crossed Interactions

Coul.-Coul.

66 66

66 66
q q

������q q

69.4

Coulomb-Breit

66 66

66 66

-q q@@@@@@
q q

-139.9
66 66

@@@@@@

@@@@@@

66 66

6q

q
q q

B r e i t - B r e it

66 66

66 66

-q q@@@@@@
-q q

22.9
66 66

@@@@@@

@@@@@@

66 66

6q

q
-q q

66 66

66 66
q q

������q q

∼-8
66 66

66 66

-q q@@@@@@
q q

∼17

With Correlation

66 66

@@@@@@

@@@@@@

66 66

6q

q
q q

66 66

66 66

-q q@@@@@@
-q q

∼-3
66 66

@@@@@@

@@@@@@

66 66

6q

q
-q q

Figure 7.8: Same kind of figure as in Fig. 7.4, but here the virtual pair con-

tributions with crossing interactions for the groundstate, 1s2 1S0,

in helium-like silicon, Z = 14, is presented. The two-photon

exchange contributions are presented on the upper row of dia-

grams, where the numerical values are collected from [68]. In

the bottom row estimations of the combined effect of virtual pairs

with crossed interaction and correlation are presented. The es-

timations are based upon a comparison between the two-photon

Coulomb-Breit effect with virtual pairs and the corresponding ef-

fect with correlation in Fig. 7.4. All numerical values are given in

µHartree.

tarded Breit interaction and correlation is the leading effect compared

to two-photon Breit-Breit exchange with an instantaneous interaction

in the low-Z region. For the higher Z regions the Breit-Breit exchange

becomes the more important effect of the two, but this is due to the exis-

tence of the contribution from an instantaneous interaction. If the com-

bined effect instead is compared with the doubly retarded Breit-Breit

exchange it can be noticed that the two curves do first cross each other

at Z ≈ 45. This means that in the interesting low- and moderate-Z re-

gions, Z = 1− 14, and even higher up in Z, it is more important to com-

bine the exchange of a single retarded Breit interaction with correlation

instead of considering the exchange of two retarded Breit interactions.

In Fig. 7.7 the contributions of virtual pairs are not at all included

and Fig. 7.6 includes only the contributions from the non-crossing vir-

tual pairs effects. In order to get a clear view of the total contribution of

non-radiative QED combined with correction the virtual pairs have to

be included in the analysis, since the contributions of the VP effects, in

general, have the opposite sign compared to the retardation effects. In

Fig. 7.8 the estimated values for the contributions of the combined effect
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of virtual pairs with crossing interactions and correlation is presented

for helium-like silicon. It can be noticed here that the contribution of

this effect has the same sign as the virtual pairs with no crossing inter-

action, see Fig. 7.4, and has approximately the same size. This means

that the total contribution of the combined effect of correlation and non-

radiative QED for the exchange of a single virtual photon will be further

reduced when the combined effect of virtual pairs with crossed interac-

tions and correlation is included. A further discussion of future progress

of calculating this missing effect will be included in the next section.

Further, it can be noticed in Fig. 7.4 and Fig. 7.8 that the contribu-

tion of the combination of two Breit interactions and virtual pairs is of

importance for helium-like silicon. This means that in a future progress

of including the calculations with two Breit interaction and correlation

the virtual pair effects are again in a position where they can not be

neglected.

It is also interesting to notice in Fig. 7.8 that the effect of a single-

hole state between two Coulomb interaction together with correlation

would give that large contribution and can not be neglected. The corre-

sponding effect with an intermediate double-hole state would approxi-

mately be 10 times smaller, see Fig. 7.4.

7.3 Future development

In the end of previous section we discussed the importance to treat the

effect of the virtual pairs in a complete way. A development that is even

more important in the future is the calculations of the combined effect

of correlation and the helium-like Lamb shift. In Fig. 7.9 a first estima-

tion of this effect is presented, where the impact factor of correlation for

the non-radiative QED effects is used to produce this estimated curve.

In this figure the estimated curve of the combined effect is compared

to with the first order He-like Lamb shift results collected from Sun-

nergren [69] and Artemyev et al.[46] and the non-radiative 2-photon ex-

change QED contribution, (retardation + virtual pairs), [68]. It is easy

to notice in this figure that the combined effects of correlation and the

Lamb shift would be the leading effect compared to the non-radiative

QED effects up to a value of the nuclear charge around Z ≈ 25.

Before a discussion about the future development to combine the ra-

diative effects with correlation we will first consider the missing pieces

within the non-radiative effects.
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Figure 7.9: Same kind of plot as in Fig. 7.5, but here an estimated value of

the combined effect of correlation and the helium-like Lamb shift

is compared with the QED part of the total two-photon exchange.

The figure do also include the He-like Lamb shift of first order.

7.3.1 Non-radiative effects

The untreated non-radiative effect can be divided into two parts, with

or without the existence of virtual pairs. In the no virtual pair scheme

the situation of having Coulomb interactions crossing the open virtual

photon can be treated to arbitrary order, which is not the case for the VP

calculations. The next project within the treatment of no virtual pairs

would therefore be to combine the two-photon Breit-Breit exchange with

correlation.

No virtual pair Breit-Breit exchange with correlation

The procedure used for the NVP calculations in this thesis can be ex-

tended to also include pair functions with more than a single virtual

photon, both opened and closed photons. In this way the effect of two

Breit interactions with correlation can be calculated and, as always, it is

the performance of the computers that limits how many virtual photon

that can be treated.

With the computers of today we consider it is not possible to handled
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more than a single open transverse photon together with correlation.

This means that the Breit-Breit exchange with two retarded interac-

tions overlapping in time can not be combined together with correlation.

This does not make it impossible to replace one of the full Breit interac-

tions with an instantaneous one and in this way obtain the major part

of the considered effect, see estimated curve in Fig. 7.7.

If the two Breit interactions do not overlap in time the presented

iterative procedure can be used to generate this part of the two-photon

Breit-Breit exchange with correlation. Here, the resulting pair func-

tions from the calculations of the exchange of a single Breit interaction

together with correlation can be re-entered into the NVP-procedure and

a second transverse photon can be exchanged between the electrons.

Generally, it is possible to proceed with this iterative procedure to arbi-

trary order, but it is important to remember that the computation time

scales with the number of photons.

Up to this point of the project the two-photon Breit-Breit exchange

combined with correlation has not been in the production process be-

cause of two main reasons. First of all, the effect of virtual pairs to-

gether with the exchange of a single transverse photon and correlation

has been considered to be of greater importance. The effect of virtual

pairs and retardation have opposite signs and do largely cancel each

other. Therefore it is important to find a procedure for a complete treat-

ment of the virtual pairs in combination with correlation. The solution

for the virtual pairs can then also be applied to a complete treatment of

the combined effects of the two-photon Breit-Breit exchange with corre-

lation. Secondly, the treatment of virtual pairs is of importance in the

treatment of the radiative effects, in order to have a proper renormali-

sation scheme.

Future treatment of virtual pairs with correlation

At this stage of the project only one part of the effect of virtual pairs to-

gether with the exchange of a single transverse photon and correlation,

has been treated numerically. It is the part where the interactions do

not cross each other. The problem is that, when a Coulomb interaction is

crossing the virtual photon together with the existence of virtual pairs,

there will exist intermediate four-particle states. This should be com-

pared with the pair functions with an open photon which is an interme-

diate three-particle states. This additional intermediate particle state

would at least increase the computation time with a factor of N , where

N is the number of grid points in the radial grid. In the calculations

presented in this thesis the number of grid points is varied between

N = 70 − 150. The conclusion is that without any approximations or

really fast new computers there will be hard to perform complete calcu-
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Figure 7.10: The numerical contributions, in µHartree, for the 16 different

combinations of incoming and outgoing particle and hole states

that exist in the relativistically covariant calculation of the ex-

change of a transverse photon with correlated wave functions.

The numerical value of the NVP combination, leftmost diagram

in the top row, includes only the effect of the retarded part of the

Breit interaction, while in all other contributions the full Breit

interaction is considered.

lations of the effects of virtual pairs with crossing interactions together

with correlation. There exist possibilities to calculate parts of these VP

effects, since all of them do not include the intermediate four-particle

states, but it is believed that the computationally demanding parts will

give a significant contribution.

A simplification in the future treatment of the virtual pairs is to only

include a single intermediate single-hole state or double-hole state in

the calculations and vary their locations between different interactions.

This conclusion can be taken after studying Fig. 7.10, which includes

the numerical contributions from the 16 different combinations of in-
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coming and outgoing particle and hole states that are included in the

combined effect of correlation and the exchange of a single photon. It

can be noticed in this figure that the contribution drops approximately

four orders in magnitude by introducing a second single-hole state af-

ter the exchange of a transverse photon when there already exists a

single-hole state before the photon. It should be stated that in the cal-

culations there are correlated wavefunctions before and after each type

of exchange that is visualised graphically in Fig. 7.10. These results

are for the groundstate in He-like neon. It is important point out that

these values are non-extrapolated values for a rough radial grid and a

low upper limit in the summation over angular momentum, but they

give an indication of the size of the contribution from the different com-

binations.

7.3.2 Radiative effects

The importance of the radiative effects in combination with correlation

is discussed along with the presentation of Fig. 7.9. This section will

instead be a very brief introduction to the procedures under consider-

ation for future calculations of the considered combined effect, where

the radiative effect of the bound electron self-energy is of most interest.

The important factor in the procedures is that a proper renormalisation

scheme is applied in order to evaluate the finite contributions out of the

otherwise divergent effects.

The partial wave renormalisation, [70, 71], is one of the options for

the calculations of the combined effect of correlation and the bound elec-

tron self-energy. The numerical implementation of this procedure is de-

scribed in the thesis of Hans Persson [72]. Here, the renormalisation

is performed by defining the divergent mass-counter term in a coordi-

nate space and decomposing it into a divergent sum over finite partial

wave contributions. In the same way the unrenormalised bound elec-

tron self-energy term is expanded into partial waves. For each partial

wave a difference is taken between these two terms and the sum of all

these differences becomes finite value. A drawback with this procedure

is that a non-covariant regularisation scheme is used [73] and an addi-

tional correction term has to be calculated when the radiative effect is

screened by a Breit interaction.

Another procedure under consideration is the method of Blundell

and Snyderman [74], where the divergences are isolated by expanding

the internal self-energy electron propagator in the nuclear Coulomb po-

tential. The divergent zero-potential, one-potential and mass-counter

terms are grouped together and are calculated with the formulas achieved

within dimensional regularisation in the Coulomb-gauge, Adkins [75,

76]. The remaining many-potential term is finite and is instead cal-
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culated with a numerical procedure. This procedure has been imple-

mented numerically before by the Göteborg group, but then in the more

commonly used Feynman gauge. This implementation is described in

details in the thesis of Per Sunnergren [69].

The third option is a new procedure that is not more than a half year

old. The idea is to merge the dimensional regularisation into the above

presented procedure and perform the regularisation numerically. If this

is possible or not, we hope to explore in the near future.





CHAPTER 8

Summary and outlook

In this thesis the development of the new procedure of relativistically

covariant many-body perturbation theory is presented. This is a pro-

cedure that provides new possibilities within the field of precision cal-

culations of simple atomic systems. Compared to the other approaches

within the field, the new procedure is the only method that is be able

to treat relativistic, QED and electron correlation effects on the same

footing. This is a necessity in order to match the accurate experimental

measurements of helium-like ions in the moderate-Z region, Z = 7−14.

The numerical implementation is a systematic procedure, where the

energy contribution of the QED effects are evaluated with correlated

relativistic wave functions. The combined effects are also located in the

resulting numerical wave functions of the procedure, which can be re-

enter with a process of iterations. In this way new higher-order effects

can be calculated without restarting the computations from scratch.

The first numerical results achieved with the new approach are pre-

sented in the thesis and these clearly indicates the importance of com-

bined effects of QED and correlation in the low-Z and moderate-Z re-

gions. For example, the results indicate that the effect of electron corre-

lation on first-order non-radiative QED for He-like ions in the low and

moderate Z-regions dominates over second-order non-radiative QED-

effects. From the results it is also possible to conclude that the numeri-

cal calculations with the new procedure can have an impact even higher

up in the Z-regions.

At the moment, it is not possible to do any comparisons with exper-

imental results. The numerical calculations have until now only been

concentrated on the groundstate for a number of helium-like ions in the
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range of Z = 6 − 50 of the nuclear charge. Comparisons can first be

performed after an extension of the calculations to also include the first

excited states in the helium-like systems. The 1s2p fine-structure split-

ting will naturally be of interest and also the 2 1S0-2 3P1 intercombina-

tion, since for both cases there exist interesting experimental values to

compare with. In the future, it would also be interesting with more ac-

curate experimental results for helium-like ions in the medium high-Z
region, Z ≈ 20 − 50.

Before it is possible to turn the attention towards the excited states,

there exist missing pieces in the numerical implementation that has to

be completed. Of these missing pieces, the radiative effects have to be

considered to be of utmost importance in the future development. Esti-

mations of the combined effect of correlation and the He-like Lamb shift

indicates that this missing piece is vital in the low-Z and moderate-Z
regions. One shall not either forget that the treatment of the virtual

pairs is only partly considered in the numerical implementation in this

thesis.

A future possibility is to increase the number of electrons in the

atomic system and use the existing compatibility between the new ap-

proach and the standard MBPT/Coupled-Cluster approach. An idea is

to perform the coupled-cluster calculations as usual and insert the ef-

fects of QED at places where they are expected to be of most significant.

The theory of MBPT were developed by theorists within the field of

nuclear physics and have turned out to be a effective method in calcu-

lations in both atoms and molecules. With this new procedure it might

also be interesting to not only consider an increase in the number of

electrons, but also turn the ship around and use the new approach to

probe the structure of the nucleus.
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the atomic theory group doing your diploma work for a Bachelor degree.

It was very stimulating to have you in the group and I would especially

like to thank Daniel for his contribution to this work.

I also thank all previous and present members of the atomic physics

group for creating a friendly atmosphere to work in. Special thanks go

to Pontus Andersson and Anders Börjesson for the 12 years we have

had together, both in physics and everyday life. I would also like to

acknowledge Daniel Bogren, my really good friend outside the physics

society.

All staff at PDC in Stockholm and C3SE in Göteborg is also acknowl-
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APPENDIX A

Bound state QED

The fundamental theory of describing the interaction between charged

particles is the quantum field theory of electrodynamics. In this the-

ory the interactions are mediated by excitations of the quantised elec-

tromagnetic field, hence the essential interactions are taking place be-

tween the quantised field of the charged particles and the electromag-

netic field. The charged particles correspond to excitations of their re-

spective quantised fields.

The theory of QED is developed from the classical theory of electro-

dynamics, which includes the theory of special relativity, and the quan-

tisation is performed by imposing the canonical commutation relation

[φ(x1), φ(x2)] = [π(x1), π(x2)] = 0

[φ(x1), π(x2)] = δ(4)(x1 − x2) (A.1)

where φ(x) and π(x) are the field of interest and it’s field conjugate,

respectively. The classical field is described by a Lagrangian density, L,

and the expression of the field conjugate is received from

π(x) =
∂L
∂φ̇(x)

(A.2)

The equation of motion for the field of interest is derived with the Euler-

Lagrange equation

∂µ

(
∂L

∂(∂µφ)

)
− ∂L
∂φ

= 0. (A.3)

The result of the quantisation is so-called field operators that are

used control the creation and annihilation of the excitations of their

corresponding fields.
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A.1 The bound electron field

The field equation of the electron field, or Dirac field, is the well-known

Dirac equation. It is derived from the Lagrangian density

L = ψ†(x)(iαµ∂µ − βm)ψ(x) + eψ†(x)αµAµ(x)ψ(x), (A.4)

where ψ(x) is the electron field and Aµ(x) is the electromagnetic field

potential responsible for interaction between the electron field and the

field of a fix nucleus, the Furry picture [77]. In this thesis the nucleus

is represented by a classical static electromagnetic potential, Aµ(x) =
(Vnuc(x),0). The conjugate to electron field ψ(x) is according to (A.2)

∂L
∂ψ̇(x)

= ψ†(x) (A.5)

and the Dirac equation

[
iαµ∂µ − βm+ eVnuc(x)

]
ψ(x) = 0. (A.6)

is obtained by applying the Euler-Lagrange equation (A.3) upon the La-

grangian density in Eq. (A.4).

The electron field and it’s conjugate are expressed as expansions in

the set of eigenstates, {φ(x)}, to the bound Dirac equation in Eq. (A.6)

ψ(x) =
+∑

s

asφs(x)e−iεst +
−∑

s

bsφs(x)e−iεst (A.7)

ψ†(x) =

+∑

s

a†sφ
†
s(x)eiεst +

−∑

s

b†sφ
†
s(x)eiεst, (A.8)

where the first sum in each expression runs over the positive energy

eigenstates, the particle states, while the second sum runs over the neg-

ative energy states, the hole states.

At this stage the electron field is still a classical field and it is first

after imposing the canonical anticommutation relation

{ψ̂r(x1, t), ψ̂
†
s(x2, t)} = δ(3)(x1 − x2)δrs, (A.9)

the electron field and it’s conjugate become electron field operators. The

expansion coefficients â†(b̂†) and â(b̂) are then positive (negative) energy

electron state creation and annihilation operators. The canonical com-

mutation relation in (A.9) imposes equivalent relations for the creation

and annihilation operators

{âi, â
†
j} = {b̂i, b̂†j} = δij , (A.10)



Bound state QED · 121

where all other anticommutations vanish.

According to Dirac’s hole theory the vacuum state is defined to have

all the hole states occupied and all the particle states unoccupied, the

Dirac sea is said to be filled. From this definition one can formulate

relations for the operation upon the vacuum state with annihilation and

creation operators for particle and hole states, respectively,

âi|0〉 = b̂†i |0〉 = 0. (A.11)

An excitation by radiation from the vacuum state into a particle state

creates a hole in the Dirac sea. This absence of a particle state, that

represents an electron with the charge −|e| and the energy −E, in the

Dirac sea can be interpreted as the presence of a hole state representing

a particle with the charge +|e|, the energy +E and the same mass as

the electron. From this description the hole state is identified as the

positron.

A.1.1 The electron propagator

The Feynman electron propagator is defined as

iSF(x2, x1) = 〈0|T{ψ̂(x2)ψ̂
†(x1)}|0〉, (A.12)

where T is the time-ordering operator. For fermions the time-ordered

product becomes according to the anticommutation relation (A.9)

T{ψ̂(x2)ψ̂
†(x1)} =

{
ψ̂(x2)ψ̂

†(x1), t2 > t1
−ψ̂†(x1)ψ̂(x2), t1 > t2

(A.13)

The electron propagator can according to the time-ordering relation and

the properties of the creation and annihilation operators be expressed

as the sum of a positive and a negative energy part,

SF(x2, x1) = Θ(t2 − t1)S
+
F (x2, x1) − Θ(t1 − t2)S

−
F (x1, x2), (A.14)

where Θ(t) is the Heavyside step function, which is equal to zero for

negative t and to unity for positive t.

For t1 < t2, the contribution to the propagation comes from the pos-

itive energy electrons which are propagating in positive time direction.

The second term in (A.14) contributes when t2 < t1 and this corre-

sponds to negative energy electrons moving in the negative time direc-

tion. These negative energy electrons can also be considered as positive

energy positrons propagating in the positive time direction. This treat-

ment of both positive and negative energy electrons on an equal footing

makes the Feynman electron propagator relativistically covariant.
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An explicit expression of the electron propagator becomes

iSF(x2, x1) = Θ(t2 − t1)

+∑

s

e−iεs(t2−t1)φs(x2)φ
†
s(x1)−

Θ(t1 − t2)

−∑

s

e−iεs(t2−t1)φs(x2)φ
†
s(x1), (A.15)

which can be further developed into an integral in the complex z-plane,

separating out the time-dependence

SF(x2, x1) =

∫ ∞

−∞

dz

2π
e−iz(t2−t1)SF(x2,x1, z) (A.16)

where

SF(x2,x1, z) =

all states∑

s

φs(x2)φ
†
s(x1)

z − εs + iηs
. (A.17)

The infinitesimal real number η is introduced to dislocate the pole from

the real axis. With the subscript, ηs = sign(εs), the poles for positive en-

ergy electrons are transferred into the lower half-plane, while for nega-

tive energy electrons the poles are found in the upper half-plane.

A.2 Covariant theory of the photon

The covariant formulation of the Maxwell’s equations

∂νF
µν(x) = sµ(x) (A.18)

∂λF
µν(x) + ∂µF

νλ(x) + ∂νF
λµ(x) = 0 (A.19)

can be written as a single equation for the electromagnetic field poten-

tial Aµ(x) = (φ,A)

2Aµ(x) − ∂µ(∂νA
ν(x)) = sµ(x). (A.20)

Above, Fµν is the antisymmetric field tensor and sµ(x) = (ρ(x), j(x)) is

the four-vector current density . The equation in (A.20) is derived with

the help of the relation

Fµν = ∂νAµ(x) − ∂µAν(x), (A.21)

together with the non-homogeneous parts of Maxwell’s equation (A.18).

The conservation of the current density

∂µs
µ(x) = 0 (A.22)
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follows directly from the antisymmetric properties of the field tensor.

The field equation (A.20) can also be derived from the Lagrangian den-

sity

L = −1

4
FµνF

µν − sµ(x)Aµ(x) (A.23)

by applying Euler-Lagrange equation (A.3) for each of the four compo-

nents in Aµ(x).
Problems do occur when the canonical quantisation procedure is ap-

plied to this Lagrangian density. The time-like component of the conju-

gate field is namely equal to zero

∂L
∂Ȧ0

= −F 00(x) = 0, (A.24)

which implies incompatibility with the canonical commutation relations

(A.1). A new Lagrangian density has to be formulated

L = −1

2
(∂νAµ(x))(∂νAµ(x)) − sµ(x)Aµ(x) (A.25)

for which all components of the conjugate field

πµ(x) = Ȧµ(x) 6= 0 (A.26)

are non-zero and the canonical quantisation formalism can be applied.

The field equation becomes for this Lagrangian density

2Aµ(x) = sµ(x) (A.27)

and in comparison with (A.20) we notice that equation (A.27) is equiva-

lent to Maxwell’s equations if the potential satisfies the Lorentz-condition

∂µA
µ(x) = 0. (A.28)

A very powerful property of the electromagnetic theory is that the

field potential can always be transformed according to

Aµ(x) → A′µ(x) = Aµ(x) + ∂µf(x), (A.29)

where f(x) is an arbitrary function. In such of a transformation the

observable electric and magnetic fields are namely invariant, so-called

gauge invariant. This implies one can always perform the gauge trans-

formation and receive a potential A′µ(x) that satisfies the Lorentz con-

dition in Eq. (A.28). All potentials that satisfies the Lorentz condition

are said to belong to the so-called Lorentz gauges and in our treatment

we will restrict our consideration to the Feynman gauge.
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Coulomb Gauge

Another well used gauge is the Coulomb gauge, which has following

condition for the space-like part of the field potential

∇ · A(x) = 0. (A.30)

When regarding a free electromagnetic field, sµ(x) = 0, the scalar part

of the field potential, φ(x), is equal to zero, since the Coulomb gauge

condition (A.30) separates the field equation in Eq. (A.20) into

∇2φ(x) = −ρ(x) (A.31)

and

2A(x) + ∇∂φ(x)

∂t
= j(x). (A.32)

The field equation in the Coulomb gauge becomes for a free field equal

to

2A(x) = 0, (A.33)

where the solution is a summation of polarisation states transverse

to the propagation of the electromagnetic field. The benefits with the

Coulomb gauge is that it directly describes the observed free electro-

magnetic field with two degrees of freedom. The disadvantage is that

when charges are present the formulation becomes frame-dependent

and no covariant theory can be formulated, since the gauge condition

(A.30) separates the field into scalar, transverse and longitudinal com-

ponents.

A.2.1 Quantisation of the electromagnetic field

The solution of the equation for the free electromagnetic field potential

in Lorenz gauge,

2Aµ(x) = 0, (A.34)

is an expansion in plane waves,

Aµ(x) =
∑

rk

(
1

2V ωk
)1/2

[
εµr (k)cr(k)e−ikx + εµr (k)c†r(k)eikx

]
, (A.35)

where wk = k0 = |k| is the frequency and εµr (k) are the polarisation

vectors. The summation over k runs over all allowed values due to the

periodic boundary conditions in the quantisation volume V . Since the
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summation over r runs from r = 0 to r = 3, there exists a linear combi-

nation of four terms for each value of k, where the linear independent

states are the polarisation vectors.

With an expression for the field potential the canonical quantisation

relation

[Âµ(x1, t),
ˆ̇Aν(x2, t)] = −gµνδ(3)(x1 − x2) (A.36)

can be applied, where all other commutations are equal to zero. The

expansion coefficients ĉ and ĉ† can be identified as annihilation and cre-

ation operators, respectively, and they are satisfying the commutation

relations

[ĉr(k), ĉ†s(k
′)] = ζrδrsδ

(3)(k − k′)

[ĉr(k), ĉs(k
′)] = [ĉ†r(k), ĉ†s(k

′)] = 0 (A.37)

with ζr = 1 for r = 1, 2, 3 and ζ0 = −1.

The quantised free electromagnetic field is still covariant and in-

cludes all four degrees of freedom. But here the covariance of the field

become a problem, since the observed free electromagnetic field do only

have two degrees of freedom. For the free-field case it can be shown

that by imposing the Lorentz condition upon quantised field potential

only the transverse components contribute in calculations of observable

quantities of the free field. The scalar and longitudinal components

become on the other hand important in the description of interactions

between charged particles, which we will see in the next section.

In the Coulomb gauge only the transverse components of the free

electromagnetic field potential are quantised according to quantisation

treatment of a harmonic oscillator. When charge distributions are present

the classical instantaneous Coulomb potential are included to supple-

ment the interaction between the charges.

A.2.2 Photon propagators

The Feynman photon propagator is defined as the vacuum expectation

value of two time-ordered electromagnetic field potentials in various

space-time coordinates

iDµν
F (x2, x1) = 〈0|T{Âµ(x2)Â

ν(x1)}|0〉. (A.38)

The propagator can be expressed as a Fourier-expansion in the photon

momentum k

Dµν
F (x2, x1) =

1

(2π)4

∫
d4k Dµν

F (k)e−ik(x2−x1) (A.39)
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where the momentum space propagator is

Dµν
F (k) =

1

k2 + iε

∑

r

ζrε
µ
r (k)ενr (k). (A.40)

In this thesis we are interested in the interaction between electrons

in He-like ions and the propagation of free photons is not relevant. The

explicit expressions used in this thesis can be derived by choosing the

polarisation vectors as

εµ0 (k) = nµ = (1, 0, 0, 0) and εµr (k) = (0, εr(k)) r = 1, 2, 3 (A.41)

where ε3(k) is chosen to be the longitudinal polarisation vector

ε3(k) =
k

|k| (A.42)

and ε1(k), ε2(k) are orthogonal unit vectors perpendicular to k. The

longitudinal polarisation vector is rewritten as

ε3(k) =
kµ − (kn)nµ

[(kn)2 − k2]1/2
(A.43)

and the momentum space propagator is expanded into

Dµν
F (k) =

1

k2 + iε

×
[ 2∑

r=1

εµr (k)ενr (k) +
[kµ − (kn)nµ][kν − (kn)nν ]

(kn)2 − k2
+ (−1)nµnν

]
.

(A.44)

In this expression the terms inside the bracket on the the right-hand

side correspond to transverse, longitudinal and scalar photons, respec-

tively.

The interaction of lowest order between two particles is represented

by a photon propagator sandwiched by two charge-current densities,

sµ(k). In this sandwiched expression the parts of the longitudinal term

proportional to kµ will be equal to zero according to the charge conser-

vation in the momentum space, kµsµ(k) = 0. The only remaining lon-

gitudinal term is proportional to nµnν and is combined with the scalar

component into

Dµν
S (k) =

nµnν

k2 + iε
. (A.45)
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After an integration over scalar-component of kµ

Dµν
S (x2, x1) = nµnν

∫
d3k

(2π)3
eik·(x2−x1)

k2 + iε

∫
dωk

2π
eiωk(t2−t1)

= nµnν δ(t2 − t1)

∫
d3k

(2π)3
eik·(x2−x1)

k2 + iε
(A.46)

we receive an expression proportional to the Fourier transform of the

instantaneous Coulomb interaction.

The photon propagation between two charged particles can, with the

choice of polarisation vectors in Eq. (A.41), be expressed as the sum of

an instantaneous Coulomb-like component and a transverse component

Dµν
F (x2, x1) = Dµν

S (x2, x1) +Dµν
T (x2, x1). (A.47)

The expression of the transverse component is

Dµν
T (x2, x1) =

∫
dωk

2π
se−iωk(t2−t1)Dµν

T (x2,x1, ωk) (A.48)

where

Dµν
T (x2,x1, ωk) =

∫
d3k

(2π)3
eik(x2−x1)

ω2
k − k2 + iε

2∑

r=1

εµr (k)ενr (k). (A.49)

The result in Eq. (A.47) is equal to the expression one has for the in-

teraction between two charged particles in the Coulomb gauge. In this

thesis, this expression for photon propagator is used in the explicit cal-

culations performed in the Coulomb gauge.

A.2.3 Wick’s theorem

The perturbation expansion of the time-evolution operator, Eq. (3.3),

includes time-ordered products of field operators. According to Wick’s

theorem [78] a time-ordered product can be expanded into a sum of nor-

mal ordered products, where the sum runs over all possible contractions

between the field operators,

T{ABCD . . .WXY Z} = N{ABCD . . .WXY Z}
+ AB N{CD . . .WXY Z} + . . .+ Y Z N{ABCD . . .WX}
+ AB CD N{. . . WXY Z} + . . .+WX Y Z N{ABCD . . .} + . . . (A.50)

The normal-ordered product is defined such that all annihilation (cre-

ation) operators stands to the right of all creation (annihilation) oper-

ators for the particle (hole) states. The vacuum expectation value of a
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normal ordered product is equal to zero according to the properties of

the creation and annihilation operators. This implies that only the fully

contracted terms in the expansion are non-zero when calculating the

vacuum expectation value of a time-ordered product.

The definition of the contraction of two field operator, which is a C-

number, becomes according to the expansion in Eq. (A.50)

AB = T{AB} −N{AB}. (A.51)

In the vacuum expectation value of this contraction the normal-ordered

term will vanish

〈0|AB|0〉 = AB = 〈0|T{AB}|0〉 (A.52)

and one notice that the contraction is connected to the propagator of the

corresponding field operators.

A.3 The interacting fields

We will now consider the interaction between the electron field and the

electromagnetic field. The interaction is introduced by the ”minimal

substitution”

∂µ → ∂µ + ieÂµ. (A.53)

in the Lagrangian density of the free electron field. The total Lagrangian

density for an atomic system can in this way be written as

LQED = LDirac + LMaxwell + Lint

= ψ̂†(x)(iαµ∂µ − βm+ βeVnuc(x))ψ̂(x)−
1

4
(Fµν)2 − eψ̂†(x)αµÂµ(x)ψ̂(x) (A.54)

where the Dirac part, LDirac, describes the bound electrons in the field of

a fix nucleus, the Maxwell part LMaxwell represents the free electromag-

netic field and the interaction part, Lint is responsible for the absorption

and emission of photons by the orbiting electrons. A Hamilton formula-

tion can be obtained by the relation

HQED(t) = −
∫
d3x LQED

[
ψ̂(x), Âµ(x)

]
= H0(t) −H ′(t) (A.55)

where the Hamiltonian H0 includes both the electron field and the free

electromagnetic field and H ′(t) is the interaction/perturbation term. In
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this thesis we are not considering any emissions or absorptions of exter-

nal photon and therefore can the free electromagnetic field be neglected

in H0,

H0(t) → H0(t) = HD
0 (A.56)

where HD
0 is the Dirac Hamiltonian.

A.3.1 Time-dependent perturbation theory

At this stage, when we want to develop a perturbation expansion, it is

convenient to change from the Heisenberg picture into the interaction

picture, where the time-development of the operators is determined by

the free HamiltonianH0. In the interaction picture the full Hamiltonian

is written as

HQED(t) = H0 +H ′
I(t). (A.57)

It is here important, in order to have convergent perturbation expan-

sion, that the interaction is not to strong. In the electromagnetic quan-

tum field theory the interaction strength is given by the fine-structure

constant α ≈ 1/137, which is sufficient small in order to obtain a con-

vergent expansion.

Time evolution operator

In the interaction picture states and operators correspond to those in

the Schrödinger picture as

OI(t) = eiH0tOSe−iH0t (A.58)

|ΨI(t)〉 = eiH0t|ΨS(t)〉 (A.59)

and the Schrödinger equation will only contain the time-dependent per-

turbation part of the Hamiltonian,

i
∂

∂t
|ΨI(t)〉 = H ′

I(t)|ΨI(t)〉. (A.60)

The time evolution operator, U(t, t0), is introduced for the propagation

of the states in time when there is a perturbation present

|ΨI(t)〉 = U(t, t0)|ΨI(t0)〉. (A.61)

This relation is inserted into the Schrödinger equation in (A.60) and a

differential equation for U(t, t0) is obtained

i
∂

∂t
U(t, t0) = H ′

I(t)U(t, t0), (A.62)
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which is equivalent to the integral equation

U(t, t0) = 1 +

∫ t

t0

dt′ H ′
I(t

′)U(t′, t0). (A.63)

The solution is an expansion into a series of increasing order of pertur-

bations,

U(t, t0) = 1 +

∞∑

n=1

(−i)n

n!

∫ t

t0

dtn · · ·
∫ t

t0

dt1 T{H ′
I(tn)H ′

I(tn−1) · · ·H ′
I(t1)}

= T
{

exp(−i

∫ t

t0

dt′H ′
I(t

′))
}

(A.64)

where the time-ordering of the Hamiltonians is

T{H ′
I(t1)H

′
I(t2)} =

{
H ′

I(t1)H
′
I(t2), t1 > t2

H ′
I(t2)H

′
I(t1), t2 > t1

(A.65)

Adiabatic damping

In an atom there exists no propagation of unperturbed states to a cer-

tain time where the perturbations occur, since an electron always feels

the presence of the electromagnetic field raised by other electrons or

itself. These perturbations lead to the exchange of photons between

two electron or the interaction between an electron and its own photon

cloud, which is surrounding each real electron. In this sense we are re-

ferring the perturbation to be time-independent for an atomic system

in the Schrödinger picture, when external perturbations are excluded.

To be able to set up a perturbation expansion an adiabatic damping fac-

tor γ > 0, is introduced, [79]. The adiabatic damping will be the only

time-dependent part of the perturbation, H ′, in the Schrödinger picture

H ′ → H ′(t, γ) = H ′e−γ|t|. (A.66)

In the interaction picture, the exponential form of the time evolution

operator becomes

Uγ(t, t0) = TD

[
exp(−i

∫ t

t0

dt′H ′
I(t

′) e−γ|t′|)
]
. (A.67)

This implies that in the limit t → ±∞ there will be no perturbation

and the eigenstates of the full Hamiltonian, |ΨIγ(t)〉, will approach the

eigenstates states, |Ψ0〉, of H0 with the eigenvalues E0,

lim
t→±∞

|ΨIγ(t)〉 = |Ψ0〉 (A.68)

In the end of the calculations the approximation with the adiabatic

damping is ”switched off” by applying the limit γ → 0.
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The Gell-Mann and Low Theorem

A first guess of a transformation of an unperturbed state in time into an

eigenstate of the full Hamiltonian would be

|ΨI(t)〉 = lim
γ→0

Uγ(t,−∞)|Ψ0〉, (A.69)

but this transformation will include non-physical singularities. These

arise in the implementation of Wick’s theorem upon the time-ordered

product of interaction terms in the perturbation expansion of the time-

evolution operator. The problem was solved by Gell-Mann and Low, [79],

by introducing the ratio

|Ψ〉 = |ΨI(0)〉 = lim
γ→0

Uγ(0,−∞)|Ψ0〉
〈Ψ0|Uγ(0,−∞)|Ψ0〉

, (A.70)

where |Ψ〉 is the stationary state which satisfies the time-independent

eigenequation in the Schrödinger picture,

H|Ψ〉 = (H0 +H ′)|Ψ〉 = E|Ψ〉. (A.71)

The energy shift, caused by the perturbation, is then expressed with the

ratio

∆E = lim
γ→0

iγλ
〈Ψ0| ∂

∂λUγ(0,−∞)|Ψ0〉
〈Ψ0|Uγ(0,−∞)|Ψ0〉

, (A.72)

where the final energy, E, is the sum of the zeroth-ordered energy, E0

and above mentioned the energy shift, ∆E,

E = E0 + ∆E. (A.73)

Above in Eq. (A.72) λ is an order parameter included in the expression

of the perturbation and in QED it is equal to the fine-structure constant

α.

A.4 Electron interaction within QED

In bound-state QED the interaction term is given by

H ′
I(t) = −

∫
d3x Lint

[
ψ̂(x), Âµ(x)

]

= e

∫
d3x ψ̂†(x)αµÂµ(x)ψ̂(x). (A.74)

and corresponds to an interaction between the bound electron field and

the electromagnetic field in a specific space-time point called a vertex.



132

In this vertex a virtual photon is emitted or absorbed by a orbiting elec-

tron. The interaction in two vertexes can be connected by contracting

the included electromagnetic field operators and between the two space-

time points a virtual photon is exchange. This exchange can take place

between two electrons or the emission and absorption of the photon can

be connected to a single electron. The virtual photon can also create a

virtual pair out of the vacuum state.

The exchange of a single photon between two electron is generated

by the evolution operator of second order by contracting the two electro-

magnetic field operators and leaving the operators of the electron field

unchanged

U1ph
γ (t, t0) =

(−i)2

2

∫∫ t

t0

d4x1 d4x2 ψ̂
†(x1)ψ̂

†(x2)×

iI(x2, x1)ψ̂(x1)ψ̂(x2)e
γ(|t1|+|t1|). (A.75)

The contraction of the two electromagnetic field operators results in a

photon propagator that is located in the interaction term

I(x2, x1) = e2αµανDµν,F(x2, x1). (A.76)

A.4.1 The interaction term within the Coulomb gauge

All explicit calculations in this thesis are performed in the Coulomb

gauge. In this gauge the interaction term consists of two parts, an in-

stantaneous Coulomb part and a transverse part, also known as the

Breit interaction,

IC(x2, x1) = IS(x2, x1) + IT(x2, x1)

= e2αµαν(Dµν,S(x2, x1) +Dµν,T(x2, x1)), (A.77)

where the expression of Dµν,S(x2, x1) and Dµν,T(x2, x1) is given in Eq.

(A.46) and Eq. (A.48), respectively. The scalar part can easily be shown

to be equal to classical Coulomb potential by performing the integration

over k in Dµν,S(x2, x1),

IS(x2, x1) = e2αµανnµnν δ(t2 − t1)

∫
d3k

(2π)3
eik·(x2−x1)

k2 + iη

=
e2

4πr12
δ(t2 − t1), (A.78)

where r12 = |x2 − x1|. For the transverse part of the interaction the

spatial and time coordinates are separated by a Fourier transformation,

IT(x2, x1) =

∫ ∞

−∞

dωk

2π
e−iωk(t2−t1)IT(x2,x1, ωk), (A.79)
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and major focus is put upon the Fourier transform

IT(x2,x1, ωk) = e2αµαν

∫
d3k

(2π)3
eik·(x2−x1)

ω2
k − k2 + iη

2∑

r=1

εµ,r(k)εν,r(k). (A.80)

The summation over the transverse polarisation vectors can be expanded

into

2∑

r=1

εµ,r(k)εν,r(k) = −gµν − 1

k2 (kµkν − ωk(kµnν + nµkν) + k2nµnν)

(A.81)

and with this expression it is easy to perform the scalar product between

the transverse polarisation vectors and the α-matrices

αµαν
2∑

r=1

εµ,r(k)εν,r(k) = α1 · α2 −
(α · k)1(α · k)2

k2 . (A.82)

The Fourier transform of the transverse interaction term can now be

written as

IT(x2,x1, ωk) = e2
∫

d3k

(2π)3

(
α1 · α2 −

(α · ∇)1(α · ∇)2

k2

)
eik·(x2−x1)

ω2
k − k2 + iη

.

(A.83)

In the integration over k we are only performing the angular part of the

integration analytically and the result becomes

IT(x2,x1, ωk) =

∫
dk

2kfB(k, r12)

ω2
k − k2 + iη

(A.84)

where

fB(k, r12) =
e2

4π2

(
(α1 · α2) −

(α · ∇)1(α · ∇)2
k2

)
sin(kr12)

r12
. (A.85)

The radial k-integration is instead performed with a numerical proce-

dure. In this expression the radial coordinates of the two interaction

points are coupled, but these can be separated by expanding the right-

most ration in the expression of fB(k, r12) into spherical waves

sin(kr12)

r12
= k

∞∑

l=0

(2l + 1)jl(kr1)jl(kr2)C
l(1) · Cl(2), (A.86)
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where jl(kr) is the spherical Bessel function and C l is the angular ten-

sor

C l
q(i) =

√
4π

2l + 1
Y l

q (θi, φi), (A.87)

here expressed with its components and l is the orbital angular momen-

tum of the transverse photon.

The first term of fB(k, r12) named the Gaunt term can after this ex-

pansion be expressed as

e2

4π2
(α1 · α2)

sin(kr12)

r12
=

∞∑

l=0

V l
G(kr2) · V l

G(kr1) (A.88)

where the single-particle potential of the Gaunt interaction V l
G(kri) is

V l
G(kr) =

e

2π

√
k(2l + 1) αjl(kr)C

l. (A.89)

The second term of fB(k, r12) is called the scalar retardation term

e2

4π2

(α · ∇)1(α · ∇)2
k2

sin(kr12)

r12
=

∞∑

l=0

V l
SR(kr2) · V l

SR(kr1). (A.90)

The following two relations

∇[f(r)C l
m] =

1

2l + 1

[
−
√

(l + 1)(2l + 3)(
d

dr
− l

r
)f(r)C l,l+1

m

+
√

(2l − 1)(
d

dr
+
l + 1

r
)f(r)C l,l−1

m

]
(A.91)

and

α · Ck,l
m =

{
αC l

}k

m
(A.92)

are collected from [80] and used to obtain an expression for the single-

particle potentials of the scalar retardation interaction V l
SR(kr2). These

are merged with the following relations for the spherical Bessel func-

tions [81]

(
d

dr
− l

r
)jl(kr) = −kjl+1(kr) (A.93)

(
d

dr
+
l + 1

r
)jl(kr) = kjl−1(kr) (A.94)

and the final result of V l
SR(kr2) becomes

V l
SR(kr) =

e

2π

√
k

2l + 1

[
√

(l + 1)(2l + 3)jl+1(kr)
{
αCl+1

}l

+
√
l(2l − 1)jl−1(kr)

{
αC l−1

}l

]
(A.95)
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The expression of fB(k, r12) can, after the expansion into spherical wave,

be written as

fB(k, r12) =
∞∑

l=0

[
V l

G(kr1) · V l
G(kr2) − V l

SR(kr1) · V l
SR(kr2)

]

(A.96)

A.4.2 The instantaneous Breit interaction

In time-independent perturbation theory it possible to include an in-

stantaneous part of the full Breit interaction. The expression of this

instantaneous interaction is obtained by first performing the integra-

tion over k in (A.83). The result of the integration is

IT(x2,x1, ωk) =
e2

4π

{
− α1 · α2

eiωkr12

r12
+ (α · ∇)1(α · ∇)2

eiωkr12 − 1

ωkr12

}
,

(A.97)

which becomes equal to the instantaneous Breit interaction in the limit

ωk → 0

V I
B = − e2

4π

(α1 · α2

2r12
+

(α1 · r12)(α2 · r12)

2r312

)
. (A.98)





APPENDIX B

Angular momentum graphs

The angular integration is performed analytically with the method of

angular momentum graphs. The textbook by Lindgren and Morrison

[50] describes the method exemplary and has been used as a reference

in the reduction of the graphs in the following sections.

A number of useful relations are presented in Eq. (B.2)- (B.7) and all

these are in some way used in the following reductions. In relation (B.2)

the limits in the summation over the coupled angular momentum j3 are

determined by a triangular condition of the two components, j1 and j2,

|j1 − j2| ≤ j3 ≤ j1 + j2. (B.1)

The notation [j3] in Eq. (B.2) is equal to 2j3 + 1 and the notations with

the big curly brackets in Eq. (B.3) and (B.4) are known as 6-j symbols.

=
∑

j3

[
j3
]

(B.2)

�

�

j1

j2

��
@@

@@
���I �

	 R
+− j3

j2

j1

j2

j1

=

{
j1 j2 j3
l1 l2 l3

}
(B.3)
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=

{
j1 j2 j3
l1 l2 l3

}
(B.4)

HHHH
����

@@

��

6j

�

+

+

+

j1

j2

j3

l2
l3

l1

@
@

@@

�
�

��

−

j1

j2

j3

= (B.5)+

j1

j2

j3 −

j1

j2

j3

= (−1)j1+j2+j3 (B.6)+

j1

j2

j3 −

j1

j2

j3

= (−1)2j1 (B.7)�j1 -j1

B.1 A3 → A2 - Reduction with closed interactions

In Eq. (6.22) the relation for expressing the angular momentum graph

A3, Fig. B.1, in terms of the determind angular symmetry A2 of the pair

functions is presented. This relation is important since it appears in

many situations, when generating the correlated pair, when the trans-

verse photon is absorbed and when more Coulomb interactions are ex-

changed after a transverse photon.

The reduction of the graph A3 into terms of A2 starts by connecting

Kl andKu according to Eq. (B.2). This results in the intermediate graph

located in between A3 and A2 in Fig. B.1 After changing the directions

of the two arrows for Ku it is possible to use Eq. (B.3) and (B.4) to get

rid of the triangle loops. The final result becomes

A3 =
∑

K

[K] (−1)jr+js+ja+jb×
{

ja K jr
Ku jt Kl

}{
jb K js
Ku ju Kl

}
×A2. (B.8)

where the phase factor is the result of changing the signs of the remain-

ing vertexes by using relation (B.6).
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Figure B.1: The scheme of reduction of the angular momentum graph A3 into

A2, the defined angular symmetry for pair functions with closed

interactions. The graph A3 represent the angular symmetry of

pair functions that are perturbed with an additional interaction.

B.2 The emission and absorption of a transverse pho-

ton

The angular matrix element of the emission and the absorption of a

transverse photon are identical

〈(ljsj)jj |V L
k |(lisi)ji〉 (B.9)

where V L
k includes both the single-particle potential for the Gaunt in-

teraction and the scalar retardation interaction, see Eq. (4.38). The

main difference between angular parts of these two interactions

V L
G (kr) =

e

2π

√
k(2L+ 1)αjL(kr)CL (B.10)

V L
SR(kr) =

e

2π

√
k

2L+ 1

(
√

(L+ 1)(2L + 3)jL+1(kr){αCL+1}L

+
√
L(2L− 1)jL−1(kr){αCL−1}L

)
(B.11)

is that the spin and orbital angular momenta are coupled for the scalar

retardation

{αCL+1}L and {αCL−1}L. (B.12)

This will lead to slightly different expression for the reduced diagrams,

which we will see later.

The reduction of the angular momentum graph of the exchange of a

full photon, both emission and absorption, is handled in the appendix



140

�
��

@
@@

�
��

@
@@

	I

	 I

6

�-

+

+ −

−
jt

ltst

S L
sr lr

jr
B2

→

6

- +

jt

jr

Kp

B1

Figure B.2: The angular momentum graph B2 represents the emission of a re-

tarded Gaunt photon. This graph is reduced into the right graph

B1 according to the relation in Eq. B.15.

of [68]. We will not perform a detailed reduction instead we refer the

readers to the mentioned article. There is one exception in our treat-

ment and it is that we separate the angular terms of the emission and

the absorption of the photon, since they are applied in different loca-

tions in the computer-code.

The exchange of a full photon includes a scalar product between the

angular matrix element of the emission and absorption. This product

results in a phase factor, which we have chosen to apply together with

the absorption of the photon. The expression of this phase factor de-

pends on the kind of interaction that is considered.

B.2.1 B2 → B1 - Gaunt interaction

The angular matrix element of V L
G (kr) is expressed as

〈(lrsr)jr|αCL|(ltst)jt〉 = 〈lr||CL||lt〉〈sr||σ||st〉 × B2 (B.13)

where B2 is the corresponding angular-momentum graph. The reduced

matrix element of the spin part is

〈sr||σ||st〉 = 〈1
2
||σ||1

2
〉 =

√
2(2S + 1) =

√
6, (B.14)

since the value of spin of the photon S is equal to unity. The shape of

graph B2 is reduced by following the procedure in [68] and the result

becomes

〈(lrsr)jr|αCL|(ltst)jt〉 =
√

6
∑

jκ

(−1)
1

2
+lt+jκ [jt, jκ,Kp]

1

2 〈jr||CL||jκ〉×

{
jκ 1 jt
st lt sr

}{
jt Kp jr
L jκ 1

}
×B1 (B.15)
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Figure B.3: The angular momentum graph B3 represents one of the terms in

the emission of scalar retardation photon. This graph is reduced

into the right graph B1 in Fig. B.2 according to the relation in Eq.

B.18.

where the square bracket notation [jr, jκ]
1

2 is equal to
√

(2jr + 1)(2jκ + 1)
and jκ is a virtual angular momentum obtained by connecting sr and lt.

The total angular momentum of the photon Kp is the result of con-

necting L and S. The possible values of Kp are determined by a trian-

gular condition of L and S.

The reduced matrix element in the jm scheme is given in terms of a

3-j symbol

〈jr||CL||jκ〉 = (−1)sr+lr+jκ+L[jr, jκ]
1

2

{
jr L jκ
lt sr lr

}
〈lr||CL||lt〉

= (−1)jκ+sr [jr, jκ]
1

2

(
jr L jκ
1
2 0 −1

2

)
. (B.16)

where lr, L and lt must satisfy both a triangular and a parity condition.

The final graph B1 for the emission is presented in Fig. B.2.

For the Gaunt interaction a scalar product is taking place between

the uncoupled components, α and CL, of the emission and absorption

of the photon. This results in a phase factor (−1)L+S , which is applied

together with the angular factor of the absorption.

B.2.2 B3 → B1 - Scalar retardation

The angular matrix element of the scalar retardation consists of two

terms, one proportional to CL+1 and the other to CL−1. The treatment

for these terms is analogous to each other and therefore is only one of

them considered.

The angular matrix element of the CL+1-term is

〈(lrsr)jr|{αCL+1}L|(ltst)jt〉 = 〈lr||CL+1||lt〉〈sr||σ||st〉 ×B3, (B.17)
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and angular momentum graph B3 in Fig. B.3 is reduced into terms of

B1 by following the procedure in [68]. The final result becomes the same

expression as for the Gaunt interaction except that Kp is replaced with

L and the rank of the angular tensor C is L+ 1

〈(lrsr)jr|{αCL+1}L|(ltst)jt〉 =
√

6
∑

jκ

(−1)
1

2
+lt+jκ [jt, jκ, L]

1

2 〈jr||CL+1||jκ〉×

{
jκ 1 jt
st lt sr

}{
jt L jr

L+ 1 jκ 1

}
× B1.

(B.18)

The result of the CL−1-term is

〈(lrsr)jr|{αCL−1}L|(ltst)jt〉 =
√

6
∑

jκ

(−1)
1

2
+lt+jκ [jt, jκ, L]

1

2 〈jr||CL−1||jκ〉×

{
jκ 1 jt
st lt sr

}{
jt L jr

L− 1 jκ 1

}
× B1.

(B.19)

The phase factor from the scalar product between the coupled angular

tensors of the emission and the absorption for the scalar retardation is

equal to (−1)L.

B.3 C3 → C1 - Changing position of interactions

In the pair equation with an open photon there exist a term where a

single-electron state with an open photon is connected to another elec-

tron with a Coulomb interaction. This event is represented by the Feyn-

man diagram on the upper row in Fig. B.4 and with an angular momen-

tum graph it is represented by the graph C3 on the second row. In the

iterative procedure of solving the pair equation it is important that all

terms have the same symmetry and the defined symmetry of the pair

function with an open photon is the graph C1 on the bottom row of Fig.

B.4.

The transformation of moving the open total angular momentum of

the photon, Kp, above the angular momentum of the Coulomb interac-

tion, K, is performed by first connecting jr with Kp into a virtual angu-

lar momentum jm. The result becomes the middle graph on bottom row

of Fig. B.4, which can be further reduced by applying relation (B.4). The

final result of the transformation is

C3 =
∑

jm

[jm] (−1)ji+Kn+Kp+jm ×
{
ja Kn jm
jr Kp ji

}
× C1. (B.20)
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Figure B.4: The scheme of reduction of the angular momentum graph C3 into

C1, the defined angular symmetry for pair functions with an open

interactions. The graph A3 represent the angular symmetry of

the situation where a single-particle state with an open photon is

connected to another single-particle state. Above the scheme of

reduction the corresponding Feynman diagram is presented.

B.4 C4 → C1 - Reduction with an open interaction

When a pair function with an open photon is perturbed by an additional

Coulomb interaction there will in the angular momentum graph exist

two lines connecting the two electrons, one for the new interaction and

one for the previous reduced angular momenta. This graph C4 is pre-

sented in Fig. B.5 together with the corresponding Feynman diagram.

In this figure an intermediate step of the reduction of C4 into the graph

C1, in Fig. B.4, is also presented. This intermediate step is obtained

by using relation (B.2) to connect ji and Ku into jm and also to connect

Ku and Kl into K. There are also some signs of vertexes and directions

of arrows that has to be changed. From the intermediate step one only

has to apply the relations (B.3) and (B.4) to reduce the triangular loops

and to obtain the final result

C4 =
∑

jm,K

(−1)Kph+Ku+jt+ja+jb+js+2jm[K, jm] ×

{
ja K jm
Ku ji Kl

}{
jm jr Kp

jt ji Ku

}{
jb js K
Ku Kl ju

}
× C1, (B.21)

where some additional signs of vertexes have to be changed in the end.
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APPENDIX C

Integrations over energy parameters

Two ∆γ functions

The first integral under consideration includes two ∆γ functions

∫
dω ∆γ(ω − a)∆κ(ω − b) =

1

(2π)2

∫
dω

2γ

(ω − a)2 + γ2

2κ

(ω − b)2 + κ2

=
1

4π2i

∫
dω
[ 1

ω − a− iγ
− 1

ω − a+ iγ

] 2κ

(ω − b− iκ)(ω − b+ iκ)
. (C.1)

Here, the first term is integrated over the negative half-plane and the

integration of the second term is performed over the positive half-plane.

The results of these integrations can be collected into

1

2πi

[ 1

b− a− i(γ + κ)
− 1

b− a+ i(γ + κ)

]

=
1

2π

2(γ + κ)

(a− b)2 + (γ + κ)2
= ∆γ+κ(a− b). (C.2)

Compactly the result can be written as

∫
dω ∆γ(ω − a)∆κ(ω − b) = ∆γ+κ(a− b). (C.3)
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∆γ-function and an electron propagator

Next integral to consider consists of a ∆γ-function and an electron prop-

agator

∫
dω

2π
Si

F(ω) 2π∆γ(εj − ω) =

∫
dω

2π

1

ω − εi + iηi
2π∆γ(εj − ω)

=

∫
dω

2π

1

ω − εi + iηi

2γ

(εj − ω)2 + γ2

=

∫
dω

2π

1

ω − εi + iηi

[ i

εj − ω + iγ
− i

εj − ω − iγ

]
(C.4)

where ηi = η sign(εi) and η is an infinitely small positive number. For

εi > 0 the non-zero contribution of the integration over ω will arise from

the first term of the integral, since the second term has both its poles in

the negative half-plane. The result of the integration over the positive

half-plane of the first term becomes

1

εj − εi + iγ + iη
. (C.5)

For εi < 0 it is time for the second term to contribute and after an

integration over the negative half-plane the result becomes

1

εj − εi − iγ − iη
. (C.6)

The parameter η is used to dislocate the pole from the real axis of the

electron propagator and is an infinitesimal quantity. The other imagi-

nary term iγ is the the adiabatic damping. A small but finite positive

number, which will be switched off in the adiabatic limit. When these

two parameters appear together, the γ-term will dominate and the η-

term can be omitted. The final result can be written as
∫

dω

2π
Si

F(ω) 2π∆γ(εj − ω) =
1

εj − εi + iγi
, (C.7)

where γi is equal to γ sign(εi).

∆γ-functions and two electron propagators

Next integral includes a ∆γ-functions and two electron propagators

∫
dω

2π

1

ω − εi + iηi

1

ω + εj + iγj
2π∆γ(εk − ω)

=

∫
dω

2π

1

ω − εi + iηi

1

ω + εj + iγj

[ i

ω − εk + iγ
− i

ω − εk − iγ

]
(C.8)
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This integral includes two energies and in this way there exist four pos-

sible combination to consider. In the first case both εi and εj have posi-

tive energies and the result becomes

εi > εj > :
1

εk − εi + iγ

1

εk + εj + 2iγ
. (C.9)

after performing the integration over the positive half-plane. Next case

includes two negative and the integration is now performed over the

negative half-plane. The result is

εi < εj < :
1

εk − εi − iγ

1

εk + εj − 2iγ
. (C.10)

When the energies εi and εj have opposite signs the calculations include

a little more algebra, since the result of the integrations includes two

terms, one integration over the positive half-plane and a second over

the negative half-plane. We will only consider εi < 0 and εj > 0 in

details, the other term can be obtained with similar manner. The result

becomes

εi < εj > :
i2

εi + εj + iγ

1

εi − εk + iγ
− i2

εi + εj + iγ

1

εj − εk − 2iγ

=
−1

εi − εj + iγ

[ 1

εi − εk + iγ
− 1

εj − εk − 2iγ

]

=
−1

εi − εj + iγ

−(εi − εj + iγ) − 2iγ

(εi − εk + iγ)(εj − εk − 2iγ)
(C.11)

after the integration and some algebra. It can be noticed that one of the

terms in the result has a factor of 2iγ in the numerator and will become

equal to zero as the adiabatic damping is switched off. We can therefore

neglect this term and the result becomes

εi < εj > : ≈ 1

εk − εi − iγ

1

εk + εj + 2iγ
. (C.12)

When both energies have switched sign the result becomes instead

εi > εj < : ≈ 1

εk − εi + iγ

1

εk + εj − 2iγ
. (C.13)

The final results can now be written as
∫

dω

2π

1

ω − εi + iηi

1

ω2 + εj + iγj
2π∆γ(εk − ω)

≈ 1

εk − εi + iγi

1

εk + εj + 2iγs
(C.14)
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Integration over the energy parameter of the photon propagator

When one in the calculations arrives to the integration over the energy

parameter z of the photon propagator, it is often the following integral

that has to be calculated
∫

dz

2π

[ 1

εi − z + iγi
+

1

εj + z + iγj

] 1

z2 − k2 + iη
. (C.15)

The last denominator can be rewritten as

(z − k + iη)(z + k − iη) = z2 − k2 + 2ikη. (C.16)

Since η is an infinitesimally small positive number, 2kη is equivalent to

η for positive k. The result of the integration of the first term in (C.15)

becomes

− i

(2k − iη)(εi − (k − iγ)i)
, (C.17)

which depends on the sign of the value of εi, (A)i = sign(εi)A. The

integration is performed over the negative half-plane for positive value

of εi and on the opposite half-plane when the sign is shifted. Similarly,

the integration of the second term in (C.15) results in

− i

(2k − iη)(εj − (k − iγ)j)
, (C.18)

and the complete integral becomes

− i

(2k − iη)

[ 1

εi − (k − iγ)i
+

1

εj − (k − iγ)j

]
. (C.19)

Product of two sums of electron propagators

In the end of the calculations to obtain a relativistically covariant ex-

pression of Breit potential, there is an integral that includes a product

of two sums of electron propagators. This integral will consist of four

terms that are handle separately

∫
dω

2π

[ 1

εi − ω + iγi
+

1

ω − εj + iηj

]
×

[ 1

ω − εk − (k − iγ)k
+

1

εl − ω − (k − iγ)l

]
. (C.20)

We will consider two of them and we start with εjεk-term

∫
dω

2π

1

ω − εj + iηj

1

ω − εk − (k − iγ)k
(C.21)
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This integration will not give any contribution when εj and εk both are

positive or both are negative, since the poles of the denominators are

then located on the same half-plane. The result of the integration for

εj > 0 and εk < 0 becomes

εj > εk < :
−i

εj − εk + k − iγ
. (C.22)

and for the opposite signs of the energies the result is

εj < εk > :
i

εj − εk − k + iγ
. (C.23)

The other term that is considered is the εj εl-term

∫
dω

2π

1

ω − εj + iηj

1

εl − ω − (k − iγ)l
(C.24)

This integral will only contribute if the two energies have equal signs.

The results of the integrations are

εj > εl > :
−i

εl − εj − k + iγ
(C.25)

εj < εl < :
i

εl − εj + k − iγ
. (C.26)

The results of the two remaining integrals is obtained in a similar pro-

cedure, where one requires that the energies have equal signs

εi > εk > :
−i

εi − εk − k + iγ
(C.27)

εi < εk < :
i

εi − εk + k − iγ
(C.28)

and the other requires opposite signs of the energies

εi > εl < :
−i

εl − εi − k + iγ

εi < εl > :
i

εl − εi + k − iγ
. (C.29)
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