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AGATA I

Abstract

Agata Generates Algebraic Types Automatically. The generated data can be used to 
perform property based testing with the Haskell testing framework QuickCheck, or the 
alternative  framework  SmallCheck.  Unlike  regular  QuickCheck  generators,  Agata 
generators are mechanically derivable from the definition of an algebraic data type. 
Agata  moves  all  logic  from the  individual  generators  into  a  customizable  wrapper 
function. This enables user-side reconfiguration of generators without rewriting their 
source code.

Agata  uses  a  novel  definition  of  size.  This  resolves  the  scalability  issues  of 
QuickCheck, associated with generating collection-type data-structures. Experimental 
results  demonstrate  the  existence  of  properties  falsifiable  by  Agata  but  not  by 
QuickCheck nor SmallCheck

Automation  and  suitability  for  collection-type  structures  make  Agata  ideal  for 
parser testing. Agata is implemented as an extension of the BNFC parser generator. 
Experimental results demonstrates the usability of this tool, discovering several errors 
in published software.
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Chapter 1
Introduction

When testing software with a finite set of test  cases, chosen from an infinite set  of 
possible inputs, which test cases are the best ones to use? The ones that cause a failure 
of course! This bug-finding requirement makes it very difficult to evaluate the quality of 
a set  of test  cases.  If  the choice is  made automatically by a test  data generator,  the 
quality of the generator is equally difficult to estimate.

Consider the design of a random test-case generator for a general-purpose data type. 
The  generator  is  intended to  be useable  for  any automatic  tests  involving  the  type. 
Somewhere in the design process, a choice needs to be made. The choice will impact 
the distribution of the values generated. An example of this would be a generator for a 
type of binary trees: one decision might skew distribution in favor of balanced trees, 
whereas another will typically create deeper unbalanced trees. Since no assumptions can 
be made as to the nature of the tests, any value may cause a failure. This implies that the 
design-choice made will always be the wrong one, at least for some test-situation.

One solution to this  problem is  to  create  several  generators,  each with a unique 
design. If the design-choice is binary, then two separate generators are created. If the 
choice  is  polyadic  (e.g.  the  value  of  a  numeric  constant)  then  a  parameter  can  be 
introduced to create an infinite number of generators. The tester must then choose a 
generator for each specific test.

Even for a specific test, it may be difficult to determine which of a set of generators 
to use. A meta-generator may then be used to randomly choose a generator from a finite 
set,  or  randomly generate a parameter to construct one from an infinite  set.  Just  as 
randomness is trusted to discover a failing input from a large set, randomness is also 
trusted to choose a generator-design that is likely to find errors.

This  approach  suggests  that  design-choices  shall  not  be  hard-coded  into 
general-purpose generators. This limitation transforms the process of constructing these 
generators  into a completely mechanical  task.  As such it  should be performed by a 
machine, rather than a human (since human labor is slower, more costly and more error 
prone).

Agata  introduces  a  new  method  to  define  test  data  generators  in  Haskell.  The 
generators are compatible with the property based testing frameworks QuickCheck[1] 
and SmallCheck[2]. The process of writing agata generators is quite mechanical, and a 
tool that automatically creates generators for all types in a module is available. 
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1.1 Background 
“If I have seen further it is only by standing on the shoulders of giants”

-Isaac Newton

1.1.1 Automated testing

Automated testing is  the use of  software to control  the execution of test-runs.  This 
includes setting up preconditions for each test, running the test, and comparing actual 
outcome to expected outcome[3]. To do this, the testing software will typically need to 
have a set of test inputs and an oracle that given an input outputs the expected outcome. 

Regression  testing  Automated  testing  is  especially  useful  in  combination  with  a 
technique called regression testing[4]. In regression testing, a large suite of tests are 
collected for each module (unit) of software and these tests are repeated each time the 
software  is  changed.  This  mitigates  the  problems  related  to  iterative  programming 
where  seemingly  beneficial  changes  actually  causes  previously  correct  software  to 
malfunction.

Property based testing  In property based testing the primary manual component of the 
testing process is writing a set of properties that hold for all (or a well defined subset) of 
the  possible  inputs.  Properties  are  derived  from specifications,  if  needed  these  are 
further formalized and possibly divided into simpler properties until each property is 
trivial to implement as executable code[5]. Typically, the properties require the same 
input as the expected tested function/functions. The general notion is that the property is 
universally quantified over any values that satisfies the requirements on input for this 
property (i.e. correctly typed and/or other requirements defined by the programmer). 
Using a strongly typed languages is preferable, since often there is no need to specify 
requirements on the input other than specifying its type.

Consider a sorting routine. The most obvious property is “for any input, the output 
of  the  routine  should  be  sorted”.  This  property  is  easy  enough  to  code,  without 
reimplementing the sorting routine in the property. If this property is combined with 
“for any input A, the output of the routine will be a permutation of A”, any software that 
satisfies both is correctly sorting its input. When coding the second property care must 
be taken not to construct a  circular argument  i.e. use a sorting function to decide if 
output  is  a  permutation.  If  a  verified  working  sorting  function  is  available,  but  the 
implementation under test is still useful, then the obvious property would be that for any 
input the resulting output will be the same as from the working sorting function.

Automatic test data generation  One advantage of using a property as a test oracle, 
instead of writing expected input/output pairs, is the possibility of automatic test data 
generation[5].   Writing  lots  of  test  case  inputs  is  tedious  work  for  the  testers  and 
important corner cases can easily be missed by a biased human mind. In property based 
testing the tester can instead use software tools to write a generator that automatically 
creates  test data in the input domain. The generators may choose values randomly, or 
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they may enumerate all values of a type (or some well defined subset). This approach is 
especially  rewarding  when  using  a  strongly  typed  language.  Instead  of  writing 
generators for each test, a generator is associated with each type. The testing software 
will then simply have to determine the input types of a property to determine which 
generators to use.

1.1.2 QuickCheck

QuickCheck[1] is a software tool for property based testing of Haskell programs1. A 
property  is  typically  coded  as  a  Haskell  function  with  a  Boolean  result,  and  the 
QuickCheck framework can automatically test properties with random input. There are 
predefined  type-specific  test  data  generators  for  a  number  of  standard  Haskell  data 
types, including functions. There is also a library of combinators to create custom test 
data generators.

An  embedded  language  for  generators  The  combinators  for  writing  generators 
provided  by QuickCheck  constitute  an  embedded language.  As  with  any embedded 
language it inherits the features of the Host language (Haskell).

This generator specifying language has a powerful monadic interface A generator is 
essentially  a  function  that  maps  random  seeds  to  values.  This  gives  a  very  high 
flexibility when constructing generators.

Defining size  The intention of a generator is to randomly choose test data from the 
generated type. The choosing process determines the distribution, i.e. the probability of 
generating any specific value. Since the default behavior of QuickCheck is to generate 
finite values only,  a difficult  problem arises when infinite types are introduced (e.g. 
recursive types).  QuickCheck ensures termination for generators of infinite types by 
dividing each type into an infinite number of finite subsets. Each such set is uniquely 
identified by a non negative number n. For type t, the set tn contains all values from t 
of size no greater than  n. Size in this context is not the exact number of constructors 
used in the value, nor is it any other general property of algebraic types. The definition 
of size is determined on a type-to-type basis, the only real requirement is that a sized 
value is guaranteed to be finite. 

When generating test data, the QuickCheck framework will determine which subset 
of the type to generate from, by choosing a upper size bound (n). QuickCheck will start 
with a small n then gradually increase the size bound if the tested property holds. 

These are the default generators for the types (,) and []:

1 Tools based on the original Haskell QuickCheck exists for a multitude of programming languages.
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Definition 1 - Built-in QuickCheck generators 
instance (Arbitrary a, Arbitrary b) => Arbitrary (a,b) 
where
  arbitrary = liftM2 (,) arbitrary arbitrary

instance Arbitrary a => Arbitrary [a] where
  arbitrary = sized $ \n →
    do k <- choose (0,n)
       sequence [ arbitrary | _ <- [1..k] ]

Points of interest here is that the size of a list (k) is chosen randomly between 0 and n, n 
being the upper size bound provided by the QuickCheck framework. The generator for 
pairs is the simplest possible one; generate both elements and pair them. The upper size 
bound is the same when generating both elements of a pair. For the list generator, each 
element in the list will have the same global size bound as the list itself. This implies the 
following definition of size for these data structures:

Example 1 - fictional size functions for (,) and []
size (a,b) = max (size a) (size b)

size [] = 0
size xs = max (length xs) (maximum $ map size xs)

This constitutes a guideline for general purpose data structures. If all relevant generators 
follow these guidelines, the following definition of size can be used:
• The size of a value v is max(k,r) where k is the size used for the structure of v, and 
r is the size of the largest value in a non recursive field throughout the structure of v.

For the generator of type t, any value with size less than or equal to the size bound can 
be generated, i.e. for all v n: v ∈ t ⇔ size(v) ≤ n. This implies the following property 
of the size bounded subset tn: tn ⊂ tn+1.

Probabilities  Given any generator for an infinite type t, it is possible to determine the 
probability  Pn(v) of generating any value  v, using the size bound n. This determines 
the size-bounded subset tn because, for all values v in type t, v ∉ tn ⇔ Pn(v) > 0. 

For every generator, the average probability of generating any value  v ∉ tn using 
size bound n will be 1/|tm|. If the distribution is uniform across the set then this will 
be the actual probability for every value. For any other distribution, there will be some 
worst case value that has a lower probability of being generated.

Since  t(n) is a subset of  t(n+1),  |t(n)| ≤ |t(n+1)| which means that as the 
size bound increases, the average probability of generating a specific value decreases. 
Any value  v will thus have a probability peak at  n = size(v). If the size bound is 
lower, then v can not be generated. If it is higher, then the probability of generating v 
might decrease since values are generated from a larger set. This allows the definition of 
peak average probability P(v) = 1/|tsize(v)|.
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For the type [Bool],  size(x) is the length of the list. The number of values in |
[Bool]n| is 2n+1-1. The peak average probability of generating [True,True,True] (or 
any other combination of three Booleans) is thus:

Example 2 - Peak average probability
P([True,True,True]) =
1/|[Bool]size([True,True,True])| =
1/|[Bool]3| =
1/(23+1-1) =
1/15

This is the probability generating any specific list from [Bool]3, if the list generator has 
a uniform distribution. The default list generator provided by QuickCheck does not have 
a  uniform  distribution.  With  the  default  generator,  the  probability 
P3([True,True,True]) is actually 1 / (3*23)=1/24, because there is a one in three 
chance to choose a list of length 3. The probability P3([]) on the other hand is 1/3.

Shrinking  When  QuickCheck  has  found  a  counterexample  of  a  property  it  will 
“shrink” the value before presenting it to the user, by removing data irrelevant to the 
failure. In order for this to work a shrinking function  must be added to the test data 
generator. A shrinking function for type t has type t -> [t] and all elements of the 
returned list should be strictly smaller than the parameter value. A wrapper function will 
then re-test the property for any values the shrinking function returns. If one of the 
smaller  values  falsify  the  property,  it  is  adopted  as  the  new  counterexample.  The 
shrinking  mechanism  is  then  executed  iteratively  on  this  value,  until  no  smaller 
counterexample are found. Shrinking counterexamples often simplifies the debugging 
effort drastically. 

1.1.3 SmallCheck/Lazy SmallCheck 

Similar to QuickCheck, SmallCheck[2] uses automatic test data generators based on the 
Haskell  type  system to  conduct  property  based  testing.  Instead  of  using  randomly 
generated values, SmallCheck enumerates all values of a subset of the type. The subset 
is limited by a numeric depth value, determined by the tester. The depth of a nullary 
constructor  is  0,  the  depth  of  any positive-arity  constructor  is  one  greater  than  the 
deepest component. If a counterexample is found by SmallCheck it will be a simplest 
one, eliminating the need for shrinking. 
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1.2 Problem description
“Testing shows the presence, not the absence of bugs”

 -Edsger W. Dijkstra

This chapter describes the problems that motivates the development of Agata1. A few 
specific flaws that test data generators can exhibit are presented, as well as examples 
where existing generators exhibit these flaws. 

1.2.1 Properties of types

This section will clarify a few concepts used in throughout the following chapters.

Set properties  A type is a set of values (not all sets of values are types though, so the 
concepts are not interchangeable). All general properties of sets can be used to describe 
types. For instance a type can be infinite or finite2, any set of values may be a subset of 
a type, a value may or may not be a member of a type etc.

Dimension  Many examples  in  this  thesis  use the concept  of dimension to  classify 
generated types. The dimension of a type is usually the number of nested collection-type 
data-structures  used  to  construct  it.  For  instance  dimension([()]) is  one, 
dimension([[()]]) is two etc. A recursive type will have higher dimension than any 
non-recursive  type  in  its  recursive  constructors.  For  any type  t,  dimension(t) is 
formally defined by:
• If t is an enumeration type (nullary constructors only), dimension(t) is 0.
• If t is a  recursive type with no non-recursive fields, dimension(t) is 1.
• Every other type has two sets of component types:
• fs is the set of component types occurring in non recursive constructors
• gs is the set of non recursive types occurring in recursive constructors.
• dimension(t) is  max({dimension(g) +1,  g   ∈ gs}  {∪ dimension(f),  f ∈ 
fs})

1.2.2 General problems with test data generators

This  section  will  describe  a  few problems that  may arise  when designing  test  data 
generators.

Tedious and error prone to write by hand  In order to produce a generator for any 
type, a certain amount of Haskell code must be written by a programmer. While this 
problem  applies  to  all  areas  of  software  development  and  not  just  generator 
construction, it is stated explicitly here because automation is an important motivation 
for the development of Agata. 

1 True to the well established computing tradition of using recursive acronyms,  AGATA spells out 
“AGATA Generates Algebraic Types Automatically”. While acronyms are typically all upper case, 
Agata is instead used as a proper name, capitalizing only the first letter.

2 Some would use the term “infinite type” for types that have infinitely large definitions.
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If  possible,  any task  should of  course be delegated to  a  computer  rather  than  a 
person. This is especially true for critical tasks such as software testing, since a testing 
program can be proven correct, whereas a testing human can not.

Scalability and termination  When writing a generator, care must be taken to ensure 
that  the  generating  process  will  terminate,  i.e.  that  all  generated  values  are  finite. 
QuickCheck provides a size bound to assist generators in limiting the size of generated 
values[1]. Still, guaranteeing termination might cause a lot of extra work. This problem 
is particularly present when dealing with some specific mutually recursive types:

Example 3 - Parameter induced mutual recursion
data D = MkD [D]
d = arbitrary >>= MkD

The generator d will in most cases fail to terminate. The default list generator assumes 
that the type parameter of [] is not a mutually recursive type, and thus all generated D 
values are given the same size bound as the D value that contains them. This severely 
reduces the re-usability of the default list generator in these cases, essentially forcing the 
implementer of d to rewrite the list generator with the assumption that the type variable 
is recursive.

Even if a generator is guaranteed to terminate, it may generate values that are to 
large  to  process  or  even  fit  in  memory.  This  scalability  problem  stems  from  the 
discrepancy  between  absolute  size  (i.e.  the  number  of  constructors  used),  and 
QuickCheck  size  (i.e.  the  largest  sub-value  generated  by  a  single  generator).  For 
instance the value  (a,a) will  have the same QuickCheck size as  the value  a.  The 
situation is worse for lists, if size(a) = n then size(replicate n a) = n. Consider 
the  types  of  d-dimensional  lists  (where  [a] is  one-dimensional  [[a]] is 
two-dimensional etc.). How does the worst case absolute size relate to the QuickCheck 
size? Since the standard list generator determined the size of the generated list randomly 
between 0 and the size bound n, each list of dimension d+2 will contain on average n/2 
lists of dimension d+1 and each of these will also contain n/2 elements. This illustration 
demonstrates the growth for a two-dimensional list and n=5:
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The number of list elements will be exponential to the dimension of the list. Consider 
the five-dimensional list of integer values, [[[[[Int]]]]]]. The default settings for 
QuickCheck is to use 100 as the highest value of  n. On average a value of this size 
would contain 505 = 312500000 integers and in the worst case 1005 = 10000000000.

Since the default behavior when writing generators is to use the same size bound for 
non recursive fields as for the value that contains them, this problem is not limited to 
nested lists. Any nested recursive types will exhibit the same growth. 

Distribution  and  coverage  Several  problems  with  automated  testing  relates  to 
coverage[6]. If a specific type constructor is absent throughout a test suite, parts of the 
implementation under test  may never be executed and bugs in these sections will never 
be detected. In random testing, probability must be considered as well. Although there is 
a theoretical chance that a specific test case is used, if it will require millions of test runs 
before it is generated it is in reality not covered. As previously mentioned QuickCheck 
will  divide the type  t into finite size-bounded subsets  tn where  n is the upper size 
bound of member values. 

A natural consequence of using only finite subsets of an infinite type is that some 
values will not be possible, or probable, ever to be generated. As shown, the average 
probability of generating a value from a specific subset is reverse proportional the size 
of the subset1. Because |tn| ⊂ |tn+1|,  subsets grow with the QuickCheck-size bound 
they represent. This implies that large values (as defined by QuickCheck) will have a 
lower probability of generation. When calculating probabilities the tester must be aware 
of  the  discrepancy  between  the  absolute  size  (number  of  constructors)  and  the 
QuickCheck-size of a value. Consider the following value for instance:

Example 4 - A nested list
x = [[],[],[],[],[],[],[],[]] :: [[()]]

The value x is the list of length eight containing only empty lists. This is a small test 
case in absolute size (eight recursive steps, 17 constructors total). The set of values with 
equal  or  smaller  absolute  size  is  fairly  small.  Since  the  recursive  constructors  are 
concentrated to the outer list however, the minimal size bound required to generate this 
with the default list generator is eight. This places the value in a much larger subset of 
the type. The peak average probability P(x)  of generating x is 1/89 = 1/134217728. 

This discrepancy between the definition of sizes is not limited to nested recursive 
types.  Consider  the  type  ([()],[()]) for  instance.  The  probability  of  generating 
([(),()],[(),()]) is greater than the probability of generating  ([()],[(),(),
()]), although their absolute sizes are equal. This is because the former value is in the 
subset [()]2 whereas the latter is in the larger set [()]3.

If a property fails for a specific isolated test case and the QuickCheck size of this 
test case is too large, the failure will never be detected. This implies that when writing 
or using a generator for any property the following must be considered: 
• How fast does the subsets of the type grow using this generator? 

1 A limited number of values may be excluded from this rule, having constant probability of generation 
independent of the size of the subset.
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• At which point does the subsets become to large do find isolated test cases?
– Is there a risk that there is an isolated test case in a higher subset that falsifies the 

property?

Each  of  these  questions  require  careful  consideration,  and  trying  to  answer  them 
constitutes a significant amount of work. In most cases, a tester will instead use the 
tools QuickCheck provides to monitor distribution of values and determine at a glance if 
it is acceptable. A process that is more error prone.

1.2.3 Limitations

Implicit invariants  Many data types have inherent implicit invariants. These invariants 
range from simple predicates such as numerical non-negativity to more complex ones 
such as type correctness of a programming language. Agata will not respect any such 
invariants when generating test data. The primary reason for this limitation is that there 
is no way to infer them by studying the definition of the type (hence the name implicit 
invariants). While it would be nice to have a means of specifying such invariants in a 
precise enough fashion to use it for automatic generation of test data, such a project is 
far out of scope for this thesis.

In  some  cases  the  invariant  can  be  specified  as  a  Boolean  predicate  and  this 
predicate can be used as a precondition for test data in the definition of properties. This 
requires at least the following properties of the generator and invariant:
• There must  be a reasonable probability that a random value will respect the invariant. 

If not, QuickCheck will not find any values that to use and give up.
• The probability that a random value will respect the invariant must not depend greatly 

on the size or nature of the value. If this is the case, distribution will inevitably be 
effected.

The probability that an integer value is non negative is ½ independently of the absolute 
size of the integer, and this is a reasonable precondition. If the same invariant is required 
on each element of  a list of integers, the distribution will be skewed towards smaller 
lists.  If  the  invariant  is  that  a  random  C  program  initiates  all  variables  used,  the 
generated cases are unlikely to contain any  variables at all.

Infinite values  Agata will only generate fully defined finite values. If a type has only 
infinite values, Agata might not be able to generate it.
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Chapter 2
Agata

2.1 The Generator-generating algorithm
The core of Agata is an algorithm that creates a test data generator for an algebraic type 
by  studying its structure.

2.1.1 Inadequate algorithms

This section describes a few unsuccessful attempts at achieving the required algorithm, 
and explains their inadequacy.

The naive algorithm  The simplest possible algorithm constructs generators similar to 
the generator for tuples (see Definition 1, p. 5):
1. Choose a constructor randomly.
2. Assign arbitrary values to each field.

The primary problem is termination. A recursive type is not guaranteed to terminate. 
This forces  the generators to distinguish between recursive and non recursive fields, not 
forgetting mutual recursion. The QuickCheck manual describes this problem and offers 
the following example as a way of using size to solve it:

Definition 2 - QuickCheck generator for trees
data Tree = Leaf Int | Branch Tree Tree

tree = sized tree'
tree' 0 = liftM Leaf arbitrary
tree' n | n>0 = 

oneof [liftM Leaf arbitrary,
       liftM2 Branch subtree subtree]

  where subtree = tree' (n `div` 2)

Generalizing this solution yields an algorithm roughly like this:
• Parameter n is the upper size bound for the generated data, provided by QuickCheck.
1. If n is 0 choose a non recursive constructor1. Otherwise choose any constructor.

1 In some cases where there is mutual recursion, there will not be any non-recursive constructor to 
choose. In these cases the algorithm must find a recursive constructor that has a path to a non 
recursive type without returning to the current type. For simplicity, these cases will be ignored 
henceforth.
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2. Assign arbitrary values to non recursive fields.
3. Divide (n-1) randomly across recursive fields. Use these new sizes as upper size 

bounds when generating each field.

The reason for dividing size randomly instead of evenly, is that evenly dividing it will 
limit the depth of the tree to log2 n.

This algorithm will ensure termination, since each field will be generated from a 
strictly smaller subset of the type. It has some other problems however, notably the 
correlation between size of the data structure and size of each element remains.  As 
shown this causes the size of generated data to grow exponentially with the dimension 
of the type. The most straightforward way to solve this problem is to limit the size of 
non recursive fields as well, making the upper size limit global for the test case.
• Parameter n is the upper bound for size of the generated data
1. If n is 0 choose a non recursive constructor. Otherwise; choose any constructor.
2. Divide (n-1) randomly across all fields. Use these new sizes as upper size bounds 

when generating each field1. 

Consider the following snippet of Haskell code:
Example 5 

data Nat = Zero | S Nat
type NatList = [Nat]

The algorithm is applied both to Nat and []. The subset with upper size bound n=0 will 
now contain [], n=1 will contain [] and [0]. For n=2, [0,0] and [1] are added to 
the possible outcomes. 

While this algorithm will have a much stronger control of the size of generated data, 
it introduces a flaw in the distribution of values. Even with random distribution of sizes, 
if n=100 the average size of the first element of the list will be 50 and the average total 
size of the tail will be 50 as well. This skews distribution in favor of descending-ordered 
lists. The expected size of the first element will be  n/2, the second  n/4 and the  m:th 
n/2m. Furthermore, since the tail will be (on average) half the size of the first element, 
the expected size of the list will be log2 n instead of n/2 like the original list generator. 
This behavior is not unique to linked lists. Most collection data structures will suffer 
from some variant of this condition, for instance trees will have larger elements near the 
root. 

The QuickCheck list  generator  With the generator  QuickCheck uses to  construct 
arbitrary linked lists (see Definition 1, p 4) the length of the list is determined separately 
from the generation of individual elements. Combining the algorithm so far with this 
approach yields a generator that first determines the length of the list, then divides size 
for each list element. 

1 Arguably, fields with non recursive types should not be assigned sizes, sine they have no way of using 
it.
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Example 6 - A new generator for lists
instance Arbitrary a => Arbitrary [a] where
  arbitrary = sized $ \n -> 
    do k <- choose (0,n)
       ms <- piles k n
       sequence [ resize m arbitrary | m <- ms ]

The  piles function  randomly distributes  an  integer  value  into  a  number  of  piles. 
Formally, piles k m returns a random list of integers of length k where the sum of all 
elements equals m. The function resize is built in to QuickCheck, it will set the value 
of the upper size bound to a given value for a given generator.

One could argue that  the second argument  of piles  should be  n-k instead of  n. 
Having n means that the actual maximum size increases with the depth of the type tree. 
However, while in the original generator the relation between depth d and max size m 
was  m ∈ O(nd), it  is now  m ∈ O(nd). The reason for not using  n-k is that it would 
impact distribution. For instance when generating the type [[()]] and n = 100, the 
average number of [[()]] elements would be 50, the elements contained in this lists 
would have a total maximal size of 50. The average length of each of the lists will thus 
be  one.  The  algorithm could  be  altered  to  choose  k differently;  for  instance  if  the 
average case is that k is the square root of n, then the expected length of the outer list 
will  be  the  same  as  the  expected  length  of  any  inner  list.  This  requires  some 
assumptions to be made, and the impact these assumptions will have on distribution are 
difficult to predict. Using the full size (n) as the second argument of piles reduces the 
strictness  of  the  upper  size  bound  in  favor  of  not  having  to  make  assumptions, 
maintaining genericity.

This adjustment of the list generator impacts the distribution in several ways. Most 
apparently it inverts the correlation between the length of the list and the size of the 
elements, long lists will tend to have small elements instead of large. Short lists with 
small elements will be generated whenever n is low. Short lists with large elements will 
occur when n is large and a small k is chosen. If a large k is chosen instead, long list 
with small elements will be generated. The only way to generate long lists with large 
elements is if  n is very large, which is natural given that the purpose of the modified 
algorithm is to reduce the size of test data. 

If this approach is to be generalized to any algebraic data type, several uncertainties 
must fist be decided. Consider the type (Int,[Int]) for instance. How will size be 
distributed  between the  fist  and the  second value  of  this  pair?  What  is  the  relation 
between the expected size of the single integer on the left and any integer in the list? If 
size is randomly divided between them, what will the distribution be? In the average 
case the size of the single integer in the pair  will  equal the sum of the sizes of all 
integers in the list. This means there is a correlation between a types position in the type 
structure  and the  expected  size  of  its  values.  This  becomes  a  major  problem when 
dealing with many everyday situations.  Consider the following type for the abstract 
syntax of an object oriented language:
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Example 7 - Syntax of a computer language
data Class = Class String [Function]

The String field is the name of a class. The other field is the contents of the class. The 
unreasonable outcome of using randomly divided size is that in the average case half the 
size of the program will be spent on the name of the module, the other half being spent 
on a list of functions and their bodies. Clearly, the algorithm must distinguish types by 
their complexity, to divide size fairly between fields.

2.1.2 Division of size

When there was correlation between the position of an element in a data structure and 
the expected size of the element, it was solved by dividing size randomly between all 
elements.  When expected values  correlate  to  positions  in  a type structure,  a similar 
solution is possible: divide size equally between all values of the same type. Since all 
elements of a list have the same type, this incorporates the mechanisms to eliminate 
correlation between list position and size.  It also solves the problem with the unfair 
class generator (see  Example 7). On average the string will be as large as any other 
string throughout the generated program.

Revisit  the  example with  d-dimensional  data  structures.  The problem with these 
types, is the exponential growth of  the number of elements. This diagram illustrates the 
problem: 

Dividing size across all elements of the same type limits the number of elements of type 
a in  a  d-dimensional  list  of  a to  n,  where  n is  the  upper  size  bound  (5  in  these 
examples). The worst case  is then of this form:
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Having generalized from dividing size across data structure elements to dividing across 
types,  there  is  still  one  more  step  of  generalization  possible.  Consider  the  type 
(Int,Int,Integer). If size is divided by type, the average case is that each of the 
Int values are only half as large as the Integer value. In the interest of limiting size, 
there is little difference between Integer and Int, hence the same size quota should 
be divided among all three values. This relaxes the size division paradigm from “divide 
size randomly across values of same type” to “divide size across values of types with 
similar structure”. 

There is natural limitation imposed on this similarity relation. In order to divide size 
across values in a group of similar types,  the number of values in these types must be 
counted. Thus if the size of the values of type a determine the number of values of type 
b,  a and b can not be similar. So [a] can never be similar to a etc. This corresponds 
well  with  the  definition  of  dimension.  The  widest  possible  definition  of  “similar 
structure”, useable in this context, is thus “of equal dimension”.

A small correction  For some odd types, counting the number of values on a specific 
dimension will require some values of that dimension to be defined. Consider this type 
for instance:

Example 8 - A peculiar type
Type A = Nil | Cons Bool A | Transform [()]

The type  A is a list with the strange property that it might terminate in a list of units 
rather than in an empty list. This is essentially the same type as ([Bool],Maybe [()]). The 
problem  with  A is  that  if  the  list  terminates  with  Nil  there  is  one  value  of 
dimension(A),  but  if  the  list  terminates  with  a  new list  there  are  two  (since  the 
terminating list has the same dimension as  A).  Either the values are considered as a 
single list, and the generator will have to determine how to divide size between them, or 
“similar structure” is redefined so that A and [()] are no longer similar.

Since the counting becomes even harder for mutual recursive types, Agata uses a 
slightly modified concept of dimension to classify types. With this new definition, any 
recursive  type  will  have  higher  dimension  than  its  component  types.  Using  Agata's 
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definition dimension(A) will be 2, because it is a recursive type and it contain [()] 
which is dimension 1. Formally, dimension is defined in the following way:
1. Non-recursive types have dimension equal to that of the highest dimension occurring 

in fields of its constructors, 0 for no fields. 
2. Recursive types have dimension one greater than that of the highest dimension type 

occurring  in  (non  recursive)  fields  of  its  constructors  and  the  constructors  of 
mutually recursive types.

The following examples demonstrate how these rules are applied
Example 9  

data A = MkA | MkAB B
data B = MkB

No recursion is present in these types, rule 1 applies. B has no fields, thus its dimension 
is  zero.  The  highest  dimension  field  of  A is  of  type  B.  This  implies  that  the 
dimension(A) will  equal  the  dimension(B),  zero.  Now consider  these  types  of 
Peano numbers and lists and trees of ():

Example 10  
data Nat = Zero | Succ Nat
type List = [()]
data Tree = Branch Tree Tree | Leaf ()

All of these are recursive types, and applying rule 2 reveals that they all have the same 
dimension.  Nat have no non-recursive fields, subsequently the maximal dimension is 
zero and the final  dimension for Nat is one. The highest dimension fields of List and 
Tree are of type  () with dimension zero, so both these types are dimension one as 
well. Now consider these types:

Example 11 
type ListList  = [[()]]
data Tree      = Leaf Nat | Branch Forest
data Forest    = Forest [Tree]

These types are all dimension two. ListList has [()] as its only non recursive field, 
[()] is dimension one so ListList is two. Tree and Forest are mutually recursive, 
so the fields of both types are considered when determining their dimension (mutually 
recursive types will always have the same dimension). The highest non recursive field is 
Nat, and dimension(Nat) is one, so dimension(Tree) = dimension(Forest) 
= two. Consider the following types:

Example 12 
data NatOrList = Left Nat | Right ListList
data NatAndList = Pair Nat ListList

These  types  are  both  non  recursive,  so  rule  1  applies.  The  respective  unions  of 
field-types in constructors are identical for both; Nat and ListList. Nat is dimension 
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one  and  ListList is  dimension  two,  meaning  NatOrList and  NatAndList are 
dimension two as well.

2.1.3 Counting entry point values

As mentioned, dividing a fixed size across all values of types with the same dimension 
requires some way of determining how many values are needed of each type. An entry 
point value is a value that is not in the recursive field of another value. In a list of 
natural numbers for instance, each natural number is an entry point value. The list itself 
may be an entry point value in a pair of a list and some other type. The tail of the list 
however, is not an entry point value. 

Each entry point value is designated a size limit, which is used to generate the actual 
recursive structure value. The total number of values of a type will be proportional to 
the total size designated to entry point values of this type.

There  are  some  restrictions  on  the  order  in  which  you  can  generate  types.  For 
instance the structure of all trees of natural numbers must be generated before all natural 
numbers, because the structure of the trees may affect the number of natural number 
entry  point  values.  As  mentioned,  the  definition  of  dimension  imply  the  following 
important  property:  For  any value  v of  a  type  with  dimension  d,  to  determine  the 
number of entry point values with types of any dimension n < d occurring throughout 
the structure of v it is only required to inspect values of dimension n + 1 or higher. This 
allows the following algorithm to be used to generate a value of type t on dimension d:
• Start with an undefined value, x, a size bound n and a current dimension c = d.
1. If c = 0 define all values inside x on this dimension (no recursion possible). 
2. If c > 0 :

1. Count the number of entry point values (k) on dimension c.
2. Divide a random fraction of n randomly into a set of k integer values (ns).
3. Define all values of dimension c in x. Each entry point value is assigned a unique 

number  from  ns.  The  entry  point  value  will  contain  exactly  this  number  of 
recursions.  Non-recursive  fields  (fields  of  lower  dimension  than  c)  are  left 
undefined.

4. Restart with c := c - 1 and the updated value of x.

This algorithm has the following properties:
• When the algorithm terminates all values will be defined.
• The maximum number of recursive constructors used is n*l. 
• The subset  defined by size bound  n will  contain all  values  where the number of 

constructors required on any specific dimension is less or equal to n.

2.1.4 A class of Buildable types

In order  to perform a similar  operation on a multitude of types  in Haskell,  such as 
generating  random test  data,  type  classes  are  used.  In  QuickCheck,  a  generator  is 
defined directly in a type class (Arbitrary). These generators can then be combined to 
construct generators for new types. Since the algorithm described above requires some 
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overview of the generating process as a whole, it  is not desirable to build this logic 
directly into the this  type  class.  Instead  a  type class  that  supplies  a  minimal  set  of 
operations required to implement the algorithm is used. A wrapper function is then used 
to construct a QuickCheck generator for any type in this class.

The algorithm needs to know the dimension of the type it will be generating. This 
calls for the following first definition of the class:

Example 13 - The dimension function
class Buildable a where
  ...
  dimension :: a -> Int

The value passed to dimension should not be inspected, because it may be undefined. 
Its only use is to indicate to the Haskell type system which instance declaration to use. 
This function may return a constant, or it  may call the  dimension function for the 
types of fields in its constructors to calculate the dimension at runtime. This is necessary 
for parametrized types. If the dimension is calculated at runtime, care must be taken to 
avoid mutually recursive types calculating the dimension of one another. Failing to do 
so will result in non-termination.

Build  The  second  part  of  the  minimal  requirement  is  a  description  of  the  type. 
Specifically a list of constructors and for each constructor a descriptions for all fields. 
This description must be expressive enough to supply functions that perform at least the 
following operations:
• Determine which fields of the constructors are recursive.
• Given a list of sizes, create a value using this constructor. Each recursive field should 

be constructed with a  unique size from the given list. Non-recursive fields should be 
left undefined.

Improve  Because a defined value needs to be traversed to count and define undefined 
sub-values, the third component needed is a pattern matching function.

Prototype generators  These requirements enable the definition of a few prototype 
generator that supplies exactly the information required:

Example 14 - Buildable instances for enumeration types
instance Buildable () where
  build = [use ()]

instance Buildable Bool where
  build = [use True, use False]

To generate an enumeration type, a list of values is the only component needed. The 
dimension will be calculated at run-time by looking at the dimension of fields of the 
constructors. Since there are no such fields, the dimension is determined to zero. Also, 
since there are no fields, these types will never have to be improved.

Here is another example of a generator:
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Example 15 - Buildable instance for a type of pairs
data BoolPair = MkBP Bool Bool
instance Buildable BoolPair where
  build = [construct MkBP $ nonrec . nonrec]
  improve x = case x of
    MkBP a b -> rebuild MkBP $ rb a >=> rb b

This type has a single constructor MkBP. This constructor has two non-recursive fields. 
This information is encoded by passing the constructor and a twofold composition of 
the function nonrec to the construct function.

This information is sufficient to determine the dimension of  BoolPair to zero. A 
small  performance increase can be achieved by overriding the  dimension function 
with  a  constant  value,  but  this  will  impact  modularity  because  it  assumes  that  the 
dimension of Bool will never change.

The function improve is really not needed for this type, because it's dimension-zero 
and  thus  its  fields  will  always  be  defined.  Not  including  it  will  imply  the  same 
modularity disadvantage as overriding the dimension function.

Here is another example of a generator:
Example 16 - A list type

data BoolList = Nill | MkBL Bool BoolList
instance Buildable BoolList where
  build = [
    use Nill,
    construct MkBL $ rec . nonrec]
  improve x = case x of
    MkBL a b -> rebuild MkBL $ rb a >=> rb b
    _        -> return x

This linked list has a Nill value, and a constructor MkBL which has one non-recursive 
and one recursive field. The nature of the composition function forces the user to define 
field  recursivity  in  reverse  order.  If  the  order  of  rec and  nonrec is  accidentally 
swapped,  a type error will occur. 

Once  again  the  default  dimension function  will  automatically  calculate  the 
dimension (in this case 1) of the type.

Here is another example of a generator:
Example 17 - A mutual recursive type

data BoolListTree   = Leaf [Bool] | Branch 
BoolListForest
data BoolListForest = Forest [BoolListTree]

instance Buildable BoolListTree
  dimension _ = 2
  build = [
    construct Leaf $ nonrec,
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    construct Branch $ mutrec ]
  improve x = case x of
    Leaf a   -> rebuild leaf $ rb a
    Branch a -> rebuild Branch $ rb a
  
instance Buildable BoolListForest where 
  dimension _ = 2
  build = [construct Forest mutrec]
  improve x = case x of
    Forest a -> rebuild Forest $ rb a

For mutual recursive types, the dimension function will typically need to be overridden. 
This is  because these is no obvious way to gather the dimensions of all non-recursive 
fields in a set of mutual recursive types. Mutually recursive fields should be designated 
by composing the  mutrec function. Unfortunately the type  system will not enforce 
correct usage (i.e. mutrec and nonrec have the same type).

Parametrized types  These examples go to great lengths to avoid using type parameters 
(this also demonstrates how essential this feature is). Type parameters will complicate 
things because:
• The dimension function can not be expressed as a constant, this is a problem when 

dealing with mutually recursive types.
• It becomes more difficult to determine if a field is recursive or not, e.g. the element 

field of a list is typically not recursive, but it can be if it is promoted by some other 
data type (see Example 3, p 7).

For these reasons, parametrized types are discussed in a separate section.

Encapsulation  Note that all functions in these examples can be considered primitives 
for the generator  specification language.  This means that  the type of  build can be 
changed without invalidating any instances, as long as the types of  construct and 
use are  changed as  well.  This  encapsulation has several  advantages,  for instance it 
allows the user to choose between multiple possible wrapper functions by importing 
different  modules.  For  those  who  still  wish  to  know,  these  are  the  (current)  type 
signatures of the interesting functions:

Example 18 - The types of some of the language primitives
data Application b a = 
    Build (Improving (a,[Int]))
  | Collect [Int]
  ...

construct :: Buildable b => 
               a -> 
               (Application b a -> Application b b) -> 
               Builder b

nonrec :: Buildable a => Application c (a -> b) -> 
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                         Application c b

rec :: Buildable a => Application a (a -> b) -> 
                      Application a b

An Application represents one of several predefined computations to be carried out. 
For instance Collect will calculate the dimension of all fields:

Example 19 - Collecting dimensions
rec x@(Collect xs) = Collect $ appDimension x : xs

2.1.5 The Base module

The module Test.Agata.Base defines type classes and functions used by generators 
created by Agata. Since Agata may be used to generate Arbitrary instances directly 
useable by QuickCheck, the user will typically not need to be familiar with this module. 
The module contains the type class Buildable:

Definition 3 - The Buildable class
class Buildable a where
  build :: [Builder a]
  improve :: a -> Improving a
  dimension :: a -> Int

The  module  also  contains  all  the  functions  used  to  write  these  instances,  e.g. 
construct, use and nonrec. As mentioned, the exact structure of the type Builder 
is encapsulated from the user, to allow a flexibility in the implementation of the wrapper 
function. Section 2.1.4 describes the information the type carries.

 The most interesting function in Base is the wrapper function agata:
Definition 4 - The type signature of the agata function

agata :: Buildable a => Gen a

Since  Agata  will  automatically  generate  instances  of  Buildable for  all  types  it 
analyzes, this function allows the user to define arbitrary instances in a very simple way. 
For instance if the user wishes to use Agata to generate lists (this will typically cause a 
collision with the default list generator):

Example 20 - A new Arbitrary instance for lists
instance Buildable a => arbitrary [a] where
  arbitrary = agata

If  the  user  wishes  to  use  Agata  on  a  case-to-case  basis  rather  than  as  the  default 
generator, the forAll quantifier function from the QuickCheck library may be used:

Example 21 - Using Agata for a specific property
prop_sort :: [()] -> Bool
prop_sort = isSorted . sort
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prop_sort_Agata = forAll agata prop_sort

Agata uses the Improving monad to iteratively define values on each dimension. The 
Improving monad is a combination of a state monad and the  Gen monad used by 
QuickCheck:

Definition 5 - The improving monad and its basic functions
type Improving a = StateT (Int, Int, [Int]) Gen a

getDimension :: Improving Int
getDimension = gets $ \(l,r,ss) -> l

request :: Improving ()
request = modify $ \(l,r,ss) -> (l,r+1,ss)

acquire :: Improving Int
acquire = do
  (l,r,s:ss) <- get
  put (l,r,ss)
  return s

The  Improving monad carries an integer value representing the currently improved 
dimension, i.e. the dimension where values are in the process of being defined, and an 
integer  representing  the  number  of  entry  point  values  on  the  dimension  below the 
current. It also carries a list of integers containing allocated sizes for each entry point 
value  on  the  current  dimension.  The  getDimension function  simply  returns  the 
numerical value of the dimension that is currently being generated. The request function 
signals that an entry point value on the dimension below the current has been found. 
The acquire function is used when generating a new entry point value on the current 
dimension, the integer value returned will be the  number of recursions (size) allowed in 
the new value.

The agata function is defined as follows:
Definition 6 - The agata function

agata :: Buildable a => Gen a
agata = sized (dummy undefined) where
  dummy :: Buildable a => a -> Int -> Gen a
  dummy a size = flip evalStateT (dimension a,1,[]) $ 
ii a
    where
      ii a = getDimension >>= \lvl -> case lvl of
        0 -> put (0,0,[]) >> realImp a
        _ -> do
          x <- distrib size >> realImp a 
          dec
          ii x
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The dummy function is required to use the dimension function on an undefined value 
of type  a.  The interesting part  is  the iteratively improving function,  ii.  It  starts  by 
distributing size to the single entry point value of type a, this will put a single integer 
between zero and  size (the QuickCheck size bound)  in the list  in  the state  of the 
Improving monad. The realImp function defines the value using exactly the number of 
recursions  designated,  and  stores  the  number  of  entry  point  values  on  the  next 
dimension in  the state.  The function  dec will  decrease  the current-dimension value 
stored in the state before the function is repeated with the improved value. This is the 
definition of distrib and dec:

Definition 7 - The distrib and dec functions
distrib :: Int -> Improving ()
distrib k = get >>= \(lvl,r,[]) -> case r of
    0 -> put (lvl,0,[])
    _ -> do
      ms <- lift $ piles r k
      put(lvl,0,ms)

dec :: Improving ()
dec = get >>= \(lvl,r,[]) -> put (lvl-1,r,[])

The function piles has already been explained (see Example 6, p 12). This leaves the 
realImp function. This function ensures that improve is only used on defined values, 
and that undefined values are either defined, entry-point counted or left undefined as 
required on the current dimension.

Example 22 - The realImp function
realImp :: Buildable a => a -> Improving a
realImp a = do
  cur <- getDimension
  case compare (dimension a) cur of
    GT -> improve a
    EQ -> if cur == 0 then 
            realBuild 0 else 
            acquire >>= realBuild
    LT -> if dimension a == cur - 1 then 
            request >> return a else 
            return a

The  improve function  always  calls  realImp for  all  field  values.  The  realBuild 
function will construct a random recursive skeleton of a Buildable type, based on the 
information  retrieved  from  the  build function.  The  Int argument  passed  to 
realBuild will determine the number of recursive  steps taken to build the skeleton.

2.1.6 Parametrized types

Generation  of  parametrized  types  introduces  some  additional  difficulties.  For  non-
parametrized types, the dimension function of a Buildable instance can always be a 
constant. For parametrized types this value will need to be computed at runtime (or 
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possibly  compile  time  if  the  compiler  is  smart  enough).  This  is  not  difficult  to 
implement, but just like in the agata function, a  dummy value must be used to guide the 
type system. This is one possible dimension function for lists:

Example 23 - A dimension function for [a]
instance (Buildable a) => Buildable [a] where
  dimension x = dummy x undefined where 
    dummy :: Buildable a => [a] -> a -> Int
    dummy _ a1 = 1+dimension a1
  …

Since this dimension function is a bit of an eyesore, it would be nice to automatically 
induce the level of this type instead.

Recursivity  A more severe problem is that the “recursivity” of a field is no longer 
static. For instance the element field of a parametrized list is typically not recursive, but 
it might  be in some cases. The functions nonrec, rec, and mutrec have been used in 
examples so far, but none of these can describe the recursivity of a field with a type 
parameter. A fourth recursivity primitive, autorec,  is needed:

Definition 8 - A Buildable instance for [a]
instance (Buildable a) => Buildable [a] where
  improve x = case x of
    (a:b) -> rebuild (:) $ rb a >=> rb b
    _     -> return x
  build = [
      use         []
    , construct   (:)  $ rec . autorec
    ]

The improve function is identical to the definition of the non-parametrized BoolList 
(see  Example 16, p  18), constructor names aside. The only essential difference in the 
build function is that the element field is now designated autorec instead of nonrec. 
The  autorec function can be used on any field, provided it is safe to calculate the 
dimension of  this  field.  E.g.  if  the  rec function  is  replaced  by  autorec in  the 
definition above, it will fail to terminate because the default dimension function  will 
call itself.

This information is sufficient to automatically induce the  dimension function for 
lists. Note that the function assumes that the type parameter is not mutually recursive. 
Consider the type D, discussed earlier, and a possible dimension function for the type:

Example 24 - Parameter induced mutual recursion
data D = MkD [D]

instance Buildable D where
  dimension x = dimension (undefined :: [D]) 
  ...
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This  dimension function will never terminate, since the  dimension function for  D 
calculates the dimension of [D] and vice versa. To avoid rewriting the list generator, the 
only viable alternative is to use a constant value for dimension i.e.:

Example 25 - A better dimension function
instance Buildable D where
  dimension x = 1 
  build = [construct MkD $ mutrec]
  ...

This will lead to the result that the dimension of D is 1 and and the dimension of [D] is 
2.  These values are  correct  if  the types  are used in  other types (i.e.  for entry point 
values), but when  [D] occurs inside a  D value, it  must be demoted to dimension 1. 
When generating [D], the Agata wrapper will automatically perform this demotion. 

There  are  of  course  numerous  other  and  more  complex  examples  of  parameter 
induced  recursion.  For  instance  the  type  D could  have  type  parameters  of  its  own, 
disabling the use of a constant dimension. Consider this type:

Example 26 - Using parameters to promote (,) to []
data Lst a = MkLst (Maybe (a,Lst a))

This is essentially a linked list of a, implemented by inducing mutual recursion between 
(,) and Lst. Just like for D, the dimension of the field can not be calculated. It is safe 
to calculate the dimension of a however1:

Example 27 - The dimension of list
instance (Buildable a) => Buildable (Lst a) where
  dimension x = dummy x undefined where 
    dummy :: Buildable a => Lst a -> a -> Int
    dummy _ a1 = 1+dimension a1
  ...

This is essentially the same definition as for  [], which is natural since they represent 
the  same  data  structure.  This  method  constitutes  a  general  approach  for  defining 
dimension: use constants whenever possible, only the dimensions of parameter types 
should  be  calculated  at  runtime.  This  approach  guarantees  termination,  and  it  is 
relatively efficient since runtime computations impacts performance. The drawback of 
this approach is low modularity. Even though the generators for Maybe and (,) are not 
reimplemented  for  in  the  generator  Lst,  intimate  knowledge  of  these  types  is  still 
required when implementing Lst. If the dimension of a type changes, then all types that 
contain this type may have to change their dimension as well.

1  This assumes of course that the dimension of a does not calculate the dimension of Lst a, i.e. that 
Lst is not used in an incorrect way by some other type.
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2.2 Extensions
This  section details  a number  of  extension to  Agata,  as  well  as the advantages  and 
disadvantages  of using them.

2.2.1 Distribution control

By default, all distribution control in QuickCheck is delegated to the generators. This 
means that if a property requires an altered distribution, a test-specific generator must be 
written. In Agata, most of the distribution is determined by the wrapper function. This 
means that a property can take any Agata-compatible (Buildable) type and transform 
its  distribution  by  using  an  alternative  wrapper  function.  The  distrib function 
determines distribution in the default wrapper. It determines the amount of recursion on 
each  dimension,  and  distributes  it  across  members  on  these  dimension.  A generic 
wrapper function agataWith can be defined:

Definition 9 - agataWith
type Distributor = Int -> Int -> Gen(Improving ())

agataWith::Buildable a => Distributor -> Gen a

The function takes a distribution strategy, of the type Distributor. The first argument 
of a Distributor function is the dimension of the wrapped type (the type variable a). 
The second argument is the size bound passed from QuickCheck. The precondition for 
the resulting Improving computation is that the state of the monad matches the pattern 
(dim,r,[]),  where dim is the dimension about to be improved and r is the number 
of  entry point  values  on this  dimension.  The  postcondition  is  that  the dimension is 
unchanged,  the  length  of  the  list  is  r and  the  entry point  count  is  reset  to  0.  The 
generator agataWith (return . const distrib) will be exactly the same as the 
default agata generator.

To demonstrate the flexibility of agataWith, consider the following Distributor:
Definition 10 - Default QuickCheck generators, provided by Agata

exponentialSize :: Distributor
exponentialSize _ s = return $ do 
  (lvl,r,[]) <- get
  ns <- sequence $ replicate r $ lift $ choose (0,s)
  put (lvl,0,ns)

This changes the definition of size from Agata-size to the default QuickCheck-size. The 
generator (agataWith exponentialSize :: Gen [[Bool]]) is essentially the 
same generator as (arbitrary :: Gen [[Bool]]).

2.2.2 Distribution strategies by worst case

Each  distribution  strategy  defines  a  relation  between  a  size  bound  and  worst  case 
absolute size of generated data. Both in the default QuickCheck notion of size and the 
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default Agata notion, this relation can be defined using dimension. For QuickSize-size, 
the worst case is exponential to the dimension. For Agata-size, the worst case is linear to 
the  dimension.  As  shown,  the  exponential  growth  of  QuickCheck-size  can  be 
implemented  as  a  distribution  strategy.  Quadratic  and  constant  growth  can  be 
implemented as well:

Definition 11 - quadratic and constant distribution strategy
quadraticSize,fixedSize :: Distributor

quadraticSize lev0 size = return $ get >>= x where
  x (lvl,r,[]) = case r of
    0 -> put (lvl,0,[])
    _ -> do
      k <- lift $ choose (0,size*d)
      ms <- lift $ piles r k
      put(lvl,0,ms) 
    where d = (lev0 - lvl) + 1

fixedSize = listDistributor $ \l s -> case l of
  0 -> return []
  _ -> piles l s

The worst/average case of the default linear size strategy used by Agata will have many 
small  or  empty  values  in  lower  dimensions.  The  quadratic  size  strategy  is  more 
generous  to  these  low  dimension  elements,  without  exponential  growth  of  default 
QuickCheck  generators.  The  constant  size  strategy  can  be  implemented  in  many 
different ways.  The solution above is  very simple,  and the distribution of generated 
values may not make sense for many types. This strategy will also produce very small 
values.  The  illustrations  on  page  13 clearly  demonstrates  the  difference  between 
exponential and linear strategies. Illustrated in this manner, the worst case of the linear 
strategy looks like a box, with equal number of elements on each dimension. The worst 
case of the exponential strategy looks like a funnel. The worst case of the quadratic 
strategy looks  like  a  pyramid,  with  a  constant  number  of  elements  added  on  each 
dimension:



AGATA - Agata 27

The  “worst  case”  of  the  constant  size  strategy  contains  at  most  n recursive 
constructors, where  n is the size bound. It  may use all  recursive constructors in the 
top-level list, or it may use some on lower dimensions instead.

When writing properties, testers can choose a strategy by using the forAll function 
from the QuickCheck library. In most cases there is no obvious advantage of using any 
particular strategy. This opens for the definition of an additional strategy; the random 
strategy. Consider this function:

Definition 12 - The random strategy
randomStrategy :: Distributor
randomStrategy l s = oneof $ map (\f -> f l s)
 [linearSize,exponentialSize,fixedSize,quadraticSize,pa
rtitions]

When generating values with this  strategy,  Agata will  first  randomly select  a “real” 
strategy. Then it will use the chosen strategy for the actual generation of the value. 

2.2.3 Partitions

This extension uses distribution control to change the way a recursive type is divided 
into finite sets by QuickCheck. For type  t, the size-bounded set  tn  of values allowed 
with  size  bound  n is  defined  as  all  values  v where  size(v) ≤ n.  This  means that 
tn ⊆ tn+1. If the alternative definition: size(v) = n is used instead, then for m ≠ n,  tn 

∩ tm = ∅, i.e. all sets are disjoint. Since the union of all sets  tx will constitute the 
entire type t, each set is a partition of t. This has a number of beneficent effects: 
• Fewer repeated tests: If 100 tests are performed, each on a unique size bound, then 

each generated value will be unique.
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• Smaller size-bounded subset: Each subset tn+1 will be smaller since it does no longer 
contain the values in  tn. This means that the probability of generating any specific 
value in this set is greater.

• More even distribution: Typically, values of smaller size will have a larger chance of 
being generated.  For instance for  [Bool] there is  a 1/6 probability of generating 
[True] from  [Bool]3,  but only 1/24 chance of generating  [True,True,True] 
from  the  same  set.  If  partitions is  used  the  distribution  from  [Bool]n is 
completely even, the length of the list will be exactly n and each specific value will 
have a 1/2n chance of being generated.

This  would  be  difficult  to  implement  directly  in  QuickCheck,  and  still  maintain 
compatibility. The requirement imposed on a generated value would be that somewhere 
inside the value a sub-value must be generated by using the maximal size allowed. This 
would require an overview of the generating process that can not be achieved using only 
the  Arbitrary class.  Fortunately,  Agata  has  exactly  this  kind  of  overview  in  the 
wrapper function.

The  agata function  decides  randomly  how  many  recursions  to  use  on  each 
dimension, limited by the size bound. Since Agata is aware of the dimension of the 
generated type, it could determine the number of recursions on each dimension before 
generation is initiated. Consider these functions:

Example 28 - A more specific agata function
listDistributor :: (Int -> Int -> Gen [Int]) -> 
Distributor

partitions :: Distributor
partitions = listDistributor $ \d s -> do
      xs <- sequence $ replicate (d-1) $ choose (0,s)
      permute (s:xs)

The function  listDistributor will create a distributor which, instead of randomly 
determining  the  number  of  recursions  on  each  dimension,  uses  numbers  from  a 
pre-generated list. If one of the elements in the list is always the size bound and all 
others are random values lesser than or equal to the size bound, each size bound will 
almost be a partition.

If the dimension of the generated type is 1, then this distribution strategy will divide 
the type correctly into partitions. This means that a standard test run on the type [()] 
will enumerate all values of this type up to length 100. It also means that the distribution 
in [Bool]n is completely uniform. For the type [[()]] however, if the size bound is 
10 and the distribution-list [0,10] is used then [] is always generated. In general the 
element [] will intersect all “partitions” of multi-dimensional lists. This can be fixed by 
having only non-zero sizes in the prefix of the list that does not contain the size bound.

The  type  [Maybe [()]] is  trickier  to  fix.  Any  repetitions  of  Nothing will 
intersect all partitions. Although there is sufficient information in the Buildable class 
to overcome this problem, it requires massive changes to the wrapper function.
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2.2.4 Agata SmallCheck

As demonstrated, Agata can be adapted to mimic default QuickCheck generators. A very 
nice addition is a feature that mimics SmallCheck in a similar way. Since the overloaded 
function build can perform any predefined function on all fields of all constructors, it 
can be used to enumerate all values to a certain depth. The following function is from 
the module Base:

Definition 13 - agataSC
agataSC :: Buildable a => Int -> [a]

This  function  can  be  used  as  a  generator  for  SmallCheck.  To  define  a  default 
SmallCheck generator for any type T the following code snippet can be used

Example 29 - A SsmallCheck generatot provided by Agata
data T = ...
instance Buildable t where
  ...
instance Serial T where
  series = agataSC

2.3 The shrinking algorithm
A shrinking function,  as used by QuickCheck, for type  a has type  a -> [a].  The 
important property being that all elements in the resulting list are strictly smaller than 
the  original  value.  Optimally (i.e.  to  find  the smallest  possible  counterexample)  the 
function should try and shrink the input in as many ways as possible.  If the testing 
framework finds a counterexample to a property, it will apply the appropriate shrinking 
function to the input and test the property for each of the smaller inputs. If any of the 
smaller inputs causes a failure as well, it will be adopted as the new counterexample. 
The shrinking function is then reapplied to this value, and the process is repeated until 
there are no smaller inputs that cause the property to fail. The resulting minimal failing 
input is reported as a counter example. Consider this type of linked lists of integers and 
its shrinking function:

data IntList = Nil | Cons Int IntList
  
shrinkList Nil         = []
shrinkList (Cons x xs) = [ xs ]
                      ++ [ Cons x xs' | xs' <- shrinkList xs ]
                      ++ [ x':xs | x'  <- shrinkInt x ]

In this function, shrinking is done in three steps. First the function tries to remove the 
head of the list. If this does not yield a failing input the function tries to recursively 
shrink the tail of the list, possibly removing elements from it. Finally if nothing else 
works, it will maintain the structure of the list and instead try to shrink the first integer 
element. Since the function is applied iteratively to the input, it will combine these three 
steps in any fashion to reach a minimal input. Thus when the shrinking framework is 
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finished, no element can be removed from the list and no element can be made any 
smaller. This algorithm could possibly be made faster by removing larger chunks of the 
list (e.g. half the list) at once, reducing the number of repeated shrinks needed. Since 
this code is only executed when a bug is present and detected, performance is a minor 
issue.

Shrinking is not part of the core functionality of Agata, i.e. there is no way to derive 
a shrinking function like this from a Buildable instance. It is however an extra feature 
of the code generating tool. The algorithm used by Agata derives a shrinking function 
for any algebraic type. Like the example with the integer list, three consecutive steps are 
required to shrink a value. The following section will describe each of them in detail.

Attempt to replace the value by a value occurring in a field  This step tries to find a 
value of the same type as the original value somewhere inside it.  For non-recursive 
types this step is omitted, since a value of type a can not be contained in a value of type 
a unless  a is a recursive type. For self-recursive types this step is simply a matter of 
listing the values of all recursive fields. This implements the first step of the shrinking 
function for integer list: The Nil constructor has no recursive fields, so the resulting list 
is empty. The Cons constructor has one recursive field, the tail of the list, the value of 
this field is thus the only result of this part of the shrinking process. For a binary tree 
both the left and right branch fields would be recursive, and the list would contain both.

For mutually recursive types the process is slightly more complicated. In this case 
the process involves recursively gathering relevant values from all fields with types that 
may contain them. Consider the following mutually recursive types:

data IntTree = Leaf Int | Branch IntForest
data IntForest = Nil | Cons IntTree IntForest

The  shrinking  function  for  the  IntTree type  should  return  all  IntTree values 
contained in the IntForest field of a branch constructor. Agata does this for general 
types in the following way: For each group of mutually recursive types, a type class is 
established. The type class contains a function that collects the values of all recursive 
fields  in  a  register,  and  recursively  collects  values  from these  values  as  well.  The 
function must also be aware of which type it is collecting because when it encounter a 
value of the sought type, it should only record it – not gather from its recursive fields. 
This is a performance issue. Any such values will eventually be tested by the iterating 
framework, including them in every iteration might cause an unacceptable performance 
cost (i.e. exponential time complexity).

Attempt to construct a value using any constructor with field values from a strict 
subset of the shrinked constructors field values  This is the most tricky step in the 
shrinking  process  because  careless  implementation  will  lead  to  a  combinatorial 
explosion. Specifically the problem lies in choosing which combinations of fields to 
choose if there are several fields of the same type. The current implementation ensures 
only that each possible field is included at least once in the new list of values.

This step is not needed in the IntList example but it will affect it, in each iteration 
of the shrinking process it will try to replace any  Cons constructed values with  Nil 
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values. This is because Nil has no fields, which is a strict subset of Cons two fields. A 
more useful example is a language grammar like this:

Example 30 - A grammar for a computer langauge
data Stmt = SIfElse Exp Stmt Stmt
          | SIf Exp Stmt
          | SExp Exp
          | ...

This part of the shrinking algorithm would try to replace a if-then-else clause with 
an if-else, both by preserving the first statement and by preserving the second. It would 
also try to shrink the value by using the guard as a standalone expression. 

If shrinking a ternary-or-binary-tree this part of the algorithm will try to replace a 
ternary branching with a binary one in two different ways: by using the first and second 
branches or the second and third branches. 

Shrink any field  If the shrinked value can not be replaced by a contained sub-value 
and the constructor used can not be swapped to a less “expensive” one, then the only 
remaining option is to shrink one of the constructor fields. This represents the second 
and third step of the  IntList example and is pretty straightforward: Make a list of 
values equal to the original with exception that the value of the first field is altered in 
every possible way its shrinking function suggests. Concatenate this to the list of values 
where only the second field value is shrunk etc. Since the process will be iterated, only 
one field should be shrunk in each new value. 
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Chapter 3
Examples
“Example isn't another way to teach. It is the only way to teach.”

- Albert Einstein 

This  section  contains  several  examples  as  well  as  comparisons  between  Agata,  the 
default QuickCheck generators and SmallCheck.

3.1 Scalability
When comparing scalability between the default QuickCheck generators and Agata, a 
good measurement is the worst case absolute size of a generated value given a type and 
a size bound.

To measure the scalability of SmallCheck, the size of the values generated are not 
that interesting, since these will always be very small (as per the name). The scalability 
concern of SmallCheck is instead the number of tests required in relation to depth of 
verification.

3.1.1 Abstract Syntax Trees

Motivation  This example is tailored to benefit Agata. Agata will have a scalability 
advantage over the default QuickCheck generators for types with high dimension. Types 
in Abstract  Syntax Trees (models of the grammar of a computer language) typically 
have high dimensions. For instance a file may contain several classes, each class several 
functions, each function several statements, each statement may contain several variable 
declarations and each declaration may include a function call with several arguments. 

Setup  The abstract syntax of a subset of a language with functions, Boolean values and 
variables can be defined as follows using standard Haskell data types:

Example 31 - A simple abstract syntax tree
type File      = ([Char], [Class])
type Class     = ([Char], [Function])
type Function  = ([Char], [Stmt])
type Stmt      = [((Type,Var),Exp)]
type Var       = [Char]
type Type      = [Char]
type Exp       = Either Bool (FName,[Either Var Bool])
  type FName     = ([Char],[Char])
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The dimension of the type File is 6. A dummy property is used that calculates the length 
of all Strings and inspects all Bool values. 

Outcome  Using the default QuickCheck generator, GHCi crashed after around 30 tests. 
At the time of crash, GHCi was using 1.9 GB of RAM.

Using SmallCheck,  the property could be verified  to  depth  4 in  a  few hours  of 
testing.  The number of  test  cases on depth 4 was 57424705.  Given the exponential 
growth of the number of test cases, it is unlikely that the property could ever be verified 
to depth 5. 

Using  Agata,  a  standard  100-test  test  run  is  executed  in  30  seconds.  Using  the 
quadratic distribution, the corresponding value is 42 seconds.

3.1.2 Results

Typically,  the  expected  absolute  size  of  values  generated  by  QuickCheck  grow 
exponentially with the dimension of the generated type.  By default,  Agata-generated 
values will grow linearly instead.  There are examples of types where the default size 
settings are not feasible to use even for simple properties.

3.2 Coverage and Distribution
This  section  measures  the  various  testing  frameworks  abilities  to  falsify  a  few 
properties.

3.2.1 Optimized Quick-sort

Motivation  This example is tailored to benefit Agata. The primary advantage of Agata 
distribution-wise is the closer correspondence between Agata-size and absolute size, as 
compared to QuickCheck-size. If a property fails for input that has small absolute size 
but large QuickCheck-size, Agata will find it faster than the default generators.

Setup  Consider  this  implementation  of  the  Quick-sort  algorithm  with  some 
optimizations:

Example 32 - A broken sorting function
prop_qsort xs  = sort xs == qsort xs

type Nat = [Bool]
qsort :: [Nat] -> [Nat]
qsort l  
  | length l < 10  = sort l
  | otherwise     = qsort' l where
  qsort' (x:xs) = case (filter (x >) xs, filter (x <=) 
xs) of 
    ([],big)    -> [x] ++ qsort' big
    (small,[])  -> qsort' small ++ [x]
    (small,big) -> qsort small ++ [x] ++ qsort big
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To avoid unfairness due to different definitions of the size of an integer value, binary 
sequences (coded as lists of Bool) are used instead. The optimizations in place are:
• If the list is shorter than 10, some simpler sorting function is used.
• If the pivot element is the smallest or the (uniquely) largest element, the size of the 

remaining list is not re-checked. Instead the qsort' function is used directly to sort 
the rest of the list.

The error is in the second optimization, since qsort' assumes that the list passed to it is 
non-empty. This property will fail for any list longer than 10 if the list is sorted, reverse 
sorted or if a prefix/suffix of the list is sorted and the rest of the list is reverse sorted. It 
will  also fail  for any list  that  is  reduced to a list  like this  when  qsort'  is  applied. 
Examples of failing lists:
[0,0,0,0,0,0,0,0,0,0]  
[1,2,3,4,5,6,7,8,9,10]
[1,2,3,4,5,20,19,18,17,16]
[20,19,18,17,16,1,2,3,4,5]
[1,0,2,0,3,0,4,0,5,0,6,0,7,0,8,0,9,0,10,0,11]

In absolute size, the smallest failing input is [[],[],[],[],[],[],[],[],[],
[]].  This  counter-example  has  10  recursive  constructors,  and  the  Agata- and 
QuickCheck-sizes are both 10. 

Outcome  Using the default generators, QuickCheck failed to falsify the property in 
100 consecutive test-runs with the default settings, each test run executes 100 tests.

SmallCheck verified the property to  depth 7 in  little  over  two hours  on the test 
system. The number of test runs on depth 7 was 1.8*108. Given the exponential growth 
of the number of test runs, it seems unlikely that SmallCheck would ever attempt to 
verify at depth 10, which would falsify the property.

Agata found a counterexample on the first test-run, on the 11:th test case. In 100 
consecutive test-runs, Agata falsified the property every time.

3.2.2 Abstract Syntax Trees

Motivation  This example is tailored to benefit Agata. As previously shown, Agata has 
a  scalability  advantage  when generating  types  of  higher  dimensions.  How does  the 
dimension of test data impact the probability of finding errors?

Setup  The type FName (see Example 31) is a pair of a class name and a function name. 
A pre-processing function for the type  File replaces all empty class names with the 
class name used in the previous function call, if no prior function calls exist then the 
class of the next function call will be used instead. 

The bug in the pre-processing function is that  if  all  function calls have no class 
name, then the program crashes. The smallest failing input is thus:
("",[("",[("",[[(("",""),Right (("",""),[]))]])])])

The QuickCheck-/ Agata-sizes of this counterexample are both 1.
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Outcome  SmallCheck did not find this failure, even when left testing overnight. The 
reason is that it never verifies deep enough to construct a function call. In order to find 
this counterexample, SmallCheck would need to verify to depth 6. 

Thanks to lazy evaluation, the default QuickCheck generators could be used without 
crashing.  A counterexample  was not  found on the first  test-run.  In  100 consecutive 
test-runs, the property was falsified 13 times.

Agata found a counterexample on the first test run. In 100 consecutive test-runs, 
Agata falsified the property every time.

3.2.3 Results
Some properties fail only when all members of a data structure share a certain property, 
e.g. all empty/non-empty, all equal/non-equal. QuickCheck might fail to find such 
examples under any of these circumstances:
• The fault only presents itself if a data structure is large enough.
• The dimension of the generated type is too high.

3.3 Parser testing
Parser  testing  is  a  domain  where  the  benefits  of  Agata  are  well  utilized,  and  the 
drawbacks are mitigated. For instance:
• There invariants of language grammar types can typically be expressed in the Haskell 

type system. Complex invariants of languages such as type correctness are ignored 
when testing parsers.

• The dimensions of language grammar types are often high, and Agata addresses the 
size and distribution problems relating to this.

• Often large groups of mutually recursive types, such as various forms of expressions, 
are present.  This would make hand writing QuickCheck generators rather difficult 
and extremely tedious.

• Parsers are often generated automatically from a detailed specification by a parser 
generator.  These  specification  can  be  used  to  construct  Agata  generators 
automatically.

The BNF Converter (BNFC) is a parser generator that uses a LBNF-specification of a 
context free language to automatically constructs a lexer, a parser, a pretty-printer and a 
few other  useful  tools  for  the  specified  language.  BNFC is  written  in  Haskell  and 
supports several back-end languages including Haskell. As a part of the Agata project, 
BNFC is extended to generate a testing module as well. This module enables the tester 
to write properties of Strings and have them tested for a random subset of the language, 
with Agata as the test data generator. The testing is performed with the QuickCheck 
testing framework, and counterexamples are shrinked before they are presented.

3.3.1 Properties of languages

A number of interesting general properties can be tested for language parsers, including: 
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• A specification can be tested as specifying a subset of the language parsed by an 
existing parser implementation. 

• Two  specifications  can  be  tested  as  specifying  the  same  language  (a  generally 
undecidable problem). 

• Two  parser  implementations  can  be  compared  as  parsing  the  same  subset  of  a 
specified language, i.e. what one can parse, the other can too.

• A pretty-printer/parser combination can be tested to preserve the abstract syntax in a 
parse-print cycle.

3.3.2 C parsers

The largest example of a language specified in the LBNF formalism is a grammar of 
ANSI C. This grammar was written by Ulf Persson as part of BSc thesis. The example 
is mentioned in the BNFC technical report.

Since C is a widely used language,  its  easy enough to test  that  the specification 
parses a superset of C, just test it on a few (or lots of) existing C programs. In order to 
call this a real specification of C, the reverse needs to be tested as well: the specified 
language  must  be  a  Subset  of  C.  Since  Agata  can  generate  random strings  in  the 
specified language, these can be tested against a trusted C parser implementation (or 
possibly several not-so-trusted ones). If any string is not parsable, then there is an error 
either in the specification or in the parser implementation.

Testing  against  Language.C  Since  Agata  only  supports  the  Haskell  back-end  of 
BNFC, the easiest property to test is that all all strings in the specified language should 
be parsable by Language.C.Parser. This yields the following setup:

Example 33 - testing Language.C.Patser
langC = CheckC.parseProgram
parses :: String -> Either String CtranslUnit
parses = ...
main = quickCheck $ subset langC parses

CheckC is  the  testing  module  generated  by  Agata,  parseProgram is  a  combined 
parser, pretty-printer, generator and shrinking function for the non-terminal  Program. 
The  subset function a predefined property that takes a BNFC-language and a parser 
function and returns a property that tests if the parser function can parse all strings in the 
language.

The result of running main is:
Example 34 - A counterexample

*** Failed! Exception: 'static ;' (after 1 test and 3 
shrinks):
ConcProgramProgr (ListConcExternal_declarationSingle 
(ConcExternal_declarationGlobal (ConcDecNoDeclarator 
(ListConcDeclaration_specifierSingle 
(ConcDeclaration_specifierStorage 
ConcStorage_class_specifierLocalProgram)))))
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The  reported  failing  program  is  “static  ;”.  This  program  is  indeed  parsed  by  the 
BNFC-generated  parser,  but  not  by Language.C.Parser.  The  rest  of  the  output  is  a 
representation  of  which  BNF  rules  where  used  to  construct  the  values.  There  is 
obviously a bug in either the grammar or the library. Running the program through the 
GNU C Compiler does not raise any parse error, just a warning about a useless storage 
class specifier. The error would thus appear to be in the Haskell C library.

Testing  language  subsets  Language  grammars  are  inherently  very  modular,  and 
different  parts  of  the  specification  can  be  tested  independently.  Specifically, 
C-statements  and  C-expressions  are  essentially  languages  of  their  own,  and  Agata 
creates generators for these as well. The following setup is used:

Example 35 - Testing statements and expressions
langCStm = CheckC.parseStm
langCExp = CheckC.parseExp

cExpEnclosed s = cStmEnclosed $ "a = "++s++";"
cStmEnclosed s = "A {"++s++"}"

test_Stm = quickCheck $ subset langCStm (parses . 
cStmEnclosed)
test_Exp = quickCheck $ subset langCExp (parses . 
CexpEnclosed)

As could be expected, test_Stm fails in the same way as testing complete programs, 
with  a  storage  class  specifier.  The  function  test_Exp  produces  a  very  interesting 
counterexample:

Example 36 - A failing expression
*Main> test_Exp
*** Failed! Exception: '( 06470063754347u ..66'
Exception: '08' (after 83 tests and 7 shrinks):
...

Apparently, Language.C.Parser rejects the expression 08. This is an error in the LBNF 
specification.  In C, a number with a leading 0 is always a octal  numeral.  Thus any 
number with a leading zero containing an eight or a nine should not parse. 

Testing against ANTLR  Another parser generator is ANTLR. Like BNFC it supports a 
multitude of target languages (not Haskell though), and like BNFC it has a grammar of 
ANSI C on its web page. The parser produced by ANTLR can be compared directly 
with the BNFC grammar, as was done with the Language.C parser, and it can be tested 
against the Language.C parser using the LBNF grammar only to generate test data.

The target language for the ANTLR parser is Java. Properties for testing programs, 
statements, and expressions are written. A property that compares parsing results for 
Language.C.Parser and the ANTLR parser is also written.

Testing against  the BNFC parser yields no counterexample in the first  run.  This 
indicates that the ANTLR grammar is identical to the BNFC one. Re-running the tests 
yields a difference in the expression syntax:
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Example 37 - A failing expression
*** Failed! Exception: '! ( "P" | 03714222..\"'
Exception: ''''' (after 30 tests and 2 shrinks):
...

This is another error in the BNFC grammar, where it parses the string “'''” as a valid 
expression. Testing against the Language.C parser yields this error:

Example 38 - A failing program
*** Failed! Exception: 'volatile ;' (after 1 test):

Once again the storage class specifier causes an error. Apparently the ANTLR grammar 
agrees with GCC and BNFC, that using the empty declaration is allowed in this case.

Testing parse-print cycles  Agata is not limited to testing parsability. An example of a 
more  advanced  property  is:  for  every  generated  string,  parsing  it  with 
Language.C.Parser and printing the result with Language.C.Pretty should yield a new 
string that will parse to the same abstract syntax as the original string, when parsing 
with the BNFC parser. 

This property yielded an error, namely that the expression “0ul” will parse-print to 
the string “0uL” which is not accepted by BNFC. The regular expression in the BNFC 
grammar will accept “0UL” or “0ul” but not “0Ul” or “0uL”. This is an error in the 
BNFC grammar.

Unfortunately, the usefulness of this method is limited because the “abstract” syntax 
of regular expressions in BNFC are just strings. This means that normal equivalence can 
not be expected from the abstract syntax after a parse-print cycle. 

3.3.3 Results

Testing a few simple properties immediately yielded several errors both in the Haskell 
library and in the grammar. 

Testing that a grammar specifies all of a language is often easy, provided there is a 
sufficiently large code base to test the generated parser on. Testing that the grammar 
does not specify a to large language is harder. One way of explaining this is that the 
domain of incorrect programs is very large. Look at a single correct program, how many 
incorrect programs can be made by changing a single character in the text? Clearly it 
would  be  very difficult  to  write  a  library of  test  cases  and claim that  it  gives  any 
coverage of the total set of incorrect programs.
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Chapter 4
Future work

Invariants  Arguably, the most important shortcoming of Agata is the lack of invariants. 
Since values on lower dimensions can not be inspected when generating a value, there is 
an inherent  collision between the size control  of Agata  and specifying invariants  in 
generators.

A possible  alternative  is  to  specify  invariants  as  post-processing  functions,  i.e. 
functionz in  a → a or a → Gen a. These functions should be injective into the set of 
values that respect the invariant.

Type specific distribution control  Currently, the precision of distribution control is 
limited  to  changing  all  types  on  a  particular  dimension.  This  could  possibly  be 
sharpened to allow special treatment of specific types. There is probably no completely 
type-safe way of doing this, but perhaps further study will reveal some trick to solve 
this.

Tester-Tester library  This thesis can only show the existence of properties that are 
falsified by Agata but  not  by QuickCheck or SmallCheck.  For  an estimation of  the 
extent of this class of properties, and for finding classes of properties where Agata is 
lacking,  a  library of  falsifiable  properties  could  be  useful.  Preferably the  properties 
should have a limited set of common input-types, so every generator can be tested for as 
many problems as possible. This would demonstrate how a generator tailored to falsify 
one property may be inadequate for testing others.

A new testing framework  The QuickCheck testing framework could be rewritten to 
support more direct testing with Agata types, rather than using the forAll function or 
defining  an  Arbitrary instance.  This  is  especially  compelling  since  Agata 
incorporates a SmallCheck style enumeration strategy. The new framework can start by 
enumerating a predefined number of small values, and then continue with randomly 
testing a few larger ones. Preferably the random value generator should only generate 
values that are not in the initial enumeration. 

Automatic shrinking  The shrinking algorithm described in this thesis can be used to 
automatically construct shrinking functions for algebraic types. Since the  build and 
improve functions provide most of the information needed to shrink a value (e.g. a 
pattern matching function which recursively shrink field values)  a function like this 
would be nice:
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Example 39 - An easier way to shrink
agataShrink :: Buildable a => a -> [a]

The rebuild function might need some help with identifying recursive fields (e.g. use 
rbRec instead  of  rb for  those  fields)  and  even  this  might  not  be  enough  for  the 
complete shrinking algorithm. Mutual recursion will probably cause problems.

Function types  Writing a Buildable instance for function types should be possible. 
Functions could be generated using the coarbitrary function, as done by default in 
QuickCheck.

Partitions  The idea of changing the type division strategy from dividing a recursive 
type into growing subsets to dividing it into partitions is appealing. Further research 
might reveal more about the pros and cons of this division paradigm. The partitioning 
wrapper function in Agata is limited. If this strategy is deemed useful, the partitioning 
wrapper function for Agata could be improved to successfully partition any type.

Lazy SmallCheck  Many properties  will  only evaluate  a  small  part  of  their  input. 
Compared  to  regular  SmallCheck,   Lazy SmallCheck  excels  at  testing  this  type  of 
properties, drastically reducing the number of tests on each depth-level. When testing a 
language  grammar  for  instance,  SmallCheck  would  generate  millions  of  test  cases 
where the only difference is the names of functions. Lazy SmallCheck would conclude 
in  a few tests  that  the names of functions  are  not relevant and move on to  a more 
interesting test. Unfortunately the enumeration generators for Lazy SmallCheck are a 
different from the generators for regular SmallCheck. If possible Agata should support 
this type of enumerations as well.

Using language extensions  Many of the features in Agata could be made simpler or 
more  effective  by  using  language-extensions  to  Haskell.  For  instance  it  might  be 
possible to define default  functions for build and improve using Generic classes. In 
most cases the user would only need to override the  dimension function,  in some 
cases maybe not even that.
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Chapter 5
Conclusions

Agata  is  a  new  strategy  for  writing  QuickCheck  generators.  It  is  also  a  tool  that 
automatically constructs generators for types in a Haskell module, and an extension to 
BNFC for testing parsers. Agata is best  suited for types and properties without type 
invariants, other than those enforced by the Haskell type system.

Outsourcing logic  Agata reduces the implementation of a generator to a mechanical 
description of the type, moving all logic into a wrapper function. 

The  primary  advantage  of  the  powerful  monadic  default  interface  for  defining 
QuickCheck generators is the ingenuity it allows when writing them. When the process 
of writing generators is automated, no such ingenuity can be utilized. Maintaining a 
flexible interface for writing generators in this case is wasteful, because a more narrow 
interface gives better reflective capabilities at no additional cost.

Agata sacrifices the ability to encode type invariants into generators,  in favor of 
easing automation and increasing the flexibility of use. Most new features of Agata stem 
from this outsourcing of generator logic.

Size  does  matter  Agata  offers  a  precise  control  of  the  expected  absolute  size  of 
generated data. This  ensures scalability even when generating complex types. 

When generating collection-type data-structures, the default QuickCheck generator 
will tend to generate small structures with small elements and large structures with large 
elements,  but  rarely large  structures  with small  elements.  This  “blind-spot”  reduces 
test-coverage of these types.

When generating multi-dimensional collection type data-structures, the absolute size 
of  QuickCheck  test  cases  will  typically  grow  exponential  to  the  dimension  of  the 
generated  type.  The  corresponding  growth  for  a  default  Agata  generators  is  linear. 
Experimental results demonstrate the improved scalability of Agata compared to default 
QuickCheck generators in these cases.

By default,  QuickCheck  generates  all  values  independently1.  Agata  introduces  a 
dependency between values of the same type. If the size of a data structure is atypically 
large, then the average size of each element in the structure will be smaller. This will 
ensure scalability, but it will also guarantee that corner cases such as “all elements are 

1 The values are independent in the sense that the actual size of one element does not influence the 
actual size of another. The values are also dependent in the sense that they all have the same upper 
size bound, and thus the same expected value.
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size zero” or “one element is large, the rest are small” have a probability of generating 
even if the size of the data structure is large.

Distribution  control  Agata  can  be  used  to  control  many  features  of  a  generator, 
without altering its source code. This is a modularity advantage compared to the default 
strategy  for  writing  generators.  The  mechanism  is  powerful  enough  to  mimic  the 
size-paradigm of the default QuickCheck generators. A library of generator strategies is 
defined, and any one of these strategies (or a custom made strategy) can be applied to a 
generator to imbue  it with specific properties.

When  randomly  testing  a  property,  the  test  data  generator  will  determine  the 
distribution of values. A generator may favor corner cases or mainstream cases, large 
cases or small cases etc. Each distribution has its own advantages and disadvantages, 
and testing a property with several strategies will give better coverage than testing with 
only one. When using Agata, testers do not only have a new distribution strategy, they 
have many new distribution strategies!

Test outcomes  Experimental results show that some properties are falsified by Agata, 
but not by default QuickCheck testing nor by SmallCheck testing. The extent of this 
class of errors and its occurrence in real applications is yet unknown.

The Agata extension to BNFC can be used to generate random sentences in any 
context free language. This is ideal for testing a parser against a grammar or vice versa. 
This application is especially well suited for Agata; BNFC is already used to generate 
code, so no extra manual work is needed to generate the testing module. Experimental 
results  demonstrate  the  usefulness  of  this  tool,  Agata  discovered  several  previously 
unknown bugs in published software.



AGATA - Bibliography 43

Chapter 6
Bibliography
Bibliography
1: K. Claessen, J. Hughes, QuickCheck: A Leightweight Tool for Random Testing of  
Haskell Programs , ICFP '00, 2000
2: C. Runciman, M. Naylor, F. Lindblad, SmallCheck and Lazy SmallCheck - automatic 
exhaustive testing for small values, Haskell Symposium '08, 2008
3: A. Kolawa, D. Huizinga,Automated Defect Prevention: Best Practices in Software 
Management, Wiley-IEEE Computer Society Press, 2007
4: Lee J. White, Software testing and verification, excerpt from Encyclopedia of  
Computer Science and Technology,  1995
5: G. Fink, M. Bishop, Property-Based Testing; A New Approachto Testing for 
Assurance, ACM SIGSOFT Software Engineering Notes, 22(4), 1997
6: P Godefroid,  N. Klarlund, K. Sen, DART: directed automated random testing, ACM 
SIGPLAN Proceedings of the Conference on Programming Language Design and 
Implementation, 2005


	Chapter 1 Introduction
	1.1 Background 
	1.1.1 Automated testing
	1.1.2 QuickCheck
	1.1.3 SmallCheck/Lazy SmallCheck 

	1.2 Problem description
	1.2.1 Properties of types
	1.2.2 General problems with test data generators
	1.2.3 Limitations


	Chapter 2 Agata
	2.1 The Generator-generating algorithm
	2.1.1 Inadequate algorithms
	2.1.2 Division of size
	2.1.3 Counting entry point values
	2.1.4 A class of Buildable types
	2.1.5 The Base module
	2.1.6 Parametrized types

	2.2 Extensions
	2.2.1 Distribution control
	2.2.2 Distribution strategies by worst case
	2.2.3 Partitions
	2.2.4 Agata SmallCheck

	2.3 The shrinking algorithm

	Chapter 3 Examples
	3.1 Scalability
	3.1.1 Abstract Syntax Trees
	3.1.2 Results

	3.2 Coverage and Distribution
	3.2.1 Optimized Quick‑sort
	3.2.2 Abstract Syntax Trees
	3.2.3 Results

	3.3 Parser testing
	3.3.1 Properties of languages
	3.3.2 C parsers
	3.3.3 Results


	Chapter 4 Future work
	Chapter 5 Conclusions
	Chapter 6 Bibliography

