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Abstract

Online social networks and peer-to-peer file sharing networks create a digital
mirror of human society, providing insights in social dynamics such as inter-
action between entities, structural patterns and flow of information. In the
past such studies were inherently limited due to the vast supply of informa-
tion. Today these phenomena can be studied at large scale using computers
to process data from this digital mirror.

Findings from such networks have shown interesting structural properties
shared by both types of systems. In particular, it is often the case that they
show to be scale-free and small-world networks.

By letting ideas and findings from studied peer-to-peer networks guide
the design of novel architectures, improvements on user integrity, usability
and performance have been observed.

This thesis presents a study of the Direct Connect peer-to-peer file shar-
ing network. We model abstract tools and methods for measuring the net-
work architecture, and, moreover, custom software tools for data gathering
and analysis from Direct Connect networks are developed, presented and
discussed.

We look at network topology and properties, statistics on user activities
and geographic distribution, characterization/statistics on data shared and
correlations of users and their shared data.

We verify the scale-free property, small-world network model, strong data
redundancy with clusters of common interest in the set of shared content,
high degree of asymmetry of connections and more.

Finally, we discuss the implications of our findings and comparison with
results from similar research is done.





Sammanfattning

Online-baserade sociala nätverk och s̊a kallade peer-to-peer-fildelningsnätverk
skapar en digital spegelbild av det mänskliga samhället. Denna spegelbild
kan ge insikt i social dynamik s̊asom interaktion mellan parter, strukturella
mönster och informationsflöde. Förr var s̊adana studier inneboende sv̊ara p̊a
grund av det stora informationsflöde som detta är förknippat med. Idag kan
dessa fenomen studeras storskaligt genom bruk av datormaskiner.

Dessa nätverk har uppvisat intressanta strukturella egenskaper som delas
av b̊ada nätverkstyper. I synnerhet är ofta fallet s̊a att de uppvisar egen-
skaper av att vara s̊a kallade scale-free- och small-world -nätverk.

Genom att l̊ata upptäckter fr̊an undersökta peer-to-peer-nätverk styra
utformande av nya arkitekturer har förbättring av bland annat användarin-
tegritet, användbarhet och prestanda observerats.

Denna tes presenterar en studie av peer-to-peer-fildelningsnätverket Di-
rect Connect. Vi tar fram abstrakta verktyg och metoder för mätning av
nätverksarkitekturen, och vidare, utvecklar mjukvara för informationsinhämt-
ning och analys.

Vi tittar p̊a nätverkstopologier och egenskaper, statistik över användarak-
tiviteter och geografisk distribution, karaktäriserar den data som delas och
hur användare och deras data korrelerar.

Vi verifierar att Direct Connect är ett scale-free-nätverk, small-world-
modellen, stark dataredundans med kluster av liknande filer i mängden av
utdelad data, en hög grad av asymmetri mellan användare och mer.

Slutligen diskuteras vad v̊ara upptäckter betyder och jämförelser med
liknande forskning utförs.
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Chapter 1

Introduction

Over the last few years, peer-to-peer (abbreviated P2P) technology has gained
an increasing attention among Internet users, companies and academic re-
searchers.

The Napster phenomenon in early 2000s was, by gaining the whole world’s
attention, probably the one piece of software to really ignite today’s trend of
P2P networking. By letting anyone from around the globe in an easy way
share music files with each other, Napster quickly became popular among
young music enthusiasts. Meanwhile, the music industry was panicking and
Napster was eventually forced to shut down. But the story far from ended
there; after having experienced the power and possibilities of P2P file sharing
technology, people refused to take the demise of Napster as the final word.
Various new networks and clients for file sharing began to pop up and the
trend seems to maintain its popularity when looking at all the alternatives
existing today.

Even though P2P often seems to be mentioned in file sharing contexts, a
multitude of other uses of P2P exist. Examples of common P2P-based uses
and applications are:

Instant messaging An early player in this niche was the instant messaging
software homophonically dubbed ICQ. Today, instant messaging is used on
a daily basis by people from all over the world; notably by using the popular
Messenger software included in Microsoft Windows.

Collaborative environments Being able to share a desktop among users
for collaboration is a common option in modern operating systems.

Games In multiplayer action, strategy and role-playing games P2P is a
technology often used letting players communicate and discuss strategies.
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Internet telephony and video conferencing Within this area Skype
is probably the most well-known actor. Skype addresses both voice-over-IP
telephony as well as video conferencing.

Music streaming In autumn 2008 music streaming service Spotify was
much hyped and gained a lot of attention from both media and public.

Distributed computing SETI@home is a project where users from all
over the world let their computers collaborate to find extraterrestrial life.
Their computers’ idle clock cycles are used in a distributed fashion to ana-
lyze data received from a huge radio telescope listening to outer space.

Today it is estimated that the traffic generated by P2P protocols stands
for a major portion of the total traffic on the Internet. This hints on the
sizes of these distributed systems. Not only have these networks revealed to
be huge in size, by nature their structure is highly dynamic – a fact that does
not seem to affect their performance or stability.

Recently, quite a substantial amount of research has been made on online
social networks as well as on P2P file sharing networks. These networks cre-
ate a digital mirror of human society, providing insights in social dynamics
such as interaction between entities, structural patterns and flow of informa-
tion. In the past such studies were inherently limited due to the vast supply
of information. Today these phenomena can be studied at large scale using
computers to process data from this digital mirror. Results obtained cannot
only be used by computer scientists, but is of value for any discipline deal-
ing with human behaviour and its patterns. Interestingly, this creates links
between sciences usually far from each other [4].

Online social networks can be viewed as a special case of P2P systems
and are extremely popular on the Internet today. In contrast to traditional
P2P systems which connects users via IP addresses, these systems connects
users using web links. Examples of such networks is Facebook, MySpace and
Flickr. The main motivation for online social networks is to maintain social
relationships, create new relationships based on similar interests and locate
information contributed by other users of the system. Common for these
networks is that it is often the case that an object is required to connect two
people. Such an object can for example be photos, movies, hobbies or jobs.
Worth noticing is that in these kind of systems it is most often the case that
the users themselves produce and contribute all data in the network. This
stands in contrast to the other common paradigm where a service on the web
is also the content provider.
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The other, more traditional, variant of P2P systems which are intended
for file sharing are the focus of this thesis. Although sharing attributes with
online social networks, some key differences exist. In file sharing networks it
is often the case that the data exchanged is not owned or produced by the
participants. The type of object that connects two people in a file sharing
network can be arbitrary and is merely based on personal preferences. When
participants interact with each other by exchanging a file, the link created is
(in contrast to social networks) often arbitrary; a user wishing to download
a file simply make a search from the set of currently available peers.

Most current widely used P2P systems rarely facilitate or exploit social
relationships between users. Recent research have shown promising results
employing such relations in novel P2P systems. By letting ideas and findings
from online social networks guide the design, improvements on user integrity,
usability and performance have been verified [8] [3]. Examples of this is when
querying for data; by employing information such as user taste or social
relations, location and downloading of data content can be improved. This
stands in bright contrast to the common earlier mentioned paradigm where
arbitrary links are created. Also, user privacy can be strengthened by letting
social relations between users decide on with whom to share data content.
This scheme effectively disables a third party to monitor activities between
users forming a social cluster.

Findings from online social networks and P2P file sharing networks have
shown interesting structural properties shared by both types of systems. In
particular, it is often the case that they show to be scale-free and small-world
networks1.

Whereas a quite wide range of diverse online social networks have been
investigated, much of the research community’s focus regarding file sharing
has been on Gnutella, Kazaa and recently BitTorrent.

Direct Connect is a huge set of social P2P file sharing networks which
almost seem to have completely escaped attention from researchers. The
architecture has – besides file sharing – support for mechanisms such as
chat, granting friends extra capabilities of downloading and formation of
networks specialized in certain types of content. Virtually no investigation on
structural properties, content shared and comparison to other P2P networks
have previously been done on Direct Connect networks. This, in conjunction
with the system’s mix of file sharing and social capabilities as well as the
maturity of the technology makes the system interesting for analysis.

This thesis presents a study of components in Direct Connect such as:
network topology and properties, statistics on user activities and charac-

1The terms scale-free and small-world networks are discussed later in this thesis.
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terization/statistics on data shared. We investigate if the Direct Connect
network exhibits properties of being a scale-free network and look on corre-
lations of users and their shared data. Also, custom tools for data gathering
and analysis from Direct Connect networks are developed, presented and dis-
cussed. Furthermore, findings are compared to findings from other P2P and
real world networks.

1.1 Related work

There is quite an amount of work on P2P networks going on in the research
community. In this section we briefly present related research projects that
have inspired this thesis.

An interesting study on structural properties of P2P networks has been
conducted by Wang et al. [11]. A statistical analysis of the Gnutella network
is performed and presented. It is shown that the network is mainly comprised
of peers functioning as pure providers. These guarantee high availability and
reliability of the system. The connectivity between peers is revealed to be
scale-free – both for directed and undirected links.

Another case study of the Gnutella network has been performed by Ri-
peanu [9]. A crawler was used to map the overlay network, the generated
graph was analyzed and network traffic evaluated. Using the findings Ri-
peanu suggests changes to the Gnutella protocol to improve both performance
and scalability.

Mislove et al. [6] has performed an extensive study on the structure of
online social network graphs. Communities looked at are for example Orkut,
YouTube and Flickr. Data gathered by crawling links from the sites in ques-
tion was used to model a graph structure. Several properties were shown.
In particular, it was shown that these online communities seem to follow the
power law distribution (i.e. being scale-free networks)

Although not directly concerning structural properties, TRIBLER and
OneSwarm discussed below is of interest for being new P2P file sharing sys-
tems based on social relations.

Research has been performed by Pouwelse et al. [8], constructing TRI-
BLER, a social-based P2P system with focus on sharing of videos. TRIBLER
is built upon the BitTorrent protocol and gives possibility to add friends to
a list of contacts. These friends are assumed to share your taste and the
sharing of content in the network is optimized using the relations formed.

Another BitTorrent-based file sharing network is OneSwarm [3]. OneSwarm
aims to preserve user integrity in a P2P network by introducing the concept
of “friend-to-friend” file sharing (F2F). The protocol lets users control of
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with whom to share data, either by directly adding people as friends or by
looking up your contacts on the Google Talk network. This, and the use of
encryption of both IP addresses and data makes the traffic hard to monitor
for a third party. To guide the design of OneSwarm, a study of the structural
properties of the online social network last.fm is performed.

1.2 Outline of thesis

The aim of this thesis is that any person with a background in computer
science and mathematics should be able to read and understand it. The
reader does not necessarily have to be familiar with all concepts this thesis
will discuss; they will be explained when they appear.

The thesis is divided in seven chapters. Chapter one introduces the sub-
ject and gives a motivation for studying P2P networks. Also, research which
have inspired this thesis is briefly looked upon.

Chapter two gives the reader a background to P2P networks in general,
Direct Connect in particular and mathematical graph theory needed. This
chapter provides the necessary knowledge and abstract tools for measurement
and analysis of the Direct Connect network.

The third chapter concerns the method that will be used to measure the
Direct Connect network. The discussion in this chapter is based on the topics
from the previous chapter.

In chapter four, we discuss the actual implementation for collecting data.
External tools and libraries used are also looked upon. Since this thesis does
not concern software architecture, design patterns etc., this discussion is held
at quite a minimum. The enthusiastic reader is encouraged to contact the
author of this thesis if interested in obtaining source codes.

The fifth chapter presents the data collected. Tables and figures are used
to illustrate topological properties of the networks.

Chapter six gives a discussion on the findings from the previous chapter.
The discussion tries to catch good characteristics of Direct Connect networks
in order to compare these to results from earlier research on P2P networks.

In chapter seven, we present a summary with conclusions of our work.
We look back and see what was good, bad and how future research on the
subject can be improved.

The terms node, vertex and peer have all very similar semantics and are
used differently throughout the text. The same goes for the terms link, edge
and connection. This is not to confuse; rather to emphasize exactly what
structure we are discussing. It is the author’s aim to be consequent with the
terminology based on the context.
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Chapter 2

Background

2.1 Peer-to-peer networks

A P2P computer network is a system in which the connectivity of the partic-
ipants does not rely on one (or some) central resource(s). In a P2P network
the traditional server-client hierarchy is flattened by removing these central
resources and letting the participants connect directly to each other – in
practice making every computer both a server and a client. The computers
participating in a P2P network are often referred to as peers or nodes.

It is easy to realize that this architecture implies some often desired prop-
erties of a network, such as good scalability, removal of points of failure and
elimination of “middlemen”. As all nodes provide their own resources (e.g.
bandwidth and storage) the P2P network in fact becomes stronger as more
nodes connect to it. The properties mentioned make a P2P network an ideal
choice when a large number of participants are involved in heavy data traffic
such as file sharing, streaming of audio/video or distributed computations.

Miller [5] presents an easy and concise definition of P2P:

“P2P is a network architecture in which each computer has equiv-
alent capabilities and responsibilities.”

Although this definition is elegant and correct, it may not always be
accurate for describing a P2P network; the definition should capture the set
of all P2P networks but actually covers more.

Miller extends the definition in order to make it more precise. He suggests
that a P2P network should show these five characteristics:
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• The network should facilitate real-time transmission of data between
the peers.

• The peers can operate as both server and client.

• The main content of the network is provided by the peers.

• The network gives control and autonomy to the peers.

• The peers are not necessarily always connected or have permanent IP
addresses.

This definition is a great deal more robust and satisfactorily describe a
P2P architecture.

A P2P network which totally lacks centralized resources is sometimes said
to be a pure P2P network. This is the most strict type of a P2P system where
the network is comprised of equal peers acting as both servers and clients.
By the definition there exists no centralized resource keeping track of, for
example, peers or their respective content.

Conversely, there are so-called centralized P2P networks in which one or
several servers exists handling tasks like for example locating content and
which peers offer it.

2.1.1 Topologies of peer-to-peer networks

An overlay network can be viewed as a graph representing a virtual network
consisting of nodes and connections between them. The nodes represent
participants and the connections represent virtual links between them. An
overlay network is built on top of an existing network. The reason for such a
construction can be to implement a service the underlying network does not
directly support.

In the case of most P2P protocols, the underlying network is the Internet
and an often wanted goal is to efficiently locate information among the nodes.

As a P2P system is ideal for ad-hoc connections, the topology of its
overlay network is subject to frequent change. A P2P network not keeping
track of connections between nodes in an organized manner is said to be
unstructured.

Although the network’s overlay graph may be unstructured, it may indeed
implement techniques for organizing information among nodes. For exam-
ple, queries in the network can be routed in an intelligent manner based on
previous knowledge about neighbouring nodes. Another approach is to let a
random or statistically based “walker” traverse the network with a query.
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Freenet is an example of an unstructured network enforcing a protocol
for organization of data [2].

An unstructured network not implementing information organization is
often not desirable in the case of systems with a large number of nodes where
good performance and scalability is of importance.

In particular, such a network may have to reside to flooding a query
through the network to locate content. This method of locating information
scales badly due to the high amount of traffic generated by the usage of a
broadcast-mechanism. Another problem is that a query is likely to quickly
find data that many peers share, but finding rare data can be very time-
consuming and might not even resolve at all. Examples of applications using
this unstructured approach is FrostWire and LimeWire who both use the
Gnutella file-sharing network.

When a protocol organising the overlay links is enforced, the P2P system
is said to be structured. The goal by employing a structured approach – by
structuring information or overlay network – is to minimize the number of
hops in the overlay graph when locating information.

For applications with high requirements such as distributed systems in
cars, business applications etc. a structured protocol is often preferable.

A good example of a structured P2P protocol is the Chord protocol sug-
gested by Stoica et al [10].

Chord ensures that given a key, it will perform a lookup on the node
storing the key’s value in O(log n) time. Briefly, this is achieved by:

• Assigning a unique identifier to each node and key using a (consistent)
hash function such as SHA-1.

• Creating a logical ring where the key and node identifiers are placed in
a clockwise increasingly order.

• Each node holds a lookup table to a subset of its succeeding nodes. This
routing table is organized such that a node “knows” more numbers of
nearby located nodes than nodes located far away.

• A search query is done by looking up the key’s highest predecessor
using the routing table, then forwarding the query to that node. This
goes on until the node who owns the key is found. Due to the fact that
for each query forwarding, the logical distance to the node owning the
key is at least halved, the search is performed in O(log n) time.

It can be shown that the O(log n) property holds for any n nodes partic-
ipating in the network, thus Chord proves to scale well.
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2.2 Direct Connect

Direct Connect (from now on referred to as DC) is a semi-centralized unstruc-
tured file sharing protocol originating from the late 1990s. It was invented
by the by-then nineteen-year-old hobbyist programmer Jon Hess [7]. The
protocol is to this date officially undocumented and the existing documen-
tation is derived from reverse engineering of the NeoModus client – Hess’
original implementation. Thus the DC protocol is sometimes referred to as
the NMDC protocol1.

The DC protocol draws inspiration from the popular IRC2 chat protocol
offering the same basic possibilities such as public and private messaging.

2.2.1 Architecture

The architecture of a DC network is simple and is comprised of a server – or
a hub in DC-terminology – and peers who are clients to the hub. Although
the peers act as clients to the hub, a peer act as both server and client to
other peers as in conventional P2P fashion.

Below we will have a closer look at the details and functionality of the
above discussed entities.

Hubs and peers

The hub listens to incoming TCP connections on – by convention – port 411.
As its name suggests, the hub’s function is just to act like a hub facilitating
connections between peers. It is also responsible for bookkeeping of connected
clients, forwarding of search queries and delivering of both public and private
messages. Public messages are broadcast to the connected clients, while
private messages only are sent to the intended recipient. When a client
queries the network for a file, the query is sent to the hub and the hub
broadcasts it to all connected clients. Clients in possession of the requested
file answers directly to the client who made the query3. From here a direct
P2P file transfer between the two parties can take place.

A peer connects to a hub with a chosen user name (also known as nick-
name). This user name has to be unique for the hub to which the user
connects. A user can have the status of normal user or operator. A user
granted with operator status is more privileged and possess permission to
actions like disconnecting users and banning users from the hub. The set of

1NeoModus Direct Connect protocol.
2Internet Relay Chat.
3In the ideal case – we will see a case when this does not apply.
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all peers connected to a hub forms a potential network in which files are be-
ing shared. A connected peer can chat, search for files and upload/download
content to/from other connected peers. Important for peers are the concepts
of slots and active versus passive mode.

Each peer has a number of slots which determines how many peers it
simultaneously can upload data to. It is common for client software to feature
a function to grant extra slots to bookmarked friends if all slots are occupied.
These slots are sometimes called granted slots. Another type of slots existing
are the so-called mini slots. If there exist no other free slots, a mini slot
can be granted to a peer wishing to download and view another peer’s list of
shared files4.

It is not uncommon that hubs are part of a group or network of hubs.
Although not directly connected to each other, they can somewhat cooperate
with each other. An example of this is when a hub’s user limit is met; in
such case the hub can automatically redirect the user to another hub in the
group of hubs.

Active vs. passive mode

Active mode is the standard for peers to use. This mode requires the peer to
have a dedicated port open for both incoming and outgoing traffic. In other
words, this enables peers to connect directly to each other without problems.
Active clients performing a search get their results directly from the peers
answering the query.

Passive mode is not recommended but (somewhat) works under all cir-
cumstances. In this mode there is no need to have a port open for incoming
traffic. Results from a query is routed via the hub to the searching client,
consuming bandwidth and processing power from the hub. Because of this,
many systems will answer a passive client with only five results for each re-
sponding user. Another drawback using passive mode is that a passive client
for natural reasons cannot connect to another passive client.

Here, the observant reader might wonder how a connection is established
between a passive peer and an active peer if a passive party requests a con-
nection from an active party. Since a passive peer cannot function as a server
in a P2P connection, a workaround exists. This is done by the passive peer
sending a request to the other party asking for it to act as a server accepting
a connection. Now the passive and active peers can establish a connection
and data can be exchanged even if the passive peer took the initiative of the
transfer. This is often referred to as a reverse connection operation.

4Every peer store an XML-file containing information about its own files being shared.
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Needless to say, active mode is the preferred mode since it results in better
performance for both the peer and the hub.

2.2.2 Protocol

The original NMDC protocol has undergone quite an amount of extensions
and improvements since the original implementation. Most augments to the
protocol has been introduced by Jacek Sieka in his client software DC++5.
This client runs under Microsoft Windows and has for many years been de
facto standard DC client.

Popular hub server software is YnHub6 (for Microsoft Windows) and Ver-
lihub7 (for GNU/Linux).

The protocol operates as clear text messages which are sent between peers
and the hub or peers and peers. Each message begins with a $ and ends with
a |. It is beyond the scope of this thesis to describe the protocol in full, so
only a subset of it will be discussed. This enables the reader to achieve a
feeling of how it works and prepare for upcoming discussions in this thesis.

Handshake phase

When the client has established a TCP socket connection to the server (hub),
the server immediately responds with

$Lock <lock> Pk=<pk>|

$HubName <hubname>|

Where <lock> is a number used to generate a key, <pk> is unused and
<hubname> is the name of the hub that is being connected to. The proce-
dure of calculating a key from a lock is quite easy. First every key character
(except for the first) is calculated using the given lock:

for (i = 1; i < lock.length; i++)

key[i] = lock[i] xor lock[i - 1];

Next, we calculate the first key character using the first and the two last
characters of the lock:

key[0] = lock[0] xor lock[lock.length - 1] xor lock[lock.length - 2] xor 5

5http://dcplusplus.sourceforge.net/
6http://www.ynhub.org/
7http://www.verlihub-project.org/
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Further, we must swap every nibble (4 bits) for every character in the
key:

for (i = 0; i < lock.length; i++)

key[i] = ((key[i]<<4) & 240) | ((key[i]>>4) & 15)

Finally, the ASCII characters 0, 5, 36, 96, 124 and 126 are forbidden to send
to the server and are respectively substituted with the string /%DCN000%/,
/%DCN005%/, /%DCN036%/, /%DCN096%/, /%DCN124%/ and /%DCN126%/. The
client then responds with

$Key <key>|

$ValidateNick <nick>|

Where <nick> is the desired user name. If this name is unavailable on the
hub, the server will respond with

$ValidateDenide|

If the hub requires a password, the sever sends

$GetPass|

To this the client replies

$MyPass <password>|

Where <password> is a plain text string. If the password is correct and the
connecting user has operator status on the hub, the server responds

$LogedIn|

In the case the password was incorrect, the server sends

$BadPass|

Followed by closing of the connection. If the above procedure went well, the
handshake phase is finalized by the server sending

$Hello <nick>|

Where <nick> is the user’s nickname of choice.
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Chat and messaging

Messages sent to the public chat differs slightly from other messages of the
protocol; these messages are not prefixed with a $. A public message from
<nick> is sent as

<<nick>><message>|

The hub broadcasts this whole message unmodified to the connected clients.
For private messaging, a client sends to the hub

$To: <othernick> From: <nick>$<<nick>><message>|

The hub forwards this whole message unmodified to the recipient.

Search procedure

The way a search is performed differs depending on whether the searcher is
in active or passive mode. We begin by looking at the way an active search
is done. A peer in active mode sends

$Search <clientip>:<clientport> <searchpattern>|

Where <searchpattern> is of the form

<sizerestricted>?<isminimumsize>?<size>?<datatype>?<searchterms>

The value of <sizerestricted> equals T if the search should be restricted to
files of a minimum or maximum size. Otherwise this is F. If <sizerestricted>
is T, the following applies for <isminimumsize>: T if the search should match
files of a minimum size, or F for matching on a maximum size. The actual
size for restrictions is found in <size>. The value of <datatype> is a number
between 1 and 9 representing file type categories such as audio, archives, pic-
tures, videos etc. The string <searchterms> contains search tokens delimited
by $. A file name containing all these tokens is considered a match.

When the hub receives a search message, it broadcasts it unmodified to
the connected peers.

A client operating in passive mode who performs a search sends a similar
message to the hub:

$Search Hub:<nick> <searchpattern>|

As in active searches the hub broadcasts this message unmodified to the peers
connected. A peer responding to an active search responds directly with a
message to IP <clientip> on port <clientport> using a UDP packet. This
message looks like:
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$SR <replynick> <response> <hubip>:<hubport>

The string <response> most notably holds name, size and hash of the match-
ing file. Moreover, it also holds information on the number of available slots
the responder provides. The hash of a file is calculated using Tiger Tree Hash
(TTH) which, shortly put, is the Tiger hash algorithm used in a binary tree
structure.

If a peer responds to a passive search the result is routed via the hub.
The responding peer sends

$SR <replynick> <response> <hubip>:<hubport> <searchnick>|

The hub forwards this message unmodified to the recipient.
This concludes the DC protocol overview. The reader should now be

familiar with basic workings and concepts of DC and have a good general
understanding of the protocol.

2.3 Network graph modelling

A mathematical graph is a convenient abstract structure in which to model
a network, and the DC network makes no exception to this. By using a
graph model we can view, measure and reason about a network in a concise
manner. The reader of this thesis is most certainly already familiar with the
concepts of graphs but to avoid any confusion we will now give and discuss
some definitions. We begin by giving two basic definitions:

Definition 1. A graph G = (V, E) is a set of vertices V and a set of edges
E. An edge eij connects vertex vi with vj, where eij ∈ E and vi, vj ∈ V .

Definition 2. A directed graph G = (V, E) is a set of vertices V and a set
of ordered pairs E. An edge e = (vi, vj) is considered to be directed from vi

to vj, where e ∈ E and vi, vj ∈ V .

In a directed graph, an edge is sometimes called an arc. To avoid clutter-
ing of terms we will simply call it an edge and let the context decide whether
we are discussing a directed or undirected graph.

A third class of graphs will also be subject of discussion in this thesis;
the weighted graph – or edge-weighted graph. A weighted graph is a directed
or undirected graph with a weight w assigned to each edge. The weight can
be specified to positive numbers, natural numbers, integers etc., but in this
thesis we restrict w such that w ∈ Z.

It is often the case that it is of interest to talk about a vertex’s neighbours
or the degree of a vertex. The two definitions below straightens this out:
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Definition 3. A neighbourhood Ni for a vertex vi is defined as the set of its
immediately connected neighbours:

Ni = {vj : eij ∈ E ∨ eji ∈ E}

Definition 4. The degree ki for a vertex vi is defined as the number of
vertices |Ni| in its neighbourhood.

For an undirected graph, it is sufficient to just talk about the degree of
a vertex, but things change if we deal with a directed graph. As we have
seen, a directed graph handles edges as ordered pairs of vertices (vi, vj) which
gives a distinction of ingoing and outgoing edges to/from vertices. As when
discussing weighted graphs, we will not bother making another definition but
settle with a less formal definition of the concept of in-degree and out-degree
of a vertex. As the name suggests, the in-degree of a vertex is the number of
incoming edges to a vertex in a directed graph. Conversely, the out-degree
is the number of outgoing edges from a vertex in a directed graph.

An important measure on graphs is the clustering coefficient. This enables
us to quantify over how near a vertex and its neighbours is to form a complete
graph8.

We use the method of measurement introduced by Watts-Strogatz [12]:

Definition 5. The clustering coefficient Ci for a vertex vi is expressed as:

Ci =
2|{ejk}|

ki(ki − 1)
: vj, vk ∈ Ni, ejk ∈ E

For measurement of how well connected a graph is, we use our previous
definition and extend it with:

Definition 6. The clustering coefficient 〈C〉 for a graph is defined as the
average of all clustering coefficients Ci in the graph:

〈C〉 =
1

n

n∑
i=1

Ci : n = |V |

Based on these definitions the range of the clustering coefficient is [0, 1].
For a fully connected network we have 〈C〉 = 1 and for a random network
we have 〈C〉 = 〈k〉/n, where 〈k〉 is the average vertex degree and n is the
total number of vertices in the graph.

8A complete graph is a set of vertices where every pair of vertices is connected by an
edge.
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To illustrate this measure we look at results obtained by Watts-Strogatz
[12]. A graph modelling a relation between 225226 actors (n = 225226) was
constructed. The relation was defined as follows: two actors are joined by an
edge if they have acted in a film together. The average degree 〈k〉 = 61. The
clustering coefficient obtained for the graph was 0.79. When constructing a
random network using the same n and 〈k〉 the resulting clustering coefficient
is 0.00027. These values give us an idea of clustering coefficients for highly
connected versus very sparse connected graphs.

Graphs showing a high clustering coefficient are often called small-world
networks. The name originates from the “small-world phenomenon” which
says that it is often the case that two strangers often know each other by a
mutual friend. Studies have showed that in fact many real world networks
show characteristics of being small-world networks, i.e. having a clustering
coefficient higher than what to expect from a random network.

The related term – scale-free network – considers a network’s degree dis-
tribution. A network is said to be scale-free if the degree k of a given node
adhere to a power law distribution such that P (k) ∼ k−γ where γ often is
2 < γ < 3. Other real world networks have been shown to be scale-free [11][6].

Networks showing these properties are known for being robust and resis-
tant to random node-failures. By deleting a random node it is unlikely that a
high-degree node is deleted; therefore such a node failure rarely causes great
damage to the flow of information in the network.

Another measure of interest is the average path length which quantifies
over the average number of minimal hops between all pair of vertices in a
graph. Or, to be more concise:

Definition 7. The average path length for a graph G is expressed as:

〈l〉 =
1

n(n− 1)

∑
i,j

d(vi, vj) : n = |V |, vi, vj ∈ V

where d(vi, vj) gives the minimal number of edges between vi and vj.

Most real world networks exhibits a low average path length but a high
clustering coefficient [12]. This stands in contrast to random networks who
often have both a small average path length and a low clustering coefficient.
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Chapter 3

How to measure the Direct
Connect network

In order to perform analysis on the DC network we first have to determine
what components that should be measured and how to measure them.

Since DC consists of an unbounded number of networks controlled by
hubs, we have to decide on how many networks to investigate. The more
networks studied the more accurate should the gathered statistics and data
be. Unfortunately, performing a large-scale study is too time and resource
consuming for this thesis work. We settle on choosing five random DC net-
works for our study. That should be enough to render trustworthy statistics
and at the same time allow for comparison between them.

Basically, there are two entities of interest to measure; (1) peers and (2)
their shared files. We will now discuss what data to collect and how to
approach the task of collecting it.

3.1 Peers

A P2P network without interaction between peers is often quite uninteresting
and the whole point of the system being a P2P network is lost. This is also
the case in DC where peers not interacting with each other merely act as a set
of clients connected to a hub. The situation becomes much more interesting
when peers start searching for files, getting responses for queries and initi-
ating file transfers. This is of interest because it allows for construction of
a graph representing requesting peers, answering peers and the connections
between them. Such a structure can provide valuable information such as ex-
istence of peers acting as potential providers/requesters, hit-rates of queries
made in the network, vertex degree distribution, clustering coefficients, edge
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symmetry and more.
So, how to capture activity between the participating peers?
An observer can either act as a peer or a hub. Either way, we cannot know

when peers initiate file transfers between each other since that is handled in
a pure P2P fashion. Another thing we cannot know is the matches sent to
a peer from a query; that is also done in a pure P2P fashion. Since DC
does not employ any protocol for endpoint authentication it theoretically
opens up for man-in-the-middle attacks which could be used for monitoring
traffic between peers. In practice, this would become a very complicated task
though.

On the other hand, what we can know – regardless if we observe in the
position of a peer or hub – is all peers’ exact search terms. As discussed
earlier, all queries are broadcast in plain text from the hub to connected peers.
This fact opens up for capture and replay of queries. By this scheme querying
peers can be constructed by captured queries and answering peers can be
constructed using replies to replayed queries – thus, a graph representing
peers interested in other peers can be created.

If considering acting as a peer when collecting data we immediately see
some advantages: there is a huge set of existing hubs to choose from for data
collecting. Also, it is possible and convenient to modify a ready-made DC
client to match our intentions. A client for modification can either be a full-
featured common client such as DC++ or some more rudimentary software
such as a modified “bot”1 client. A disadvantage of operating as a peer
is that a peer must obey laws set by the hub operator. One common rule
is restricted search interval times – which in our case will limit the replay
frequency of captured queries.

If opting for the alternative of acting as a hub, we immediately see the
benefit of being in total control as we would be hub operators. Collecting
data and monitoring activities would be easy. The big issue against this
choice is that we would have to attract a large set of users to the hub. This
would probably take quite some time and be a really cumbersome task. In
fact, this argument is so heavy that it rules out the alternative of acting as
a hub. The same reasoning can be applied to the option of acting both as a
peer and a hub. The hub alternative simply does not seem as the best choice
for our purposes.

The above discussion leaves us with that the data collecting will be per-
formed as a client connecting to a hub, monitoring activities, capturing and

1A bot – or robot – is in DC-terminology a small program which often acts as an
operator in a hub, handling tasks like informing of rules, scanning peoples’ share for illegal
files etc.
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replaying searches. Next, we need to decide on what data to focus on.

3.1.1 Activities

To analyze the peer activities in a hub says a lot about how people participate
in a DC network. As most peer interaction with the hub is broadcast to the
other connected peers we have a rich set of parameters to choose from when
deciding on what data to collect. Below is a list of our items of interest.

Chatting As DC supports social features like real-time chatting this adds
an extra dimension for the user of the network. It makes sense to find out
how big part of DC is about communicating with other users.

Quits/joins Is the size of the hub steady, or does it increase or decrease?

File searching How big amount of peer activity is dedicated to searching
for files? This number, in comparison to the amount of chatting will reveal
how people use DC.

Country distribution How are nationalities distributed between peers?
Are there some overrepresented nationalities?

These items will constitute the first part of our peer activity monitoring.
We will now discuss the method used to analyze relations between peers.

3.1.2 Relations

The requester-provider graph

Our intention is to model a graph describing relations between peers in terms
of searches and replies – or requesters and potential providers. First we have
to consider our alternatives when choosing a graph model; should we use a
directed or undirected graph and should we assign weights to the edges?

It turns out that the answer is simple; a P2P network graph is directed
by peers requesting data and peers providing data. We have a case of a
directed edge from a peer to a peer. Thus we will opt for a directed graph
representation.

A directed connection between two peers tells that a peer can potentially
be a resource provider to the other. Therefore, it is of interest to know how
strong this connection is; that is, to measure how useful a peer can be for
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another. We do this by introducing weights on the edges. This reasoning
leaves us with a directed weighted graph to model our relations.

To simplify reasoning about peers and their roles, we introduce the no-
tions of pq for a requesting peer and pr for an answering peer.

We recall that a query from pq is received from the hub as:

$Search <clientip>:<clientport> <searchpattern>|

We add pq as a vertex in our graph. Then the IP address and port number
in the message is substituted with our own IP address and port number. The
modified query is now executed by us sending the message to the hub. In
other words, we have done a mimic of the action by pq, but put ourselves as
the sender.

We note the fact that the results received from the mimicked query will
be the same results which pq will receive.

When the mimicked search is executed, peers immediately start to answer
us with results. We recall how a search response from a peer looks like:

$SR <replynick> <response> <hubip>:<hubport>

For each such response message, pr is added as a vertex and a directed
edge is created from pq to pr. Here our edge weights come to use; if there
already exists a connection between pq and pr, we increase the edge weight
by one and thus increases the importance of pr to pq. Figure 3.1 illustrates
this reasoning.

The model theory is now taken care of, but the decision on what data to
extract from the graph remains.

What to analyze?

We have already pointed out several interesting things to look at in a graph
depicting DC. Below we sum them up and introduce a few new ones.

Symmetric links Are the edges connecting vertices symmetric or asym-
metric? Some research has shown P2P networks to be highly asymmetric [11].

Weights The average edge weight will show the importance of the connec-
tions in the graph – a high number will hint on high affinity between peers
in the network.
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Degrees What are the minimum and maximum degrees for in and outgoing
edges? What is the average degree in the network? Also degree distributions
of undirected, out and in connections will be carefully studied. It is of par-
ticular interest to see if the degree distributions show characteristics of being
a scale-free network.

Clustering coefficient How well connected are the peers in the network?
We will find out if DC is a small-world network by examining the average
clustering coefficient.

Average path length The average path length will be looked on and
compared with other known networks.

q1

r1

1

r2

3

q2

4

q3

Figure 3.1: A small requester-provider graph. q1, q2 and q3 are peers querying
in the network. r1 answers 1 query from q1 and 4 queries from q2, r2 answers
3 queries from q1. q3 does not get any answer from its query, thus becoming an
isolated vertex in the graph. q1 and q2 are potential requesters in the graph, r1

and r2 are potential providers.
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3.2 Shared data

By analyzing the files shared in a DC network valuable data can be obtained.
It is possible to determine what kind of files peers share and the proportions of
the different file types can be revealed. To enable us to do this, a mechanism
for automatic downloading of all peers’ shared files lists will be included in
our client.

We recall that each peer store a public list of his or hers shared files. This
list is in XML-format and looks like:

<?xml version="1.0" encoding="utf-8" standalone="yes"?>

<FileListing Version="1" CID="LZJ2HUGRF2UR45FPAA7JL5E55ULQO7PJDXOJEGI"

Base="/" Generator="DC++ 0.7091">

<Directory Name="Music">

<File Name="Foo.mp3" Size="8189952"

TTH="4UT2UPZPDWRAHMMLSY26KK7TXRXHTAABPO34DYY"/>

</Directory>

</FileListing>

Since each file shared has a corresponding hash stored in the TTH field, the
amount of unique files shared in a network can be computed. This will give
us a data redundancy factor for the DC network.

3.2.1 Correlation between peers and shared data

Again, graph theory will come in handy. This time the correlation between
peers and their shared files will be analyzed.

As before, each peer will be represented as a vertex. This time, an edge
connecting two vertices will represent that they share a common interest –
i.e. that they have one or more files in common. We let the connection
be undirected and weighted. The weight of the connection represents how
many files that are shared by two vertices. This relationship is depicted in
Figure 3.2.

Using this graph we will compute and analyze similar things like in the
peer requester-provider graph:

Weights What are the ranges of the weights for the DC networks investi-
gated? An average edge weight provides information on how many files the
peers have in common.
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Degrees Average degree, degree ranges and distribution will be considered.
As the degree of a vertex tells how many peers that share files with the peer
in question, this – together with weights – says a lot about data redundancy
in the network. Also, the degree distribution will be looked upon.

Clustering coefficient As in the case of the requester-provider graph, it
will be investigated if this graph shows characteristics of being a small-world
network. In this case, a high number would indicate existence of clustered
peers sharing similar “interests”, i.e. files.

Average path length Here, this number will further help indicate how
similar “interests” the peers have.

p1

p2

43

p3

140

2

p4

Figure 3.2: A small peer-data correlation graph. p1 and p2 has 43 identical files,
p1 and p3 has 140 files in common, p2 and p3 has 2. p4 has a set of unique files, thus
becoming an isolated vertex. Note that this graph representation is undirected.
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Chapter 4

System design

The system used for collecting data from peers is a client which connects to
a hub. Separate software for analysis of shared file lists was constructed. We
call these DCSpy and ShareStat, respectively.

This chapter deals with the implementation of DCSpy and ShareStat.
Also, tools and libraries used are discussed.

Software user manuals can be found in the appendix section.

4.1 DCSpy

There exist several open source DC projects for both clients and bots. Rather
than reinventing the wheel, we began by investigating the options to reuse
and adapt any of these for our purposes.

Clients like DC++ and ShakesPeer1 were considered for modification but
rejected due to being too heavy and over-featured for our needs. When opting
for the third alternative, an interesting framework for DC bots written in Java
was found: jDCBot2. The jDCBot framework proved to be minimalistic and
provided basic functions such as connecting to a network and setting up
function callbacks for protocol messages received from the hub. Thus, parts
of the jDCBot framework was used when constructing the DCSpy client.

The application was first developed as a pure command-line tool, but
later got a graphical user interface connected to it. The user interface is far
from finished and is currently operated in a hybrid state between graphical
and command-line interface. Figure 4.1 shows DCSpy running and connected
to a hub.

1http://shakespeer.bzero.se/
2http://jdcbot.sourceforge.net/
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Figure 4.1: DCSpy running and connected to a hub.

The left window seen in Figure 4.1 is a terminal window showing the
searches who are mimicked and the results to these. The other window is the
main program window. It features three sub-windows; the upper showing
miscellaneous log output, the lower presents the hub’s public chat and the
right window is a list of connected peers. Since the application’s sole mission
is to act as a watching eye, no kind of features facilitating user interaction ex-
ists. On the lower part of the main window, an address field for entering a hub
address exists. When the user disconnects by clicking the disconnect-button,
calculated data such as graphs, country distribution, clustering coefficients
etc. are output in the terminal window. The downloaded file lists are to be
found in the subdirectory called “filelists”.

In order to be able to connect to hubs that require the user to share large
amounts of (often copyrighted) material, DCSpy makes use of a technique
called fake sharing. A huge list of shared files was downloaded from a random
user on a random hub. The file sizes were summed up and that sum is
reported as the amount of bytes shared by DCSpy. If another participant
on the DC network wants to look at our list of shared files, the random list
“borrowed” is uploaded for viewing. If then a peer requests to download
one of our files, DCSpy responds with a message telling that no more slots
for downloading is available. Using this scheme DCSpy reports on sharing
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around 150 Gigabytes of files.
Needless to say, fake sharing is understandably not popular among hub

owners and DC users in general. For the purpose of collecting data for a
short period of time the method of fake sharing was considered reasonable.

4.1.1 Libraries and tools used

When developing DCSpy various tools and Java libraries were used; below is
a short discussion on them.

JGraphT JGraphT3 is a Java library which gives access to mathematical
graph structures and algorithms. The library is released under the GNU
Lesser General Public License. Since the library supports both directed,
undirected, weighted and unweighted graphs (and more) it suits our needs
perfect; all graph representations in DCSpy utilize JGraphT.

GeoIPJava In order to map IP numbers to country codes a Java library
called GeoIPJava4 was used. Like JGraphT, GeoIPJava is free software re-
leased under the GNU Lesser General Public License by its developer Max-
Mind. Besides the library providing the API, a large database containing
mappings from IP numbers to country codes is available from the devel-
oper’s homepage. The database is in binary format and provides fast and
accurate lookups. According to the developer, the accuracy of the mappings
is 99.5%.

py-dchub To test DCSpy a local DC hub was set up on the development
machine. The DC client ShakesPeer and DCSpy were connected to the hub.
Using this setup, it could be verified that DCSpy reacted appropriate to user
action from the client connected to ShakesPeer. The hub software used is
written in Python and called py-dchub5. The reasons for choosing py-dchub
is that it is small, efficient and easy to set up.

3http://jgrapht.sourceforge.net/
4http://www.maxmind.com/app/java
5http://sourceforge.net/projects/py-dchub/
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4.2 The ShareStat suite

Actually, ShareStat is two small separate tools developed to investigate the
files shared in the DC network. The tools operate on the downloaded lists of
shared files.

The first tool is a small Ruby program which scans all shared files, counts
file types, checks for number of unique files and simply prints out the results.
The process of file type matching is done by using case insensitive regu-
lar expressions. The mapping between file type and extension is based on
mappings from the original NeoModus Direct Connect protocol. Table 4.1
summarize the extensions recognized by the program.

Type Extensions
Audio mp3, mp2, wav, au, rm, mid, ogg, mod, xm
Archive zip, arj, rar, lzh, gz, z, arc, pak, lha
Document doc, txt, wri, pdf, ps, tex, html, htm, xml, iso, bin, cue, m3u
Executable pm, exe, bat, com
Picture gif, jpg, jpeg, bmp, pcx, png, wmf, psd, tga
Video mpg, mpeg, avi, asf, mov, wmv, ogm

Table 4.1: File types recognized by ShareStat.

The other tool is slightly larger. It works in a similar way as the Ruby
program, but instead of checking file types it creates graphs describing cor-
relations between users and their shared data (as discussed earlier). This
tools is written in Java and just like DCSpy it utilize the JGraphT library
for graph handling.

When analysis of the files is ready, and the program terminates, the
resulting graphs, calculations and other values are output in the terminal.
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Chapter 5

Results and data analysis

In this chapter results and statistics from the studied DC networks are pre-
sented and analyzed.

Much of the discussion in this chapter assume the reader to know how
to interpret terms such as out/in-degrees, weights etc. in the context of our
model of measurement. Figure 3.1 and Figure 3.2 in Chapter 3 summarize
the concepts well.

The collecting of data was performed on five different randomly chosen
DC networks, DCN1 - DCN5. The networks were found on Internet sites
dedicated to providing listings of popular public hubs. The time connected
to a network varied between 4 and 22 hours.

When mimicking queries in the networks, on average 7.5% of all queries
could be replayed. All hubs had time constraints on search intervals, thus
restraining us from achieving a higher number. Even if it had been theoret-
ically possible to mimic all queries, it would be hard in practice due to the
often massive amount of queries issued in a network; our system would be
flooded with responses and probably collapse as a result.

For the analysis of shared files, a total of 1.1 gigabyte of file lists were
downloaded from peers participating in the networks. The graphs represent-
ing the requester-provider and peer-data relations do not necessarily corre-
spond regarding their respective number of vertices. This is because all lists
of shared files could not be retrieved.

A graph depicting one of the studied networks – DCN2 – can be found in
the appendix. DCN2 was chosen to illustrate a network because of it being
the easiest to view, not having too many vertices and edges.
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Country DCN1 DCN2 DCN3 DCN4 DCN5
(Sweden) (Greece) (Romania) (Hungary) (Sweden)

Australia 1 1 0 0 0
Belgium 0 1 0 1 0
Canada 5 1 0 5 1
Czech Republic 1 5 1 1 0
Denmark 2 0 1 1 1
Finland 15 20 5 14 17
France 0 1 2 1 1
Germany 1 1 0 0 4
Great Britain 5 4 3 6 2
Greece 0 3 0 0 0
Hungary 2 1 1 3 1
Ireland 3 0 1 2 0
Italy 2 2 4 3 3
Latvia 3 1 0 3 1
Lithuania 0 5 1 0 1
Netherlands 3 3 2 5 1
Norway 4 4 3 6 9
Poland 5 2 11 6 1
Romania 10 19 47 9 7
Russia 0 2 0 1 1
Slovenia 0 1 0 0 1
Spain 1 0 3 0 1
Sweden 26 13 11 28 40
USA 5 5 1 1 1
Other 6 5 3 4 6

Table 5.1: Country distribution in percent for users in DCN1 - DCN5 and location
of hubs. Note the overall high frequency of users from Finland, Romania and
Sweden.
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5.1 Geographic distribution

Table 5.1 shows the geographic distribution for the peers in the studied net-
works as well as the location of the hub. All in all, IP addresses originating
from 43 different countries were recognized. The table shows only the most
represented 24 countries. The remaining 19 countries are represented as
“Other” in the table.

The absolute majority of the connections were made from almost all coun-
tries within Europe. In particular, Sweden, Romania and Finland were dom-
inating countries for all networks studied.

No connections at all were made from South America and only two coun-
tries from Asia were recognized (India and Malaysia).

Although it seems like DC is mostly popular in Europe, this does not
necessarily imply that people outside Europe do not use P2P file sharing;
probably it is the case that they simply use other technologies than DC.

5.2 Peer activities

DCN1 DCN2 DCN3 DCN4 DCN5
Chat 11% 0.06% 0.008% 11% 0.01%
Quit 3.9% 7.1% 5.6% 5% 13%
Join 3.7% 7.4% 5.4% 5.6% 13%
File search 75% 72% 76% 69% 52%
Other 6.4% 13.44% 12.992% 9.4% 21.99%

Table 5.2: Frequency of peer activities in the studied networks.

Table 5.2 presents statistics on peer activity for DCN1 - DCN5. All
networks show the same trends; the ratio between peers leaving and joining
the hub is similar and searching for files is the most common activity.

In most of the networks, almost no (at least public) chatting was done.
DCN1 and DCN4 stick out by showing a chat frequency several magnitudes
greater than the others though.

The field “Other” – as the name suggests – holds the other activities which
can be recorded from the hub. Examples include changing of hub topic and
broadcast of user information. The latter plays an interesting role for the
outcome of “Other”; each time a user joins a hub all peers update each other
with their user information. These updates are recorded as user activities
since they are broadcast via the hub. This mechanism is reflected in the
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correlation between a high rate of peers joining and a high rate of “Other”
activities – that is, peers updating each other with user information.

5.3 Peer graph analysis

DCN1 DCN2 DCN3 DCN4 DCN5
|V | 458 313 869 211 604
|E| 2601 432 5808 730 3940
〈k〉 11.35 2.76 13.36 6.90 13.04
kout 0 ∼ 104 0 ∼ 55 0 ∼ 253 0 ∼ 83 0 ∼ 98
kin 0 ∼ 51 0 ∼ 9 0 ∼ 76 0 ∼ 23 0 ∼ 105
〈w〉 1.21 2.18 1.20 1.23 1.30
w 1 ∼ 7 1 ∼ 10 1 ∼ 10 1 ∼ 4 1 ∼ 14
〈l〉 2.70 3.66 2.79 2.70 2.80
〈C〉 0.20 0.03 0.27 0.16 0.20
Symmetric links 9 0 26 0 14

Table 5.3: Topological properties of peers in the studied networks.

In this section we analyze the graph built from mimicking searches in
the studied networks. We begin by looking at Table 5.3 which presents
topological properties of these.

Table 5.3 begins by listing the number of vertices |V | and the number
of edges |E| connecting them. Further, the average degree 〈k〉, range of
out degree kout and in degree kin, average weight 〈w〉 and range of weights
w is listed. Finally, the number of symmetric links and average clustering
coefficient is given.

By studying 〈k〉 for all networks we see that the average degree of a vertex
in the networks is 9.48 – that is, on average each peer has 9.48 neighbouring
peers. This means that a peer acts as a potential provider to 4.74 peers and
potential requester from 4.74 peers.

In general, the maximum number of outgoing connections kout in each
network is greater than the maximum number of ingoing connections kin.
This hints on the existence of many providers that each serve a relatively
small number of peers.

When comparing all networks’ maximum vales kout and kin with the pre-
dicted 〈kout〉 and 〈kin〉 we find that the values differ a lot. This indicates that
a small number of peers are highly active as requesters and/or providers.
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The average weight 〈w〉 for all five networks is 1.424 which means that two
peers having a connection are likely to connect 1.424 times. The maximum
connection strength showed is in DCN5, where a connection weight of 14 is
recognized.

All networks exhibit a low average shortest path, 〈l〉. The values found
here are on parity with the average shortest paths found in many real world
networks [1].

The clustering coefficients 〈C〉 are strong except in the case of DCN2.
The clustering coefficients for the networks are all several magnitudes above
what random networks would show. The strong cluster coefficients marks
good connectivity in the network and implies that a DC network indeed
exhibits characteristics of being a small-world network.

All networks shows to be highly asymmetric with only around 0.3% to
2% of the connections being symmetric. This tells us that when a peer p1 is
interested in something another peer p2 has, p2 is most often not interested
in the files offered by p1.

The figures in this chapter illustrating distributions all use a log-log scale
and a complementary cumulative distribution function (CCDF). The CCDF
is defined as Fc(x) = P (X ≥ x) where X is a numerical random value and
P the probability function.

It is also worth pointing out that when for example depicting a degree
distribution, only the set of peers satisfying k > 0 is considered. This policy
holds for all figures showing distributions.

Figure 5.1, 5.2 and 5.3 shows the overall, out and in degree distribution
for peers in the networks. We see that all networks seem to follow a common
curve; the number of connected peers drops and leaves only a small number
of peers with a huge number of connections.

Figure 5.2 and 5.3 reveal that the curves depicting the out-degree are the
strongest. This suggests that there exists a good pool of content-providers
in the networks.

It is interesting that DCN2 seem much weaker in all three figures dis-
cussed. The curve depicting DCN2 drops and dies much quicker than the
other curves. This stands in direct relation to our findings in Table 5.3
where DCN2 shows weak statistics in comparison to the other four networks.
The only number in DCN2 exceeding the other networks is the average edge
weight 〈w〉 = 2.18. This tells us that even though the average amount of
connections are few, the connections made are strong. This suggests that
DCN2 probably has a few peers acting as strong content providers.

In Figure5.4 the edge weight distribution is depicted. As in earlier fig-
ures, most networks follow the same pattern but with individual strengths.
Noteworthy, DCN2 differs from the trend by having a remarkably steady
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Figure 5.1: Vertex degree distribution from the requester-provider graph.
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Figure 5.2: Vertex out-degree distribution from the requester-provider graph.
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Figure 5.3: Vertex in-degree distribution from the requester-provider graph.

distribution of reoccurring connections among peers.
We continue our investigation of the peer graphs by looking at Figure 5.5

in which the fraction of peers having an out-degree, in-degree, both out-
and in-degrees and peers being isolated. We see that 27% of the nodes are
requesting peers and 76% are potential providers having answered one or
several queries.

We note the intersection between the set of requesting and providing
peers. This is the set of peers acting as both requesters and providers and
constitute 16% of all vertices.

13% of the vertices are isolated, i.e. having made one or several queries
but not gotten any answer.

All in all, this means that most peers are active as providers and some
even as both requesters and providers.

To conclude this section, some key points regarding connectivity are ob-
served:

Few peers have a rich set of providers, but when having that, the number
is substantially large. And conversely, many peers act as providers, but not
many serve a large number of peers.
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Figure 5.4: Edge weight distribution from the requester-provider graph. Note
the steady distribution of DCN2.
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Figure 5.5: Diagram showing fractions of out-degree (requesters), in-degree
(providers), both out- and in-degrees (the set intersection) and isolated peers.
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5.4 Shared data graph analysis

We now turn to look at the data extracted from the lists of shared files
downloaded from the studied networks DCN1 - DCN5.

Table 5.4 gives a basic presentation of file type frequency, percentage of
unique files shared, number of files shared as well as the total size of them.

A quick glance at the table reveals that of the recognized file types, the set
of audio files is the most well represented followed by the set of known picture
types. Although not very surprising, it is interesting to see that the “Other”
category has such a high percentage. Since “Other” is the complement to
the set of recognized files1, it is predicted to give a high percentage. Most
probably the “Other” category holds a multitude of different file extensions
which are more or less frequent. It is not likely that it represents some file
type which is close to the frequency of the audio files. This reasoning gives
that we can most certainly conclude that audio files are the absolutely most
common files in DC networks

Audio 43%
Archive 1%
Document 7%
Executable 1%
Picture 17%
Video 2%
Other 29%
Percentage of unique files 58%
Total number of files 10235120
Total size of files 104 TB

Table 5.4: Statistics on shared files.

Table 5.4 also shows the percentage of unique files shared in the studied
networks. We note that 58% of the shared files are unique; this means that
roughly two out of five files in the networks are duplicates, i.e. redundant in
the network.

Using the total number of files shared and their total size we obtain that
on average, each file shared is around 10.65 megabyte in size.

Table 5.5 has a similar layout as Table 5.3 but shows the topological
properties of the graph describing correlations between the peers and their
shared data.

1See Table 4.1 for a presentation of all recognized file extensions
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DCN1 DCN2 DCN3 DCN4 DCN5
|V | 217 422 394 139 369
|E| 6496 30276 16714 1948 8430
〈k〉 59.87 143.48 84.84 28.02 45.69
k 0 ∼ 154 0 ∼ 299 0 ∼ 230 0 ∼ 85 0 ∼ 209
〈w〉 40.73 90.27 67.18 69.90 19.66
w 1 ∼ 38311 1 ∼ 68630 1 ∼ 82035 1 ∼ 12771 1 ∼ 18295
〈l〉 1.77 1.69 1.76 1.91 1.90
〈C〉 0.73 0.76 0.73 0.70 0.68

Table 5.5: Topological properties of the correlation between peers and shared
files in the studied networks.

Here, the average degree 〈k〉 tells us the average of how many other peers
P that have at least one file in common with a peer p. The average degrees
are quite high; in fact, when looking at all networks, on average p has at
least one file in common with 23% of the elements P .

The average edge weight 〈w〉 shows the average number of files a peer
p1 has in common with a peer p2, given that they have any in common at
all. The strongest connection is in DCN3 where there exist peers that have
82035 files in common.

As expected, the average shortest paths, 〈l〉 all show to be low; this is
interpreted as an indication on peers having a quite homogeneous taste.

The clustering coefficients for the sets of shared files is very strong for
all networks with DCN2 showing the strongest coefficient 〈C〉 = 0.73. This
is not very surprising since the parameters show characteristics of possibly
being well connected graphs.

Figure 5.6 and Figure 5.7 illustrates the distribution for vertex degrees
and edge weights for all shared files in the studied networks.

The distributions for the networks in Figure 5.6 all follow the same pattern
with varying strength. We note that the trend is that peers have data in
common with many other peers; the probability decreases with the degree
until a point where the it rapidly drops. The network having the most users
with common files are DCN2 – which previously has showed weak statistics.
These weak statistics might be explained when looking at Figure 5.6 and
Figure 5.7. It seems like many peers in DCN2 have many files in common
with many other peers. This could result in a lack of attractive files not
common between the peers, thus resulting in weak graph statistics. The
content of the network can be said to be “inbred” – peers are having too
many files in common for the network to be interesting for its participants.
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In Figure 5.7, it is noteworthy that the patterns of the networks are very
similar. We see that the probability of having many files in common with
other peers is not especially large and steadily decreases as a function of the
number of files.
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Figure 5.6: Vertex degree distribution from the peer-data graph.
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Figure 5.7: Edge weight distribution from the peer-data graph.
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Chapter 6

Discussion

In this chapter we discuss the implications of our findings presented in the
previous chapter. We will cover topics like geographic distribution, peer
activities and connectivity, the content shared as well as the correlation of
peers and their data.

6.1 Geographic distribution

It seems like the use of Direct Connect is highly concentrated to the Scandi-
navian countries (except Denmark) and Romania.

Two things can be noted about this; first, it was surprising to see such a
big representation of Romanian peers. It is not apparent why this is the case.
Most probably the explanation is a combination of several factors. One of
the hubs used in the study was Romanian, hence an increased possibility of
attracting many Romanian users. Another explanation can be that it might
be the case that DC has gained a strong user-base in Romania, having many
users connecting to hubs located both inside and outside Romania.

A second observation is that when Sweden, Finland and Norway show on
high representation, Danish representation is diminutive. An explanation for
this could be possibly stricter Danish laws against file sharing of copyrighted
material.

It also should be remembered that we obtained the hub addresses from
public Internet listings; our geographical findings might as well say that
“most people using public hubs found on the Internet are from Scandinavia
or Romania”.
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6.2 Activities

Although two of the networks both showed a quite high frequency of chatting,
this does not necessarily prove strong social interaction between users. It is
often the case that hubs implement a bot acting as a “quiz master”, delivering
questions and hints in the hub’s public chat. As such messages often come
within a very short time interval, statistics on chatting can be greatly affected
and thus somewhat misleading. In the case of DCN1 and DCN4, the high
frequency for chatting was actually caused by such a bot.

It seems like the overwhelmingly majority of DC users ignore the social
functions (at least the public functions) and more or less only focus on tra-
ditional file sharing.

6.3 Peer connectivity

By looking at obtained data and distributions of both degrees and weights
the DC network, in terms of requesters and potential providers of content,
indeed exhibits properties of being scale-free.

Since the distributions does not adhere to an exact power law function,
DC cannot be said to be a pure power law network though.

We have seen that there exists a large base of providers each potentially
supplying content to a smaller number of peers. We have also found evidence
for peers being highly active. This activity implies making many queries in
the network and/or being a potential provider to many of the other partici-
pants.

The affinity – or connection weight – between peers is generally low in
DC. This implies that two peers are not likely to interest each other much
more than one time. This strengthens the observation of peers acting as
major providers are rare.

Furthermore, we have showed that the DC network show high clustering
coefficients, i.e. being a small-world network. This finding further strength-
ens our discussion about the network accommodating peers acting as highly
active – or hubs – in the structure. Since it is often the case that a small-
world network is scale-free, this also helps verifying our finding of DC being
a scale-free network.

As we will see, most of our findings can be confirmed by findings from
research on other P2P file sharing systems and social networks.

Mislove et al. [6] have performed a study on online social networks1.
These networks are reported to exhibit power law, small-world and scale-free

1Flickr, YouTube, LiveJournal and Orkut.
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properties. The degree distributions found by Mislove et al. are very similar
to those found in the DC network. Key differences between their findings and
ours, is that online social networks show a high degree of link symmetry and,
more, the clustering coefficients found are slightly higher than the ones found
in DC. The high degree of link symmetry can be credited to the fact that
relations captured by social networks most often are bidirectional. The high
clustering coefficients in online social networks are explained by Mislove et al.
as expected in these kind of networks; people often get introduced to other
people via mutual friends, which will result in the “small-world phenomenon”
and thus, a higher clustering coefficient.

The structural analysis of the Gnutella P2P file sharing network made
by Wang et al. [11] also verifies many of the above discussed properties.
As expected (since both Gnutella and DC being file sharing networks), the
properties of the Gnutella network showed even more similarities with DC
than with online social networks. Like DC, the Gnutella network exhibited
a very asymmetric connectivity. Differences do exist though. Gnutella’s
clustering coefficients were much weaker than in DC. Moreover, Wang et al.
showed that Gnutella seems to have a larger set of strong providers than DC.

6.4 Content and Peer–data correlation

Before starting to investigate the peer overlay structure of DC, we had quite
strong suspicions on what to discover. This was not really the case before
investigating the content being shared in the networks; we could assume that
common data would include audio, pictures, videos and archives but not to
what extent.

As shown in the previous chapter, audio files were the absolute majority
of data being shared. Picture files turned out at a good second place. From
this we draw the simple conclusion that most people use DC to share music
files.

Another interesting finding was the data redundancy factor of roughly
40%. This implies that availability of data is good despite the dynamic
nature of P2P networks.

We also looked at the correlation between peers and their shared files. It
turned out that, roughly, a peer have at least one file in common with 25% of
the other participants. Not surprisingly, the number of files in common with
other peers were not that strong; it is quite unlikely that two peers should
possess a nearly identical set of shared files.

The clustering coefficients for the network formed by the peer-content
correlation showed to be extremely high. From this we can draw the con-
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clusion that there exists many strongly connected clusters of peers sharing
a similar taste, i.e. content. Moreover, from this (and the low average path
length) it can be speculated that the users of DC share a quite homogeneous
taste.
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Chapter 7

Summary

We have successfully modelled a method of analysis, developed a set of soft-
ware tools and performed measurement and analysis of the DC P2P archi-
tecture.

Our method used was based on foundations from mathematical graph
theory as well as from previous research in the field of P2P. These abstract
tools proved to function strong, concise and reliable. Besides analyzing only
the obvious part of the DC network – the participants – we applied the same
set of theoretical tools to the content being shared. This not only added
depth to our research, it also shed light on the user–data correlation that
exists in P2P file sharing networks.

The tools developed to perform the actual monitoring, data gathering
and post-processing performed highly satisfactory. On the downside, since
pieces of DCSpy were based on a ready-made framework of what showed
to be of questionable quality, that particular implementation unfortunately
ended up a bit messy at places. Probably that implementation would have
benefit from being written in a modern, more compact high-level language
like Python or Ruby instead of Java. The data post-processing tools ended
up having nicer code though.

The study of DC presented in this thesis is – if not the first – probably
the first of its kind. We found a network with much in common with a range
of online social networks, and in particular, with other file sharing networks
such as Gnutella. We also noted strong data redundancy and clusters of
common interest in the set of shared content.

The scale-free properties found along with good data redundancy speaks
for high fault tolerance in the networks studied. Although this most often is
good, it makes a DC network vulnerable to strategic attacks of peers acting
as hubs in the network overlay graph. This is not the weakest point though;
since the network cannot exist at all without the central hub entity, this is
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in fact the single point of failure.
The hub is also the bottleneck when it comes to the capabilities of scal-

ing; a DC network scales proportional to the hub’s capacity of handling the
connected peers.

A third flaw related to the hub in a DC network is worth being mentioned.
The NMDC protocol has a feature of redirecting connected peers to other
hubs. This is supposed to be used when the hub has reached its maximum
user limit. If the hub is compromised, it would be possible to redirect all
connected users to a target of choice, thus performing a DDoS1 attack. If
performed by many hubs having many users, this could cause a great deal of
damage.

DC has also proved to be quite unique in the sense of “self-sanitizing”;
every hub acts as a small community, employing operators and robots for the
purpose of preventing users from fake-sharing and sharing of inappropriate
material. The potential problem of users “free-riding” – that is, only down-
loading and not contributing to the network – is avoided by having minimum
share size rules to enter hubs.

We have also seen collaborations between hubs in the form of hub net-
works.

All gathered data and developed program source code can be made avail-
able upon request from the author.

7.1 Future work

It would be interesting to perform a large scale study on DC networks, mon-
itoring hundreds or even thousands of hubs for several months. This could
be done by sequentially crawling addresses to hubs from websites providing
hub-listings. Comparison of the results of such a large scale study with the
results presented in this thesis could then be done.

There could be more done using the data gathered. Investigation of find-
ing a best-fit power law function for degree distributions or looking at clus-
tering coefficient distributions are examples of this.

The hub addresses listed publicly on the WWW probably only stand for
a small subset of all existing hubs. There exist hubs which are known only to
a few chosen people which probably act more community-like. For natural
reasons, these hubs are much harder to find (and get access to), but it would
be of interest to compare data from those hubs with the data presented in
this thesis.

1Distributed Denial of Service.

45



An intriguing question which this thesis has overseen is how availability
of data varies over time. To monitor the sustainability of the connected
peers would give good information about this. In particular – as they play
an important role in the network – it would be of interest to look at the
sustainability of the peers acting as larger providers.

Experiments using various graph rendering technology could also be made.
To take parameters such as interests and peer sustainability in account when
rendering a graph might be interesting.

The DCSpy client is far from user friendly; it should be decided on
whether to go for a graphical user interface, or a command-line user interface.
In its current state, it is something in between.
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Appendix A

Software manual: DCSpy

DCSpy is a tool developed during the writing of this thesis. Its purpose is to
connect to a Direct Connect hub, monitor activities in the hub and perform
data processing and analysis.

Usage

DCSpy requires three arguments; desired nickname, IP address of client and
port for incoming connections (as DCSpy operates in active mode).

As DCSpy makes use of some external packages1, the Java classpath
should be set accordingly – both when compiling and running the program.
Below is an example of how to start the client after compilation, using the
nickname cheburashka, IP address 127.0.0.1 (localhost) with port 2002 open
for listening:

$ java -cp .:tools/GeoIP.jar:tools/bzip2.jar:tools/jgrapht.jar

DCSpy cheburashka 127.0.0.1 2002

You should now be presented with a window similar to the one seen in
Figure A.1. As DCSpy outputs some of its log data to the standard output
stream, it might be a good idea to have the terminal window adjacent to the
DCSpy window.

Next step is to enter a hub address and port in the address-field in the
lower part of the window. Default is 127.0.0.1:2001. When satisfied with
the address, the user might press the “Connect” button to log on to the hub.

If everything went well, the window is populated with various information;
number of users connected to hub, a list of the users, log information and
finally, the hub’s public chat.

1Discussed in the chapter describing the system design.
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From this point DCSpy starts collecting information about the hub and its
users. It tries to collect all users’ lists of shared files (stored in ./filelists),
user activities are logged and searches are mimicked. Figure A.2 shows how
a session with DCSpy can look like.

To disconnect from the hub, the “Disconnect” button should be pressed.
This makes DCSpy process the gathered data and finally the results are
written to the standard output stream.

Figure A.1: DCSpy waiting for connecting to a hub.

Other / bugs

As discussed in the thesis, DCSpy currently uses both a graphical and a
text-based user interface. Since the program’s purpose is to act as a pure
monitor, it would probably suffice to keep the interface as text-only.

When developing the program, little thought was spent on the usability;
the focus was on the task of collecting data and processing it in an adequate
manner.

There exists some known bugs. When connecting to a hub not imple-
menting the standard Direct Connect protocol, the process of logging on can
halt. Also, when disconnecting, occasionally there can occur an exception
from one of the threads.

50



Figure A.2: DCSpy connected to a hub.

These bugs do not endanger the data gathered and they should not be
particularly hard to fix. They have not been fixed due to time constraints
and prioritization of other tasks.
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Appendix B

Software manual: The
ShareStat suite

Before discussing the programs in more detail, a word about data input:
The input to the programs in the ShareStat suite is expected to be a

valid and decompressed Direct Connect list of shared files (in XML format).
If wishing to perform statistics calculations on a set of many files together,
a handy tip is to first concatenate them using for example the Unix cat

command.

B.0.1 ShareStat

ShareStat is a Java program which constructs a graph describing correlations
between users and the files shared. Also, several graph properties are calcu-
lated and presented. Examples of such properties are average edge weight,
average vertex degree and graph clustering coefficient.

Usage

ShareStat takes only one argument – the name of the file containing all file
lists that will be used when constructing the graph. Often the amount of
data to process is huge, and Java often finds itself running out of memory.
Therefore it is a good idea to increase Java’s memory allocation pools when
executing the program. After the program has been compiled, it can be used
as:

$ java -Xms32m -Xmx2048m -cp .:jgrapht.jar ShareStat filelists.xml

(Also note that the jgrapht graph package is needed by ShareStat.)
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Other / bugs

No bugs are known in ShareStat.

B.0.2 analyze.rb

The Ruby script analyze.rb investigates the frequency of different file types
in users’ lists of shared files. It also computes the number of unique files and
the total size of all files.

Usage

The program only expects one or several files as parameters. Example of
usage:

$ ruby analyze.rb cheburashka.xml

This will examine the user cheburashka’s list of shared files.
Another example:

$ ruby analyze.rb gena.xml shapoklyak.xml

This examines gena’s and shapoklyak’s shared files.
Figure B.1 illustrates a sample output.

Number of audio files: 35660 (23.0922654509662%)

Number of compressed files: 2515 (1.62863285499663%)

Number of document files: 3525 (2.28267626793763%)

Number of exe files: 441 (0.285577371393048%)

Number of picture files: 21068 (13.6429570533078%)

Number of video files: 983 (0.636559084080195%)

Number of other files: 90232 (58.4313319173186%)

Number of unique files: 119726 (77.5306947106667%)

Total number of files: 154424

Total size of files: 0.137216388612615 terabyte

Figure B.1: Example output from the analyze.rb script.

Other / bugs

The script is easily extendible for recognition of other file suffixes since it
uses regular expressions for matching.

No bugs are known in analyze.rb.
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Appendix C

Direct Connect graph
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Figure C.1: A graph illustrating DCN2, one of the studied Direct Connect hubs.
The dense half is comprised by requesters and/or providers. The other half shows
pure providers.
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