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DISSERTATION ABSTRACT 
 

INDIVIDUAL VARIATION IN BEHAVIOUR  

personality and performance of brown trout in the wild 

Bart Adriaenssens (2010) 
 

Individuals from the same population often show very different behaviour. These 

differences, when consistent across time, are referred to as animal personality or 

behavioural syndromes. Explaining the occurrence of animal personality from an 

evolutionary perspective has however proven a difficult issue to tackle. This thesis studies 

aspects of individual behavioural variation and personality in brown trout (Salmo trutta). 

More specifically, I investigate (1) to what extent variation in behaviour is consistent 

within and across contexts, (2) environmental and genetic effects on behaviour, (3) how 

this affects performance in the wild, and (4) whether this understanding can be used to 

improve rearing methods of supplementary hatcheries. 

I found brown trout to express a wide variation of behaviours and provide evidence that 

much of this behavioural variation is associated in bigger behavioural syndromes. As a 

result, separate behaviours of brown trout cannot be considered as isolated units, but 

combine into clusters that sometimes are associated with non-behavioural measures such 

as body size or growth rate. Variation was further influenced by both inherited and 

environmental effects. First, individuals from different maternal and paternal origin 

differed in size, aggressiveness and response to novel prey or novel food. These results 

suggest that maternal and/or genetic effects influence behaviour and growth in brown 

trout (I). Second, reduced rearing densities in a hatchery increased the response to novel 

prey, food search ability in a maze and predator response (II). And third, hatchery trout 

were more successful foragers than wild conspecifics, yet showed less repeatable 

explorative behaviour across time (III). Personality traits were generally poor predictors 

of growth and survival upon release, suggesting that several behavioural strategies can be 

successful in nature. Nevertheless, in paper IV, slow exploring individuals grew faster 

than more bold trout. Furthermore, parr reared at reduced densities were twice as likely to 

survive in the stream as trout reared at high densities. 

In conclusion, my results contradict simple associations between risk taking behaviour 

and growth-mortality tradeoffs under natural conditions. This challenges the recent view 

that individual differences in growth strategies can explain variation in behaviour and 

suggests more heterogeneous links between personality and life-history in nature (V). In 

addition, I show that reduced rearing hatchery densities facilitate the development of 

adaptive behaviour in brown trout, a finding that may have implications for current 

rearing methods in supplementary hatcheries. 

 

Keywords: behavioural syndromes, personality, life-history, boldness, hatchery, survival, 

growth, foraging, anti-predator behaviour, learning, brown trout 
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Figure 1 View from above on the movement pattern of 15 brown trout fry (Salmo trutta) during 
the two first minutes after exposure to a novel object (air tube plug). Swimming tracks were 
recorded with QuattroTrack software (Loligo Systems, Adriaenssens unpubl. data). 

 

INTRODUCTION 

Individuals of the same population often differ considerably in the way they respond to 

challenges in their environment. To illustrate this, the figure below shows the movement pattern 

of brown trout fry when exposed to a novel object (Figure 1). Some individuals instantaneously 

investigate the novel object, whereas others remain at a distance. In humans, individual variation 

in behaviour is commonly referred to as personality, and has fascinated people since ancient 

Egyptian times (Erman 1896) whereas the study of personality in other animals is a more recent 

but rapidly emerging field (e.g. Magurran 1993; Gosling 2001; Sih & Bell 2008). This thesis 

studies aspects of individual behavioural variation and personality in animals. More specifically, 

I investigate (1) to what extent variation in behaviour is consistent within and across contexts, (2) 

environmental and genetic effects on individual behaviour, (3) how this affects social status and 

performance in the wild, and (4) whether this understanding can be used to improve rearing 

methods of supplementary hatcheries. 
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On behavioural variation, personality and behavioural syndromes 

Historically, individual differences in behaviour have been considered as noise or random 

variation that should be accounted for in experimental design (Martin & Bateson 1990; Ruxton & 

Colegrave 2006). Indeed, some of this variation can, even under standardized laboratory 

conditions, arise from random differences in motivation between individuals (Colgan 1993). 

From an evolutionary point of view, however, individual differences in behaviour become more 

interesting when they are consistent across time. Individual consistency can occur in two distinct 

ways: across situations within the same behavioural context or across different behavioural 

contexts. 

 

We speak of animal personality (Sih et al. 2004a; Dingemanse & Reale 2005) when the same 

functional behavioural category shows consistent variation between situations that differ in 

timing and settings. As a result, some individuals might generally be more aggressive than others. 

For example, three-spined sticklebacks (Gasterosteus aculeatus) that behave more aggressively 

against a conspecific intruder are generally also more aggressive against other species of 

territorial intruders (Huntingford 1976). In addition, other behaviours, for example activity level, 

exploration (response to a novel situation), boldness (response to a risky situation), and 

sociability (non-aggressive response to the presence of conspecifics) can be relatively consistent 

between situations in a wide range of animals (Bell et al. 2009). When animals demonstrate 

personality, individuals can be described according to their behavioural type (e.g. aggressive-

inagressive, Sih et al. 2004a). In this thesis, I follow the view of Sih and Bell (2008) that 

personality not necessarily needs to have a genetic basis or needs to be stable over the entire 

lifetime of an organism. Animal personality is related to other phenomena described elsewhere in 

literature such as coping styles and animal temperament (differences are discussed in Réale et al. 

2007). 

 

Behavioural syndromes, result from covariance of individual behaviour across different 

contexts (Sih et al. 2004a; Sih et al. 2004b). For example, aggressive sticklebacks are also more 

bold in the vicinity of a predator (Huntingford 1976). Similar associations between bold 

behaviour and aggressiveness have now been demonstrated in a diverse range of model species 
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(e.g. Riechert & Hedrick 1993; Bell & Sih 2007; Dochtermann & Jenkins 2007; Pintor et al. 

2008). 

 

Animal personality and behavioural syndromes imply that behaviour can be consistent across 

time, and can form integrated units together with other behaviours. This limited plasticity is 

surprising, because in nature it should to be optimal to adjust behaviour when it is appropriate in 

one context but not the other (Pigliucci 2001). Behavioural syndromes may therefore cause 

conflicts between behaviours, forcing individuals to make compromises rather than to achieve 

precision (Sih et al. 2004a). In North American fishing spiders (Dolomedes triton), for instance, 

individuals with superior prey hunting skills tend to be equally voracious against potential mates 

(precopulatory sexual cannibalism, Johnson & Sih 2005). Voracious spiders might therefore be 

skilled predators but can also end up having a lousy reproductive output (Johnson & Sih 2005). It 

is poorly understood how consistent behaviour pays off in nature and which selection processes 

maintain its variation between individuals (Magurran 1993; Wilson et al. 1993; Sih et al. 2004a; 

Dingemanse & Reale 2005; Réale et al. 2007). 

 

Framework for the study of behavioural (co)variation 

No evolutionary change can occur when all individuals are identical (Darwin 1859). Therefore, 

the study of individual behavioural variation is essential to gain insight into the adaptive value of 

behaviour. Evolutionary biologists study how selection affects such phenotypic variation and 

covariation in natural populations (e.g. Arnold 1983; Lande & Arnold 1983; Bull 1987). A 

conceptual framework for studying whether selection currently acts upon complex phenotypic 

traits within a population was developed by Arnold (1983). The rationale is that genetic variation 

may influence the organism’s phenotype (e.g. limb length), which may affect performance (e.g. 

sprint speed), which in turn can affect fitness (e.g. survival under predation risk). At every step, 

environmental variation can affect these relationships and ultimately fitness. Dissection of these 

different steps has been successfully used to study the origins of morphological diversity (e.g. 

Irschick et al. 2008) and to reveal constraints in morphology and performance (e.g. 

Vanhooydonck et al. 2001). The inclusion of behaviour in this framework has however proven 

problematic (Garland & Losos 1994; Irschick et al. 2008; Duckworth 2009), and as a 
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consequence its use in behavioural ecology has been limited (Kingsolver et al. 2001), but see 

(Dingemanse & Reale 2005). 

 

Three aspects may complicate the analysis of behaviour as a target of selection in this 

framework. First, behaviour has often been dealt with in discrete categories (e.g. game theory 

models), describing alternative behavioural strategies/tactics rather than continuous variables 

(e.g. hawk/dove, Maynard Smith 1982; Sih & Bell 2008). Secondly, evolutionary morphologists 

and behavioural ecologists may disagree about whether behaviour should be classified as 

performance or phenotype (e.g. locomotion, Garland & Losos 1994). Finally, behaviour as a 

target of selection itself differs from morphological measures in that it is highly reactive to the 

environment (West-Eberhard 1989; Duckworth 2009), and as a result can change with the life-

history context of the individual (Houston et al. 1988) and with experience (Dill 1983; Pearce 

1997). Nevertheless, the repeatable association between specific behaviours (e.g. hiding) and 

their selection context (e.g. predator approach), suggests that high reactivity will not prevent 

individual differences in behaviour to be targets of selection (West-Eberhard 1989).  

 

To take these differences into account, I here expand the original framework by Arnold (1983) 

in BOX 1. It distinguishes behaviour as part of the phenotype (the behavioural repertoire, e.g. 

personality traits) from behavioural performance (the result of a behaviour in its context), and 

allows phenotypic traits to change through time depending on the state of the organism. State 

variables are relatively stable characteristics of the organism that may influence its future 

expected fitness (Houston et al. 1988). Examples of state variables that are known to affect 

behavioural decisions are sex (Magurran 1993), size (Johnsson 1993), growth rate (Ruzzante & 

Doyle 1991), energy reserves (Beukema 1968; Godin & Smith 1988; Gotceitas & Godin 1991) 

and learned skills (Dill 1983). This approach accommodates recent ideas suggesting that the 

evolutionary consequences of animal personality need to be viewed in a wider context, exploring 

associations with phenotypic plasticity (Dingemanse et al. 2010b) and life-history variation 

(Stamps 2007; Wolf et al. 2007; Biro & Stamps 2008). During the rest of this introduction, I will 

therefore follow this conceptual framework to set current hypotheses into a broader context and 

explain the questions addressed in the different manuscripts. 
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BOX 1 

CONCEPTUAL FRAMEWORK FOR THE STUDY OF BEHAVIOURAL (CO)VARIATION 
(adopted from Arnold 1983) 
 
 

 
 

 
In nature, a GENOTYPE gives rise to the PHENOTYPE (physiology, morphology and behavioural 
repertoire), that can affect PERFORMANCE (the result of a behaviour in its context), which 
ultimately may affect FITNESS (survival and reproduction). Genes, for instance, may act on an 
individual’s aggressiveness, and facilitate it to achieve high social status. Differences in social status 
may then increase the ability to achieve resources and ultimately growth and fitness (see general 
conclusions for a discussion of this relationship). Eventually, the strength of these links will affect the 
representation of genes from GENOTYPE i in the next generation (GENOTYPE j). How different 
nodes correlate depends on the social and physical environment, and gene*environment interactions 
are likely to occur at every step in this chain: 

 
1 Effects of environment on gene expression 
2 Effects of context on performance and use of context-specific information in decision making. 
3 Effects of environment on associations between behaviour and its payoffs. Effects of 

dominance behaviour on resource acquisition can, for instance, depend on the defendability of 
food in the environment (Grant 1993). 
 

In addition, STATE-dependent processes create a link between performance and fitness at an earlier 
time and the phenotype and performance at present (McNamara & Houston 1986). Possible state 
variables are e.g. experience, growth strategy, and energy reserves. The PHYSICAL 

ENVIRONMENT entails the distribution of risks and resources in time and space, while the 
SOCIAL ENVIRONMENT denotes the social context, allowing for frequency or density dependent 
effects. PERFORMANCE measures can comprise the avoidance of risks or the acquisition of 
resources, social status or matings. 
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Explaining personality 

Behavioural consistency 

An extreme form of phenotypic consistency can arise when phenotypic traits are largely 

insensitive to environmental changes, causing firm links between the genotype and phenotype 

(environmental canalization, Waddington 1942). Several personality traits are known to be 

heritable (van Oers et al. 2005; Réale et al. 2007), and respond to selection (e.g.Johnsson et al. 

1996; Sundström et al. 2004). Nevertheless, behaviours are known respond to changes in the 

environment, to change with experience and through ontogeny (Beukema 1968; Davies 1976; 

Magnhagen & Staffan 2005; Dingemanse et al. 2010b). Further, if not all individuals respond 

similarly to the environment, this may affect personality ranks between individuals and disrupt 

the consistency of behaviour (Réale et al. 2007). Exposure of sticklebacks to a predator not only 

reduced their aggressiveness but also changed the differences in aggressiveness amongst group 

members (Bell & Sih 2007). Other personality traits are known to be consistent through the entire 

lifespan of the individual (Réale et al. 2007). This may indicate that there may be costs involved 

in changes to personality. Such costs can occur, for instance, when behavioural changes require 

considerable neuroendocrinological modifications that cost time and energy (Sih & Bell 2008). 

Other costs can be a direct result of social reinforcement when group structure locks individuals 

into their strategy (e.g. winner-loser effects, Dugatkin 1997). Similarly, individuals may tend to 

stick with their previous strategy to avoid errors when information about environmental 

fluctuations is uncertain (McElreath & Strimling 2006). However, if individuals are constrained 

to one strategy, why do not all individuals behave the same? 

 

Individual variation 

Individual differences can arise when selection pressures on heritable components of behaviour 

vary across time. In that case, fluctuations in the direction and strength of selection on personality 

traits may maintain individual variation in behaviour (Bürger & Gimelfarb 2002; Dingemanse & 

Reale 2005). This is confirmed by observations in wild populations of great tits (Parus major) 

and red squirrels (Tamiasciurus hudsonicus) where environmental fluctuations caused changes in 

both the direction and strength of selection on personality traits (Dingemanse et al. 2004; Boon et 

al. 2007; Quinn et al. 2009). Alternatively, variation can be maintained because the fitness of a 

trait depends upon its frequency in the population (frequency-dependent selection, Clarke & 



Individual variation in behaviour 

 7 

O'Donald 1964). Minnows (Phoxinus phoxinus), for instance, show substantial individual 

variation in risky predator inspection behaviour (Magurran 1986) and a model by Dugatkin and 

Godin (1992), predicts that the individual fitness associated with predator inspection depends on 

the frequency of the behaviour in the population. Similarly, aggressive strategies such as hawk-

dove evolutionary games (Maynard Smith 1982) and innovative behaviour (producer-scrounger, 

Vickery et al. 1991) are frequency dependent. Although such patterns can arise by selection on 

heritable traits, plastic responses along with individual differences in experience with the physical 

or social environment can generate similar patterns of individual variation in behaviour 

(McElreath & Strimling 2006; Wolf et al. 2008). Experienced individuals may, for instance, have 

better predator inspection skills, suffer less risks during inspection and, as a consequence, be 

more prepared to approach a predator. However, why would such differences in personality affect 

groups of behaviours rather than separate behaviours? 

 

Behavioural syndromes as a functional constraint 

When different personality traits are measured simultaneously, theory predicts a negative 

correlation between the performance of different behaviours due to time budget conflicts (Sih et 

al. 2004b) and limited attention (Dukas 2002). Time budget conflicts occur when behaviours 

cannot be performed simultaneously, leaving individuals a limited amount of time to perform a 

single behaviour, thereby reducing the opportunity to carry out others (Sih et al. 2004b). 

Likewise, an animal may not be able to forage and hide from a predator simultaneously (Milinski 

& Heller 1978; Sih 1980; Lima & Dill 1990). Effects of limited attention are likely to enlarge the 

impact of time budget conflicts on performance when more complex behaviours are involved 

(e.g. courtship, foraging and predator vigilance). Limited attention is a general description of 

constraints to the amount of information per time unit that can be processed by the brain (Dukas 

1999; Attwell & Gibb 2005) that reduces the capacity to perform behaviours simultaneously. For 

example, individuals of a small South American cichlid fish, Nannacara anomala, have more 

difficulty detecting predators when involved in agonistic interactions (Jakobsson et al. 1995; 

Brick 1998; Brick & Jakobsson 2002). Because time budget conflicts result in a negative 

association between the intensity of different behaviours, they generate tradeoffs between these 

behaviours. Behavioural syndromes, on the contrary, generally represent positive associations 

between the intensity of active behaviours (Sih et al. 2004b).  
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A possible explanation for the occurrence of stable positive correlations between different 

behaviours is that they share relatively static common mechanisms (constraint hypothesis, Sih et 

al. 2004a; Bell 2005). Mechanisms suggested to cluster behaviours in behavioural syndromes like 

this are pleiotropic gene effects, hormones or experiences that steer the intensity of different 

behaviours simultaneously. Evidence for genetic correlations between different behaviours in a 

variety of species to some extent supports this view (Sluyter et al. 1995; van Oers et al. 2004; 

Bell 2005; Galsworthy et al. 2005; Quinn et al. 2009). In German shepherd dogs for instance, 

boldness and aggressiveness are genetically correlated. Therefore selection on either behaviour 

will have marked effects on the other (Strandberg et al. 2005). Several hormones act on suites of 

correlated personality traits rather than on single behaviours, suggesting possible 

neuroendocrinological mechanisms behind genetic correlations (Koolhaas et al. 1999; Martins et 

al. 2007; Overli et al. 2007). A testable prediction arising from the constraint hypothesis is that 

behaviours which are part of a behavioural syndrome cannot respond independently to changes in 

the environment or selection.  

 

Adaptive behavioural syndromes 

Alternatively, if behavioural syndromes vary between populations subjected to different selection 

pressures, this can be interpreted as indicators of local adaptations (adaptive hypothesis, Wilson 

1998; Bell 2005). Syndromes may therefore reflect genetic correlations among behavioural traits 

that work well together in nature (Stearns et al. 1991). Studies on three-spined sticklebacks 

support this hypothesis, where phenotypic and genetic correlations differ between populations 

(Bell & Stamps 2004; Bell 2005; Dingemanse et al. 2007; Brydges et al. 2008). Further, 

syndromes are more common in predator-sympatric populations, suggesting a role for predation 

in shaping associations between behaviours (Bell 2005; Dingemanse et al. 2007). Additional 

investigation demonstrated that a combination of correlated selection and behavioural plasticity 

in response to trout predation generated a previously absent correlation between boldness and 

aggression in a population of sticklebacks (Bell & Sih 2007). 
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Personality and behavioural syndromes as a result of inner state? 

Recent theoretical studies have suggested a novel adaptive scenario to explain behavioural 

consistency (Dall et al. 2004; McElreath & Strimling 2006; Stamps 2007; Wolf et al. 2007). The 

idea is that individual variation in state can, in combination with frequency dependent selection 

(Dall et al. 2004) or life-history tradeoffs (Wolf et al. 2007), result in behavioural syndromes. 

Individuals prioritizing growth, for example, should be more keen to take risks during foraging 

and to engage in agonistic interactions to compete for food (Stamps 2007; Biro & Stamps 2008). 

Stable individual differences in growth rate (intrinsic growth rate) have been demonstrated in a 

wide variety of animals (Brown 1946; Arendt 1997; Mangel & Stamps 2001; Ragland & Carter 

2004; Johnsson & Bohlin 2006), and suggest that growth may be a key variable when 

investigating ultimate questions about animal personality in nature. A critical assumption to this 

hypothesis is that risk-prone behaviour correlates positively with growth or reproduction, a 

prediction that few studies have tested in the wild (Biro & Stamps 2008). 

 

Interestingly, several studies suggest that patterns of covariation in life-history traits are 

similar to those observed between behaviours (Promislow & Harvey 1990; Reznick et al. 2002; 

Ricklefs & Wikelski 2002). In birds, for instance, life-history strategies within and among 

populations group into a slow-fast continuum with slow development, low reproductive rate and 

long lifespan at one end and the opposite traits on the other (Ricklefs & Wikelski 2002; Ricklefs 

& Scheuerlein 2003). Also from this angle, state variables affecting expectations of future 

reproduction have been suggested to affect life-history traits and suites of morphological, 

physiological and behavioural traits linked to these (Ricklefs & Wikelski 2002). As a result, 

individuals appear to respond to environmental stressors or perceived risks with changes to their 

life-history traits. Changes are however not without costs, and augmented rates of somatic growth 

are shown to be associated with higher rates of mortality (Johnsson & Bohlin 2006; Dmitriew & 

Rowe 2007). 
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Brown trout (Salmo trutta L.) as a model species 

My studies use juvenile life stages of brown trout (Salmo trutta) as model species. Brown trout is 

a common fish species in European streams and has been introduced to many other continents 

(Elliott 1994). Although life cycle patterns can vary between populations, the populations used in 

this thesis are largely anadromous and individuals develop in the stream before migrating 

downstream to the sea, generally at age 2 (Bohlin et al. 1994). In what follows, I refer to different 

juvenile age classes as fry for juveniles less than 6 months of age, and parr for juveniles between 

6 months and the onset of migration as smolt. 

 

Brown trout is a good model species to study questions about behavioural ecology. First, they 

show extensive variation in behavioural and life-history patterns. Ferguson & Mason (1981), for 

instance, showed that a single lake in north-western Ireland (Lough Melvin) contains at least 

three genetically separated types of brown trout, differing so much in foraging habits and 

morphology that they all received their own local name. Individual differences in behaviour also 

occur within the same genetic pool, and individuals from the same population are shown to differ 

in aggressive (Lahti et al. 2001; Höjesjö et al. 2002), risk-taking (Sundström et al. 2004; Brelin et 

al. 2008) and foraging strategies (Ringler 1985). Also life-history strategies can be variable 

within trout populations, resulting in differences in growth, reproductive or migratory life-history 

(Dellefors & Faremo 1988; Bohlin et al. 1994; Johnsson & Bohlin 2006). State variables such as 

body size or growth have further been linked to variation in trout risk- taking and agonistic 

behaviour in laboratory experiments (Johnsson et al. 2006), suggesting that they can also play a 

role in nature. 
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BOX 2 

TROUT AND RESTOCKING PROGRAMS 
 
The use of trout as a model further adds an applied aspect to this thesis. Some brown trout populations 
currently suffer from environmental degradation and overfishing. Thereby, river regulation by 
damming generates a well-known problem for smolt and adult migration, resulting in habitat 
fragmentation or local extinction of populations (Dynesius & Nilsson 1994). Countries around the 
Baltic sea currently maintain breeding programs that release close to four million hatchery produced 
brown trout smolt per year (ICES 2009). Despite this major effort, estimates still show a steady 
decline in wild occurring stocks since the mid 1990s (ICES 2009). The value and efficiency of these 
hatchery release programs is therefore debated, and several studies confirm a lower fitness of hatchery 
trout in nature in comparison with wild trout (reviewed in Araki et al. 2008). 

                   

   
 
 

 
 
 

 
Differences between hatchery and wild salmonids can arise through four processes. First, directional 
selection for preferred traits in the hatchery, such as fast growth, may influence several phenotypic 
traits in concert. Hatchery selection for example causes trout to accept higher predator risks (Johnsson 
et al. 1996; Sundström et al. 2004). Second, wild salmonids invest considerable time in mate choice, 
whereas artificial propagation methods in a hatchery leave few opportunities for sexual selection to 
occur (Wedekind 2002; Fraser 2008). Little is known about the effects of the disruption of sexual 
selection  processes in captive breeding programs, nevertheless, several studies suggest this can 
severely impact offspring health (Wedekind 2002). Third, the safe hatchery environment results in a 
considerably higher survival (more than 85%) compared to the wild (less than 10%, McNeil 1991; 
Elliott 1994; Reisenbichler & Rubin 1999). Thus, natural selection is relaxed in the hatchery 
environment. Fourth, differences between the natural and hatchery rearing environment may lead to 
different phenotypic development in salmonids with the same genetic background (Figure 2). In 
response, hatchery reared trout are shown to differ from wild trout in several aspects of their 
behaviour and often show higher risk-taking behaviour towards predators, aggression and foraging 
motivation, suggesting that hatchery rearing does not provide fish with the skills needed for survival 
in nature (Einum & Fleming 2001; Huntingford & Adams 2005). 

 

Figure 2 Hatcheries differ strongly from wild habitats in that they contain little (variation in) physical 
structure, high densities of conspecifics, plenty of food and no predation risks. left: a natural trout habitat 
(Stenungeån), middle: hatchery tanks at the former Swedish Board of Fisheries research station, Kälarne, 

Sweden, right: fry in a high density treatment in paper II. 
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AIMS OF THE THESIS 

The overall aim of this thesis is to improve the understanding of the causes and consequences of 

behavioural variation in brown trout (Salmo trutta). More specifically I explored the following 

aspects: 

 

 

1) To what extent is variation in behaviour consistent within and across contexts?  

(papers I, III & IV) 

 

2) How do genetic and environmental variation affect behaviour? 

(papers I, II & III & IV) 

 

3) How does this affect performance in the wild? 

(papers I, II, IV & V) 

 

4) Whether this understanding can be used to improve rearing methods of supplementary 

hatcheries? 

(papers II & III) 
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METHODOLOGY 

Experimental fish & breeding setups 

All experiments were carried out with juvenile freshwater life stages of brown trout (Salmo 

trutta). I used wild caught individuals from natural populations (papers III & IV) as well as 

hatchery reared offspring from wild caught individuals (I & III) or sea-ranched individuals (II). 

Sea-ranched trout are generally reared in a hatchery from egg to smolt stage before they are 

released in natural streams. This is a common practice in release efforts to compensate for 

declines in natural brown trout populations in Sweden (Pettersson et al. 1996). In three studies (I, 

II & III), hatchery breeding setups were used to control for the inheritance or the environment 

during development of the studied individuals. 

 

In the first experiment (I, Figure 3) parents of experimental fish were wild caught from River 

Norumsån on the Swedish west coast (latitude 58°N). In this population, migration life-histories 

are known to vary between individuals (partial migration, Lack 1943). A varying proportion of 

individuals, often males, adopt a stationary life-history strategy while the rest migrate to sea 

when reaching the age of two (Dellefors & Faremo 1988). In order to test if migratory strategy 

affected offspring behaviour, one migratory and one stationary father were crossed to each 

female (nested full-sib, half-sib breeding design, see Johnsson et al. 1993; Vollestad & Quinn 

2003). Following fertilization, the eggs were moved to E. ON fish farm in Laholm (Sweden) and 

incubated in hatchery tanks until the start of the experiments (age 1 month).  

 

In paper II, I tested for effects of altered rearing conditions (density and physical structure, 

Figure 4) on the development of behaviour in trout of similar genetic background. Sea-ranched 

parents were obtained from river Dalälven (latitude 60°N, for strain information see Johnsson et 

al. 1996). 11 males and 11 females were paired and the eggs of each female were artificially 

fertilized with the milt of one male following standard hatchery procedures. Eggs were pooled 

and randomly distributed among hatchery tanks (1×1 m2) in three density treatments: 

conventional hatchery density (2500 individuals/m3), approximately a fourth of conventional 

hatchery density (600 individuals/m3) and natural density (150 individuals/m3, Elliott 1994). 

Further, we added structural complexity in half of the tanks. Structure consisted of plastic bags, 
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Figure 3 Maternal full-sib, half-sib breeding setup used in paper I. Each female was mated with one 
male with migratory and one with stationary life-history. A total of 9 females and 18 males were used, 
resulting in 18 families. 

Figure 4 The setup used in paper II. Eggs from crosses between 11 females and 11 males were mixed 
and randomly distributed between a total of 24 hatchery tanks in one of six combinations of density 
and structure treatments. 
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sliced up to resemble water-plants and provided with a stone ballast to keep them in place. This 

provided fish with physical refuge, more heterogeneous water flow dynamics and increased 

visual isolation between individuals compared with the barren tanks. We conducted experiments 

with fry (age 3 months) and parr (age 6 months) from these different treatments. 

 

In two studies, wild parr yearlings were caught by electric fishing from naturally reproducing 

populations of brown trout on the Swedish west coast (latitude 58°N): in river Norumsån (age 6 

months, III) and Stenungeån (age 1+ y, IV). In paper III the behaviour of wild caught and 

hatchery reared parr (from the breeding setup in paper I) was compared. 

 

To reduce sampling bias in nature (Wilson et al. 1993; Satterlee & Jones 1997), stream 

sections were fished repeatedly, and a random sample of individuals was selected within a pre-set 

size range. When a subset of fish was selected from laboratory tanks (I & II), the sampling 

procedure was adjusted to minimize sampling bias from stock tanks. The water level in holding 

tanks was first lowered before a net was rapidly moved twice from side to side in the tank. The 

sample was then transferred to a bucket filled with water and fish were again netted, but now 

diagonally from bottom to top. This procedure was repeated three times until a sufficient number 

of fish were sampled. 

 

Laboratory methods 

In collaboration with my co-authors, I measured different behavioural traits in individual fish. 

Depending on the experimental design, behaviours were recorded manually (I to IV), with event 

recording software (Observer, Noldus: III and JWatcher: II & IV) or with a video camera (II). 

Behaviour and space use of brown trout tend to vary with age and size (Huntingford & Turner 

1987). Behavioural traits were therefore selected following observations of behavioural 

motivation in pilot observations. We measured the following behavioural traits: 

 

1) Aggressiveness describes an individual’s agonistic reaction towards conspecifics 

(Huntingford & Turner 1987). We measured the response of fry to their own mirror 

image (Gallup 1968, I) and the response of parr to an intruder of standardized length 

(IV). 
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2) An individual’s response to novelty is a function of its boldness or exploration tendency 

(Wilson et al. 1993; Réale et al. 2007). Whereas currently no general consensus exists 

about the difference between these personality traits, we follow a broad definition of 

boldness (Wilson et al. 1994) as the individual’s response to any situation that entails a 

certain risk or novelty (e.g. a novel object, novel food, novel environment or a predator). 

Different from Réale et al. (2007), we do not consider exploration behaviour in a novel 

environment a separate personality trait in brown trout, but rather a more specific measure 

of boldness (to a novel environment). This likely corresponds to the ecology of juvenile 

brown trout, which generally respond with a certain care to disturbance or changes to the 

environment (Elliott 1994). I used three measures of boldness. 1) The response to novel 

prey: brine shrimp (I) or liver and a live maggot (II). 2) The exploration of a novel 

environment: a maze (III) and/or a novel foraging area (III & IV). And 3) the response of 

fry to a novel object (a washer, ∅ 12mm, I). 

3) In papers III & IV, the ability of trout to forage on a cryptic prey (familiar) was 

observed in a setup modified after Johnsson and Kjällman-Eriksson (2008). Trout are 

visual predators that mainly forage on invertebrate prey in drift and on the bottom of the 

river (Bridcut & Giller 1995; Rincon & Lobon-Cervia 1999; De Billy & Usseglio-

Polatera 2002). When prey are cryptic, foraging requires visual acuity, for instance the 

capacity to discriminate between subtle colour differences and detect small movements 

(Lythgoe 1979). 

4) Another cognitive foraging task, maze search, was scored in papers II & III, where I 

measured food search behaviour in a maze. In paper III we used a two-armed maze 

adopted from experiments with groups of minnows (Figure 1 in III, Johnsson & 

Sundström 2007). Maze search performance of brown trout in this setup was however 

poor, and I exchanged this setup in further experiments with a four armed maze (Figure 

1b in II). Food search behaviour in these experiments is an estimate of the ability of the 

fish to use olfactory and visual cues to orientate itself in a structured environment. 

5) Individual differences in habitat choice were measured in paper III, where trout were 

given the choice between a structured and an open half of an experimental tank. 
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To evaluate the repeatability of behaviour and effects of learning, foraging and exploration 

behaviour in the maze and/or cryptic prey task were measured repeatedly for the same individuals 

across different trials (III & IV). Both cryptic prey foraging and maze search likely represent a 

cognitively demanding task for brown trout. The presence of a hidden food reward further allows 

for flexible responses in activity and prey search patterns with increasing experience in these 

setups through learning (Brown et al. 2006). Similarly, aggressiveness was scored twice and 

analyzed for repeatability (IV). I further tested for behavioural syndromes by comparing 

behaviour of the same individuals across different contexts in papers I, III and IV. 

 

In addition, I determined dominance status in pairs of fry (dyadic contest, I) and groups of parr 

(serial removal experiment, IV). To enable recognition of individuals during these observations, 

fish were marked by adipose fin clipping (I) or attaching a coloured pearl tag to their dorsal fin. 

 

Methods in the field 

In the field, I used electrofishing to capture fish for experiments (I, III & IV) and to recapture 

fish after release (I, II & IV) following methods outlined by Bohlin and colleagues (1989, 

LUGAB 1000, straight DC, 200-400V for papers I, III & IV, 1000-1200V for II). Fish were 

released at the position they (IV: river Stenungeån, latitude 58°N), or their parents (I: river 

Norumsån, latitude 58°N) were caught. In paper II, fish were released into an experimental 

section of river Aneråsån that is enclosed with a metal grid (Latitude 62º N). No fish could 

therefore escape or invade this stream section. Predators sighted in and around these three 

streams are heron (Ardea cinerea, all rivers), mink (Mustela vision, all rivers), otter (Lutra lutra, 

only Aneråsån), and resident trout (only Stenungeån and Norumsån). 

 

In order to recognise fish after release (papers II & IV) they were provided with a passive 

integrated transponder tag into the peritoneal cavity (PIT ID100, Trovan Ltd, Roussel et al. 

2000). Length of fry used in paper I was below the lower limit for using PIT tags. We therefore 

clipped the adipose fin of each individual before release and performed parentage analysis on fin 

samples of recaptured fin-clipped individuals (O'Connell & Wright 1997). Variation on eleven 

polymorphic microsatellite DNA loci was used to assign individuals to the correct full-sibling 

group. 
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Juvenile brown trout are very stationary, and seldom move further than 100m from the release 

point (Bohlin et al. 2002). To further increase the possibility to catch dispersed individuals, 

stream sections in Norumsån and Stenungeån were fished at least 130m downstream and 130m 

upstream from the location of release. To ensure high recapture rates we performed three 

removals with a 30min time interval (Bohlin et al. 1989). In Aneråsån, removals were repeated 

until three subsequent fishing bouts yielded no fish (in total 7 bouts), ensuring that no fish 

remained in the river section. Recapture rates in our experiments therefore should be a good 

proxy for survival. 

 

Statistical methods 

The quickly emerging research field of animal personality and behavioural syndromes has 

generated some new statistical approaches to study covariation in behaviour (Bell 2007; 

Dingemanse et al. 2010a; Dingemanse et al. 2010b; Dochtermann 2010). I will in this paragraph 

outline some issues that make data analysis different from other studies in behavioural ecology 

and how I dealt with these in my experiments. 

 

Behavioural syndromes or personality are typically analysed with correlation methods (Sih & 

Bell 2008). This however inevitably generates a large number of correlations which increases the 

probability to falsely identify associations (Type I error, Quinn & Keough 2002). Therefore I 

chose to report original significance values alongside solutions that account for multiple testing 

errors. Bonferroni corrections of significance values offer a first solution to this problem by 

minimizing the chance of making type I errors (Rice 1989). In paper IV, type I errors were 

reduced with sequential Bonferroni correction (Rice 1989). The use of this correction method has 

nevertheless been criticized because it can lead to a greater risk to falsely reject genuine 

correlations when the number of tests is large (Type II error, Moran 2003). Several studies have 

therefore recently implemented the use of false discovery rate (FDR) to adjust for multiple testing 

errors in this context (Conrad & Sih 2009; Logue et al. 2009; Dochtermann 2010). I followed this 

procedure in papers I & III following methods outlined by Benjamini & Hochberg (1995, see 

also Verhoeven et al. 2005).  
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When behavioural traits grouped into logical clusters after exploratory correlation analysis, I 

used principal component analysis (PCA, Logue et al. 2009)) to summarize behaviours into a 

smaller amount of logical categories or principal components (PC, I, III & IV). PC were used in 

further analyses and referred to by their number or by the behavioural category they describe. In 

this, the first PC (PC1) describes the major axis of behaviour, while any further PC describes an 

ever smaller part of the remaining variation in the variables. 

 

In paper IV, I used linear mixed effects modelling (LMM) to estimate individual consistency 

in behaviour over trials (random regression analysis, Pinheiro & Bates 2000; Dingemanse et al. 

2010b),). In contrast to other methods for assessing behavioural consistency (Lessells & Boag 

1987), LMM takes into account changes to the mean value across trials that can arise due to, for 

example, habituation effects or learning (Hayes & Jenkins 1997; Dingemanse et al. 2010b). 

LMM also allows for the addition of fixed effects that may bias measures of behaviour and test 

for their contribution in affecting variation. Individual estimates of random effects, accounting 

for significant fixed effects, can be extracted from such models in the form of best linear 

unbiased estimates (BLUP, Henderson 1975). I used this latter approach to estimate individual 

scores of foraging activity and aggressiveness and behavioural change in foraging activity over 

trials in paper IV (exploration, aggressiveness and behavioural flexibility respectively). Some 

recent papers have critizised the use of BLUP to infer breeding values (Hadfield et al. 2010; 

Wilson et al. 2010b). We stress, however, that BLUP were not used as a method to estimate 

genetic components of behavioural variation, but rather to estimate family or individual values 

for behaviour while accounting for significant fixed effects. 
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SHORT SUMMARY OF EACH PAPER 

 

I Höjesjö J, Adriaenssens B, Bohlin T & Johnsson IJ. Behavioural syndromes in juvenile 

brown trout (Salmo trutta); life-history, family variation and performance in the wild. 

 

The aims of this study were to investigate (1) the occurrence and strength of the shyness-

boldness behavioural syndrome in brown trout fry, (2) whether this syndrome is associated 

with paternal migratory life-history, (3) whether fry survival and growth in the wild is 

associated with paternal life-history and/or boldness, and (4) whether offspring performance 

showed maternal effects. Nine female migratory trout were each crossed with one migratory 

and one stationary male and the offspring were raised in hatchery tanks until the onset of first 

feeding (age 1 month, Figure 3). 

Fry showed high variation in their response to a novel object, a novel prey and in 

aggression towards their mirror image. Furthermore, individuals showed consistent 

differences in behaviour across these three functional contexts, representing a behavioural 

syndrome. Hence, fry that responded bold towards a novel object also accepted a novel food 

item earlier and responded more aggressively towards their own mirror image. This is 

consistent with previous work identifying a shy-bold syndrome in a range of species (Wilson 

et al. 1994). Principal component analysis resulted in one component describing this major 

axis of variation in boldness which accounted for 34% of the behavioural variation (PC1). 

Deviations from this shy-bold syndrome (PC2), where less aggressive individuals performed 

more approaches to the food explained an additional 17% of the behavioural variation. Fry 

growth and survival in the wild was not associated with boldness (PC1) nor PC2, suggesting 

that several behavioural strategies can yield similar fitness in brown trout fry. 

Paternal migratory life-history influenced PC2, but not the major axis of offspring 

boldness. Significant effects of the female parent on both boldness and body size suggested 

however maternal and/or genetic effects. Other studies have shown genetic effects on 

agonistic and risk-taking behaviour in salmonids (Riddell & Swain 1991; Sundström et al. 

2004). However, effects of the maternal environment might have been more important than 

genetic effects in our study (Falconer & Mackay 1996). Effects of female parents on fry size 
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further persisted over the first growth period in the wild, which may have implications for 

fitness during early life. 

 

 

II Brockmark S, Adriaenssens B & Johnsson JI. Less is more: density influences the 

development of behavioural life skills in trout.  

 

In this study we predicted that reduced rearing density and increased structural complexity 

promote the development of life skills in brown trout. To test this, we randomly distributed 

eggs from crosses between 11 males and 11 females among 24 tanks in one of six 

combinations of density and structure treatments as outlined in Figure 4. We conducted the 

experiments with fry (age 3 months) and parr (age 6 months) from these different treatments. 

The results show that reduction of rearing density substantially improves foraging and 

anti-predator skills in young brown trout. As a result, fry from natural densities developed 

better food search skills in a maze, and parr reared at natural density ate novel prey sooner 

and escaped more efficiently from a simulated predator attack. Parr reared at reduced 

densities were also twice as likely to survive in nature as parr reared at high density. Two 

processes may have impaired the development of individual behaviour at high densities. First, 

sensory overload caused by crowding in combination with restriction in movement and 

perception may constrain the development of both social and individual behaviour (Dukas 

2002). Alternatively, rearing conditions may alter the trade-off between the use of private or 

public information in behavioural decisions (van Bergen et al. 2004; Kendal et al. 2005). 

Development at high densities, where private information is difficult to gather, may thus 

favour the use of public information and over time lead to conformity through more or less 

irreversible losses of the ability to make individual decisions (Couzin et al. 2006).  

Effects of structure were less clear-cut, and actually reduced escape performance of trout 

parr. These results show that more nature-like rearing densities may facilitate the 

development of behavioural skills in captive animals, thereby increasing their contribution to 

natural production. In this, a reduction in rearing density resulted in more bold foraging 

behaviour together with better predator escape skills and survival upon release. 
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III Adriaenssens B & Johnnson JI. Learning and context-specific exploration behaviour in 

hatchery and wild brown trout. 

 

In this study I investigate whether rearing environment (wild vs. hatchery) affects the ability 

of brown trout parr to learn two foraging tasks. In addition, I examine whether exploration 

behaviour in trout is a general personality trait, consistent across different situations, or 

situation-specific. Hatchery- and wild-reared brown trout parr (age 6 months) were trained in 

two different foraging tasks: locating food hidden in a maze and finding a cryptic prey, and 

their performance within and across tasks was compared.  

I observed no learning in the maze task, whereas trout reduced their search time for cryptic 

prey by learning. Hatchery trout were more successful foragers in both tasks and learned 

faster than wild trout when foraging on cryptic prey. This differs from most previous studies 

which suggested reduced foraging skills in hatchery reared salmonids (e.g. Sundström & 

Johnsson 2001). 

Exploration behaviour of brown trout was highly consistent within both tasks, illustrating 

personality. However, individuals adjusted their behaviour to the context, and trout scored as 

fast explorers in the maze did not necessarily behave likewise in the cryptic prey task. 

Exploration tendency was therefore best explained as a context-specific trait. Evidence from 

other animal species suggests that selection can result in both context-specific (Coleman & 

Wilson 1998) and general behavioural syndromes (Huntingford 1976). The same behavioural 

syndrome structure described exploration behaviour for hatchery and wild trout. However, 

wild trout were more consistent than hatchery trout in their exploration strategy. Such 

differences could be caused by the rearing environment per se or by natural selection against 

individuals with less consistent behaviour in the wild-reared trout. 
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IV Adriaenssens B & Johnsson JI. No favors for the reckless: do personality traits predict fitness 

of brown trout in the wild? 

 

Studies on the association between personality traits and fitness related measures in nature are 

rare. Here I tested for associations between three behavioural axes in wild brown trout parr 

(age 1+ year): exploration tencency, behavioural flexibility and aggressiveness. Next I studied 

how these individual behaviours relate to social dominance and performance under natural 

conditions (growth, survival and movement). 

Our results support a behavioural syndrome in brown trout with more explorative 

individuals being more aggressive and showing more flexible behaviour. None of these 

behaviours affected social status, and aggressiveness and social status were poor predictors of 

performance in the wild. Interestingly, however, slow exploring personality types grew faster 

than bolder conspecifics in the wild. The finding that shy behaviour can result in faster 

growth in nature challenges the view that personality traits can be predicted by constant 

associations with life-history tradeoffs (Biro & Stamps 2008). 

 

 

V  Adriaenssens B & Johnsson JI 2009. Personality and life-history productivity: consistent or 

variable association? 

 

The occurrence of animal personality in nature is not easily explained (Sih et al. 2004a; 

Dingemanse & Reale 2005). Biro and Stamps (2008) defend the compelling hypothesis that 

consistent individual variation in behavioural traits can be explained by associations with 

traits involved in life-history tradeoffs. Such associations would favour personality traits 

when individuals differ consistently in rates of biomass production through growth or 

reproduction. In response to this article, we point out that associations between personality 

traits and life-history productivity may be more common in homogeneous (e.g. captive) 

environments, where directional selection can result in more stable associations between 

personality and life-history productivity. In contrast, more variable associations are expected 

in nature because of complex interactions between environmental heterogeneity and 
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behavioural payoffs. This view is further supported by the results in paper I, II and IV, 

showing that associations between boldness and growth in the wild are difficult to predict. 

 

 

MAIN FINDINGS 

 

• I show evidence that behavioural variation in brown trout often associates into 

behavioural syndromes. Separate behaviours of brown trout can therefore not be 

considered as isolated units, but often combine into clusters. 

 

• Behavioural variation was influenced by a combination of inherited and environmental 

effects. First, individuals from different maternal and paternal origin differed in their 

aggressiveness and response to novel prey or novel food. (I). Secondly, reduced rearing 

densities increased the response to novel prey, food search ability in a maze and predator 

response (II). Third, hatchery trout were more successful foragers than wild conspecifics, 

yet showed less repeatable exploration behaviour across time (III). 

 

• Reduced hatchery rearing densities facilitate the development of adaptive behaviour 

and post release survival in brown trout. These finding suggests that reduced rearing 

densities can promote the development of life skills in captive animals and may have 

implications for current rearing methods in supplementary hatcheries (II). 

 

• Personality traits were generally poor predictors of growth and survival upon release, 

suggesting that several behavioural strategies can be successful in nature. However, in 

paper II efficient foragers with superior anti-predator behaviour survived better upon 

release, whereas in paper IV slow exploring individuals grew faster than more bold trout. 

This contradicts a simple association between risk taking behaviour and growth-

mortality tradeoffs under natural conditions. 
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GENERAL CONCLUSIONS 

Advice for hatchery rearing 

Most captive rearing programs of fish aim at providing fish for the food marked (Brännäs & 

Johnsson 2008). Parallel to this, hatchery breeding programs also breed fish to compensate for 

declines in wild salmonid populations (ICES 2009). Whereas rearing methods in supplementary 

hatcheries are at present very similar to those in intensive fish farms, they may require very 

different approaches to reach their goals (Brännäs & Johnsson 2008). Several studies now show 

that hatchery reared fish differ phenotypically from wild fish and that this often impairs their 

survival in nature and the health of wild stocks (Olla et al. 1998; Einum & Fleming 2001; Araki 

et al. 2008). Pre-release training of behavioural skills has been put forward as a solution to this 

problem, yet results have been mixed (reviewed in Brown & Laland 2001). Our results, on the 

other hand, indicate that a simple change (reduction of rearing densities) can promote the 

development of behaviour in hatchery salmonids. In addition, we show that trout reared at lower 

densities are twice as likely to survive their first month after release compared to trout reared at 

higher densities. Changing focus from quantity to quality of released fish may therefore improve 

the efficiency of release programs. To evaluate the feasibility of this approach, further studies 

need to investigate whether higher adult return rates compensate for the increased production 

costs of low density rearing. In addition, concerns about the ethical aspects of captive rearing 

programs become increasingly important in decisions of whether we are prepared to pay this 

higher cost (Shumway 1999; Ashley 2007). 

 

Personality and growth-mortality tradeoffs 

Theoretical discussions recently suggested that personality may be a consequence of strong 

associations between behaviour and an individual state (see BOX 1, Wolf et al. 2007). 

Associations with a relatively stable state variable may then cause several behaviours to be 

consistent across time (personality) and show associations amongst one another (behavioural 

syndrome). Stable individual differences in growth rate have now been proposed as a state 

variable favouring the evolution of personality (Stamps 2007; Biro & Stamps 2008). As a result 

of growth-mortality tradeoffs, individuals prioritizing growth should then be more keen to take 

risks during foraging and more aggressive in competition for food. As discussed in paper V, I 
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suggest that this hypothesis may underestimate the complexity of associations between growth 

and personality traits in nature.  

 

The occasional absence of correlations between bold behaviour and growth in natural 

populations has previously been explained by reduced predation risks (Fraser et al. 2001; Biro et 

al. 2004), an environmental variable with obvious links to growth-mortality tradeoffs. In paper 

V, however, we suggest that also other aspects of the environment affect payoffs of personality 

traits. Such include the density of competitors and resources and their distribution in space and 

time (Grant 1993). Positive associations between aggression and food intake rates thereby 

typically occur in simple, predictable environments but often break up when the environment 

becomes more complex (e.g. Pettersson et al. 1996; Sundbaum & Näslund 1998; Hofmann et al. 

1999; Sloman & Armstrong 2002; Höjesjö et al. 2004; Sneddon et al. 2006). 

In agreement with this, our results show that personality traits of brown trout are generally 

poor predictors of their growth rate or survival in complex, natural environments (I, II & IV). In 

paper IV, however, we found slow exploring individuals to grow faster than more bold trout. 

Our results are likely the first to report a negative correlation between risk-prone personalities 

and growth rate in the wild. However, in several species, the growth of offspring from more bold 

mothers has been found to be slower when compared shy mothers (Both et al. 2005; Boon et al. 

2007; Wilson et al. 2010a). Other studies have also shown more heterogeneous, and often 

negative, associations between bold behaviour and mortality in nature (e.g. in bighorn sheep, 

Ovis Canadensis, Réale & Festa-Bianchet 2003 and Reale et al. 2009; reef fish, Pomacentrus 

amboinensis, Meekan et al. 2010; great tit, Parus major, Dingemanse et al. 2004 and Quinn et al. 

2009). Together, these results suggest that links between behaviour (i.e. risk-taking behaviour), 

and growth and mortality may be more variable under natural conditions (Lind & Cresswell 

2005). 

 

More study is needed to distinguish the exact mechanisms that cause this variation. Analysis 

of these mechanisms may require a closer look at under which conditions energetic costs 

outcompete foraging benefits of alternative behaviours (Grant 1993). Grant and Noakes (1988), 

for instance, show that differences in water current can change the costs of active movement in 

stream-living fish, and influences their aggressive tactics. Moreover, also changes in the social 
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environment (Metcalfe 1986; Vollestad & Quinn 2003), or physiology (Cutts et al. 1998; 

Monclús et al. 2005; Stoks et al. 2005; Millidine et al. 2009) may interact with the net benefits of 

behaviours. This suggests a greater importance of fluctuating selection pressures in explaining 

variation in personality traits in nature (see e.g. Wilson et al. 1994; Dingemanse et al. 2004). 

Future studies should therefore take variable associations between environmental variation and 

state variables into account to generate a more complete image of the evolutionary processes that 

maintain behavioural syndromes. 
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