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Therefore I  tell you, do not worry about your life, what 

you will eat or drink; or about your body, what you will 

wear. Is not life more important than food, and the body 

more important than clothes? Look at the birds of the air; 

they do not sow or reap or store away in barns, and yet 

your heavenly Father feeds them. Are you not much more 

valuable than they? 

 

Who of you by worrying can add a single hour to 

his life? 

 

So do not worry. Your heavenly Father knows that you 

need all these things. But seek first his kingdom and his 

righteousness, and all these things will be given to you as 

well. Therefore do not worry about tomorrow, for 

tomorrow will worry about itself. Each day has enough 

trouble of its own. 

 

Matthews chapter 6 verse 25-27 and 31-34 
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Därför säger jag er: bekymra er inte för mat och dryck att 

leva av eller för kläder att sätta på kroppen. Är inte livet 

mer än födan och kroppen mer än kläderna? Se på himlens 

fåglar, de sår inte, skördar inte och samlar inte i lador, men 

er himmelske Fader föder dem. Är inte ni värda mycket mer 

än de? 

 

Vem av er kan med sina bekymmer lägga en enda 

aln till sin livslängd? 

 

Gör er därför inga bekymmer. Er himmelske Fader vet att 

ni behöver allt detta. Sök först hans rike och hans 

rättfärdighet,så skall ni få allt det andra också. Gör er 

därför inga bekymmer för morgondagen. Den får själv bära 

sina bekymmer. Var dag har nog av sin egen plåga. 

 

Matteusevangeliet kapitel 6 vers 25-27 och 31-34 
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ABSTRACT 

Psychosocial stress has been recognized as an independent risk factor for cardiovascular 

disease and atherosclerosis. However, little is known about the mechanisms converting 

this psychosocial load into physical disease. This thesis aims to find and evaluate a well 

controlled animal model for stress and use it to study the long term consequences of 

stress on atherosclerosis. We also aim to use this model to search for mechanisms causing 

stress to accelerate the progression of atherosclerosis. 

We exposed atherosclerosis-prone ApoE-/- mice to social isolation, five physical 

stressors or social disruption stress (SDR-stress). A subgroup of SDR-mice and 

unstressed mice were treated with metoprolol. Atherosclerosis was assessed and blood 

samples were collected for analysis of corticosterone, lipids and cytokines. 

 We found that social isolation and SDR-stress increased atherosclerosis, while 

the five more physical stressors failed to be atherogenic. Metoprolol per se reduced 

atherosclerosis in unstressed mice. Plasma corticosterone levels were increased after all 5 

physical stressors and SDR-stress, but not in socially isolated mice. Plasma lipid levels 

were increased in socially isolated mice. Serum levels of the haemotopoietic cytokine G-

CSF were decreased in socially isolated mice, pro-inflammatory cytokines IL-6 and 

CXCL1 were increased after SDR-stress, but no effects on cytokine release was found 

after the five physical stressors. β-blockade with metoprolol likely reduced SDR-stress-

induced increases in both IL-6 and CXCL1, and significantly reduced CXCL1 and TNF-α 

levels in unstressed mice. 

This thesis has provided important information on how social stress accelerates 

atherosclerosis, and has suggested the release of pro-inflammatory cytokines as an 

underlying mechanism. Our hope is that our results, and further studies exploring 

mechanisms converting psychosocial stress into physical disease, will help to reduce the 

deleterious effects of psychosocial stress. 

 

 

Keywords: Psychosocial stress, Social isolation, stressors, social disruption stress, 

atherosclerosis, cytokines, corticosterone, metoprolol 
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POPULÄRVETENSKAPLIG SAMMANFATTNING 

Hjärt-kärlsjukdomar till följd av åderförkalkning är den vanligaste dödsorsaken i 

världen. Vi vet att de klassiska riskfaktorerna högt blodtryck, höga 

kolesterolnivåer, diabetes och rökning dramatiskt ökar risken för att drabbas av 

hjärt-kärlsjukdomar, men vi ser också att personer som saknar dessa riskfaktorer 

drabbas. En förklarning till detta kan vara stress, som under senare tid har visats 

vara ytterligare en riskfaktor för hjärt-kärlsjukdom. Trots att mycket numera tyder 

på att stress ökar risken att drabbas av hjärt-kärlsjukdom, så vet vi fortfarande inte 

varför. Syftet med denna avhandling var att försöka förstå sambandet mellan stress 

och åderförkalkning, och att hitta bakomliggande mekanismer. 

 

Vi har använt oss av genetiskt modifierade möss som spontant utvecklar 

åderförkalkning och fann att olika sorters stress påverkade åderförkalkning olika. 

Socialt betingad stress, som stör den sociala miljön som mössen normalt lever i, 

ökade åderförkalkningen, medan stress som är mer fysiskt betingad inte påverkade 

åderförkalkningen. Vi såg också att den socialt betingade stressen ökade 

blodnivåerna av olika inflammatoriska markörer, cytokiner, som tidigare visats 

påskynda utvecklingen av åderförkalkning. Vidare fann vi vissa bevis för att denna 

ökning av cytokiner kan vara medierad via det sympatiska nervsystemet, eftersom 

effekten kunde minskas av en β-blockerare, metoprolol. Samma  β-blockerare 

minskade också åderförkalkningen och frisättningen av cytokiner i möss som inte 

stressats, vilket visar att det sympatiska nervsystemet spelar en viktigt roll i 

åderförkalkningsutvecklingen.  

 

Sammanfattningsvis kan sägas att social stress som aktiverar immunförsvaret så 

att pro-inflammatoriska cytokiner frisätts, också är den sorts stress som leder till 

bildandet av åderförkalkning. Möjligen kan vanliga β-blockerare till viss del 

förhindra att denna stress leder till åderförkalkning. 
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INTRODUCTORY REMARKS 

Today we see a society with increasing expectations to succeed at work, 

financially, at home, among friends, indeed in every aspect of life. Our effort to 

succeed and please our surroundings is in many areas pushed to the limits, and 

beyond our capacity. On top of this, many people live alone with few people 

around for support and comfort in a stressful every day life. Accumulating 

evidence suggest that the resultant strain from all these aspects of modern day life 

is intimately linked to development of a range of diseases. 

 

Cardiovascular disease (CVD) is the major cause of death in today’s society [1] 

and a number of publications suggest that psychosocial stress is an important and 

often neglected risk factor for the disease [2, 3]. More specifically, social isolation 

has recently been suggested to be a risk factor for all cause mortality comparable 

with cigarette smoking and exceeding risk factors such as obesity and physical 

inactivity [4]. Although, it is increasingly clear that psychosocial stress plays a 

role in the development of CVD, little is known about the mechanisms converting 

a psychosocial load into physical disease. We know that a person experiencing a 

high level of stress is under a greater risk for myocardial infarction, stroke or any 

other cardiovascular event, but we do not know why. 

 

The aim of this thesis is to explore the underlying mechanisms converting 

psychosocial stress into physical disease, i.e. atherosclerosis. We have studied the 

effects of stress on atherosclerosis in genetically engineered atherosclerosis prone 

mice (ApoE-/- mice), since it is difficult to gain mechanistic insight from studies in 

humans. 
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INTRODUCTION 

Atherosclerosis 

As a result of reduced smoking and lower cholesterol levels in the population, and 

the advantages of new treatments for cardiovascular disease (CVD), the incidence 

of coronary artery disease and the cardiovascular mortality rate have declined in 

Western societies over the last few decades [5, 6]. However, CVD is still the 

leading cause of death worldwide today and causes an estimated 30-40 % of all 

deaths [6, 7]. CVD is predicted to remain the single leading cause of death 

globally over the next 20 years [1]. Atherosclerosis is the major underlying cause 

for CVD.  

 

Atherosclerosis is a slowly progressing disease that is initiated early in life and 

develops further throughout life. The progression of atherosclerosis may continue 

for decades without symptoms, but eventually the atherosclerotic lesions may 

rupture and cause a clinical event such as stroke or myocardial infarction.  

 

The traditional risk factors for atherosclerosis and CVD are hypertension, 

hyperlipidemia, smoking and diabetes [8]. These risk factors contribute 

substantially to the development of atherosclerosis. 

 

A role for stress in atherosclerosis 

The traditional risk factors do, however, not account for all cases of disease [8] 

and lately, psychosocial stress has been identified as an important contributor [2, 

3]. In a recent meta-analysis, social isolation was suggested to be a risk factor for 

total mortality comparable with cigarette smoking and exceeding risk factors such 

as obesity and physical inactivity [4]. Moreover, depression and the lack of social 

support are two forms of stress that after acute myocardial infarction are 



 13 

associated with increased cardiac morbidity and mortality [9-11]. However, 

despite accumulating evidence and increased awareness of the importance of stress 

in the pathogenesis of CVD, the underlying mechanisms are still largely unknown. 

It is believed that the prolonged, multifaceted neurohormonal activation seen 

during chronic exposure to stress may be harmful for the cardiovascular system [3, 

12].  

 

During stress the sympathetic nervous system (SNS) is activated, noradrenalin and 

epinephrine are released and bind to their receptors, adrenoceptors, resulting in 

increased heart rate, vasoconstriction etc. Moreover, the hypothalamus-pituitary- 

adrenal axis (HPA-axis) is activated by stress. When the HPA-axis is activated 

ACTH (adrenocorticotropic hormone) is released from the pituitary and stimulates 

the release of corticosterone from the adrenal glands. Cortisol is a classical “stress 

hormone” that is released within minutes after activation and has, among many 

properties, immunosuppressive effects. The role for cortisol in atherogenesis is 

however complex, and not fully understood [13]. Thus, in response to stress the 

SNS and the HPA-axis are activated and subsequently mediate their distinctive 

effects on the cardiovascular system and other target organs. 

 

Clinical investigations and population studies have provided important 

information on the association between stress and development of atherosclerosis, 

but have not been able to provide information on underlying mechanisms. Animal 

experiments are therefore crucial to determine causality and to understand 

mechanisms by which stress accelerates atherosclerosis.  

 

In landmark studies, Kaplan and coworkers showed that atherosclerosis 

development was accelerated in male cynomolgus monkeys living in an unstable 

social environment [14, 15]. The effect on atherosclerosis was blocked by non-

selective β-blockade using propranolol [16]. Furthermore, selective β1-



 14 

adrenoceptor blockade by metoprolol protected against endothelial injury induced 

by stress (Skantze et al., 1998). Social isolation has also been shown to increase 

development of atherosclerosis in rabbits living in isolation [17].  

 

Mechanistic links between stress and atherosclerosis 

The interactions between stress and atherosclerosis may occur at several levels. 

Although the mechanisms linking CVD and stress are not clarified, a number of 

hypothetical interactions exist. The following text is an outline of the most 

important steps in atherosclerosis development and how stress may interfere with 

these processes.  

 

Sympathetic activation – a link between stress, the immune system 

and atherosclerosis 

Blockade of the sympathetic nervous system (SNS) by β-blockers have been 

shown to reduce the risk of cardiovascular events after myocardial infarction, in 

patients with hypertension and in heart failure [18, 19]. The mechanisms behind 

this cardioprotective effect have been attributed to the many positive effects β-

blockers have on cardiac function: anti-arrhythmic effects, improvement of 

myocardial function and lowering of cardiac oxygen consumption and lowering of 

blood pressure. In addition, a few studies have also shown that β-blockers may 

have a direct anti-atherosclerotic effect [20, 21]. Interestingly, a SNS mediated 

induction of the transcription factor nuclear factor-κB (NF-κB) by psychosocial 

stress has been observed in humans as well as in mouse models [22, 23]. This 

stress- and noradrenalin-mediated NF-κB activation induce IL-6 mRNA 

transcription and can be inhibited by adrenergic blockade [22]. In this way 

psychosocial stress, via activation of the SNS, can be linked to the immune 

system.  
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Atherosclerotic plaque formation 

Atherosclerotic lesions are formed specifically in regions where blood flow is 

disturbed, i.e. in bifurcations and curvatures [24, 25], and very little in regions 

with laminar flow. Atherosclerosis is an inflammatory disease and leukocytes, 

mostly monocyte-derived macrophages and T cells [26], are abundant in the 

lesions and play very important roles for the progression of the disease [24, 27]. 

Hence, the activation of endothelial cells and the subsequent expression of 

adhesion molecules and chemokines, in regions with turbulent flow [28-30] are 

important for the recruitment of leukocytes to these sites.  

 

Atherosclerosis is initiated when infiltration and accumulation of low density 

lipoprotein (LDL) in the arterial intima initiate an immune response in the vessel 

wall [31, 32]. Modified LDL particles, such as oxidized LDL (oxLDL) activate 

endothelial cells, which express leukocyte adhesion molecules such as vascular 

cell-adhesion molecule 1 (VCAM-1) [33]. Leukocytes, mainly monocytes and T-

cells, then bind to VCAM-1 on endothelial cells and, by the guidance of 

chemokines produced by vascular cells, migrate into the intima. In the intima, 

monocytes differentiate into macrophages which release pro-inflammatory 

cytokines, chemokines etc. that further augment the inflammatory response. 

Macrophage uptake of oxLDL through scavenger receptors, leads to intracellular 

accumulation of cholesterol and the subsequent formation of foam cells (reviewed 

in [34]). Activated macrophages express class II major histocompatibility complex 

(MHC class II) that allow presentation of processed oxLDL as antigens to T cells, 

which are then activated and secrete cytokines [34]. Early atherosclerotic lesions, 

fatty streaks, are mainly composed of foam cells [24]. Fatty streaks progress into 

atheromas, which are complex atherosclerotic lesions with a lipid rich core and a 

covering fibrous cap that contains smooth muscle cells and a collagen-rich matrix 

[26]. Although the lesions grow in the intima the lumen diameter of the vessel 

remains constant, due to remodulation of the outer boundaries of the artery. This 
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phenomenon compensates for plaque expansion to a certain extent. However, as 

the plaque continues to grow narrowing of the lumen will eventually occur with 

stenosis as a consequence [35]. 

 

There are a few animal models in which stress has been shown to increase 

formation of atherosclerotic lesions in monkeys, rabbits and possibly also in mice 

[15, 17, 36]. It is, however, unclear at what mechanisms these actions take place. 

There are evidence suggesting that stress may lead to increased plasma lipid levels 

[37], and may thus lead to increased lipid accumulation in the vessel wall. 

Moreover, administration of the β-blocker metoprolol to rabbits decreased the 

expression of adhesion molecules VCAM-1 and ICAM-1, reduced lipid 

accumulation in lesions, and subsequently stabilized vulnerable atherosclerotic 

plaques [38]. 

 

Plaque rupture leads to clinical events 

Fatty streaks are present from young age and do not cause symptoms. Fatty streaks 

can, however, progress into advanced atherosclerotic plaques (atheromas) and 

these can in some cases cause disease. When the fibrous cap covering the plaque 

ruptures and the pro-thrombolytic interior is exposed to the blood stream a 

thrombus forms blocking the artery and causing an acute event like stroke or 

myocardial infarction [39]. Pro-inflammatory cytokines including INF-γ and TNF-

α are released by activated immune cells in the plaque. INF-γ inhibits 

proliferation, collagen secretion and expression of contractile proteins by smooth 

muscle cells [40, 41]. These cytokines also stimulate the production of proteases 

(MMP’s etc.) that attack and degrade collagen in the fibrous cap. Both these 

effects reduce the stability of the plaque. Activated immune cells can also produce 

pro-thrombotic and pro-coagulant factors that directly enhance the formation of a 

thrombus [27]. 
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Stress may, through the activation of SNS, trigger cardiovascular events such as 

myocardial infarction [12, 42]. It is well known that increased sympathetic activity 

activates platelets, and thus increases the thrombogenic properties of blood. 

Moreover, stress has been shown to cause endothelial dysfunction and arrhythmia 

(reviewed in [12]). All of these effects may as a response to stress trigger 

cardiovascular events. 

 

Cytokines and chemokines in atherosclerosis 

Cytokines produced by macrophages and T cells are key players during acute and 

chronic inflammation. Many cytokines have been assigned important roles in 

atherogenesis, most of them with pro-atherogenic effects (e.g. IL-1, IL-6, IL-12, 

IL-18, IFN-γ, TNF-α, MIF and M-CSF) while only a few anti-atherogenic 

cytokines has been identified (IL-10 and TGF-β) [43-45].  

 

In the tissue, activated T cells generally differentiate into T helper cells type 1 

(Th1) or T helper cells type 2 (Th2) and start producing cytokines specific for Th1 

and Th2 responses, respectively [46]. Th1 cytokines are predominant in 

atherosclerotic lesions, while Th2 cytokines are less common [44]. Activated Th1 

cells begin producing INF-γ, TNF-α and IL-1 [27]. These cytokines induce the 

production of IL-6, which is a potent inducer of acute phase proteins like C-

reactive protein (CRP) and serum amyloid A (SAA) [47]. In fact, both IL-6 and 

CRP are independent risk factors for CVD [48-50]. Moreover, pro-inflammatory 

cytokines like IFN-γ, TNF-α and IL-6 has been shown to increase in humans after 

exposure to both acute and chronic stress [51-53], suggesting that psychosocial 

stress may initiate a Th1-like response. 

 

Chemokines are chemoattractant molecules that promote and guide leukocyte 

migration from the blood stream into the inflamed tissue. Several chemokines 
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have been associated with atherosclerosis and play critical roles in directing 

leukocytes into atherosclerotic-prone vessels [54]. The role for stress in the 

production and release of chemokines is poorly understood. However, there are 

some data suggesting that plasma levels of monocyte chemotactic protein-1 

(MCP-1) may be increased in chronically stressed women [55, 56]. 
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HYPOTHESIS 

We hypothesize that prolonged exposure to psychosocial stress may induce the 

production of pro-inflammatory cytokines and chemokines and subsequently 

accelerate atherosclerosis. Figure 1 illustrates the specific questions we sought 

answers to in this thesis. 

 

 
 

Figure 1. A summary of hypothesized mechanistic links between psychosocial stress and 

atherosclerosis. We hypothesized that the different forms of stress would activate the sympathetic 

nervous system (SNS) and the hypothalamus-pituitary-adrenal axis (HPA-axis), leading to a 

cascade of downstream events, eventually accelerating atherosclerosis. We also hypothesized that 

the β-blocker metoprolol would inhibit effects such as cytokine release mediated by the SNS. BP- 

blood pressure; HR-heart rate. Dashed lines represent hypothesized pathways. 
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AIMS OF THE THESIS 

The general aim of this thesis was to find and evaluate a controllable form of 

social stress that in the long term leads to increased atherosclerosis in mice. 

Further, the aim was to search for mechanisms causing social stress to accelerate 

the progression of atherosclerosis. 

 

The specific aims of this thesis were: 

 

To investigate the effects of social isolation and environmental enrichment on 

atherosclerosis in ApoE-/- mice (Paper I). 

 

To investigate the effects of five physical stressors on atherosclerosis in ApoE-/- 

mice. The aim was also to evaluate the possible synergistic effect of these stressors 

with a high salt intake (Paper II). 

 

To investigate the effects of long-term SDR-stress on atherosclerosis in ApoE-/- 

mice. Further, the aim was to compare SDR-stress with the five physical stressors 

used in Paper II, regarding cytokine release (Paper III). 

 

To investigate a possible anti-atherogenic effect of metoprolol, and to study the 

effects of this β-blocker on cytokine release in ApoE-/- mice (Paper IV). 
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METHODOLOGICAL CONSIDERATIONS 

Mouse models for atherosclerosis 

Atherosclerosis does not develop spontaneously in laboratory mice because of 

their lipid profile, with high HDL levels and low LDL levels, which significantly 

differ from humans [57-59]. However, targeted deletion of specific genes 

(knockout) can provide mouse strains that develop atherosclerosis. One such 

mouse strain is ApoE-/- mice, where the gene for apolipoprotein E is knocked out. 

These mice display severe hypercholesterolemia and spontaneously develop 

atherosclerosis [58]. Another genetically modified mouse strain that develop 

atherosclerosis is LDL-/- mice lacking the gene for LDL receptors. These mice 

preferably need to be fed a high cholesterol diet to develop atherosclerosis [60]. In 

this thesis ApoE-/- mice have been used. 

 

The ApoE-/- mouse 

Genetically manipulated mice, such as ApoE-/- mice are convenient to use in 

atherosclerosis research. Atherosclerosis is a disease that develops very slowly and 

leads to clinical events late in life. Mice have a short life span and develop 

atherosclerosis in a matter of weeks or month, compared to several decades in 

humans. Moreover, mice are small in size and are thus easy to house and can be 

maintained at low costs. However, with the small body size follows limitations in 

amount of tissue and blood samples that can be collected. 

 

Atherosclerotic lesion development in ApoE-/- mice 

ApoE-/- mice display very high cholesterol levels even on a standard diet, mostly 

in the VLDL and chylomicron remnant fractions [59, 61]. Importantly, although 

ApoE-/- mice display a different lipid profile than humans, atherosclerotic lesion 
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development appears to be similar at early stages of atherosclerosis with the initial 

formation of fatty streaks that further progress into advanced lesions with a fibrous 

cap [62].  

 

Unexpectedly, the inter-individual variability in lesion area is very large in ApoE-/- 

mice, despite inbreeding for many generations [57]. One would expect genetically 

“similar” individuals to display similar lesion area after exposure to the same 

treatment. In the light of the theme of this thesis, it is intriguing to speculate 

whether the level of stress as a result of hierarchal position may contribute to this 

variability. This, however, remains to be investigated. 

 

Dietary manipulations 

Western diet (Paper IV) 

Although ApoE-/- mice develop atherosclerosis on standard chow, atherosclerosis 

can be further accelerated by feeding mice a high cholesterol and high fat diet 

[61]. This diet is usually called a “western diet“, and contains 0.15% cholesterol 

and 21% fat, in this thesis (Paper IV). However, subtle changes in plaque 

progression caused by other mechanism than hypercholesterolemia may be 

overshadowed by the atherogenic effect of the very high cholesterol levels that 

ApoE-/- mice display on western diet.  

 

High salt diet (Paper II) 

A high salt intake increases blood pressure in salt-sensitive individuals, and may 

also increase blood pressure in the population. However, the effect of a high salt 

intake on blood pressure is controversial. Although some studies suggest a positive 

relationship between salt intake and hypertension, intervention studies have failed 

to show substantial effects on blood pressure after salt restriction [63-65]. The 
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response to either salt loading or salt restriction is off-set by changes in salt 

excretion induced by changes in the activity of the sympathetic nervous system 

(SNS) and the renin-angiotensin aldosterone system (RAAS). If regulation of the 

SNS and RAAS is defect a salt load may not be excreted and thus results in a 

pathological rise in blood pressure. It appears as a defect in RAAS sensitivity to 

salt loading is responsible for high blood pressure in a subgroup of patients [66]. 

In accordance, our group has previously shown that fixed high Ang II levels, 

imitating a dysregulated RAAS, in combination with a high salt diet accelerates 

atherosclerosis in ApoE-/- mice, in a way that a high salt diet or Ang II infusion 

alone do not [67]. In the light of this finding we wanted to test the hypothesis that 

psychosocial stress may cause a dysregulation of SNS and would thus, in 

combination with a high salt diet accelerate atherosclerosis to a greater extent than 

psychosocial stress alone. In Paper II we thus administrated a high salt diet (8% 

NaCl) to two of four groups of mice.  

 

Animal models for stress 

In stress research several different animal models have been described in the 

literature. In this thesis we have used social isolation (Paper I), five physical 

stressors (Papers II and III), and social disruption stress (SDR-stress; Paper III) as 

models for psychosocial stress in mice. 

 

Social isolation (Paper I) 

Mice are social animals that prefer living in groups and develop stable social 

hierarchies. To deprive mice of social interaction is thus stressful. During social 

isolation in Paper I mice were socially deprived by individual housing during 20 

weeks. We compared socially deprived mice with group housed mice with 

different levels of environmental enrichment.  
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However, there are some limitations and potential confounding factors with using 

social isolation as a model for psychosocial stress. Although mice are likely 

experiencing stress due to the lack of social support, socially isolated mice also 

alter their behavior compared to group-housed mice. Such behavioral changes 

could be decreased physical activity and changed food intake. Physical inactivity 

is a know risk factor for CVD and may confound our results. It is difficult and 

expensive to assess the level of physical activity in mice without disturbing natural 

behavior. Therefore, comparing individually housed mice with group housed mice 

has limitations that must be taken into account when analyzing data. Moreover, in 

the normal situation mice cuddle together to keep warm. Social isolation may thus 

lead to problems with maintenance of normal body temperature, and may cause a 

subsequent activation of the sympathetic nervous system which may also 

confound our results. 

 

Physical stressors (Papers II and III) 

To overcome problems with confounding factors when comparing group-housed 

mice with individually housed mice, we wanted to find a form of stress that could 

be performed in a more controlled manner, in group housed mice. We exposed 

mice to five different physical stressors during 2 hours per day for twelve weeks. 

We used restraint stress, rat odor stress, the combination of restraint and rat odor 

stress, balance stress, and air-jet stress (Fig. 2A-E). Mice were exposed to each of 

the five stressors once a week in a randomized order, so that mice were exposed to 

all five stressors every week. 
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Figure 2. The five stressors used in Paper II and III. (A) Restraint stress, where mice were 

immobilized in a well ventilated plastic tube; (B) Rat odor stress, where mice were placed in a 

cage with saw dust where male rats had previously been held;  (C) Rat odor combined with 

restraint stress;  (D) Balance stress, where mice were placed in a cage with an unstable floor; and 

(E) Air-jet stress, where mice were placed in a specially designed cage into with a stream of 

compressed air was intermittently blown in periods of 2-10 minutes followed by 2-10 minutes of 

rest.  

 

SDR-stress (Paper III) 

In Paper III we wanted to evaluate a more social form of stress in group-housed 

mice. We used a social form of stress, termed social disruption stress (SDR-

stress), which was controllable in the same way as the five physical stressors. 

SDR-stress is based on the fact that male mice housed together develop social 

hierarchies. Disruption of these established hierarchies is a model for social stress 

in rodents [68].When a resident mouse becomes subordinate to an intruding mouse 

this causes immune-endocrine alternations [69]. During SDR-stress a dominant 

intruder is introduced into a group of mice with established hierarchies (Fig. 3). 
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SDR-stress has been shown to increase the release of pro-inflammatory cytokines 

like IL-6 and TNF-α [70, 71], with known pro-atherogenic effects. We therefore 

hypothesized that SDR-stress triggers an immune response that in the long term 

would be atherogenic. 

 

During SDR-stress sessions mice fight to defend hierarchal position. This may 

lead to wounds with subsequent inflammation. Previous studies have shown that 

cytokine levels after SDR-stress correlate to wounds caused by the fights [72]. To 

ensure that the potential effects of SDR-stress on cytokine release was due to 

increased stress, and not infected wounds, mice were carefully monitored during 

SDR-stress in Paper III. Mice were allowed to fight, but if biting occurred the 

attack was immediately interrupted by the researcher. In this way wounds were 

successfully avoided and could be eliminated as a confounder in this study. 

 

 

 

 

Figure 3. Social disruption stress 

(SDR-stress) where a dominant 

intruder was introduced into a cage 

with male mice with stable social 

hierarchies.   

 

 

 

Quantification of atherosclerosis (Papers I-IV) 

Atherosclerotic plaque area was quantified at two different sites, using two 

different methods both en face area and the cross-sectional area. En face 

quantification is a lipid staining of the inner (intimal) surface of the opened vessel 

showing how much of the intimal surface that is covered by lesions. En face 
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quantifications tell nothing about the developmental stage of the plaque (i.e. fatty 

streaks, advanced lesions) or plaque composition (collagen and immune cell 

content etc). Cross-sections of vessels, on the other hand, show both how much of 

the vessel lumen that is occluded by the lesion and can be immunohistologically 

stained and lesion composition can be investigated. Importantly, there is only a 

weak correlation between plaque size in the thoracic aorta and the innominate 

artery [57], possibly dependent on atherosclerotic stimuli. It is therefore important 

to quantify atherosclerosis at more then one site.   

 

En face quantification (Papers I-IV) 

The thoracic aorta (from the left common carotid artery to the left renal artery) 

was used in Papers I, II and IV (Fig. 4A), while the whole aorta (from the left 

common carotid artery to the aortic bifurcation) was used in Paper III.  

 

Cross-sectional quantification (Papers I-III) 

Cross-sections of the innominate artery (Papers I and III) were stained with 

Miller’s elastin (Paper I) or Picrosirius red (Paper III; Fig. 4B). The aortic root 

(Paper II and III) were stained with Picrosirius red (Paper II) or Oil red O (Paper 

III). Lesions were measured by a blinded observer.  

 

 
Figure 4. Quantification of atherosclerosis. (A) Thoracic aorta pinned onto a silicone-coated dish 

and stained with Sudan IV for lipids. (B) A cross-section of the innominate artery stained with 

Picrosirius red for collagen.  
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Immunohistochemistry (Paper II) 

With the immunohistochemical technique protein expression can be quantified in 

cross-sections of vessels, or other tissue, by the interaction with specific 

antibodies. In Paper II an antibody specific for macrophages (MAC-2 primary 

antibody) were used in cross-sections of the aortic root to quantify the macrophage 

content of the lesions.  

 

Osmotic minipump operations (Papers III and IV) 

Reliable drug delivery during an experiment is very important to achieve good 

results in research. In animal experiments per oral administration is complicated, 

while injections are invasive, time consuming, and there is always a risk that the 

drug is not always injected to the right compartment (i.e. intraperitoneal injection 

can easily become a subcutaneous or intramuscular injection if the animal 

suddenly moves). To overcome these drug delivery problems, osmotic minipumps 

were used in Papers III and IV for metoprolol administration. These osmotic 

minipumps are implanted subcutaneously on the back of the mouse and reliably 

deliver drugs at a specific infusion rate during up to 6 weeks (depending on 

model).  

 

During minipump implantation mice were anesthetized with isoflurane during 5-

10 minutes and minipumps were implanted subcutaneously on the back of the 

mouse. Mice were given analgesics (Temgesic) subcutaneously before the 

operation.  
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Blood pressure measurements (Papers I and II) 

Blood pressure measurements are difficult to perform in a reliable way in mice. In 

this thesis three different methods have been used, each with its advantages and 

drawbacks. 

 

Tail-cuff technique (Paper I) 

A non-invasive tail cuff system was used in Paper for measurement of systolic 

blood pressure (SBP). The conscious mouse was kept in a restrainer, with a 

standard acclimatization time of 10 min. An advantage with this method is that it 

is non-invasive and mice are conscious. However, although mice are allowed 

acclimatization to restraint, the situation is stressful and may affect blood pressure 

(see results in Paper II, where both heart rate and blood pressure increase for 2 

hours during restraint stress; [73]).  

 

Anesthetized mean arterial pressure measurement (Papers I and II) 

On the day of termination, mice were anaesthetized and mean arterial pressure 

(MAP) was measured by placing a catheter in the left common carotid artery.  

 

An advantage with this method is that mice are not exposed to stress since they are 

anesthetized. However, the blood pressure may vary with the level of anesthesia. 

Further, depending on previous treatment mice may react differently to anesthesia.  

 

Blood pressure telemetry (Paper II) 

To overcome problems with exposing mice to a stressful situation during BP 

measurements in conscious mice and the risk that mice react differently to 

anesthesia during measurements in anesthetized mice, radiotelemetry transmitters 

can be used. Transmitters were implanted in the abdomen of the mice (Paper II) 
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and a small catheter attached to the telemetry transmitter was implanted into the 

aorta via the left common carotid artery. During recording conscious mice are left 

undisturbed, freely moving in their home cages, thus avoiding both stress and 

problems caused by anesthesia. This method therefore provides very reliable blood 

pressure measurements. However, a drawback is that the apparatus and 

maintenance of the system for telemetry measurement is expensive and 

implantation demands surgical skills. 

 

Electrocardiography (Paper II) 

ECG for mice in Paper II was obtained by telemetry technique similar to BP 

telemetry. Mice were implanted with a transmitter in the abdomen and ECG 

electrodes were placed under the skin on the chest for HR measurements. 

 

Sample collection and biochemical analysis 

Corticosterone (Papers I-III) 

When analyzing corticosterone levels correct sampling methods are crucial to 

obtain reliable results. Corticosterone, the rodent homolog of cortisol, is rapidly 

released into the blood stream upon arousal and stress and can be detected after 

about 2 minutes [74]. It is therefore of great importance to collect blood samples 

within a maximum time of 2 minutes from removing the mouse from its home 

cage.  

 

Furthermore, besides collecting blood samples rapidly it is also important to 

collect all samples during the same time of the day since corticosterone is a 

hormone with a circadian rhythm. Corticosterone levels are reasonably stable 

between 08.00 and 12.00 am [75], a few hours into the light period when mice 



 31 

sleep. In all experiments in this thesis samples for corticosterone analysis were 

taken during this time period. 

 

A way to overcome the problems with rapid release of corticosterone into the 

blood stream upon handling the mice, urinary corticosterone can be measured. 

Upon activation of the HPA-axis increases in urinary corticosterone levels can be 

detected after 1 hour, instead of within 2 minutes as is the case for plasma samples 

[74]. Further, collection of urine is less invasive than blood sampling.  

 

It is difficult to obtain good baseline or control levels of corticosterone in plasma 

samples, because of the rapid release of the hormone during sample collection. As 

a consequence, there is a risk that subtle changes in corticosterone levels can be 

missed when plasma samples are used. Therefore, in this thesis plasma samples 

were only used to measure acute effects of different forms of stress on 

corticosterone release (Papers II and III). To investigate more subtle chronic 

changes urine samples were used (Papers I-III). 

 

Cytokines (Papers I, III and IV) 

Blood for analysis of cytokines was collected at termination from the right 

ventricle of the heart. Cytokine measurements are not as sensitive to handling 

stress during sample collection as corticosterone measurements are. Most 

cytokines are not stored within the cells but are produced de novo upon activation, 

a process that usually takes a couple of hours [76].  

 

IL-6 (Paper III) 

Plasma IL-6 levels were analyzed using a Quantikine Mouse IL-6 ELISA kit 

(R&D Systems, Inc. Minneapolis, USA), according to the manufacturer’s 
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protocol. IL-6 is synthesized mainly by macrophages and T cells upon activation. 

However, during baseline conditions IL-6 levels are very low, and can be difficult 

to detect in plasma. Many samples in control mice usually fall below the detection 

limit of the ELISA. These samples were therefore assigned a value corresponding 

to the sensitivity of the assay (1.6 pg/mL). However, this raises statistical 

problems when analyzing IL-6 data (commented in the “Statistics” section below). 

Another problem with very low baseline levels of IL-6 it that is not possible to 

detect decreases in IL-6 compared to a control situation. 

 

Th1/Th2 cytokines (Papers III and IV) 

Th1 cytokines (IL-1β, IL-2, IL-12 total, IFN-γ, TNF-α and CXCL1) and Th2 

cytokines (IL-4, IL-5 and  IL-10) were measured using a Mouse Th1/Th2 

Multiplex ELISA (Meso Scale Discovery, Gaithersburg, Maryland, USA) 

according to the manufacturer’s protocol. This multiplex ELISA measures 9 

cytokines in a MULTI-SPOT 96-well plate where the capture antibodies are 

coated on the bottom of the wells on specific spots for each cytokine. During 

incubation each cytokine binds to its corresponding capture antibody spot, and 

cytokine levels are quantified using a labeled cytokine-specific detection antibody. 

 

This method makes it possible to specifically measure several different cytokines 

in one assay using only a small amount of sample, and still get a reliable result. 

When using mouse models for research, there are always limitations in sample 

size, because mice are small animals. Therefore, a multiplex ELISA opens up the 

possibility to measure many parameters although sample supply is limited. 
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CXCL1 (Paper III) 

Serum levels of CXCL1 were analyzed using a Quantikine Mouse CXCL1 ELISA 

kit (R&D Systems, Inc. Minneapolis, USA), according to the manufacturer’s 

protocol. 

 

G-CSF (Paper I) 

G-CSF was measured in Paper I using a premixed Bio-Plex Mouse Cytokine panel 

(Bio-Rad Laboratories, Hercules, CA, USA).  

 

However, there are some limitations to this method. This method has an inter-

/intra-assay variability of <30 %CV and <20, respectively. Such high inter-/intra-

assay variability, decreases the reliability of the assay. This method was still used, 

because it was the only method available at that time. Moreover, samples had been 

stored at approximately -20°C more than six month, which may have affected the 

quality of the samples. Due to space restrictions we could only perform this 

analysis on samples from two of the four groups in Paper I (socially deprived and 

environmentally enriched mice). Still, the result of this assay may contribute with 

important information.  

 

Lipids (Papers I-IV) 

In Papers I and II, total cholesterol and triglycerides in plasma were analyzed 

enzymatically and the concentrations were subsequently determined 

spectrophotometrically (Roche/Hitachi analyzer, Roche Diagnostics, Indianapolis, 

IN, USA). Total serum cholesterol in Papers III and IV were determined 

colorimetrically after enzymatic hydrolysis and oxidation using a cholesterol kit 

(Cholesterol enzymatic endpoint method, RANDOX Laboratories Ltd., United 

Kingdom), according to the manufacturer’s protocol. 
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Triglycerides levels are affected by food intake and should be measured in the 

fasting state. However, fasting per se may potentially be stressful to the mice and 

the mice were hence not fasted in this thesis. In Paper III triglycerides were not 

measured because, as a consequence of the experimental design, control mice but 

not SDR-mice had access to food immediately before termination. Triglycerides 

were not measured in Paper IV, either, because mice in this study were fed a high 

fat diet.  

 

Isoprostanes (Paper I) 

Isoprostanes are prostaglandin-like compounds produced during lipid peroxidation 

and have been suggested to be a marker for in vivo lipid oxidation possible to 

measure in a urine sample [77] However, there are limitations when urinary 

isoprostanes are measured. Urinary isoprostane only reveals changes in systemic 

oxidative stress and does not assess local changes of oxidative stress possibly 

present in the blood vessel wall. 

 

Behavioral studies (Paper I) 

Exploratory behavior 

We analyzed exploratory behavior in Paper I to find out if social isolation changed 

natural behavior of mice. Exploratory behavior was measured in a novel 

environment, using activity boxes. Interpretation of data obtained from this 

analysis is, however, very complex. It has been suggested that corner time is a 

measure of anxiety, fear or inactivation, and that rearing activity is a measure of 

exploratory activity, while locomotor activity is merely a measure of the mouse’s 

physical activity [78] 
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Salt appetite 

Psychosocial stress has previously been shown to induce an increased appetite for 

salt in rats [79, 80]. We measured salt appetite, in Paper I, as a mean to assess the 

level of stress in mice. Preference for salt in drinking water was letting mice 

choose between tap water and a 1% NaCl solution. Although salt appetite is not an 

absolute measure of psychosocial stress, it still provides important information in 

that mice are indeed affected by the treatment, in this case social isolation.  

 

Statistics 

When the number of observations is low (4-20 individuals per group in this 

thesis), it is difficult to know if data is normally distributed. Skewness and kurtosis 

values close to zero suggest that data is normally distributed, but with small 

sample size this is not always true. Therefore, mainly non-parametric statistics, 

Kruskal-Wallis followed by Mann-Whitney U test (SPSS Statistics version 17.0, 

Chicago, IL, USA), have been used to analyze data in this thesis. Blood pressure, 

heart rate and body weight are known to be normally distributed (and displayed 

skewness and kurtosis values close to zero in Paper I) and was thus analyzed with 

parametric one-way ANOVA followed by post hoc testing using Tukey’s HSD 

(SPSS). Atherosclerotic plaque area in aortic root was analyzed with a repeated 

measurement two-way ANOVA (SPSS). 

 

In the IL-6 analysis in Paper III many samples fell below the detection limit of the 

assay and were therefore assigned a value corresponding to the sensitivity of the 

assay (1.6 pg/mL). Median values are compared when using non-parametric 

statistics, and in this case when many values equal 1.6, the median value may 

actually equal 1.6 for several study groups, and thus group median values appear 

similar. However, this is a limitation of the method rather then a biological 

phenomenon. A way to overcome this problem is to logarithmically transform IL-
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6 data and subsequently analyze with one-way ANOVA followed by post hoc 

testing using Tukey’s HSD (SPSS). This method allows the comparison of mean 

values, although data is non-parametric, and statistical significance can be 

declared.  

 

A p-value <0.05 is considered statistically significant in this thesis. However, 

when many measurements are performed there is always a risk for mass-

significance and subsequent type 1 errors. There are different approaches to reduce 

the risk for mass-significance. One approach is to use Bonferroni correction [81] 

where the p-value is divided by the number of measurements. However, 

Bonferroni is a conservative method, with a risk to miss significant changes (type 

2 error) when the number of measurements are high. In the Th1/Th2 analysis in 

Papers III and IV 9 cytokines were analyzed. Using Bonferroni correction would 

result in statistical significance if p<0.006 (α/9). We considered this too 

conservative. We therefore chose to use a 99 % significance level (p<0.01) to 

determine statistical significance. 
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SUMMARY OF RESULTS AND DISCUSSION 

Social but not physical stress increase atherosclerosis    

(Papers I-III) 

In this thesis we have found that different forms of stress affect atherogenesis 

differently. In Paper I, social isolation accelerated atherosclerosis in the 

innominate artery, while the five physical stressors used in Paper II failed to be 

atherogenic [73, 82]. In Paper III we used SDR-stress, and found a significant 

correlation between stress level and atherosclerosis in the aorta. Moreover, we 

found a numerical increased plaque area in aortic root, but this increase was not 

statistically significant (p= 0.096). Nevertheless, taken together plaque data from 

aorta and aortic root indicate that SDR-stress indeed may accelerate 

atherosclerosis. Thus, we suggest that social stress, which intervenes with the 

social environment, accelerates atherosclerosis in ApoE-/- mice. The five more 

physical stressors, on the other hand, appear easier to cope with.  

 

The lack of social support is an important source of psychosocial stress in humans 

[12] as well as in animal models [83, 84]. Social isolation is also known to 

increase cortisol levels in monkeys and to increase atherosclerosis in rabbits [17, 

85]. However, although restraint and rat odor stress earlier in a brief report have 

been suggested to be associated with increased atherosclerosis [36], we found no 

such association in Paper II [73]. The lack of atherogenicity of the five physical 

stressors may be due to the fact that mice, after 2 hours of stress exposure, were 

returned to their home cages and group mates. Thus, mice had social support and 

time to recover during 22 hour per day. In fact, studies have shown that social 

support protects against CVD [4, 12]. In Paper III mice, were exposed to SDR-

stress during 2 hours, but the stress caused by disturbed hierarchies and the 

following struggles to re-establish hierarchies continued after the SDR-session 
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was ended. In this way, mice were exposed to a socially stressful environment 

during a larger part of the day, compared to the five stressors in Paper II. 

Furthermore, four of the five physical stressors did not trigger the release of pro-

inflammatory cytokines that occurred after SDR-stress, which may also explain 

why these stressors were not associated with increased atherosclerosis. 

 

Possible mechanistic links between stress and atherosclerosis 

In this thesis we have studied the effect of three different forms of stress on 

atherosclerosis. We found that social stress accelerated atherosclerosis while more 

physical forms of stress did not. Possible mechanisms converting this psychosocial 

load into physical disease, i.e. atherosclerosis, are discussed below. 

 

Changed cytokine release 

In line with the effects on atherosclerosis, social but not physical stress changed 

the release of specific cytokines (Table 1). SDR-stress resulted in increased 

plasma/serum levels of IL-6 and CXCL1, and social isolation decreased serum 

levels of G-CSF, while after exposure to four of the five physical stressors 

cytokine levels remained unchanged [73, 82]. We therefore hypothesize that the 

five more physical stressors fail to be atherogenic because these stressors did not 

activate the immune system, and did not trigger the release of pro-inflammatory 

cytokines. SDR-stress, and social isolation to some extent, did affect the release of 

cytokines, and subsequently also accelerated atherosclerosis. Social stress has 

been associated with immune disorders in rodents [86], and more specifically with 

the increase of pro-inflammatory cytokines [71, 87].  

 

One of the five physical stressors, restraint combined with rat odor stress, 

triggered the release of pro-inflammatory cytokines, although mice exposed rat 
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odor or restraint alone did not [73]. A speculative explanation could be that the 

smell of a predator, a rat, only becomes a real threat and psychologically stressful 

when the mouse cannot move or explore the surroundings. If the mouse can move 

freely in a cage with rat odor it only takes a little while before the mouse has 

explored the surroundings and found that there is no threat, no predator. In fact, 

when we observed these mice we saw that they ran around in the cage for 

approximately 20-30 min and then lay down in a corner for the rest of the session. 

 

Table 1. The effect of different forms of stress and metoprolol treatment on cytokine release. 

 
Black arrows represent data reported in Papers I-IV. Dashed arrows represent numerical but not 

statistically significant decreases. na = not assessed. 

 

Social stress specifically changed the release of a few cytokines (IL-6, G-CSF and 

the chemokine CXCL1) that all play a role in the development of atherosclerosis. 

The role of these cytokines in atherosclerosis is discussed below.  

 

IL-6 

SDR-stress increased plasma levels of IL-6 in all four studies in Paper III. In fact, 

we have seen this effect in seven different experiments, in two different mouse 

strains and in mice from two different breeders (Paper III and unpublished data), 
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indicating that this is a very robust finding. Activated immune cells in the plaques 

produce the pro-inflammatory cytokines INF-γ, IL-1 and TNF-α which induce the 

production of large amounts of interleukin-6 (IL-6). IL-6 is the major mediator for 

liver production of acute phase proteins like C-reactive protein (CRP) and serum 

amyloid A (reviewed in [47]). An increased level of CRP is a well known risk 

factor for CVD [49], but IL-6 has also been identified as an independent risk 

factor for carotid atherosclerosis [48, 50]. Moreover, IL-6 administration has been 

show to increase atherosclerotic lesion size in ApoE-/- and C57BL/6 mice [88]. 

However, there are conflicting results showing that total depletion of IL-6 in 

ApoE/IL-6 double knock-out mice also leads to increased atherosclerosis [89]. 

The role for IL-6 in atherogenesis is thus not fully understood. 

 

In line with our results, IL-6 has been shown to increase in supernatants of 

cultured splenocytes [70, 71] and in plasma/serum samples in C57BL/6 mice after 

exposure to SDR-stress [71, 87], as well as in humans exposed to both chronic and 

acute stress [51-53]. IL-6 transcription is mediated via different transcription 

factors such as nuclear factor κB (NF-κB) and STAT3. NF-κB is rapidly induced 

by psychosocial stress in humans as well as in mouse models [22, 23] and induce 

IL-6 mRNA transcription [22]. Some of the pro-atherosclerotic effects of stress 

may thus be mediated by IL-6. Moreover, in Paper III we found that the increase 

in IL-6 likely could be reduced by metoprolol, suggesting that IL-6 production is 

mediated via the sympathetic nervous system as a response to SDR-stress. 

However, this reduction was only near statistical significance (p=0.059 for SDR 

vs. SDR-Met 3 days). Nevertheless, there was no significant difference in IL-6 

levels between control and mice exposed to SDR-stress and metoprolol for three 

days, supporting an inhibitory effect of metoprolol. 

 

In a small experiment with 11 healthy volunteers and 7 unstressed controls we 

wanted to see if we could repeat the previous findings where IL-6 increased in 
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humans after acute stress [51, 90]. Subjects in the stress group were stressed with 

Stroop Colour Word Test (CWT), a mirror tracing task (MTT), and a modified 

version of Trier Social Stress Test (TSST) [91, 92] , for a period of 25 minutes. 

Blood samples were drawn before stress (baseline) and 45 min after stress (post-

stress). Interestingly, in accordance with previous findings plasma IL-6 levels 

(post-stress/baseline ratio) were significantly higher in the stress group compared 

to controls (Fig. 5).  
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Figure 5. The effect of acute psychosocial stress on plasma IL-6 levels in healthy volunteers. 

Because baseline levels differ between groups a ratio for IL-6 was calculated (post-stress/baseline 

values). Data was logarithmically transformed and subsequently analyzed with Students T-test 

(SPSS). *p<0.05. 

 

G-CSF 

Social isolation did not stimulate the release of IL-6 and CXCL1, like SDR-stress. 

Nonetheless, serum levels Granulocyte-colony stimulating factor (G-CSF) was 

significantly decreased (p=0.018) in socially isolated mice compared to 

environmentally enriched mice. This decrease was accompanied by increased 
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atherosclerosis, in accordance with previous findings [93]. G-CSF is a 

haemotopoietic cytokine known to induce the release of haematopoietic stem cells 

and endothelial progenitor cells (EPCs) from the bone marrow, which is associated 

with an enhanced reendothelialization of injured vessels [94]. Furthermore, 

inflammation in the vessel wall and neointimal hyperplasia was reduced after G-

CSF treatment [95]. It is possible that G-CSF reduces atherosclerosis via increased 

stem cell recruitment and increased regenerative capacity of the endothelium. 

However, the role of G-CSF in atherosclerosis is complex; a recent study shows 

that exogenous treatment with G-CSF actually accelerates atherosclerosis in 

ApoE-/- mice [96]. Clearly, more studies in this area are needed.  

 

CXCL1 

We found that serum levels of the chemokine CXCL1, also called KC 

(keratinocyte-derived chemokine), were dramatically increased by SDR-stress in 

Paper III. Interestingly, in Paper III, we also found that metoprolol treatment for 

three days numerically reduced the increased CXCL1 levels seen after SDR-stress, 

in a similar pattern as for IL-6. Although this reduction did not reach statistical 

significance compared to mice exposed to SDR-stress alone (p=0.102 for SDR vs. 

SDR-Met 3 days), CXCL1 levels in mice treated with metoprolol for three days 

were not significantly higher than control mice (p=0.987 for C vs. SDR-Met 3 

days). Taken together, the fact that metoprolol numerically inhibits SDR-stress-

induced increases of both IL-6 and CXCL1, the fact that these cytokines follow 

the same pattern both regarding SDR-stress-induced elevations and in metoprolol-

induced reductions, and finally that metoprolol significantly decreased CXCL1 in 

unstressed mice in Paper IV, suggest that metoprolol indeed have inhibitory 

effects on these cytokines during exposure to SDR-stress. Moreover, we found 

that serum levels of CXCL1 still increased acutely after 12 weeks of SDR-stress in 

Paper III, suggesting that habituation did not occur.  
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CXCL1 is the murine homologue of human GROα (growth-regulated-oncogene-α) 

and is a chemoattractant for leukocytes. CXCL1 is one of the ligands for the 

chemokine receptor CXCR2. This chemokine and its receptor CXCR2 are present 

in atherosclerotic lesions and play an important role in accumulation of 

macrophages in established fatty streak lesions [97, 98]. CXCL1 is expressed on 

atherosclerotic endothelium and promotes monocyte arrest via VCAM-1 and the 

β-2 integrin VLA-4 in ex vivo experiments in ApoE-/- mice [99]. Furthermore, 

GROα may play a role in lipid accumulation and promote foam cell formation 

[100]. The pro-inflammatory cytokine TNF-α, as well as oxLDL have been found 

to induce GROα expression in endothelial cells [101, 102].  

 

In line with these findings, LDL receptor-KC/GROα double knock-out mice 

display a reduction in atherosclerotic lesion formation compared to LDL receptor 

deficient mice [98]. There is also evidence for a role of GROα in atherosclerotic 

disease in the human situation. Patients with angina display raised plasma levels 

GROα compared to healthy controls. Furthermore, patients with unstable angina 

display particularly high levels of GROα, suggesting that GROα may also play a 

role in destabilization of atherosclerotic lesions [100].  

 

Increased corticosterone levels 

Plasma corticosterone levels increased acutely after all the five physical stressors 

and after SDR-stress, but there was no correlation between plasma corticosterone 

levels and atherosclerotic plaque area (neither in the aorta, the innominate artery 

or the aortic root). Urinary corticosterone levels were only increased chronically 

after exposure to the five physical stressors, and there was no correlation between 

urinary corticosterone levels and atherosclerosis when looking at each study 

separately. However, there was a weak correlation between urinary corticosterone 
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levels and aortic plaque area when data from Papers I-III where taken together 

(Fig. 6). This indicates that corticosterone per se may play a role in atherogenesis, 

but a large number of observations (n=116 in this case) is needed to find this 

correlation. Although some studies suggest a positive correlation between 

cortisol/corticosterone and CVD, the role for corticosterone in atherogenesis is 

unclear [13]. 
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Figure 6. A correlation between aortic plaque area and urinary corticosterone levels 

(uCORT). Data is a summary of Papers I-III, including 116 data points. Data was 

analyzed with Spearman’s test for nonparametric correlations (SPSS). R2=0.323, 

p<0.001. 

 

Sympathetic activation during stress (Papers II and III) 

During stress the sympathetic nervous system is activated. In Paper II both heart 

rate and blood pressure increased dramatically after exposure to all five stressors 

[73], showing that these stressors indeed activated the sympathetic nervous 

system. Data in Paper III suggest that the sympathetic nervous system was 
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activated during SDR-stress in this setting as well. Plasma IL-6 levels were 

dramatically increased after SDR-stress and this increased could likely be 

inhibited by β-blockade with metoprolol.  

 

Increase plasma lipid levels (Paper I) 

Both total cholesterol and triglyceride levels were increased in socially deprived 

mice in Paper I [82]. Indeed, the increased cholesterol levels may explain the 

increased atherosclerosis observed in these mice.  

 

No association between stress and oxidative stress (Paper I) 

Oxidative stress plays a significant role in atherogenesis [103]. We analyzed 

isoprostane levels in urine samples in Paper I, as an indication of systemic 

oxidative stress [77]. However, neither social isolation nor different levels of 

environmental enrichment affected isoprostane levels [82], suggesting that this 

form of stress does not increase systemic oxidative stress and is thus not 

responsible for increased atherosclerosis in Paper I. Although, social and 

emotional stress has been suggested to increase markers for oxidative stress in 

mice [104] as well as in humans [105], we could not corroborate these findings in 

Paper I.  

 

β-blockade reduces atherosclerosis and pro-inflammatory 

cytokines (Paper IV) 

The SNS is activated during stress and in Paper IV we treated ApoE-/- mice with 

metoprolol, intervening with the SNS. Indeed, we found that intervention with 

metoprolol reduced atherosclerosis in ApoE-/- mice. The mechanisms are, 

however, still not clearly understood. Interestingly, in Paper IV, we found a 

possible mechanistic link between metoprolol and reduced atherosclerosis. 
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Metoprolol decreased serum levels of pro-inflammatory cytokines TNF-α (see 

below) and CXCL (see above), which both have known pro-atherogenic effects.  

 

TNF-α 

TNF-α is mainly produced by monocytes and macrophages and has been shown to 

play a role in the development of atherosclerosis. Among the pro-atherogenic 

effects of TNF-α are the stimulatory effect on the expression of adhesion 

molecules such as vascular cell adhesion molecule (VCAM), intracellular 

adhesion molecule (ICAM) and E-selectin, the expression of matrix 

metalloproteinase (MMP), the production of reactive oxygen species (ROS) 

through NADPH oxidase, and liver production of C-reactive protein (CRP) (as 

reviewed in [106]). Inhibition of TNF-α or depletion of the TNF-α gene reduces 

the progression of atherosclerosis in ApoE-/- mice [107-109]. The fact that TNF-α 

is present in human atherosclerotic lesions, in both diabetic and non-diabetic 

patients, further supports the involvement of the cytokine in atherogenesis [110]. 

 

No synergistic effect of psychosocial stress and high salt intake 

on atherosclerosis (Paper II) 

Neither a high salt diet per se, nor the combination of a high salt diet and exposure 

to five stressors were associated with increased atherosclerosis in Paper II. Thus, 

we found no support for our hypothesis that these stressors would impair RAAS in 

a way that a salt load would be deleterious for atherosclerosis. However, these 

stressors may not have been the best form of stress to impair RAAS, since these 

stressors also failed to be atherogenic.  
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Blood pressure and heart rate (Paper I and II) 

In Paper I, conscious blood pressure measurements with the tail-cuff technique 

showed an increased systolic blood pressure in environmentally enriched mice 

compared to socially deprived and environmentally deprived mice [82]. However, 

due to the drawbacks of this method (discussed in “Methodological 

considerations”) it is likely that environmentally enriched mice that were rarely 

handled experienced a higher level of stress during blood pressure measurements. 

Moreover, blood pressure did not differ between groups in anaesthetized mice 

[82]. In Paper II, telemetry was used to study the effects of the five different 

stressors on blood pressure and heart rate. When using this method we could see 

marked increases in both blood pressure and heart rate during stress, for each of 

the stressors. However, in the long term atherosclerosis study in Paper II, 

anaesthetized blood pressure and heart rate were measured and did not differ 

between groups [73]. 

 

Summary 

In this thesis we have evaluated three different stress models in ApoE -/- mice, on 

the effect on atherosclerosis. Figure 7 on the following page shows a summary of 

the results and suggests pathways through which the different stressors act on 

atherosclerosis. 
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Figure 7. An overview of suggested 
effects of stress on atherosclerosis. Blue 
arrows represent possible pathways for 
social isolation, red arrows represent 
possible pathways for the 5 stressors, 
green arrows represent possible pathways 
for social disruption stress (SDR-stress), 
black arrows represent information from 
the literature, and dashed arrows 
represent hypothesized pathways. Social 
isolation increased total plasma 
cholesterol levels and decreased serum 
G-CSF levels, possibly via the 
sympathetic nervous system (SNS) 
leading to increased atherosclerosis [82]. 
The 5 physical stressors activated the 
SNS, as could be seen by increased blood 
pressure (BP) and heart rate (HR), but 
did not affect atherosclerosis [73]. SDR-
stress induced the release of pro-
inflammatory cytokines IL-6 and 
CXCL1, likely via the SNS since the 
effect could be reduced by metoprolol. 
The effect may be mediated via the 
transcription factor nuclear factor-κB 
(NF-κB) [22]. IL-6 is a powerful inducer 
of liver production of acute phase 
proteins that are known risk factors for 
atherosclerosis [48, 50]. Both the 5 
stressors and SDR-stress activated the 
hypothalamus-pituitary-adrenal axis 
(HPA-axis) as could be seen by elevated 
plasma corticosterone levels. However, 
the role of corticosterone in 
atherosclerosis is unclear. 
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CONCLUSIONS AND FUTURE PERSPECTIVES 

From the results in this thesis we can conclude that different forms of stress affect 

atherogenesis differently. Social forms of stress (social isolation and SDR-stress, 

in Paper I and III, respectively) that intervene with the social environment 

accelerate atherosclerosis, while more physical forms of stress (5 physical 

stressors, Paper II) do not. Thus, it appears that social interactions are very 

powerful modulators of atherosclerosis development in mice. 

 

As a possible explanation of the difference in atherogenicity for the different 

forms of stress, we also found that social, but not physical forms of stress change 

cytokine release. Social isolation leads to decreased levels of G-CSF, SDR-stress 

leads to increased levels of IL-6 and CXCL1, while the physical stressors do not 

change cytokine release. We suggest that the increased release of pro-

inflammatory cytokines is mediated via the sympathetic nervous system, since the 

effect likely can be reduced by metoprolol. Moreover, metoprolol per se reduces 

atherosclerosis and serum levels of TNF-α and CXCL1 in unstressed mice. Thus, 

we suggest a possible pathway in which social stress, via the sympathetic nervous 

system and the immune system may accelerate atherosclerosis (Fig. 8). 

 

 
Figure 8. Suggested pathway in which social stress can accelerate atherosclerosis. Social stress 

activates the sympathetic nervous system (SNS) which leads to the release of pro-inflammatory 

cytokines with pro-atherogenic effects. Metoprolol inhibit cytokine release and may thus reduce 

atherosclerosis. 
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However, further studies are needed to confirm this hypothesis. The effects 

observed are subtle and no long term studies have been preformed evaluating the 

effect of metoprolol on atherosclerosis in mice exposed to SDR-stress. It would be 

of great interest to test this hypothesis and also further validate the effects of 

metoprolol on cytokine release after SDR-stress. 

 

The effects of metoprolol on atherogenesis are not fully understood. In this thesis 

we have provided some new information on the anti-atherogenic effect of 

metoprolol. We found that metoprolol reduced serum levels of TNF-α and 

CXCL1, which both have known pro-atherosclerotic effects. Earlier studies have 

suggested that metoprolol can stabilize vulnerable atherosclerotic lesions by 

reducing expression of adhesion molecules ICAM-1 and VCAM-1 and by 

reducing lipid accumulation within lesions [38]. It would therefore be interesting 

to further study the effects of metoprolol on plaque stability.  

 

To implement the findings of this thesis in the clinical setting could bring valuable 

knowledge to health care. There are already studies showing that IL-6 increases as 

a response to both acute and chronic stress in humans [51-53], but does GRO-α 

(the human homolog for CXCL1) increase in the same manner? Can metoprolol 

reduce this stress-induced IL-6 increase in humans? Moreover, metoprolol per se 

reduced serum levels of TNF-α and CXCL in unstressed mice, is this the case in 

humans as well? Can decreased levels of these cytokines explain some of the anti-

atherogenic effects of metoprolol earlier reported in humans? [21] 

 

This thesis has provided important information on how social stress accelerates 

atherosclerosis, and has suggested the release of pro-inflammatory cytokines as an 

underlying mechanism. Our hope is that our results, and further studies exploring 

mechanisms converting psychosocial stress into physical disease, will help to 

reduce the deleterious effects of psychosocial stress. 
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